WorldWideScience

Sample records for gas nitrous oxide

  1. 21 CFR 868.1700 - Nitrous oxide gas analyzer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrous oxide gas analyzer. 868.1700 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1700 Nitrous oxide gas analyzer. (a) Identification. A nitrous oxide gas analyzer is a device intended to measure the concentration of nitrous oxide...

  2. Death from Nitrous Oxide.

    Science.gov (United States)

    Bäckström, Björn; Johansson, Bengt; Eriksson, Anders

    2015-11-01

    Nitrous oxide is an inflammable gas that gives no smell or taste. It has a history of abuse as long as its clinical use, and deaths, although rare, have been reported. We describe two cases of accidental deaths related to voluntary inhalation of nitrous oxide, both found dead with a gas mask covering the face. In an attempt to find an explanation to why the victims did not react properly to oncoming hypoxia, we performed experiments where a test person was allowed to breath in a closed system, with or without nitrous oxide added. Vital signs and gas concentrations as well as subjective symptoms were recorded. The experiments indicated that the explanation to the fact that neither of the descendents had reacted to oncoming hypoxia and hypercapnia was due to the inhalation of nitrous oxide. This study raises the question whether nitrous oxide really should be easily, commercially available. © 2015 American Academy of Forensic Sciences.

  3. The ideal oxygen/nitrous oxide fresh gas flow sequence with the Anesthesia Delivery Unit machine.

    Science.gov (United States)

    Hendrickx, Jan F A; Cardinael, Sara; Carette, Rik; Lemmens, Hendrikus J M; De Wolf, Andre M

    2007-06-01

    To determine whether early reduction of oxygen and nitrous oxide fresh gas flow from 6 L/min to 0.7 L/min could be accomplished while maintaining end-expired nitrous oxide concentration > or =50% with an Anesthesia Delivery Unit anesthesia machine. Prospective, randomized clinical study. Large teaching hospital in Belgium. 53 ASA physical status I and II patients requiring general endotracheal anesthesia and controlled mechanical ventilation. Patients were randomly assigned to one of 4 groups depending on the duration of high oxygen/nitrous oxide fresh gas flow (two and 4 L/min, respectively) before lowering total fresh gas flow to 0.7 L/min (0.3 and 0.4 L/min oxygen and nitrous oxide, respectively): one, two, three, or 5 minutes (1-minute group, 2-minute group, 3-minute group, and 5-minute group), with n = 10, 12, 13, and 8, respectively. The course of the end-expired nitrous oxide concentration and bellows volume deficit at end-expiration was compared among the 4 groups during the first 30 minutes. At the end of the high-flow period the end-expired nitrous oxide concentration was 35.6 +/- 6.2%, 48.4 +/- 4.8%, 53.7 +/- 8.7%, and 57.3 +/- 1.6% in the 4 groups, respectively. Thereafter, the end-expired nitrous oxide concentration decreased to a nadir of 36.1 +/- 4.5%, 45.4 +/- 3.8%, 50.9 +/- 6.1%, and 55.4 +/- 2.8% after three, 4, 6, and 8 minutes after flows were lowered in the 1- to 5-minute groups, respectively. A decrease in bellows volume was observed in most patients, but was most pronounced in the 2-minute group. The bellows volume deficit gradually faded within 15 to 20 minutes in all 4 groups. A 3-minute high-flow period (oxygen and nitrous oxide fresh gas flow of 2 and 4 L/min, respectively) suffices to attain and maintain end-expired nitrous oxide concentration > or =50% and ensures an adequate bellows volume during the ensuing low-flow period.

  4. Quantification of Nitrous Oxide from Fugitive Emissions by Tracer Dilution Method using a Mobile Real-time Nitrous Oxide Analyzer

    Science.gov (United States)

    Mønster, J.; Rella, C.; Jacobson, G. A.; He, Y.; Hoffnagle, J.; Scheutz, C.

    2012-12-01

    Nitrous oxide is a powerful greenhouse gas considered 298 times stronger than carbon dioxide on a hundred years term (Solomon et al. 2007). The increasing global concentration is of great concern and is receiving increasing attention in various scientific and industrial fields. Nitrous oxide is emitted from both natural and anthropogenic sources. Inventories of source specific fugitive nitrous oxide emissions are often estimated on the basis of modeling and mass balance. While these methods are well-developed, actual measurements for quantification of the emissions can be a useful tool for verifying the existing estimation methods as well as providing validation for initiatives targeted at lowering unwanted nitrous oxide emissions. One approach to performing such measurements is the tracer dilution method (Galle et al. 2001), in which a tracer gas is released at the source location at a known flow. The ratio of downwind concentrations of both the tracer gas and nitrous oxide gives the ratios of the emissions rates. This tracer dilution method can be done with both stationary and mobile measurements; in either case, real-time measurements of both tracer and analyte gas is required, which places high demands on the analytical detection method. To perform the nitrous oxide measurements, a novel, robust instrument capable of real-time nitrous oxide measurements has been developed, based on cavity ring-down spectroscopy and operating in the near-infrared spectral region. We present the results of the laboratory and field tests of this instrument in both California and Denmark. Furthermore, results are presented from measurements using the mobile plume method with a tracer gas (acetylene) to quantify the nitrous oxide and methane emissions from known sources such as waste water treatment plants and composting facilities. Nitrous oxide (blue) and methane (yellow) plumes downwind from a waste water treatment facility.

  5. Nitrous oxide (laughing gas) inhalation as an alternative to electroconvulsive therapy.

    Science.gov (United States)

    Milne, Brian

    2010-05-01

    Electroconvulsive therapy (ECT) is used widely in the treatment of psychiatric conditions; however, its use is not without controversy with some recommending a moratorium on its clinical use. Complications and side effects of ECT include memory loss, injury, problems originating from sympathetic stimulation such as arrhythmias and myocardial ischemia and the risk of general anesthesia. Nitrous oxide (laughing gas) could potentially substitute for ECT as it shares some similar effects, has potential beneficial properties for these psychiatric patients and is relatively safe and easy to administer. Nitrous oxide induces laughter which has been described as nature's epileptoid catharsis which one might surmise would be beneficial for depression. It also produces a central sympathetic stimulation similar to ECT and causes release of endogenous opioid peptides, which are potential candidates for the development of antidepressant drugs. Nitrous oxide is also associated with seizure like activity itself. Administration of nitrous oxide as a substitute for ECT is eminently feasible and could be given in a series of treatments similar to ECT therapy.

  6. Emission of nitrous oxide during combustion of organic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Gol' dberg, A.S.

    1990-11-01

    Analyzes formation of nitrogen oxides during combustion of coal, natural gas and mazout: chemical reactions that lead to formation of nitrous oxide during coal combustion, reaction kinetics and reaction yields, factors that influence emission of nitrogen oxides from a furnace, factors that influence formation of nitrous oxide (temperature effects, air excess ratio, coal burnout degree, etc.), effects of fuel type and its chemical composition, effects of flue gas desulfurization and denitrification methods on nitrous oxide yield. Analyses show that yield of nitrous oxide is low and does not exceed 5 cm{sup 3}/m{sup 3} flue gas (0.0005%). However chemical reactions of nitrogen oxides, sulfur dioxide and water vapor in the atmosphere are said to form additional quantities of nitrous oxide which negatively influence the ozone layer. 4 refs.

  7. Nitrous oxide and perioperative outcomes.

    Science.gov (United States)

    Ko, Hanjo; Kaye, Alan David; Urman, Richard D

    2014-06-01

    There is emerging evidence related to the effects of nitrous oxide on important perioperative patient outcomes. Proposed mechanisms include metabolic effects linked to elevated homocysteine levels and endothelial dysfunction, inhibition of deoxyribonucleic acid and protein formation, and depression of chemotactic migration by monocytes. Newer large studies point to possible risks associated with the use of nitrous oxide, although data are often equivocal and inconclusive. Cardiovascular outcomes such as stroke or myocardial infarction were shown to be unchanged in previous studies, but the more recent Evaluation of Nitrous Oxide in the Gas Mixture for Anesthesia I trial shows possible associations between nitrous oxide and increased cardiovascular and pulmonary complications. There are also possible effects on postoperative wound infections and neuropsychological function, although the multifactorial nature of these complications should be considered. Teratogenicity linked to nitrous oxide use has not been firmly established. The use of nitrous oxide for routine anesthetic care may be associated with significant costs if complications such as nausea, vomiting, and wound infections are taken into consideration. Overall, definitive data regarding the effect of nitrous oxide on major perioperative outcomes are lacking. There are ongoing prospective studies that may further elucidate its role. The use of nitrous oxide in daily practice should be individualized to each patient's medical conditions and risk factors.

  8. AMMONIA REMOVAL AND NITROUS OXIDE PRODUCTION IN GAS-PHASE COMPOST BIOFILTERS

    Science.gov (United States)

    Biofiltration technology is widely utilized for treating ammonia gas (NH3), with one of its potential detrimental by-products being nitrous oxide (N2O), a greenhouse gas approximately 300 times more reactive to infrared than CO2. The present work intends to provide the relation between NH3 removal d...

  9. Catalytic oxidation using nitrous oxide

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  10. Measurement system for nitrous oxide based on amperometric gas sensor

    Science.gov (United States)

    Siswoyo, S.; Persaud, K. C.; Phillips, V. R.; Sneath, R.

    2017-03-01

    It has been well known that nitrous oxide is an important greenhouse gas, so monitoring and control of its concentration and emission is very important. In this work a nitrous oxide measurement system has been developed consisting of an amperometric sensor and an appropriate lab-made potentiostat that capable measuring picoampere current ranges. The sensor was constructed using a gold microelectrode as working electrode surrounded by a silver wire as quasi reference electrode, with tetraethyl ammonium perchlorate and dimethylsulphoxide as supporting electrolyte and solvent respectively. The lab-made potentiostat was built incorporating a transimpedance amplifier capable of picoampere measurements. This also incorporated a microcontroller based data acquisition system, controlled by a host personal computer using a dedicated computer program. The system was capable of detecting N2O concentrations down to 0.07 % v/v.

  11. Expansion of the acceptance program: nitrous oxide scavenging equipment and nitrous oxide trace gas monitoring equipment

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The Acceptance Program for dental materials and devices and the general guidelines for submission of products have been reported in the Journal (88:615 March 1974). At its April 1977 meeting, the Council included equipment for scavenging and monitoring trace nitrous oxide gas in its Acceptance Program. The Council has established the effective date for classification of products under these two sets of guidelines as one year from the date of publication of this announcement. After that date, classification of a product will be required before promotion or exhibition in Association media.

  12. Nitrous oxide emission by aquatic macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter

    2009-01-01

      A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested...... delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic...... animals is quantitatively important in nitraterich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability...

  13. Nitrous oxide emission by aquatic macrofauna

    Science.gov (United States)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter; Brix, Hans; Schramm, Andreas

    2009-01-01

    A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic animals is quantitatively important in nitrate-rich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability in tropical regions and the numeric dominance of filter- and deposit-feeders in eutrophic ecosystems. PMID:19255427

  14. High Performance Nitrous Oxide Analyzer for Atmospheric Research, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project targets the development of a highly sensitive gas sensor to monitor atmospheric nitrous oxide. Nitrous oxide is an important species in Earth science...

  15. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    International Nuclear Information System (INIS)

    Yoosefian, Mehdi

    2017-01-01

    Highlights: • Investigation of the adsorption of Nitrous oxide on SWCNT and Pd/SWCNT. • Nitrous oxide adsorbed on Pd/SWCNT system demonstrates a strong adsorption. • The Pd/SWCNT is potential sensor for the Nitrous oxide gaseous molecule detection. - Abstract: Density functional studies on the adsorption behavior of nitrous oxide (N_2O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N_2O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N_2O onto CNT, the horizontal adsorption with E_a_d_s = −0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N_2O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N_2O were investigated. Adsorption of N_2O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N_2O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N_2O sensors.

  16. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Yoosefian, Mehdi, E-mail: m.yoosefian@kgut.ac.ir

    2017-01-15

    Highlights: • Investigation of the adsorption of Nitrous oxide on SWCNT and Pd/SWCNT. • Nitrous oxide adsorbed on Pd/SWCNT system demonstrates a strong adsorption. • The Pd/SWCNT is potential sensor for the Nitrous oxide gaseous molecule detection. - Abstract: Density functional studies on the adsorption behavior of nitrous oxide (N{sub 2}O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N{sub 2}O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N{sub 2}O onto CNT, the horizontal adsorption with E{sub ads} = −0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N{sub 2}O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N{sub 2}O were investigated. Adsorption of N{sub 2}O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N{sub 2}O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N{sub 2}O sensors.

  17. Nitrous oxide emissions of energy production

    International Nuclear Information System (INIS)

    Kinnunen, L.

    1998-01-01

    The share of energy production of the world-wide total N 2 O emissions is about 10 %. In 1991 the N 2 O emissions estimated to be up to 30 %. The previous estimates based on incorrect measurements. The measurement methods have been improved during the past few years. The present measurements have shown that the share of the combustion of fossil fuels is about 2.0 % and the share biomass combustion about 5.0 % of the total. The uncertainty of the values can be few percentage units. According to the present measurements the share of natural emissions and the fertilizers of the total N 2 O emissions is up to 60 %. The formation of nitrous oxide has been studied widely in various countries in the world. In Finland nitrous oxide has been studied in the national LIEKKI research programme. As a result of the research carried out in the programme it has been possible to reduce the formation of N 2 O by using appropriate catalysts and combustion technologies. Nitrous oxide is formed e.g. in fluidized-bed combustion of nitrogen containing fuels. The combustion temperature of other combustion methods is so high that the gas disintegrates in the furnace. By the new methods the nitrous oxide emissions of the fluidized-bed combustion has been possible to reduce from 100-200 ppm to the level less than 50 ppm of the flue gas volume. The Japanese research has shown that the nitrous oxide emissions of bubbling beds vary in between 58 - 103 ppm, but when combusting paper the emissions are 6 - 29 ppm. The corresponding value of circulating fluidized beds is 40 - 153 ppm

  18. Nitrous oxide-induced slow and delta oscillations.

    Science.gov (United States)

    Pavone, Kara J; Akeju, Oluwaseun; Sampson, Aaron L; Ling, Kelly; Purdon, Patrick L; Brown, Emery N

    2016-01-01

    Switching from maintenance of general anesthesia with an ether anesthetic to maintenance with high-dose (concentration >50% and total gas flow rate >4 liters per minute) nitrous oxide is a common practice used to facilitate emergence from general anesthesia. The transition from the ether anesthetic to nitrous oxide is associated with a switch in the putative mechanisms and sites of anesthetic action. We investigated whether there is an electroencephalogram (EEG) marker of this transition. We retrospectively studied the ether anesthetic to nitrous oxide transition in 19 patients with EEG monitoring receiving general anesthesia using the ether anesthetic sevoflurane combined with oxygen and air. Following the transition to nitrous oxide, the alpha (8-12 Hz) oscillations associated with sevoflurane dissipated within 3-12 min (median 6 min) and were replaced by highly coherent large-amplitude slow-delta (0.1-4 Hz) oscillations that persisted for 2-12 min (median 3 min). Administration of high-dose nitrous oxide is associated with transient, large amplitude slow-delta oscillations. We postulate that these slow-delta oscillations may result from nitrous oxide-induced blockade of major excitatory inputs (NMDA glutamate projections) from the brainstem (parabrachial nucleus and medial pontine reticular formation) to the thalamus and cortex. This EEG signature of high-dose nitrous oxide may offer new insights into brain states during general anesthesia. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Adverse Cardiovascular Effects of Nitrous Oxide: It is not all about Hyperhomocysteinaemia

    Directory of Open Access Journals (Sweden)

    Ata Mahmoodpoor

    2015-04-01

    due the dilution effect. This would alter the total and instantaneous nitrous oxide and volatile anesthetic delivery to the patients affecting the results of the study. In the meantime, another confounding factor is the “Carrier Gas Composition”. Vaporizer output is influenced by the composition of the carrier gas, i.e. oxygen, nitrous oxide or air, which flows through the vaporizer (5. Nitrous oxide is more soluble than oxygen in the halogenated liquid within the vaporizer sump, changing the composition of carrier gas would be associated with different steady-state values altering the amount of the delivered volatile anesthetic (6. Increased or decreased amounts of the delivered volatile agents play a major role in the hemodynamic and cardiovascular events both intra- and post-operatively. Factors that contribute to the characteristic steady-state response resulting when various carrier gases are used include the viscosity and density of the carrier gas, the relative solubility of the carrier gas in the anesthetic liquid, the flow-splitting characteristics of the specific vaporizer, and the concentration control dial setting (6.

  20. Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles

    NARCIS (Netherlands)

    Wagner-Riddle, Claudia; Congreves, Katelyn A.; Abalos Rodriguez, Diego; Berg, Aaron A.; Brown, Shannon E.; Ambadan, Jaison Thomas; Gao, Xiaopeng; Tenuta, Mario

    2017-01-01

    Seasonal freezing induces large thaw emissions of nitrous oxide, a trace gas that contributes to stratospheric ozone destruction and atmospheric warming. Cropland soils are by far the largest anthropogenic source of nitrous oxide. However, the global contribution of seasonal freezing to nitrous

  1. Nitrous Oxide and Serious Long-term Morbidity and Mortality in the Evaluation of Nitrous Oxide in the Gas Mixture for Anaesthesia (ENIGMA)-II Trial.

    Science.gov (United States)

    Leslie, Kate; Myles, Paul S; Kasza, Jessica; Forbes, Andrew; Peyton, Philip J; Chan, Matthew T V; Paech, Michael J; Sessler, Daniel I; Beattie, W Scott; Devereaux, P J; Wallace, Sophie

    2015-12-01

    The Evaluation of Nitrous Oxide in the Gas Mixture for Anaesthesia (ENIGMA)-II trial randomly assigned 7,112 noncardiac surgery patients at risk of perioperative cardiovascular events to 70% N2O or 70% N2 groups. The aim of this follow-up study was to determine the effect of nitrous oxide on a composite primary outcome of death and major cardiovascular events at 1 yr after surgery. One-year follow-up was conducted via a medical record review and telephone interview. Disability was defined as a Katz index of independence in activities of daily living score less than 8. Adjusted odds ratios and hazard ratios were calculated as appropriate for primary and secondary outcomes. Among 5,844 patients evaluated at 1 yr, 435 (7.4%) had died, 206 (3.5%) had disability, 514 (8.8%) had a fatal or nonfatal myocardial infarction, and 111 (1.9%) had a fatal or nonfatal stroke during the 1-yr follow-up period. Exposure to nitrous oxide did not increase the risk of the primary outcome (odds ratio, 1.08; 95% CI, 0.94 to 1.25; P = 0.27), disability or death (odds ratio, 1.07; 95% CI, 0.90 to 1.27; P = 0.44), death (hazard ratio, 1.17; 95% CI, 0.97 to 1.43; P = 0.10), myocardial infarction (odds ratio, 0.97; 95% CI, 0.81 to 1.17; P = 0.78), or stroke (odds ratio, 1.08; 95% CI, 0.74 to 1.58; P = 0.70). These results support the long-term safety of nitrous oxide administration in noncardiac surgical patients with known or suspected cardiovascular disease.

  2. CHARACTERIZATION OF NITROUS OXIDE EMISSION SOURCES

    Science.gov (United States)

    The report presents a global inventory of nitrous oxide (N2O) based on reevaluation of previous estimates and additions of previously uninventoried source categories. (NOTE: N2O is both a greenhouse gas and a precursor of nitric oxide (NO) which destroys stratospheric ozone.) The...

  3. Enhancement of suggestibility and imaginative ability with nitrous oxide.

    Science.gov (United States)

    Whalley, M G; Brooks, G B

    2009-05-01

    Imaginative suggestibility, a trait closely related to hypnotic suggestibility, is modifiable under some circumstances. Nitrous oxide (laughing gas) is commonly used for sedation in dentistry and is reported to be more effective when combined with appropriate suggestions. The aim of this study was to determine whether nitrous oxide inhalation alters imaginative suggestibility and imagery vividness. Thirty participants were tested twice in a within-subjects design, once during inhalation of 25% nitrous oxide and once during inhalation of air plus oxygen. Before the study, participants' expectancies regarding the effects of nitrous oxide were assessed. Participants were blinded to drug administration. During each session, participants were verbally administered detailed measures of imagination and suggestibility: the Sheehan-Betts Quality of Mental Imagery scale and the Stanford Hypnotic Susceptibility Scale Form C, minus the hypnotic induction. Imaginative suggestibility and imaginative ability (imagery vividness) were both elevated in the nitrous oxide condition. This effect was unrelated to participants' expectations regarding the effects of the drug. Nitrous oxide increased imaginative suggestibility and imaginative ability. Possible explanations of these findings are discussed with respect to the effects of N-methyl-d-aspartate antagonists and to other pharmacological effects upon suggestibility and imagination.

  4. Urban sources and emissions of nitrous oxide and methane in southern California, USA

    Science.gov (United States)

    Townsend-Small, A.; Pataki, D.; Tyler, S. C.; Czimczik, C. I.; Xu, X.; Christensen, L. E.

    2012-12-01

    Anthropogenic activities have resulted in increasing levels of greenhouse gases, including carbon dioxide, methane, and nitrous oxide. While global and regional emissions sources of carbon dioxide are relatively well understood, methane and nitrous oxide are less constrained, particularly at regional scales. Here we present the results of an investigation of sources and emissions of methane and nitrous oxide in Los Angeles, California, USA, one of Earth's largest urban areas. The original goal of the project was to determine whether isotopes are useful tracers of agricultural versus urban nitrous oxide and methane sources. For methane, we found that stable isotopes (carbon-13 and deuterium) and radiocarbon are good tracers of biogenic versus fossil fuel sources. High altitude observations of methane concentration, measured continuously using tunable laser spectroscopy, and isotope ratios, measured on discrete flask samples using mass spectrometry, indicate that the predominant methane source in Los Angeles is from fossil fuels, likely from "fugitive" emissions from geologic formations, natural gas pipelines, oil refining, or power plants. We also measured nitrous oxide emissions and isotope ratios from urban (landscaping and wastewater treatment) and agricultural sources (corn and vegetable fields). There was no difference in nitrous oxide isotope ratios between the different types of sources, although stable isotopes did differ between nitrous oxide produced in oxic and anoxic wastewater treatment tanks. Our nitrous oxide flux data indicate that landscaped turfgrass emits nitrous oxide at rates equivalent to agricultural systems, indicating that ornamental soils should not be disregarded in regional nitrous oxide budgets. However, we also showed that wastewater treatment is a much greater source of nitrous oxide than soils regionally. This work shows that global nitrous oxide and methane budgets are not easily downscaled to regional, urban settings, which has

  5. Health Hazard Evaluation Report HETA 84-204-1600, Dental Health Associates, Paoli, Pennsylvania. [Nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, M.S.

    1985-06-01

    Area air and breathing-zone samples were analyzed for nitrous oxide at Dental Health Associates, Paoli, Pennsylvania on August 2, 1984. The evaluation was requested by a dental assistant because of general concern about the extent of nitrous oxide exposure, especially since the office was not equipped with a waste-anesthetic gas-scavenging system. The author recommends installing a waste anesthetic gas scavenging system with a dedicated exhaust. The nitrous oxide delivery and mixing system should be checked for leaks monthly and work practices for handling nitrous oxide should be improved.

  6. Formation of methane and nitrous oxide in plants

    Science.gov (United States)

    Keppler, Frank; Lenhart, Katharina

    2017-04-01

    Methane, the second important anthropogenic greenhouse gas after carbon dioxide, is the most abundant reduced organic compound in the atmosphere and plays a central role in atmospheric chemistry. The global atmospheric methane budget is determined by many natural and anthropogenic terrestrial and aquatic surface sources, balanced primarily by one major sink (hydroxyl radicals) in the atmosphere. Natural sources of atmospheric methane in the biosphere have until recently been attributed to originate solely from strictly anaerobic microbial processes in wetland soils and rice paddies, the intestines of termites and ruminants, human and agricultural waste, and from biomass burning, fossil fuel mining and geological sources including mud volcanoes and seeps. However, recent studies suggested that terrestrial vegetation, fungi and mammals may also produce methane without the help of methanogens and under aerobic conditions (e.g. Keppler et al. 2009, Wang et al. 2013). These novel sources have been termed "aerobic methane production" to distinguish them from the well-known anaerobic methane production pathway. Nitrous oxide is another important greenhouse gas and major source of ozone-depleting nitric oxide. About two thirds of nitrous oxide emissions are considered to originate from anthropogenic and natural terrestrial sources, and are almost exclusively related to microbial processes in soils and sediments. However, the global nitrous oxide budget still has major uncertainties since it is unclear if all major sources have been identified but also the emission estimates of the know sources and stratospheric sink are afflicted with high uncertainties. Plants contribute, although not yet quantified, to nitrous oxide emissions either indirectly as conduits of soil derived nitrous oxide (Pihlatie et al. 2005), or directly via generation of nitrous oxide in leaves (Dean & Harper 1986) or on the leaf surface induced by UV irradiation (Bruhn et al. 2014). Moreover, lichens

  7. Suffocation caused by plastic wrap covering the face combined with nitrous oxide inhalation.

    Science.gov (United States)

    Leth, Peter Mygind; Astrup, Birgitte Schmidt

    2017-09-01

    Suicide using a combination of a plastic bag over the head and inhalation of a non-irritating gas, such as helium, argon or nitrogen, has been reported in the literature. Here an unusual suicide method in a 17-year old man by suffocation from covering the face with household plastic wrap, combined with nitrous oxide inhalation, is presented. The case was reviewed based on police, autopsy and hospital reports. A PubMed search for scientific literature related to nitrous oxide abuse and suicide by suffocation was performed and our findings discussed in relation to the scientific literature found. The deceased was a 17-year old man who was found with the nose and mouth closed with a piece of kitchen plastic wrap. The plastic wrap had been removed prior to autopsy. Autopsy findings were suggestive of asphyxia, but were otherwise negative. Nitrous oxide was detected in the brain and lung tissue with headspace-gas chromatography-mass spectrometry (headspace-GCMS). The cause of death was assumed to be suffocation caused by plastic wrap covering the face, combined with nitrous oxide inhalation. Suicide was suspected because of a history of depression for several months. Nitrous oxide, also known as laughing gas, has a euphoric effect and is used as a recreational inhalant drug that can be purchased legally. Deaths caused by recreational nitrous oxide abuse are rare but may occur if used in combination with a plastic bag over the head. This is the first report of suicide by suffocation by external obstruction combined with nitrous oxide inhalation.

  8. 21 CFR 184.1545 - Nitrous oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nitrous oxide. 184.1545 Section 184.1545 Food and... Substances Affirmed as GRAS § 184.1545 Nitrous oxide. (a) Nitrous oxide (empirical formula N2O, CAS Reg. No.... Nitrous oxide is manufactured by the thermal decomposition of ammonium nitrate. Higher oxides of nitrogen...

  9. A simple air sampling technique for monitoring nitrous oxide pollution

    Energy Technology Data Exchange (ETDEWEB)

    Austin, J C; Shaw, R; Moyes, D; Cleaton-Jones, P E

    1981-01-01

    A simple, inexpensive device for the continuous low-flow sampling of air was devised to permit monitoring of pollution by gaseous anaesthetics. The device consisted of a water-filled Perspex cylinder in which a double-walled flexible-film gas sample collection bag was suspended. Air samples could be aspirated into the collection bag at flow rates of as low as 1 ml min-1 by allowing the water to drain from the cylinder at a controlled rate. The maintenance of sample integrity with aspiration and storage of samples of nitrous oxide in air at concentrations of 1000, 100 and 30 p.p.m. v/v was examined using gas chromatography. The sample bags retained a mean 94% of the nitrous oxide in air samples containing nitrous oxide 25 p.p.m. over a 72-h storage period.

  10. Nitrous oxide levels in operating and recovery rooms of Iranian hospitals.

    Science.gov (United States)

    Maroufi, Sh Sadigh; Gharavi, Mj; Behnam, M; Samadikuchaksaraei, A

    2011-01-01

    Nitrous oxide (N(2)O) is the oldest anesthetic in routine clinical use and its occupational exposure is under regulation by many countries. As studies are lacking to demonstrate the status of nitrous oxide levels in operating and recovery rooms of Iranian hospitals, we aimed to study its level in teaching hospitals of Tehran University of Medical Sciences. During a 6-month period, we have measured the shift-long time weighted average concentration of N(2)O in 43 operating and 12 recovery rooms of teaching hospitals of Tehran University of Medical Sciences. The results show that the level of nitrous oxide in all hospitals is higher than the limits set by different countries and anesthetists are at higher risk of exposure. In addition, it was shown that installation of air ventilation could reduce not only the overall exposure level, but also the level of exposure of anesthetists in comparison with other personnel. The high nitrous oxide level in Iranian hospitals necessitates improvement of waste gas evacuation systems and regular monitoring to bring the concentration of this gas into the safe level.

  11. Nitrous oxide-based techniques versus nitrous oxide-free techniques for general anaesthesia.

    Science.gov (United States)

    Sun, Rao; Jia, Wen Qin; Zhang, Peng; Yang, KeHu; Tian, Jin Hui; Ma, Bin; Liu, Yali; Jia, Run H; Luo, Xiao F; Kuriyama, Akira

    2015-11-06

    Nitrous oxide has been used for over 160 years for the induction and maintenance of general anaesthesia. It has been used as a sole agent but is most often employed as part of a technique using other anaesthetic gases, intravenous agents, or both. Its low tissue solubility (and therefore rapid kinetics), low cost, and low rate of cardiorespiratory complications have made nitrous oxide by far the most commonly used general anaesthetic. The accumulating evidence regarding adverse effects of nitrous oxide administration has led many anaesthetists to question its continued routine use in a variety of operating room settings. Adverse events may result from both the biological actions of nitrous oxide and the fact that to deliver an effective dose, nitrous oxide, which is a relatively weak anaesthetic agent, needs to be given in high concentrations that restrict oxygen delivery (for example, a common mixture is 30% oxygen with 70% nitrous oxide). As well as the risk of low blood oxygen levels, concerns have also been raised regarding the risk of compromising the immune system, impaired cognition, postoperative cardiovascular complications, bowel obstruction from distention, and possible respiratory compromise. To determine if nitrous oxide-based anaesthesia results in similar outcomes to nitrous oxide-free anaesthesia in adults undergoing surgery. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2014 Issue 10); MEDLINE (1966 to 17 October 2014); EMBASE (1974 to 17 October 2014); and ISI Web of Science (1974 to 17 October 2014). We also searched the reference lists of relevant articles, conference proceedings, and ongoing trials up to 17 October 2014 on specific websites (http://clinicaltrials.gov/, http://controlled-trials.com/, and http://www.centerwatch.com). We included randomized controlled trials (RCTs) comparing general anaesthesia where nitrous oxide was part of the anaesthetic technique used for the induction or maintenance of general

  12. A Gas Cell Based on Hollow-Core Photonic Crystal Fiber (PCF and Its Application for the Detection of Greenhouse Gas (GHG: Nitrous Oxide (N2O

    Directory of Open Access Journals (Sweden)

    Jonas K. Valiunas

    2016-01-01

    Full Text Available The authors report the detection of nitrous oxide gas using intracavity fiber laser absorption spectroscopy. A gas cell based on a hollow-core photonic crystal fiber was constructed and used inside a fiber ring laser cavity as an intracavity gas cell. The fiber laser in the 1.55 μm band was developed using a polarization-maintaining erbium-doped fiber as the gain medium. The wavelength of the laser was selected by a fiber Bragg grating (FBG, and it matches one of the absorption lines of the gas under investigation. The laser wavelength contained multilongitudinal modes, which increases the sensitivity of the detection system. N2O gas has overtones of the fundamental absorption bands and rovibrational transitions in the 1.55 μm band. The system was operated at room temperature and was capable of detecting nitrous oxide gas at sub-ppmv concentration level.

  13. Nitrous oxide-related postoperative nausea and vomiting depends on duration of exposure.

    Science.gov (United States)

    Peyton, Philip J; Wu, Christine Yx

    2014-05-01

    Inclusion of nitrous oxide in the gas mixture has been implicated in postoperative nausea and vomiting (PONV) in numerous studies. However, these studies have not examined whether duration of exposure was a significant covariate. This distinction might affect the future place of nitrous oxide in clinical practice. PubMed listed journals reporting trials in which patients randomized to a nitrous oxide or nitrous oxide-free anesthetic for surgery were included, where the incidence of PONV within the first 24 postoperative hours and mean duration of anesthesia was reported. Meta-regression of the log risk ratio for PONV with nitrous oxide (lnRR PONVN2O) versus duration was performed. Twenty-nine studies in 27 articles met the inclusion criteria, randomizing 10,317 patients. There was a significant relationship between lnRR PONVN2O and duration (r = 0.51, P = 0.002). Risk ratio PONV increased 20% per hour of nitrous oxide after 45 min. The number needed to treat to prevent PONV by avoiding nitrous oxide was 128, 23, and 9 where duration was less than 1, 1 to 2, and over 2 h, respectively. The risk ratio for the overall effect of nitrous oxide on PONV was 1.21 (CIs, 1.04-1.40); P = 0.014. This duration-related effect may be via disturbance of methionine and folate metabolism. No clinically significant effect of nitrous oxide on the risk of PONV exists under an hour of exposure. Nitrous oxide-related PONV should not be seen as an impediment to its use in minor or ambulatory surgery.

  14. Oxygen concentrators performance with nitrous oxide at 50:50 volume

    Directory of Open Access Journals (Sweden)

    Jorge Ronaldo Moll

    2014-06-01

    Full Text Available Background and objectives: Few investigations have addressed the safety of oxygen from concentrators for use in anesthesia in association with nitrous oxide. This study evaluated the percent of oxygen from a concentrator in association with nitrous oxide in a semi-closed rebreathing circuit. Methods: Adult patients undergoing low risk surgery were randomly allocated into two groups, receiving a fresh gas flow of oxygen from concentrators (O293 or of oxygen from concentrators and nitrous oxide (O293N2O. The fraction of inspired oxygen and the percentage of oxygen from fresh gas flow were measured every 10 min. The ratio of FiO2/oxygen concentration delivered was compared at various time intervals and between the groups. Results: Thirty patients were studied in each group. There was no difference in oxygen from concentrators over time for both groups, but there was a significant improvement in the FiO2 (p < 0.001 for O293 group while a significant decline (p < 0.001 for O293N2O. The FiO2/oxygen ratio varied in both groups, reaching a plateau in the O293 group. Pulse oximetry did not fall below 98.5% in either group. Conclusion: The FiO2 in the mixture of O293 and nitrous oxide fell during the observation period although oxygen saturation was higher than 98.5% throughout the study. Concentrators can be considered a stable source of oxygen for use during short anesthetic procedures, either pure or in association with nitrous oxide at 50:50 volume.

  15. How well do we understand nitrous oxide emissions from open-lot cattle systems?

    Science.gov (United States)

    Nitrous oxide is an important greenhouse gas that is produced in manure. Open lot beef cattle feedyards emit nitrous oxide but little information is available about exactly how much is produced. This has become an important research topic because of environmental concerns. Only a few methods are ava...

  16. 29 CFR 1910.105 - Nitrous oxide.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Nitrous oxide. 1910.105 Section 1910.105 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.105 Nitrous oxide. The piped systems for the in-plant transfer and distribution of nitrous oxide shall be designed, installed, maintained, and...

  17. Nitrous Oxide Production by Abundant Benthic Macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Schramm, Andreas

    of the short-term metabolic induction of gut denitrification is the preferential production of nitrous oxide rather than dinitrogen. On a large scale, gut denitrification in, for instance, Chironomus plumosus larvae can increase the overall nitrous oxide emission of lake sediment by a factor of eight. We...... screened more than 20 macrofauna species for nitrous oxide production and identified filter-feeders and deposit-feeders that occur ubiquitously and at high abundance (e.g., chironomids, ephemeropterans, snails, and mussels) as the most important emitters of nitrous oxide. In contrast, predatory species...... that do not ingest large quantities of microorganisms produced insignificant amounts of nitrous oxide. Ephemera danica, a very abundant mayfly larva, was monitored monthly in a nitrate-polluted stream. Nitrous oxide production by this filter-feeder was highly dependent on nitrate availability...

  18. Control of occupational exposure to nitrous oxide in the dental operatory

    Energy Technology Data Exchange (ETDEWEB)

    Whitcher, C.E.; Zimmerman, D.C.; Tonn, E.M.; Piziali, R.L.

    1977-10-01

    Methods were developed for controlling the dental team's occupational exposure to nitrous oxide. The most applicable and effective use of these methods included the use of properly maintained gas delivery equipment, a double-walled scavenging nosepiece and vented suction machine, and minimizing speech by the patient. These methods were evaluated by measuring concentrations of nitrous oxide present in the air inspired by dental personnel. Before their use, the dentist inhaled 900 ppM nitrous oxide; their application reduced his inhaled concentration to 31 ppM, representing a 97% reduction. These methods were well accepted during 157 procedures completed by a group of eight dentists engaged in private practice (four general practitioners, two pedodontists, and two oral surgeons).

  19. Successful use of nitrous oxide during lumbar punctures: A call for nitrous oxide in pediatric oncology clinics.

    Science.gov (United States)

    Livingston, Mylynda; Lawell, Miranda; McAllister, Nancy

    2017-11-01

    Numerous reports describe the successful use of nitrous oxide for analgesia in children undergoing painful procedures. Although shown to be safe, effective, and economical, nitrous oxide use is not yet common in pediatric oncology clinics and few reports detail its effectiveness for children undergoing repeated lumbar punctures. We developed a nitrous oxide clinic, and undertook a review of pediatric oncology lumbar puncture records for those patients receiving nitrous oxide in 2011. No major complications were noted. Minor complications were noted in 2% of the procedures. We offer guidelines for establishing such a clinic. © 2017 Wiley Periodicals, Inc.

  20. Exposure of nitrous oxide to X-rays

    International Nuclear Information System (INIS)

    Yanagida, H.

    1980-01-01

    A study was performed to determine how much NO and NO 2 is produced when nitrous oxide is exposed to X-radiation. Polyethylene bottles filled with either nitrous oxide alone or with nitrous oxide and 30% oxygen were placed 30 cm from the X-ray tube at a standard X-ray beam setting for chest fluoroscopy for 0 to 5 minutes. In the bottles filled with nitrous oxide alone, the production of NO was not affected by the duration of X-ray exposure, but the longer duration of X-ray exposure produced a larger amount of NO 2 . In the bottles filled with nitrous oxide and 30% oxygen, the longer duration of X-ray exposure produced larger amounts of both NO and NO 2 . These findings confirmed a previous investigation in which nitrous oxide was not inert under X-ray exposure. As the presence of oxygen plays an important role in the oxidation of nitrous oxide under X-ray exposure, this study suggests another potentially hazardous interaction that may occur secondary to the administration of an anaesthetic in the presence of X-irradiation as in pulmonary angiography, cardiac catheterisation, and fluoroscopic bronchoscopy or biopsy. (author)

  1. Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990

    International Nuclear Information System (INIS)

    Weiss, R.F.; Van Woy, F.A.; Salameh, P.K.; Sepanski, R.J.

    1992-12-01

    This document presents the results of surface water and atmospheric carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) measurements carried out by shipboard gas chromatography over the period 1977--1990. These data include results from 11 different oceanic surveys for a total of 41 expedition legs. Collectively, they represent a globally distributed sampling that includes locations in the Atlantic, Pacific, Indian, and Southern Oceans, as well as the Mediterranean and Red Seas. The measurements were made by an automated high-precision shipboard gas chromatographic system developed during the late 1970s and used extensively over the intervening years. This instrument measures CO 2 by flame ionization after quantitative reaction to methane in a stream of hydrogen. Nitrous oxide is measured by a separate electron capture detector. The chromatographic system measures 196 dry-gas samples a day, divided equally among the atmosphere, gas equilibrated with surface water, a low-range gas standard, and a high-range gas standard

  2. Health Hazard Evaluation Report HETA 84-412-1612, Drs. Youdelman and Teig, Brentwood, New York. [Nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, M.S.

    1985-07-01

    Environmental and breathing zone samples were analyzed for nitrous-oxide (10102440) at two oral surgery clinics in Holbrook and Brentwood, New York on July 30 to 31, 1984. The evaluation was requested by the dentists because of general concern regarding the extent of exposure to nitrous oxide. The Brentwood office was equipped with a waste anesthetic gas scavenging system. Recommendations include checking the nitrous-oxide delivery and mixing systems at both clinics, installing a waste anesthetic gas scavenging system with a dedicated exhaust at the Holbrook office, and improving work practices at the Brentwood clinic.

  3. Validation of an analytical method for nitrous oxide (N2O) laughing gas by headspace gas chromatography coupled to mass spectrometry (HS-GC-MS): forensic application to a lethal intoxication.

    Science.gov (United States)

    Giuliani, N; Beyer, J; Augsburger, M; Varlet, V

    2015-03-01

    Drug abuse is a widespread problem affecting both teenagers and adults. Nitrous oxide is becoming increasingly popular as an inhalation drug, causing harmful neurological and hematological effects. Some gas chromatography-mass spectrometry (GC-MS) methods for nitrous oxide measurement have been previously described. The main drawbacks of these methods include a lack of sensitivity for forensic applications; including an inability to quantitatively determine the concentration of gas present. The following study provides a validated method using HS-GC-MS which incorporates hydrogen sulfide as a suitable internal standard allowing the quantification of nitrous oxide. Upon analysis, sample and internal standard have similar retention times and are eluted quickly from the molecular sieve 5Å PLOT capillary column and the Porabond Q column therefore providing rapid data collection whilst preserving well defined peaks. After validation, the method has been applied to a real case of N2O intoxication indicating concentrations in a mono-intoxication. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Exposure control practices for administering nitrous oxide: A survey of dentists, dental hygienists, and dental assistants.

    Science.gov (United States)

    Boiano, James M; Steege, Andrea L; Sweeney, Marie H

    2017-06-01

    Engineering, administrative, and work practice controls have been recommended for many years to minimize exposure to nitrous oxide during dental procedures. To better understand the extent to which these exposure controls are used, the NIOSH Health and Safety Practices Survey of Healthcare Workers was conducted among members of professional practice organizations representing dentists, dental hygienists and dental assistants. The anonymous, modular, web-based survey was completed by 284 dental professionals in private practice who administered nitrous oxide to adult and/or pediatric patients in the seven days prior to the survey. Use of primary engineering controls (i.e., nasal scavenging mask and/or local exhaust ventilation (LEV) near the patient's mouth) was nearly universal, reported by 93% and 96% of respondents who administered to adult (A) and pediatric (P) patients, respectively. However, adherence to other recommended precautionary practices were lacking to varying degrees, and were essentially no different among those administering nitrous oxide to adult or pediatric patients. Examples of work practices which increase exposure risk, expressed as percent of respondents, included: not checking nitrous oxide equipment for leaks (41% A; 48% P); starting nitrous oxide gas flow before delivery mask or airway mask was applied to patient (13% A; 12% P); and not turning off nitrous oxide gas flow before turning off oxygen flow to the patient (8% A; 7% P). Absence of standard procedures to minimize worker exposure to nitrous oxide (13% of all respondents) and not being trained on safe handling and administration of nitrous oxide (3%) were examples of breaches of administrative controls which may also increase exposure risk. Successful management of nitrous oxide emissions should include properly fitted nasal scavenging masks, supplemental LEV (when nitrous oxide levels cannot be adequately controlled using nasal masks alone), adequate general ventilation, regular

  5. Transformation features in solid nitrous oxide

    International Nuclear Information System (INIS)

    Drobyshev, A.; Aldiyarov, A.; Korshikov, E.; Sokolov, D.; Kurnosov, V.

    2012-01-01

    The transformation features in cryocondensates of nitrous oxide were studied in the process of thermal cycling in the vicinity of the temperature T = 40 K. The research was aimed at figuring out the response of deformation and translational vibrational subsystems of the condensed nitrous oxide to these transformations. The temperature and the nature of thermally stimulated reactions in the films of nitrous oxide cryocondensates were determined. By measuring the vibrational spectra of the samples and by recording the changes in amplitude and position of the absorption bands characteristic of vibrations. Analysis of the IR spectra suggests that the transition from the amorphous state of nitrous oxide to the crystalline one is carried out in several stages, which account for the implementation of relaxation processes related to a particular type of vibrations of a nitrous oxide molecule. The difference in the temperatures of the transitions is determined by activation energies that are typical of this type of oscillation.

  6. Gaschromatographic proof of nitrous oxide concentrations in air by means of radiation ionization detectors

    International Nuclear Information System (INIS)

    Popp, P.; Schoentube, E.; Oppermann, G.

    1985-01-01

    For the analysis of nitrous oxide concentrations at workplaces in operating theatres, gaschromatography is a particularly suitable method if it is possible to measure nitrous oxide concentrations in the ppm to ppb region. For this, most frequently used gaschromatographic detectors (flame ionization detector, thermal conductivity detector) are unsuitable, whereas radiation ionization detectors can be used successfully. The investigations using detectors designed at the Central Institute for Isotopes and Radiation Research of the GDR Academy of Sciences showed that a high-temperature electron-capture detector (ECD), working at a temperatur of 250 0 C, enables the determination of traces of nitrous oxide with a detection limit of about 200 ppb, while the helium detector has a limit of 50 ppb of nitrous oxide in room air. Since the helium detector requires extremely pure carrier gas, the high-temperature ECD appears more suitable for analyzing nitrous oxide. (author)

  7. Recreational nitrous oxide use: Prevalence and risks

    NARCIS (Netherlands)

    van Amsterdam, Jan; Nabben, Ton; van den Brink, Wim

    2015-01-01

    Nitrous oxide (N2O; laughing gas) is clinically used as a safe anesthetic (dentistry, ambulance, childbirth) and appreciated for its anti-anxiety effect. Since five years, recreational use of N2O is rapidly increasing especially in the dance and festival scene. In the UK, N2O is the second most

  8. Nitrous oxide emissions from estuarine intertidal sediments

    NARCIS (Netherlands)

    Middelburg, J.J.; Klaver, G.; Nieuwenhuize, J.; Markusse, R.M.; Vlug, T.; Nat, F.J.W.A. van der

    1995-01-01

    From September 1990 through December 1991 nitrous oxide flux measurements were made at 9 intertidal mud flat sites in the Scheldt Estuary. Nitrous oxide release rates were highly variable both between sites and over time at any one site. Annual nitrous oxide fluxes vary from about 10 mmol N m-2 at

  9. 41 CFR 50-204.69 - Nitrous oxide.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Nitrous oxide. 50-204.69..., Vapors, Fumes, Dusts, and Mists § 50-204.69 Nitrous oxide. The piped systems for the in-plant transfer and distribution of nitrous oxide shall be designed, installed, maintained, and operated in accordance...

  10. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.

    Science.gov (United States)

    Samuelsson, M O

    1985-10-01

    The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sodium thioglycolate. When grown on tryptic soy broth, the production of nitrous oxide paralleled growth. In the same medium, but with sodium thioglycolate, nitrous oxide was first produced during growth and then consumed. Acetylene caused the nitrous oxide to accumulate. These results and the mass balance calculations for different nitrogen components indicate that P. putrefaciens has the capacity to dissimilate nitrate to ammonium as well as to dinitrogen gas and nitrous oxide (denitrification). The dissimilatory pathway to ammonium dominates except when sodium thioglycolate is added to the medium.

  11. SOIL NITROUS OXIDE, NITRIC OXIDE, AND AMMONIA EMISSIONS FROM A RECOVERING RIPARIAN ECOSYSTEM IN SOUTHERN APPALACHIA

    Science.gov (United States)

    The paper presents two years of seasonal nitric oxide, ammonia, and nitrous oxide trace gas fluxes measured in a recovering riparian zone with cattle excluded and in an adjacent riparian zone grazed by cattle. In the recovering riparian zone, average nitric oxide, ammonia, and ni...

  12. Suffocation caused by plastic wrap covering the face combined with nitrous oxide inhalation

    DEFF Research Database (Denmark)

    Leth, Peter Mygind; Astrup, Birgitte Schmidt

    2017-01-01

    Suicide using a combination of a plastic bag over the head and inhalation of a non-irritating gas, such as helium, argon or nitrogen, has been reported in the literature. Here an unusual suicide method in a 17-year old man by suffocation from covering the face with household plastic wrap, combined....... The deceased was a 17-year old man who was found with the nose and mouth closed with a piece of kitchen plastic wrap. The plastic wrap had been removed prior to autopsy. Autopsy findings were suggestive of asphyxia, but were otherwise negative. Nitrous oxide was detected in the brain and lung tissue...... with headspace-gas chromatography-mass spectrometry (headspace-GCMS). The cause of death was assumed to be suffocation caused by plastic wrap covering the face, combined with nitrous oxide inhalation. Suicide was suspected because of a history of depression for several months. Nitrous oxide, also known...

  13. Crystallographic studies with xenon and nitrous oxide provide evidence for protein-dependent processes in the mechanisms of general anesthesia.

    Science.gov (United States)

    Abraini, Jacques H; Marassio, Guillaume; David, Helene N; Vallone, Beatrice; Prangé, Thierry; Colloc'h, Nathalie

    2014-11-01

    The mechanisms by which general anesthetics, including xenon and nitrous oxide, act are only beginning to be discovered. However, structural approaches revealed weak but specific protein-gas interactions. To improve knowledge, we performed x-ray crystallography studies under xenon and nitrous oxide pressure in a series of 10 binding sites within four proteins. Whatever the pressure, we show (1) hydrophobicity of the gas binding sites has a screening effect on xenon and nitrous oxide binding, with a threshold value of 83% beyond which and below which xenon and nitrous oxide, respectively, binds to their sites preferentially compared to each other; (2) xenon and nitrous oxide occupancies are significantly correlated respectively to the product and the ratio of hydrophobicity by volume, indicating that hydrophobicity and volume are binding parameters that complement and oppose each other's effects; and (3) the ratio of occupancy of xenon to nitrous oxide is significantly correlated to hydrophobicity of their binding sites. These data demonstrate that xenon and nitrous oxide obey different binding mechanisms, a finding that argues against all unitary hypotheses of narcosis and anesthesia, and indicate that the Meyer-Overton rule of a high correlation between anesthetic potency and solubility in lipids of general anesthetics is often overinterpreted. This study provides evidence that the mechanisms of gas binding to proteins and therefore of general anesthesia should be considered as the result of a fully reversible interaction between a drug ligand and a receptor as this occurs in classical pharmacology.

  14. Nitrous Oxide Emission by Aquatic Macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Nielsen, Lars Peter; Schramm, Andreas

    -term metabolic induction of gut denitrification is the preferential production of nitrous oxide rather than dinitrogen. These observations were made in detailed studies on the larvae of the freshwater insects Chironomus plumosus and Ephemera danica which both can be very abundant in lake and stream sediments......, respectively. Aside from these case studies, we screened more than 20 macrofauna species in various aquatic habitats for nitrous oxide production. Filter- and deposit-feeders that ingest large quantities of microorganisms were the most important emitters of nitrous oxide. In contrast, predatory species that do...... not ingest large quantities of microorganisms produced insignificant amounts of nitrous oxide. With increasing eutrophication, filter- and deposit-feeders often become the dominant feeding guilds of benthic communities. Thus, with increasing nitrate pollution, aquatic macrofauna has the potential to further...

  15. NITROUS OXIDE EMISSIONS FROM SOUTHERN HIGH PLAINS BEEF CATTLE FEEDYARDS: MEASUREMENT AND MODELING

    Science.gov (United States)

    Predictive models for nitrous oxide emission are crucial for assessing the greenhouse gas footprint of beef cattle production. The Texas Panhandle produces approximately 42% of finished beef in the U.S. and cattle production is estimated to contribute 8 Tg carbon dioxide equivalents from nitrous oxi...

  16. Municipal gravity sewers: an unrecognised source of nitrous oxide

    Science.gov (United States)

    Nitrous oxide (N2O) is a primary ozone-depleting substance and powerful greenhouse gas. N2O emissions from secondary-level wastewater treatment processes are relatively well understood as a result of intensive international research effort in recent times, yet little information...

  17. Nitrous oxide pollution during x-ray exposure

    International Nuclear Information System (INIS)

    Yanagida, Hisashi; Nakajima, Michiaki.

    1980-01-01

    X-radiation has been shown to produce NO and NO 2 in the presence of nitrous oxide. The purpose of the present study was to confirm how much NO and NO 2 was produced when constant amount of nitrous oxide was exposed by constant X-radiation. Twenty polyethylene bottles (capacity 10 litres) were filled with nitrous oxide alone. Another 20 bottles were filled with nitrous oxide and 30% oxygen. Each bottle was placed at a distance of 30 cm from X-ray tube and they were directly in the line of the X-ray beam at a setting of 90 KV at 0.5 mA, a standard setting for chest fluoroscopy. The range of duration of X-ray exposure was from 0 (control), to 2, 3, and 5 minutes in 5 bottles each, respectively. A colorimetric recording method (Saltzman) and a chemiluminescent monitor were used for measurement of NO and NO 2 . In the bottles filled with nitrous oxide alone, the production of NO was not affected by the duration of X-ray exposure, but the longer duration of X-ray exposure produced a larger amount of NO 2 . In the bottles filled with nitrous oxide and 30% oxygen, the longer duration of X-ray exposure produced larger amounts of both NO and NO 2 . These findings confirmed a previous investigation in which nitrous oxide was not inert under X-ray exposure. As the presence of oxygen plays an important role in the oxidation of nitrous oxide under X-ray, this study suggests another potentially hazardous interaction that may occur secondary to the administration of anesthetic in the presence of X-irradiation such as pulmonary angiography, cardiac catheterization, and fluoroscopic bronchoscopy or biopsy under general anesthesia. (author)

  18. Modern chemistry of nitrous oxide

    International Nuclear Information System (INIS)

    Leont'ev, Aleksandr V; Fomicheva, Ol'ga A; Proskurnina, Marina V; Zefirov, Nikolai S

    2001-01-01

    Modern trends of the chemistry of nitrous oxide are discussed. Data on its structure, physical properties and reactivity are generalised. The effect of N 2 O on the environment and the possibility of its utilisation are considered. Attention is focused on the processes in which the oxidising potential of nitrous oxide can be employed. The bibliography includes 329 references.

  19. Comparing the effects of cryotherapy with nitrous oxide gas versus topical corticosteroids in the treatment of oral lichen planus

    Directory of Open Access Journals (Sweden)

    Dariush Amanat

    2014-01-01

    Conclusion: Cryotherapy with nitrous oxide gas is as effective as topical triamcinolone acetonide in the treatment of OLP with no systemic side effects and needs less patient compliance. It can be considered as an alternative or adjuvant therapy in OLP patients to reduce the use of treatments with adverse effects.

  20. Active sites in Fe/ZSM-5 for nitrous oxide decomposition and benzene hydroxylation with nitrous oxide

    NARCIS (Netherlands)

    Sun, K.; Xia, H.; Feng, Z.; Santen, van R.A.; Hensen, E.J.M.; Li, Can

    2008-01-01

    The effect of the iron content and the pretreatment conditions of Fe/ZSM-5 catalysts on the Fe speciation and the catalytic activities in nitrous oxide decomposition and benzene hydroxylation with nitrous oxide has been investigated. Iron-containing ZSM-5 zeolites with varying iron content (Fe/Al =

  1. Nitrous oxide and nitrate concentration in under-drainage from arable fields subject to diffuse pollution mitigation measures

    Science.gov (United States)

    Hama-Aziz, Zanist; Hiscock, Kevin; Adams, Christopher; Reid, Brian

    2016-04-01

    Atmospheric nitrous oxide concentrations are increasing by 0.3% annually and a major source of this greenhouse gas is agriculture. Indirect emissions of nitrous oxide (e.g. from groundwater and surface water) account for about quarter of total nitrous oxide emissions. However, these indirect emissions are subject to uncertainty, mainly due to the range in reported emission factors. It's hypothesised in this study that cover cropping and implementing reduced (direct drill) cultivation in intensive arable systems will reduce dissolved nitrate concentration and subsequently indirect nitrous oxide emissions. To test the hypothesis, seven fields with a total area of 102 ha in the Wensum catchment in eastern England have been chosen for experimentation together with two fields (41 ha) under conventional cultivation (deep inversion ploughing) for comparison. Water samples from field under-drainage have been collected for nitrate and nitrous oxide measurement on a weekly basis from April 2013 for two years from both cultivation areas. A purge and trap preparation line connected to a Shimadzu GC-8A gas chromatograph fitted with an electron capture detector was used for dissolved nitrous oxide analysis. Results revealed that with an oilseed radish cover crop present, the mean concentration of nitrate, which is the predominant form of N, was significantly depleted from 13.9 mg N L-1 to 2.5 mg N L-1. However, slightly higher mean nitrous oxide concentrations under the cover crop of 2.61 μg N L-1 compared to bare fields of 2.23 μg N L-1 were observed. Different inversion intensity of soil tended to have no effect on nitrous oxide and nitrate concentrations. The predominant production mechanism for nitrous oxide was nitrification process and the significant reduction of nitrate was due to plant uptake rather than denitrification. It is concluded that although cover cropping might cause a slight increase of indirect nitrous oxide emission, it can be a highly effective

  2. Nitrogen management impacts nitrous oxide emissions under varying cotton irrigation systems in the American Desert Southwest

    Science.gov (United States)

    Irrigation of food and fiber crops worldwide continues to increase. Nitrogen (N) from fertilizers is a major source of the potent greenhouse gas nitrous oxide (N2O) in irrigated cropping systems. Nitrous oxide emissions data are scarce for crops in the arid Western US. The objective of these studies...

  3. Pitfalls in measuring nitrous oxide production by nitrifiers

    NARCIS (Netherlands)

    Wrage, N.

    2003-01-01

    Nitrous oxide (N 2 O) is an important greenhouse gas. At present, it causes 6% of global warming. The atmospheric concentration of N 2 O continues to increase at a rate of 0.8 ppb per year. The main known sink of N 2 O is its destruction in the stratosphere to

  4. Current and future nitrous oxide emissions from African agriculture

    NARCIS (Netherlands)

    Hickman, J.E.; Havlikova, M.; Kroeze, C.; Palm, C.A.

    2011-01-01

    Most emission estimates of the greenhouse gas nitrous oxide (N2O) from African agriculture at a continental scale are based on emission factors, such as those developed by the IPCC Guidelines. Here we present estimates from Africa from the EDGAR database, which is derived from the IPCC emission

  5. Control strategies for nitrous oxide emissions reduction on wastewater treatment plants operation.

    Science.gov (United States)

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2017-11-15

    The present paper focused on reducing greenhouse gases emissions in wastewater treatment plants operation by application of suitable control strategies. Specifically, the objective is to reduce nitrous oxide emissions during the nitrification process. Incomplete nitrification in the aerobic tanks can lead to an accumulation of nitrite that triggers the nitrous oxide emissions. In order to avoid the peaks of nitrous oxide emissions, this paper proposes a cascade control configuration by manipulating the dissolved oxygen set-points in the aerobic tanks. This control strategy is combined with ammonia cascade control already applied in the literature. This is performed with the objective to take also into account effluent pollutants and operational costs. In addition, other greenhouse gases emissions sources are also evaluated. Results have been obtained by simulation, using a modified version of Benchmark Simulation Model no. 2, which takes into account greenhouse gases emissions. This is called Benchmark Simulation Model no. 2 Gas. The results show that the proposed control strategies are able to reduce by 29.86% of nitrous oxide emissions compared to the default control strategy, while maintaining a satisfactory trade-off between water quality and costs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Use of Nitrous Oxide in Dermatology: A Systematic Review.

    Science.gov (United States)

    Brotzman, Erica A; Sandoval, Laura F; Crane, Jonathan

    2018-05-01

    Many dermatologic procedures are painful and can be distressing to patients. To determine whether nitrous oxide has been used in dermatology and whether literature supports its use in terms of providing analgesia and anxiety associated with dermatologic procedures. A search of PubMed and Cochrane databases was conducted through July 15, 2016, to identify studies involving nitrous oxide use in dermatology. Eight studies were identified and reviewed. The use of nitrous oxide/oxygen mixture resulted in a significant reduction in pain when used for photodynamic therapy, botulinum toxin therapy for hyperhidrosis of both the palms and axilla, aesthetic procedures involving various laser procedures, and in the treatment of bed sores and leg ulcers. However, pain scores were higher when nitrous oxide/oxygen was used in the debridement of chronic ulcers when compared with the use of topical anesthesia. In addition, nitrous oxide has been reported effective at reducing pain in hair transplants, dermabrasion, excision and repairs, and pediatric procedures. Current literature provides some evidence that nitrous oxide, used alone or as adjunct anesthesia, is effective at providing analgesia for many dermatologic procedures. Nitrous oxide has many potential applications in dermatology; however, further evidence from randomized controlled trials is needed.

  7. Dose-response and concentration-response relation of rocuronium infusion during propofol nitrous oxide and isoflurane nitrous oxide anaesthesia

    NARCIS (Netherlands)

    Kansanaho, M; Olkkola, KT; Wierda, JMKH

    The dose-response and concentration-response relation of rocuronium infusion was studied in 20 adult surgical patients during proporfol-nitrous oxide and isoflurane (1 MAC) -nitrous oxide anaesthesia. Neuromuscular block was kept constant, initially at 90% and then at 50% with a closed-loop feedback

  8. Nitrous Oxide Anesthesia and Plasma Homocysteine in Adolescents

    Science.gov (United States)

    Nagele, Peter; Tallchief, Danielle; Blood, Jane; Sharma, Anshuman; Kharasch, Evan D.

    2011-01-01

    Background Nitrous oxide inactivates vitamin B12, inhibits methionine synthase and consequently increases plasma total homocysteine (tHcy). Prolonged exposure to nitrous oxide can lead to neuropathy, spinal cord degeneration and even death in children. We tested the hypothesis that nitrous oxide anesthesia causes a significant increase in plasma tHcy in children. Methods Twenty-seven children (age 10-18 years) undergoing elective major spine surgery were enrolled and serial plasma samples from 0 – 96 hours after induction were obtained. The anesthetic regimen, including the use of nitrous oxide, was at the discretion of the anesthesiologist. Plasma tHcy was measured using standard enzymatic assays. Results The median baseline plasma tHcy concentration was 5.1 μmol/L (3.9 – 8.0 μmol/L, interquartile range) and increased in all patients exposed to nitrous oxide (n=26) by an average of +9.4 μmol/L (geometric mean; 95% CI 7.1 – 12.5 μmol/L) or +228% (mean; 95% CI 178% - 279%). Plasma tHcy peaked between 6-8 hours after induction of anesthesia. One patient who did not receive nitrous oxide had no increase in plasma tHcy. Several patients experienced a several-fold increase in plasma tHcy (max. +567%). The increase in plasma tHcy was strongly correlated with the duration and average concentration of nitrous oxide anesthesia (r= 0.80; pnitrous oxide anesthesia develop significantly increased plasma tHcy concentrations. The magnitude of this effect appears to be greater compared to adults; however, the clinical relevance is unknown. PMID:21680854

  9. Laryngospasm With Apparent Aspiration During Sedation With Nitrous Oxide.

    Science.gov (United States)

    Babl, Franz E; Grindlay, Joanne; Barrett, Michael Joseph

    2015-11-01

    Nitrous oxide and oxygen mixture has become increasingly popular for the procedural sedation and analgesia of children in the emergency department. In general, nitrous oxide is regarded as a very safe agent according to large case series. We report a case of single-agent nitrous oxide sedation of a child, complicated by laryngospasm and radiographically confirmed bilateral upper lobe pulmonary opacities. Although rarely reported with parenteral sedative agents, laryngospasm and apparent aspiration has not been previously reported in isolated nitrous oxide sedation. This case highlights that, similar to other sedative agents, nitrous oxide administration also needs to be conducted by staff and in settings in which airway emergencies can be appropriately managed. Copyright © 2015 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  10. Nitrous oxide as an opioid agonist: some experimental and clinical applications

    International Nuclear Information System (INIS)

    Gillman, M.A.

    1984-01-01

    The interactions of nitrous oxide at analgesic concentrations with the endogenous opioid system is investigated, both in vitro and in vivo, with particular emphasis on the possibility that nitrous oxide is a possible tool both experimentally, diagnostically and therapeutically. In vitro findings show that nitrous oxide displaces ( 3 H) - naloxone from its binding sites in a definite and measurable manner, indicating a direct action of nitrous oxide at opioid receptors, in this case the mu site. An additional finding is that nitrous oxide unmasks a heretofore undiscovered super high affinity sites which may be an opioid auto-receptor. Naloxone was demonstrated to reverse acute alcoholic intoxication in some cases. The investigative as well as therapeutic role of nitrous oxide was investigated. It is concluded that nitrous oxide at analgesic concentrations (ie. low concentrations of nitrous oxide diluted with high concentrations of oxygen) is a safe and effective therapeutic agent

  11. Field study of nitrous oxide production with in situ aeration in a closed landfill site.

    Science.gov (United States)

    Nag, Mitali; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Xiaoli, Chai

    2016-03-01

    Nitrous oxide (N(2)O) has gained considerable attention as a contributor to global warming and depilation of stratospheric ozone layer. Landfill is one of the high emitters of greenhouse gas such as methane and N(2)O during the biodegradation of solid waste. Landfill aeration has been attracted increasing attention worldwide for fast, controlled and sustainable conversion of landfills into a biological stabilized condition, however landfill aeration impel N(2)O emission with ammonia removal. N(2)O originates from the biodegradation, or the combustion of nitrogen-containing solid waste during the microbial process of nitrification and denitrification. During these two processes, formation of N(2)O as a by-product from nitrification, or as an intermediate product of denitrification. In this study, air was injected into a closed landfill site and investigated the major N(2)O production factors and correlations established between them. The in-situ aeration experiment was carried out by three sets of gas collection pipes along with temperature probes were installed at three different distances of one, two and three meter away from the aeration point; named points A-C, respectively. Each set of pipes consisted of three different pipes at three different depths of 0.0, 0.75 and 1.5 m from the bottom of the cover soil. Landfill gases composition was monitored weekly and gas samples were collected for analysis of nitrous oxide concentrations. It was evaluated that temperatures within the range of 30-40°C with high oxygen content led to higher generation of nitrous oxide with high aeration rate. Lower O(2) content can infuse N(2)O production during nitrification and high O(2) inhibit denitrification which would affect N(2)O production. The findings provide insights concerning the production potentials of N(2)O in an aerated landfill that may help to minimize with appropriate control of the operational parameters and biological reactions of N turnover. Investigation of

  12. Nitrous oxide emission from denitrification in stream and river networks

    Science.gov (United States)

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N2O via microbial denitrification which converts N to N2O and dinitrog...

  13. Nitrous oxide emissions from the Gulf of Mexico Hypoxic Zone

    Science.gov (United States)

    The production of nitrous oxide (N2O), a potent greenhouse gas, in hypoxic coastal zones remains poorly characterized due to a lack of data, though large nitrogen inputs and deoxygenation typical of these systems create the potential for large N2O emissions. We report the first N...

  14. Quantification of methane and nitrous oxide emissions from various waste treatment facilities by tracer dilution method

    Science.gov (United States)

    Mønster, Jacob; Rella, Chris; Jacobson, Gloria; Kjeldsen, Peter; Scheutz, Charlotte

    2013-04-01

    Urban activities generate solid and liquid waste, and the handling and aftercare of the waste results in the emission of various compounds into the surrounding environment. Some of these compounds are emitted as gasses into the atmosphere, including methane and nitrous oxide. Methane and nitrous oxide are strong greenhouse gases and are considered to have 25 and 298 times the greenhouse gas potential of carbon dioxide on a hundred years term (Solomon et al. 2007). Global observations of both gasses have shown increasing concentrations that significantly contribute to the greenhouse gas effect. Methane and nitrous oxide are emitted from both natural and anthropogenic sources and inventories of source specific fugitive emissions from the anthropogenic sources of methane and nitrous oxide of are often estimated on the basis of modeling and mass balance. Though these methods are well-developed, actual measurements for quantification of the emissions is a very useful tool for verifying the modeling and mass balance as well as for validation initiatives done for lowering the emissions of methane and nitrous oxide. One approach to performing such measurements is the tracer dilution method (Galle et al. 2001, Scheutz et al. 2011), where the exact location of the source is located and a tracer gas is released at this source location at a known flow. The ratio of downwind concentrations of the tracer gas and the methane and nitrous oxide gives the emissions rates of the greenhouse gases. This tracer dilution method can be performed using both stationary and mobile measurements and in both cases, real-time measurements of both tracer and quantified gas are required, placing high demands on the analytical detection method. To perform the methane and nitrous oxide measurements, two robust instruments capable of real-time measurements were used, based on cavity ring-down spectroscopy and operating in the near-infrared spectral region. One instrument measured the methane and

  15. UK emissions of the greenhouse gas nitrous oxide

    Science.gov (United States)

    Skiba, U.; Jones, S. K.; Dragosits, U.; Drewer, J.; Fowler, D.; Rees, R. M.; Pappa, V. A.; Cardenas, L.; Chadwick, D.; Yamulki, S.; Manning, A. J.

    2012-01-01

    Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N2O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N2O in many countries and responsible for 75 per cent of UK N2O emissions. Microbial N2O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling. PMID:22451103

  16. Nitrous Oxide Emissions from a Large, Impounded River: The Ohio River

    Science.gov (United States)

    Models suggest that microbial activity in streams and rivers is a globally significant source of anthropogenic nitrous oxide (N2O), a potent greenhouse gas and the leading cause of stratospheric ozone destruction. However, model estimates of N2O emissions are poorly constrained ...

  17. 78 FR 6400 - Results of FAA Nitrous Oxide BLEVE Characterization Testing

    Science.gov (United States)

    2013-01-30

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Results of FAA Nitrous Oxide BLEVE Characterization Testing AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public... FAA sponsored testing of nitrous oxide (N 2 O) characteristics. Nitrous oxide is an important oxidizer...

  18. Marine nitrous oxide emissions: An unknown liability for the international water sector

    Science.gov (United States)

    Reliable estimates of anthropogenic greenhouse gas (GHG) emissions are essential for setting effective climate policy at both the sector and national level. Current IPCC Guidelines for calculating nitrous oxide (N2O) emissions from sewage management are both highly uncertain and ...

  19. Spatial variability in nitrous oxide and methane emissions from beef cattle feedyard pen surfaces

    Science.gov (United States)

    Greenhouse gas emissions from beef cattle feedlots include enteric carbon dioxide and methane, and manure-derived methane, nitrous oxide and carbon dioxide. Enteric methane comprises the largest portion of the greenhouse gas footprint of beef cattle feedyards. For the manure component, methane is th...

  20. Comparing the effects of cryotherapy with nitrous oxide gas versus topical corticosteroids in the treatment of oral lichen planus.

    Science.gov (United States)

    Amanat, Dariush; Ebrahimi, Hooman; Zahedani, Maryam Zahed; Zeini, Nasim; Pourshahidi, Sara; Ranjbar, Zahra

    2014-01-01

    Oral lichen planus (OLP) is a chronic inflammatory disease of the oral mucosa with treatment challenges for clinicians. The objective of this study is to compare the effects of cryotherapy as a new modality with topical corticosteroids as a conventional therapy in the treatment of OLP. Thirty patients with bilateral OLP lesions were selected. From each patient a lesion on one side was chosen randomly for a single session of cryotherapy with nitrous oxide gas and the lesion on the other side received triamcinolone acetonide 0.1% ointment in orabase. Treatment outcome was measured by means of an appearance score, pain score (visual analogue scale), and severity of lesions before treatment and after 2, 4 and 6 weeks of treatment. Paired samples t-test and Wilcoxon test. In both methods of treatment sign score, pain score and severity of lesions was significantly reduced in all follow-up sessions (Ptreatment outcome and relapse was not significantly different between the two treatment methods (P>0.05). Cryotherapy with nitrous oxide gas is as effective as topical triamcinolone acetonide in the treatment of OLP with no systemic side effects and needs less patient compliance. It can be considered as an alternative or adjuvant therapy in OLP patients to reduce the use of treatments with adverse effects.

  1. Community Composition of Nitrous Oxide-Related Genes in Salt Marsh Sediments Exposed to Nitrogen Enrichment.

    Science.gov (United States)

    Angell, John H; Peng, Xuefeng; Ji, Qixing; Craick, Ian; Jayakumar, Amal; Kearns, Patrick J; Ward, Bess B; Bowen, Jennifer L

    2018-01-01

    Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated profiles of microbial communities and communities of micro-organisms containing specific nitrogen cycling genes that encode several enzymes ( amoA, norB, nosZ) related to nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms involved in the production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that previously measured rates of nitrous oxide production and consumption are likely the result of changes in community structure, not simply changes in microbial activity.

  2. Dentists' and Parents' Attitude Toward Nitrous Oxide Use in Kuwait.

    Science.gov (United States)

    Alkandari, Sarah A; Almousa, Fatemah; Abdulwahab, Mohammad; Boynes, Sean G

    2016-01-01

    The aim of this study was to investigate the attitude of dentists in Kuwait toward the use of nitrous oxide sedation as a behavior management technique (BMT) for pediatric patients and assess their training in nitrous oxide sedation. In addition, we assessed parents' knowledge of and attitude toward the use of nitrous oxide as a BMT for their children. The objective was to determine if nitrous oxide sedation is being provided and utilized as a means to enhance dental care for pediatric patients. A cross-sectional survey was randomly distributed to both groups of interest: parents accompanying their children to the dentist and licensed dentists in Kuwait. Participants had to meet certain inclusion criteria to be included in the survey and had to complete the entire questionnaire to be part of the analysis. A total of 381 parents completed the questionnaires. The majority of parents responded that they were unaware of nitrous oxide sedation and were not aware of it as a BMT (79%). Two thirds of the parent would accept nitrous oxide sedation if recommended by a dentist treating their children. Two hundred and one dentists completed the survey and met the inclusion criteria. The majority (74.5%) of dentists were willing to use nitrous oxide as a BMT. However, only 6% were utilizing nitrous oxide sedation and providing it to their child patient if indicated. The main reasons for this huge gap are lack of facilities/equipment and lack of training as indicated by the dentists. This study showed that parents are accepting nitrous oxide sedation as a BMT for their children. It also showed the willingness of the dentists to provide such BMT to their patients. The lack of training and lack of equipment are the main barriers to providing such service to the patients. More training courses and more facilities should be provided to eliminate such barriers.

  3. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene.

    Science.gov (United States)

    Kaspar, H F; Tiedje, J M

    1981-03-01

    15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat.

  4. 2004 Methane and Nitrous Oxide Emissions from Manure Management in South Africa

    Directory of Open Access Journals (Sweden)

    Mokhele Edmond Moeletsi

    2015-03-01

    Full Text Available Manure management in livestock makes a significant contribution towards greenhouse gas emissions in the Agriculture; Forestry and Other Land Use category in South Africa. Methane and nitrous oxide emissions are prevalent in contrasting manure management systems; promoting anaerobic and aerobic conditions respectively. In this paper; both Tier 1 and modified Tier 2 approaches of the IPCC guidelines are utilized to estimate the emissions from South African livestock manure management. Activity data (animal population, animal weights, manure management systems, etc. were sourced from various resources for estimation of both emissions factors and emissions of methane and nitrous oxide. The results show relatively high methane emissions factors from manure management for mature female dairy cattle (40.98 kg/year/animal, sows (25.23 kg/year/animal and boars (25.23 kg/year/animal. Hence, contributions for pig farming and dairy cattle are the highest at 54.50 Gg and 32.01 Gg respectively, with total emissions of 134.97 Gg (3104 Gg CO2 Equivalent. Total nitrous oxide emissions are estimated at 7.10 Gg (2272 Gg CO2 Equivalent and the three main contributors are commercial beef cattle; poultry and small-scale beef farming at 1.80 Gg; 1.72 Gg and 1.69 Gg respectively. Mitigation options from manure management must be taken with care due to divergent conducive requirements of methane and nitrous oxide emissions requirements.

  5. Whippits, nitrous oxide and the dangers of legal highs.

    Science.gov (United States)

    Thompson, Alexander G; Leite, M Isabel; Lunn, Michael P; Bennett, David L H

    2015-06-01

    Nitrous oxide is increasingly being used as a recreational drug. Prolonged use of nitrous oxide can have disabling neurological sequelae due to functional inactivation of vitamin B₁₂. We present three cases illustrating the neurological complications of using nitrous oxide. Two of these patients received nitrous oxide as a consequence of repeated hospital attendance and the third via 'Whippit' canisters used in cream dispensers, which are now widely available. Two patients developed sensorimotor peripheral neuropathy with demyelinating features with no clinical or imaging evidence of myelopathy, emphasising that not all patients develop subacute combined degeneration of the spinal cord (the typical presentation of functional vitamin B12 deficiency). The diagnosis was based upon the history of nitrous oxide use and raised levels of homocysteine and/or methylmalonic acid. All patients were treated with parenteral vitamin B12 with partial recovery, though two were left significantly disabled. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Global Emissions of Nitrous Oxide: Key Source Sectors, their Future Activities and Technical Opportunities for Emission Reduction

    Science.gov (United States)

    Winiwarter, W.; Höglund-Isaksson, L.; Klimont, Z.; Schöpp, W.; Amann, M.

    2017-12-01

    Nitrous oxide originates primarily from natural biogeochemical processes, but its atmospheric concentrations have been strongly affected by human activities. According to IPCC, it is the third largest contributor to the anthropogenic greenhouse gas emissions (after carbon dioxide and methane). Deep decarbonization scenarios, which are able to constrain global temperature increase within 1.5°C, require strategies to cut methane and nitrous oxide emissions on top of phasing out carbon dioxide emissions. Employing the Greenhouse gas and Air pollution INteractions and Synergies (GAINS) model, we have estimated global emissions of nitrous oxide until 2050. Using explicitly defined emission reduction technologies we demonstrate that, by 2030, about 26% ± 9% of the emissions can be avoided assuming full implementation of currently existing reduction technologies. Nearly a quarter of this mitigation can be achieved at marginal costs lower than 10 Euro/t CO2-eq with the chemical industry sector offering important reductions. Overall, the largest emitter of nitrous oxide, agriculture, also provides the largest emission abatement potentials. Emission reduction may be achieved by precision farming methods (variable rate technology) as well as by agrochemistry (nitrification inhibitors). Regionally, the largest emission reductions are achievable where intensive agriculture and industry are prevalent (production and application of mineral fertilizers): Centrally Planned Asia including China, North and Latin America, and South Asia including India. Further deep cuts in nitrous oxide emissions will require extending reduction efforts beyond strictly technological solutions, i.e., considering behavioral changes, including widespread adoption of "healthy diets" minimizing excess protein consumption.

  7. Experimental evidence of nitrous acid formation in the electron beam treatment of flue gas

    International Nuclear Information System (INIS)

    Maetzing, H.; Namba, H.; Tokunaga, O.

    1994-01-01

    In the Electron Beam Dry Scrubbing (EBDS) process, flue gas from fossil fuel burning power plants is irradiated with accelerated (300-800 keV) electrons. Thereby, nitrogen oxide (NO x ) and sulfur dioxide (SO 2 ) traces are transformed into nitric and sulfuric acids, respectively, which are converted into particulate ammonium nitrate and sulfate upon the addition of ammonia. The powdery product can be filtered from the main gas stream and can be sold as agricultural fertilizer. A lot of experimental investigations have been performed on the EBDS process and computer models have been developed to interpret the experimental results and to predict economic improvements. According to the model calculations, substantial amounts of intermediate nitrous acid (HNO 2 ) are formed in the electron beam treatment of flue gas. The first experimental investigation about the formation of nitrous acid in an irradiated mixture of NO in synthetic air has been undertaken. Under these conditions, aerosol formation is avoided. UV spectra of the irradiated gas were recorded in the wavelength range λ = 345-375 nm. Both NO 2 and HNO 2 have characteristic absorption bands in this wavelength range. Calibration spectra of NO 2 were subtracted from the sample spectra. The remaining absorption bands can clearly be assigned to nitrous acid. The concentration of nitrous acid was determined by differential optical absorption. It was found lower than the model prediction. The importance of nitrous acid formation in the EBDS process needs to be clarified. (author)

  8. Instantaneous global nitrous oxide photochemical rates

    International Nuclear Information System (INIS)

    Johnston, H.S.; Serang, O.; Podolske, J.

    1979-01-01

    In recent years, vertical profiles of nitrous oxide have been measured by balloon up to midstratosphere at several latitudes between 63 0 N and 73 0 S, including one profile in the tropical zone at 9 0 N. Two rocket flights measured nitrous oxide mixing ratios at 44 and 49 km. From these experimental data plus a large amount of interpolation and extrapolation, we have estimated a global distribution of nitrous oxide up to the altitude of 50 km. With standard global distributions of oxygen and ozone we carried out instantaneous, three-dimensional, global photochemical calculations, using recently measured temperature-dependent cross sections for nitrous oxide. The altitude of maximum photolysis rate of N 2 O is about 30 km at all latitudes, and the rate of photolysis is a maximum in tropical latitudes. The altitude of maximum rate of formation of nitric oxide is latitude dependent, about 26 km at the equator, about 23 km over temperate zones, and 20 km at the summer pole. The global rate of N 2 O destruction is 6.2 x 10 27 molecules s -1 , and the global rate of formation of NO from N 2 O is 1.4 x 10 27 molecules s -1 . The global N 2 O inventory divided by the stratospheric loss rate gives a residence time of about 175 years with respect to this loss process. From the global average N 2 O profile a vertical eddy diffusion profile was derived, and this profile agrees very closely with that of Stewart and Hoffert

  9. Nitrous oxide emissions and denitrification rates: A blueprint for smart management and remediation of agricultural landscapes.

    Science.gov (United States)

    Tomasek, A.; Hondzo, M.; Kozarek, J. L.

    2015-12-01

    Anthropogenic activities have greatly altered the global nitrogen cycle, especially in the agriculturally dominated Midwest, with severe consequences on human and aquatic health. Complete microbial denitrification can be viewed as a nitrogen sink, converting soluble nitrate into inert nitrogen gas. This research aims to quantify and correlate the driving parameters in microbial denitrification and explore the relationship to the abundance of denitrifying genes and the microbial communities at these sites. Denitrifying genes for each step in the denitrification process have been quantified. Data from a field site in Southern Minnesota has been collected throughout the season for two years enabling investigation into the temporal variability of denitrification. Data was collected at two cross-sections across the channel to determine the effect of bank location and moisture content on denitrification. Data were collected in an experimental basin in the summer of 2015 to determine the effect of flooding and benthic organic matter content and quality on microbial denitrification and nitrous oxide production. Four sediment types were investigated in three different flood regimes. After each raising or lowering of the water level, soil cores were taken to determine soil characteristics, the potential denitrification using the denitrification enzyme activity method, nitrous oxide production using a static core method, and the denitrifying gene abundance. Chambers were also deployed over each soil amendment in each flood regime to determine the nitrous oxide production over time. Results from these studies will convey a more complete explanation of denitrification and nitrous oxide production under varying environmental conditions. By determining the driving parameters for microbial denitrification, denitrification hot spots and hot moments can be created and enhanced. One potential consequence of increased denitrification is the possibility of incomplete denitrification

  10. A geostatistical approach to identify and mitigate agricultural nitrous oxide emission hotspots

    Science.gov (United States)

    Anthropogenic emissions of nitrous oxide (N2O), a trace gas with severe environmental costs, are greatest from agricultural soils amended with nitrogen (N) fertilizer. However, accurate N2O emission estimates at fine spatial scales are made difficult by their high variability, which represents a cr...

  11. Current use of nitrous oxide in public hospitals in Scandinavian countries.

    Science.gov (United States)

    Husum, B; Stenqvist, O; Alahuhta, S; Sigurdsson, G H; Dale, O

    2013-10-01

    The use of nitrous oxide in modern anaesthesia has been questioned. We surveyed changes in use of nitrous oxide in Scandinavia and its justifications during the last two decades. All 191 departments of anaesthesia in the Scandinavian countries were requested by email to answer an electronic survey in SurveyMonkey. One hundred and twenty-five (64%) of the departments responded; four were excluded. The 121 departments provided 807.520 general anaesthetics annually. The usage of nitrous oxide was reported in 11.9% of cases, ranging from 0.6% in Denmark to 38.6% in Iceland while volatile anaesthetics were employed in 48.9%, lowest in Denmark (22.6%) and highest in Iceland (91.9%). Nitrous oxide was co-administered with volatile anaesthetics in 21.5% of general anaesthetics [2.4% (Denmark) -34.5% (Iceland)]. Use of nitrous oxide was unchanged in five departments (4%), decreasing in 75 (62%) and stopped in 41 (34%). Reasons for decreasing or stopping use of nitrous oxide were fairly uniform in the five countries, the most important being that other agents were 'better', whereas few put weight on its potential risk for increasing morbidity. Decision to stop using nitrous oxide was made by the departments except in four cases. Of 87 maternity wards, nitrous oxide was used in 72, whereas this was the case in 42 of 111 day-surgery units. The use of nitrous oxide has decreased in the Scandinavian countries, apparently because many now prefer other agents. Difference in practices between the five countries were unexpected and apparently not justified on anticipated evidence only. © 2013 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  12. Sensitization of in vitro mammalian cells by nitrous oxide

    International Nuclear Information System (INIS)

    Ewing, D.

    1984-01-01

    Powers and his colleagues showed almost ten years ago that sensitization by nitrous oxide required two radiolytic products: OH radicals and hydrogen peroxide. That observation with bacterial spores has been confirmed and extended with spores and several strains of bacteria. OH must be present to form hydrogen peroxide, but, in addition, OH must also be present with the hydrogen peroxide for damage to occur. (Reagent hydrogen peroxide, except at very high concentrations, will not sensitize unless OH radicals are present.) The authors have now tested nitrous oxide with two Chinese hamster cell lines, V79 and CHO. The responses in nitrogen and nitrous oxide are the same for each. The authors have tentatively concluded that insufficient hydrogen peroxide is formed in the cells' suspending fluid for damage from nitrous oxide to occur. Several results support this conclusion: reagent hydrogen peroxide is a potent sensitizer of either cell line tested in nitrogen or nitrous oxide and an assay for radiolytic hydrogen peroxide confirms that only minimal levels are formed at the doses used in these survival curves. The authors also present results of other tests to further complement work with procaryotic cells

  13. Non-CO2 greenhouse gas emissions associated with food production: methane (CH4) and nitrous oxide (N2O)

    International Nuclear Information System (INIS)

    Carlsson-Kanyama, Annika

    2007-01-01

    It is well known that the agriculture and livestock sectors are large contributors of N 2 O and CH 4 emissions in countries with agricultural activities and that remedial measures are needed in these sectors in order to curb contributions to global warming. This study examines non- CO 2 greenhouse gas emissions associated with the production of food. Methane (CH 4 ) and nitrous oxide (N 2 O) are the most relevant greenhouse gases in this category, and they are emitted mainly in the agricultural sector. These greenhouse gases have a Global Warming Potential much higher than CO 2 itself (25- and 298-fold higher, respectively, in a 100-year perspective). Emission intensities and the corresponding uncertainties were calculated based on the latest procedures and data published by the Intergovernmental Panel on Climate Change and used to facilitate calculations comparing greenhouse gas emissions for food products and diets. When the proposed emission intensities were applied to agricultural production, the results showed products of animal origin and the cultivation of rice under water to have high emissions compared with products of vegetable origin cultivated on upland soils, such as wheat and beans. In animal production the main source of greenhouse gas emissions was methane from enteric fermentation, while emissions of nitrous oxides from fertilisers were the main sources of greenhouse gas emissions for cereal and legume cultivation. For rice cultivation, methane emissions from flooded rice fields contributed most. Other significant sources of greenhouse gas emissions during animal production were manure storage and management. We suggest that the proposed emission factors, together with the associated uncertainties, can be a tool for better understanding the potential to mitigate emissions of greenhouse gases through changes in the diet

  14. Oxidation of propane with oxygen, nitrous oxide and oxygen/nitrous oxide mixture over Co- and Fe-zeolites

    Czech Academy of Sciences Publication Activity Database

    Novoveská, K.; Bulánek, R.; Wichterlová, Blanka

    2005-01-01

    Roč. 100, 3-4 (2005), s. 315-319 ISSN 0920-5861 R&D Projects: GA ČR(CZ) GA104/03/1120 Institutional research plan: CEZ:AV0Z40400503 Keywords : propene * propane oxidation * nitrous oxide * Fe-ZSM-5 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.365, year: 2005

  15. Radiolysis of dodecane--tributylphosphate and nitrous oxide solutions

    International Nuclear Information System (INIS)

    Razvi, J.

    1978-01-01

    The chemical effects of 60 Co gamma irradiation on the nuclear fuel reprocessing solvents tributylphosphate (TBP) and dodecane were studied. Nitrous oxide, with concentrations in the range 20 mM to 140 mM, was used as the standard for competition kinetics. Solutions of TBP (with electron fractions of 0.025, 0.05, 0.1 and 0.3) in dodecane were irradiated. Primary gaseous products (non-condensible at 77K) in the radiolysis were nitrogen and hydrogen. Liquid products observed were the dimer, dodecanone, dodecanol, and fragmentation products C 5 -C 11 and C 17 -C 20 . Acid products from TBP were dibutylphosphate (DBP) and monobutylphosphate (MBP). All yields were determined both as a function of TBP and nitrous oxide concentrations. Kinetic analysis of nitrogen yields from dodecane--N 2 O radiolysis gave, G(total scavengable primary species) = 6.7 molecules/100 eV. Yields of dodecane liquid products could not be analyzed quantitatively due to the complex spectrum of products. In dodecane--N 2 O solutions, the dimer showed insignificant changes in yields and product distributions, indicating formation of additional dodecyl radicals in the presence of nitrous oxide. In dodecane--TBP mixtures, dimer yields reduced significantly as did the products from carbon--carbon bond cleavage. The addition of nitrous oxide to the binary mixture caused the dimer yield to increase, confirming formation of C 12 H 25 radicals by nitrous oxide reactions

  16. Determination of emissions of methane and nitrous oxide in rice plantations in Guanacaste, Costa Rica

    Directory of Open Access Journals (Sweden)

    Jorge Herrera

    2013-12-01

    Full Text Available Methane and nitrous oxide emissions fluxes were measured in 10 rice plantations located in Liberia, Guanacaste, working at least with 04 varieties of rice and two types of soil in the period August 2012 - April 2013. For the determination of flows static camera technique were used taking four air gas samples located in the headspace of the chamber using a plastic syringe of 12 ml at 0, 10, 20 and 30 min after camera location. The gas samples were analyzed with a gas chromatograph, equipped with FID and ECD. Averages of flow methane and nitrous oxide were recorded between 0,12 to 1,9 kg ha-1d-1 and 0,11 - 1,1 mg ha-1d-1, respectively, and no significant difference was found (p < 0,05 in the values between different rice varieties and soil types subject experimental design.

  17. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene.

    OpenAIRE

    Kaspar, H F; Tiedje, J M

    1981-01-01

    15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, whe...

  18. Catalytic abatement of nitrous oxide from nitric and production

    NARCIS (Netherlands)

    Oonk, J.

    1998-01-01

    Nitric acid production is identified as a main source of nitrous oxide. Options for emission reduction however are not available. TNO and Hydro Agri studied the technological and economic feasibility of catalytic decomposition of nitrous oxide in nitric acid tail-gases. Although in literature

  19. Measurements of nitrous oxide emissions from P.F. fired power stations

    Science.gov (United States)

    Sloan, S. A.; Laird, C. K.

    Nitrous oxide (N 2O) was measured in the flue gas from four wall-fired and three corner-fired 500 MW boilers, fitted with either conventional or low-NO x burners, at four C.E.G.B. power stations. Measurements were made both by on-line non-dispersive infra red (NDIR) monitors and by extractive sampling for later laboratory analysis by electron capture gas chromatography (ECD GC). It was found that the on-line and laboratory methods were in good agreement for samples analyzed within 1-3 h of sampling, but that the nitrous oxide concentration in the stored samples had a tendency to increase with time, which was dependent on the concentration of water in the sample. Experiments with synthetic mixtures showed that the increase in nitrous oxide concentration was consistent with the overall reaction2NO+SO 2→N 2O+SO 3 in which nitric oxide is reduced by sulphur dioxide. The highest average N 2O concentration measured by the on-line analyzer was 16 vpm, and for most of the boilers monitored the concentration was less than 10 vpm. There was no statistically significant difference between the measured N 2O emissions from normal boilers and those fitted with low-NO x burners. It is suggested that these values are close to the true levels of N 2O emissions from p.f. fired boilers and that recent reports of high levels (up to 200 vpm) are likely to be an artefact resulting from the observed generation of N 2O in stored samples. A consequence of these measurements of N 2O is that current estimates of the contribution of emissions from p.f. fired boilers to the global N 2O budget are likely to be too high.

  20. [Nitrous oxide production by the German Armed Forces in the 20th century : History of medicine and pharmacy in the Armed Forces].

    Science.gov (United States)

    Kronabel, D B J

    2010-03-01

    The nitrous oxide production unit of the German Armed Forces was a worldwide unique facility which was only employed in the former main medical depot at Euskirchen (nitrous oxide: medical gas which is now obsolete). The last unit was phased out in 2002 and brought to the main medical depot at Blankenburg. Unfortunately the unit is now no longer in the depot and seems to have disappeared. This article describes the nitrous oxide production process and the use of the production unit which was designed by the Socsil company of Switzerland.

  1. Health Effects Associated With Exposure to Anesthetic Gas Nitrous Oxide-N2O in Clinical Hospital - Shtip Personel.

    Science.gov (United States)

    Eftimova, Bilijana; Sholjakova, Marija; Mirakovski, Dejan; Hadzi-Nikolova, Marija

    2017-10-15

    To show certain health effects associated with acute and chronic exposure to nitrous oxide of staff of the Department of Anaesthesiology and Intensive Care at the Clinical Hospital in Shtip. A transversal study was conducted, that include 43 health workers (23 - exposed and 20 - unexposed). Personal exposure to nitrous oxide for this group members was assessed through continuous measurement over 8 hours shift within breathing zone of the subjects involved, using handheld electrochemical instrument with datalogging option direct. In order to determine presence of possible health effects associated with acute and chronic exposure to nitrous oxide in ORs and ICUs, a specially designed questionnaire was prepared and distributed to be anonymously filled out, by all the examinees from both examined groups. Data were statistically tested for normality and also quantitative and qualitative assessment was performed. From the results obtained, a significant difference in several health effects between exposed and unexposed groups can be noted, including headaches, dizziness, nausea and vomiting, euphoria and tachycardia. Regarding the excitement, the appearance of depression, the feeling of numbness and tingling of the hands and feet, the differences between the two examined groups were not significant. It can be concluded that chronic exposure to nitrous oxide is associated with the adverse health effects.

  2. Nitrous oxide for labor analgesia: Utilization and predictors of conversion to neuraxial analgesia.

    Science.gov (United States)

    Sutton, Caitlin D; Butwick, Alexander J; Riley, Edward T; Carvalho, Brendan

    2017-08-01

    We examined the characteristics of women who choose nitrous oxide for labor analgesia and identified factors that predict conversion from nitrous oxide to labor neuraxial analgesia. Retrospective descriptive study. Labor and Delivery Ward. 146 pregnant women who used nitrous oxide for analgesia during labor and delivery between September 2014 and September 2015. Chart review only. Demographic, obstetric, and intrapartum characteristics of women using nitrous oxide were examined. Multivariable logistic regression was performed to identify factors associated with conversion from nitrous oxide to neuraxial analgesia. Data are presented as n (%), median [IQR], adjusted relative risk (aRR), and 95% confidence intervals (CI) as appropriate. During the study period, 146 women used nitrous oxide for labor analgesia (accounting for 3% of the total deliveries). The majority (71.9%) of women who used nitrous oxide were nulliparous, and over half (51.9%) had expressed an initial preference for "nonmedical birth." The conversion rate to neuraxial blockade was 63.2%, compared to a concurrent institutional rate of 85.1% in women who did not use nitrous oxide. Factors associated with conversion from nitrous oxide to neuraxial blockade were labor induction (aRR=2.0, CI 1.2-3.3) and labor augmentation (aRR=1.7, CI 1.0-2.9). Only a small number of women opted to use nitrous oxide during labor, analgesia was minimal, and most converted to neuraxial analgesia. Women with induced and augmented labors should be counseled about the increased likelihood that they will convert to neuraxial analgesia. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Earthworms can increase nitrous oxide emissions from managed grassland: a field study

    NARCIS (Netherlands)

    Lubbers, I.M.; López González, E.; Hummelink, E.W.J.; Groenigen, van J.W.

    2013-01-01

    Earthworms are important in determining the greenhouse gas (GHG) balance of soils. In laboratory studies they have been shown to increase emissions of the potent GHG nitrous oxide (N2O). Here we test whether these earthworm-induced N2O emissions also occur in the field. We quantified N2O emissions

  4. The Neurotoxicity of Nitrous Oxide: The Facts and “Putative” Mechanisms

    Science.gov (United States)

    Savage, Sinead; Ma, Daqing

    2014-01-01

    Nitrous oxide is a widely used analgesic agent, used also in combination with anaesthetics during surgery. Recent research has raised concerns about possible neurotoxicity of nitrous oxide, particularly in the developing brain. Nitrous oxide is an N-methyl-d-aspartate (NMDA)-antagonist drug, similar in nature to ketamine, another anaesthetic agent. It has been linked to post-operative cardiovascular problems in clinical studies. It is also widely known that exposure to nitrous oxide during surgery results in elevated homocysteine levels in many patients, but very little work has investigated the long term effect of these increased homocysteine levels. Now research in rodent models has found that homocysteine can be linked to neuronal death and possibly even cognitive deficits. This review aims to examine the current knowledge of mechanisms of action of nitrous oxide, and to describe some pathways by which it may have neurotoxic effects. PMID:24961701

  5. Nitrous Oxide Production in an Eastern Corn Belt Soil: Sources and Redox Range

    Science.gov (United States)

    Nitrous oxide (N2O) derived from soils is a main contributor to the greenhouse gas effect and a precursor to ozone-depleting substrates; however, the source processes and interacting controls are not well established. This study was conducted to estimate magnitude and source (nitrification vs. denit...

  6. Nitrous oxide metabolism in nitrate-reducing bacteria: Physiology and regulatory mechanisms

    OpenAIRE

    Torres, Maria; Simon, Jorg; Rowley, Gary; Bedmar, Eulogio; Richardson, David; Gates, Andrew; Delgado, Maria

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nit- ric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the appli- cation of synthetic nitrogen-containing fertilizers. Thus, mitigation stra...

  7. Chemical dosimetry of linac electron pulse with nitrous oxide

    International Nuclear Information System (INIS)

    Nanba, Hideki; Shinsaka, Kyoji; Hatano, Yoshihiko; Yagi, Masuo; Shiokawa, Takanobu.

    1975-01-01

    Absorption dose, dose rate and the reproducibility of intensity in each pulse of the electron beam pulses from a Linac (42 MeV, 3μsec) have been determined by applying nitrous oxide chemical dosimetry, in order to obtain the fundamental data required for radiation chemistry researches with the Linac. Nitrous oxide is used as a chemical dosimeter because it is known that it decomposed through radiation ensures easy detection and the determination of quantity of the decomposed product, nitrogen, which is stable, and presents linear relationship between absorption dose and produced quantity over the wide dose-rate range. Irradiation cells used for the experiment were cylindrical ones made of hard molybdenum glass. Irradiated samples were fractionated with liquid nitrogen, and separated and determined with a gas chromatograph. Details on the experimental results and their examination are described at the end. They include absorption dose of 1x10 16 eV/g per pulse, dose rate of 3x10 21 eV/g, sec and intensity reproducibility of +- 20%. (Wakatsuki, Y.)

  8. Nitrous oxide production in intermittently aerated Partial Nitritation-Anammox reactor: oxic N2O production dominates and relates with ammonia removal rate

    DEFF Research Database (Denmark)

    Blum, Jan-Michael; Jensen, Marlene Mark; Smets, Barth F.

    2018-01-01

    Emissions of the greenhouse gas nitrous oxide from the Partial Nitritation-Anammox process are of concern and can determine the carbon footprint of the process. In order to reduce nitrous oxide emissions intermittent aeration regimes have been shown to be a promising mode of operation, possibly due...

  9. Nitrous Oxide Production at a Fully Covered Wastewater Treatment Plant: Results of a Long-Term Online Monitoring Campaign.

    Science.gov (United States)

    Kosonen, Heta; Heinonen, Mari; Mikola, Anna; Haimi, Henri; Mulas, Michela; Corona, Francesco; Vahala, Riku

    2016-06-07

    The nitrous oxide emissions of the Viikinmäki wastewater treatment plant were measured in a 12 month online monitoring campaign. The measurements, which were conducted with a continuous gas analyzer, covered all of the unit operations of the advanced wastewater-treatment process. The relation between the nitrous oxide emissions and certain process parameters, such as the wastewater temperature, influent biological oxygen demand, and ammonium nitrogen load, was investigated by applying online data obtained from the process-control system at 1 min intervals. Although seasonal variations in the measured nitrous oxide emissions were remarkable, the measurement data indicated no clear relationship between these emissions and seasonal changes in the wastewater temperature. The diurnal variations of the nitrous oxide emissions did, however, strongly correlate with the alternation of the influent biological oxygen demand and ammonium nitrogen load to the aerated zones of the activated sludge process. Overall, the annual nitrous oxide emissions of 168 g/PE/year and the emission factor of 1.9% of the influent nitrogen load are in the high range of values reported in the literature but in very good agreement with the results of other long-term online monitoring campaigns implemented at full-scale wastewater-treatment plants.

  10. Nitrous oxide emissions from fertilized soil: Can we manage it?

    Science.gov (United States)

    Cropped fields in the upper Midwest have the potential to emit nitrous oxide (N2O) and nitric oxide (NO) gases resulting from soil transformation of nitrogen (N) fertilizers applied to crops such as corn and potatoes. Nitrous oxide is a potent greenhouse and also an important in ozone depleting che...

  11. Final Report for DOE grant no. DE-FG02-04ER63883: Can soil genomics predict the impact of precipitation on nitrous oxide flux from soil

    Energy Technology Data Exchange (ETDEWEB)

    Egbert Schwartz

    2008-12-15

    Nitrous oxide is a potent greenhouse gas that is released by microorganisms in soil. However, the production of nitrous oxide in soil is highly variable and difficult to predict. Future climate change may have large impacts on nitrous oxide release through alteration of precipitation patterns. We analyzed DNA extracted from soil in order to uncover relationships between microbial processes, abundance of particular DNA sequences and net nitrous oxide fluxes from soil. Denitrification, a microbial process in which nitrate is used as an electron acceptor, correlated with nitrous oxide flux from soil. The abundance of ammonia oxidizing archaea correlated positively, but weakly, with nitrous oxide production in soil. The abundance of bacterial genes in soil was negatively correlated with gross nitrogen mineralization rates and nitrous oxide release from soil. We suggest that the most important control over nitrous oxide production in soil is the growth and death of microorganisms. When organisms are growing nitrogen is incorporated into their biomass and nitrous oxide flux is low. In contrast, when microorganisms die, due to predation or infection by viruses, inorganic nitrogen is released into the soil resulting in nitrous oxide release. Higher rates of precipitation increase access to microorganisms by predators or viruses through filling large soil pores with water and therefore can lead to large releases of nitrous oxide from soil. We developed a new technique, stable isotope probing with 18O-water, to study growth and mortality of microorganisms in soil.

  12. Nitrous oxide availability.

    Science.gov (United States)

    Murray, M J; Murray, W J

    1980-04-01

    Nitrous oxide (N2O) is marketed as an inhalation anesthetic and as a food ingredient (e.g., whipping cream propellant). In the human, inhalation has been associated with "highs," peripheral nerve damage, mitotic poisoning of bone marrow, psychosis, and mental impairment. Exposure to hypoxemic mixtures has resulted in death. The commercial N2O sources specifically studied were aerosol whipping cream containers (three brands) and 6.5-cm cylinders, or chargers (two brands). The gas content and N2O concentrations of these devices were measured. The aerosol cans, when not shaken, will dispense at least 3 liters of 87 to 90% N2O. Charger misuse may occur when they are substituted for identically designed carbon dioxide (CO2) chargers of a seltzer bottle; 4.3 to 5.0 liters of 93 to 98% N2O is expelled at a controllable rate. The toxicity of these inexpensive N2O products, their high potential for misuse, and the absence of labeling (chargers) argue that their distribution be discontinued.

  13. Phenol by direct hydroxylation of benzene with nitrous oxide - role of surface oxygen species in the reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Reitzmann, A.; Klemm, E.; Emig, G. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Technische Chemie 1; Buchholz, S.A.; Zanthoff, H.W. [Bochum Univ. (Germany). Inst. of Technical Chemistry

    1998-12-31

    Transient experiments in a Temporal Analysis of Products (TAP) Reactor were performed to elucidate the role of surface oyxgen species in the oxidation of benzene to phenol on ZSM-5 type zeolites with nitrous oxide as a selective oxidant. It was shown by puls experiments with nitrous oxide that the mean lifetime of the generated surface oxygen species is between 0.2s at 500 C and about 4.2 s at 400 C. Afterwards the surface oxygen species desorb as molecular oxygen into the gas phase where total oxidation will take place if hydrocarbons are present. Dual puls experiments consisting of a nitrous oxide puls followed by a benzene puls allowed studying the reactivity of the surface oxygen species formed during the first puls. The observation of the phenol formation was impeded due to the strong sorption of phenol. Multipulse experiments were necessary to reach a pseudo steady state phenol yield. (orig.)

  14. Portable nitrous oxide sensor for understanding agricultural and soil emissions

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, Alan [Southwest Sciences, Inc., Santa Fe, NM (United States); Zondlo, Mark [Princeton Univ., NJ (United States); Gomez, Anthony [Southwest Sciences, Inc., Santa Fe, NM (United States); Pan, Da [Princeton Univ., NJ (United States)

    2017-02-27

    Nitrous oxide (N2O) is the third most important greenhouse gas (GHG,) with an atmospheric lifetime of ~114 years and a global warming impact ~300 times greater than that of carbon dioxide. The main cause of nitrous oxide’s atmospheric increase is anthropogenic emissions, and over 80% of the current global anthropogenic flux is related to agriculture, including associated land-use change. An accurate assessment of N2O emissions from agriculture is vital not only for understanding the global N2O balance and its impact on climate but also for designing crop systems with lower GHG emissions. Such assessments are currently hampered by the lack of instrumentation and methodologies to measure ecosystem-level fluxes at appropriate spatial and temporal scales. Southwest Sciences and Princeton University are developing and testing new open-path eddy covariance instrumentation for continuous and fast (10 Hz) measurement of nitrous oxide emissions. An important advance, now being implemented, is the use of new mid-infrared laser sources that enable the development of exceptionally low power (<10 W) compact instrumentation that can be used even in remote sites lacking in power. The instrumentation will transform the ability to measure and understand ecosystem-level nitrous oxide fluxes. The Phase II results included successful extended field testing of prototype flux instruments, based on quantum cascade lasers, in collaboration with Michigan State University. Results of these tests demonstrated a flux detection limit of 5 µg m-2 s-1 and showed excellent agreement and correlation with measurements using chamber techniques. Initial tests of an instrument using an interband cascade laser (ICL) were performed, verifying that an order of magnitude reduction in instrument power requirements can be realized. These results point toward future improvements and testing leading to introduction of a commercial open path instrument for N2O flux measurements that is truly portable and

  15. Nitrous oxide emissions from open-lot cattle feedyards: A review

    Science.gov (United States)

    Nitrous oxide volatilization from concentrated animal feeding operations (CAFO), including cattle feedyards, has become an important research topic. However, there are limitations to current measurement techniques, uncertainty in the magnitude of feedyard nitrous oxide fluxes and a lack of effective...

  16. Testing a Conceptual Model of Soil Emissions of Nitrous and Nitric Oxides

    Science.gov (United States)

    Eric A. Davidson; Michael Keller; Heather E. Erickson; Verchot NO-VALUE; Edzo Veldkamp

    2000-01-01

    Nitrous and nitric oxides are often studied separately by atmospheric chemists because they play such different roles in the atmosphere. N2O is a stable greenhouse gas in the lower atmosphere (the troposphere; Ramanathan et al. 1985), but it participates in photochemical reactions in the upper atmosphere (the stratosphere) that destroy ozone (Crutzen 1970). In contrast...

  17. Nitrous oxide production in grassland soils: assessing the contribution of nitrifier denitrification

    NARCIS (Netherlands)

    Wrage, N.; Velthof, G.L.; Laanbroek, H.J.; Oenema, O.

    2004-01-01

    Nitrifier denitrification is the reduction of NO2- to N2 by nitrifiers. It leads to the production of the greenhouse gas nitrous oxide (N2O) as an intermediate and possible end product. It is not known how important nitrifier denitrification is for the production of N2O in soils. We explored N2O

  18. Nitrous oxide for the management of labor pain: a systematic review.

    Science.gov (United States)

    Likis, Frances E; Andrews, Jeffrey C; Collins, Michelle R; Lewis, Rashonda M; Seroogy, Jeffrey J; Starr, Sarah A; Walden, Rachel R; McPheeters, Melissa L

    2014-01-01

    We systematically reviewed evidence addressing the effectiveness of nitrous oxide for the management of labor pain, the influence of nitrous oxide on women's satisfaction with their birth experience and labor pain management, and adverse effects associated with nitrous oxide for labor pain management. We searched the MEDLINE, EMBASE, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases for articles published in English. The study population included pregnant women in labor intending a vaginal birth, birth attendees or health care providers who may be exposed to nitrous oxide during labor, and the fetus/neonate. We identified a total of 58 publications, representing 59 distinct study populations: 2 studies were of good quality, 11 fair, and 46 poor. Inhalation of nitrous oxide provided less effective pain relief than epidural analgesia, but the quality of studies was predominately poor. The heterogeneous outcomes used to assess women's satisfaction with their birth experience and labor pain management made synthesis of studies difficult. Most maternal adverse effects reported in the literature were unpleasant side effects that affect tolerability, such as nausea, vomiting, dizziness, and drowsiness. Apgar scores in newborns whose mothers used nitrous oxide were not significantly different from those of newborns whose mothers used other labor pain management methods or no analgesia. Evidence about occupational harms and exposure was limited. The literature addressing nitrous oxide for the management of labor pain includes few studies of good or fair quality. Further research is needed across all of the areas examined: effectiveness, satisfaction, and adverse effects.

  19. Nitrous oxide emission from soils amended with crop residues

    NARCIS (Netherlands)

    Velthof, G.L.; Kuikman, P.J.; Oenema, O.

    2002-01-01

    Crop residues incorporated in soil are a potentially important source of nitrous oxide (N2O), though poorly quantified. Here, we report on the N2O emission from 10 crop residues added to a sandy and a clay soil, both with and without additional nitrate (NO3-). In the sandy soil, total nitrous oxide

  20. Emissions of nitrous acid (HONO), nitric oxide (NO) and nitrous oxide (N2O) from boreal agricultural soil - Effect of N fertilization

    Science.gov (United States)

    Bhattarai, Hem Raj; Virkajärvi, Perttu; -Yli Pirilä, Pasi; Maljanen, Marja

    2017-04-01

    There is no doubt that nitrogen (N) fertilization has crucial role in increasing food production. However, in parallel it can cause severe impact in environment such as eutrophication, surface/groundwater pollution via nitrate (NO3-) leaching and emissions of N trace gases. Fertilization increases the emissions of nitrous oxide (N2O) which is 260 stronger greenhouse gas than carbon dioxide (CO2). It also enhances the emissions of nitric oxide (NO); an oxidized and very reactive form of nitrogen which can fluctuate the ozone (O3) concentration in atmosphere and cause acidification. The effects of N- fertilization on the emission of N2O and NO from agricultural soil are well known. However, the effects of N fertilization on nitrous acid (HONO) emissions are unknown. Few studies have shown that HONO is emitted from soil but they lack to interlink fertilization and HONO emission. HONO accounts for 17-34 % of hydroxyl (OH-) radical production? in the atmosphere, OH- radicals have vital role in atmospheric chemistry; they can cause photochemical smog, form O3, oxidize volatile organic compounds and also atmospheric methane (CH4). We formulated hypothesis that N fertilization will increase the HONO emissions as it does for N2O and NO. To study this, we took soil samples from agricultural soil receiving different amount of N-fertilizer (0, 250 and 450 kg ha-1) in eastern Finland. HONO emissions were measured by dynamic chamber technique connected with LOPAP (Quma Elektronik & Analytik GmbH), NO by NOx analyzer (Thermo scientific) and static chamber technique and gas chromatograph was used for N2O gas sampling and analysis. Several soil parameters were also measured to establish the relationship between the soil properties, fertilization rate and HONO emission. This study is important because eventually it will open up more questions regarding the forms of N loss from soils and impact of fertilization on atmospheric chemistry.

  1. The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification.

    Science.gov (United States)

    Carreira, Cíntia; Pauleta, Sofia R; Moura, Isabel

    2017-12-01

    The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. NITROUS OXIDE CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    Science.gov (United States)

    We are measuring the dissolved nitrous oxide concentration in 17 headwater streams in the South Fork Broad River, Georgia watershed on a monthly basis. The selected small streams drain watersheds dominated by forest, pasture, developed, or mixed land uses. Nitrous oxide concentr...

  3. Influence of nitrous oxide anesthesia, B-vitamins, and MTHFR gene polymorphisms on perioperative cardiac events: the vitamins in nitrous oxide (VINO) randomized trial.

    Science.gov (United States)

    Nagele, Peter; Brown, Frank; Francis, Amber; Scott, Mitchell G; Gage, Brian F; Miller, J Philip

    2013-07-01

    Nitrous oxide causes an acute increase in plasma homocysteine that is more pronounced in patients with the methylenetetrahydrofolate reductase (MTHFR) C677T or A1298C gene variant. In this randomized controlled trial, the authors sought to determine whether patients carrying the MTHFR C677T or A1298C variant had a higher risk for perioperative cardiac events after nitrous oxide anesthesia and whether this risk could be mitigated by B-vitamins. The authors randomized adult patients with cardiac risk factors undergoing noncardiac surgery, to receive nitrous oxide plus intravenous B-vitamins before and after surgery, or to nitrous oxide and placebo. Serial cardiac biomarkers and 12-lead electrocardiograms were obtained. The primary study endpoint was the incidence of myocardial injury, as defined by cardiac troponin I increase within the first 72 h after surgery. A total of 500 patients completed the trial. Patients who were homozygous for either MTHFR C677T, or A1298C gene variant (n=98; 19.6%) had no increased rate of postoperative cardiac troponin I increase compared with wild-type and heterozygous patients (11.2 vs. 14.0%; relative risk 0.96; 95% CI, 0.85-1.07; P=0.48). B-vitamins blunted the rise in homocysteine, but had no effect on cardiac troponin I increase compared with patients receiving placebo (13.2 vs. 13.6%; relative risk 1.02; 95% CI 0.78 to 1.32; P=0.91). Neither MTHFR C677T and A1298C gene variant, nor acute homocysteine increase are associated with perioperative cardiac troponin increase after nitrous oxide anesthesia. B-vitamins blunt nitrous oxide-induced homocysteine increase but have no effect on cardiac troponin I increase.

  4. Mitigation of hydrogen by oxidation using nitrous oxide and noble metal catalysts

    International Nuclear Information System (INIS)

    Britton, M.D.

    1995-01-01

    This test studied the ability of a blend of nuclear-grade, noble-metal catalysts to catalyze a hydrogen/nitrous oxide reaction in an effort to mitigate a potential hydrogen (H 2 ) gas buildup in the Hanford Site Grout Disposal Facility. For gases having H 2 and a stoichiometric excess of either nitrous oxide or oxygen, the catalyst blend can effectively catalyze the H 2 oxidation reaction at a rate exceeding 380 μmoles of H 2 per hour per gram of catalyst (μmol/h/g) and leave the gas with less than a 0.15 residual H 2 Concentration. This holds true in gases with up to 2.25% water vapor and 0.1% methane. This should also hold true for gases with up to 0.1% carbon monoxide (CO) but only until the catalyst is exposed to enough CO to block the catalytic sites and stop the reaction. Gases with ammonia up to 1% may be slightly inhibited but can have reaction rates greater than 250 μmol/h/g with less than a 0.20% residual H 2 concentration. The mechanism for CO poisoning of the catalyst is the chemisorption of CO to the active catalyst sites. The CO sorption capacity (SC) of the catalyst is the total amount of CO that the catalyst will chemisorb. The average SC for virgin catalyst was determined to be 19.3 ± 2.0 μmoles of CO chemisorbed to each gram of catalyst (μmol/g). The average SC for catalyst regenerated with air was 17.3 ± 1.9 μmol/g

  5. Nitrous Oxide for Treatment-Resistant Major Depression: A Proof-of-Concept Trial.

    Science.gov (United States)

    Nagele, Peter; Duma, Andreas; Kopec, Michael; Gebara, Marie Anne; Parsoei, Alireza; Walker, Marie; Janski, Alvin; Panagopoulos, Vassilis N; Cristancho, Pilar; Miller, J Philip; Zorumski, Charles F; Conway, Charles R

    2015-07-01

    N-methyl-D-aspartate receptor antagonists, such as ketamine, have rapid antidepressant effects in patients with treatment-resistant depression (TRD). We hypothesized that nitrous oxide, an inhalational general anesthetic and N-methyl-D-aspartate receptor antagonist, may also be a rapidly acting treatment for TRD. In this blinded, placebo-controlled crossover trial, 20 patients with TRD were randomly assigned to 1-hour inhalation of 50% nitrous oxide/50% oxygen or 50% nitrogen/50% oxygen (placebo control). The primary endpoint was the change on the 21-item Hamilton Depression Rating Scale (HDRS-21) 24 hours after treatment. Mean duration of nitrous oxide treatment was 55.6 ± 2.5 (SD) min at a median inspiratory concentration of 44% (interquartile range, 37%-45%). In two patients, nitrous oxide treatment was briefly interrupted, and the treatment was discontinued in three patients. Depressive symptoms improved significantly at 2 hours and 24 hours after receiving nitrous oxide compared with placebo (mean HDRS-21 difference at 2 hours, -4.8 points, 95% confidence interval [CI], -1.8 to -7.8 points, p = .002; at 24 hours, -5.5 points, 95% CI, -2.5 to -8.5 points, p nitrous oxide and placebo, p nitrous oxide compared with one patient (5%) and none after placebo (odds ratio for response, 4.0, 95% CI, .45-35.79; OR for remission, 3.0, 95% CI, .31-28.8). No serious adverse events occurred; all adverse events were brief and of mild to moderate severity. This proof-of-concept trial demonstrated that nitrous oxide has rapid and marked antidepressant effects in patients with TRD. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin

    Science.gov (United States)

    Aquatic ecosystems are a globally significant source of nitrous oxide (N2O), a potent greenhouse gas, but estimates are largely based on studies conducted in streams and rivers with relatively less known about N2O dynamics in lakes and reservoirs. Due to long water residence tim...

  7. Nitrous oxide emission hotspots and acidic soil denitrification in a riparian buffer zone

    NARCIS (Netherlands)

    van den Heuvel, R.N.

    2010-01-01

    Nitrous oxide (N2O) is a greenhouse gas with a global warming potential of 296 CO2 equivalents and is involved in the depletion of the ozone layer. Through studies on emission sources it was revealed that natural and agricultural soils are important sources of N2O emissions and are responsible for

  8. Effect of nitrous oxide on cisatracurium infusion demands: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Illman Hanna L

    2010-08-01

    Full Text Available Abstract Background Recent studies have questioned our previous understanding on the effect of nitrous oxide on muscle relaxants, since nitrous oxide has been shown to potentiate the action of bolus doses of mivacurium, rocuronium and vecuronium. This study was aimed to investigate the possible effect of nitrous oxide on the infusion requirements of cisatracurium. Methods 70 ASA physical status I-III patients aged 18-75 years were enrolled in this randomized trial. The patients were undergoing elective surgery requiring general anesthesia with a duration of at least 90 minutes. Patients were randomized to receive propofol and remifentanil by target controlled infusion in combination with either a mixture of oxygen and nitrous oxide (Nitrous oxide/TIVA group or oxygen in air (Air/TIVA group. A 0.1 mg/kg initial bolus of cisatracurium was administered before tracheal intubation, followed by a closed-loop computer controlled infusion of cisatracurium to produce and maintain a 90% neuromuscular block. Cumulative dose requirements of cisatracurium during the 90-min study period after bolus administration were measured and the asymptotic steady state rate of infusion to produce a constant 90% block was determined by applying nonlinear curve fitting to the data on the cumulative dose requirement during the study period. Results Controller performance, i.e. the ability of the controller to maintain neuromuscular block constant at the setpoint and patient characteristics were similar in both groups. The administration of nitrous oxide did not affect cisatracurium infusion requirements. The mean steady-state rates of infusion were 0.072 +/- 0.018 and 0.066 +/- 0.017 mg * kg-1 * h-1 in Air/TIVA and Nitrous oxide/TIVA groups, respectively. Conclusions Nitrous oxide does not affect the infusion requirements of cisatracurium. Trial registration ClinicalTrials.gov NCT01152905; European Clinical Trials Database at http://eudract.emea.eu.int/2006-006037-41.

  9. Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes.

    Science.gov (United States)

    Sun, Shichang; Bao, Zhiyuan; Sun, Dezhi

    2015-03-01

    Given the inexorable increase in global wastewater treatment, increasing amounts of nitrous oxide are expected to be emitted from wastewater treatment plants and released to the atmosphere. It has become imperative to study the emission and control of nitrous oxide in the various wastewater treatment processes currently in use. In the present investigation, the emission characteristics and the factors affecting the release of nitrous oxide were studied via full- and pilot-scale experiments in anoxic-oxic, sequencing batch reactor and oxidation ditch processes. We propose an optimal treatment process and relative strategy for nitrous oxide reduction. Our results show that both the bio-nitrifying and bio-denitrifying treatment units in wastewater treatment plants are the predominant sites for nitrous oxide production in each process, while the aerated treatment units are the critical sources for nitrous oxide emission. Compared with the emission of nitrous oxide from the anoxic-oxic (1.37% of N-influent) and sequencing batch reactor (2.69% of N-influent) processes, much less nitrous oxide (0.25% of N-influent) is emitted from the oxidation ditch process, which we determined as the optimal wastewater treatment process for nitrous oxide reduction, given the current technologies. Nitrous oxide emissions differed with various operating parameters. Controlling the dissolved oxygen concentration at a proper level during nitrification and denitrification and enhancing the utilization rate of organic carbon in the influent for denitrification are the two critical methods for nitrous oxide reduction in the various processes considered.

  10. Denitrification: an important pathway for nitrous oxide production in tropical mangrove sediments (Goa, India).

    Science.gov (United States)

    Fernandes, Sheryl Oliveira; Bharathi, P A Loka; Bonin, Patricia C; Michotey, Valérie D

    2010-01-01

    Net nitrous oxide production and denitrification activity were measured in two mangrove ecosystems of Goa, India. The relatively pristine site Tuvem was compared to Divar, which is prone to high nutrient input. Stratified sampling at 2-cm intervals within the 0- to 10-cm depth range showed that N2O production at both the locations decreased with depth. Elevated denitrification activity at Divar resulted in maximum production of up to 1.95 nmol N2O-N g(-1) h(-1) at 2 to 4 cm, which was three times higher than at Tuvem. Detailed investigations to understand the major pathway contributing to N2O production performed at Tuvem showed that incomplete denitrification was responsible for up to 43 to 93% of N2O production. Nitrous oxide production rates closely correlated to nitrite concentration (n = 15; r = -0.47; p production. Nitrous oxide production through nitrification was below detection, affirming that denitrification is the major pathway responsible for production of the greenhouse gas. Net N2O production in these mangrove systems are comparatively higher than those reported from other natural estuarine sediments and therefore warrant mitigation measures.

  11. Spatial oxygen distribution and nitrous oxide emissions from soil after manure application

    DEFF Research Database (Denmark)

    Zhu, Kun; Bruun, Sander; Larsen, Morten

    2014-01-01

    The availability and spatial distribution of oxygen (O2) in agricultural soil are controlling factors in the production and emission of nitrous oxide (N2O) to the atmosphere, but most experiments investigating the effects of various factors on N2O emissions in soil have been conducted without...... to interpret data on N2O emissions following a uniform or layered amendment of manure to agricultural soil. The spatial distribution of O2 and gas emission rates were monitored for 12 h. An anoxic layer formed rapidly around the layered manure, whereas the uniformly distributed manure led to a more widespread...... anoxia. Nitrous oxide emissions increased immediately after depletion of O2 in the manure-amended treatments. Greater understanding and improved knowledge of the spatial distribution of O2 is clearly beneficial and can be used to devise improved application strategies for mitigating N2O emissions from...

  12. A mathematical model of bacteria capable of complete oxidation of ammonium predicts improved nitrogen removal and reduced production of nitrous oxide

    OpenAIRE

    Pokhilko, Alexandra; Ebenhöh, Oliver

    2017-01-01

    The removal of excess nutrients\\ud from water ecosystems requires oxidation of toxic\\ud ammonium by two types of bacteria; one oxidizes\\ud ammonium to nitrite and the other oxidizes nitrite\\ud to nitrate. The oxidation of ammonium is often\\ud incomplete and nitrite accumulates. Nitrite is also\\ud toxic, and is converted by the ammoniumoxidizing\\ud bacteria to nitrous oxide, a powerful\\ud greenhouse gas. Here we use mathematical\\ud modeling to analyze a potential solution to the\\ud problems re...

  13. Acute ST-Elevation Myocardial Infarction, a Unique Complication of Recreational Nitrous Oxide Use.

    Science.gov (United States)

    Indraratna, Praveen; Alexopoulos, Chris; Celermajer, David; Alford, Kevin

    2017-08-01

    A 28-year-old male was admitted to hospital with an acute ST-elevation myocardial infarction. This was in the context of recreational abuse of nitrous oxide. The prevalence of nitrous oxide use in Australia has not been formally quantified, however it is the second most commonly used recreational drug in the United Kingdom. Nitrous oxide has previously been shown to increase serum homocysteine levels. This patient was discovered to have an elevated homocysteine level at baseline, which was further increased after nitrous oxide consumption. Homocysteine has been linked to endothelial dysfunction and coronary atherosclerosis and this case report highlights one of the dangers of recreational abuse of nitrous oxide. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  14. First results of tall tower based nitrous oxide flux monitoring over an agricultural region in Central Europe

    Science.gov (United States)

    Haszpra, László; Hidy, Dóra; Taligás, Tímea; Barcza, Zoltán

    2018-03-01

    Nitrous oxide is one of the atmospheric greenhouse gases whose amount is significantly influenced by human activity. Its major anthropogenic sources are the agricultural soils but the emission is known only with large uncertainty yet. The paper presents a tall tower based measuring system installed in Hungary, which is designed for the long-term monitoring of nitrous oxide emission of a regionally typical composition of agricultural fields by means of eddy covariance technique. Due to the careful calibration of the gas analyzer applied the measuring system is also suitable for the recording of the atmospheric concentration of nitrous oxide on the globally compatible scale (WMO X2006A). The paper reports the results of the first two years of the monitoring program, which is the first of its kind in Central Europe. For the period of July 2015-June 2017 the concentration measurements indicate an increasing trend of 0.91 nmol mol-1 year-1 with an average concentration of 330.64 nmol mol-1. During the two years of the project, the monitoring system recorded a total of 441 ± 195 mg N2O-N m-2 nitrous oxide emission with late spring/early summer maximum. The measurements also revealed the episodic nature of the emission typically triggered by major precipitation events.

  15. Hemodynamics and Gas Exchange Effects of Inhaled Nitrous Oxide in Patients with Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    V. N. Poptsov

    2006-01-01

    Full Text Available Inhaled nitrous oxide (iNO therapy aimed at improving pulmonary oxygenizing function and at decreasing artificial ventilation (AV load has been used in foreign clinical practice in the past decade. The study was undertaken to evaluate the hemodynamic and gas exchange effects of iNO in acute respiratory distress syndrome (ARDS that developed after car-diosurgical operations. Fifty-eight (43 males and 15 females patients aged 21 to 76 (55.2±2.4 years were examined. The study has demonstrated that in 48.3% of cases, the early stage of ARDS is attended by the increased tone pulmonary vessels due to impaired NO-dependent vasodilatation. In these patients, iNO therapy is an effective therapeutic method for correcting hemodynamic disorders and lung oxygenizing function.

  16. Large-scale Modeling of Nitrous Oxide Production: Issues of Representing Spatial Heterogeneity

    Science.gov (United States)

    Morris, C. K.; Knighton, J.

    2017-12-01

    Nitrous oxide is produced from the biological processes of nitrification and denitrification in terrestrial environments and contributes to the greenhouse effect that warms Earth's climate. Large scale modeling can be used to determine how global rate of nitrous oxide production and consumption will shift under future climates. However, accurate modeling of nitrification and denitrification is made difficult by highly parameterized, nonlinear equations. Here we show that the representation of spatial heterogeneity in inputs, specifically soil moisture, causes inaccuracies in estimating the average nitrous oxide production in soils. We demonstrate that when soil moisture is averaged from a spatially heterogeneous surface, net nitrous oxide production is under predicted. We apply this general result in a test of a widely-used global land surface model, the Community Land Model v4.5. The challenges presented by nonlinear controls on nitrous oxide are highlighted here to provide a wider context to the problem of extraordinary denitrification losses in CLM. We hope that these findings will inform future researchers on the possibilities for model improvement of the global nitrogen cycle.

  17. Investigating the effects of nitrous oxide sedation on frontal-parietal interactions.

    Science.gov (United States)

    Ryu, Ji-Ho; Kim, Pil-Jong; Kim, Hong-Gee; Koo, Yong-Seo; Shin, Teo Jeon

    2017-06-09

    Although functional connectivity has received considerable attention in the study of consciousness, few studies have investigated functional connectivity limited to the sedated state where consciousness is maintained but impaired. The aim of the present study was to investigate changes in functional connectivity of the parietal-frontal network resulting from nitrous oxide-induced sedation, and to determine the neural correlates of cognitive impairment during consciousness transition states. Electroencephalography was acquired from healthy adult patients who underwent nitrous oxide inhalation to induce cognitive impairment, and was analyzed using Granger causality (GC). Periods of awake, sedation and recovery for GC between frontal and parietal areas in the delta, theta, alpha, beta, gamma and total frequency bands were obtained. The Friedman test with post-hoc analysis was conducted for GC values of each period for comparison. As a sedated state was induced by nitrous oxide inhalation, power in the low frequency band showed increased activity in frontal regions that was reversed with discontinuation of nitrous oxide. Feedback and feedforward connections analyzed in spectral GC were changed differently in accordance with EEG frequency bands in the sedated state by nitrous oxide administration. Calculated spectral GC of the theta, alpha, and beta frequency regions in the parietal-to-frontal direction was significantly decreased in the sedated state while spectral GC in the reverse direction did not show significant change. Frontal-parietal functional connectivity is significantly affected by nitrous oxide inhalation. Significantly decreased parietal-to-frontal interaction may induce a sedated state. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Increased norepinephrine release from dog pulmonary artery caused by nitrous oxide

    International Nuclear Information System (INIS)

    Rorie, D.K.; Tyce, G.M.; Sill, J.C.

    1986-01-01

    The effects of nitrous oxide on the release and metabolism of norepinephrine (NE) at neuroeffector junctions in dog pulmonary artery were examined. Helical strips of artery were incubated in Krebs-Ringer solution containing L-( 3 H)NE and mounted for superfusion. The arterial strips were studied in the presence of 95% oxygen-5% carbon dioxide, 70% nitrogen-30% oxygen, or 70% nitrous oxide-30% oxygen. During the 60 min of each experiment, five samples of superfusion fluid were collected for analysis and the effluxes of ( 3 H)NE and its radiolabeled metabolites were measured before and during electrical stimulation and during recovery from stimulation. ( 3 H)Norepinephrine was separated from its metabolites in the superfusate and in extracts of artery by column chromatography and quantitated by liquid scintillation spectrometry. Nitrous oxide significantly increased the fractional loss of total radioactivity and the amount of NE in the superfusate both during resting conditions and during stimulation. Nitrous oxide had no effect on the proportions of radioactivity among metabolites of NE in the superfusate or on the profile of NE metabolites remaining in the tissue after experimentation. These findings are consistent with increased NE release as a direct effect of nitrous oxide on nerve endings

  19. Resonating Nitrous Oxide Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AeroAstro proposes decomposing nitrous oxide (N2O) as an alternative propellant to existing spacecraft propellants. Decomposing N2O can be used as either a high Isp,...

  20. Rate for energy transfer from excited cyclohexane to nitrous oxide in the liquid phase

    International Nuclear Information System (INIS)

    Wada, T.; Hatano, Y.

    1975-01-01

    Pure liquid cyclohexane and cyclohexane solutions of nitrous oxide have been photolyzed at 163 nm. The quantum yield of the product hydrogen in the photolysis of pure cyclohexane is found to be 1.0. The addition of nitrous oxide results in the reduction in the yield of hydrogen and in the formation of nitrogen. The decrement of the hydrogen yield is approximately equal to the increment of the nitrogen yield. About 40 percent of the hydrogen yield in pure cyclohexane is found to be produced through a path which is not affected by the addition of nitrous oxide. The effect of the addition of nitrous oxide is attributed to energy transfer from excited cyclohexane to nitrous oxide with the rate constant of k = 1.0 x 10 11 M -1 sec -1 (at 15 0 C). This value is about a factor of 10 larger than that expected as for diffusion-controlled rate. A contribution of the energy transfer process to the formation of nitrogen in the radiolysis of cyclohexane solutions of nitrous oxide has also been discussed. (auth)

  1. Crystallization of purple nitrous oxide reductase from Pseudomonas stutzeri

    International Nuclear Information System (INIS)

    Pomowski, Anja; Zumft, Walter G.; Kroneck, Peter M. H.; Einsle, Oliver

    2010-01-01

    The physiologically active form of nitrous oxide reductase was isolated and crystallized under strict exclusion of dioxygen and diffraction data were collected from crystals belonging to two different space groups. Nitrous oxide reductase (N 2 OR) from Pseudomonas stutzeri catalyzes the final step in denitrification: the two-electron reduction of nitrous oxide to molecular dinitrogen. Crystals of the enzyme were grown under strict exclusion of dioxygen by sitting-drop vapour diffusion using 2R,3R-butanediol as a cryoprotectant. N 2 OR crystallized in either space group P1 or P6 5 . Interestingly, the key determinant for the resulting space group was the crystallization temperature. Crystals belonging to space group P1 contained four 130 kDa dimers in the asymmetric unit, while crystals belonging to space group P6 5 contained a single dimer in the asymmetric unit. Diffraction data were collected to resolutions better than 2 Å

  2. Strategies for decreasing nitrous oxide emissions from agricultural sources

    Energy Technology Data Exchange (ETDEWEB)

    Oenema, O. [AB-DLO, Wageningen (Netherlands)

    1999-08-01

    Following the Kyoto Conference of 1997, declaring the urgency of implementing strategies for decreasing greenhouse gas emissions, there are several valid arguments to examine the opportunities for reducing nitrous oxide emissions from agriculture. This paper provides a review of the state-of-the-art of emission reduction, discusses two strategies for decreasing emissions and identifies various gaps in current knowledge in this field and the need for relevant scientific research. The two strategies discussed are (1) increasing the nitrogen use efficiency toward the goal of lowering total nitrogen input, and (2) decreasing the release of nitrous oxide per unit of nitrogen from the processes of nitrification and denitrification. Increasing nitrogen use efficiency is thought to be the most effective strategy. To that end, the paper discusses several practical actions and measures based on decisions at tactical and operational management levels. Knowledge gaps identified include (1) incomplete understanding of nitrogen cycling in farming systems, (2) incomplete quantitative understanding of emission controlling factors, (3) information gap between science and policy, and (4) information gap between science and practice. Appropriate research needs are suggested for each of these areas. It is suggested that the highest priority should be given to improving the understanding of emission controlling factors in the field and on the farm. 23 refs., 2 figs.

  3. Relationship between nitrogen cycling and nitrous oxide emission in grass-clover pasture

    OpenAIRE

    Ambus, P.

    2005-01-01

    The paper reports on a work assessing the relationship between gross N transformations in grass-clover soils and emissions of nitrous oxide. By this manner, the source strength of the biogenic processes responsible for nitrous oxide production is evaluated.

  4. Influence of Nitrous Oxide Anesthesia, B-Vitamins, and MTHFR gene polymorphisms on Perioperative Cardiac Events: The Vitamins in Nitrous Oxide (VINO) Randomized Trial

    Science.gov (United States)

    Nagele, Peter; Brown, Frank; Francis, Amber; Scott, Mitchell G.; Gage, Brian F.; Miller, J. Philip

    2013-01-01

    Background Nitrous oxide causes an acute increase in plasma homocysteine that is more pronounced in patients with the MTHFR C677T or A1298C gene variant. In this randomized controlled trial we sought to determine if patients carrying the MTHFR C677T or A1298C variant had a higher risk for perioperative cardiac events after nitrous oxide anesthesia and if this risk could be mitigated by B-vitamins. Methods We randomized adult patients with cardiac risk factors undergoing noncardiac surgery to receive nitrous oxide plus intravenous B-vitamins before and after surgery or to nitrous oxide and placebo. Serial cardiac biomarkers and 12-lead electrocardiograms were obtained. The primary study endpoint was the incidence of myocardial injury, as defined by cardiac troponin I elevation within the first 72 hours after surgery. Results A total of 500 patients completed the trial. Patients who were homozygous for either MTHFR C677T or A1298C gene variant (n= 98; 19.6%) had no increased rate of postoperative cardiac troponin I elevation compared to wild-type and heterozygous patients (11.2% vs. 14.0%; relative risk 0.96, 95% CI 0.85 to 1.07, p=0.48). B-vitamins blunted the rise in homocysteine, but had no effect on cardiac troponin I elevation compared to patients receiving placebo (13.2% vs. 13.6%; relative risk 1.02, 95% CI 0.78 to 1.32, p=0.91). Conclusions Neither MTHFR C677T and A1298C gene variant nor acute homocysteine increase are associated with perioperative cardiac troponin elevation after nitrousoxide anesthesia. B-vitamins blunt nitrous oxide-induced homocysteine increase but have no effect on cardiac troponin elevation. PMID:23856660

  5. Management matters: Testing a mitigation strategy of nitrous oxide emissions on managed grassland

    Science.gov (United States)

    Fuchs, Kathrin; Hörtnagl, Lukas; Eugster, Werner; Koller, Patrick; Käslin, Florian; Merbold, Lutz

    2017-04-01

    The magnitude of greenhouse gas (GHG) exchange between managed grasslands and the atmosphere depends besides climate predominantly on management practices. While natural or extensively managed grasslands are known to function as GHG sinks, intensively managed grasslands are characterized by substantial nitrous oxide (N2O) emissions diminishing their sink function. One potential N2O mitigation strategy is to reduce the required amount of nitrogen (N) fertilizer input by using biological nitrogen fixation (BNF) via legumes. However, the effect of legumes on nitrous oxide emissions is still not fully understood. In this study we quantify net GHG fluxes from two differently managed grassland parcels (mitigation, control) and relate our results to productivity (yields). In addition, we aim at revealing the influence of various driver variables on N2O exchange. Our experimental setup consisted of an eddy covariance tower that measured the net exchange of the three major anthropogenic GHGs, nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2). Both grassland parcels can be covered with this tower due to two prevailing wind directions. GHG flux measurements were accompanied by measurements of commonly known driver variables such as water filled pore space, soil temperature, soil oxygen concentrations and mineral N to disentangle the soil meteorological influence of N2O fluxes from human drivers. Following organic fertilizer application, we measured elevated N2O emissions (>1 nmol m-2 s-1) at the control parcel and unchanged N2O emissions at the treatment parcel. Net annual fluxes were 54% and 50% lower at the experimental parcel in 2015 and 2016, respectively. Annual yields did not significantly differ between parcels, but were slightly lower at the experimental parcel compared to the control parcel. Significantly lower nitrous oxide fluxes under experimental management indicate that nitrous oxide emissions can be effectively reduced at very low costs with a clover

  6. DEVELOPMENT OF SAMPLING AND ANALYTICAL METHODS FOR THE MEASUREMENT OF NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION SOURCES

    Science.gov (United States)

    The report documents the technical approach and results achieved while developing a grab sampling method and an automated, on-line gas chromatography method suitable to characterize nitrous oxide (N2O) emissions from fossil fuel combustion sources. The two methods developed have...

  7. Nitrous Oxide flux measurements under various amendments

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset consists of measurements of soil nitrous oxide emissions from soils under three different amendments: glucose, cellulose, and manure. Data includes the...

  8. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    Science.gov (United States)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  9. Methane and Nitrous Oxide Emissions from Agriculture on a Regional Scale

    OpenAIRE

    Agnieszka Wysocka-Czubaszek; Robert Czubaszek; Sławomir Roj-Rojewski; Piotr Banaszuk

    2018-01-01

    Nowadays, agriculture has to meet the growing food demand together with high requirements of environmental protection, especially regarding the climate change. The greenhouse gas emissions differ not only on a global, but also on a regional scale, and mitigation strategies are effective when they are adapted properly. Therefore, the aim of this paper is to present the results of methane (CH4) and nitrous oxide (N2O) emissions inventory on a regional level in Poland in years 1999-2015. The CH4...

  10. Nitrous oxide emissions from a golf course fairway and rough following application of different nitrogen fertilizers

    Science.gov (United States)

    Nitrous oxide (N2O) is a potent greenhouse gas that destroys stratospheric ozone. There is limited research of golf course N2O emission and the effects of frequent fertilization and irrigation. Three enhanced efficiency nitrogen fertilizers (EENFs) were applied to a Colorado golf course fairway and ...

  11. Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949-2003

    International Nuclear Information System (INIS)

    Zhou, J.B.; Jiang, M.M.; Chen, G.Q.

    2007-01-01

    To investigate the greenhouse gases emission from enteric fermentation and manure management of livestock and poultry industry in China, the present study presents a systematic estimation of methane and nitrous oxide emission during 1949-2003, based on the local measurement and IPCC guidelines. As far as greenhouse gases emittion is concerned among livestock swine is found to hold major position followed by goat and sheep, while among poultry chicken has the major place and is followed by duck and geese. Methane emission from enteric fermentation is estimated to have increased from 3.04 Tg in 1949 to 10.13 Tg in 2003, an averaged annual growth rate of 2.2%, and methane emission from manure management has increased from 0.16 Tg in 1949 to 1.06 Tg in 2003, an annual growth rate of 3.5%, while nitrous oxide emission from manure management has increased from 47.76 to 241.2 Gg in 2003, with an annual growth rate of 3.0%. The total greenhouse gas emission has increased from 82.01 Tg CO 2 Eq. in 1949 to 309.76 Tg CO 2 Eq. in 2003, an annual growth rate of 2.4%. The estimation of livestock methane and nitrous oxide emissions in China from 1949 to 2003 is shown to be consistent with a linear growth model, and the reduction of greenhouse gas emission is thus considered an urgent and arduous task for the Chinese livestock industry

  12. Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949-2003

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.B.; Jiang, M.M.; Chen, G.Q. [National Laboratory for Complex Systems and Turbulence, Department of Mechanics, Peking University, Beijing 100871 (China)

    2007-07-15

    To investigate the greenhouse gases emission from enteric fermentation and manure management of livestock and poultry industry in China, the present study presents a systematic estimation of methane and nitrous oxide emission during 1949-2003, based on the local measurement and IPCC guidelines. As far as greenhouse gases emission is concerned among livestock swine is found to hold major position followed by goat and sheep, while among poultry chicken has the major place and is followed by duck and geese. Methane emission from enteric fermentation is estimated to have increased from 3.04 Tg in 1949 to 10.13 Tg in 2003, an averaged annual growth rate of 2.2%, and methane emission from manure management has increased from 0.16 Tg in 1949 to 1.06 Tg in 2003, an annual growth rate of 3.5%, while nitrous oxide emission from manure management has increased from 47.76 to 241.2 Gg in 2003, with an annual growth rate of 3.0%. The total greenhouse gas emission has increased from 82.01 Tg CO{sub 2} Eq. in 1949 to 309.76 Tg CO{sub 2} Eq. in 2003, an annual growth rate of 2.4%. The estimation of livestock methane and nitrous oxide emissions in China from 1949 to 2003 is shown to be consistent with a linear growth model, and the reduction of greenhouse gas emission is thus considered an urgent and arduous task for the Chinese livestock industry. (author)

  13. Source Tracking of Nitrous Oxide using A Quantum Cascade Laser System in the Field and Laboratory Environments

    Science.gov (United States)

    Nitrous oxide is an important greenhouse gas and ozone depleting substance. Nitrification and denitrification are two major biological pathways that are responsible for soil emissions of N2O. However, source tracking of in-situ or laboratory N2O production is still challenging to...

  14. Alterations in plants through action of nitrous gas

    Energy Technology Data Exchange (ETDEWEB)

    Cristiani, H

    1927-01-01

    Leaves of plants were exposed to atmospheres containing nitrous gases typical of industrial pollution for periods ranging from 15 minutes to 18 hours. The leaves were washed after drying and concentrations of nitrates and nitrites in the leachate/wash water were determined. Accumulation of nitrites seems to be minor, but the nitrate concentration in the leaves was high, even though the leaves were exposed to an atmosphere poor in nitrous gas for periods of 9-18 hours.

  15. Nitrous oxide emissions from a coal mine land reclaimed with stabilized manure

    Science.gov (United States)

    Mined land restoration using manure-based amendments may create soil conditions suitable for nitrous oxide production and emission. We measured nitrous oxide emissions from mine soil amended with composted poultry manure (Comp) or poultry manure mixed with paper mill sludge (Man+PMS) at C/N ratios o...

  16. Nitrogen removal and intentional nitrous oxide production from reject water in a coupled nitritation/nitrous denitritation system under real feed-stream conditions.

    Science.gov (United States)

    Weißbach, Max; Thiel, Paul; Drewes, Jörg E; Koch, Konrad

    2018-05-01

    A Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) was performed over five months to investigate the performance and dynamics of nitrogen elimination and nitrous oxide production from digester reject water under real feed-stream conditions. A 93% conversion of ammonium to nitrite could be maintained for adapted seed sludge in the first stage (nitritation). The second stage (nitrous denitritation), inoculated with conventional activated sludge, achieved a conversion of 70% of nitrite to nitrous oxide after only 12 cycles of operation. The development of an alternative feeding strategy and the addition of a coagulant (FeCl 3 ) facilitated stable operation and process intensification. Under steady-state conditions, nitrite was reliably eliminated and different nitrous oxide harvesting strategies were assessed. Applying continuous removal increased N 2 O yields by 16% compared to the application of a dedicated stripping phase. These results demonstrate the feasible application of the CANDO process for nitrogen removal and energy recovery from ammonia rich wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields

    Science.gov (United States)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-01-01

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  18. Analysis of microbial populations, denitrification, and nitrous oxide production in riparian buffers

    Science.gov (United States)

    Riparian buffers are used extensively to protect water bodies from nonpoint source nitrogen pollution. However there is relatively little information on the impact of these buffers on production of nitrous oxide (N2O). In this study, we assessed nitrous oxide production in riparian buffers of the so...

  19. Direct Nitrous Oxide Emission from the Aquacultured Pacific White Shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Heisterkamp, Ines M; Schramm, Andreas; de Beer, Dirk; Stief, Peter

    2016-07-01

    The Pacific white shrimp (Litopenaeus vannamei) is widely used in aquaculture, where it is reared at high stocking densities, temperatures, and nutrient concentrations. Here we report that adult L. vannamei shrimp emit the greenhouse gas nitrous oxide (N2O) at an average rate of 4.3 nmol N2O/individual × h, which is 1 to 2 orders of magnitude higher than previously measured N2O emission rates for free-living aquatic invertebrates. Dissection, incubation, and inhibitor experiments with specimens from a shrimp farm in Germany indicated that N2O is mainly produced in the animal's gut by microbial denitrification. Microsensor measurements demonstrated that the gut interior is anoxic and nearly neutral and thus is favorable for denitrification by ingested bacteria. Dinitrogen (N2) and N2O accounted for 64% and 36%, respectively, of the nitrogen gas flux from the gut, suggesting that the gut passage is too fast for complete denitrification to be fully established. Indeed, shifting the rearing water bacterial community, a diet component of shrimp, from oxic to anoxic conditions induced N2O accumulation that outlasted the gut passage time. Shrimp-associated N2O production was estimated to account for 6.5% of total N2O production in the shrimp farm studied here and to contribute to the very high N2O supersaturation measured in the rearing tanks (2,099%). Microbial N2O production directly associated with aquacultured animals should be implemented into life cycle assessments of seafood production. The most widely used shrimp species in global aquaculture, Litopenaeus vannamei, is shown to emit the potent greenhouse gas nitrous oxide (N2O) at a particularly high rate. Detailed experiments reveal that N2O is produced in the oxygen-depleted gut of the animal by bacteria that are part of the shrimp diet. Upon ingestion, these bacteria experience a shift from oxic to anoxic conditions and therefore switch their metabolism to the anaerobic denitrification process, which produces N

  20. Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate.

    Science.gov (United States)

    Rubasinghege, Gayan; Spak, Scott N; Stanier, Charles O; Carmichael, Gregory R; Grassian, Vicki H

    2011-04-01

    Nitrous oxide (N2O) is an important greenhouse gas and a primary cause of stratospheric ozone destruction. Despite its importance, there remain missing sources in the N2O budget. Here we report the formation of atmospheric nitrous oxide from the decomposition of ammonium nitrate via an abiotic mechanism that is favorable in the presence of light, relative humidity and a surface. This source of N2O is not currently accounted for in the global N2O budget. Annual production of N2O from atmospheric aerosols and surface fertilizer application over the continental United States from this abiotic pathway is estimated from results of an annual chemical transport simulation with the Community Multiscale Air Quality model (CMAQ). This pathway is projected to produce 9.3(+0.7/-5.3) Gg N2O annually over North America. N2O production by this mechanism is expected globally from both megacities and agricultural areas and may become more important under future projected changes in anthropogenic emissions.

  1. Do lagoons near concentrated animal feeding operations promote nitrous oxide supersaturation?

    International Nuclear Information System (INIS)

    Makris, Konstantinos C.; Sarkar, Dibyendu; Andra, Syam S.; Bach, Stephan B.H.; Datta, Rupali

    2009-01-01

    Animal wastewater lagoons nearby concentrated animal feeding operations (CAFOs) represent the latest tendency in global animal farming, severely impacting the magnitude of greenhouse gas emissions, including nitrous oxide (N 2 O). We hypothesized that lagoon wastewater could be supersaturated with N 2 O as part of incomplete microbial nitrification/denitrification processes, thereby regulating the N 2 O partitioning in the gaseous phase. The objectives of this study were: (i) to investigate the magnitude of dissolved N 2 O concentrations in the lagoon; and (ii) to determine the extent to which supersaturation of N 2 O occurs in wastewater lagoons. Dissolved N 2 O concentrations in the wastewater samples were high, ranging from 0.4 to 40.5 μg N 2 O mL -1 . Calculated dissolved N 2 O concentrations from the experimentally measured partition coefficients were much greater than those typically expected in aquatic systems ( 2 O mL -1 ). Knowledge of the factors controlling the magnitude of N 2 O supersaturation could potentially bridge mass balance differences between in situ measurements and global N 2 O models. - Supersaturation of nitrous oxide may occur in lagoons near concentrated animal feeding operations.

  2. Ammonia, nitrous oxide and hydrogen cyanide emissions from five passenger vehicles

    International Nuclear Information System (INIS)

    Karlsson, Hua Lu

    2004-01-01

    In this paper, three unregulated components, ammonia, nitrous oxide and hydrogen cyanide, emitted from five passenger vehicles are investigated. With focus upon emission factors from existing production technology, vehicles produced between 1989 and 1998 with considerable mileage (7000 to 280,000) are chosen. Among the five vehicles, four were sold in the European market, whereas one was sold in the US market. The vehicles are tested on a chassis dynamometer. An EU2000 Driving Cycle (NEDC) and a US Urban Driving Cycle (UDC) of the Federal Test Procedure 75 (FTP-75) are used in the study. The regulated emissions are measured using a Horiba Mexa series. Unregulated emissions, ammonia (NH 3 ), nitrous oxide (N 2 O) and hydrogen cyanide (HCN) are analysed by mass spectrometer, gas chromatography and CNT-NA, TIM315-74W method, respectively. Both the unregulated emissions and the regulated emissions show driving cycle dependency; and they are also improved with newer vehicle and emission control technology. However, a gasoline direct injection vehicle (relatively new technology in this study) has rather high regulated emissions, whereas the NH 3 , N 2 O and HCN emissions are low

  3. Ammonia, nitrous oxide and hydrogen cyanide emissions from five passenger vehicles.

    Science.gov (United States)

    Karlsson, Hua Lu

    2004-12-01

    In this paper, three unregulated components, ammonia, nitrous oxide and hydrogen cyanide, emitted from five passenger vehicles are investigated. With focus upon emission factors from existing production technology, vehicles produced between 1989 and 1998 with considerable mileage (7000 to 280,000) are chosen. Among the five vehicles, four were sold in the European market, whereas one was sold in the US market. The vehicles are tested on a chassis dynamometer. An EU2000 Driving Cycle (NEDC) and a US Urban Driving Cycle (UDC) of the Federal Test Procedure 75 (FTP-75) are used in the study. The regulated emissions are measured using a Horiba Mexa series. Unregulated emissions, ammonia (NH(3)), nitrous oxide (N(2)O) and hydrogen cyanide (HCN) are analysed by mass spectrometer, gas chromatography and CNT-NA, TIM315-74W method, respectively. Both the unregulated emissions and the regulated emissions show driving cycle dependency; and they are also improved with newer vehicle and emission control technology. However, a gasoline direct injection vehicle (relatively new technology in this study) has rather high regulated emissions, whereas the NH(3), N(2)O and HCN emissions are low.

  4. Nitrous oxide reduction in nodules: denitrification or N2 fixation?

    International Nuclear Information System (INIS)

    Coyne, M.S.; Focht, D.D.

    1987-01-01

    Detached cowpea nodules that contained a nitrous oxide reductase-positive (Nor + ) rhizobium strain (8A55) and a nitrous oxide reductase-negative (Nor - ) rhizobium strain (32H1) were incubated with 1% 15 N 2 O (95 atom% 15 N) in the following three atmospheres: aerobic with C 2 H 2 (10%), aerobic without C 2 H 2 , and anaerobic (argon atmosphere) without C 2 H 2 . The greatest production of 15 N 2 occurred anaerobically with 8A55, yet very little was formed with 32H1. Although acetylene reduction activity was slightly higher with 32H1, about 10 times more 15 N 2 was produced aerobically by 8A55 than by 32H1 in the absence of acetylene. The major reductive pathway of N 2 O reduction by denitrifying rhizobium strain 8A55 is by nitrous oxide reductase rather than nitrogenase

  5. Manual on measurement of methane and nitrous oxide emissions from agriculture

    International Nuclear Information System (INIS)

    1992-11-01

    Nitrous oxide and methane are two of the gases primarily responsible for atmospheric warming, or the ''greenhouse effect''. Agricultural activities are an important source of methane and nitrous oxide emissions, but quantitation of these sources is generally lacking. This manual describes techniques to evaluate current emissions from diverse animal and crop production practices and suggests methods for decreasing these emissions. Refs, figs and tabs

  6. Nitrous oxide emission from denitrification in stream and river networks

    OpenAIRE

    Beaulieu, Jake J.; Tank, Jennifer L.; Hamilton, Stephen K.; Wollheim, Wilfred M.; Hall, Robert O.; Mulholland, Patrick J.; Peterson, Bruce J.; Ashkenas, Linda R.; Cooper, Lee W.; Dahm, Clifford N.; Dodds, Walter K.; Grimm, Nancy B.; Johnson, Sherri L.; McDowell, William H.; Poole, Geoffrey C.

    2010-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowi...

  7. Nitrous Oxide Emissions from Waste Incineration

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Baxter, D.; Martinec, J.

    2006-01-01

    Roč. 60, č. 1 (2006), s. 78-90 ISSN 0366-6352 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * waste * incineration Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.360, year: 2006

  8. Effect of oxygen on decomposition of nitrous oxide over various metal oxide catalysts

    International Nuclear Information System (INIS)

    Satsuma, Atsushi; Maeshima, Hajime; Watanabe, Kiyoshi; Hattori, Tadashi

    2001-01-01

    The inhibitory effect of oxygen on decomposition of nitrous oxide over various metal oxide catalysts was investigated. The activity of nitrous oxide decomposition significantly decreased over CuO, Co 3 O 4 , NiO, Fe 2 O 3 , SnO 2 , In 2 O 3 and Cr 2 O 3 by reversible adsorption of oxygen onto the active sites. On the contrary to this, there was no or small change in the activity of TiO 2 , Al 2 O 3 , MgO, La 2 O 3 and CaO. A good correlation was observed between the degree of inhibition and the heat of formation of metal oxides. On the basis of kinetic model, the reduction of catalytic activity in the presence of oxygen was rationalized with the strength of oxygen adsorption on the metal oxide surface. (author)

  9. Study for drifts of the oxidation in nitrous oxide of an activated coal

    International Nuclear Information System (INIS)

    Diaz Velasquez; Jose de Jesus; Carballo Suarez, Luis M; Freitas, Madalena; Farias, Joaquim Luis Faria; Figueiredo, Jose Luis

    2001-01-01

    In order to obtain materials with different surface properties, an activated carbon was modified by thermal treatment with 20% of nitrous oxide in nitrogen at 500 centigrade degrees, for different periods of time, and also with 5 % of oxygen in nitrogen at 425 centigrade degrees for 600 minutes and 100% of hydrogen at 950 centigrade degrees for 360 minutes. Drifts were used to characterize the surface chemistry of the material treated. The qualitative result s show that the treatments with N2O have larger effects on the intensity of the surface groups. These changes could be associated to the incorporation of nitrogen into the carbon matrix. In agreement with literature reports, it could be said that the gas phase oxidation of the activated carbon shows mainly superficial groups such as carboxylic anhydrides, phenols and carboxylates, lactones and quinones

  10. Rapid nitrous oxide cycling in the suboxic ocean

    Science.gov (United States)

    Babbin, Andrew R.; Bianchi, Daniele; Jayakumar, Amal; Ward, Bess B.

    2015-06-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and a major cause of stratospheric ozone depletion, yet its sources and sinks remain poorly quantified in the oceans. We used isotope tracers to directly measure N2O reduction rates in the eastern tropical North Pacific. Because of incomplete denitrification, N2O cycling rates are an order of magnitude higher than predicted by current models in suboxic regions, and the spatial distribution suggests strong dependence on both organic carbon and dissolved oxygen concentrations. Furthermore, N2O turnover is 20 times higher than the net atmospheric efflux. The rapid rate of this cycling coupled to an expected expansion of suboxic ocean waters implies future increases in N2O emissions.

  11. Continuous measurements of ammonia, nitrous oxide and methane from air scrubbers at pig housing facilities.

    Science.gov (United States)

    Van der Heyden, C; Brusselman, E; Volcke, E I P; Demeyer, P

    2016-10-01

    Ammonia, largely emitted by agriculture, involves a great risk for eutrophication and acidification leading to biodiversity loss. Air scrubbers are widely applied to reduce ammonia emission from pig and poultry housing facilities, but it is not always clear whether their performance meets the requirements. Besides, there is a growing international concern for the livestock related greenhouse gases methane and nitrous oxide but hardly any data concerning their fate in air scrubbers are available. This contribution presents the results from measurement campaigns conducted at a chemical, a biological and a two-stage biological air scrubber installed at pig housing facilities in Flanders. Ammonia, nitrous oxide and methane at the inlet and outlet of the air scrubbers were monitored on-line during one week using a photoacoustic gas monitor, which allowed to investigate diurnal fluctuations in the removal performance of air scrubbers. Additionally, the homogeneity of the air scrubbers, normally checked by gas detection tubes, was investigated in more detail using the continuous data. The biological air scrubber with extra nitrification tank performed well in terms of ammonia removal (86 ± 6%), while the two-stage air scrubber suffered from nitrifying bacteria inhibition. In the chemical air scrubber the pH was not kept constant, lowering the ammonia removal efficiency. A lower ammonia removal efficiency was found during the day, when the ventilation rate was the highest. Nitrous oxide was produced inside the biological and two-stage scrubber, resulting in an increased outlet concentration of more than 200%. Methane could not be removed in the different air scrubbers because of its low water solubility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of nitrous fumes upon the lung

    Energy Technology Data Exchange (ETDEWEB)

    Muhar, F; Raber, A

    1974-01-01

    After a thorough discussion of the accidental poisoning of 34 workers by large amounts of nitrous fumes in an Austrian chemical plant producing artificial fertilizer and its effects on the lung along with therapeutical measures taken, the chronic effects of long-term exposure to nitrous gases are reviewed. Nitrous gases are a mixture of various oxidation states of nitrogen such as nitric oxide, nitrogen dioxide, N/sub 2/O/sub 4/, and nitric anhydride plus vapors of nitrous and nitric acid. The individual components of the gas mixture change in dependence on the ambient temperature and the humidity. A different mixture of nitrous gases develops, therefore, at welding operations, blasts, in the chemical industry, in the glass industry, at the production of fertilizer, in the exhausts of combustion engines, and in smoking of cigarettes. The irritations caused by nitrous gases on mucous tissue increase with rising relative humidity. The presence of NO ameliorates the toxic effect of NO/sub 2/. Oil mists protect against the effects of nitrous gases. The addition of sulfur dioxide is supposed to reduce the toxicity of nitrous gases, provided the SO/sub 2/ concentration is considerably higher than the concentration of nitrous gases. Exposure of rats and mice to concentrations of less than 1 ppm nitrous gases caused structural changes in the lung similar to pulmonary edema in humans.

  13. Rye cover crop effects on nitrous oxide emissions from a corn-soybean system

    Science.gov (United States)

    Agricultural activities are a major source nitrous oxide emitted to the atmosphere. Development of management practices to reduce these emissions is needed. Non-leguminous cover crops are efficient scavengers of residual soil nitrate, but their effects on nitrous oxide emissions have not been well d...

  14. Effects of nitrous oxide on the rat heart in vivo: another inhalational anesthetic that preconditions the heart?

    NARCIS (Netherlands)

    Weber, Nina C.; Toma, Octavian; Awan, Saqib; Frässdorf, Jan; Preckel, Benedikt; Schlack, Wolfgang

    2005-01-01

    BACKGROUND: For nitrous oxide, a preconditioning effect on the heart has yet not been investigated. This is important because nitrous oxide is commonly used in combination with volatile anesthetics, which are known to precondition the heart. The authors aimed to clarify (1) whether nitrous oxide

  15. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis.

    Science.gov (United States)

    Sun, Yihua; De Vos, Paul; Heylen, Kim

    2016-01-19

    Firmicutes have the capacity to remove excess nitrate from the environment via either denitrification, dissimilatory nitrate reduction to ammonium or both. The recent renewed interest in their nitrogen metabolism has revealed many interesting features, the most striking being their wide variety of dissimilatory nitrate reduction pathways. In the present study, nitrous oxide production from Bacillus licheniformis, a ubiquitous Gram-positive, spore-forming species with many industrial applications, is investigated. B. licheniformis has long been considered a denitrifier but physiological experiments on three different strains demonstrated that nitrous oxide is not produced from nitrate in stoichiometric amounts, rather ammonium is the most important end-product, produced during fermentation. Significant strain dependency in end-product ratios, attributed to nitrite and ammonium, and medium dependency in nitrous oxide production were also observed. Genome analyses confirmed the lack of a nitrite reductase to nitric oxide, the key enzyme of denitrification. Based on the gene inventory and building on knowledge from other non-denitrifying nitrous oxide emitters, hypothetical pathways for nitrous oxide production, involving NarG, NirB, qNor and Hmp, are proposed. In addition, all publically available genomes of B. licheniformis demonstrated similar gene inventories, with specific duplications of the nar operon, narK and hmp genes as well as NarG phylogeny supporting the evolutionary separation of previously described distinct BALI1 and BALI2 lineages. Using physiological and genomic data we have demonstrated that the common soil bacterium B. licheniformis does not denitrify but is capable of fermentative dissimilatory nitrate/nitrite reduction to ammonium (DNRA) with concomitant production of N2O. Considering its ubiquitous nature and non-fastidious growth in the lab, B. licheniformis is a suitable candidate for further exploration of the actual mechanism of N2O

  16. Analysis of uncertainties in the estimates of nitrous oxide and methane emissions in the UK's greenhouse gas inventory for agriculture

    Science.gov (United States)

    Milne, Alice E.; Glendining, Margaret J.; Bellamy, Pat; Misselbrook, Tom; Gilhespy, Sarah; Rivas Casado, Monica; Hulin, Adele; van Oijen, Marcel; Whitmore, Andrew P.

    2014-01-01

    The UK's greenhouse gas inventory for agriculture uses a model based on the IPCC Tier 1 and Tier 2 methods to estimate the emissions of methane and nitrous oxide from agriculture. The inventory calculations are disaggregated at country level (England, Wales, Scotland and Northern Ireland). Before now, no detailed assessment of the uncertainties in the estimates of emissions had been done. We used Monte Carlo simulation to do such an analysis. We collated information on the uncertainties of each of the model inputs. The uncertainties propagate through the model and result in uncertainties in the estimated emissions. Using a sensitivity analysis, we found that in England and Scotland the uncertainty in the emission factor for emissions from N inputs (EF1) affected uncertainty the most, but that in Wales and Northern Ireland, the emission factor for N leaching and runoff (EF5) had greater influence. We showed that if the uncertainty in any one of these emission factors is reduced by 50%, the uncertainty in emissions of nitrous oxide reduces by 10%. The uncertainty in the estimate for the emissions of methane emission factors for enteric fermentation in cows and sheep most affected the uncertainty in methane emissions. When inventories are disaggregated (as that for the UK is) correlation between separate instances of each emission factor will affect the uncertainty in emissions. As more countries move towards inventory models with disaggregation, it is important that the IPCC give firm guidance on this topic.

  17. Emissions of nitrous oxide and methane from surface and ground waters in Germany

    International Nuclear Information System (INIS)

    Hiessl, H.

    1993-01-01

    The paper provides a first estimation of the contribution of inland freshwater systems (surface waters and ground waters) to the emission of the greenhouse gases nitrous oxide and methane in Germany. These amounts are compared to other main sources for the emission of nitrous oxide and methane. (orig.) [de

  18. Determinants of Nitrous Oxide Emission from Agricultural Drainage Waters

    International Nuclear Information System (INIS)

    Reay, D. S.; Edwards, A. C.; Smith, K. A.

    2004-01-01

    Emissions of the powerful greenhouse gas nitrous oxide (N 2 O) from agricultural drainage waters are poorly quantified and its determinants are not fully understood. Nitrous oxide formation in agricultural soils is known to increase in response to N fertiliser application, but the response of N 2 O in field drainage waters is unknown. This investigation combined an intensive study of the direct flux of N 2 O from the surface of a fertilised barley field with measurement of dissolved N 2 O and nitrate (NO 3 ) concentrations in the same field's drainage waters. Dissolved N 2 O in drainage waters showed a clear response to field N fertilisation, following an identical pattern to direct N 2 O flux from the field surface. The range in N 2 O concentrations between individual field drains sampled on the same day was large, indicating considerable spatial variability exists at the farm scale. A consistent pattern of very rapid outgassing of the dissolved N 2 O in open drainage ditches was accentuated at a weir, where increased turbulence led to a clear drop in dissolved N 2 O concentration. This study underlines the need for carefully planned sampling campaigns wherever whole farm or catchment N 2 O emission budgets are attempted. It adds weight to the argument for the downward revision of the IPCC emission factor (EF 5 -g) for NO 3 in drainage waters

  19. Determinants of nitrous oxide emission from agricultural drainage waters

    International Nuclear Information System (INIS)

    Reay, D. S.; Edwards, A. C.; Smith, K. A.

    2005-01-01

    Emissions of the powerful greenhouse gas nitrous oxide (N 2 O) from agricultural drainage waters are poorly quantified and its determinants are not fully understood. Nitrous oxide formation in agricultural soils is known to increase in response to N fertiliser application, but the response of N 2 O in field drainage waters is unknown. This investigation combined an intensive study of the direct flux of N 2 O from the surface of a fertilised barley field with measurement of dissolved N 2 O and nitrate (NO 3 ) concentrations in the same field's drainage waters. Dissolved N 2 O in drainage waters showed a clear response to field N fertilisation, following an identical pattern to direct N 2 O flux from the field surface. The range in N 2 O concentrations between individual field drains sampled on the same day was large, indicating considerable spatial variability exists at the farm scale. A consistent pattern of very rapid outgassing of the dissolved N 2 O in open drainage ditches was accentuated at a weir, where increased turbulence led to a clear drop in dissolved N 2 O concentration. This study underlines the need for carefully planned sampling campaigns wherever whole farm or catchment N 2 O emission budgets are attempted. It adds weight to the argument for the downward revision of the IPCC emission factor (EF 5 -g) for NO 3 in drainage waters

  20. Recreational nitrous oxide use: Prevalence and risks.

    Science.gov (United States)

    van Amsterdam, Jan; Nabben, Ton; van den Brink, Wim

    2015-12-01

    Nitrous oxide (N2O; laughing gas) is clinically used as a safe anesthetic (dentistry, ambulance, childbirth) and appreciated for its anti-anxiety effect. Since five years, recreational use of N2O is rapidly increasing especially in the dance and festival scene. In the UK, N2O is the second most popular recreational drug after cannabis. In most countries, nitrous oxide is a legal drug that is widely available and cheap. Last month prevalence of use among clubbers and ravers ranges between 40 and almost 80 percent. Following one inhalation, mostly from a balloon, a euphoric, pleasant, joyful, empathogenic and sometimes hallucinogenic effect is rapidly induced (within 10 s) and disappears within some minutes. Recreational N2O use is generally moderate with most users taking less than 10 balloons of N2O per episode and about 80% of the users having less than 10 episodes per year. Side effects of N2O include transient dizziness, dissociation, disorientation, loss of balance, impaired memory and cognition, and weakness in the legs. When intoxicated accidents like tripping and falling may occur. Some fatal accidents have been reported due to due to asphyxia (hypoxia). Heavy or sustained use of N2O inactivates vitamin B12, resulting in a functional vitamin B12 deficiency and initially causing numbness in fingers, which may further progress to peripheral neuropathy and megaloblastic anemia. N2O use does not seem to result in dependence. Considering the generally modest use of N2O and its relative safety, it is not necessary to take legal measures. However, (potential) users should be informed about the risk of vitamin B12-deficiency related neurological and hematological effects associated with heavy use. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Complexation of Nitrous Oxide by Frustrated Lewis Pairs

    NARCIS (Netherlands)

    Otten, Edwin; Neu, Rebecca C.; Stephan, Douglas W.

    2009-01-01

    Frustrated Lewis pairs comprised of a basic yet sterically encumbered phosphine with boron Lewis acids bind nitrous oxide to give intact PNNOB linkages. The synthesis, structure, and bonding of these species are described.

  2. NITROUS OXIDE EMISSIONS FROM FOSSIL FUEL COMBUSTION

    Science.gov (United States)

    The role of coal combustion as a significant global source of nitrous oxide (N2O) emissions was reexamined through on-line emission measurements from six pulverized-coal-fired utility boilers and from laboratory and pilot-scale combustors. The full-scale utility boilers yielded d...

  3. Homocysteine levels after nitrous oxide anesthesia for living-related donor renal transplantation: a randomized, controlled, double-blind study.

    Science.gov (United States)

    Coskunfirat, N; Hadimioglu, N; Ertug, Z; Akbas, H; Davran, F; Ozdemir, B; Aktas Samur, A; Arici, G

    2015-03-01

    Nitrous oxide anesthesia increases postoperative homocysteine concentrations. Renal transplantation candidates present with higher homocysteine levels than patients with no renal disease. We designed this study to investigate if homocysteine levels are higher in subjects receiving nitrous oxide for renal transplantation compared with subjects undergoing nitrous oxide free anesthesia. Data from 59 patients scheduled for living-related donor renal transplantation surgery were analyzed in this randomized, controlled, blinded, parallel-group, longitudinal trial. Patients were assigned to receive general anesthesia with (flowmeter was set at 2 L/min nitrous oxide and 1 L/min oxygen) or without nitrous oxide (2 L/min air and 1 L/min oxygen). We evaluated levels of total homocysteine and known determinants, including creatinine, folate, vitamin B12, albumin, and lipids. We evaluated factor V and von Willebrand factor (vWF) to determine endothelial dysfunction and creatinine kinase myocardial band (CKMB)-mass, troponin T to show myocardial ischemia preoperatively in the holding area (T1), after discontinuation of anesthetic gases (T2), and 24 hours after induction (T3). Compared with baseline, homocysteine concentrations significantly decreased both in the nitrous oxide (22.3 ± 16.3 vs 11.8 ± 9.9; P nitrous oxide-free groups (21.5 ± 15.3 vs 8.0 ± 5.7; P nitrous oxide group had significantly higher mean plasma homocysteine concentrations than the nitrous oxide-free group (P = .021). The actual homocysteine difference between groups was 3.8 μmol/L. This study shows that homocysteine levels markedly decrease within 24 hours after living-related donor kidney transplantation. Patients receiving nitrous oxide have a lesser reduction, but this finding is unlikely to have a clinical relevance. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Advancing Methods for Estimating Soil Nitrous Oxide Emissions by Incorporating Freeze-Thaw Cycles into a Tier 3 Model-Based Assessment

    Science.gov (United States)

    Ogle, S. M.; DelGrosso, S.; Parton, W. J.

    2017-12-01

    Soil nitrous oxide emissions from agricultural management are a key source of greenhouse gas emissions in many countries due to the widespread use of nitrogen fertilizers, manure amendments from livestock production, planting legumes and other practices that affect N dynamics in soils. In the United States, soil nitrous oxide emissions have ranged from 250 to 280 Tg CO2 equivalent from 1990 to 2015, with uncertainties around 20-30 percent. A Tier 3 method has been used to estimate the emissions with the DayCent ecosystem model. While the Tier 3 approach is considerably more accurate than IPCC Tier 1 methods, there is still the possibility of biases in emission estimates if there are processes and drivers that are not represented in the modeling framework. Furthermore, a key principle of IPCC guidance is that inventory compilers estimate emissions as accurately as possible. Freeze-thaw cycles and associated hot moments of nitrous oxide emissions are one of key drivers influencing emissions in colder climates, such as the cold temperate climates of the upper Midwest and New England regions of the United States. Freeze-thaw activity interacts with management practices that are increasing N availability in the plant-soil system, leading to greater nitrous oxide emissions during transition periods from winter to spring. Given the importance of this driver, the DayCent model has been revised to incorproate freeze-thaw cycles, and the results suggests that including this driver can significantly modify the emissions estimates in cold temperate climate regions. Consequently, future methodological development to improve estimation of nitrous oxide emissions from soils would benefit from incorporating freeze-thaw cycles into the modeling framework for national territories with a cold climate.

  5. Electrochemical reduction of nitrous oxide on La1-xSrxFeO3 perovskites

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The electrochemical reduction of nitrous oxide and oxygen has been studied on cone-shaped electrodes of La1-xSrxFeO3-delta perovskites in an all solid state cell, using cyclic voltammetry. It was shown that the activity of the La1-xSrxFeO3-delta perovskites for the electrochemical reduction...... of nitrous oxide mainly depends on the amount of Fe(III) and oxide ion vacancies. The activity of the La1-xSrxFeO3-delta perovskites towards the electrochemical reduction of nitrous oxide is much lower than the activity of the La1-xSrxFeO3-delta perovskites towards the electrochemical reduction of oxygen...

  6. Effects of the 2014 major Baltic inflow on methane and nitrous oxide dynamics in the water column of the central Baltic Sea

    Science.gov (United States)

    Myllykangas, Jukka-Pekka; Jilbert, Tom; Jakobs, Gunnar; Rehder, Gregor; Werner, Jan; Hietanen, Susanna

    2017-09-01

    In late 2014, a large, oxygen-rich salt water inflow entered the Baltic Sea and caused considerable changes in deep water oxygen concentrations. We studied the effects of the inflow on the concentration patterns of two greenhouse gases, methane and nitrous oxide, during the following year (2015) in the water column of the Gotland Basin. In the eastern basin, methane which had previously accumulated in the deep waters was largely removed during the year. Here, volume-weighted mean concentration below 70 m decreased from 108 nM in March to 16.3 nM over a period of 141 days (0.65 nM d-1), predominantly due to oxidation (up to 79 %) following turbulent mixing with the oxygen-rich inflow. In contrast nitrous oxide, which was previously absent from deep waters, accumulated in deep waters due to enhanced nitrification following the inflow. Volume-weighted mean concentration of nitrous oxide below 70 m increased from 11.8 nM in March to 24.4 nM in 141 days (0.09 nM d-1). A transient extreme accumulation of nitrous oxide (877 nM) was observed in the deep waters of the Eastern Gotland Basin towards the end of 2015, when deep waters turned anoxic again, sedimentary denitrification was induced and methane was reintroduced to the bottom waters. The Western Gotland Basin gas biogeochemistry was not affected by the inflow.

  7. The electronic and optical properties of warm dense nitrous oxide using quantum molecular dynamics simulations

    International Nuclear Information System (INIS)

    Zhang Yujuan; Wang Cong; Zhang Ping

    2012-01-01

    First-principles molecular-dynamics simulations based on density-functional theory have been used to study the electronic and optical properties of fluid nitrous oxide under extreme conditions. Systematic descriptions of pair-correlation function, atomic structure, and the charge density distribution are used to investigate the dissociation of fluid nitrous oxide. The electrical and optical properties are derived from the Kubo-Greenwood formula. It is found that the nonmetal-metal transition for fluid nitrous oxide can be directly associated to the dissociation and has significant influence on the optical properties of the fluid.

  8. Nitrous oxide emissions at low temperatures

    International Nuclear Information System (INIS)

    Martikainen, P.J.

    2002-01-01

    Microbial processes in soil are generally stimulated by temperature, but at low temperatures there are anomalies in the response of microbial activities. Soil physical-chemical characteristics allow existence of unfrozen water in soil also at temperatures below zero. Therefore, some microbial activities, including those responsible for nitrous oxide (N 2 0) production, can take place even in 'frozen' soil. Nitrous oxide emissions during winter are important even in boreal regions where they can account for more than 50% of the annual emissions. Snow pack therefore has great importance for N 2 0 emissions, as it insulates soil from the air allowing higher temperatures in soil than in air, and possible changes in snoav cover as a result of global warming would thus affect the N 2 0 emission from northern soils. Freezing-thawing cycles highly enhance N 2 0 emissions from soil, probably because microbial nutrients, released from disturbed soil aggregates and lysed microbial cells, support microbial N 2 0 production. However, the overall interactions between soil physics, chemistry, microbiology and N 2 0 production at low temperatures, including effects of freezing-thawing cycles, are still poorly known. (au)

  9. Methane and Nitrous Oxide Emissions from Agriculture on a Regional Scale

    Directory of Open Access Journals (Sweden)

    Agnieszka Wysocka-Czubaszek

    2018-05-01

    Full Text Available Nowadays, agriculture has to meet the growing food demand together with high requirements of environmental protection, especially regarding the climate change. The greenhouse gas emissions differ not only on a global, but also on a regional scale, and mitigation strategies are effective when they are adapted properly. Therefore, the aim of this paper is to present the results of methane (CH4 and nitrous oxide (N2O emissions inventory on a regional level in Poland in years 1999-2015. The CH4 and N2O emissions were calculated according to the methodology used by the National Centre for Emissions Management (NCEM for national inventory for United Nations Framework Convention on Climate Change and Kyoto Protocol. The data were taken from Central Statistical Office of Poland. The CH4 emissions in all studied years varied strongly between voivodeships and ranged from 5.6-7.5 Gg y-1 in the Lubuskie Voivodeship to 84.8-104.3 Gg y-1 in the Mazowieckie Voivodeship. While in most voivodeships the CH4 emissions dropped down, in Podlaskie, Mazursko-Warmińskie, and Wielkopolskie voivodeships, the emissions of this gas increased significantly as a consequence of the development of dairy and meat production. In 1999, the highest N2O fluxes were calculated for the Wielkopolskie (5.7 Gg y-1, Mazowieckie (4.8 Gg y-1 Kujawsko-Pomorskie (3.5 Gg y-1 and Lubelskie (3.3 Gg y-1 voivodeships, while in 2015, the highest nitrous oxide emissions were calculated for the Wielkopolskie (7.3 Gg y-1, Mazowieckie (5.5 Gg y-1, Kujawsko-Pomorskie (4.1 Gg y-1 and Podlaskie (4.1 Gg y-1 voivodeships. In the studied period, the contribution of N2O emissions from crop production increased in almost all voivodeships except the Podlaskie, Lubuskie and Warmińsko-Mazurskie regions. The growth in emissions from mineral fertilization and crop residue incorporation, together with the increase of emission from the animal sector in some regions of Poland, resulted in the higher national

  10. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    Science.gov (United States)

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  11. Inhalation analgesia with nitrous oxide versus other analgesic techniques in hysteroscopic polypectomy: a pilot study.

    Science.gov (United States)

    Del Valle Rubido, Cristina; Solano Calvo, Juan Antonio; Rodríguez Miguel, Antonio; Delgado Espeja, Juan José; González Hinojosa, Jerónimo; Zapico Goñi, Álvaro

    2015-01-01

    To show the decrease in pain and better tolerance to inhalation analgesia with a 50% equimolar mixture of nitrogen protoxide and oxygen in hysteroscopic polypectomy compared with paracervical anesthesia and a control group. One hundred six patients scheduled for office hysteroscopy and polypectomy were divided into the following 3 groups: the control group, the nitrous oxide group, and the paracervical infiltration group. Patients were assigned sequentially (Canadian Task Force classification II-1). The study took place in a hysteroscopy outpatient clinic under the supervision of a gynecologist and 2 nurses trained to cooperate in the trial. One hundred six women from Area III of Madrid Community, Spain, who had been diagnosed with endometrial polyps at a gynecology office and were scheduled for office hysteroscopy and polypectomy agreed to participate in the study. Patients in group 1 (control group) received no treatment. Group 2 received inhaled nitrous oxide and group 3 paracervical infiltration with 1% lidocaine. Pain was assessed using the visual analog scale (0-10). Pain perceived by patients was lower in the nitrous Oxide group (mean: 3.55 ± 0.60, median: 3) versus the control group (mean: 5.49 ± 1.88, median: 6, p nitrous oxide group, and good for the paracervical infiltration group (p nitrous oxide group, whereas in the paracervical infiltration group, there were complications in more than 50% of the patients. No severe complications occurred. Nitrous oxide is a safe and effective analgesic technique for polipectomy office hysteroscopy compared with the paracervical infiltration and control groups. Copyright © 2015 AAGL. Published by Elsevier Inc. All rights reserved.

  12. Influence of 15N enrichment on the net isotopic fractionation factor during the reduction of nitrate to nitrous oxide in soil

    DEFF Research Database (Denmark)

    Mathieu, O.; Levegue, J.; Henault, C.

    2007-01-01

    Nitrous oxide, a greenhouse gas, is mainly emitted from soils during the denitrification process. Nitrogen stable-isotope investigations can help to characterise the N(2)O source and N(2)O production mechanisms. The stable-isotope approach is increasingly used with (15)N natural abundance...

  13. Methane and nitrous oxide: Methods in national emissions inventories and options for control

    Energy Technology Data Exchange (ETDEWEB)

    Van Amstel, A.R. (ed.)

    1993-07-01

    The UN Framework Convention on Climate Change signed in Rio de Janeiro, Brazil, calls for the return of anthropogenic emissions of greenhouse gases to their 1990 levels by the year 2000 in industrialized countries. It also calls for a monitoring of the emissions of greenhouse gases. It is important that reliable and scientifically credible national inventories are available for the international negotiations. Therefore a consistent methodology and a transparent reporting format is needed. The title workshop had two main objectives: (1) to support the development a methodology and format for national emissions inventories of greenhouse gases by mid 1993, as coordinated by the Science Working Group of the IPCC and the OECD; and (2) the development of technical options for reduction of greenhouse gases and the assessment of the socio-economic feasibility of these options. The workshop consisted of key note overview presentations, and two rounds of working group sessions, each covering five parallel sessions on selected sources. In the first round of each working group session the literature, existing methods for methane and nitrous oxide inventories, and the OECD/IPCC guidelines have been addressed. Then, in the second round, options for emission reductions have been discussed, as well as their socio-economic implications. The methane sources discussed concern oil and gas, coal mining, ruminants, animal waste, landfills and sewage treatment, combustion and industry, rice production and wetlands, biomass burning. The nitrous oxide sources discussed are agricultural soils and combustion and industry. The proceedings on methane comprise 16 introductory papers and 7 papers on the results of the working groups, while in part two four introductory papers and two papers on the results of working groups on nitrous oxide are presented. In part three future emission reduction policy options are discussed. Finally, 16 poster contributions are included

  14. Effects of land use on regional nitrous oxide emissions in the humid tropics of Costa Rica : extrapolating fluxes from field to regional scales

    NARCIS (Netherlands)

    Plant, R.A.J.

    1999-01-01

    Atmospheric concentrations of the greenhouse gas nitrous oxide (N 2 O) have increased significantly since pre-industrial days. Greenhouse gases absorb infrared radiation reflected by earth's surface, thereby causing global warming. The increase in atmospheric N

  15. Estimation of methane and nitrous oxide emission from paddy fields and uplands during 1990-2000 in Taiwan

    International Nuclear Information System (INIS)

    Shangshyng Yang; Chungming Liu; Yenlan Liu; Chaoming Lai

    2003-01-01

    To investigate the greenhouse gases emissions from paddy fields and uplands, methane and nitrous oxide emissions were estimated from local measurement and the IPCC guidelines during 1990-2000 in Taiwan. Annual methane emission from 182 807 to 242 298 ha of paddy field in the first crop season ranged from 8062 to 12 066 ton, and it was between 16 261 and 25 007 ton for 144 178-211 968 ha in the second crop season with local measurement. The value ranged from 12 132 to 17 465 ton, and from 16 046 to 24 762 ton of methane in the first and second crop season with the IPCC guidelines for multiple aeration treatments, respectively. Annual nitrous oxide emission was between 472 and 670 ton and between 236 and 359 ton in the first and second crop season, respectively. Methane and nitrous oxide emissions from uplands depend on crop, growth season, fertilizer application and environmental conditions. Annual methane emission from upland crops, vegetable, fruit, ornamental plants, forage crops and green manure crops was 138-252, 412-460, 97-100, 3-5, 4-5 and 3-51 ton, respectively. Annual nitrous oxide emission was 1080-1976, 1784-1994, 2540-2622, 31-54, 43-53 and 38-582 ton, respectively. Annual nitrous oxide emission ranged from 91 to 132 ton for 77 593-112 095 ton of nitrogen-fixing crops, from 991 to 1859 ton for 325 9731-6 183 441 ton of non-nitrogen-fixing crops, and from 1.77 to 2.22 Gg for 921 169-1 172 594 ton of chemical fertilizer application. In addition, rice hull burning emitted 19.3-24.2 ton of methane and 17.2-21.5 ton of nitrous oxide, and corn stalk burning emitted 2.1-4.2 ton of methane and 1.9-3.8 ton of nitrous oxide. Methane emission from the agriculture sector was 26 421-37 914 ton, and nitrous oxide emission was 9810-11 649 ton during 1990-2000 in Taiwan. Intermittent irrigation in paddy fields reduces significantly methane emission; appropriate application of nitrogen fertilization and irrigation in uplands and paddy fields also decreases nitrous oxide

  16. Recent patterns of methane and nitrous oxide fluxes in the terrestrial biosphere: The bottom-up approach (Invited)

    Science.gov (United States)

    Tian, H.

    2013-12-01

    Accurately estimating methane and nitrous oxide emissions from terrestrial ecosystems is critical for resolving global budgets of these greenhouse gases (GHGs) and continuing to mitigate climate warming. In this study, we use a bottom-up approach to estimate annual budgets of both methane and nitrous oxide in global terrestrial ecosystem during 1981-2010 and analyze the underlying mechanisms responsible for spatial and temporal variations in these GHGs. Both methane and nitrous oxide emissions significantly increased from 1981 to 2010, primarily owing to increased air temperature, nitrogen fertilizer use, and land use change. Methane and nitrous oxide emissions increased the fastest in Asia due to the more prominent environmental changes compared to other continents. The cooling effects by carbon dioxide sink in the terrestrial biosphere might be completely offset by increasing methane and nitrous oxide emissions, resulting in a positive global warming potential. Asia and South America were the largest contributors to increasing global warming potential. This study suggested that current management practices might not be effective enough to reduce future global warming.

  17. Nitrous oxide in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Jayakumar, D; Nair, M.; DileepKumar, M.; George, M.D

    Extensive observations on nitrous oxide (N@d2@@O) in the atmosphere and waters of the western Bay of Bengal during March-April 1991 yield surface saturations and atmospheric fluxes ranging from 89.3 to 213.9% (mean 125.2%), and from 0.10 to 10...

  18. The dependence of the discharge of nitrous oxide by ordinary chernozem steppe of the Central-Chernozem Region of Russia from the content of humus, nitrogen and enzymatic activity

    Science.gov (United States)

    Avksentev, Alexey; Negrobova, Elena; Kramareva, Tatiana; Moiseeva, Evgenya

    2016-04-01

    The dependence of the discharge of nitrous oxide by ordinary chernozem steppe of the Central-Chernozem Region of Russia from the content of humus, nitrogen and enzymatic activity Alexey Avksentev, Elena Negrobova, Tatiana Kramareva, Evgenya Moiseeva 394000 Voronezh, Universitetskaya square, 1 Voronezh State University Nitrous oxide is emitted by soil as a result of microbiological processes, ranks third in the list of aggressive greenhouse gas after carbon dioxide and methane. Nitrous oxide is formed during nitrification and denitrification of ammonia that enters the soil during microbial decomposition of complex organic compounds. Denitrification can be direct and indirect. In the microbiological process of recovery of nitrates involved of the organic substance. In aerobic conditions microorganisms denitrificator behave like normal saprotrophs and oxidize organic matter in the act of breathing oxygen. Thus, they operate at different times two enzyme systems: the electron transport chain with an oxygen acceptor in aerobic and restoration of nitrates under anaerobic conditions. Investigation of the emission of nitrous oxide by ordinary Chernozem steppe of the Central-Chernozem Region showed that it depends on the type of cenosis and the content of available forms of nitrogen. Natural ecosystems emit nitrous oxide more than the soil of arable land. The dependence of the emission of nitrous oxide from the humus content shows positive trend, but the aggregation of data, significant differences are not detected. Research shows that nitrous oxide emissions are seasonal. So the autumn season is characterized by nitrous oxide emissions than spring. Enzymatic processes are an important link in the biological cycle of elements and, consequently, participate in the process of decomposition of organic matter, nitrification and other processes. Analysis of the data on enzyme activity of ordinary Chernozem and the intensity of emission of N20 shows a clear relationship between

  19. Sedation with nitrous oxide compared with no sedation during catheterization for urologic imaging in children

    International Nuclear Information System (INIS)

    Zier, Judith L.; Kvam, Kathryn A.; Kurachek, Stephen C.; Finkelstein, Marsha

    2007-01-01

    Various strategies to mitigate children's distress during voiding cystourethrography (VCUG) have been described. Sedation with nitrous oxide is comparable to that with oral midazolam for VCUG, but a side-by-side comparison of nitrous oxide sedation and routine care is lacking. The effects of sedation/analgesia using 70% nitrous oxide and routine care for VCUG and radionuclide cystography (RNC) were compared. A sample of 204 children 4-18 years of age scheduled for VCUG or RNC with sedation or routine care were enrolled in this prospective study. Nitrous oxide/oxygen (70%/30%) was administered during urethral catheterization to children in the sedated group. The outcomes recorded included observed distress using the Brief Behavioral Distress Score, self-reported pain, and time in department. The study included 204 patients (99 nonsedated, 105 sedated) with a median age of 6.3 years (range 4.0-15.2 years). Distress and pain scores were greater in nonsedated than in sedated patients (P < 0.001). Time in department was longer in the sedated group (90 min vs. 30 min); however, time from entry to catheterization in a non-imaging area accounted for most of the difference. There was no difference in radiologic imaging time. Sedation with nitrous oxide is effective in reducing distress and pain during catheterization for VCUG or RNC in children. (orig.)

  20. Fluxed of nitrous oxide and methane in a lake border ecosystem in northern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Rusch, H.; Rembges, D.; Papke, H.; Rennenberg, H. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1995-12-31

    Methane and nitrous oxide are radiatively active trace gases. This accounts for approximately 20 % of the total anticipated greenhouse effect. The atmospheric mixing ratio of both gases has increased significantly during the last decades at a rate of 0.25 % yr{sup -l} for N{sub 2}O and a rate of 1 % yr{sup -1} for CH{sub 4}. Whether this increase is caused by enhanced biogenic production of both gases or is due to decreased global sinks, has not been definitely elucidated. Soils are an important source of methane and nitrous oxide. Natural wetlands, e.g., have a similar global source strength of methane as rice paddies. On the other hand, well aerated grasslands have been shown to be a sink for atmospheric methane due to methane oxidation. Nitrous oxide is emitted by a wide range of soil types. Its rate of emission is strongly enhanced by nitrogen fertilization. In the present study, fluxes of methane and nitrous oxide were determined in a lake border ecosystem along a toposequence from reed to dry pasture. The aim of this study was to characterize the influence of soil type, land use and season on the flux rates of these greenhouse gases. (author)

  1. Fluxed of nitrous oxide and methane in a lake border ecosystem in northern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Rusch, H; Rembges, D; Papke, H; Rennenberg, H [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1996-12-31

    Methane and nitrous oxide are radiatively active trace gases. This accounts for approximately 20 % of the total anticipated greenhouse effect. The atmospheric mixing ratio of both gases has increased significantly during the last decades at a rate of 0.25 % yr{sup -l} for N{sub 2}O and a rate of 1 % yr{sup -1} for CH{sub 4}. Whether this increase is caused by enhanced biogenic production of both gases or is due to decreased global sinks, has not been definitely elucidated. Soils are an important source of methane and nitrous oxide. Natural wetlands, e.g., have a similar global source strength of methane as rice paddies. On the other hand, well aerated grasslands have been shown to be a sink for atmospheric methane due to methane oxidation. Nitrous oxide is emitted by a wide range of soil types. Its rate of emission is strongly enhanced by nitrogen fertilization. In the present study, fluxes of methane and nitrous oxide were determined in a lake border ecosystem along a toposequence from reed to dry pasture. The aim of this study was to characterize the influence of soil type, land use and season on the flux rates of these greenhouse gases. (author)

  2. Biological groundwater denitrification systems: Lab-scale trials aimed at nitrous oxide production and emission assessment.

    Science.gov (United States)

    Capodici, Marco; Avona, Alessia; Laudicina, Vito Armando; Viviani, Gaspare

    2018-07-15

    Bio-trenches are a sustainable option for treating nitrate contamination in groundwater. However, a possible side effect of this technology is the production of nitrous oxide, a greenhouse gas that can be found both dissolved in the liquid effluent as well as emitted as off gas. The aim of this study was to analyze NO 3 - removal and N 2 O production in lab-scale column trials. The column contained olive nut as organic carbon media. The experimental study was divided into three phases (I, II and III) each characterized by different inlet NO 3 - concentrations (30, 50, 75mgNO 3 -NL -1 respectively). Sampling ports deployed along the length of the column allowed to observe the denitrification process as well as the formation and consumption of intermediate products, such as nitrite (NO 2 - ) and nitrous oxide (N 2 O). In particular, it was observed that N 2 O production represent only a small fraction of removed NO 3 - during Phase I and II, both for dissolved (0.007%) and emitted (0.003%) phase, and it was recorded a high denitrification efficiency, over 99%. Nevertheless, significantly higher values were recorded for Phase 3 concerning emitted phase (0.018%). This fact is due to increased inlet concentration which resulted in a carbon limitation and in a consequent decrease in denitrification efficiency (76%). Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effectiveness of nitrous oxide for postpartum perineal repair: a randomised controlled trial.

    Science.gov (United States)

    Berlit, Sebastian; Tuschy, Benjamin; Brade, Joachim; Mayer, Jade; Kehl, Sven; Sütterlin, Marc

    2013-10-01

    To compare the effectiveness of self-administered 50% nitrous oxide and conventional infiltrative anaesthesia with 1% prilocaine hydrochloride in postpartum perineal repair. A total of 100 women were prospectively enrolled and randomised to receive either infiltrative anaesthesia or a self-administered nitrous oxide mixture (Livopan(©)) for pain relief during postpartum perineal suturing. Besides data concerning anaesthesia, characteristics of patients and labour were documented for statistical analysis. Pain experienced during perineal repair was assessed using the short form of the McGill Pain Questionnaire (SF-MPQ). Forty-eight women received nitrous oxide and 52 underwent perineal suturing after infiltrative anaesthesia. There were no statistically significant differences regarding maternal age, body mass index (BMI), duration of pregnancy and suturing time between the groups. The most frequent birth injury was second-degree perineal laceration in the study group [22/48; 46%] and episiotomy in the control group [18/52; 35%]. Pain experienced during genital tract suturing and patients' satisfaction showed no statistically significant differences between the groups. Thirty-seven women in the study group and 47 in the control group were satisfied with the anaesthesia during perineal repair and would recommend it to other parturients [37/48, 77% vs. 47/52, 90%; p=0.0699). Nitrous oxide self-administration during genital tract suturing after vaginal childbirth is a satisfactory and effective alternative to infiltrative anaesthesia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Greenhouse effect due to atmospheric nitrous oxide

    Science.gov (United States)

    Yung, Y. L.; Wang, W. C.; Lacis, A. A.

    1976-01-01

    The greenhouse effect due to nitrous oxide in the present atmosphere is about 0.8 K. Increase in atmospheric N2O due to perturbation of the nitrogen cycle by man may lead to an increase in surface temperature as large as 0.5 K by 2025, or 1.0 K by 2100. Other climatic effects of N2O are briefly discussed.

  5. Soil nitrate reducing processes drivers, mechanisms for spatial variation, and significance for nitrous oxide production

    OpenAIRE

    Giles, M.; Morley, N.; Baggs, E.M.; Daniell, T.J.

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium\\ud (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for\\ud the loss of nitrate (NO−\\ud 3 ) and production of the potent greenhouse gas, nitrous oxide (N2O).\\ud A number of factors are known to control these processes, including O2 concentrations and\\ud moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms\\ud responsible for the ...

  6. Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples

    OpenAIRE

    Kester, R.A.; Boer, W. de; Laanbroek, H.J.

    1996-01-01

    The contribution of nitrifiers and denitrifiers to the nitrous oxide production in slurries of calcareous silt loam and river bank sediment at different oxygen concentrations was determined using acetylene as nitrification inhibitor. The addition of 10 Pa acetylene resulted in inhibition of nitrous oxide production at oxic conditions, but strongly enhanced the nitrous oxide production at oxygen-poor and anoxic conditions. Inhibition of nitrification by short exposure (1 to 24 h) to high conce...

  7. Cognitive properties of sedation agents: comparison of the effects of nitrous oxide and midazolam on memory and mood.

    Science.gov (United States)

    Thompson, J M; Neave, N; Moss, M C; Scholey, A B; Wesnes, K; Girdler, N M

    1999-11-27

    To compare the effects of nitrous oxide and midazolam on cognition and mood. A three-way, counterbalanced, cross-over study, using patients receiving conscious sedation for routine dental treatment. On each of three separate visits, patients performed a computerised test battery to determine baseline cognitive performance. Then, following administration of either midazolam, nitrous oxide, or no drug, patients re-performed the test battery. Finally, patients completed visual analogue scales assessing their subjective mood state. Relative to baseline performance, midazolam administration produced significantly slower reaction times compared with nitrous oxide and no-drug conditions. Furthermore, patients receiving midazolam were impaired in accuracy relative to the other conditions on many of the cognitive tasks, particularly those assessing the recall of information. Patient performance in nitrous oxide and control conditions did not significantly differ. These results could not be explained by differences in mood between the conditions, as subjective mood ratings during midazolam or nitrous oxide administration were very similar. It is important for clinicians to be aware that peri-operative recall of information is reduced in patients who have undergone midazolam sedation. This is an advantage for patients who are anxious, and do not wish to be aware of the operative treatment being performed. However, as the cognitive impairment is enduring, an adult escort and written post-operative instructions should be mandatory for midazolam sedation patients. In contrast, the use of nitrous oxide sedation does not significantly impair higher cognitive tasks and thus patients receiving nitrous oxide sedation can resume normal activities in the post-operative period.

  8. Atmospheric nitrous oxide produced by solar protons and relativistic electrons

    International Nuclear Information System (INIS)

    Prasad, S.S.; Zipf, E.C.

    1981-01-01

    An alternative means of nitric oxide production in the stratosphere to that of direct formation in the upper atmosphere by solar proton (SP) events and by relativistic electron precipitation (REP) events from the Earth's radiation belt, is described. It is suggested that nitrous oxide is produced in the mesosphere and then migrates downward and is converted in the stratosphere to NO by the reaction N 2 O + O( 1 D) → 2 NO. Such a process could amplify the direct NO production by >10%. Mesospheric nitrous oxide mixing ratios increase to values as high as 6 x 10 -7 due to REP- and SP- related production. Lateral transport will reduce these high values but mesospheric mixing ratios of N 2 O in the high latitudes would approach 10 -7 , considerably greater than those expected on the basis of theories which neglect REP- and SP-related production of this species. (U.K.)

  9. Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems

    DEFF Research Database (Denmark)

    Lindblom, E.; Arnell, M.; Flores-Alsina, X.

    2014-01-01

    The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O)emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O...... production by both heterotrophic and autotrophic denitrification. In addition, mass transfer equations are implemented to characterize the dynamics of N2O in the water and the gas phases.The biochemical model is simulated and validated for two hydraulic patterns: (1) a sequencing batch reactor; and, (2...

  10. Changes in heart rate variability during anaesthesia induction using sevoflurane or isoflurane with nitrous oxide.

    Science.gov (United States)

    Nishiyama, Tomoki

    2016-01-01

    The purpose of this study was to compare cardiac sympathetic and parasympathetic balance using heart rate variability (HRV) during induction of anaesthesia between sevoflurane and isoflurane in combination with nitrous oxide. 40 individuals aged from 30 to 60 years, scheduled for general anaesthesia were equally divided into sevoflurane or isoflurane groups. After 100% oxygen inhalation for a few minutes, anaesthesia was induced with nitrous oxide 3 L min-1, oxygen 3 L min-1 and sevoflurane or isoflurane. Sevoflurane or isoflurane concentration was increased by 0.5% every 2 to 3 breaths until 5% was attained for sevoflurane, or 3% for isoflurane. Vecuronium was administered to facilitate tracheal intubation. After intubation, sevoflurane was set to 2% while isoflurane was set to 1% with nitrous oxide with oxygen (1:1) for 5 min. Both sevoflurane and isoflurane provoked a decrease in blood pressure, total power, the low frequency component (LF), and high frequency component (HF) of HRV. Although the heart rate increased during isoflurane anaesthesia, it decreased under sevoflurane. The power of LF and HF also decreased in both groups. LF was higher in the isoflurane group while HF was higher in the sevoflurane group. The LF/HF ratio increased transiently in the isoflurane group, but decreased in the sevoflurane group. Anaesthesia induction with isoflurane-nitrous oxide transiently increased cardiac sympathetic activity, while sevoflurane-nitrous oxide decreased both cardiac sympathetic and parasympathetic activities. The balance of cardiac parasympathetic/sympathetic activity was higher in sevoflurane anaesthesia.

  11. Nitrous oxide production associated with coastal marine invertebrates

    DEFF Research Database (Denmark)

    Heisterkamp, Ines Maria; Schramm, Andreas; de Beer, Dirk

    2010-01-01

    Several freshwater and terrestrial invertebrate species emit the greenhouse gas nitrous oxide (N2O). The N2O production associated with these animals was ascribed to incomplete denitrification by ingested sediment or soil bacteria. The present study shows that many marine invertebrates also emit N2......O at substantial rates. A total of 19 invertebrate species collected in the German Wadden Sea and in Aarhus Bay, Denmark, and 1 aquacultured shrimp species were tested for N2O emission. Potential N2O emission rates ranged from 0 to 1.354 nmol ind.–1 h–1, with an average rate of 0.320 nmol ind.–1 h–1...... with an experimentally cleaned shell. Thus, the N2O production associated with marine invertebrates is apparently not due to gut denitrification in every species, but may also result from microbial activity on the external surfaces of animals. The high abundance and potential N2O emission rates of many marine...

  12. Methane and nitrous oxide emissions from a subtropical estuary (the Brisbane River estuary, Australia)

    International Nuclear Information System (INIS)

    Musenze, Ronald S.; Werner, Ursula; Grinham, Alistair; Udy, James; Yuan, Zhiguo

    2014-01-01

    Methane (CH 4 ) and nitrous oxide (N 2 O) are two key greenhouse gases. Their global atmospheric budgeting is, however, flout with challenges partly due to lack of adequate field studies determining the source strengths. Knowledge and data limitations exist for subtropical and tropical regions especially in the southern latitudes. Surface water methane and nitrous oxide concentrations were measured in a subtropical estuarine system in the southern latitudes in an extensive field study from 2010 to 2012 and water–air fluxes estimated using models considering the effects of both wind and flow induced turbulence. The estuary was found to be a strong net source of both CH 4 and N 2 O all-year-round. Dissolved N 2 O concentrations ranged between 9.1 ± 0.4 to 45.3 ± 1.3 nM or 135 to 435% of atmospheric saturation level, while CH 4 concentrations varied between 31.1 ± 3.7 to 578.4 ± 58.8 nM or 1210 to 26,430% of atmospheric saturation level. These results compare well with measurements from tropical estuarine systems. There was strong spatial variability with both CH 4 and N 2 O concentrations increasing upstream the estuary. Strong temporal variability was also observed but there were no clear seasonal patterns. The degree of N 2 O saturation significantly increased with NO x concentrations (r 2 = 0.55). The estimated water–air fluxes varied between 0.1 and 3.4 mg N 2 O m −2 d −1 and 0.3 to 27.9 mg CH 4 m −2 d −1 . Total emissions (CO 2 -e) were N 2 O (64%) dominated, highlighting the need for reduced nitrogen inputs into the estuary. Choice of the model(s) for estimation of the gas transfer velocity had a big bearing on the estimated total emissions. - Highlights: • The estuary is a strong source of atmospheric methane and nitrous oxide. • Emissions had strong spatial-temporal variability with unclear seasonal patterns. • Dissolved gas saturation comparable to that in tropical rivers and polluted estuaries. • Emissions are dominated by N2O, which

  13. Regional scale analysis of nitrous oxide emissions within the U.S. Corn Belt and the potential role of episodic hot spots

    Science.gov (United States)

    Nitrous oxide (N2O) is a long-lived greenhouse gas that has the third largest radiative forcing on the Earth-Atmosphere system and has become the most important stratospheric ozone depleting substance of the 21st century. The rapid increase in N2O concentrations over the last century is primarily at...

  14. Molecular identification of the mode of interaction of nitrous oxide with the opiate receptor system

    Energy Technology Data Exchange (ETDEWEB)

    Wallar, D D

    1985-01-01

    The discovery of the opioid receptors in 1973 has led to a great deal of in vivo and in vitro research in order to understand the mechanism of binding of endogenous and synthetic opiate ligands. The use of nitrous oxide (N/sub 2/O) in anaesthesia is well documented. However, at lower concentrations N/sub 2/O produces analgesia. In 1976, it was reported that N/sub 2/O analgesia in man could be modified by the opiate antagonist naloxone. This clearly linked nitrous oxide analgesia to the opioid receptor system. It is the purpose of this dissertation to examine the molecular mechanism of action of N/sub 2/O at the opioid receptor through the use of in vitro binding studies. In addition, a model of the opioid receptor will be proposed. The following radiolabelled ligands were used in classical competitive binding assays to determine K (sub D),B(sub max), and IC/sub 50/ values in the presence of nitrous oxide and other control gases: dihydromorphine, N-allyl-N-normetazocine (SKF 10,047), and ethylketocyclazocine, for putative ..mu.., sigma and kappa opioid binding sites, respectively. All assays were performed using rat forebrain homogenates suspended in buffer previously saturated with the gas. Results indicate that N/sub 2/O differentially affects the binding kinetics of dihydromorphine. The binding kinetics of SKF 10,047 or ethylketocyclazocine were not altered significantly by N/sub 2/O indicating that N/sub 2/O is specific in its effects for the putative ..mu..-binding site. It is suggested that N/sub 2/O exerts its analgesic effects by perturbation of protein/lipid interactions within a multiple binding site opioid receptor complex.

  15. Measurement and reduction of nitrous oxide in operating rooms

    NARCIS (Netherlands)

    Schuyt, H. C.; Verberk, M. M.

    1996-01-01

    In a program designed to lower exposure to anesthetic gases, nitrous oxide in the breathing zone of anesthesiologists was continuously monitored by means of a direct reading apparatus and a specially designed collar. Initially, the average concentration during anesthesia in intubated patients,

  16. Nitrous oxide production kinetics during nitrate reduction in river sediments.

    Science.gov (United States)

    Laverman, Anniet M; Garnier, Josette A; Mounier, Emmanuelle M; Roose-Amsaleg, Céline L

    2010-03-01

    A significant amount of nitrogen entering river basins is denitrified in riparian zones. The aim of this study was to evaluate the influence of nitrate and carbon concentrations on the kinetic parameters of nitrate reduction as well as nitrous oxide emissions in river sediments in a tributary of the Marne (the Seine basin, France). In order to determine these rates, we used flow-through reactors (FTRs) and slurry incubations; flow-through reactors allow determination of rates on intact sediment slices under controlled conditions compared to sediment homogenization in the often used slurry technique. Maximum nitrate reduction rates (R(m)) ranged between 3.0 and 7.1microg Ng(-1)h(-1), and affinity constant (K(m)) ranged from 7.4 to 30.7mg N-NO(3)(-)L(-1). These values were higher in slurry incubations with an R(m) of 37.9microg Ng(-1)h(-1) and a K(m) of 104mg N-NO(3)(-)L(-1). Nitrous oxide production rates did not follow Michaelis-Menten kinetics, and we deduced a rate constant with an average of 0.7 and 5.4ng Ng(-1)h(-1) for FTR and slurry experiments respectively. The addition of carbon (as acetate) showed that carbon was not limiting nitrate reduction rates in these sediments. Similar rates were obtained for FTR and slurries with carbon addition, confirming the hypothesis that homogenization increases rates due to release of and increasing access to carbon in slurries. Nitrous oxide production rates in FTR with carbon additions were low and represented less than 0.01% of the nitrate reduction rates and were even negligible in slurries. Maximum nitrate reduction rates revealed seasonality with high potential rates in fall and winter and low rates in late spring and summer. Under optimal conditions (anoxia, non-limiting nitrate and carbon), nitrous oxide emission rates were low, but significant (0.01% of the nitrate reduction rates). Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Nitrate reductase and nitrous oxide production by Fusarium oxysporum 11dn1 under aerobic and anaerobic conditions.

    Science.gov (United States)

    Kurakov, A V; Nosikov, A N; Skrynnikova, E V; L'vov, N P

    2000-08-01

    The fungus Fusarium oxysporum 11dn1 was found to be able to grow and produce nitrous oxide on nitrate-containing medium in anaerobic conditions. The rate of nitrous oxide formation was three to six orders of magnitude lower than the rates of molecular nitrogen production by common denitrifying bacteria. Acetylene and ammonia did not affect the release of nitrous oxide release. It was shown that under anaerobic conditions fast increase of nitrate reductase activity occurred, caused by the synthesis of enzyme de novo and protein dephosphorylation. Reverse transfer of the mycelium to aerobic conditions led to a decline in nitrate reductase activity and stopped nitrous oxide production. The presence of two nitrate reductases was shown, which differed in molecular mass, location, temperature optima, and activity in nitrate- and ammonium-containing media. Two enzymes represent assimilatory and dissimilatory nitrate reductases, which are active in aerobic and anaerobic conditions, respectively.

  18. Interannual Variability of Carbon Dioxide, Methane and Nitrous Oxide Fluxes in Subarctic European Russian Tundra

    Science.gov (United States)

    Marushchak, M. E.; Voigt, C.; Gil, J.; Lamprecht, R. E.; Trubnikova, T.; Virtanen, T.; Kaverin, D.; Martikainen, P. J.; Biasi, C.

    2017-12-01

    Southern tundra landscapes are particularly vulnerable to climate warming, permafrost thaw and associated landscape rearrangement due to near-zero permafrost temperatures. The large soil C and N stocks of subarctic tundra may create a positive feedback for warming if released to the atmosphere at increased rates. Subarctic tundra in European Russia is a mosaic of land cover types, which all play different roles in the regional greenhouse gas budget. Peat plateaus - massive upheaved permafrost peatlands - are large storehouses of soil carbon and nitrogen, but include also bare peat surfaces that act as hot-spots for both carbon dioxide and nitrous oxide emissions. Tundra wetlands are important for the regional greenhouse gas balance since they show high rates of methane emissions and carbon uptake. The most dominant land-form is upland tundra vegetated by shrubs, lichens and mosses, which displays a close-to-neutral balance with respect to all three greenhouse gases. The study site Seida (67°03'N, 62°56'E), located in the discontinuous permafrost zone of Northeast European Russia, incorporates all these land forms and has been an object for greenhouse gas investigations since 2007. Here, we summarize the growing season fluxes of carbon dioxide, methane and nitrous oxide measured by chamber techniques over the study years. We analyzed the flux time-series together with the local environmental data in order to understand the drivers of interannual variability. Detailed soil profile measurements of greenhouse gas concentrations, soil moisture and temperature provide insights into soil processes underlying the net emissions to the atmosphere. The multiannual time-series allows us to assess the importance of the different greenhouse gases and landforms to the overall climate forcing of the study region.

  19. Controlling nitrous oxide emissions from grassland livestock production systems

    NARCIS (Netherlands)

    Oenema, O.; Gebauer, G.; Rodriguez, M.; Sapek, A.; Jarvis, S.C.; Corré, W.J.; Yamulki, S.

    1998-01-01

    There is growing awareness that grassland livestock production systems are major sources of nitrous oxide (N2O). Controlling these emissions requires a thorough understanding of all sources and controlling factors at the farm level. This paper examines the various controlling factors and proposes

  20. Nitrous oxide emissions affected by biochar and nitrogen stabilizers

    Science.gov (United States)

    Both biochar and N fertilizer stabilizers (N transformation inhibitors) are potential strategies to reduce nitrous oxide (N2O) emissions from fertilization, but the mechanisms and/or N transformation processes affecting the N dynamics are not fully understood. This research investigated N2O emission...

  1. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Directory of Open Access Journals (Sweden)

    C. R. Löscher

    2012-07-01

    Full Text Available The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA over their bacterial counterparts (AOB in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O.

    Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA were detectable throughout the water column of the eastern tropical North Atlantic (ETNA and eastern tropical South Pacific (ETSP Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved

  2. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes.

    Science.gov (United States)

    Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu

    2018-02-01

    Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Shell biofilm-associated nitrous oxide production in marine molluscs

    DEFF Research Database (Denmark)

    Heisterkamp, I.M.; Schramm, Andreas; Larsen, Lone Heimann

    2013-01-01

    Emission of the greenhouse gas nitrous oxide (N2O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surfaces...... are important sites of N2O production. The shell biofilms of Mytilus edulis, Littorina littorea and Hinia reticulata contributed 18-94% to the total animal-associated N2O emission. Nitrification and denitrification were equally important sources of N2O in shell biofilms as revealed by 15N-stable isotope...... mollusc species. Ammonium excretion by the animals was found to be sufficient to sustain N2O production in the shell biofilm. Apparently, the animals provide a nutrient-enriched microenvironment that stimulates growth and N2O production of the shell biofilm. This animal-induced stimulation...

  4. Nitrous oxide flux under changing temperature and CO2

    Science.gov (United States)

    We are investigating nitrous oxide flux seasonal trends and response to temperature and CO2 increases in a boreal peatland. Peatlands located in boreal regions make up a third of global wetland area and are expected to have the highest temperature increases in response to climat...

  5. Carbon dioxide and nitrous oxide in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; Naqvi, S.W.A; Jayakumar, D.A; George, M.D.; Narvekar, P.V.; DeSousa, S

    The understanding of biogeochemical cycling of carbon dioxide and nitrous oxide in the oceans is essential for predicting the fate of anthropogenically emitted components. The North Indian Ocean, with its diverse regimes, provides us with a natural...

  6. The influence of water vapor and sulfur dioxide on the catalytic decomposition of nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Yalamas, C.; Heinisch, R.; Barz, M. [Technische Univ. Berlin (Germany). Inst. fuer Energietechnik; Cournil, M. [Ecole Nationale Superieure des Mines, 42 - Saint-Etienne (France)

    2001-03-01

    For the nitrous oxide decomposition three groups of catalysts such as metals on support, hydrotalcites, and perovskites were studied relating to their activity in the presence of vapor or sulfur dioxide, in the temperature range from 200 to 500 C. It was found that the water vapor strongly inhibates the nitrous oxide decomposition at T=200-400 C. The sulfur dioxide poisons the catalysts, in particular the perovskites. (orig.)

  7. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.

    Science.gov (United States)

    Yang, Wendy H; Silver, Whendee L

    2016-06-01

    Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2 O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2 O. Measurements of net N2 O fluxes alone yield little insight into the different effects of redox conditions on N2 O production and consumption. We used in situ measurements of gross N2 O fluxes across a salt marsh elevation gradient to determine how soil N2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2 O consumption did not differ among marsh zones. Thus, variability in gross N2 O production rates drove the differences in net N2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2 O in salt marshes to improve our predictions of changes in net N2 O fluxes caused by future sea level rise. © 2015 John Wiley & Sons Ltd.

  8. Myeloneuropathy following nitrous oxide anesthaesia in a patient with macrocytic anaemia

    Energy Technology Data Exchange (ETDEWEB)

    Sesso, R.M.C.C.; Iunes, Y.; Melo, A.C.P. [Department of Neurology, Instituto de Assistencia Medica ao Servidor Publico Estadual, Sao Paulo (Brazil)

    1999-08-01

    The neurological condition triggered by anaesthesia with nitrous oxide involves the cyanocobalamine pathway and is characterised by progressive demyelination and axonal lesions of the peripheral nerves and cervicothoracic spinal cord (posterior and anterolateral columns) giving a peripheral neuropathy and very frequently subacute combined degeneration of the spinal cord. It is possible to show these demyelinating lesions by MRI of the spine, allowing early diagnosis and follow-up. We describe a case of myeloneuropathy with onset a few hours after nitrous oxide anaesthesia in a patient with macrocytic anaemia and possible subclinical vitamin B{sub 12} deficiency and MRI evidence of a lesion of the cervical spinal cord. Neurological and haematological improvement followed cyanocobalamine replacement. (orig.) With 2 figs., 15 refs.

  9. Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies.

    Science.gov (United States)

    Ming, Tingzhen; de Richter, Renaud; Shen, Sheng; Caillol, Sylvain

    2016-04-01

    Even if humans stop discharging CO2 into the atmosphere, the average global temperature will still increase during this century. A lot of research has been devoted to prevent and reduce the amount of carbon dioxide (CO2) emissions in the atmosphere, in order to mitigate the effects of climate change. Carbon capture and sequestration (CCS) is one of the technologies that might help to limit emissions. In complement, direct CO2 removal from the atmosphere has been proposed after the emissions have occurred. But, the removal of all the excess anthropogenic atmospheric CO2 will not be enough, due to the fact that CO2 outgases from the ocean as its solubility is dependent of its atmospheric partial pressure. Bringing back the Earth average surface temperature to pre-industrial levels would require the removal of all previously emitted CO2. Thus, the atmospheric removal of other greenhouse gases is necessary. This article proposes a combination of disrupting techniques to transform nitrous oxide (N2O), the third most important greenhouse gas (GHG) in terms of current radiative forcing, which is harmful for the ozone layer and possesses quite high global warming potential. Although several scientific publications cite "greenhouse gas removal," to our knowledge, it is the first time innovative solutions are proposed to effectively remove N2O or other GHGs from the atmosphere other than CO2.

  10. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    Energy Technology Data Exchange (ETDEWEB)

    Hänninen, Tuomas, E-mail: tuoha@ifm.liu.se; Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans [Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-581 83 (Sweden)

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  11. Anti-leukemic potential of methyl-cobalamin inactivation by nitrous oxide

    NARCIS (Netherlands)

    J. Abels; A.C.M. Kroes (Aloys C.M.); A.A.M. Ermens (Anton); J. van Kapel (Jan); M. Schoester (Martijn); L.J.M. Spijkers (L. J M); J. Lindemans (Jan)

    1990-01-01

    textabstractMyelo‐cytotoxicity of extended nitrous oxide (N2O) inhalation was described almost forty years ago and then incidentally applied already with temporary success for suppressing leukemia. In 1948 the accompanying megaloblastic maturation arrest was explained by inactivation of the

  12. Nitrous oxide provides safe and effective analgesia for minor paediatric procedures - a systematic review

    DEFF Research Database (Denmark)

    Pedersen, Rie S; Bayat, Allan; Steen, Nick Phaff

    2013-01-01

    Pain and distress during minor hospital-related procedures is a familiar problem in many children. Inadequate relief of children's procedural pain and distress not only affects the experience of the children and their parents, but also adversely impacts procedural success. We aimed to review the ...... the safety and efficacy of nitrous oxide during brief, but painful paediatric procedures and to compare nitrous oxide with some of the commonly used pharmacological and non-pharmacological treatments for relieving anxiety and mild to moderate pain in Denmark....

  13. Evaluation of nitrous oxide-oxygen and triclofos sodium as conscious sedative agents

    Directory of Open Access Journals (Sweden)

    Priya Subramaniam

    2017-01-01

    Full Text Available Background: Conscious sedation is used in the pediatric dentistry to reduce fear and anxiety in children and promote favorable treatment outcomes. To achieve them, the primary clinical need is for a well-tolerated, effective, and expedient analgesic and sedative agent that is safe to use. Aim: The aim of the present study was to evaluate the efficacy of nitrous oxide-oxygen and triclofos sodium as conscious sedative agents in 5–10-year-old children. Methodology: Sixty children aged 5–10 years showing anxious, uncooperative, and apprehensive behavior were randomly divided and assigned into two groups (Groups A and B such that Group A received 40% nitrous oxide-60% oxygen and Group B received triclofos sodium in the dose of 70 mg/kg body weight, given 30 min before the treatment procedure. During the whole course of sedation procedure, the response of the child was assessed using Houpt's behavior rating scale. The acceptance of route of drug administration by the patient and parent was also assessed. Data obtained were statistically evaluated using the Mann–Whitney U-test and Chi-square test. Results: Children sedated with triclofos sodium were significantly more drowsy and disoriented compared to those sedated with nitrous oxide. The overall behavior of children in both the groups was similar. Good parental acceptance was observed for both the routes of administration. Patients accepted the oral route significantly better than inhalation route. Conclusion: Both nitrous oxide-oxygen and triclofos sodium were observed to be effective sedative agents, for successful and safe use in 5–10-year-old dental patients. Patients showed a good acceptance of the oral route compared to the inhalation route for sedation.

  14. Direct methane and nitrous oxide emissions of monogastric livestock ...

    African Journals Online (AJOL)

    The Intergovernmental Panel on Climate Change (IPCC) methodology adapted to tropical production systems was used to calculate methane (CH4) and nitrous oxide (N2O) emissions. The non-ruminant sector is a minor GHG contributor compared with ruminant CH4 and N2O emissions. The pig industry and ostrich ...

  15. Effects of ionization and nitrous oxide on grated carrot respiration

    International Nuclear Information System (INIS)

    Chervin, C.

    1992-06-01

    Two treatments (nitrous oxide and irradiation) have been applied on grated carrots to reduce the respiratory crisis induced by wounding. Nitrous oxide inhibited cytochrome c oxidase; but, it neither diminished O 2 consumption of the tissues, nor modified atmospheres in a favourable way for conservation of grated carrots, stored in plastic bags (in the conditions chosen for this study). On the contrary, irradiation inhibited simultaneously the respiratory crisis and the ethylene production, both induced by wounding. This behaviour led to a lower consumption of sugars in irradiated tissues and to the generation of atmospheres, which were better adapted to the conservation needs (it was necessary to use plastic film with high permeability). Finally, an applied study demonstrated that irradiation, by permitting a less denaturing preparation than industrial process, allowed the conservation of produces with a better quality (nutritional, sensory and microbiological). Biochemical analyses have been validated by sensory analyses

  16. The safety of addition of nitrous oxide to general anaesthesia in at-risk patients having major non-cardiac surgery (ENIGMA-II): a randomised, single-blind trial.

    Science.gov (United States)

    Myles, Paul S; Leslie, Kate; Chan, Matthew T V; Forbes, Andrew; Peyton, Philip J; Paech, Michael J; Beattie, W Scott; Sessler, Daniel I; Devereaux, P J; Silbert, Brendan; Schricker, Thomas; Wallace, Sophie

    2014-10-18

    Nitrous oxide is commonly used in general anaesthesia but concerns exist that it might increase perioperative cardiovascular risk. We aimed to gather evidence to establish whether nitrous oxide affects perioperative cardiovascular risk. We did an international, randomised, assessor-blinded trial in patients aged at least 45 years with known or suspected coronary artery disease having major non-cardiac surgery. Patients were randomly assigned via automated telephone service, stratified by site, to receive a general anaesthetic with or without nitrous oxide. Attending anaesthetists were aware of patients' group assignments, but patients and assessors were not. The primary outcome measure was a composite of death and cardiovascular complications (non-fatal myocardial infarction, stroke, pulmonary embolism, or cardiac arrest) within 30 days of surgery. Our modified intention-to-treat population included all patients randomly assigned to groups and undergoing induction of general anaesthesia for surgery. This trial is registered at ClinicalTrials.gov, number NCT00430989. Of 10,102 eligible patients, we enrolled 7112 patients between May 30, 2008, and Sept 28, 2013. 3543 were assigned to receive nitrous oxide and 3569 were assigned not to receive nitrous oxide. 3483 patients receiving nitrous oxide and 3509 not receiving nitrous oxide were assessed for the primary outcome. The primary outcome occurred in 283 (8%) patients receiving nitrous oxide and in 296 (8%) patients not receiving nitrous oxide (relative risk 0·96, 95% CI 0·83–1·12; p=0·64). Surgical site infection occurred in 321 (9%) patients assigned to nitrous oxide, and in 311 (9%) patients in the no-nitrous oxide group (p=0·61), and severe nausea and vomiting occurred in 506 patients (15%) assigned to nitrous oxide and 378 patients (11%) not assigned to nitrous oxide (pnitrous oxide use in major non-cardiac surgery. Nitrous oxide did not increase the risk of death and cardiovascular complications or

  17. Methane and nitrous oxide emissions from a subtropical estuary (the Brisbane River estuary, Australia)

    Energy Technology Data Exchange (ETDEWEB)

    Musenze, Ronald S.; Werner, Ursula [Advanced Water Management Centre (AWMC), the University of Queensland, Brisbane, Qld 4072 (Australia); Grinham, Alistair [Advanced Water Management Centre (AWMC), the University of Queensland, Brisbane, Qld 4072 (Australia); School of Civil Engineering, the University of Queensland, Brisbane, Qld 4072 (Australia); Udy, James [Healthy Waterways Ltd, P.O. Box 13086, George Street, Brisbane, Qld 4003 (Australia); Yuan, Zhiguo, E-mail: z.yuan@awmc.uq.edu.au [Advanced Water Management Centre (AWMC), the University of Queensland, Brisbane, Qld 4072 (Australia)

    2014-02-01

    Methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) are two key greenhouse gases. Their global atmospheric budgeting is, however, flout with challenges partly due to lack of adequate field studies determining the source strengths. Knowledge and data limitations exist for subtropical and tropical regions especially in the southern latitudes. Surface water methane and nitrous oxide concentrations were measured in a subtropical estuarine system in the southern latitudes in an extensive field study from 2010 to 2012 and water–air fluxes estimated using models considering the effects of both wind and flow induced turbulence. The estuary was found to be a strong net source of both CH{sub 4} and N{sub 2}O all-year-round. Dissolved N{sub 2}O concentrations ranged between 9.1 ± 0.4 to 45.3 ± 1.3 nM or 135 to 435% of atmospheric saturation level, while CH{sub 4} concentrations varied between 31.1 ± 3.7 to 578.4 ± 58.8 nM or 1210 to 26,430% of atmospheric saturation level. These results compare well with measurements from tropical estuarine systems. There was strong spatial variability with both CH{sub 4} and N{sub 2}O concentrations increasing upstream the estuary. Strong temporal variability was also observed but there were no clear seasonal patterns. The degree of N{sub 2}O saturation significantly increased with NO{sub x} concentrations (r{sup 2} = 0.55). The estimated water–air fluxes varied between 0.1 and 3.4 mg N{sub 2}O m{sup −2} d{sup −1} and 0.3 to 27.9 mg CH{sub 4} m{sup −2} d{sup −1}. Total emissions (CO{sub 2}-e) were N{sub 2}O (64%) dominated, highlighting the need for reduced nitrogen inputs into the estuary. Choice of the model(s) for estimation of the gas transfer velocity had a big bearing on the estimated total emissions. - Highlights: • The estuary is a strong source of atmospheric methane and nitrous oxide. • Emissions had strong spatial-temporal variability with unclear seasonal patterns. • Dissolved gas saturation comparable to that

  18. The role of nitrifier denitrification in the production of nitrous oxide revisited

    NARCIS (Netherlands)

    Wrage-Mönnig, Nicole; Horn, Marcus A.; Well, Reinhard; Müller, Christoph; Velthof, Gerard; Oenema, Oene

    2018-01-01

    Nitrifier denitrification is the reduction of nitrite (NO2 −) by ammonia-oxidizing bacteria. This process may account for up to 100% of nitrous oxide (N2O) emissions from ammonium (NH4 +) in soils and is more significant than classical denitrification under some conditions. Investigations of

  19. Nitrous oxide production and consumption: regulation of gene expression by gas-sensitive transcription factors

    Science.gov (United States)

    Spiro, Stephen

    2012-01-01

    Several biochemical mechanisms contribute to the biological generation of nitrous oxide (N2O). N2O generating enzymes include the respiratory nitric oxide (NO) reductase, an enzyme from the flavo-diiron family, and flavohaemoglobin. On the other hand, there is only one enzyme that is known to use N2O as a substrate, which is the respiratory N2O reductase typically found in bacteria capable of denitrification (the respiratory reduction of nitrate and nitrite to dinitrogen). This article will briefly review the properties of the enzymes that make and consume N2O, together with the accessory proteins that have roles in the assembly and maturation of those enzymes. The expression of the genes encoding the enzymes that produce and consume N2O is regulated by environmental signals (typically oxygen and NO) acting through regulatory proteins, which, either directly or indirectly, control the frequency of transcription initiation. The roles and mechanisms of these proteins, and the structures of the regulatory networks in which they participate will also be reviewed. PMID:22451107

  20. Nitrous oxide production and consumption: regulation of gene expression by gas-sensitive transcription factors.

    Science.gov (United States)

    Spiro, Stephen

    2012-05-05

    Several biochemical mechanisms contribute to the biological generation of nitrous oxide (N(2)O). N(2)O generating enzymes include the respiratory nitric oxide (NO) reductase, an enzyme from the flavo-diiron family, and flavohaemoglobin. On the other hand, there is only one enzyme that is known to use N(2)O as a substrate, which is the respiratory N(2)O reductase typically found in bacteria capable of denitrification (the respiratory reduction of nitrate and nitrite to dinitrogen). This article will briefly review the properties of the enzymes that make and consume N(2)O, together with the accessory proteins that have roles in the assembly and maturation of those enzymes. The expression of the genes encoding the enzymes that produce and consume N(2)O is regulated by environmental signals (typically oxygen and NO) acting through regulatory proteins, which, either directly or indirectly, control the frequency of transcription initiation. The roles and mechanisms of these proteins, and the structures of the regulatory networks in which they participate will also be reviewed.

  1. Compilation of a global inventory of emissions of nitrous oxide

    NARCIS (Netherlands)

    Bouwman, A.F.

    1995-01-01

    A global inventory with 1°x1° resolution was compiled of emissions of nitrous oxide (N 2 O) to the atmosphere, including emissions from soils under natural vegetation, fertilized agricultural land, grasslands and animal excreta, biomass burning, forest clearing,

  2. Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide.

    Science.gov (United States)

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2015-06-28

    We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N2O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N2O-N2O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N2O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.

  3. Bending localization of nitrous oxide under anharmonicity and Fermi coupling: the dynamical potential approach

    International Nuclear Information System (INIS)

    Zhang Chi; Wu Guo-Zhen; Fang Chao

    2010-01-01

    This paper studies the vibrational nonlinear dynamics of nitrous oxide with Fermi coupling between the symmetric stretching and bending coordinates by classical dynamical potential approach. This is a global approach in the sense that the overall dynamics is evidenced by the classical nonlinear variables such as the fixed points and the focus are on a set of levels instead of individual ones. The dynamics of nitrous oxide is demonstrated to be not so much dependent on the excitation energy. Moreover, the localized bending mode is shown to be ubiquitous in all the energy range studied

  4. Nitrous oxide emissions from corn-soybean systems in the midwest.

    Science.gov (United States)

    Parkin, Timothy B; Kaspar, Thomas C

    2006-01-01

    Soil N2O emissions from three corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems in central Iowa were measured from the spring of 2003 through February 2005. The three managements systems evaluated were full-width tillage (fall chisel plow, spring disk), no-till, and no-till with a rye (Secale cereale L. 'Rymin') winter cover crop. Four replicate plots of each treatment were established within each crop of the rotation and both crops were present in each of the two growing seasons. Nitrous oxide fluxes were measured weekly during the periods of April through October, biweekly during March and November, and monthly in December, January, and February. Two polyvinyl chloride rings (30-cm diameter) were installed in each plot (in and between plant rows) and were used to support soil chambers during the gas flux measurements. Flux measurements were performed by placing vented chambers on the rings and collecting gas samples 0, 15, 30, and 45 min following chamber deployment. Nitrous oxide fluxes were computed from the change in N2O concentration with time, after accounting for diffusional constraints. We observed no significant tillage or cover crop effects on N2O flux in either year. In 2003 mean N2O fluxes were 2.7, 2.2, and 2.3 kg N2O-N ha(-1) yr(-1) from the soybean plots under chisel plow, no-till, and no-till + cover crop, respectively. Emissions from the chisel plow, no-till, and no-till + cover crop plots planted to corn averaged 10.2, 7.9, and 7.6 kg N2O-N ha(-1) yr(-1), respectively. In 2004 fluxes from both crops were higher than in 2003, but fluxes did not differ among the management systems. Fluxes from the corn plots were significantly higher than from the soybean plots in both years. Comparison of our results with estimates calculated using the Intergovernmental Panel on Climate Change default emission factor of 0.0125 indicate that the estimated fluxes underestimate measured emissions by a factor of 3 at our sites.

  5. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, nitrogen, and ammonia in contact with tank 241-SY-101 simulated waste

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.

    1996-02-01

    Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. Described in this report are the results of tests to evaluate the rates of thermal and combined thermal and radiolytic reactions involving flammable gases in the presence of Tank 241-SY-101 simulated waste. Flammable gases generated by the radiolysis of water and by the thermal and radiolytic decomposition of organic waste constituents may themselves participate in further reactions. Examples include the decomposition of nitrous oxide to yield nitrogen and oxygen, the reaction of nitrous oxide and hydrogen to produce nitrogen and water, and the reaction of nitrogen and hydrogen to produce ammonia. The composition of the gases trapped in bubbles in the wastes might therefore change continuously as a function of the time that the gas bubbles are retained

  6. Nitrous oxide/oxygen mixture for analgesia in adult cancer patients with breakthrough pain: A randomized, double-blind controlled trial.

    Science.gov (United States)

    Liu, Q; Gao, L-L; Dai, Y-L; Li, Y-X; Wang, Y; Bai, C-F; Mu, G-X; Chai, X-M; Han, W-J; Zhou, L-J; Zhang, Y-J; Tang, L; Liu, J; Yu, J-Q

    2018-03-01

    The aim of this study was to assess the efficacy of a fixed nitrous oxide/oxygen mixture for the management of breakthrough cancer pain. A double-blind, placebo-controlled, randomized clinical trial was undertaken in the Medical ward of Tumor Hospital of General Hospital of Ningxia Medical University. 240 cancer patients with breakthrough pain were recruited and randomly received a standard pain treatment (morphine sulphate immediate release) plus a pre-prepared nitrous oxide/oxygen mixture, or the standard pain treatment plus oxygen. The primary endpoint measure was the numerical rating scale (NRS) score measured at baseline, 5 and 15 min after the beginning of treatment, and at 5 min post treatment. In all, analysis of pain score (NRS) at 5 min after the beginning of treatment shown a significant decrease in nitrous oxide/oxygen mixture treated patients with 2.8 ± 1.3 versus 5.5 ± 1.2 in controls (p nitrous oxide/oxygen was 2.0 ± 1.1 compared with 5.6 ± 1.3 for oxygen (p nitrous oxide/oxygen mixture was effective in reducing moderate to severe breakthrough pain among patients with cancer. The management of breakthrough cancer pain is always a challenge due to its temporal characteristics of rapid onset, moderate to severe in intensity, short duration (median 30-60 min). Our study find that self-administered nitrous oxide/oxygen mixture was effective in reducing moderate to severe breakthrough cancer pain. © 2017 European Pain Federation - EFIC®.

  7. Plant-wide modelling and control of nitrous oxide emissions from wastewater treatment plants

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo

    Nitrous oxide (N2O) is a greenhouses gas with a global warming potential three hundred times stronger than carbon dioxide (CO2). The IPCC report released in 2014 shows that the CO2 equivalents emitted from the wastewater systems are increasing in the last decades. It was also estimated that 14......% of those CO2 equivalents comes from N2O emissions. It becomes therefore relevant, within the context of reducing the carbon footprint of wastewater treatment (WWT) systems, to develop control strategies aimed at the minimization of the emissions of this gas. Till now, few operation strategies have been....... To avoid poor performance behaviour due to intuitive design, a systematic procedure for the design of fuzzy-logic controllers is developed using a partial nitritation/Anammox system as application case. The same systematic methodology is then adopted to tune the fuzzy-logic controller for low N2O emissions...

  8. Nitrous oxide production and consumption potential in an agricultural and a forest soil

    DEFF Research Database (Denmark)

    Yu, Kewei; Struwe, Sten; Kjøller, Annelise

    2008-01-01

    Both a laboratory incubation experiment using soils from an agricultural field and a forest and field measurements at the same locations were conducted to determine nitrous oxide (N2O) production and consumption (reduction) potentials using the acetylene (C2H2) inhibition technique. Results from...... measurements show that average N2O emission rates were 0.56 and 0.59 kg N ha-1 in the agricultural field and forest, respectively. When C2H2 was provided in the field measurements, N2O emission rates from the agricultural field and forest increased by 38 and 51%, respectively. Nitrous oxide consumption under...

  9. Nitrogen source effects on soil nitrous oxide emissions from strip-till corn.

    Science.gov (United States)

    Halvorson, Ardell D; Del Grosso, Stephen J; Jantalia, Claudia Pozzi

    2011-01-01

    Nitrogen (N) application to crops generally results in increased nitrous oxide (NO) emissions. Commercially available, enhanced-efficiency N fertilizers were evaluated for their potential to reduce NO emissions from a clay loam soil compared with conventionally used granular urea and urea-ammonium nitrate (UAN) fertilizers in an irrigated strip-till (ST) corn ( L.) production system. Enhanced-efficiency N fertilizers evaluated were a controlled-release, polymer-coated urea (ESN), stabilized urea, and UAN products containing nitrification and urease inhibitors (SuperU and UAN+AgrotainPlus), and UAN containing a slow-release N source (Nfusion). Each N source was surface-band applied (202 kg N ha) at corn emergence and watered into the soil the next day. A subsurface-band ESN treatment was included. Nitrous oxide fluxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. All N sources had significantly lower growing season NO emissions than granular urea, with UAN+AgrotainPlus and UAN+Nfusion having lower emissions than UAN. Similar trends were observed when expressing NO emissions on a grain yield and N uptake basis. Loss of NO-N per kilogram of N applied was <0.8% for all N sources. Corn grain yields were not different among N sources but greater than treatments with no N applied. Selection of N fertilizer source can be a mitigation practice for reducing NO emissions in strip-till, irrigated corn in semiarid areas. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Effects of some anaesthetics on honeybees: nitrous oxide, carbon dioxide, ammonium nitrate smoker fumes

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J

    1954-08-01

    Honeybees were apparently unaffected by atmospheric oxygen concentrations between 7% and 100%, and only became motionless when the oxygen concentration was less than 2%. The effects of nitrous oxide-oxygen mixtures differed little, if at all, from those nitrogen-oxygen mixtures. Bees were not visibly affected by carbon dioxide concentrations up to 10-15% but they became motionless if the concentration exceeded 40-45%. Fumes produced by adding ammonium nitrate to the fuel in a beekeeper's smoker were found to contain hydrogen cyanide or cyanogen. Their effectiveness as an anaesthetic may be due to this or to some unidentified component, but not to nitrous oxide. All three anaesthetics caused foraging bees to stop collecting pollen, and accelerated the retrogression of the pharyngeal glands of young bees. Anaesthesia of a few bees in a colony with nitrous oxide, carbon dioxide, or ammonium nitrate smoker fumes did not appear to inhibit their drift back to the original site when their hive was moved, nor was any reduction in drifting observed when a whole colony was moved while anaesthetized with ammonium nitrate smoker fumes. 4 tables.

  11. Does anaesthesia with nitrous oxide affect mortality or cardiovascular morbidity? A systematic review with meta-analysis and trial sequential analysis.

    Science.gov (United States)

    Imberger, G; Orr, A; Thorlund, K; Wetterslev, J; Myles, P; Møller, A M

    2014-03-01

    The role of nitrous oxide in modern anaesthetic practice is contentious. One concern is that exposure to nitrous oxide may increase the risk of cardiovascular complications. ENIGMA II is a large randomized clinical trial currently underway which is investigating nitrous oxide and cardiovascular complications. Before the completion of this trial, we performed a systematic review and meta-analysis, using Cochrane methodology, on the outcomes that make up the composite primary outcome. We used conventional meta-analysis and trial sequential analysis (TSA). We reviewed 8282 abstracts and selected 138 that fulfilled our criteria for study type, population, and intervention. We attempted to contact the authors of all the selected publications to check for unpublished outcome data. Thirteen trials had outcome data eligible for our outcomes. We assessed three of these trials as having a low risk of bias. Using conventional meta-analysis, the relative risk of short-term mortality in the nitrous oxide group was 1.38 [95% confidence interval (CI) 0.22-8.71] and the relative risk of long-term mortality in the nitrous oxide group was 0.94 (95% CI 0.80-1.10). In both cases, TSA demonstrated that the data were far too sparse to make any conclusions. There were insufficient data to perform meta-analysis for stroke, myocardial infarct, pulmonary embolus, or cardiac arrest. This systematic review demonstrated that we currently do not have robust evidence for how nitrous oxide used as part of general anaesthesia affects mortality and cardiovascular complications.

  12. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea.

    Science.gov (United States)

    Stieglmeier, Michaela; Mooshammer, Maria; Kitzler, Barbara; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Richter, Andreas; Schleper, Christa

    2014-05-01

    Soil emissions are largely responsible for the increase of the potent greenhouse gas nitrous oxide (N2O) in the atmosphere and are generally attributed to the activity of nitrifying and denitrifying bacteria. However, the contribution of the recently discovered ammonia-oxidizing archaea (AOA) to N2O production from soil is unclear as is the mechanism by which they produce it. Here we investigate the potential of Nitrososphaera viennensis, the first pure culture of AOA from soil, to produce N2O and compare its activity with that of a marine AOA and an ammonia-oxidizing bacterium (AOB) from soil. N. viennensis produced N2O at a maximum yield of 0.09% N2O per molecule of nitrite under oxic growth conditions. N2O production rates of 4.6±0.6 amol N2O cell(-1) h(-1) and nitrification rates of 2.6±0.5 fmol NO2(-) cell(-1) h(-1) were in the same range as those of the AOB Nitrosospira multiformis and the marine AOA Nitrosopumilus maritimus grown under comparable conditions. In contrast to AOB, however, N2O production of the two archaeal strains did not increase when the oxygen concentration was reduced, suggesting that they are not capable of denitrification. In (15)N-labeling experiments we provide evidence that both ammonium and nitrite contribute equally via hybrid N2O formation to the N2O produced by N. viennensis under all conditions tested. Our results suggest that archaea may contribute to N2O production in terrestrial ecosystems, however, they are not capable of nitrifier-denitrification and thus do not produce increasing amounts of the greenhouse gas when oxygen becomes limiting.

  13. Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems.

    Science.gov (United States)

    Chandran, Kartik; Stein, Lisa Y; Klotz, Martin G; van Loosdrecht, Mark C M

    2011-12-01

    Chemolithoautotrophic AOB (ammonia-oxidizing bacteria) form a crucial component in microbial nitrogen cycling in both natural and engineered systems. Under specific conditions, including transitions from anoxic to oxic conditions and/or excessive ammonia loading, and the presence of high nitrite (NO₂⁻) concentrations, these bacteria are also documented to produce nitric oxide (NO) and nitrous oxide (N₂O) gases. Essentially, ammonia oxidation in the presence of non-limiting substrate concentrations (ammonia and O₂) is associated with N₂O production. An exceptional scenario that leads to such conditions is the periodical switch between anoxic and oxic conditions, which is rather common in engineered nitrogen-removal systems. In particular, the recovery from, rather than imposition of, anoxic conditions has been demonstrated to result in N₂O production. However, applied engineering perspectives, so far, have largely ignored the contribution of nitrification to N₂O emissions in greenhouse gas inventories from wastewater-treatment plants. Recent field-scale measurements have revealed that nitrification-related N₂O emissions are generally far higher than emissions assigned to heterotrophic denitrification. In the present paper, the metabolic pathways, which could potentially contribute to NO and N₂O production by AOB have been conceptually reconstructed under conditions especially relevant to engineered nitrogen-removal systems. Taken together, the reconstructed pathways, field- and laboratory-scale results suggest that engineering designs that achieve low effluent aqueous nitrogen concentrations also minimize gaseous nitrogen emissions.

  14. Controls of nitrous oxide emission after simulated cattle urine deposition

    DEFF Research Database (Denmark)

    Baral, Khagendra Raj; Thomsen, Anton Gårde; Olesen, Jørgen E

    2014-01-01

    Urine deposited during grazing is a significant source of atmospheric nitrous oxide (N2O). The potential for N2O emissions from urine patches is high, and a better understanding of controls is needed. This study investigated soil nitrogen (N) dynamics and N2O emissions from cattle urine...

  15. Gas-Phase Photocatalytic Oxidation of Dimethylamine: The Reaction Pathway and Kinetics

    Directory of Open Access Journals (Sweden)

    Anna Kachina

    2007-01-01

    Full Text Available Gas-phase photocatalytic oxidation (PCO and thermal catalytic oxidation (TCO of dimethylamine (DMA on titanium dioxide was studied in a continuous flow simple tubular reactor. Volatile PCO products of DMA included ammonia, formamide, carbon dioxide, and water. Ammonia was further oxidized in minor amounts to nitrous oxide and nitrogen dioxide. Effective at 573 K, TCO resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide, and water. The PCO kinetic data fit well to the monomolecular Langmuir-Hinshelwood model, whereas TCO kinetic behaviour matched the first-order process. No deactivation of the photocatalyst during the multiple long-run experiments was observed.

  16. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning

    Science.gov (United States)

    Anderson, Iris C.; Levine, Joel S.; Poth, Mark A.; Riggan, Philip J.

    1988-01-01

    Recent measurements indicate significantly enhanced biogenic soil emissions of both nitric oxide (NO) and nitrous oxide (N2O) following surface burning. These enhanced fluxes persisted for at least six months following the burn. Simultaneous measurements indicate enhanced levels of exchangeable ammonium in the soil following the burn. Biomass burning is known to be an instantaneous source of NO and N2O resulting from high-temperature combustion. Now it is found that biomass burning also results in significantly enhanced biogenic emissions of these gases, which persist for months following the burn.

  17. Biochar and soil nitrous oxide emissions

    Directory of Open Access Journals (Sweden)

    Carlos Francisco Brazão Vieira Alho

    2012-05-01

    Full Text Available The objective of this work was to evaluate the effect of biochar application on soil nitrous oxide emissions. The experiment was carried out in pots under greenhouse conditions. Four levels of ground commercial charcoal of 2 mm (biochar were evaluated in a sandy Albaqualf (90% of sand: 0, 3, 6, and 9 Mg ha-1. All treatments received 100 kg ha-1 of N as urea. A cubic effect of biochar levels was observed on the N2O emissions. Biochar doses above 5 Mg ha-1 started to mitigate the emissions in the evaluated soil. However, lower doses promote the emissions.

  18. Nitrous oxide emissions in cover crop-based corn production systems

    Science.gov (United States)

    Davis, Brian Wesley

    Nitrous oxide (N2O) is a potent greenhouse gas; the majority of N2O emissions are the result of agricultural management, particularly the application of N fertilizers to soils. The relationship of N2O emissions to varying sources of N (manures, mineral fertilizers, and cover crops) has not been well-evaluated. Here we discussed a novel methodology for estimating precipitation-induced pulses of N2O using flux measurements; results indicated that short-term intensive time-series sampling methods can adequately describe the magnitude of these pulses. We also evaluated the annual N2O emissions from corn-cover crop (Zea mays; cereal rye [Secale cereale], hairy vetch [Vicia villosa ], or biculture) production systems when fertilized with multiple rates of subsurface banded poultry litter, as compared with tillage incorporation or mineral fertilizer. N2O emissions increased exponentially with total N rate; tillage decreased emissions following cover crops with legume components, while the effect of mineral fertilizer was mixed across cover crops.

  19. Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules.

    Science.gov (United States)

    Ishii, Satoshi; Song, Yanjun; Rathnayake, Lashitha; Tumendelger, Azzaya; Satoh, Hisashi; Toyoda, Sakae; Yoshida, Naohiro; Okabe, Satoshi

    2014-10-01

    The identification of the key nitrous oxide (N2O) production pathways is important to establish a strategy to mitigate N2O emission. In this study, we combined real-time gas-monitoring analysis, (15)N stable isotope analysis, denitrification functional gene transcriptome analysis and microscale N2O concentration measurements to identify the main N2O producers in a partial nitrification (PN) aerobic granule reactor, which was fed with ammonium and acetate. Our results suggest that heterotrophic denitrification was the main contributor to N2O production in our PN aerobic granule reactor. The heterotrophic denitrifiers were probably related to Rhodocyclales bacteria, although different types of bacteria were active in the initial and latter stages of the PN reaction cycles, most likely in response to the presence of acetate. Hydroxylamine oxidation and nitrifier denitrification occurred, but their contribution to N2O emission was relatively small (20-30%) compared with heterotrophic denitrification. Our approach can be useful to quantitatively examine the relative contributions of the three pathways (hydroxylamine oxidation, nitrifier denitrification and heterotrophic denitrification) to N2O emission in mixed microbial populations. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Effect of nitrous oxide on the efficacy of the inferior alveolar nerve block in patients with symptomatic irreversible pulpitis.

    Science.gov (United States)

    Stanley, William; Drum, Melissa; Nusstein, John; Reader, Al; Beck, Mike

    2012-05-01

    The inferior alveolar nerve (IAN) block does not always result in successful pulpal anesthesia. Anesthetic success rates might be affected by increased anxiety. Nitrous oxide has been shown to have both anxiolytic and analgesic properties. Therefore, the purpose of this prospective, randomized, double-blind, placebo-controlled study was to determine the effect of nitrous oxide on the anesthetic success of the IAN block in patients experiencing symptomatic irreversible pulpitis. One hundred emergency patients diagnosed with symptomatic irreversible pulpitis of a mandibular posterior tooth were enrolled in this study. Each patient was randomly assigned to receive an inhalation regimen of nitrous oxide/oxygen mix or room air/oxygen mix (placebo) 5 minutes before the administration of the IAN block. Endodontic access was begun 15 minutes after completion of the IAN block, and all patients had profound lip numbness. Success was defined as no or mild pain (visual analog scale recordings) on access or instrumentation. The success rate for the IAN block was 50% for the nitrous oxide group and 28% for the placebo group. There was a statistically significant difference between the 2 groups (P = .024). For mandibular teeth diagnosed with symptomatic irreversible pulpitis, administration of 30%-50% nitrous oxide resulted in a statistically significant increase in the success of the IAN block compared with room air/oxygen. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Introduction of Inhaled Nitrous Oxide and Oxygen for Pain Management during Labour – Evaluation of Patientsʼ and Midwivesʼ Satisfaction

    Science.gov (United States)

    Dammer, U.; Weiss, C.; Raabe, E.; Heimrich, J.; Koch, M. C.; Winkler, M.; Faschingbauer, F.; Beckmann, M. W.; Kehl, S.

    2014-01-01

    Aim: Effective pain management during labour is important because pain affects the birth experience. Epidural analgesia is effective but often it may not be possible; however, inhaled analgesia offers another option. Use of inhaled nitrous oxide and oxygen for pain management in labour is well established in obstetrics but is still not used much in Germany. This study aimed to investigate the acceptance of the inhaled analgesia of inhaled nitrous oxide and oxygen by midwives and pregnant women during labour. Material and Methods: In this observational study carried out between April and September 2013, a total of 66 pregnant women received inhaled nitrous oxide and oxygen during labour on request and after prior assessment of suitability. After the birth, all of the women and the responsible midwives were interviewed about their experience and satisfaction with the inhaled analgesia. Results: A statistically significant reduction of pain was achieved with nitrous oxide and oxygen. The inhaled analgesia was mostly used by women who refused epidural analgesia. The likelihood of using inhaled nitrous oxide and oxygen again was reported as higher for patients who tolerated it well (p = 0.0129) and used it in the second stage of labour (p = 0.0003) and when bearing down (p = 0.0008). Conclusion: Inhaled nitrous oxide and oxygen is an effective method for pain management during labour and is accepted well by women in labour and by midwives. PMID:25100880

  2. Effect of high-temperature treatment on Fe/ZSM-5 prepared by chemical vapor deposition of FeCl3. II. Nitrous oxide decomposition, selective oxidation of benzene to phenol, and selective reduction of nitric oxide by isobutane

    NARCIS (Netherlands)

    Zhu, Q.; Teeffelen, van R.M.; Santen, van R.A.; Hensen, E.J.M.

    2004-01-01

    The catalytic performance (nitrous oxide decomposition, hydroxylation of benzene to phenol with nitrous oxide, and selective reduction of nitric oxide by i-butane) was evaluated for a set of HZSM-5 and sublimed Fe/ZSM-5 catalysts, which have been extensively characterized in an earlier contribution

  3. Nitrogen source effects on nitrous oxide emissions from irrigated no-till corn.

    Science.gov (United States)

    Halvorson, Ardell D; Del Grosso, Stephen J; Francesco, Alluvione

    2010-01-01

    Nitrogen fertilization is essential for optimizing crop yields; however, it may potentially increase nitrous oxide (N2O) emissions. The study objective was to assess the ability of commercially available enhanced-efficiency N fertilizers to reduce N2O emissions following their application in comparison with conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. Four enhanced-efficiency fertilizers were evaluated: two polymer-coated urea products (ESN and Duration III) and two fertilizers containing nitrification and urease inhibitors (SuperU and UAN+AgrotainPlus). Nitrous oxide fluxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. Enhanced-efficiency fertilizers significantly reduced growing-season N2O-N emissions in comparison with urea, including UAN. SuperU and UAN+AgrotainPlus had significantly lower N2O-N emissions than UAN. Compared with urea, SuperU reduced N2O-N emissions 48%, ESN 34%, Duration III 31%, UAN 27%, and UAN+AgrotainPlus 53% averaged over 2 yr. Compared with UAN, UAN+AgrotainPlus reduced N2O emissions 35% and SuperU 29% averaged over 2 yr. The N2O-N loss as a percentage of N applied was 0.3% for urea, with all other N sources having significantly lower losses. Grain production was not reduced by the use of alternative N sources. This work shows that enhanced-efficiency N fertilizers can potentially reduce N2O-N emissions without affecting yields from irrigated NT corn systems in the semiarid central Great Plains.

  4. Storage of Nitrous Oxide (NOx in Diesel Engine Exhaust Gas using Alumina-Based Catalysts: Preparation, Characterization, and Testing

    Directory of Open Access Journals (Sweden)

    A. Alsobaai

    2017-03-01

    Full Text Available This work investigated the nitrous oxide (NOx storage process using alumina-based catalysts (K2 O/Al2 O3 , CaO/Al2 O3,  and BaO/Al2 O3 . The feed was a synthetic exhaust gas containing 1,000 ppm of nitrogen monoxide (NO, 1,000 ppm i-C4 H10 , and an 8% O2  and N2  balance. The catalyst was carried out at temperatures between 250–450°C and a contact time of 20 minutes. It was found that NOx was effectively adsorbed in the presence of oxygen. The NOx storage capacity of K2 O/Al2 O3 was higher than that of BaO/Al2 O3.  The NOx storage capacity for K2 O/Al2 O3  decreased with increasing temperature and achieved a maximum at 250°C. Potassium loading higher than 15% in the catalyst negatively affected the morphological properties. The combination of Ba and K loading in the catalyst led to an improvement in the catalytic activity compared to its single metal catalysts. As a conclusion, mixed metal oxide was a potential catalyst for de-NOx process in meeting the stringent diesel engine exhaust emissions regulations. The catalysts were characterized by a number of techniques and measurements, such as X-ray diffraction (XRD, electron affinity (EA, a scanning electron microscope (SEM, Brunner-Emmett-Teller (BET to measure surface area, and pore volume and pore size distribution assessments.

  5. Nitrous oxide induced myeloneuropathy: a case report.

    Science.gov (United States)

    Rheinboldt, Matt; Harper, Derrick; Parrish, David; Francis, Kirenza; Blase, John

    2014-02-01

    We report the case of a 35-year-old male with a history of chronic, escalating nitrous oxide abuse who presented to the ER with a history of recent onset generalized weakness, altered sensorium, abnormal posturing of the hands, urinary complaints, and decreased balance. Physical examination was notable for pathologically brisk reflexes in all extremities, generalized flexion contracture of the fingers, decreased sensation in a stocking and glove distribution, and a weakly positive Babinski sign. The patient was noted to be a poor historian with decreased attention and concentration though otherwise generally alert and oriented. No discrete sensory level in the chest or trunk was detected, and the overall clinical appearance was felt to be most compatible with a mixed myeloneuropathic pattern of central and peripheral involvement. Laboratory findings were normal and noncontributory. Cervical spine MRI subsequently performed to rule out cord compression, intrinsic spinal cord mass, or demyelinating disease was notable for a long segment of increased T2 signal extending from C2-C3 to C6-C7 localizing to the dorsal columns of the cord in a typical "inverted V" fashion. No associated cord expansion was seen nor was there evidence of extrinsic compression; faint associated contrast enhancement was observed on post-gadolinium images. Further evaluation with nerve conduction velocity and electromyographic testing was deferred. Based on the exam findings, clinical history, and presentation, a diagnosis of nitrous oxide-related myeloneuropathy was made, and treatment with high-dose vitamin B12 supplementation was instituted. Recovery has been slow to date.

  6. Effects of nitrous oxide on the production of cytokines and chemokines by the airway epithelium during anesthesia with sevoflurane and propofol.

    Science.gov (United States)

    Kumakura, Seiichiro; Yamaguchi, Keisuke; Sugasawa, Yusuke; Murakami, Taisuke; Kikuchi, Toshihiro; Inada, Eiichi; Nagaoka, Isao

    2013-12-01

    The aim of this study was to evaluate the effects of nitrous oxide (a gaseous anesthetic) on the in vivo production of inflammatory cytokines and chemokines by the airway epithelium, when combined with sevoflurane or propofol. Subjects undergoing simple or segmental mastectomy were randomly assigned to the sevoflurane and nitrous oxide, sevoflurane and air, propofol and nitrous oxide, or propofol and air group (all n=13). Epithelial lining fluid (ELF) was obtained using the bronchoscopic microsampling method prior to and following the mastectomy to enable measurement of the pre- and post-operative levels of certain inflammatory cytokines and chemokines using a cytometric bead array system. Notably, the levels of interleukin (IL)-1β, IL-8 and monocyte chemotactic protein-1 (MCP-1) in the ELF were significantly increased following the operations which involved the inhalation of sevoflurane and nitrous oxide, although the levels of these molecules were not significantly changed by the inhalation of sevoflurane and air. Furthermore, the IL-12p70 levels were significantly reduced in the ELF following the operations that involved the inhalation of sevoflurane and air, although the IL-12p70 levels were not significantly changed by the inhalation of nitrous oxide and sevoflurane. These observations suggest that the combination of sevoflurane and nitrous oxide induces an inflammatory response (increased production of IL-1β, IL-8 and MCP-1) and suppresses the anti-inflammatory response (reduced production of IL-12p70) in the local milieu of the airway. Thus, the combination of these compounds should be carefully administered for anesthesia.

  7. Carbon Sequestration and Nitrous Oxide Emissions from Urban Turfgrass Ecosystems in Southern California

    Science.gov (United States)

    Ampleman, M. D.; Czimczik, C. I.; Townsend-Small, A.; Trumbore, S. E.

    2008-12-01

    Irrigated turfgrass ecosystems sequester carbon in soil organic matter, but they may also release nitrous oxide, due to fertilization associated with intensive management practices. Nitrous oxide is an important green house gas with a global warming potential (GWP) of 300 times that of carbon dioxide on a 100 yr time horizon. Although regular irrigation and fertilization of turfgrass create favorable conditions for both C storage and N2O release via nitrification and denitrification by soil microbes, emissions from these highly managed ecosystems are poorly constrained. We quantified N2O emissions and C storage rates for turf grass in four urban parks in the city of Irvine, CA. The turf grass systems we studied were managed by the City of Irvine. Parks were established between 1975 and 2006 on former range land with the same initial parent material; are exposed to the same climate; and form a time series (chronosequence) for investigating rates of C accumulation. We also investigated the effects of management (e.g. grass species, fertilization rate), soil moisture and temperature, and park age on N2O emission from these parks. We quantified N2O emissions using static soil chamber with four 7 min. sampling intervals, and analyzed the samples using an electron capture gas chromatograph. Soil carbon accumulation rates were determined from the slope of the organic C inventory (from 0-20 cm depth) plotted against park age. C storage rates for soils in "leisure" areas were close to 2 Mg C ha-1 yr-1, similar to rates associated with forest regrowth in northeastern US forests. However, as park age and C storage increased, N2O emissions increased as well, such that emissions from the older parks (~20 ngN m-2 s-1) were comparable to published temperate agricultural fluxes. Initial estimates suggest that the GWP associated with N2O emissions approximately offsets the effect of C storage in these ecosystems.

  8. NITRATE AND NITROUS OXIDE CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    Science.gov (United States)

    We are measuring dissolved nitrate and nitrous oxide concentrations and related parameters in 17 headwater streams in the South Fork Broad River, Georgia watershed on a monthly basis. The selected small streams drain watersheds dominated by forest, pasture, residential, or mixed...

  9. NITROUS OXIDE BEHAVIOR IN THE ATMOSPHERE, AND IN COMBUSTION AND INDUSTRIAL SYSTEMS

    Science.gov (United States)

    Tropospheric measurements show that nitrous oxide (N2O) concentrations are increasing over time. This demonstrates the existence of one or more significant anthropogenic sources, a fact that has generated considerable research interest over the last several years. The debate has ...

  10. Concomitant administration of nitrous oxide and remifentanil reduces oral tissue blood flow without decreasing blood pressure during sevoflurane anesthesia in rabbits.

    Science.gov (United States)

    Kasahara, Masataka; Ichinohe, Tatsuya; Okamoto, Sota; Okada, Reina; Kanbe, Hiroaki; Matsuura, Nobuyuki

    2015-06-01

    To determine whether continuous administration of nitrous oxide and remifentanil—either alone or together—alters blood flow in oral tissues during sevoflurane anesthesia. Eight male tracheotomized Japanese white rabbits were anesthetized with sevoflurane under mechanical ventilation. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), common carotid arterial blood flow (CCBF), tongue mucosal blood flow (TMBF), mandibular bone marrow blood flow (BBF), masseter muscle blood flow (MBF), upper alveolar tissue blood flow (UBF), and lower alveolar tissue blood flow (LBF) were recorded in the absence of all test agents and after administration of the test agents (50 % nitrous oxide, 0.4 μg/kg/min remifentanil, and their combination) for 20 min. Nitrous oxide increased SBP, DBP, MAP, CCBF, BBF, MBF, UBF, and LBF relative to baseline values but did not affect HR or TMBF. Remifentanil decreased all hemodynamic variables except DBP. Combined administration of nitrous oxide and remifentanil recovered SBP, DBP, MAP, and CCBF to baseline levels, but HR and oral tissue blood flow remained lower than control values. Our findings suggest that concomitant administration of nitrous oxide and remifentanil reduces blood flow in oral tissues without decreasing blood pressure during sevoflurane anesthesia in rabbits.

  11. Kinetics of uranium (4) oxidation with nitrous acid in the presence of oxalate-ions in nitric and perchloric acid solutions

    International Nuclear Information System (INIS)

    Nikitenko, S.I.; Astafurova, L.N.

    1991-01-01

    Kinetics of uranium (4) oxidation with nitrous acid in the presence of oxalate-ions are studied spectrometrically. It is shown that even at small oxalate concentrations a notable effect of tetravalent uranium stabilization is observed relatively to the oxidation with nitrous acid. In case of a significant excess of oxalate-ions the oxidation rate will be considerably slower as a result of the formation of U(4) bisoxalate complex

  12. Nitrate leaching and nitrous oxide flux in urban forests and grasslands

    Science.gov (United States)

    Peter M. Groffman; Candiss O. Williams; Richard V. Pouyat; Lawrence E. Band; Ian D. Yesilonis

    2009-01-01

    Urban landscapes contain a mix of land-use types with different patterns of nitrogen (N) cycling and export. We measured nitrate (NO3-) leaching and soil:atmosphere nitrous oxide (N2O) flux in four urban grassland and eight forested long-term study plots in the Baltimore, Maryland metropolitan area....

  13. Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples

    NARCIS (Netherlands)

    Kester, R.A.; De Boer, W.; Laanbroek, H.J.

    1996-01-01

    The contribution of nitrifiers and denitrifiers to the nitrous oxide production in slurries of calcareous silt loam and river bank sediment at different oxygen concentrations was determined using acetylene as nitrification inhibitor. The addition of 10 Pa acetylene resulted in inhibition of nitrous

  14. Production and consumption of nitrous oxide in nitrate-ammonifying Wolinella succinogenes cells.

    Science.gov (United States)

    Luckmann, Monique; Mania, Daniel; Kern, Melanie; Bakken, Lars R; Frostegård, Asa; Simon, Jörg

    2014-08-01

    Global warming is moving more and more into the public consciousness. Besides the commonly mentioned carbon dioxide and methane, nitrous oxide (N2O) is a powerful greenhouse gas in addition to its contribution to depletion of stratospheric ozone. The increasing concern about N2O emission has focused interest on underlying microbial energy-converting processes and organisms harbouring N2O reductase (NosZ), such as denitrifiers and ammonifiers of nitrate and nitrite. Here, the epsilonproteobacterial model organism Wolinella succinogenes is investigated with regard to its capacity to produce and consume N2O during growth by anaerobic nitrate ammonification. This organism synthesizes an unconventional cytochrome c nitrous oxide reductase (cNosZ), which is encoded by the first gene of an atypical nos gene cluster. However, W. succinogenes lacks a nitric oxide (NO)-producing nitrite reductase of the NirS- or NirK-type as well as an NO reductase of the Nor-type. Using a robotized incubation system, the wild-type strain and suitable mutants of W. succinogenes that either produced or lacked cNosZ were analysed as to their production of NO, N2O and N2 in both nitrate-sufficient and nitrate-limited growth medium using formate as electron donor. It was found that cells growing in nitrate-sufficient medium produced small amounts of N2O, which derived from nitrite and, most likely, from the presence of NO. Furthermore, cells employing cNosZ were able to reduce N2O to N2. This reaction, which was fully inhibited by acetylene, was also observed after adding N2O to the culture headspace. The results indicate that W. succinogenes cells are competent in N2O and N2 production despite being correctly grouped as respiratory nitrate ammonifiers. N2O production is assumed to result from NO detoxification and nitrosative stress defence, while N2O serves as a terminal electron acceptor in anaerobic respiration. The ecological implications of these findings are discussed. © 2014 The Authors.

  15. Environmental and microbial factors influencing methane and nitrous oxide fluxes in Mediterranean cork oak woodlands: trees make a difference.

    Science.gov (United States)

    Shvaleva, Alla; Siljanen, Henri M P; Correia, Alexandra; Costa E Silva, Filipe; Lamprecht, Richard E; Lobo-do-Vale, Raquel; Bicho, Catarina; Fangueiro, David; Anderson, Margaret; Pereira, João S; Chaves, Maria M; Cruz, Cristina; Martikainen, Pertti J

    2015-01-01

    Cork oak woodlands (montado) are agroforestry systems distributed all over the Mediterranean basin with a very important social, economic and ecological value. A generalized cork oak decline has been occurring in the last decades jeopardizing its future sustainability. It is unknown how loss of tree cover affects microbial processes that are consuming greenhouse gases in the montado ecosystem. The study was conducted under two different conditions in the natural understory of a cork oak woodland in center Portugal: under tree canopy (UC) and open areas without trees (OA). Fluxes of methane and nitrous oxide were measured with a static chamber technique. In order to quantify methanotrophs and bacteria capable of nitrous oxide consumption, we used quantitative real-time PCR targeting the pmoA and nosZ genes encoding the subunit of particulate methane mono-oxygenase and catalytic subunit of the nitrous oxide reductase, respectively. A significant seasonal effect was found on CH4 and N2O fluxes and pmoA and nosZ gene abundance. Tree cover had no effect on methane fluxes; conversely, whereas the UC plots were net emitters of nitrous oxide, the loss of tree cover resulted in a shift in the emission pattern such that the OA plots were a net sink for nitrous oxide. In a seasonal time scale, the UC had higher gene abundance of Type I methanotrophs. Methane flux correlated negatively with abundance of Type I methanotrophs in the UC plots. Nitrous oxide flux correlated negatively with nosZ gene abundance at the OA plots in contrast to that at the UC plots. In the UC soil, soil organic matter had a positive effect on soil extracellular enzyme activities, which correlated positively with the N2O flux. Our results demonstrated that tree cover affects soil properties, key enzyme activities and abundance of microorganisms and, consequently net CH4 and N2O exchange.

  16. Marine nitrous oxide emissions: An unknown liability for the international water sector

    International Nuclear Information System (INIS)

    Short, Michael D.; Peters, Gregory M.; Peirson, William L.; Ashbolt, Nicholas J.

    2013-01-01

    Highlights: • IPCC methodology for indirect marine nitrous oxide (N 2 O) emissions does not exist. • The water sector has an unknown N 2 O emissions liability from marine sewage disposal. • We model global sewage-nitrogen (N) emissions to coastal oceans during 1970–2050. • Emission factors for marine N 2 O will enable water sector N 2 O emissions accounting. • Industry benefits will include future revenue streams and better N emissions policy. -- Abstract: Reliable estimates of anthropogenic greenhouse gas (GHG) emissions are essential for setting effective climate policy at both the sector and national level. Current IPCC Guidelines for calculating nitrous oxide (N 2 O) emissions from sewage management are both highly uncertain and incomplete; a major methodological gap relates to the calculation of indirect N 2 O emissions from sewage disposed to marine environments. Here we apply a novel approach to estimate past and future global sewage-nitrogen emissions to coastal oceans and the potential marine N 2 O emissions linked to this nitrogen source. Then, by estimating the future cost associated with this largely uncharacterized emission source, we demonstrate the industry significance of developing a methodology for estimating N 2 O emissions from marine receiving environments. The capacity to accurately estimate, monitor and report GHG emissions has important consequences for informing future policy decisions regarding both mitigation and adaptation. A robust N 2 O emissions estimation methodology for sewage-nitrogen disposed to coastal oceans will allow the international water sector to more accurately and comprehensively inventory its N 2 O emissions. This will in turn allow for proper accounting of related future emissions liabilities while also enabling the sector to capitalize on any future economic returns linked to this source – providing much-needed capital to support the sector's future infrastructure and climate change adaptation challenges

  17. MLS/Aura Level 2 Nitrous Oxide (N2O) Mixing Ratio V004

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2N2O is the EOS Aura Microwave Limb Sounder (MLS) standard product for nitrous oxide derived from radiances measured primarily by the 640 GHz radiometer (Band 12)...

  18. Nitrous Oxides Ozone Destructiveness Under Different Climate Scenarios

    Science.gov (United States)

    Kanter, David R.; McDermid, Sonali P.

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas and ozone depleting substance as well as a key component of the nitrogen cascade. While emissions scenarios indicating the range of N2O's potential future contributions to radiative forcing are widely available, the impact of these emissions scenarios on future stratospheric ozone depletion is less clear. This is because N2O's ozone destructiveness is partially dependent on tropospheric warming, which affects ozone depletion rates in the stratosphere. Consequently, in order to understand the possible range of stratospheric ozone depletion that N2O could cause over the 21st century, it is important to decouple the greenhouse gas emissions scenarios and compare different emissions trajectories for individual substances (e.g. business-as-usual carbon dioxide (CO2) emissions versus low emissions of N2O). This study is the first to follow such an approach, running a series of experiments using the NASA Goddard Institute for Space Sciences ModelE2 atmospheric sub-model. We anticipate our results to show that stratospheric ozone depletion will be highest in a scenario where CO2 emissions reductions are prioritized over N2O reductions, as this would constrain ozone recovery while doing little to limit stratospheric NOx levels (the breakdown product of N2O that destroys stratospheric ozone). This could not only delay the recovery of the stratospheric ozone layer, but might also prevent a return to pre-1980 global average ozone concentrations, a key goal of the international ozone regime. Accordingly, we think this will highlight the importance of reducing emissions of all major greenhouse gas emissions, including N2O, and not just a singular policy focus on CO2.

  19. Nitrous oxide emissions from European agriculture - an analysis of variability and drivers of emissions from field experiments

    DEFF Research Database (Denmark)

    Rees, R M; Agustin, J; Alberti, G

    2013-01-01

    Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot-based experime......Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot...

  20. Effectiveness of Nitrous Oxide as a Liquid Injection Thrust Vector Control Fluid, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nitrous Oxide is proposed as an energetic liquid injection thrust vector control fluid for vehicle attitude control during dynamic vehicle maneuvers. Pulled from the...

  1. Nitrous oxide emissions from wastewater treatment processes

    Science.gov (United States)

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  2. Production of nitrous oxide in the auroral D and E regions

    Science.gov (United States)

    Zipf, E. C.; Prasad, S. S.

    1980-01-01

    A study of nitrous oxide formation mechanisms indicates that N2O concentrations greater than 10 to the 9th per cu cm could be produced in IBC III aurora or by lower-level activity lasting for many hours, and, in favorable conditions, the N2O concentration could exceed the local nitric oxide density. An upper limit on the globally averaged N2O production rate from auroral activity is estimated at 2 x 10 to the 27th per second.

  3. Low nitrous oxide production in intermittent-feed high performance nitritating reactors

    DEFF Research Database (Denmark)

    Su, Qingxian; Jensen, Malene M.; Smets, Barth F.

    Nitrous oxide (N2O) production from autotrophic nitrogen removal processes, especially nitritating systems, is of growing concern. N2O dynamics were characterized and N2O production factors were quantified in two lab-scale intermittent-feed nitritating SBRs. 93 ± 14% of the oxidized ammonium...... was converted to nitrite, with the average total net N2O production of 2.1 ± 0.7% of the ammonium oxidized. Operation with intermittent feeding appears an effective optimization approach to mitigate N2O emissions from nitritating systems. Net N2O production rates transiently increased with a rise in pH after...

  4. Optimum time for intravenous cannulation after induction with sevoflurane, oxygen, and nitrous oxide in children without any premedication.

    Science.gov (United States)

    Hasan, Abm Kamrul; Sivasankar, Raman; Nair, Salil G; Hasan, Wamia U; Latif, Zulaidi

    2018-02-01

    Intravenous cannulation is usually done in children after inhalational induction with volatile anesthetic agents. The optimum time for safe intravenous cannulation after induction with sevoflurane, oxygen, and nitrous oxide has been studied in premedicated children, but there is no information for the optimum time for cannulation with inhalational induction in children without premedication. The aim of this study was to determine the optimum time for intravenous cannulation after the induction of anesthesia with sevoflurane, oxygen, and nitrous oxide in children without any premedication. This is a prospective, observer-blinded, up-and-down sequential allocation study in unpremedicated ASA grade 1 children aged 2-6 years undergoing elective dental surgery. Intravenous cannulation was attempted after inhalational induction with sevoflurane, oxygen, and nitrous oxide. The timing of cannulation was considered adequate if there was no movement, coughing, or laryngospasm. The cannulation attempt for the first child was set at 4 minutes after the loss of eyelash reflex and the time for intravenous cannulation was determined by the up-and-down method using 15 seconds as step size. Probit test was used to analyze the up-down sequences for the study. The adequate time for effective cannulation after induction with sevoflurane, oxygen, and nitrous oxide in 50% and 95% of patients was 53.02 seconds (95% confidence limits, 20.23-67.76 seconds) and 87.21 seconds (95% confidence limits, 70.77-248.03 seconds), respectively. We recommend waiting for 1 minute 45 seconds (105 seconds) after the loss of eyelash reflex before attempting intravenous cannulation in pediatric patients induced with sevoflurane, oxygen, and nitrous oxide without any premedication. © 2018 John Wiley & Sons Ltd.

  5. Catalytic Reduction of Nitrous Oxide with Carbon Monoxide over Calcined Co–Mn–Al Hydrotalcite

    Czech Academy of Sciences Publication Activity Database

    Pacultová, K.; Obalová, L.; Kovanda, F.; Jirátová, Květa

    2008-01-01

    Roč. 137, 2-4 (2008), s. 358-389 ISSN 0920-5861 R&D Projects: GA ČR(CZ) GA106/05/0366 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * carbon monoxide * mixed oxide catalysts Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.004, year: 2008

  6. Designing efficient nitrous oxide sampling strategies in agroecosystems using simulation models

    Science.gov (United States)

    Debasish Saha; Armen R. Kemanian; Benjamin M. Rau; Paul R. Adler; Felipe Montes

    2017-01-01

    Annual cumulative soil nitrous oxide (N2O) emissions calculated from discrete chamber-based flux measurements have unknown uncertainty. We used outputs from simulations obtained with an agroecosystem model to design sampling strategies that yield accurate cumulative N2O flux estimates with a known uncertainty level. Daily soil N2O fluxes were simulated for Ames, IA (...

  7. Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor.

    Science.gov (United States)

    Su, Fei; Takaya, Naoki; Shoun, Hirofumi

    2004-02-01

    Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.

  8. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions.

    Science.gov (United States)

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl-Heinz

    2012-05-01

    Due to its high global warming potential, nitrous oxide (N(2)O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N(2)O production. In this study, two lab-scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N(2)O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH(4)(+)) and nitrite (NO(2)(-)) led to increased N(2)O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N(2)O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Nitrous oxide does not influence operating conditions or postoperative course in colonic surgery

    DEFF Research Database (Denmark)

    Krogh, B; Jørn Jensen, P; Henneberg, S W

    1994-01-01

    We studied 150 patients undergoing elective colonic surgery; they were allocated randomly to undergo artificial ventilation with either air-oxygen or nitrous oxide-oxygen during surgery. Eleven patients were excluded. Preoperative management, surgery and postoperative analgesia were similar in bo...

  10. Nitrous oxide productivity of soil fungi along a gradient of cattle impact

    Czech Academy of Sciences Publication Activity Database

    Jirout, Jiří

    2015-01-01

    Roč. 17, October (2015), s. 155-163 ISSN 1754-5048 R&D Projects: GA ČR GPP504/12/P752 Institutional support: RVO:60077344 Keywords : soil * fungi * nitrous oxide * selective inhibition * cattle overwintering * oxygen availability Subject RIV: EE - Microbiology, Virology Impact factor: 2.631, year: 2015

  11. Corn nitrogen management influences nitrous oxide emissions in drained and undrained soils

    Science.gov (United States)

    Tile-drainage and nitrogen (N) fertilization are important for corn (Zea mays L.) production. To date, no studies have evaluated nitrous oxide (N2O) emissions of single vs. split-N fertilizer application under different soil drainage conditions. The objective of this study was to quantify season-lon...

  12. Comparative evaluation of stress levels before, during, and after periodontal surgical procedures with and without nitrous oxide-oxygen inhalation sedation

    Directory of Open Access Journals (Sweden)

    Gurkirat Sandhu

    2017-01-01

    Full Text Available Context: Periodontal surgical procedures produce varying degree of stress in all patients. Nitrous oxide-oxygen inhalation sedation is very effective for adult patients with mild-to-moderate anxiety due to dental procedures and needle phobia. Aim: The present study was designed to perform periodontal surgical procedures under nitrous oxide-oxygen inhalation sedation and assess whether this technique actually reduces stress physiologically, in comparison to local anesthesia alone (LA during lengthy periodontal surgical procedures. Settings and Design: This was a randomized, split-mouth, cross-over study. Materials and Methods: A total of 16 patients were selected for this randomized, split-mouth, cross-over study. One surgical session (SS was performed under local anesthesia aided by nitrous oxide-oxygen inhalation sedation, and the other SS was performed on the contralateral quadrant under LA. For each session, blood samples to measure and evaluate serum cortisol levels were obtained, and vital parameters including blood pressure, heart rate, respiratory rate, and arterial blood oxygen saturation were monitored before, during, and after periodontal surgical procedures. Statistical Analysis Used: Paired t-test and repeated measure ANOVA. Results: The findings of the present study revealed a statistically significant decrease in serum cortisol levels, blood pressure and pulse rate and a statistically significant increase in respiratory rate and arterial blood oxygen saturation during periodontal surgical procedures under nitrous oxide inhalation sedation. Conclusion: Nitrous oxide-oxygen inhalation sedation for periodontal surgical procedures is capable of reducing stress physiologically, in comparison to LA during lengthy periodontal surgical procedures.

  13. Simulation of nitrous oxide and nitric oxide emissions from tropical primary forests in the Costa Rican Atlantic Zone

    Science.gov (United States)

    Shuguanga Liu; William A. Reiners; Michael Keller; Davis S. Schimel

    2000-01-01

    Nitrous oxide (N2O) and nitric oxide (NO) are important atmospheric trace gases participating in the regulation of global climate and environment. Predictive models on the emissions of N2O and NO emissions from soil into the atmosphere are required. We modified the CENTURY model (Soil Sci. Soc. Am. J., 51 (1987) 1173) to simulate the emissions of N2O and NO from...

  14. Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production

    Science.gov (United States)

    Couto, F. M.; Sthel, M. S.; Castro, M. P. P.; da Silva, M. G.; Rocha, M. V.; Tavares, J. R.; Veiga, C. F. M.; Vargas, H.

    2014-12-01

    In order to investigate the generation of greenhouse gases in sugarcane ethanol production chain, a comparative study of N2O emission in artificially fertilized soils and soils free from fertilizers was carried out. Photoacoustic spectroscopy using quantum cascade laser with an emission ranging from 7.71 to 7.88 µm and differential photoacoustic cell were applied to detect nitrous oxide (N2O), an important greenhouse gas emitted from soils cultivated with sugar cane. Owing to calibrate the experimental setup, an initial N2O concentration was diluted with pure nitrogen and detection limit of 50 ppbv was achieved. The proposed methodology was selective and sensitive enough to detect N2O from no fertilized and artificially fertilized soils. The measured N2O concentration ranged from ppmv to ppbv.

  15. Fungal contribution to nitrous oxide emissions from cattle impacted soils

    Czech Academy of Sciences Publication Activity Database

    Jirout, Jiří; Šimek, Miloslav; Elhottová, Dana

    2013-01-01

    Roč. 90, č. 2 (2013), s. 565-572 ISSN 0045-6535 R&D Projects: GA ČR GPP504/12/P752; GA MŠk LC06066 Grant - others:GAJU(CZ) 04-142/2010/P Institutional research plan: CEZ:AV0Z60660521 Institutional support: RVO:60077344 Keywords : nitrous oxide * soil fungi * upland pasture * cattle * outdoor husbandry Subject RIV: EE - Microbiology, Virology Impact factor: 3.499, year: 2013

  16. Nitrous oxide emissions from the Arabian Sea: A synthesis

    Digital Repository Service at National Institute of Oceanography (India)

    Bange, H.W.; Andreae, M.O.; Lal, S.; Law, C.S.; Naqvi, S.W.A.; Patra, P.K.; Rixen, P.K.; Upstill-Goddard, R.C.

    ) seasonal and annual nitrous oxide (N2O) con- centration fields for the Arabian Sea surface layer using a database containing more than 2400 values measured be- tween December 1977 and July 1997. N2O concentrations are highest during the southwest (SW... is much more tightly constrained than the previous con- sensus derived using averaged in-situ data from a smaller number of studies. However, the tendency to focus on mea- surements in locally restricted features in combination with insufficient seasonal...

  17. Nitrous oxide emissions could reduce the blue carbon value of marshes on eutrophic estuaries

    Science.gov (United States)

    Roughan, Brittney L.; Kellman, Lisa; Smith, Erin; Chmura, Gail L.

    2018-04-01

    The supply of nitrogen to ecosystems has surpassed the Earth’s Planetary Boundary and its input to the marine environment has caused estuarine waters to become eutrophic. Excessive supply of nitrogen to salt marshes has been associated with shifts in species’ distribution and production, as well as marsh degradation and loss. Our study of salt marshes in agriculturally intensive watersheds shows that coastal eutrophication can have an additional impact. We measured gas fluxes from marsh soils and verified emissions of nitrous oxide (N2O) in nitrogen-loaded marshes while the reference marsh was a sink for this gas. Salt marsh soils are extremely efficient carbon sinks, but emissions of N2O, a greenhouse gas 298 times more potent than CO2, reduces the value of the carbon sink, and in some marshes, may counterbalance any value of stored carbon towards mitigation of climate change. Although more research is merited on the nitrogen transformations and carbon storage in eutrophic marshes, the possibility of significant N2O emissions should be considered when evaluating the market value of carbon in salt marshes subject to high levels of nitrogen loading.

  18. Aeration Strategies To Mitigate Nitrous Oxide Emissions from Single-Stage Nitritation/Anammox Reactors

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Mutlu, A. Gizem; Jensen, Marlene Mark

    2014-01-01

    Autotrophic nitrogen removal is regarded as a resource efficient process to manage nitrogen-rich residual streams. However, nitrous oxide emissions of these processes are poorly documented and strategies to mitigate emissions unknown. In this study, two sequencing batch reactors performing single...... was noted when the duration of aeration was increased while decreasing air flow rate (10.9 +/- 3.2% Delta N2O/Delta TN). The extant ammonium oxidation activity (mgNH(4)(+)-N/gVSS.min) positively correlated with the specific N2O production rate (mgN(2)O-N/gVSS.min) of the systems. Operating under conditions......-stage nitritation/anammox were operated under different aeration strategies, gradually adjusted over six months. At constant but limiting oxygen loading, synthetic reject water was fed (0.75g-N/L.d) and high nitrogen removal efficiencies (83 +/- 5 and 88 +/- 2%) obtained. Dynamics of liquid phase nitrous (N2O...

  19. Nitrogen loss from grassland on peat soils through nitrous oxide production.

    NARCIS (Netherlands)

    Koops, J.G.; Beusichem, van M.L.; Oenema, O.

    1997-01-01

    Nitrous oxide (N2O) in soils is produced through nitrification and denitrification. The N2O produced is considered as a nitrogen (N) loss because it will most likely escape from the soil to the atmosphere as N2O or N2. Aim of the study was to quantify N2O production in grassland on peat soils in

  20. [Sedation with nitrous oxide in daily practice].

    Science.gov (United States)

    Martens, Luc C; Marks, Luc A

    2003-01-01

    Conscious sedation is recommended, together with behaviour management techniques, to facilitate treatment of dental fear or dental phobia patients. In this article the authors focus on inhalation sedation by means of nitrous oxide. The procedures and indications are explained and illustrated with clinical cases. On the strength of the literature and their own experience the authors reach the conclusion that Inhalation sedation is a kind of pharmacological behaviour management and an important additional tool to increase patient cooperation. Inhalation sedation can only be performed by trained practitioners under internationally accepted safety conditions. Inhalation sedation has a future in Belgium providing the appropriate law is adapted. This technique deserves a place in the dental curriculum.

  1. Nitrous Oxide Abuse and Vitamin B12 Action in a 20-Year-Old Woman: A Case Report.

    Science.gov (United States)

    Duque, Miriam Andrea; Kresak, Jesse L; Falchook, Adam; Harris, Neil S

    2015-01-01

    Herein, we report a case of a 20-year-old (ethnicity not reported) woman with a history of nitrous oxide abuse and clinical symptoms consistent with spinal cord subacute combined degeneration with associated low serum concentrations of vitamin B12, elevated methylmalonic acid levels, and radiologic evidence of demyelination of the dorsal region of the spinal column. The health of the patient improved dramatically with B12 supplementation. In this case, we discuss the interaction of nitrous oxide with the enzymatic pathways involved in the biochemistry of vitamin B12. Copyright© by the American Society for Clinical Pathology (ASCP).

  2. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  3. Biochemical characterization of the purple form of Marinobacter hydrocarbonoclasticus nitrous oxide reductase

    Science.gov (United States)

    Dell'Acqua, Simone; Pauleta, Sofia R.; Moura, José J. G.; Moura, Isabel

    2012-01-01

    Nitrous oxide reductase (N2OR) catalyses the final step of the denitrification pathway—the reduction of nitrous oxide to nitrogen. The catalytic centre (CuZ) is a unique tetranuclear copper centre bridged by inorganic sulphur in a tetrahedron arrangement that can have different oxidation states. Previously, Marinobacter hydrocarbonoclasticus N2OR was isolated with the CuZ centre as CuZ*, in the [1Cu2+ : 3Cu+] redox state, which is redox inert and requires prolonged incubation under reductive conditions to be activated. In this work, we report, for the first time, the isolation of N2OR from M. hydrocarbonoclasticus in the ‘purple’ form, in which the CuZ centre is in the oxidized [2Cu2+ : 2Cu+] redox state and is redox active. This form of the enzyme was isolated in the presence of oxygen from a microaerobic culture in the presence of nitrate and also from a strictly anaerobic culture. The purple form of the enzyme was biochemically characterized and was shown to be a redox active species, although it is still catalytically non-competent, as its specific activity is lower than that of the activated fully reduced enzyme and comparable with that of the enzyme with the CuZ centre in either the [1Cu2+ : 3Cu+] redox state or in the redox inactive CuZ* state. PMID:22451106

  4. Denitrification: An important pathway for nitrous oxide production in tropical mangrove sediments (Goa, India)

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; LokaBharathi, P.A.; Bonin, P.C.; Michotey, V.D.

    Net nitrous oxide production and denitrification activity were measured in two mangrove ecosystems of Goa, India. The relatively pristine site Tuvem was compared to Divar, which is prone to high nutrient input. Stratified sampling at 2-cm intervals...

  5. Estimation of methane and nitrous oxide emissions from paddy fields in Taiwan

    International Nuclear Information System (INIS)

    Yang, Shang-Shyng; Lai, Chao-Ming; Chang, Hsiu-Lan; Chang, Ed-Huan; Wei, Chia-Bei

    2009-01-01

    To investigate the greenhouse gases emissions from paddy fields, methane and nitrous oxide emissions were estimated with the local measurement and the IPCC method during 1990-2006 in Taiwan. Annual methane emission ranged from 9001 to 14,980 ton in the first crop season for 135,314-242,298 ha of paddy fields, and it was between 16,412 and 35,208 ton for 101,710-211,968 ha in the second crop season with the local measurement for intermittent irrigation. The value ranged from 31,122 to 55,729 ton of methane emission in the first crop season, and it was between 29,493 and 61,471 ton in the second crop season with the IPCC guideline for continuous flooding. Annual nitrous oxide emission from paddy fields was between 371 and 728 ton in the first crop season, and the value ranged from 163 to 365 ton in the second crop season with the local measurement. Methane emission from paddy fields in Taiwan for intermittent irrigation was only 26.72-28.92%, 55.65-57.32% and 41.19-43.10% with the IPCC guidelines for continuous flooding and mean temperature of transplanting stage in the first crop, the second crop and total paddy fields, respectively. The values were 53.44-57.84%, 111.29-114.55% and 82.38-86.20% with the IPCC guidelines for single aeration and mean temperature of transplanting stage, respectively; and the values were 133.60-144.61%, 282.56-286.62% and 205.96-215.49% with the IPCC guidelines for multiple aeration and mean temperature of transplanting stage, respectively. Intermittent irrigation in paddy fields reduces methane emission significantly; appropriate application of nitrogen fertilizer and irrigation in paddy fields also decreases nitrous oxide emission. (author)

  6. A prospective, randomized controlled trial of conscious sedation using propofol combined with inhaled nitrous oxide for dental treatment.

    Science.gov (United States)

    Yokoe, Chizuko; Hanamoto, Hiroshi; Sugimura, Mitsutaka; Morimoto, Yoshinari; Kudo, Chiho; Niwa, Hitoshi

    2015-03-01

    Adverse reactions during propofol sedation include a decrease in arterial blood pressure, propofol-induced pain on injection, and airway complications. The purpose of this study was to investigate whether combined use of intravenous propofol and inhaled nitrous oxide could decrease the hypotensive and other adverse effects of propofol. We designed and implemented a prospective, randomized controlled trial. Patients undergoing dental procedures requiring intravenous sedation were randomly allocated to 2 groups: group P comprised those receiving sedation with propofol alone, and group N+P comprised those receiving sedation with 40% nitrous oxide inhalation and propofol. During the dental procedures, the sedation level was maintained at an Observer's Assessment of Alertness/Sedation scale score of 4 by adjusting propofol's target plasma concentration. Nitrous oxide inhalation was the predictor variable, whereas the hemodynamic changes, amount and concentration of propofol, and adverse events were the outcome variables. Eighty-eight patients were successfully analyzed without any complications. The total amount of propofol was significantly less in group N+P (249.8 ± 121.7 mg) than in group P (310.3 ± 122.4 mg) (P = .022), and the mean concentration of propofol was significantly less in group N+P (1.81 ± 0.34 μg/mL) than in group P (2.05 ± 0.44 μg/mL) (P = .006). The mean blood pressure reduction in group N+P (11.0 ± 8.0 mm Hg) was significantly smaller than that in group P (15.8 ± 10.2 mm Hg) (P = .034). Pain associated with the propofol injection and memory of the procedure were less in group N+P (P = .011 and P = .048, respectively). Nitrous oxide did not affect respiratory conditions or recovery characteristics. The results of this study suggest that nitrous oxide inhalation combined with propofol sedation attenuates the hypotensive effect and pain associated with propofol injections, along with potentiating the amnesic effect. Copyright © 2015 American

  7. Nitrous oxide production by micromycetes isolated from soils under cattle overwintering husbandry

    Czech Academy of Sciences Publication Activity Database

    Jirout, Jiří; Šimek, Miloslav; Elhottová, Dana

    2013-01-01

    Roč. 4, č. 2 (2013), s. 427 ISSN 2040-4700. [Greenhouse Gases and Animal Agriculture Conference (GGAA 2013) /5./. 23.06.2013-26.06.2013, Dublin] R&D Projects: GA ČR GPP504/12/P752 Institutional support: RVO:60077344 Keywords : nitrous oxide * micromycetes * soils * cattle overwintering husbandry Subject RIV: EE - Microbiology, Virology

  8. Nitrous Oxide (N2O) emissions from human waste in 1970-2050

    NARCIS (Netherlands)

    Strokal, M.; Kroeze, C.

    2014-01-01

    Nitrous oxide (N2O) is an important contributor to climate change. Human waste is an important source of N2O emissions in several world regions, and its share in global emissions may increase in the future. In this paper we, therefore, address N2O emission from human waste: collected (from treatment

  9. Differentiation of nitrous oxide emission factors for agricultural soils

    International Nuclear Information System (INIS)

    Lesschen, Jan Peter; Velthof, Gerard L.; Vries, Wim de; Kros, Johannes

    2011-01-01

    Nitrous oxide (N 2 O) direct soil emissions from agriculture are often estimated using the default IPCC emission factor (EF) of 1%. However, a large variation in EFs exists due to differences in environment, crops and management. We developed an approach to determine N 2 O EFs that depend on N-input sources and environmental factors. The starting point of the method was a monitoring study in which an EF of 1% was found. The conditions of this experiment were set as the reference from which the effects of 16 sources of N input, three soil types, two land-use types and annual precipitation on the N 2 O EF were estimated. The derived EF inference scheme performed on average better than the default IPCC EF. The use of differentiated EFs, including different regional conditions, allows accounting for the effects of more mitigation measures and offers European countries a possibility to use a Tier 2 approach. - Highlights: → We developed an N 2 O emission factor inference scheme for agricultural soils. → This scheme accounts for different N-input sources and environmental conditions. → The derived EF inference scheme performed better than the default IPCC EF. → The use of differentiated EFs allows for better accounting of mitigation measures. - Emission factors for nitrous oxide from agricultural soils are derived as a function of N-input sources and environmental conditions on the basis of empirical information.

  10. Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers.

    Science.gov (United States)

    Lee, Sung-Woo; Im, Jeongdae; Dispirito, Alan A; Bodrossy, Levente; Barcelona, Michael J; Semrau, Jeremy D

    2009-11-01

    Methane and nitrous oxide are both potent greenhouse gasses, with global warming potentials approximately 25 and 298 times that of carbon dioxide. A matrix of soil microcosms was constructed with landfill cover soils collected from the King Highway Landfill in Kalamazoo, Michigan and exposed to geochemical parameters known to affect methane consumption by methanotrophs while also examining their impact on biogenic nitrous oxide production. It was found that relatively dry soils (5% moisture content) along with 15 mg NH (4) (+) (kg soil)(-1) and 0.1 mg phenylacetylene(kg soil)(-1) provided the greatest stimulation of methane oxidation while minimizing nitrous oxide production. Microarray analyses of pmoA showed that the methanotrophic community structure was dominated by Type II organisms, but Type I genera were more evident with the addition of ammonia. When phenylacetylene was added in conjunction with ammonia, the methanotrophic community structure was more similar to that observed in the presence of no amendments. PCR analyses showed the presence of amoA from both ammonia-oxidizing bacteria and archaea, and that the presence of key genes associated with these cells was reduced with the addition of phenylacetylene. Messenger RNA analyses found transcripts of pmoA, but not of mmoX, nirK, norB, or amoA from either ammonia-oxidizing bacteria or archaea. Pure culture analyses showed that methanotrophs could produce significant amounts of nitrous oxide, particularly when expressing the particulate methane monooxygenase (pMMO). Collectively, these data suggest that methanotrophs expressing pMMO played a role in nitrous oxide production in these microcosms.

  11. Conscious sedation with inhaled 50% nitrous oxide/oxygen premix in photodynamic therapy sessions for vulvar lichen sclerosus treatment.

    Science.gov (United States)

    Cabete, Joana; Campos, Sara; Lestre, Sara

    2015-01-01

    Photodynamic therapy has been described as an effective therapeutic option in selected cases of anogenital lichen sclerosus that are refractory to first-line treatments. However, procedure-related pain is a limiting factor in patient adherence to treatment. The authors report the case of a 75-year-old woman with highly symptomatic vulvar lichen sclerosus, successfully treated with photodynamic therapy. An inhaled 50% nitrous oxide/oxygen premix was administered during sessions, producing a pain-relieving, anxiolytic, and sedative effect without loss of consciousness. This ready-to-use gas mixture may be a well-tolerated and accepted alternative to classical anesthetics in Photodynamic therapy, facilitating patients' adherence to illumination of pain-prone areas.

  12. Direct and indirect nitrous oxide emissions from agricultural soils, 1990 - 2003. Background document on the calculation method for the Dutch National Inventory Report

    International Nuclear Information System (INIS)

    Van der Hoek, K.W.; Van Schijndel, M.W.; Kuikman, P.J.

    2007-01-01

    Since 2005 the Dutch method to calculate the nitrous oxide emissions from agricultural soils has fully complied with the Intergovernmental Panel on Climate Change (IPCC) Good Practice Guidelines. In order to meet the commitments of the Convention on Climate Change and the Kyoto Protocol, nitrous oxide emissions have to be reported annually in the Dutch National Inventory Report (NIR). Countries are encouraged to use country-specific data rather than the default values provided by the IPCC. This report describes the calculation schemes and data sources used for nitrous oxide emissions from agricultural soils in the Netherlands. The nitrous oxide emissions, which contribute to the greenhouse effect, occur due to nitrification and denitrification processes. They include direct emissions from agricultural soils due to the application of animal manure and fertilizer nitrogen and the manure production in the meadow. Also included are indirect emissions resulting from the subsequent leaching of nitrate to ground water and surface waters, and from deposition of ammonia that had volatilized as a result of agricultural activities. Before 2005 indirect emissions in the Netherlands were calculated using a method that did not compare well with IPCC definitions and categories. The elaborate explanation here should facilitate reviewing by experts. Finally, the report also presents an overview of the nitrous oxide emissions from agricultural soils and the underlying data used in the 1990 - 2003 period

  13. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis

    OpenAIRE

    Sun, Yihua; De Vos, Paul; Heylen, Kim

    2016-01-01

    Background Firmicutes have the capacity to remove excess nitrate from the environment via either denitrification, dissimilatory nitrate reduction to ammonium or both. The recent renewed interest in their nitrogen metabolism has revealed many interesting features, the most striking being their wide variety of dissimilatory nitrate reduction pathways. In the present study, nitrous oxide production from Bacillus licheniformis, a ubiquitous Gram-positive, spore-forming species with many industria...

  14. Nitrous oxide flux from landfill leachate-sawdust nitrogenous compost

    International Nuclear Information System (INIS)

    Hui, C.H.; So, M.K.; Lee, C.M.; Chan, G.Y.S.

    2003-01-01

    Composted nitrogenous waste has the potential to produce excessive amounts of nitrous oxide (N 2 O), a potent greenhouse gas that also contributes to stratospheric ozone depletion. In this laboratory study, sawdust was irrigated with varying amounts of landfill leachate with high NH 4 + -N content (3950 mg l -1 ). Physicochemical properties, including the amount of N 2 O produced, were monitored during the composting process over 28 days. A rapid decline in NH 4 + -N in the first 4 days and increasing NO 3 - -N for 11 days was followed by lower but stabilized levels of available-N, even with repeated leachate irrigation. Less than 0.03% of the leachate-applied N was lost as N 2 O. Higher leachate applications as much as tripled N 2 O production, but this represented a lesser proportion overall of the total nitrogen. Addition of glucose to the composting process had no significant effect on N 2 O production. The derived sawdust-leachate compost supported healthy growth of Sesbania rostrata. It is concluded that compost can be produced from sawdust irrigated with landfill leachate without substantial emission of N 2 O, although excessive flux of N 2 O remains about high application rates over longer time periods. (Author)

  15. Nitrous oxide emission reduction in temperate biochar-amended soils

    Science.gov (United States)

    Felber, R.; Hüppi, R.; Leifeld, J.; Neftel, A.

    2012-01-01

    Biochar, a pyrolysis product of organic residues, is an amendment for agricultural soils to improve soil fertility, sequester CO2 and reduce greenhouse gas (GHG) emissions. In highly weathered tropical soils laboratory incubations of soil-biochar mixtures revealed substantial reductions for nitrous oxide (N2O) and carbon dioxide (CO2). In contrast, evidence is scarce for temperate soils. In a three-factorial laboratory incubation experiment two different temperate agricultural soils were amended with green waste and coffee grounds biochar. N2O and CO2 emissions were measured at the beginning and end of a three month incubation. The experiments were conducted under three different conditions (no additional nutrients, glucose addition, and nitrate and glucose addition) representing different field conditions. We found mean N2O emission reductions of 60 % compared to soils without addition of biochar. The reduction depended on biochar type and soil type as well as on the age of the samples. CO2 emissions were slightly reduced, too. NO3- but not NH4+ concentrations were significantly reduced shortly after biochar incorporation. Despite the highly significant suppression of N2O emissions biochar effects should not be transferred one-to-one to field conditions but need to be tested accordingly.

  16. Nitrous oxide (N2O) emission from aquaculture: a review.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Khanal, Samir Kumar

    2012-06-19

    Nitrous oxide (N(2)O) is an important greenhouse gas (GHG) which has a global warming potential 310 times that of carbon dioxide (CO(2)) over a hundred year lifespan. N(2)O is generated during microbial nitrification and denitrification, which are common in aquaculture systems. To date, few studies have been conducted to quantify N(2)O emission from aquaculture. Additionally, very little is known with respect to the microbial pathways through which N(2)O is formed in aquaculture systems. This review suggests that aquaculture can be an important anthropogenic source of N(2)O emission. The global N(2)O-N emission from aquaculture in 2009 is estimated to be 9.30 × 10(10) g, and will increase to 3.83 × 10(11)g which could account for 5.72% of anthropogenic N(2)O-N emission by 2030 if the aquaculture industry continues to increase at the present annual growth rate (about 7.10%). The possible mechanisms and various factors affecting N(2)O production are summarized, and two possible methods to minimize N(2)O emission, namely aquaponic and biofloc technology aquaculture, are also discussed. The paper concludes with future research directions.

  17. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil

    NARCIS (Netherlands)

    Soares, Johnny R.; Cassman, N.; Kielak, A.M.; Pijl, A.S.; do Carmo, J.B.; Lourenço, Késia S.; Laanbroek, H.J.; Cantarella, H.; Kuramae, E.E.

    2016-01-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O

  18. Biochar type and factors affecting N transformation, ammonia volatilization, and nitrous oxide emissions

    Science.gov (United States)

    Soil amendment with biochar has shown the potential to improve nitrogen (N) availability for plant uptake and reduce environmental losses via ammonia (NH3) and nitrous oxide (N2O) emissions. There are still many unknowns on how biochar type and soil conditions affect N dynamics and processes associa...

  19. Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems

    DEFF Research Database (Denmark)

    Lindblom, E.; Arnell, M.; Flores-Alsina, X.

    2016-01-01

    The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O)emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O...

  20. Data for "Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin"

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dissolved oxygen, dissolved nitrous oxide, and water temperature in reservoirs. This dataset is associated with the following publication: Beaulieu , J., C. Nietch ,...

  1. Nitrous oxide: Saturation properties and the phase diagram

    International Nuclear Information System (INIS)

    Ferreira, A.G.M.; Lobo, L.Q.

    2009-01-01

    The experimental values of the coordinates of the triple point and of the critical point of nitrous oxide registered in the literature were assessed and those judged as most reliable have been selected. Empirical equations have been found for the vapour pressure, sublimation and fusion curves. The virial coefficients and saturation properties as functions of temperature along the equilibrium curves are described by reduced equations. They were used in arriving at the molar enthalpies at the triple point and the normal boiling temperature. Equations for the sublimation and fusion curves resulting from the exactly integrated Clapeyron equation compare favourably with the results from the empirical treatment and the experimental data.

  2. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    Science.gov (United States)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  3. Nitrous Oxide Effects the Uptake of Sevoflurane to the Body During Induction

    Directory of Open Access Journals (Sweden)

    Kamil Varlık Erel

    2018-04-01

    Full Text Available Objective: To determine the effects of nitrous oxide (N2O on the speed and quality of the uptake process of sevoflurane during inhalation induction in adult patients. Materials­ and­ Methods: For randomized controlled study, eighty-four American Society of Anesthesiologists I-II patients undergoing gynecological interventions were randomly assigned to receive an 8% sevoflurane mixture with either 67% N2O plus 33% oxygen [Group sevoflurane and nitrous oxide (SA] or 100% oxygen only [Group sevoflurane (S]. Both groups were induced by a single-breath induction. End-tidal and inspiratory concentrations of respiratory and anesthetic gasses were continuously assessed during induction as well as time to loss of eyelash reflex, time to cessation of eye movements, and time to initiation of spontaneous breaths. Patients were intubated by the 5th minute of induction and their vital signs, bispectral indexes, reflex responses to intubation and additional drug requirements for intubation were also recorded. Results: End-tidal sevoflurane concentrations and the ratio of alveolar to inspiratory sevoflurane concentrations (FA/Fi of patients in group SA recorded at the 2nd, the third and the 5th minute of induction showed statistically significant increases when compared with patients in group S. Time to loss of eyelash reflex and time to cessation of eye movements were found to be decreased in group SA by 25 and 13%, respectively. Patients who presented with a reflex response to intubation in group S exceeded patients in group SA by 38.8% and patients who required additional medication for intubation in group S exceeded patients in group SA by 28.6%. Conclusion: The findings of this study support the view that administration of N2O improves the rate and quality of mask induction with sevoflurane. The benefits provided by N2O attributable to the concentrating and second gas effects appear during the first few minutes of induction (2nd, 3rd, and 4th minutes as

  4. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms.

    Science.gov (United States)

    Torres, M J; Simon, J; Rowley, G; Bedmar, E J; Richardson, D J; Gates, A J; Delgado, M J

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation. © 2016 Elsevier Ltd. All rights reserved.

  5. Simulation of nitrous oxide effluxes, crop yields and soil physical properties using the LandscapeDNDC model in managed ecosystem

    Science.gov (United States)

    Nyckowiak, Jedrzej; Lesny, Jacek; Haas, Edwin; Juszczak, Radoslaw; Kiese, Ralf; Butterbach-Bahl, Klaus; Olejnik, Janusz

    2014-05-01

    Modeling of nitrous oxide emissions from soil is very complex. Many different biological and chemical processes take place in soils which determine the amount of emitted nitrous oxide. Additionaly, biogeochemical models contain many detailed factors which may determine fluxes and other simulated variables. We used the LandscapeDNDC model in order to simulate N2O emissions, crop yields and soil physical properties from mineral cultivated soils in Poland. Nitrous oxide emissions from soils were modeled for fields with winter wheat, winter rye, spring barley, triticale, potatoes and alfalfa crops. Simulations were carried out for the plots of the Brody arable experimental station of Poznan University of Life Science in western Poland and covered the period 2003 - 2012. The model accuracy and its efficiency was determined by comparing simulations result with measurements of nitrous oxide emissions (measured with static chambers) from about 40 field campaigns. N2O emissions are strongly dependent on temperature and soil water content, hence we compared also simulated soil temperature at 10cm depth and soil water content at the same depth with the daily measured values of these driving variables. We compared also simulated yield quantities for each individual experimental plots with yield quantities which were measured in the period 2003-2012. We conclude that the LandscapeDNDC model is capable to simulate soil N2O emissions, crop yields and physical properties of soil with satisfactorily good accuracy and efficiency.

  6. The impact of slurry application technique on nitrous oxide emission from agricultural soils

    NARCIS (Netherlands)

    Velthof, G.L.; Mosquera, J.

    2011-01-01

    Direct nitrous oxide (N2O) emissions from fertilized soils are generally estimated using emission factors. However, the emission factors for N2O emission of applied slurry are not well quantified. The effect of slurry application technique on N2O emission was quantified in field experiments in the

  7. Nitrous oxide emissions from forested and harvested ecosystems in northeastern Nova Scotia

    International Nuclear Information System (INIS)

    Kavanaugh, K.; Kellman, L.; Beltrami, H.

    2005-01-01

    Although studies have shown that deforestation alters the emissions of nitrous oxides (N 2 O) from forest soils in tropical environments, little is known about the northern temperate and boreal forests. This study monitored the N 2 O soil emissions from two 3 year old harvested and intact forest pairs of contrasting soil texture. The study was conducted through the late summer to early fall period in the Acadian forest of Atlantic Canada in order to quantify N 2 O emissions associated with each landuse type, and to determine the factors controlling these emissions. The suitability of a photoacoustic gas monitor (PGM) for in situ field measurements of this gas was also evaluated. Each site was equipped with 11 permanent collars for surface flux measurements designed to capture the microsite variability. Subsurface soil gas samplers were installed at depths of 0, 10, 20 and 35 cm below the organic-mineral soil interface. A nonsteady-state vented surface flux chamber coupled to the PGM was used to regularly measure the surface fluxes in order to quantify the soil-atmosphere N 2 O exchanges. The important zones of N 2 O production in the profile were identified by less frequent measurements of subsurface gas concentrations. Soil nitrogen, soil bulk density, and soil pH were measured at each site. Preliminary results reveal that spatial and temporal variability in surface emissions are very high and that there is a difference in the magnitude of fluxes between harvested and intact forest pairs

  8. The integrated nitrous oxide and methane grassland project

    Energy Technology Data Exchange (ETDEWEB)

    Leffelaar, P.A.; Langeveld, C.A.; Hofman, J.E.; Segers, R.; Van den Pol-van Dasselaar, A.; Goudriaan, J.; Rabbinge, R.; Oenema, O. [Department of Theoretical Production Ecology, Wageningen Agricultural University, Wageningen (Netherlands)

    2000-07-01

    The integrated nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) grassland project aims to estimate and explain emissions of these greenhouse gases from two ecosystems, namely drained agricultural peat soil under grass at the experimental farm Zegveld and undrained peat in the nature preserve Nieuwkoopse Plassen, both Netherlands. Peat soils were chosen because of their expected considerable contribution to the greenhouse gas budget considering the prevailing wet and partial anaerobic conditions. The emission dynamics of these ecosystems are considered representatives of large peat areas because the underlying processes are rather general and driven by variables like organic matter characteristics, water and nutrient conditions and type of vegetation. The research approach comprises measurements and modelling at different integration levels relating to the microbiology of the production and consumption of N{sub 2}O and CH{sub 4} (laboratory studies), their movement through peat soil (rhizolab and field studies), and the resulting fluxes (field studies). Typical emissions from drained soil were 15-40 kg ha{sup -1} y{sup -1} N{sub 2}O and virtually zero for CH{sub 4}. The undrained soil in the nature preserve emitted 100-280 kg ha{sup -1} y{sup -1} CH{sub 4}, and probably little N{sub 2}O. The process knowledge, collected and partly integrated in the models, helps to explain these data. For example, the low methane emission from drained peat can more coherently be understood and extrapolated because: (1) upper soil layers are aerobic, thus limiting methane production and stimulating methane oxidation, (2) absence of aerenchymatous roots of wetland plants that connect deeper anaerobic soil layers where methane is produced to the atmosphere and supply labile carbon, (3) a low methane production potential in deep layers due to the low decomposability of organic matter, and (4) long anaerobic periods needed in the topsoil to develop a methane production potential. This

  9. The Dynamics of Nitrous Oxide Emission from the Use of Mineral Fertilizers in Russia

    Directory of Open Access Journals (Sweden)

    A AA. Romanovskaya

    2001-01-01

    Full Text Available The intensity of nitrous oxide (N2O emission was considered based on literature data on the single input of mineral N (nitrogen fertilizers into different agricultural soil types in Russia. Ambient environmental factors exert a combined effect on the process of gaseous nitrogen formation from fertilizers applied. To reduce the uncertainty of estimates as much as possible, only experimental results obtained under conditions similar to natural were selected for the assessments. Mineral nitric fertilizers were applied to soil at a rate of 40 to 75 kg/ha and the N2O emissions were measured for approximately 140 days. Daily average emission values varied from 0.08 to 0.45% of fertilizer nitrogen. Correspondingly, 1.26 and 2.38% of fertilizer nitrogen were emitted as N2O from chernozems and soddy podzols. In 1990, the use of fertilizers in Russian agricultural practices for 53 Gg N2O-N, which equates to approximately 6.1% of global nitrous oxide emissions from nitric fertilizers. Later, the emission dropped because of a decrease in the input of nitric fertilizers to agricultural crops, and in 1998, it constituted just 20.5% of the 1990 level. In the period from 2008 to 2012, the nitrous oxide emission is expected to vary from 0.5 to 65.0 Gg N2O-N due to possible changes in national agricultural development. In the most likely scenario, the use of mineral fertilizers in Russia will account for approximately 34 to 40 Gg N2O-N emissions annually from 2008�2012.

  10. The effect of sepsis and short-term exposure to nitrous oxide on the ...

    African Journals Online (AJOL)

    It is recognised that prolonged anaesthesia with nitrous oxide (N20) induces megaloblastic anaemia by oxidising vitamin B12 To determine whether sepsis aggravates the effect of H20 on haemopoiesis 5 patients with severe sepsis, who required surgery and were exposed to short-term (45 - 105 minutes) N20 anaesthesia, ...

  11. Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis

    NARCIS (Netherlands)

    Cayuela, M.L.; Zwieten, van L.; Singh, B.P.; Jeffery, S.L.; Roig, A.; Sánchez-Monedero, M.A.

    2014-01-01

    More than two thirds of global nitrous oxide (N2O) emissions originate from soil, mainly associated with the extensive use of nitrogen (N) fertilizers in agriculture. Although the interaction of black carbon with the N cycle has been long recognized, the impact of biochar on N2O emissions has only

  12. Predicting nitrous oxide emissions from manure properties and soil moisture: An incubation experiment

    DEFF Research Database (Denmark)

    Baral, Khagendra Raj; Arthur, Emmanuel; Olesen, Jørgen Eivind

    2016-01-01

    Field-applied manure is a source of essential plant nutrients, but benefits may be partly offset by high rates of nitrous oxide (N2O) emissions, as modified by manure characteristics and soil properties. In a 28-d incubation experiment we quantified short-term emissions of N2O from a sandy loam...

  13. Effect of a Combination of Intranasal Ketorolac and Nitrous Oxide on the Success of the Inferior Alveolar Nerve Block in Patients with Symptomatic Irreversible Pulpitis: A Prospective, Randomized, Double-blind Study.

    Science.gov (United States)

    Stentz, Daniel; Drum, Melissa; Reader, Al; Nusstein, John; Fowler, Sara; Beck, Mike

    2018-01-01

    Previous studies in patients with irreversible pulpitis have reported increased success of the inferior alveolar nerve block (IANB) using premedication with ketorolac. Preemptive nitrous oxide administration has also shown an increase in the success of the IANB. Recently, ketorolac has been made available for intranasal delivery. Perhaps combining ketorolac and nitrous oxide would increase success. Therefore, the purpose of this prospective, randomized, double-blind study was to determine the effect of a combination of intranasal ketorolac and nitrous oxide/oxygen on the anesthetic success of the IANB in patients presenting with symptomatic irreversible pulpitis. One hundred two patients experiencing spontaneous moderate to severe pain with symptomatic irreversible pulpitis in a mandibular posterior tooth participated. Patients were randomly divided into 2 groups and received either 31.5 mg intranasal ketorolac or intranasal saline placebo 20 minutes before the administration of nitrous oxide/oxygen. Ten minutes after the administration of nitrous oxide/oxygen, the IANB was given. After profound lip numbness, endodontic treatment was performed. Success was defined as the ability to perform endodontic access and instrumentation with no pain or mild pain. The odds of success for the IANB was 1.631 in the intranasal saline/nitrous oxide group versus the intranasal ketorolac/nitrous oxide group with no significant difference between the groups (P = .2523). Premedication with intranasal ketorolac did not significantly increase the odds of success for the IANB over the use of nitrous oxide/oxygen alone. Supplemental anesthesia will still be needed to achieve adequate anesthesia. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Effects of nitrous oxide on cerebral haemodynamics and metabolism during isoflurane anaesthesia in man

    International Nuclear Information System (INIS)

    Algotsson, L.; Messeter, K.; Rosen, I.; Holmin. T.

    1992-01-01

    Seven normoventilated and five hyperventilated healthy adults undergoing cholecystectomy and anaesthetized with methohexitone, fentanyl and pancuronium were studied with measurement of cerebral blood flow (CBF), cereal metabolic rate of oxygen (CMRo 2 ), and quantified electroencephalography (EEG) under two sets of conditions: 1) 1.7% end-tidal concentration of isoflurane in air/oxygen: 2) 0.85% end-tidal concentration of isoflurane in nitrous oxide (N 2 O)/oxygen. The object was to study the effects of N 2 O during isoflurane anaesthesia on cerebral circulation, metabolism and neuroelectric activity. N 2 O in the anaesthetic gas mixture caused a 43% (P 2 was not significantly altered by N 2 O. EEG demonstrated an activated pattern with decreased low frequency activity and increased high frequency activity. The results confirm that N 2 O is a potent cerebral vasodilator in man, although the mechanisms underlying the effects on CBF are still unclear. (au)

  15. The Effect of Nitrous Oxide Psychosedation on Pantographic Tracings; A preliminary study

    International Nuclear Information System (INIS)

    Fareed, Kamal

    1989-01-01

    The form and reproducibility of pantographic tracings under the influence of relaxant drugs and in patients with muscle dysfunction and TMJ disorders, tend to emphasize the dominance of the neuromuscular factors. The purpose of this study was to demonstrate the effect of nitrous oxide induced psychosedation, on the reproducibility of pantographic tracings of border movements of the mandible. This study included four male subjects (with no signs and symptoms of muscular dysfunction and temporomandibular joint problems). Operator guided border tracings were recorded using the Denar pantograph. Three sets of tracings were recorded: (1) three tracings prior to sedation (Tracing I); (2) one tracing prior to sedation and two after sedation (Tracing II); (3) three tracings after psychosedation (Tracing III). The coincidence of tracings I, II, and 111 were statistically analyzed applying the chi-square (X2) analysis. There was a significant difference in the coincidence of tracings between Tracings 1 and II (X2 = 14.892). There was no significant difference in the coincidence of tracings between Tracings I and III (X2 = 1.338). This suggests that nitrous oxide psychosedation produces a centrally induced relaxation of the musculature, by possibly eliminating the extraneous anxiety producing factors. (author)

  16. Nitrous oxide in the Schelde estuary: production by nitrification and emission to the atmosphere

    NARCIS (Netherlands)

    De Wilde, H.; De Bie, M.J.M.

    2000-01-01

    Concentrations of nitrous oxide (N2O), oxygen, nitrate, and ammonium, as well as nitrification activity were determined along the salinity gradient of the Schelde Estuary, Northwest Europe, in October 1993, March 1994, and July 1996, The entire estuary was always supersaturated with N2O.

  17. Isotopic discrimination during nitrous oxide loss processes: An important piece of the N2O global atmospheric budget

    International Nuclear Information System (INIS)

    Rahn, T.; Wahlen, M.; Zhang Hui; Blake, G.

    2002-01-01

    Nitrous oxide plays an important role in greenhouse forcing and stratospheric ozone regulation. It is destructed in the stratosphere mainly by UV photolysis. Laboratory studies of N 2 O-N 2 mixtures irradiated at 193 and 207 nm reveal a significant enrichment of the residual heavy nitrous oxide isotopomers. The isotopic signatures are well described by an irreversible Rayleigh distillation process, with large enrichment factors of ε 15,18 (193 nm) = -18.4, -14.5 per mil and ε 15,18 (207 nm) = -48.7, -46.0 per mil. These results, when combined with diffusive mixing processes might help to explain the stratospheric enrichments previously observed. (author)

  18. Nitrous oxide emissions from European agriculture – an analysis of variability and drivers of emissions from field experiments

    Directory of Open Access Journals (Sweden)

    R. M. Rees

    2013-04-01

    Full Text Available Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot-based experiments. Arable experiments were conducted at Beano in Italy, El Encin in Spain, Foulum in Denmark, Logården in Sweden, Maulde in Belgium, Paulinenaue in Germany, and Tulloch in the UK. Grassland experiments were conducted at Crichton, Nafferton and Peaknaze in the UK, Gödöllö in Hungary, Rzecin in Poland, Zarnekow in Germany and Theix in France. Nitrous oxide emissions were measured at each site over a period of at least two years using static chambers. Emissions varied widely between sites and as a result of manipulation treatments. Average site emissions (throughout the study period varied between 0.04 and 21.21 kg N2O-N ha−1 yr−1, with the largest fluxes and variability associated with the grassland sites. Total nitrogen addition was found to be the single most important determinant of emissions, accounting for 15% of the variance (using linear regression in the data from the arable sites (p 2O emissions within sites that occurred as a result of manipulation treatments was greater than that resulting from site-to-site and year-to-year variation, highlighting the importance of management interventions in contributing to greenhouse gas mitigation.

  19. Comparison of oral midazolam with a combination of oral midazolam and nitrous oxide-oxygen inhalation in the effectiveness of dental sedation for young children

    Directory of Open Access Journals (Sweden)

    Al-Zahrani A

    2009-03-01

    Full Text Available Aim: To compare the effectiveness of 0.6 mg/kg oral midazolam sedation alone and a combination of 0.6 mg/kg oral midazolam plus nitrous oxide-oxygen inhalation sedation, in controlling the behavior of uncooperative children during dental treatment. Study Design: The study had a crossover design where the same patient received two different sedation regimens, that is, oral midazolam 0.6 mg/kg and oral midazolam 0.6 mg/kg with nitrous oxide-oxygen inhalation during two dental treatment visits. Materials and Methods: Thirty children (17 males and 13 females were randomly selected for the study, with a mean age of 55.07 (± 9.29 months, ranging from 48 - 72 months. A scoring system suggested by Houpt et al. (1985 was utilized for assessment of the children′s behavior. Results : There was no significant (p > 0.05 difference in the overall behavior assessment between the two sedation regimens, that is, oral midazolam alone and oral midazolam plus nitrous oxide-oxygen. However, the combination of midazolam and nitrous oxide-oxygen showed significantly (p < 0.05 superior results as compared to midazolam alone, in terms of controlling movement and crying during local anesthesia administration and restorative procedures. Conclusion: Compared to oral midazolam alone, a combination of oral midazolam and nitrous oxide inhalation sedation appears to provide more comfort to pediatric dental patients and operators during critical stages of dental treatment.

  20. EPA/IFP EUROPEAN WORKSHOP ON THE EMISSION ON NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION

    Science.gov (United States)

    The report summarizes the proceedings of an EPA/Institut Francais du Petrole (IFP) cosponsored workshop addressing direct nitrous oxide (N2O) emission from fossil fuel combustion. The third in a series, it was held at the IFP in Rueil-Malmaison, France, on June 1-2, 1988. Increas...

  1. Nitrous oxide (N2O). Emission inventory and options for control in the Netherlands

    NARCIS (Netherlands)

    Kroeze C; LAE

    1994-01-01

    This study was initiated to overview current knowledge on nitrous oxide (N2O). The report reviews atmospheric behaviour of N2O, global sources and sinks, Dutch emissions in 1990, options to reduce emissions, and past and future emissions. Despite the uncertainties involved, it is likely that without

  2. Technical opportunities to reduce global anthropogenic emissions of nitrous oxide

    Science.gov (United States)

    Winiwarter, Wilfried; Höglund-Isaksson, Lena; Klimont, Zbigniew; Schöpp, Wolfgang; Amann, Markus

    2018-01-01

    We describe a consistent framework developed to quantify current and future anthropogenic emissions of nitrous oxide and the available technical abatement options by source sector for 172 regions globally. About 65% of the current emissions derive from agricultural soils, 8% from waste, and 4% from the chemical industry. Low-cost abatement options are available in industry, wastewater, and agriculture, where they are limited to large industrial farms. We estimate that by 2030, emissions can be reduced by about 6% ±2% applying abatement options at a cost lower than 10 €/t CO2-eq. The largest abatement potential at higher marginal costs is available from agricultural soils, employing precision fertilizer application technology as well as chemical treatment of fertilizers to suppress conversion processes in soil (nitrification inhibitors). At marginal costs of up to 100 €/t CO2-eq, about 18% ±6% of baseline emissions can be removed and when considering all available options, the global abatement potential increases to about 26% ±9%. Due to expected future increase in activities driving nitrous oxide emissions, the limited technical abatement potential available means that even at full implementation of reduction measures by 2030, global emissions can be at most stabilized at the pre-2010 level. In order to achieve deeper reductions in emissions, considerable technological development will be required as well as non-technical options like adjusting human diets towards moderate animal protein consumption.

  3. Nitrous oxide fluxes from grassland in the Netherlands. 1. Statistical analysis of flux-chamber measurements

    NARCIS (Netherlands)

    Velthof, G.L.; Oenema, O.

    1995-01-01

    Accurate estimates of total nitrous oxide (N2O) losses from grasslands derived from flux-chamber measurements are hampered by the large spatial and temporal variability of N2O fluxes from these sites. In this study, four methods for the calculation o

  4. Linking organic carbon, water content and nitrous oxide emission in a reclaimed coal mine soil

    Science.gov (United States)

    Manure-based organic amendments can restore soil quality and allow for intensive sustained biomass production on degraded lands. However the large quantities of nitrogen and organic carbon added with such amendments could create soil conditions favorable for nitrous oxide production and emissions. T...

  5. Treatment-Resistant Major Depression: Rationale for NMDA Receptors as Targets and Nitrous Oxide as Therapy

    Science.gov (United States)

    Zorumski, Charles F.; Nagele, Peter; Mennerick, Steven; Conway, Charles R.

    2015-01-01

    Major depressive disorder (MDD) remains a huge personal and societal encumbrance. Particularly burdensome is a virulent subtype of MDD, treatment resistant major depression (TMRD), which afflicts 15–30% of MDD patients. There has been recent interest in N-methyl-d-aspartate receptors (NMDARs) as targets for treatment of MDD and perhaps TMRD. To date, most pre-clinical and clinical studies have focused on ketamine, although psychotomimetic and other side effects may limit ketamine’s utility. These considerations prompted a recent promising pilot clinical trial of nitrous oxide, an NMDAR antagonist that acts through a mechanism distinct from that of ketamine, in patients with severe TRMD. In this paper, we review the clinical picture of TRMD as a subtype of MDD, the evolution of ketamine as a fast-acting antidepressant, and clinical and basic science studies supporting the possible use of nitrous oxide as a rapid antidepressant. PMID:26696909

  6. No effect of cropping system on the greenhouse gas N2O

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Chirinda, N.

    2009-01-01

    Organic farming is comparable to conventional in terms of field emissions of the strong greenhouse gas nitrous oxide (N2O). Our study points to the need for increased yields in organic farming as measure to reduced emissions per unit of produce.......Organic farming is comparable to conventional in terms of field emissions of the strong greenhouse gas nitrous oxide (N2O). Our study points to the need for increased yields in organic farming as measure to reduced emissions per unit of produce....

  7. Temporal nitrous oxide emissions from beef cattle feedlot manure following a simulated rainfall event

    Science.gov (United States)

    A pilot-scale, recirculating-flow-through, non-steady-state (RFT-NSS) chamber system was designed for quantifying nitrous oxide (N2O) emissions from simulated open-lot beef cattle feedlot pens. The system employed five 1 square meter steel pans. A lid was placed systematically on each pan and heads...

  8. Sea-to-air and diapycnal nitrous oxide fluxes in the eastern tropical North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    A. Kock

    2012-03-01

    Full Text Available Sea-to-air and diapycnal fluxes of nitrous oxide (N2O into the mixed layer were determined during three cruises to the upwelling region off Mauritania. Sea-to-air fluxes as well as diapycnal fluxes were elevated close to the shelf break, but elevated sea-to-air fluxes reached further offshore as a result of the offshore transport of upwelled water masses. To calculate a mixed layer budget for N2O we compared the regionally averaged sea-to-air and diapycnal fluxes and estimated the potential contribution of other processes, such as vertical advection and biological N2O production in the mixed layer. Using common parameterizations for the gas transfer velocity, the comparison of the average sea-to-air and diapycnal N2O fluxes indicated that the mean sea-to-air flux is about three to four times larger than the diapycnal flux. Neither vertical and horizontal advection nor biological production were found sufficient to close the mixed layer budget. Instead, the sea-to-air flux, calculated using a parameterization that takes into account the attenuating effect of surfactants on gas exchange, is in the same range as the diapycnal flux. From our observations we conclude that common parameterizations for the gas transfer velocity likely overestimate the air-sea gas exchange within highly productive upwelling zones.

  9. Nitrous oxide production in sputum from cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection

    DEFF Research Database (Denmark)

    Kolpen, Mette; Kühl, Michael; Bjarnsholt, Thomas

    2014-01-01

    local anoxia by consuming the majority of O2 for production of reactive oxygen species (ROS). We hypothesized that P. aeruginosa acquires energy for growth in anaerobic endobronchial mucus by denitrification, which can be demonstrated by production of nitrous oxide (N2O), an intermediate...

  10. Simulated use of premixed 0.25% isoflurane in 50% nitrous oxide and 50% oxygen.

    Science.gov (United States)

    Ross, J A; Tunstall, M E

    2002-12-01

    Isoflurane (0.25%) in premixed nitrous oxide and oxygen, 50/50, v/v (IN(2)O), has been suggested for pain relief in labour. Possible phase separation of the mixture was studied during simulated administration. A sinusoidal pump set at stroke volume of 2 litres and a rate of 20-22 bpm and cycling for 1 min in three was used to simulate breathing during the painful contractions of labour. The temperature inside a 10-litre capacity cylinder did not drecrease sufficiently to cause separation of the gas mixture. Temperature in the demand valve decreased to -15.5 degrees C and this caused a small amount of liquid formation within the valve. Accordingly, the inspired concentration during the first breath of mixture in a cycle could be transiently as high as 0.55%. The concentration observed at the patient connection after the first breath varied between 0.17 and 0.28%. The system delivered a clinically acceptable performance although further development to avoid liquid condensation is needed.

  11. [Contribution of fungi to soil nitrous oxide emission and their research methods: a review].

    Science.gov (United States)

    Huang, Ying; Long, Xi-En

    2014-04-01

    Nitrous oxide is an important greenhouse gas. Soil is one major emission source of N2O, which is a by-product of microorganisms-driven nitrification and denitrification processes. Extensive research has demonstrated archaea and bacteria are the predominant contributors in nitrification and denitrification. However, fungi may play a predominant role in the N transformation in a certain soil ecosystem. The fungal contribution to N2O production has been rarely investigated. Here, we reviewed the mechanism of N2O production by soil fungi. The mechanisms of denitrification, autotrophic and heterotrophic nitrification and their key microbes and functional genes were described, respectively. We discriminated the differences in denitrification between bacteria and fungi and discussed the methods being used to determine the contribution of fungi to soil N2O emission, including selective inhibitors, 15N stable isotope probing, isolation and pure culturing and uncultured molecular detection methods. The existing problems and research prospects were also presented.

  12. Estimation of methane and nitrous oxide emission from animal production sector in Taiwan during 1990-2000

    International Nuclear Information System (INIS)

    Shangshyng Yang; Chungming Liu; Yenlan Liu

    2003-01-01

    To investigate the greenhouse gases emissions from the feeding and waste management of livestock and poultry, methane and nitrous oxide emissions were estimated from the local measurement and IPCC guidelines during 1990-2000 in Taiwan. Hog is the major livestock and is followed by goat and cattle, while chicken is the major poultry and is followed by duck and geese. Methane emission from enteric fermentation of livestock was 30.9 Gg in 1990, increased to 39.3 Gg in 1996, and then decreased gradually to 34.9 Gg in 2000. Methane emission from the waste management was 48.5 Gg in 1990, reached the peak value of 60.7 Gg in 1996, and then declined to 43.3 Gg in 2000. In the case of poultry, annual methane emission from enteric fermentation and waste management was 30.6-44.1 ton, and 8.7-13.2 Gg, respectively. Nitrous oxide emission from waste management of livestock was 0.78 ton in 1990, increased to 0.86 ton in 1996, and then decreased to 0.65 ton in 2000. Nitrous oxide emission from waste management of poultry was higher than that of livestock with 1.11 ton in 1990, 1.68 ton in 1999, and 1.65 ton in 2000. There is an urgent need to reduce methane emission from enteric fermentation and recover methane from anaerobic waste treatment for energy in livestock and poultry feeding in Taiwan. (Author)

  13. Nitrous oxide fluxes and nitrogen cycling along a pasturechronosequence in Central Amazonia, Brazil

    Science.gov (United States)

    B. Wick; E. Veldkamp; W. Z. de Mello; M. Keller; P. Crill

    2005-01-01

    We studied nitrous oxide (N2O) fluxes and soil nitrogen (N) cycling following forest conversion to pasture in the central Amazon near Santarém, Pará, Brazil. Two undisturbed forest sites and 27 pasture sites of 0.5 to 60 years were sampled once each during wet and dry seasons. In addition to soil-atmosphere fluxes of N...

  14. Study on mechanism for oxidation of N,N-dimethylhydroxylamine by nitrous acid

    International Nuclear Information System (INIS)

    Li Gaoliang; He Hui

    2011-01-01

    The oxidation of N,N-dimethylhydroxylamine (DMHAN) by nitrous acid is investigated in perchloric acid and nitric acid medium, respectively. The effects of H + , DMHAN, ionic strength and temperature on the reaction are studied. The rate equation in perchloric acid medium has been determined to be -d[HNO 2 ]/dt = k[DMHAN][HNO 2 ], where k = 12.8 ± 1.0 (mol/L) -1 min -1 when the temperature is 18.5 deg C and the ionic strength is 0.73 mol/L with an activation energy about 41.5 kJ mol -1 . The reaction becomes complicated when it is performed in nitric acid medium. When the molarity of HNO 3 is higher than 1.0 mol/L, nitrous acid will be produced via the reaction between nitric acid and DMHAN. The reaction products are analyzed and the reaction mechanism is discussed in this paper. (author)

  15. Extending the benchmark simulation model no2 with processes for nitrous oxide production and side-stream nitrogen removal

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Sin, Gürkan; Gernaey, Krist V.

    2015-01-01

    In this work the Benchmark Simulation Model No.2 is extended with processes for nitrous oxide production and for side-stream partial nitritation/Anammox (PN/A) treatment. For these extensions the Activated Sludge Model for Greenhouse gases No.1 was used to describe the main waterline, whereas...... the Complete Autotrophic Nitrogen Removal (CANR) model was used to describe the side-stream (PN/A) treatment. Comprehensive simulations were performed to assess the extended model. Steady-state simulation results revealed the following: (i) the implementation of a continuous CANR side-stream reactor has...... increased the total nitrogen removal by 10%; (ii) reduced the aeration demand by 16% compared to the base case, and (iii) the activity of ammonia-oxidizing bacteria is most influencing nitrous oxide emissions. The extended model provides a simulation platform to generate, test and compare novel control...

  16. No Laughing Matter: Presence, Consumption Trends, Drug Awareness, and Perceptions of “Hippy Crack” (Nitrous Oxide among Young Adults in England

    Directory of Open Access Journals (Sweden)

    Esther M. Ehirim

    2018-01-01

    Full Text Available In clinical settings, nitrous oxide gas is a safe anesthetic used during childbirth, in dentistry, and to relieve anxiety in emergencies. Colloquially known as “hippy crack”’ or “laughing gas,” it is increasingly taken recreationally for its euphoric and relaxing effects and hallucinogenic properties. Using a self-reported survey, we gathered quantitative and qualitative information on users and non-users of hippy crack among a young population regarding: consumption patterns, knowledge, risk awareness and intentions toward future abuse. Quantitative responses from a total of 140 participants were analyzed for frequencies and relationships, whereas qualitative data were evaluated via identifying the reoccurring themes. Overall, 77.1% (n = 108 had heard of hippy crack and 27.9% (n = 39 admitted to past-year use. Prior users mostly indicated intended future use, had an average low number of past-year uses but some with > 20 occasions, had a varied number of inhalations per occasion (often 1–10 with an effect lasting up to 5 min, and a majority preferred social rather than lone use. For non-users, 79.2% said they would take hippy crack with the vast majority (94% preferring a social setting. The results show a concerning gap between available evidence and awareness of side effects. Despite serious reported side effects, including psychosis and myeloneuropathy—especially on the young developing brain—only a minority (29.3% was aware of any side effects. In contrast, in a hypothetical scenario depicting a first social encounter with hippy crack, the qualitative responses were in contrast to qualitative outcomes revealing that participants would try (n = 30/not try (n = 25 it, would feel under pressure to try it (n = 6 with only 11 opting to exit the situation. In summary, this first report of trends and perceptions of the use of hippy crack among young adults in the England highlights a lack of concern with

  17. Establishment and calibration of consensus process model for nitrous oxide dynamics in water quality engineering

    DEFF Research Database (Denmark)

    Domingo-Felez, Carlos

    that enhance cost and energy efficiency in BNR, while maintaining effluent quali-ty. Now, increasing attention is placed on direct emissions of nitrous oxide (N2O) as by-product of BNR; N2O is a greenhouse gas (GHG) with a high warming potential and also an ozone depleting chemical compound. Several N2O...... process modelling efforts aim to reproduce ex-perimental data with mathematical equations, structuring our understanding of the system. Various mechanistic models with different structures describ-ing N2O production have been proposed, but no consensus exists between researchers. Hence, the existing plant......-wide GHG models still lack a complete biological process model that can be integrated in a methodology that assess-es N2O emissions and their impact on overall plant performance. A mathematical model structure that describes N2O production during biological nitrogen removal is proposed. Two autotrophic...

  18. Quantification of Methane and Nitrous Oxide Emissions from Wastewater Collection Systems (Cincinnati, Ohio, USA)

    Science.gov (United States)

    Fries, A. E.; Townsend-Small, A.; Shuster, W.; Schifman, L. A.

    2016-12-01

    Greenhouse gas emissions from urban areas is an emerging topic in environmental science, but source apportionment of these emissions, particularly for methane (CH4) and nitrous oxide (N2O), is still underway. Here we present an analysis of CH4 and N2O sources from urban pipelines in Cincinnati, Ohio, USA. Leaks from manholes and sewer grates in Cincinnati are found by using a Bascom Turner Gas Rover to indicate CH4 enhancements, along with spatial data for CH4 enhancements at street level from previously published work. When possible, the atmospheric flux of CH4 and N2O of these leaks are quantified by using a flux chamber method. Source apportionment is determined by using carbon and hydrogen stable isotope ratios (13C and D) and CH4 to N2O ratios. Biogenic CH4 has a δ13C of approximately -55‰ and δD of approximately -270‰, whereas thermogenic CH4 has a δ13C of approximately -45‰ and δD of approximately -150‰. Biogenic CH4 may also co-occur with N2O, whereas thermogenic natural gas does not contain N2O. Contrary to our expectations, we found a portion of CH4 enhancements that are biogenic CH4, presumably from sewer gas, whereas most studies have assumed them to be natural gas leaks. In the future we will be working on determining the exact proportion of biogenic and thermogenic CH4 in street leaks and further quantifying CH4 and N2O emissions throughout Cincinnati. Our work indicates that CH4 leaks in cities may be a mixture of sewer gas and natural gas, especially in cities like Cincinnati where natural gas pipelines have been replaced with less leak-prone pipe materials.

  19. Differential effects of nitrous oxide and propofol on myogenic transcranial motor evoked responses during sufentanil anaesthesia

    NARCIS (Netherlands)

    Ubags, L. H.; Kalkman, C. J.; Been, H. D.; Drummond, J. C.

    1997-01-01

    We have compared the effects of 50% nitrous oxide and propofol, each administered concurrently with sufentanil, on the amplitudes and latencies of the compound muscle action potential (CMAP) response to transcranial electrical stimulation. Using a crossover design, 12 patients undergoing spinal

  20. Direct and indirect nitrous oxide emissions from agricultural soils, 1990 - 2003. Background document on the calculation method for the Dutch National Inventory Report

    NARCIS (Netherlands)

    Hoek KW van der; Schijndel MW van; Kuikman PJ; MNP; Alterra; LVM

    2007-01-01

    Since 2005 the Dutch method to calculate the nitrous oxide emissions from agricultural soils has fully complied with the Intergovernmental Panel on Climate Change (IPCC) Good Practice Guidelines. In order to meet the commitments of the Convention on Climate Change and the Kyoto Protocol, nitrous

  1. The oxidation of uranium(IV) ions by nitrous acid in 30% tri-butyl phosphate

    International Nuclear Information System (INIS)

    Koltunov, V.S.; Marchenko, V.I.; Savilova, O.A.; Dvoeglazov, K.N.; Taylor, R.J.

    2004-01-01

    The kinetics of the oxidation of U(IV) ions by nitrous acid in a 30% TBP solution have been determined. The rate equation was found to be: - d[U(IV)] / dt = k 2a [U(IV)][HNO 2 ][HNO 3 ][H 2 O] / [HNO 3 ] 2 + β 3 [HNO 3 ][H 2 O] + β 4 [H 2 O] 2 , where, k 2a = 0.405 ± 0.055 M -1 min -1 at 55 C (β 3 ∼ 0.08; β 4 ∼ 0.007) and the activation energy was E = 112 ± 17 kJ mol -1 . The reaction mechanism appeared to involve interaction with the 1 st hydrolysis product of U(IV)-UOH 3+ . The data is compared with a previous study of the nitric acid oxidation of U(IV) in 30% TBP. This reaction is autocatalytic due to the formation of nitrous acid during the reaction. The kinetics of the decomposition of HNO 2 in 30% TBP (in the absence of U(IV)) have also been reported. (orig.)

  2. Co-ordinate variations in methylmalonyl-CoA mutase and methionine synthase, and the cobalamin cofactors in human glioma cells during nitrous oxide exposure and the subsequent recovery phase.

    Science.gov (United States)

    Riedel, B; Fiskerstrand, T; Refsum, H; Ueland, P M

    1999-07-01

    We investigated the co-ordinate variations of the two cobalamin (Cbl)-dependent enzymes, methionine synthase (MS) and methylmalonyl-CoA mutase (MCM), and measured the levels of their respective cofactors, methylcobalamin (CH3Cbl) and adenosylcobalamin (AdoCbl) in cultured human glioma cells during nitrous oxide exposure and during a subsequent recovery period of culture in a nitrous oxide-free atmosphere (air). In agreement with published data, MS as the primary target of nitrous oxide was inactivated rapidly (initial rate of 0.06 h(-1)), followed by reduction of CH3Cbl (to ordinate distribution of Cbl cofactors during depletion and repletion.

  3. Cryptogamic stem covers may contribute to nitrous oxide consumption by mature beech trees

    Czech Academy of Sciences Publication Activity Database

    Macháčová, Kateřina; Maier, M.; Svobodová, Kateřina; Lang, F.; Urban, Otmar

    2017-01-01

    Roč. 7, OCT (2017), č. článku 13243. ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LM2015061; GA ČR(CZ) GJ17-18112Y Institutional support: RVO:67179843 Keywords : nitrous oxide * N2O * field conditions * cryptogamic stem Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 4.259, year: 2016

  4. Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas europaea and Nitrosospira briensis: a cautionary tale

    NARCIS (Netherlands)

    Wrage, N.; Velthof, G.L.; Oenema, O.; Laanbroek, H.J.

    2004-01-01

    Autotrophic ammonia-oxidizing bacteria produce nitrous oxide (N2O) as a by-product of nitrification or as an intermediate of nitrifier denitrification. In soil incubations, acetylene (C2H2) and large partial pressures of oxygen (O2) are used to distinguish between these sources. C2H2 inhibits

  5. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell.

    Science.gov (United States)

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.

  6. Comparing Nitrous Oxide Emissions from Three Residential Landscapes under Different Management Schemes Following Natural Rainfall Events

    Science.gov (United States)

    Cultural lawn management practices that produce aesthetically appealing landscapes may also create environmental conditions that stimulate soil nitrous oxide (N2O) emissions. The purpose of this study is to investigate the effects of lawn management practices on N2O fluxes from ...

  7. MLS/Aura Near-Real-Time L2 Nitrous Oxide (N2O) Mixing Ratio V003

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2N2O_NRT is the EOS Aura Microwave Limb Sounder (MLS) Near-Real-Time (NRT) product for nitrous oxide (N2O). This product contains daily N2O profiles taken from the...

  8. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand

    International Nuclear Information System (INIS)

    Kelliher, F.M.; Cox, N.; Weerden, T.J. van der; Klein, C.A.M. de; Luo, J.; Cameron, K.C.; Di, H.J.; Giltrap, D.; Rys, G.

    2014-01-01

    Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N 2 O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p 12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain. -- Highlights: • Nitrous oxide emission factors (EFs) for pastoral soils measured in 185 field trials. • For lowland, the mean (±standard error) urea nitrogen fertiliser EF was 0.5 ± 0.1%. • For lowland, mean dairy cattle urine and dung EFs were 1.2 and 0.2%, respectively. • For lowland, mean sheep urine and dung EFs were 0.6 and 0.1%, respectively. • For pastoral soils in terrain with slopes >12°, mean EFs were significantly lower. -- From 185 field trials, mean nitrous oxide emission factors for pastoral soils were 0.1% for sheep dung up to 1.2% for dairy cattle urine, while that for urea fertiliser was 0.5%

  9. An equivalence study comparing nitrous oxide and oxygen with low-dose sevoflurane and oxygen as inhalation sedation agents in dentistry for adults.

    Science.gov (United States)

    Allen, M; Thompson, S

    2014-11-01

    The aim of this study was to examine whether sevoflurane in oxygen was equivalent to near equipotent concentrations of nitrous oxide in oxygen when used as an inhalation sedation agent in terms of patient and user acceptability. Forty anxious dental patients referred to the sedation suite at Cardiff University School of Dentistry received either nitrous oxide to a maximum concentration of 40% or sevoflurane to a maximum concentration of 0.3% for a routine maxillary plastic restoration with articaine infiltration local analgesia. The inhalation sedation agent to be administered was chosen by a random number allocator. Measurements of blood pressure, oxygen saturation, heart rate, respiratory rate and bispectral index were recorded every 5 minutes. At the end of the treatment episode the patient, the operator and an observer who was unaware of the agent used, recorded their impressions about the episode by completing questionnaires. In the doses used in this study, sevoflurane was found to be as effective as an inhalation sedation agent as the standard dose of nitrous oxide used in normal inhalation sedation in the treatment of adult anxious dental patients. Sevoflurane in low concentrations is equivalent in effect to near equipotent concentrations of nitrous oxide. This would suggest that further research, perhaps with slightly higher concentrations of sevoflurane, is needed. If sevoflurane was shown to be acceptable at slightly higher concentrations, there is scope to explore the development of equipment specifically designed to deliver sevoflurane as an inhalation sedation agent in future.

  10. Nitrous oxide production pathways in a partial nitritation-anammox reactor: Isotopic evidence for nitrous oxide production associated anaerobic ammonium oxidation?

    Science.gov (United States)

    Wunderlin, P.; Harris, E. J.; Joss, A.; Emmenegger, L.; Kipf, M.; Mohn, J.; Siegrist, H.

    2014-12-01

    Nitrous oxide (N2O) is a strong greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment N2O can be produced via several pathways. This study investigates the dynamics of N2O emissions from a nitritation-anammox reactor, and links its interpretation to the nitrogen and oxygen isotopic signature of the emitted N2O. A 400-litre single-stage nitritation-anammox reactor was operated and continuously fed with digester liquid. The isotopic composition of N2O emissions was monitored online with quantum cascade laser absorption spectroscopy (QCLAS; Aerodyne Research, Inc.; Waechter et al., 2008). Dissolved ammonium and nitrate were monitored online (ISEmax, Endress + Hauser), while nitrite was measured with test strips (Nitrite-test 0-24mgN/l, Merck). Table 1. Summary of experiments conducted to understand N2O emissions Experimental conditions O2[mgO2/L] NO2-[mgN/L] NH4+[mgN/L] N2O/NH4+[%] Normal operation production pathway, which is hypothesized to be mediated by anammox activity (Figure 1). A less likely explanation is that the SP of N2O was increased by partial N2O reduction by heterotrophic denitrification. Various experiments were conducted to further investigate N2O formation pathways in the reactor. Our data reveal that N2O emissions increased when reactor operation was not ideal, for example when dissolved oxygen was too high (Table 1). SP measurements confirmed that these N2O peaks were due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor (Figure 1; Table 1). Overall, process control via online N2O monitoring was confirmed to be an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. ReferencesWaechter H. et al. (2008) Optics Express, 16: 9239-9244. Wunderlin, P et al. (2013) Environmental Science & Technology 47: 1339-1348.

  11. The biosynthesis of nitrous oxide in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Plouviez, Maxence; Wheeler, David; Shilton, Andy; Packer, Michael A; McLenachan, Patricia A; Sanz-Luque, Emanuel; Ocaña-Calahorro, Francisco; Fernández, Emilio; Guieysse, Benoit

    2017-07-01

    Over the last decades, several studies have reported emissions of nitrous oxide (N 2 O) from microalgal cultures and aquatic ecosystems characterized by a high level of algal activity (e.g. eutrophic lakes). As N 2 O is a potent greenhouse gas and an ozone-depleting pollutant, these findings suggest that large-scale cultivation of microalgae (and possibly, natural eutrophic ecosystems) could have a significant environmental impact. Using the model unicellular microalga Chlamydomonas reinhardtii, this study was conducted to investigate the molecular basis of microalgal N 2 O synthesis. We report that C. reinhardtii supplied with nitrite (NO 2 - ) under aerobic conditions can reduce NO 2 - into nitric oxide (NO) using either a mitochondrial cytochrome c oxidase (COX) or a dual enzymatic system of nitrate reductase (NR) and amidoxime-reducing component, and that NO is subsequently reduced into N 2 O by the enzyme NO reductase (NOR). Based on experimental evidence and published literature, we hypothesize that when nitrate (NO 3 - ) is the main Nitrogen source and the intracellular concentration of NO 2 - is low (i.e. under physiological conditions), microalgal N 2 O synthesis involves the reduction of NO 3 - to NO 2 - by NR followed by the reduction of NO 2 - to NO by the dual system involving NR. This microalgal N 2 O pathway has broad implications for environmental science and algal biology because the pathway of NO 3 - assimilation is conserved among microalgae, and because its regulation may involve NO. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Use of a combined oxygen/nitrous oxide/morphine chlorydrate protocol for analgesia in burned children requiring painful local care.

    Science.gov (United States)

    Ozil, Camille; Vialle, Raphaël; Thevenin-Lemoine, Camille; Conti, Elvira; Annequin, Daniel

    2010-03-01

    We present the results of the use of a protocol of inhalational oxygen/nitrous oxide mixtures associated with oral opioids on a prospective cohort of 33 children undergoing local care for acute but limited burned skin lesions. All the children were orally administered 0.4 mg/kg morphine chlorydrate, and nitrous oxide was administered as an equimolar mixture (50% N2O, 50% O2) via a face mask during the procedure. Pain and comfort of the patient were evaluated by the use of a validated behavioural score. After the end of the procedure, child and parent satisfactions were noted. Mean age was 3 years 6 months (10 months-11 years). A successful detersion procedure was performed in all the cases. Behavioural score was 6 in 15 cases out of 33, comprising between 7 and 9 in 15 patients and 10 in three patients. Subjective satisfaction of pain management was noted in 16 out of 20 patients after the procedure. Subjective satisfaction of the parents was noted in all the cases. Our study demonstrates that the use of a simple protocol of inhalational oxygen/nitrous oxide mixtures associated with oral opioids could be safe and effective. This association was well tolerated without any adverse effect.

  13. Effects of grass-clover management and cover crops on nitrogen cycling and nitrous oxide emissions in a stockless organic crop rotation

    DEFF Research Database (Denmark)

    Brozyna, Michal Adam; Petersen, Søren O; Chirinda, Ngoni

    2013-01-01

    Nitrogen (N) supply in stockless organic farming may be improved through use of grass-clover for anaerobic digestion, producing biogas and digested manure for use as fertilizer in the crop rotation. We studied the effects of grass-clover management on N cycling, nitrous oxide (N2O) emissions...... in the rotation (spring barley, potato and winter wheat); actual digestion of grass-clover cuttings was not possible, instead digested pig manure was used as substitute for digested grass-clover. Nitrous oxide fluxes were monitored between April 2008 and May 2009. In general, application of digested manure had...

  14. Quantifying nitrous oxide production pathways in wastewater treatment systems using isotope technology - A critical review.

    Science.gov (United States)

    Duan, Haoran; Ye, Liu; Erler, Dirk; Ni, Bing-Jie; Yuan, Zhiguo

    2017-10-01

    Nitrous oxide (N 2 O) is an important greenhouse gas and an ozone-depleting substance which can be emitted from wastewater treatment systems (WWTS) causing significant environmental impacts. Understanding the N 2 O production pathways and their contribution to total emissions is the key to effective mitigation. Isotope technology is a promising method that has been applied to WWTS for quantifying the N 2 O production pathways. Within the scope of WWTS, this article reviews the current status of different isotope approaches, including both natural abundance and labelled isotope approaches, to N 2 O production pathways quantification. It identifies the limitations and potential problems with these approaches, as well as improvement opportunities. We conclude that, while the capabilities of isotope technology have been largely recognized, the quantification of N 2 O production pathways with isotope technology in WWTS require further improvement, particularly in relation to its accuracy and reliability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Some studies on the reaction between nitrous acid and plutonium(IV)

    International Nuclear Information System (INIS)

    Vasudeva Rao, P.R.; Bagawde, S.V.; Ramakrishna, V.V.; Patil, S.K.

    1976-01-01

    In the ion exchange and solvent extraction studies nitrous acid is used as an oxidant for Pu(IV) in perchloric acid. Earlier studies had indicated that Pu(IV) forms complex with nitrous acid. The present investigation aimed to study this complex formation by solvent extraction and spectrophotometric methods, revealed that is no significant complex formation between Pu(IV) and nitrous acid. The high apparent equilibrium constant for the complex formation is caused by the partial reduction of Pu(IV) to Pu(III) by nitrous acid. The nitrate complexing is negligible in the case of Th(IV) and Np(IV) as well. Systematic investigation on the redox reactions of plutonium in different oxidation states with nitrous acid is now in progress. The preliminary results obtained indicate that Pu(IV) is reduced to Pu(III) by nitrous acid with a rate that can be conveniently followed spectrophotometrically. (T.I.)

  16. Nitrous oxide emissions from cattle-impacted pasture soil amended with nitrate and glucose

    Czech Academy of Sciences Publication Activity Database

    Hynšt, Jaroslav; Brůček, Petr; Šimek, Miloslav

    2007-01-01

    Roč. 43, č. 6 (2007), s. 853-859 ISSN 0178-2762 R&D Projects: GA ČR GA526/04/0325; GA AV ČR IAA600660605 Grant - others:MŠMT(CZ) 21-1072/2004 Institutional research plan: CEZ:AV0Z60660521 Source of funding: V - iné verejné zdroje Keywords : nitrous oxide * nitrate * emissions Subject RIV: EH - Ecology, Behaviour Impact factor: 1.191, year: 2007

  17. Nitrous oxide production, its source and distribution in urine patches on grassland on peat soil.

    NARCIS (Netherlands)

    Koops, J.G.; Beusichem, van M.L.; Oenema, O.

    1997-01-01

    Urine patches are considered to be important sites for nitrous oxide (N2O) production through nitrification and denitrification due to their high concentration of nitrogen (N). The aim of the present study was to determine the microbial source and size of production of N2O in different zones of a

  18. Retention of nitrous gases in scrubber columns

    International Nuclear Information System (INIS)

    Nakazone, A.K.; Costa, R.C.; Lobao, A.S.T.; Matsuda, H.T.; Araujo, B.F. de

    1988-01-01

    During the UO 2 dissolution in nitric acid, some different species of NO (sub)x are released. The off gas can either be refluxed to the dissolver or be released and retained on special colums. The final composition of the solution is the main parameter to take in account. A process for nitrous gases retention using scrubber colums containing H 2 O or diluted HNO 3 is presented. Chemiluminescence measurement was employed to NO x evaluation before and after scrubing. Gas flow, temperature, residence time are the main parameters considered in this paper. For the dissolution of 100g UO 2 in 8M nitric acid, a 6NL/h O 2 flow was the best condition for the NO/NO 2 oxidation with maximum absorption in the scrubber columns. (author) [pt

  19. Can pine trees act as sources for nitrous oxide (N2O) and methane (CH4)?

    Czech Academy of Sciences Publication Activity Database

    Macháčová, Kateřina; Pihlatie, M.; Vanhatalo, A.; Halmeenmäki, E.; Aaltonen, H.; Kolari, P.; Aalto, J.; Pumpanen, J.; Pavelka, Marian; Acosta, Manuel; Urban, Otmar; Bäck, J.

    2013-01-01

    Roč. 142, č. 2013 (2013), s. 362-366. ISBN 952-5027-76-7. ISSN 0784-3496 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : methane * nitrous oxide * scots pine * transport Subject RIV: EH - Ecology, Behaviour

  20. Fluxes of methane and nitrous oxide from an Indian mangrove

    Energy Technology Data Exchange (ETDEWEB)

    Krithika, K.; Purvaja, R.; Ramesh, R. [Anna Univ., Chennai (India). Institute for Ocean Management

    2008-01-25

    Methane and nitrous oxide are atmospheric trace gases and contribute about 15 and 6% respectively to the greenhouse effect. Both have a long atmospheric residence time of about 114 and 12 years respectively and since they are key compounds in the chemical reaction cycles of the troposphere and the stratosphere, their potential to directly or indirectly influence global climate is high. Fluxes of greenhouse gases, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), were measured from a mangrove ecosystem of the Cauvery delta (Muthupet) in South India. CH{sub 4} emissions were in the range between 18.99 and 37.53 mg/sq. m/d, with an average of 25.21 mg/sq. m/d, whereas N{sub 2}O emission ranged between 0.41 and 0.80 mg/sq. m/d (average of 0.62 mg/sq. m/d). The emission of CH{sub 4} and N{sub 2}O correlated positively with the number of pneumatophores. In addition to the flux measurements, different parts of the roots of Avicennia marina were quantified for CH{sub 4} concentration. Invariably in all the seasons, measured CH{sub 4} concentrations were high in the cable roots, with gradual decrease through the pneumatophores below water level and the above water level. This clearly indicates the transport of CH{sub 4} through the roots. We were able to establish that CH{sub 4} was released passively through the mangrove pneumatophores and is also a source to the atmosphere. We present some additional information on transport mechanisms of CH{sub 4} through the pneumatophores and bubble release from the mangrove ecosystems.

  1. Mechanisms of nitrous oxide (N2 O) formation and reduction in denitrifying biofilms.

    Science.gov (United States)

    Sabba, Fabrizio; Picioreanu, Cristian; Nerenberg, Robert

    2017-12-01

    Nitrous oxide (N 2 O) is a potent greenhouse gas that can be formed in wastewater treatment processes by ammonium oxidizing and denitrifying microorganisms. While N 2 O emissions from suspended growth systems have been extensively studied, and some recent studies have addressed emissions from nitrifying biofilms, much less is known about N 2 O emissions from denitrifying biofilm processes. This research used modeling to evaluate the mechanisms of N 2 O formation and reduction in denitrifying biofilms. The kinetic model included formation and consumption of key denitrification species, including nitrate (NO3-), nitrite (NO2-), nitric oxide (NO), and N 2 O. The model showed that, in presence of excess of electron donor, denitrifying biofilms have two distinct layers of activity: an outer layer where there is net production of N 2 O and an inner layer where there is net consumption. The presence of oxygen (O 2 ) had an important effect on N 2 O emission from suspended growth systems, but a smaller effect on biofilm systems. The effects of NO3- and O 2 differed significantly based on the biofilm thickness. Overall, the effects of biofilm thickness and bulk substrate concentrations on N 2 O emissions are complex and not always intuitive. A key mechanism for denitrifying biofilms is the diffusion of N 2 O and other intermediates from one zone of the biofilm to another. This leads to zones of N 2 O formation or consumption transformations that would not exist in suspended growth systems. © 2017 Wiley Periodicals, Inc.

  2. Production of nitrous oxide from anaerobic digester centrate and its use as a co-oxidant of biogas to enhance energy recovery.

    Science.gov (United States)

    Scherson, Yaniv D; Woo, Sung-Geun; Criddle, Craig S

    2014-05-20

    Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) is a new process for wastewater treatment that removes nitrogen from wastewater and recovers energy from the nitrogen in three steps: (1) NH4(+) oxidation to NO2(-); (2) NO2(-) reduction to N2O gas; and (3) N2O conversion to N2 with energy production. In this work, we optimize Steps 1 and 2 for anaerobic digester centrate, and we evaluate Step 3 for a full-scale biogas-fed internal combustion engine. Using a continuous stirred reactor coupled to a bench-scale sequencing batch reactor, we observed sustained partial oxidation of NH4(+) to NO2(-) and sustained (3 months) partial reduction of NO2(-) to N2O (75-80% conversion, mass basis), with >95% nitrogen removal (Step 2). Alternating pulses of acetate and NO2(-) selected for Comamonas (38%), Ciceribacter (16%), and Clostridium (11%). Some species stored polyhydroxybutyrate (PHB) and coupled oxidation of PHB to reduction of NO2(-) to N2O. Some species also stored phosphorus as polyphosphate granules. Injections of N2O into a biogas-fed engine at flow rates simulating a full-scale system increased power output by 5.7-7.3%. The results underscore the need for more detailed assessment of bioreactor community ecology and justify pilot- and full-scale testing.

  3. Nitrous oxide production by nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone

    Science.gov (United States)

    Ji, Qixing; Babbin, Andrew R.; Jayakumar, Amal; Oleynik, Sergey; Ward, Bess B.

    2015-12-01

    The Eastern Tropical South Pacific oxygen minimum zone (ETSP-OMZ) is a site of intense nitrous oxide (N2O) flux to the atmosphere. This flux results from production of N2O by nitrification and denitrification, but the contribution of the two processes is unknown. The rates of these pathways and their distributions were measured directly using 15N tracers. The highest N2O production rates occurred at the depth of peak N2O concentrations at the oxic-anoxic interface above the oxygen deficient zone (ODZ) because slightly oxygenated waters allowed (1) N2O production from both nitrification and denitrification and (2) higher nitrous oxide production yields from nitrification. Within the ODZ proper (i.e., anoxia), the only source of N2O was denitrification (i.e., nitrite and nitrate reduction), the rates of which were reflected in the abundance of nirS genes (encoding nitrite reductase). Overall, denitrification was the dominant pathway contributing the N2O production in the ETSP-OMZ.

  4. Flood effects on efflux and net production of nitrous oxide in river floodplain soils

    Science.gov (United States)

    Riaz, Muhammad; Bruderer, Christian; Niklaus, Pascal A.; Luster, Jörg

    2016-04-01

    Floodplain soils are often rich in nutrients and exhibit high spatial heterogeneity in terms of geomorphology, soil environmental conditions and substrate availability for processes involved in carbon and nutrient cycling. In addition, fluctuating water tables lead to temporally changing redox conditions. In such systems, there are ideal conditions for the occurrence of hot spots and moments of nitrous oxide emissions, a potent greenhouse gas. The factors that govern the spatial heterogeneity and dynamics of N2O formation in floodplain soils and the surface efflux of this gas are not fully understood. A particular issue is the contribution of N2O formation in the subsoil to surface efflux. We studied this question in the floodplain of a restored section of the Thur river (NE Switzerland) which is characterized by a flashy flow regime. As a consequence, the floodplain soils are unsaturated most of the time. We showed earlier that saturation during flood pulses leads to short phases of generally anoxic conditions followed by a drying phase with anoxic conditions within aggregates and oxic conditions in larger soil pores. The latter conditions are conducive for spatially closely-coupled nitrification-denitrification and related hot moments of nitrous oxide formation. In a floodplain zone characterized by about one meter of young, sandy sediments, that are mostly covered by the tall grass Phalaris arundinacea, we measured at several time points before and after a small flood event N2O surface efflux with the closed-chamber method, and assessed N2O concentrations in the soil air at four different depths using gas-permeable tubings. In addition, we calculated the N2O diffusivity in the soil from Radon diffusivity. The latter was estimated in-situ from the recovery of Radon concentration in the gas-permeable tubings after purging with ambient air. All these data were then used to calculate net N2O production rates at different soil depths with the gradient method. In

  5. Emissions of ammonia, nitrous oxide and methane during composting of organic household waste

    International Nuclear Information System (INIS)

    Gunnarsdotter Beck-Friis, Barbro

    2001-01-01

    In Sweden, composting of source-separated organic household waste is increasing, both domestically at the small-scale, and in larger municipal plants. Composting means a microbial decomposition of organic material, which results in the production of environmentally undesirable gases, such as ammonia (NH 3 ), nitrous oxide (N 2 O) and methane (CH 4 ). The aim of this thesis was to study the emissions of NH 3 , N 2 O and CH 4 to the atmosphere during composting of source-separated organic household waste. The studies were conducted in an experimental reactor under constant and controlled conditions and in municipal compost heaps. Emissions of NH 3 , N 2 O and CH 4 occurred at different phases during composting. Ammonia started to volatilise during the shift from mesophilic to thermophilic conditions when short-chained fatty acids were decomposed. Nitrous oxide was only emitted during the first days of composting and later during the cooling phase when nitrate was formed. Methane was only produced during the thermophilic phase. Large municipal compost heaps are a significant source for the production and emission of the greenhouse gases N 2 O and CH 4 . To avoid unwanted gaseous emissions to the atmosphere during composting, gaseous exchange with the atmosphere should be controlled in future composting plants

  6. Combined cannabis/methaqualone withdrawal treated with psychotropic analgesic nitrous oxide.

    Science.gov (United States)

    Gillman, Mark A; Harker, Nadine; Lichtigfeld, Frederick J

    2006-07-01

    This article reports the first single-blind study using psychotropic analgesic nitrous oxide (PAN) for treating acute withdrawal states following the abuse of methaqualone combined and smoked with cannabis. Smoked methaqualone combined with cannabis is called "white pipe" (WP). South Africa is the only country in the world where WP is a major form of substance abuse. This article demonstrates in 101 consecutively treated patients given placebo (100% oxygen) followed by PAN that this therapy produced a measurable therapeutic effect (more than 50% improvement) in 87 patients. This study confirms that WP is a form of substance abuse confined mainly to young adult male subjects.

  7. How much Nitrous Oxide is produced in cultivation of biofuels on arable land in Sweden?; Hur mycket lustgas blir det vid odling av biobraenslen paa aakermark i Sverige?

    Energy Technology Data Exchange (ETDEWEB)

    Kasimir Klemedtsson, Aasa (Univ. of Goeteborg, Dept. of Earth Sciences, Goeteborg (Sweden). Physical Geography)

    2010-03-15

    Several methods that can be used to estimate the emission of nitrous oxide from arable land are discussed, all of them with their pros and cons. 1 The base for all estimation methods is field measurements, well executed with a technique designed for the production of high quality data. Published field data of good quality were collected from areas in north Europe and America, both from grain and rape crops and unfertilised grasslands where natural background emission is assumed. The compilation shows that grasslands emit in average 0.3 +- 0.1 kg N{sub 2}O-N/ha/year. In crop systems where a high amount of nitrogen is repeatedly added to the soil, the soil N store will contribute to N{sub 2}O emission coming years. This is one reason why emission is higher for unfertilised arable land (where nitrogen have been added previous years) compared to unfertilised grassland, 1 +- 0.1 kg N{sub 2}O-N/ha/year. Fertilised arable lands have higher emission, in average around 3 kg N{sub 2}O-N/ha/year. In comparison, field measurements in Sweden have shown lower emission, 0.6 and 2 kg N{sub 2}O-N/ha/year from clay and sandy soil respectively. 2 The IPCC method is the best known, where the emission from arable land is estimated as a function of added nitrogen. In reality there is no correlation between a low N-addition and the emission of nitrous oxide since the N-addition needs to be high to have influence on the nitrous oxide emission..25 or the new factor 1% of added N has been used in many LCA's as an estimator for nitrous oxide and the uncertainty span of 0,3 and 3% is seldom used. The method underestimates the size of nitrous oxide emission in many systems and cannot estimate a true emission from individual fields. 3 Globally there is a connection between the increase in reactive nitrogen and the increase of atmospheric nitrous oxide, which is the base for a method suggested by Crutzen et al. Nitrous oxide emission has been estimated to be 3-5% of both biological nitrogen

  8. Nitrous oxide emissions from sugarcane straw left on the soil surface in Brazil

    Science.gov (United States)

    Galdos, M. V.; Cerri, C. E.; Carvalho, J. L.; Cerri, C. C.

    2012-12-01

    In Brazil, the largest exporter of ethanol from sugarcane in the world, burning the dry leaves and tops in order to facilitate the harvest and transportation of the stalks is still a common practice. Burning plant residues causes emissions of greenhouse gases (GHGs) such as CO2, CH4 and N2O, besides the release of charcoal particles into the atmosphere. Due to a combination of pressure from changes in the public opinion and economical reasons, in Brazil sugarcane harvest is changing from a burned into an unburned system. Since manual harvest of sugarcane without burning is not economically feasible, mechanical harvesters have been developed that can take the stalk and leave the residues on the field, forming a mulch, in a system called green cane management. It is expected that 80% of the cane harvested in the main producing regions in Brazil will be harvested without burning by 2014. The conversion from burning sugarcane to green management of sugarcane will have impacts on the biogeochemical cycling of carbon and nitrogen in the plant soil system. The green cane management results in the deposition of large amounts of plant litter on the soil surface after harvest, ranging from 10 to 20 tons per hectare, which impact the whole production process of sugarcane, influencing yields, fertilizer management and application, soil erosion, soil organic matter dynamics as well as greenhouse gas emissions (CO2, N2O, CH4). From a GHG perspective, the conservation of sugarcane residues prevents emissions from the burning process, may promote carbon sequestration in soils and releases nitrogen during the decomposition process replacing the need for, and GHG emissions from, fossil fuel based nitrogen fertilizer sources. Measurements of soil C and N stocks and associated greenhouse gas emissions from the burned and unburned sugarcane systems and in the sugarcane expansion areas are still scarce. Therefore, the main objective of this work was to quantify the nitrous oxide

  9. Why the potent greenhouse gas laughing gas is formed in agriculture and forestry; Varfoer den starka vaexthusgasen lustgas bildas vid odling i jord- och skogsbruk

    Energy Technology Data Exchange (ETDEWEB)

    2009-12-15

    Natural activities such as agriculture and forestry, influence the concentration of greenhouse gases in the atmosphere. This is a survey of why nitrous oxide (N{sub 2}O) is produced in soil and how much is leaving the soil in different plantations. Mostly small amounts but sometimes high emissions of nitrous oxide occur, which is produced by soil fungi and bacteria converting nitrogen compounds. Denitrification is the process most often producing the greatest amounts of nitrous oxide but nitrification having a need for oxygen can be decisive since this process produces the nitrate needed in denitrification. Nitrous oxide is formed at occasions with oxygen shortage which can arise inside soil clods with high biological activity consuming the oxygen, or if the oxygen diffusion into the soil is slow since it is soaking wet or the soil pores have been compacted by for example tractor driving. Some techniques for measuring nitrous oxide leaving the soil to the air are described. To escape the tough work of measuring simple estimation methods are desired, and there are a few developed, but no one is reliable. The atmospheric nitrous oxide increase can be connected to the increased fixation of the air dinitrogen gas (N{sub 2}) into reactive nitrogen which is possible to use for living cells. Most nitrogen is fixed biologically in leguminous plants or in the manufacturing of fertilisers. Reactive nitrogen is decisive for plant photosynthesis function, but in most natural ecosystems available nitrogen is scarce so photosynthesis and plant production often increase when nitrogen is added. An increased production of bioenergy crops will increase the demand of more reactive nitrogen in addition to the nitrogen used in existing food production. Most of the soil nitrogen is tied to dead and living organic material and will not be available until the organic material is decomposed and the nitrogen is liberated. The plant community and competition between organisms of the

  10. Use and perception of nitrous oxide sedation by French dentists in private practice: a national survey.

    Science.gov (United States)

    Vilanova-Saingery, C; Bailleul-Forestier, I; Vaysse, F; Vergnes, J-N; Marty, M

    2017-12-01

    The aim of this national survey was to record the use of nitrous oxide and the perceptions of French dental practitioners to this form of sedation. The use of nitrous oxide sedation (NOS) has been authorised in private dental practice in France since December 2009 but, to date, no study implementing both quantitative and qualitative methods has explored such use. The data were collected using a Google Forms questionnaire. A mixed methodology was used for data analysis: a quantitative approach to explore the use of conscious sedation and a qualitative thematic approach (using Nvivo software) to determine the practitioner's perception of it. Responses were collected from 225 practitioners (19% of the target population of 1185). Most of the responders were trained in NOS use in private dental clinics. Seventy-three percent of those who trained privately actually used NOS, compared to 53% of those trained at university (p-value = 0.0052). Above all, NOS was used for children requiring restorative dentistry. The average price of the sedation was 50 Euros and it lasted, on average, for 37 min. The qualitative and thematic analysis revealed the financial and technical difficulties of implementing NOS in private practice. However, it also showed the benefits and pleasure associated with NOS use. This statistical survey of French dental practitioners offers an insight of the current state of the use of conscious sedation with nitrous oxide in private general dental practice in France. It also includes the first report of dental practitioners' perceptions of NOS use and may lead to a better understanding of the reasons why sedation is sometimes not used in private practice.

  11. Effects of nitrous oxide on cerebral haemodynamics and metabolism during isoflurane anaesthesia in man

    Energy Technology Data Exchange (ETDEWEB)

    Algotsson, L.; Messeter, K. (Department of Anaesthesiology, University Hospital, Lund (Sweden)); Rosen, I. (Department of Clinical Neurophysiology, University Hospital, Lund (Sweden)); Holmin, T. (Department of Surgery, University Hospital, Lund (Sweden))

    1992-01-01

    Seven normoventilated and five hyperventilated healthy adults undergoing cholecystectomy and anaesthetized with methohexitone, fentanyl and pancuronium were studied with measurement of cerebral blood flow (CBF), cereal metabolic rate of oxygen (CMRo[sub 2]), and quantified electroencephalography (EEG) under two sets of conditions: (1) 1.7% end-tidal concentration of isoflurane in air/oxygen: (2) 0.85% end-tidal concentration of isoflurane in nitrous oxide (N[sub 2]O)/oxygen. The object was to study the effects of N[sub 2]O during isoflurane anaesthesia on cerebral circulation, metabolism and neuroelectric activity. N[sub 2]O in the anaesthetic gas mixture caused a 43% (P<0.05) increase in CBF during normocarbic conditions but no significant change during hypocapnia. CMRo[sub 2] was not significantly altered by N[sub 2]O. EEG demonstrated an activated pattern with decreased low frequency activity and increased high frequency activity. The results confirm that N[sub 2]O is a potent cerebral vasodilator in man, although the mechanisms underlying the effects on CBF are still unclear. (au).

  12. Community Composition of Nitrous Oxide Consuming Bacteria in the Oxygen Minimum Zone of the Eastern Tropical South Pacific

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2017-06-01

    Full Text Available The ozone-depleting and greenhouse gas, nitrous oxide (N2O, is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA and transcriptionally active (RNA nitrous oxide reductase (nosZ genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N2O concentration but not O2. Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number was similar to or even larger than in anoxic waters, implying the potential for N2O consumption even in the oxygenated surface water.

  13. Community Composition of Nitrous Oxide Consuming Bacteria in the Oxygen Minimum Zone of the Eastern Tropical South Pacific

    Science.gov (United States)

    Sun, Xin; Jayakumar, Amal; Ward, Bess B.

    2017-01-01

    The ozone-depleting and greenhouse gas, nitrous oxide (N2O), is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA) and transcriptionally active (RNA) nitrous oxide reductase (nosZ) genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N2O concentration but not O2. Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number) was similar to or even larger than in anoxic waters, implying the potential for N2O consumption even in the oxygenated surface water. PMID:28702012

  14. Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes.

    Science.gov (United States)

    McCrackin, Michelle L; Elser, James J

    2010-02-01

    Microbially mediated denitrification is an important process that may ameliorate the effects of nitrogen (N) loading by permanently removing excess N inputs. In this study, we measured the rate of denitrification and nitrous oxide (N2O) production during denitrification in sediments from 32 Norwegian lakes at the high and low ends of a gradient of atmospheric N deposition. Denitrification and N2O production rates averaged 41.7 and 1.1 micromol N x m(-2) x h(-1), respectively, for high-deposition lakes. There was no detectable denitrification or N2O production in low-deposition lakes. Epilimnetic nitrate concentration was strongly correlated with denitrification rate (r2 = 0.67). We also measured the denitrification rate in response to experimental additions of organic carbon, nitrate, and phosphorus. Experimental nitrate additions stimulated denitrification in sediments of all lakes, regardless of N deposition level. In fact, the rate of denitrification in nitrate-amended treatments was the same magnitude for lakes in both deposition areas. These findings suggest that lake sediments possess considerable capacity to remove nitrate and that this capacity has not been saturated under conditions of chronic N loading. Further, nitrous oxide was nearly 3% of the total gaseous product during denitrification in high-deposition lakes, a fraction that is comparable to polluted marine sediments. Our findings suggest that, while lakes play an important role in N removal in the landscape, they may be a source of N2O emissions, especially in areas subject to elevated N inputs.

  15. Effects of Bubble-Mediated Processes on Nitrous Oxide Dynamics in Denitrifying Bioreactors

    Science.gov (United States)

    McGuire, P. M.; Falk, L. M.; Reid, M. C.

    2017-12-01

    To mitigate groundwater and surface water impacts of reactive nitrogen (N), agricultural and stormwater management practices can employ denitrifying bioreactors (DNBs) as low-cost solutions for enhancing N removal. Due to the variable nature of hydrologic events, DNBs experience dynamic flows which can impact physical and biological processes within the reactors and affect performance. A particular concern is incomplete denitrification, which can release the potent greenhouse gas nitrous oxide (N2O) to the atmosphere. This study aims to provide insight into the effects of varying hydrologic conditions upon the operation of DNBs by disentangling abiotic and biotic controls on denitrification and N2O dynamics within a laboratory-scale bioreactor. We hypothesize that under transient hydrologic flows, rising water levels lead to air entrapment and bubble formation within the DNB porous media. Mass transfer of oxygen (O2) between trapped gas and liquid phases creates aerobic microenvironments that can inhibit N2O reductase (NosZ) enzymes and lead to N2O accumulation. These bubbles also retard N2O transport and make N2O unavailable for biological reduction, further enhancing atmospheric fluxes when water levels fall. The laboratory-scale DNB permits measurements of longitudinal and vertical profiles of dissolved constituents as well as trace gas concentrations in the reactor headspace. We describe a set of experiments quantifying denitrification pathway biokinetics under steady-state and transient hydrologic conditions and evaluate the role of bubble-mediated processes in enhancing N2O accumulation and fluxes. We use sulfur hexafluoride and helium as dissolved gas tracers to examine the impact of bubble entrapment upon retarded gas transport and enhanced trace gas fluxes. A planar optode sensor within the bioreactor provides near-continuous 2-D profiles of dissolved O2 within the bioreactor and allows for identification of aerobic microenvironments. We use qPCR to

  16. Nitrous oxide emissions from a beech forest floor measured by eddy covariance and soil enclosure techniques

    DEFF Research Database (Denmark)

    Pihlatie, M.; Rinne, J.; Ambus, P.

    2005-01-01

    Spring time nitrous oxide (N2O) emissions from an old beech (Fagus sylvatica L.) forest were measured with eddy covariance (EC) and chamber techniques. The aim was to obtain information on the spatial and temporal variability in N2O emissions and link the emissions to soil environmental parameters...

  17. Continuous measurements of nitrous oxide isotopomers during incubation experiments

    Science.gov (United States)

    Winther, Malte; Balslev-Harder, David; Christensen, Søren; Priemé, Anders; Elberling, Bo; Crosson, Eric; Blunier, Thomas

    2018-02-01

    Nitrous oxide (N2O) is an important and strong greenhouse gas in the atmosphere. It is produced by microbes during nitrification and denitrification in terrestrial and aquatic ecosystems. The main sinks for N2O are turnover by denitrification and photolysis and photo-oxidation in the stratosphere. In the linear N = N = O molecule 15N substitution is possible in two distinct positions: central and terminal. The respective molecules, 14N15N16O and 15N14N16O, are called isotopomers. It has been demonstrated that N2O produced by nitrifying or denitrifying microbes exhibits a different relative abundance of the isotopomers. Therefore, measurements of the site preference (difference in the abundance of the two isotopomers) in N2O can be used to determine the source of N2O, i.e., nitrification or denitrification. Recent instrument development allows for continuous position-dependent δ15N measurements at N2O concentrations relevant for studies of atmospheric chemistry. We present results from continuous incubation experiments with denitrifying bacteria, Pseudomonas fluorescens (producing and reducing N2O) and Pseudomonas chlororaphis (only producing N2O). The continuous measurements of N2O isotopomers reveals the transient isotope exchange among KNO3, N2O, and N2. We find bulk isotopic fractionation of -5.01 ‰ ± 1.20 for P. chlororaphis, in line with previous results for production from denitrification. For P. fluorescens, the bulk isotopic fractionation during production of N2O is -52.21 ‰ ± 9.28 and 8.77 ‰ ± 4.49 during N2O reduction.The site preference (SP) isotopic fractionation for P. chlororaphis is -3.42 ‰ ± 1.69. For P. fluorescens, the calculations result in SP isotopic fractionation values of 5.73 ‰ ± 5.26 during production of N2O and 2.41 ‰ ± 3.04 during reduction of N2O. In summary, we implemented continuous measurements of N2O isotopomers during incubation of denitrifying bacteria and believe that similar experiments will lead to a better

  18. Mitigating Nitrous Oxide Emissions from Agricultural Landscape: The Role of Isotopic Techniques

    Science.gov (United States)

    Zaman, Mohammad; Nguyen, Minh Long

    2014-05-01

    A review of studies from agricultural landscapes indicate that intensification of agricultural activities, inefficient use of reactive nitrogen (N) fertilizers and irrigation water, increasing human population and changes in their diet (more protein demand), high stocking rate (number of grazing livestock per hectare) and intensive cultivation are the major influencing factors for nitrous oxide (N2O) emissions into the atmosphere. Nitrification (both autotrophic and heterotrophic), denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are the three major microbial processes that produce greenhouse N2O and non-greenhouse gas (N2) and can sometimes occur concurrently in a given soil system. The contribution of N2O production from each of these microbial processes is inconclusive because of the complex interactions between various microbial processes and the physical and chemical conditions in soil microsite (s). Nitrous oxide emissions across an agricultural landscape from different N inputs (chemical fertilizers and animal manure) and soil types are also extremely variable both temporally and spatially and range from 1-20% of the applied N and could therefore represent agronomic loss. The available conventional methods such as acetylene (C2H2) inhibition and helium (He) cannot accurately measure both N2O and N2 and their ratio in a given soil. The use of 15N stable isotopic technique offers the best option to measure both N2O and N2 and to identify their source (nitrification and denitrification) with a greater accuracy. Manipulating soil and fertilizer management practices can minimise these gaseous N losses. For example the combined use of urease inhibitor like (N-(n-butyl) thiophosphoric triamide (nBTPT) (trade name Agrotain®) and nitrification inhibitor dicyandiamide (DCD) with urea (100 kg N ha-1) or animal urine (600 kg N ha-1) was shown to reduce N losses by 39-53 % via denitrification-nitrification-DNRA processes. Other farm management

  19. A comparison of myogenic motor evoked responses to electrical and magnetic transcranial stimulation during nitrous oxide/opioid anesthesia

    NARCIS (Netherlands)

    Ubags, L. H.; Kalkman, C. J.; Been, H. D.; Koelman, J. H.; Ongerboer de Visser, B. W.

    1999-01-01

    Transcranial motor evoked potentials (tc-MEPs) are used to monitor spinal cord integrity intraoperatively. We compared myogenic motor evoked responses with electrical and magnetic transcranial stimuli during nitrous oxide/opioid anesthesia. In 11 patients undergoing spinal surgery, anesthesia was

  20. Nitrous Paraffin Hybrid, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nitrous Oxide Paraffin Hybrid engine (N2OP) is a proposed technology designed to provide small launch vehicles with high specific impulse, indefinitely storable...

  1. GOZCARDS Source Data for Nitrous Oxide Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Nitrous Oxide Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpN2O) contains zonal means and related...

  2. GOZCARDS Merged Data for Nitrous Oxide Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Nitrous Oxide Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpN2O) contains zonal means and related...

  3. Nitrification gene ratio and free ammonia explain nitrite and nitrous oxide production in urea-amended soils

    Science.gov (United States)

    Substantial efforts have been made to characterize soil nitrous oxide (N2O) emissions following N fertilizer addition. While nitrite (NO2-) is a central regulator of N2O production, NO2- and N2O responses to nitrogen (N) fertilizer amendments still cannot be readily predicted. Our objective was to...

  4. Combining nitrous oxide with carbon dioxide decreases the time to loss of consciousness during euthanasia in mice--refinement of animal welfare?

    Directory of Open Access Journals (Sweden)

    Aurelie A Thomas

    Full Text Available Carbon dioxide (CO(2 is the most commonly used euthanasia agent for rodents despite potentially causing pain and distress. Nitrous oxide is used in man to speed induction of anaesthesia with volatile anaesthetics, via a mechanism referred to as the "second gas" effect. We therefore evaluated the addition of Nitrous Oxide (N(2O to a rising CO(2 concentration could be used as a welfare refinement of the euthanasia process in mice, by shortening the duration of conscious exposure to CO2. Firstly, to assess the effect of N(2O on the induction of anaesthesia in mice, 12 female C57Bl/6 mice were anaesthetized in a crossover protocol with the following combinations: Isoflurane (5%+O(2 (95%; Isoflurane (5%+N(2O (75%+O(2 (25% and N(2O (75%+O(2 (25% with a total flow rate of 3 l/min (into a 7 l induction chamber. The addition of N(2O to isoflurane reduced the time to loss of the righting reflex by 17.6%. Secondly, 18 C57Bl/6 and 18 CD1 mice were individually euthanized by gradually filling the induction chamber with either: CO(2 (20% of the chamber volume.min-1; CO(2+N(2O (20 and 60% of the chamber volume.min(-1 respectively; or CO(2+Nitrogen (N(2 (20 and 60% of the chamber volume.min-1. Arterial partial pressure (P(a of O(2 and CO(2 were measured as well as blood pH and lactate. When compared to the gradually rising CO(2 euthanasia, addition of a high concentration of N(2O to CO(2 lowered the time to loss of righting reflex by 10.3% (P<0.001, lead to a lower P(aO(2 (12.55 ± 3.67 mmHg, P<0.001, a higher lactataemia (4.64 ± 1.04 mmol.l(-1, P = 0.026, without any behaviour indicative of distress. Nitrous oxide reduces the time of conscious exposure to gradually rising CO(2 during euthanasia and hence may reduce the duration of any stress or distress to which mice are exposed during euthanasia.

  5. Simulation of nitrous oxide emissions at field scale using the SPACSYS model

    International Nuclear Information System (INIS)

    Wu, L.; Rees, R.M.; Tarsitano, D.; Zhang, Xubo; Jones, S.K.; Whitmore, A.P.

    2015-01-01

    Nitrous oxide emitted to the atmosphere via the soil processes of nitrification and denitrification plays an important role in the greenhouse gas balance of the atmosphere and is involved in the destruction of stratospheric ozone. These processes are controlled by biological, physical and chemical factors such as growth and activity of microbes, nitrogen availability, soil temperature and water availability. A comprehensive understanding of these processes embodied in an appropriate model can help develop agricultural mitigation strategies to reduce greenhouse gas emissions, and help with estimating emissions at landscape and regional scales. A detailed module to describe the denitrification and nitrification processes and nitrogenous gas emissions was incorporated into the SPACSYS model to replace an earlier module that used a simplified first-order equation to estimate denitrification and was unable to distinguish the emissions of individual nitrogenous gases. A dataset derived from a Scottish grassland experiment in silage production was used to validate soil moisture in the top 10 cm soil, cut biomass, nitrogen offtake and N 2 O emissions. The comparison between the simulated and observed data suggested that the new module can provide a good representation of these processes and improve prediction of N 2 O emissions. The model provides an opportunity to estimate gaseous N emissions under a wide range of management scenarios in agriculture, and synthesises our understanding of the interaction and regulation of the processes. - Highlights: • Microbe-controlled denitrification and N 2 O emissions were built in SPACSYS. • Simulated outputs agreed well with a Scottish grassland dataset. • The simulated emission factors vary with climate, management and forms of applied N. • SPACSYS is capable of simulating the components in C and N cycling in grassland

  6. Simulation of nitrous oxide emissions at field scale using the SPACSYS model

    Energy Technology Data Exchange (ETDEWEB)

    Wu, L., E-mail: Lianhai.Wu@rothamsted.ac.uk [Sustainable Soils and Grassland Systems Department, Rothamsted Research, North Wyke, Okehampton EX20 2SB (United Kingdom); Rees, R.M.; Tarsitano, D. [Scotland' s Rural College (SRUC), West Mains Road, Edinburgh EH9 3JG (United Kingdom); Zhang, Xubo [Sustainable Soils and Grassland Systems Department, Rothamsted Research, North Wyke, Okehampton EX20 2SB (United Kingdom); Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Jones, S.K. [Scotland' s Rural College (SRUC), West Mains Road, Edinburgh EH9 3JG (United Kingdom); Whitmore, A.P. [Sustainable Soils Grassland Systems Department, Rothamsted Research, Harpenden AL5 2JQ (United Kingdom)

    2015-10-15

    Nitrous oxide emitted to the atmosphere via the soil processes of nitrification and denitrification plays an important role in the greenhouse gas balance of the atmosphere and is involved in the destruction of stratospheric ozone. These processes are controlled by biological, physical and chemical factors such as growth and activity of microbes, nitrogen availability, soil temperature and water availability. A comprehensive understanding of these processes embodied in an appropriate model can help develop agricultural mitigation strategies to reduce greenhouse gas emissions, and help with estimating emissions at landscape and regional scales. A detailed module to describe the denitrification and nitrification processes and nitrogenous gas emissions was incorporated into the SPACSYS model to replace an earlier module that used a simplified first-order equation to estimate denitrification and was unable to distinguish the emissions of individual nitrogenous gases. A dataset derived from a Scottish grassland experiment in silage production was used to validate soil moisture in the top 10 cm soil, cut biomass, nitrogen offtake and N{sub 2}O emissions. The comparison between the simulated and observed data suggested that the new module can provide a good representation of these processes and improve prediction of N{sub 2}O emissions. The model provides an opportunity to estimate gaseous N emissions under a wide range of management scenarios in agriculture, and synthesises our understanding of the interaction and regulation of the processes. - Highlights: • Microbe-controlled denitrification and N{sub 2}O emissions were built in SPACSYS. • Simulated outputs agreed well with a Scottish grassland dataset. • The simulated emission factors vary with climate, management and forms of applied N. • SPACSYS is capable of simulating the components in C and N cycling in grassland.

  7. Micrometeorological Measurements Reveal Large Nitrous Oxide Losses during Spring Thaw in Alberta

    Directory of Open Access Journals (Sweden)

    Thomas K. Flesch

    2018-03-01

    Full Text Available Agricultural soils in Canada have been observed to emit a large pulse of nitrous oxide (N2O gas during the spring thaw, representing a large percentage of the annual emissions. We report on three years of spring thaw N2O flux measurements taken at three Alberta agricultural sites: a crop production site (Crop, cattle winter-feeding site (WF, and a cattle winter-grazing site (WG. Soil fluxes were calculated with a micrometeorological technique based on the vertical gradient in N2O concentration above each site measured with an open-path (line-averaging FTIR gas detector. The Crop and WG sites showed a clear N2O emission pulse lasting 10 to 25 days after thawing began. During this pulse there was a strong diurnal cycle in emissions that paralleled the cycle in near-surface soil temperature. The emission pulse was less pronounced at the WF site. The average spring thaw losses (over 25 to 31 days were 5.3 (Crop, 7.0 (WF, and 8.0 (WG kg N2O-N ha−1, representing 1 to 3.5% of the annual nitrogen input to the sites. These large losses are higher than found in most previous western Canadian studies, and generally higher than the annual losses estimated from the Intergovernmental Panel on Climate Change and Canadian National Inventory Report calculations. The high N2O losses may be explained by high soil nitrate levels which promoted rapid denitrification during thawing. The application of a high resolution (temporal micrometeorological technique was critical to revealing these losses.

  8. Reaction Kinetics of Monomethylhydrazine With Nitrous Acid in Perchloric Acid Solution

    International Nuclear Information System (INIS)

    Wei Yan; Wang Hui; Pan Yongjun; Cong Haifeng; Jiao Haiyang; Jia Yongfen; Zheng Weifang

    2009-01-01

    The oxidation of monomethylhydrazine (MMH) by nitrous acid was researched in perchloric acid solution with spectrophotometry. The rate equation has been determined as follows: -dc (HNO 2 ) /dt= kc (H + ) 0.9 c (MMH) 1.1 c (HNO 2 ), k is (46.0 ± 2.7) L 2 / (mol 2 · s) with the initial perchlorate concentration of 0.50 mol/L at the temperature of 4.5 degree C. The corresponding activation energy of the reaction is (42.4 ± 0.1) kJ/mol. The results indicate that oxidation of mono-methylhydrazine (MMH) by nitrous acid is fast. The higher concentration of MMH can accelerate the reduction process of nitrous acid. Higher acidity can also speed up the reduction of nitrous acid. (authors)

  9. Emisiones de óxido nitroso en un cultivo de soja [Glycine max (L. Merrill]: efecto de la inoculación y de la fertilización nitrógenada Nitrous oxide emission during a soybean [Glycine max (L. Merril] culture: inoculation and nitrogen fertilization effects

    Directory of Open Access Journals (Sweden)

    Ignacio A Ciampitti

    2005-12-01

    Full Text Available El óxido nitroso absorbe radiación infrarroja contribuyendo al efecto invernadero; este gas es producido principalmente en el suelo, mediante los procesos de nitrificación y denitrificación. En un estudio a campo, sobre un suelo Argiudol típico, se evaluó el efecto de la fertilización y la inoculación con Bradyrhizobium japonicum en un cultivo de soja [Glycine max (L. Merrill], sobre las emisiones de óxido nitroso. Los gases se extrajeron de cilindros de PVC y la lectura se realizó con cromatografía gaseosa. Las emisiones presentaron valores crecientes desde la siembra hacia madurez fisiológica del cultivo, para todos los tratamientos; este comportamiento fue concomitante con la evolución presentada por la humedad edáfica. La fertilización nitrogenada aumentó significativamente (PNitrous oxide gas absorbs infrared radiation contributing to the greenhouse effect; this gas is produced mainly in soil, by means of the processes of nitrification and denitrification. In a field study at the FAUBA on a typic Argiudol, we evaluated the effect of fertilization and inoculation with Bradyrhizobium japonicum during a soybean culture [Glycine max (L. Merrill], on nitrous oxide emisión. Gases were sampled with PVC cylinders and were read with gaseous chromatography. Emissions presented increasing values from seeding towards physiological maturity for all treatments; this behavior was similar to the evolution presented by nitrate level and soil moisture. Nitrogen fertilization significantly increased (P<0.05 nitrous oxide emissions and inoculation only had a significant effect with the highest level of fertilization (P=0.09. Plots fertilized at highest dose and inoculated gave the greatest nitrous oxide emissions. The variable that better explains the emissions is the nitrate level (r² = 0.1899; P=0.0231.

  10. Nitrous Oxide sedation for intra-articular injection in juvenile idiopathic arthritis

    Directory of Open Access Journals (Sweden)

    Harel Liora

    2008-01-01

    Full Text Available Abstract Background Intra-articular corticosteroid injection in juvenile idiopathic arthritis (JIA is often associated with anxiety and pain. Recent reports advocate the use of nitrous oxide (NO, a volatile gas with analgesic, anxiolytic and sedative properties. Objective To prospectively evaluate the effectiveness and safety of NO analgesia for intra-articular corticosteroid injection in JIA, and to assess patients and staff satisfaction with the treatment. Methods NO was administered to JIA patients scheduled for joint injection. The patient, parent, physician and nurse completed visual-analog scores (VAS (0–10 for pain, and a 5-point satisfaction scale. Change in heart rate (HR during the procedure was recorded in order to examine physiologic response to pain and stress. Patient's behavior and adverse reactions were recorded. Results 54 procedures (72 joints were performed, 41 females, 13 males; 39 Jewish, 13 Arab; mean age was 12.2 ± 4.7 year. The median VAS pain score for patients, parents, physicians and nurses was 3. The HR increased ≥ 15% in 10 patients. They had higher VAS scores as evaluated by the staff. The median satisfaction level of the parents and staff was 3.0 and 5.0 respectively. Adverse reactions were mild. Conclusion NO provides effective and safe sedation for JIA children undergoing intra-articular injections.

  11. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant.

    Science.gov (United States)

    Aboobakar, Amina; Cartmell, Elise; Stephenson, Tom; Jones, Mark; Vale, Peter; Dotro, Gabriela

    2013-02-01

    This paper reports findings from online, continuous monitoring of dissolved and gaseous nitrous oxide (N₂O), combined with dissolved oxygen (DO) and ammonia loading, in a full-scale nitrifying activated sludge plant. The study was conducted over eight weeks, at a 210,000 population equivalent sewage treatment works in the UK. Results showed diurnal variability in the gaseous and dissolved N₂O emissions, with hourly averages ranging from 0 to 0.00009 kgN₂O-N/h for dissolved and 0.00077-0.0027 kgN₂O-N/h for gaseous nitrous oxide emissions respectively, per ammonia loading, depending on the time of day. Similarly, the spatial variability was high, with the highest emissions recorded immediately after the anoxic zone and in the final pass of the aeration lane, where ammonia concentrations were typically below 0.5 mg/L. Emissions were shown to be negatively correlated to dissolved oxygen, which fluctuated between 0.5 and 2.5 mgO₂/L, at the control set point of 1.5 mgO₂/L. The resulting dynamic DO conditions are known to favour N₂O production, both by autotrophic and heterotrophic processes in mixed cultures. Average mass emissions from the lane were greater in the gaseous (0.036% of the influent total nitrogen) than in the dissolved (0.01% of the influent total nitrogen) phase, and followed the same diurnal and spatial patterns. Nitrous oxide emissions corresponded to over 34,000 carbon dioxide equivalents/year, adding 13% to the carbon footprint associated with the energy requirements of the monitored lane. A clearer understanding of emissions obtained from real-time data can help towards finding the right balance between improving operational efficiency and saving energy, without increasing N₂O emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Nitrous Oxide and Nitrous Oxide-Free Low-Flow Anesthesia Using Bispectral Index Monitoring: Effects on Hemodynamics, Recovery Times, Volatile Anesthetic Consumption and Costs

    Directory of Open Access Journals (Sweden)

    Bengü Gülhan Köksal

    2010-12-01

    Full Text Available Aim: In this study, we aimed to compare the effects of desfluraneN2O and desflurane-fentanyl combinations on hemodynamics, recovery times, volatile anesthetic consumption and costs in low-flow desflurane anesthesia by bispectral index (BIS monitoring of depth of anesthesia. Methods: After approval of ethics committee and obtaining patient consents, 60 patients were divided into two equal groups randomly. Non-invasive blood pressure measurement, ECG, SpO2 and BIS were monitored. All patients received 10 L .min-1 100% oxygen with mask for 5 minute before intubation. 2 mg.kg-1 propofol, 2 μg.kg-1 fentanyl and 0.6 mg.kg-1 rocuronium bromide were administered at induction in both groups. Desfluran 6% was chosen for anesthesia maintenance. Group 1 received 50% O2-N2O mixture in 6 L.min-1 and Group 2 received 50% O2-air mixture in 6 L.min-1 as carrier gas. Low-flow anesthesia (1 L.min-1 was started after a 10-min period of initial high flow (6 L.min-1. In Group 2, infusion of fentanyl was begun in 1 μg.kg.hour-1 rate. Desflurane level was adjusted at a main BIS value of 40-60. Blood pressure, heart rate, FiO2, etO2, FiN22, EtN2O, FiCO2, EtCO2, Fidesfluran and Etdesflurane were recorded. Results: There were no significant differences between the two groups in terms of heart rate, arterial blood pressure, settings of desfluran and recovery time. BIS values (p<0.001 and anesthetic agent costs (p<0.001 were higher in Group 2. Conclusion: Using fentanyl infusion instead of nitrous oxide in low flow-anesthesia with desflurane did not alter the hemodynamic parameters. Fentanyl infusion with medical air-oxygen as carrier gas is an alternative technique, but increases BIS values and anesthetic agent costs. (The Medical Bulletin of Haseki 2010; 48: 132-8

  13. Heat and mass transfer analysis for paraffin/nitrous oxide burning rate in hybrid propulsion

    Science.gov (United States)

    Ben-Basat (Sisi), Shani; Gany, Alon

    2016-03-01

    This research presents a physical-mathematical model for the combustion of liquefying fuels in hybrid combustors, accounting for blowing effect on the heat transfer. A particular attention is given to a paraffin/nitrous oxide hybrid system. The use of a paraffin fuel in hybrid propulsion has been considered because of its much higher regression rate enabling significantly higher thrust compared to that of common polymeric fuels. The model predicts the overall regression rate (melting rate) of the fuel and the different mechanisms involved, including evaporation, entrainment of droplets of molten material, and mass loss due to melt flow on the condensed fuel surface. Prediction of the thickness and velocity of the liquid (melt) layer formed at the surface during combustion was done as well. Applying the model for an oxidizer mass flux of 45 kg/(s m2) as an example representing experimental range, it was found that 21% of the molten liquid undergoes evaporation, 30% enters the gas flow by the entrainment mechanism, and 49% reaches the end of the combustion chamber as a flowing liquid layer. When increasing the oxidizer mass flux in the port, the effect of entrainment increases while that of the flowing liquid layer along the surface shows a relatively lower contribution. Yet, the latter is predicted to have a significant contribution to the overall mass loss. In practical applications it may cause reduced combustion efficiency and should be taken into account in the motor design, e.g., by reinforcing the paraffin fuel with different additives. The model predictions have been compared to experimental results revealing good agreement.

  14. From the Gut of an Insect to the Global Climate: Denitrification and Nitrous Oxide Production inside Lake Chironomidae

    DEFF Research Database (Denmark)

    Stief, Peter; Nielsen, Lars Peter; Revsbech, Niels Peter

    2006-01-01

    FROM THE GUT OF AN INSECT TO THE GLOBAL CLIMATE: DENITRIFICATION AND NITROUS OXIDE PRODUCTION INSIDE LAKE CHIRONOMIDAE P. Stief, L.P. Nielsen, N.P. Revsbech, A. Schramm Department of Biological Sciences, Microbiology, University of Aarhus, Denmark Denitrifying bacteria in lake sediments drive...

  15. Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples

    NARCIS (Netherlands)

    Kester, R.A.; Boer, W. de; Laanbroek, H.J.

    1996-01-01

    The contribution of nitrifiers and denitrifiers to the nitrous oxide production in slurries of calcareous silt loam and river bank sediment at different oxygen concentrations was determined using acetylene as nitrification inhibitor. The addition of 10 Pa acetylene resulted in inhibition of

  16. The impact of Southwest Airline's contribution to atmospheric Carbon Dioxide and Nitrous Oxide totals

    Science.gov (United States)

    Wilkerson, Cody L.

    Over the last century, aviation has grown to become an economical juggernaut. The industry creates innovation, connects people, and maintains a safety goal unlike any other field. However, as the world becomes more populated with technology and individuals, a general curiosity as to how human activity effects the planet is becoming of greater interest. This study presents what one domestic airline in the United States, Southwest Airlines, contributes to the atmospheric make-up of the planet. Utilizing various sources of quantifiable data, an outcome was reached that shows the amount of Carbon Dioxide and Nitrous Oxide produced by Southwest Airlines from 2002 to 2013. This topic was chosen due to the fact that there are no real quantifiable values of emission statistics from airlines available to the public. Further investigation allowed for Southwest Airlines to be compared to the overall Carbon Dioxide and Nitrous Oxide contributions of the United States for the year 2011. The results showed that with the absence of any set standard on emissions, it is vital that one should be established. The data showed that the current ICAO standard emission values showed a higher level of emissions than when Southwest Airline's fleet was analyzed using their actual fleet mix.

  17. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies

    Directory of Open Access Journals (Sweden)

    Frank eSchreiber

    2012-10-01

    Full Text Available Nitrous oxide (N2O is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH or the reduction of nitrite (NO2- to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO2- to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria. In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO2-, NH2OH and nitroxyl (HNO. Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser based absorption spectroscopy. In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build-up.

  18. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies

    Science.gov (United States)

    Schreiber, Frank; Wunderlin, Pascal; Udert, Kai M.; Wells, George F.

    2012-01-01

    Nitrous oxide (N2O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH) or the reduction of nitrite (NO−2) to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO−2 to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria (AOB). In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO−2, NH2OH, and nitroxyl (HNO). Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser absorption spectroscopy (QCLAS). In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build

  19. Antibiotics and Manure Effects on Microbial Communities Responsible for Nitrous Oxide Emissions from Grasslands

    Science.gov (United States)

    Semedo, M.; Song, B.; Sparrer, T.; Crozier, C.; Tobias, C. R.; Phillips, R. L.

    2015-12-01

    Agroecosystems are major contributors of nitrous oxide (N2O) emissions. Denitrification and nitrification are the primary pathways of N2O emission in soils. However, there is uncertainty regarding the organisms responsible for N2O production. Bacteria were previously considered the only microbial N2O source, however, current studies indicate that fungi also produce N2O by denitrification. Denitrifying bacteria can be a source or sink of N2O depending on the presence and expression of nitrous oxide reductase genes (nosZ), encoding for the enzyme converting N2O to N2. Fungal denitrification may produce only N2O as an end product due to missing the nosZ gene. Animal manures applied to agricultural fields can transfer antibiotics to soils as a result of antibiotic use in the livestock industry. These antibiotics target mostly bacteria and may promote fungal growth. The growth inhibition of denitrifying bacteria may favor fungal denitrifiers potentially enhancing N2O emissions. Our objective is to examine the effects of antibiotic exposure and manure fertilization on the microbial communities responsible for N2 and N2O production in grasslands. Soil slurry incubations were conducted with tetracycline at different concentrations. A mesocosm experiment was also performed with soil cores exposed to tetracycline and cow manure. Production of N2O and N2 was measured using gas chromatography with electron capture detector (GC-ECD) and isotope ratio mass spectrometry (IRMS), respectively. Antibiotic inhibition of soil N2 production was found to be dose dependent, reaching up to 80% inhibition with 1g Kg-1 of tetracycline treatment, while N2O production was enhanced up to 8 times. These results suggest higher fungal denitrification with a concomitant decrease in bacterial denitrification after antibiotic exposure. We also found higher N2O fluxes in the soil mesocosms treated with manure plus tetracycline. Quantitative PCR (qPCR) will be conducted to examine the changes in

  20. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    Science.gov (United States)

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Mathematical modeling of nitrous oxide production in an anaerobic/oxic/anoxic process.

    Science.gov (United States)

    Ding, Xiaoqian; Zhao, Jianqiang; Hu, Bo; Chen, Ying; Ge, Guanghuan; Li, Xiaoling; Wang, Sha; Gao, Kun; Tian, Xiaolei

    2016-12-01

    This study incorporates three currently known nitrous oxide (N 2 O) production pathways: ammonium-oxidizing bacteria (AOB) denitrification, incomplete hydroxylamine (NH 2 OH) oxidation, and heterotrophic denitrification on intracellular polymers, into a mathematical model to describe N 2 O production in an anaerobic/oxic/anoxic (AOA) process for the first time. The developed model was calibrated and validated by four experimental cases, then evaluated by two independent anaerobic/aerobic (AO) studies from literature. The modeling results displayed good agreement with the measured data. N 2 O was primarily generated in the aerobic stage by AOB denitrification (67.84-81.64%) in the AOA system. Smaller amounts of N 2 O were produced via incomplete NH 2 OH oxidation (15.61-32.17%) and heterotrophic denitrification on intracellular polymers (0-12.47%). The high nitrite inhibition on N 2 O reductase led to the increased N 2 O accumulation in heterotrophic denitrification on intracellular polymers. The new model was capable of modeling nitrification-denitrification dynamics and heterotrophic denitrification on intracellular polymers in the AOA system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of contrasting catch crops on nitrogen availability and nitrous oxide emissions in an organic cropping system

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Petersen, Søren O; Sørensen, Peter

    2015-01-01

    Legume-based catch crops (LBCCs) may act as an important source of nitrogen (N) in organic crop rotations because of biological N fixation. However, the potential risk of high nitrous oxide (N2O) emissions needs to be taken into account when including LBCCs in crop rotations. Here, we report...

  3. Denitrification rate determined by nitrate disapperance is higher than determined by nitrous oxide production with acetylene blockage

    DEFF Research Database (Denmark)

    Yu, Kewei; Struwe, Sten; Kjøller, Annelise

    2008-01-01

    A mixed beech and spruce forest soil was incubated under potential denitrification assay (PDA) condition with 10% acetylene (C2H2) in the headspace of soil slurry bottles. Nitrous oxide (N2O) concentration in the headspace, as well as nitrate, nitrite and ammonium concentrations in the soil slurr...

  4. Spring-Thaw Nitrous Oxide Emissions from Reed Canarygrass on Wetness-Prone Marginal Soil in New York State

    NARCIS (Netherlands)

    Mason, C.; Stoof, C.R.; Richards, B.K.; Rossiter, D.; Steenhuis, T.S.

    2016-01-01

    In temperate climates, a significant fraction of annual emissions of nitrous oxide (N2O) from agricultural land can occur during soil thaw in late winter and early spring. The objective of this study is to determine the impact of land use change from long-term fallow grassland to managed perennial

  5. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  6. Potential nitrous oxide yield of AOA vs. AOB and utilization of carbon and nitrogen in the ammonia oxidizing process in the Pearl River Estuary

    Science.gov (United States)

    Ma, L.; Dai, M.; Tan, S.; Xia, X.; Liu, H.

    2016-12-01

    Nitrous oxide (N2O), a greenhouse gas, is a by-product during ammonia oxidation process, the production of which is often stimulated under low dissolved oxygen (DO) in the estuarine environment. The potential yield of N2O has been considered to be driven by ammonia-oxidizing bacteria (AOB) of Betaproteobacteria & Gammaproteobacteria and/or ammonia-oxidizing archaea (AOA) of Thaumarchaeota. In order to examine the relative importance of AOA and AOB in producing N2O and in modulating the potential N2O yield, arch-amoA, beta-amoA, gamma-amoA encoding for the alpha subunit of the ammonia monooxygenase (AMO) are used as biomarkers to identify the distributions and bioactivities of AOA and AOB in the Pearl River Estuary (PRE). Size fractionation experiments were conducted to distinguish AOA and AOB on particles in different size-fractions of > 3 μm, 0.45-3 μm, and 0.22-0.45 μm. Pure culture of N. maritimusSCM1 was studied as a model organism to identify the organic carbon production during ammonia oxidation by SCM1 strains. Our results show that AOA distributes largely in the free-living state and could adapt to very limited ammonia substrate and low saturation of DO; AOB mainly distributes at the particle-attached state under relative richer ammonia and high DO conditions; however, the RNA/DNA ratio of AOB was higher than that of AOA under the same conditions suggesting AOB is relatively more actively expressed. In the upper reach of PRE, the dominant microorganism in the water column was AOB and the in situ N2O/NH3 therein ranged 0.73-3.74 ‰. In the lower PRE, AOA was dominated, and the in situ N2O/NH3 was of 1.17- 7.32‰. At selected sites, we estimated isotope effect (e) of AOA (eDIC/bulk) as -23.94‰ and AOB (eDIC/bulk) as -56.6‰ to -44.8‰, which is consistent with the studies of pure cultures. The coefficient of C sequestration "k", defined as (C biomass / DIC in situ) / (N biomass / ammonia in situ) to differ the utilization of carbon and nitrogen, of

  7. International IPCC workshop on methane and nitrous oxide: methods in national emissions inventories and options for control

    Energy Technology Data Exchange (ETDEWEB)

    Amstel, A.R. van (ed.)

    1993-07-01

    This workshop had two main objectives: to support the development of an internationally agreed methodology and reporting format for national emission inventories of greenhouse gases by mid 1993, as coordinated by the Science Working Group of the Intergovernmental Panel on Climate Change (IPCC) and the Organization for Economic Cooperation and Development (OECD); and the development of technical options for reduction of these greenhouse gases and the assessment of the socio-economic feasibility of these options. These proceedings contain the overview papers presented at the workshop, the background papers prepared for the working group sessions and the conclusions and recommendations of the working groups put forward during these sessions. 16 poster summaries are also included. During the workshop, 8 different sources of methane were discussed - oil and gas, coal mining, ruminants, animal waste, landfills and sewage treatments, combustion and industry, rice production and wetlands, and biomass burning - and 2 sources of nitrous oxide - agricultural soils and combustion and industry. All papers have been abstracted separately.

  8. Characteristic of nitrous oxide production in partial denitrification process with high nitrite accumulation.

    Science.gov (United States)

    Du, Rui; Peng, Yongzhen; Cao, Shenbin; Wang, Shuying; Niu, Meng

    2016-03-01

    Nitrous oxide (N2O) production during the partial denitrification process with nitrate (NO3(-)-N) to nitrite (NO2(-)-N) transformation ratio of 80% was investigated in this study. Results showed that N2O was seldom observed before complete depletion of NO3(-)-N, but it was closely related to the reduction of NO2(-)-N rather than NO3(-)-N. High COD/NO3(-)-N was in favor of N2O production in partial denitrification with high NO2(-)-N accumulation. It was seriously enhanced at constant acidic pH due to the free nitrous acid (FNA) inhibition. However, the N2O production was much lower at initial pH of 5.5 and 6.5 due to the pH increase during denitrification process. Significantly, the pH turning point could be chosen as a controlled parameter to denote the end of NO3(-)-N reduction, which could not only achieve high NO2(-)-N accumulation but also decrease the N2O production significantly for practical application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A two-step process of nitrous oxide before carbon dioxide for humanely euthanizing piglets: on-farm trials

    Science.gov (United States)

    The current methods of euthanizing neonatal piglets are raising concerns from the public and scientists. Our experiment tests the use of a two-step euthanasia method using nitrous oxide (N2O) for six minutes and then carbon dioxide (CO2) as a more humane way to euthanize piglets compared to just usi...

  10. Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options

    NARCIS (Netherlands)

    Montes, F.; Meinen, R.; Dell, C.; Rotz, A.; Hristov, A.N.; Oh, J.; Waghorn, G.; Gerber, P.J.; Henderson, B.L.; Makkar, H.P.S.; Dijkstra, J.

    2013-01-01

    This review analyzes published data on manure management practices used to mitigate methane (CH4) and nitrous oxide (N2O) emissions from animal operations. Reducing excreted nitrogen (N) and degradable organic carbon (C) by diet manipulation to improve the balance of nutrient inputs with production

  11. Valuation of the effectiveness of the nitrous oxide administration to the paediatric patient during channelling a peripheral venous

    Directory of Open Access Journals (Sweden)

    Beatriz Margenta Gutiérrez

    2011-01-01

    Full Text Available Objective: To valuate if the administration of nitrous oxide (Kalinox® during the technique of channelling a peripheral venous level decreases pain, improves the child´s behavior and facilitates the realization of the technique for the nurse. Experimental, randomized clinical trial. Population: children between 6-12 years old with an indication of peripheral venous channeling and medical approbation for administration of Kalinox to the Pediatric ICU unit of the Hospital in Toledo. Sample: 54 subjects in each group (alpha error of 0.05, with a study power of 90% and expecting a mean effect d/s = 0.5 for reducing pain in the experimental group. Main variables: the administration of nitrous oxide (independent variable and level of pain, motor behavior, degree of difficulty in performing the technique, and complications (dependent variables, besides, sociodemographic and clinical variables will be measured. It was used differents validated scales (Oucher, VAS y Frankl and one performed by us. Data will be analyze by SPSS software programme.

  12. Si0.85Ge0.15 oxynitridation in nitric oxide/nitrous oxide ambient

    International Nuclear Information System (INIS)

    Dasgupta, Anindya; Takoudis, Christos G.; Lei Yuanyuan; Browning, Nigel D.

    2003-01-01

    Low temperature, nitric oxide (NO)/nitrous oxide (N 2 O) aided, sub-35 Aa Si 0.85 Ge 0.15 oxynitrides have been grown at 550 and 650 deg. C, while the oxynitridation feed gases have been preheated to 900 and 1000 deg. C, respectively, before entering the reaction zone. X-ray photoelectron spectroscopy and secondary ion mass spectroscopy (SIMS) data suggest that NO-assisted oxynitridation incorporates more nitrogen than the N 2 O-assisted one, while there is minimal Ge segregation towards the dielectric/substrate interface in both oxynitridation processes. Moreover, SIMS results suggest that nitrogen is distributed throughout the film in contrast to high temperature Si oxynitridation, where nitrogen incorporation takes place near the dielectric/substrate interface. Z-contrast imaging with scanning transmission electron microscopy shows that the oxynitride grown in NO at 650 degree sign C has a sharp interface with the bulk Si 0.85 Ge 0.15 , while the roughness of the dielectric/Si 0.85 Ge 0.15 substrate interface is less than 2 Aa. These results are discussed in the context of an overall mechanism of SiGe oxynitridation

  13. Fact and Fiction of Nitrous Oxide Production By Nitrification

    Science.gov (United States)

    Stein, L. Y.; Kozlowski, J.; Stieglmeier, M.; Klotz, M. G.; Schleper, C.

    2014-12-01

    An accepted dogma in nitrification research is that ammonia-oxidizing bacteria (AOB) produce a modicum of nitrous oxide (N2O) during nitritation via incomplete oxidation of hydroxylamine, and substantially more at low oxygen concentrations via nitrifier denitrification.The nitrifier denitrification pathway involves the reduction of nitrite to N2O via nitric oxide and was thought to require activities of a copper-containing nitrite reductase (NirK) and nitric oxide reductase (NorB); inventory encoded in most, but not all AOB genome sequences. The discovery of nirK genes in ammonia-oxidizing Thaumarchaeota (AOA) resulted in a slew of publications stating that AOA must also perform nitrifier denitrification and, due to their high abundance, must control the majority of nitrification-linked N2O emissions. Prior to a publication by Stieglmeier et al. (2014), which definitively showed a lack of nitrifier denitrification by two axenic AOA cultures, other researchers relied on enrichment cultures, negative data, and heavy inferencing without direct demonstration of either a functional pathway or involvement of specific genes or enzymes. AOA genomes lack recognizable nitric oxide reductases and thermophilic AOA also lack nirK genes. Physiological and microrespirometry experiments with axenic AOB and AOA cultures allowed us to demonstrate that: 1) AOB produce N2O via nitrifier denitrification even though some lack annotated nirK and/or norB genes; 2) nitrifier denitrification by AOB is reliant on nitric oxide but ammonia oxidation is not; 3) ammonia oxidation by AOA is reliant on production of nitric oxide; 4) AOA are incapable of generating N2O via nitrifier denitrification; 5) N2O production by AOA is from chemical interactions between NO and media components, most likely not by enzyme activity. Our results reveal operation of different N oxide transformation pathways in AOB and AOA governed by different environmental controls and involving different mechanisms of N2O

  14. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors

    DEFF Research Database (Denmark)

    Su, Qingxian; Ma, Chun; Domingo-Felez, Carlos

    2017-01-01

    Nitrous oxide (N2O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, the rates and pathways of N2O production were quantified in two lab-scale sequencing batch reactors...... to maintain high nitritation efficiency and high nitritation rates at 20-26 °C over a period of ∼300 days. Even at the high nitritation efficiencies, net N2O production was low (∼2% of the oxidized ammonium). Net N2O production rates transiently increased with a rise in pH after each feeding, suggesting...... operated with intermittent feeding and demonstrating long-term and high-rate nitritation. The resulting reactor biomass was highly enriched in ammonia-oxidizing bacteria, and converted ∼93 ± 14% of the oxidized ammonium to nitrite. The low DO set-point combined with intermittent feeding was sufficient...

  15. Nitrous oxide emission from denitrification in stream and river networks

    Science.gov (United States)

    Beaulieu, J.J.; Tank, J.L.; Hamilton, S.K.; Wollheim, W.M.; Hall, R.O.; Mulholland, P.J.; Peterson, B.J.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Dodds, W.K.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Poole, G.C.; Maurice, Valett H.; Arango, C.P.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N 2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3-) concentrations, but that production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg??y -1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.

  16. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles

    2011-01-01

    on N2O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO2– participates as final electron acceptor compared to the oxic pathway. Among......Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2O...

  17. [Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies].

    Science.gov (United States)

    Zhu, Yong-Guan; Wang, Xiao-Hui; Yang, Xiao-Ru; Xu, Hui-Juan; Jia, Yan

    2014-02-01

    Nitrous oxide (N2O) is a powerful atmospheric greenhouse gas, which does not only have a strong influence on the global climate change but also depletes the ozone layer and induces the enhancement of ultraviolet radiation to ground surface, so numerous researches have been focused on global climate change and ecological environmental change. Soil is the foremost source of N2O emissions to the atmosphere, and approximately two-thirds of these emissions are generally attributed to microbiological processes including bacterial and fungal denitrification and nitrification processes, largely as a result of the application of nitrogenous fertilizers. Here the available knowledge concerning the research progress in N2O production in agricultural soils was reviewed, including denitrification, nitrification, nitrifier denitrification and dissimilatory nitrate reduction to ammonium, and the abiotic (including soil pH, organic and inorganic nitrogen, organic matter, soil humidity and temperature) and biotic factors that have direct and indirect effects on N2O fluxes from agricultural soils were also summarized. In addition, the strategies for mitigating N2O emissions and the future research direction were proposed. Therefore, these studies are expected to provide valuable and scientific evidence for the study on mitigation strategies for the emission of greenhouse gases, adjustment of nitrogen transformation processes and enhancement of nitrogen use efficiency.

  18. Treatment of off-gas evolved from thermal decomposition of sludge waste

    International Nuclear Information System (INIS)

    Doo-Seong Hwang; Yun-Dong Choi; Gyeong-Hwan Jeong; Jei-Kwon Moon

    2013-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of a uranium conversion plant. The treatment of the sludge waste, which was generated during the operation of the plant, is one of the most important tasks in the decommissioning program of the plant. The major compounds of sludge waste are nitrate salts and uranium. The sludge waste is denitrated by thermal decomposition. The treatment of off-gas evolved from the thermal decomposition of nitrate salts in the sludge waste is investigated. The nitrate salts in the sludge were decomposed in two steps: the first decomposition is due to the ammonium nitrate, and the second is due to the sodium and calcium nitrate and calcium carbonate. The components of off-gas from the decomposition of ammonium nitrate at low temperature are NH 3 , N 2 O, NO 2 , and NO. In addition, the components from the decomposition of sodium and calcium nitrate at high temperature are NO 2 and NO. Off-gas from the thermal decomposition is treated by the catalytic oxidation of ammonia and selective catalytic reduction (SCR). Ammonia is converted into nitrogen oxides through the oxidation catalyst and all nitrogen oxides are removed by SCR treatment besides nitrous oxide, which is greenhouse gas. An additional process is needed to remove nitrous oxide, and the feeding rate of ammonia in SCR should be controlled properly for evolved nitrogen oxides. (author)

  19. Interannual variation in nitrous oxide emissions from perennial ryegrass/white clover grassland used for dairy production.

    Science.gov (United States)

    Burchill, William; Li, Dejun; Lanigan, Gary J; Williams, Micheal; Humphreys, James

    2014-10-01

    Nitrous oxide (N2 O) emissions are subject to intra- and interannual variation due to changes in weather and management. This creates significant uncertainties when quantifying estimates of annual N2 O emissions from grazed grasslands. Despite these uncertainties, the majority of studies are short-term in nature (Nitrous oxide emissions were measured from fertilized and grazed perennial ryegrass/white clover grassland (WC) and from perennial ryegrass plots that were not grazed and did not receive N input (GB), over 4 years from 2008 to 2012 in Ireland (52°51'N, 08°21'W). The annual N2 O-N emissions (kg ha(-1); mean ± SE) ranged from 4.4 ± 0.2 to 34.4 ± 5.5 from WC and from 1.7 ± 0.8 to 6.3 ± 1.2 from GB. Interannual variation in N2 O emissions was attributed to differences in annual rainfall, monthly (December) soil temperatures and variation in N input. Such substantial interannual variation in N2 O emissions highlights the need for long-term studies of emissions from managed pastoral systems. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  20. Mitigation of nitrous oxide emissions from soils by Bradyrhizobium japonicum inoculation

    Science.gov (United States)

    Itakura, Manabu; Uchida, Yoshitaka; Akiyama, Hiroko; Hoshino, Yuko Takada; Shimomura, Yumi; Morimoto, Sho; Tago, Kanako; Wang, Yong; Hayakawa, Chihiro; Uetake, Yusuke; Sánchez, Cristina; Eda, Shima; Hayatsu, Masahito; Minamisawa, Kiwamu

    2013-03-01

    Nitrous oxide (N2O) is a greenhouse gas that is also capable of destroying the ozone layer. Agricultural soil is the largest source of N2O (ref. ). Soybean is a globally important leguminous crop, and hosts symbiotic nitrogen-fixing soil bacteria (rhizobia) that can also produce N2O (ref. ). In agricultural soil, N2O is emitted from fertilizer and soil nitrogen. In soybean ecosystems, N2O is also emitted from the degradation of the root nodules. Organic nitrogen inside the nodules is mineralized to NH4+, followed by nitrification and denitrification that produce N2O. N2O is then emitted into the atmosphere or is further reduced to N2 by N2O reductase (N2OR), which is encoded by the nosZ gene. Pure culture and vermiculite pot experiments showed lower N2O emission by nosZ+ strains and nosZ++ strains (mutants with increased N2OR activity) of Bradyrhizobium japonicum than by nosZ- strains. A pot experiment using soil confirmed these results. Although enhancing N2OR activity has been suggested as a N2O mitigation option, this has never been tested in the field. Here, we show that post-harvest N2O emission from soybean ecosystems due to degradation of nodules can be mitigated by inoculation of nosZ+ and non-genetically modified organism nosZ++ strains of B. japonicum at a field scale.

  1. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2 O hotspots.

    Science.gov (United States)

    Storer, Kate; Coggan, Aisha; Ineson, Phil; Hodge, Angela

    2017-12-05

    Nitrous oxide (N 2 O) is a potent, globally important, greenhouse gas, predominantly released from agricultural soils during nitrogen (N) cycling. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with two-thirds of land plants, providing phosphorus and/or N in exchange for carbon. As AMF acquire N, it was hypothesized that AMF hyphae may reduce N 2 O production. AMF hyphae were either allowed (AMF) or prevented (nonAMF) access to a compartment containing an organic matter and soil patch in two independent microcosm experiments. Compartment and patch N 2 O production was measured both before and after addition of ammonium and nitrate. In both experiments, N 2 O production decreased when AMF hyphae were present before inorganic N addition. In the presence of AMF hyphae, N 2 O production remained low following ammonium application, but increased in the nonAMF controls. By contrast, negligible N 2 O was produced following nitrate application to either AMF treatment. Thus, the main N 2 O source in this system appeared to be via nitrification, and the production of N 2 O was reduced in the presence of AMF hyphae. It is hypothesized that AMF hyphae may be outcompeting slow-growing nitrifiers for ammonium. This has significant global implications for our understanding of soil N cycling pathways and N 2 O production. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Reaction of nitrous acid with U(IV) and nitric acid in 30% TBP-kerosene solution

    International Nuclear Information System (INIS)

    Xu Xiangrong; Hu Jingxin; Huang Huaian; Qiu Xiaoxi

    1990-01-01

    Reaction of nitrous acid with U(IV) and nitric acid in 30% TBP-kerosene solution is investigated, the rate equations of oxidation of U(IV) by nitrous acid and that of nitrous acid reacting with nitric acid are obtained

  3. Sources of nitrous oxide emitted from European forest soils

    DEFF Research Database (Denmark)

    Ambus, P.; Zechmeister-Boltenstern, S.; Butterbach-Bahl, K.

    2006-01-01

    Forest ecosystems may provide strong sources of nitrous oxide (N2O), which is important for atmospheric chemical and radiative properties. Nonetheless, our understanding of controls on forest N2O emissions is insufficient to narrow current flux estimates, which still are associated with great...... uncertainties. In this study, we have investigated the quantitative and qualitative relationships between N-cycling and N2O production in European forests in order to evaluate the importance of nitrification and denitrification for N2O production. Soil samples were collected in 11 different sites characterized...... by variable climatic regimes and forest types. Soil N-cycling and associated production of N2O was assessed following application of 15N-labeled nitrogen. The N2O emission varied significantly among the different forest soils, and was inversely correlated to the soil C: N ratio. The N2O emissions were...

  4. Effects of excretal returns and soil compaction on nitrous oxide emissions from a cattle overwintering area

    Czech Academy of Sciences Publication Activity Database

    Šimek, Miloslav; Brůček, Petr; Hynšt, Jaroslav; Uhlířová, Eva; Petersen, S. O.

    2006-01-01

    Roč. 112, 2-3 (2006), s. 186-191 ISSN 0167-8809 R&D Projects: GA AV ČR(CZ) KSK3046108; GA ČR(CZ) GA526/04/0325 Grant - others:Evropská unie(XE) EVK2-CT-2000-00096 Institutional research plan: CEZ:AV0Z6066911 Keywords : cattle overwintering * emissions * nitrous oxide Subject RIV: EH - Ecology, Behaviour Impact factor: 1.832, year: 2006

  5. Nitrous oxide and global warming

    International Nuclear Information System (INIS)

    Kroeze, C.

    1994-01-01

    The climatic impact of nitrous oxide (N 2 O) emissions is calculated annually for the period 1900-2100, using a globally averaged computer model. Emissions of N 2 O have been increasing up top an estimated 12.7 Tg N/year in 1990 by human activities and global warming. If the current trends continue, emissions are estimated to be 25.7 Tg N/year by 2100, with fossil-fuel use and human food production as major contributors. The resulting equilibrium temperature increase (0.37 degree C) exceeds the forcing derived from climate goals that may be considered environmentally desirable. Limiting equilibrium warming to 0.1 degree C per decade would require anthropogenic-induced and warming-induced N 2 O emissions to be reduced by 80% relative to current trends and to be stabilized from 2050, so that 10.7 Tg N/year is emitted by 2100. To stabilize the current concentration or climate forcing of N 2 , substantially larger cuts are needed. However, even in an optimistic scenario, emissions keep increasing up to 14.4. Tg N/year by 2100. A major reason is the close connection between N 2 O emissions and human food production. Synthetic fertilizer use, land-use change, and production of manure increase almost inevitably as the human population grows. Thus if global warming is to be limited to 0.1 degree C per decade it may be necessary to set emission reductions for other greenhouse gases relatively high to compensate for growth in climatic forcing by N 2 O

  6. The detectability of nitrous oxide mitigation efficacy in intensively grazed pastures using a multiple plot micrometeorological technique

    Science.gov (United States)

    McMillan, A. M. S.; Harvey, M. J.; Martin, R. J.; Bromley, A. M.; Evans, M. J.; Mukherjee, S.; Laubach, J.

    2013-10-01

    Methodologies are required to verify agricultural greenhouse gas mitigation at scales relevant to farm management. Micrometeorological techniques provide a viable approach for comparing fluxes between fields receiving mitigation treatments and control fields. However, they have rarely been applied to spatially verifying treatments aimed at mitigating nitrous oxide emission from intensively grazed pastoral systems. We deployed a micrometeorological system to compare N2O flux among several ~ 1.5 ha plots in intensively grazed dairy pasture. The sample collection and measurement system is referred to as the Field-Scale Nitrous Oxide Mitigation Assessment System (FS-NOMAS) and used a tuneable diode laser absorption spectrometer to measure N2O gradients to high precision at four locations along a 300 m transect. The utility of the FS-NOMAS to assess mitigation efficacy depends largely on its ability to resolve very small vertical N2O gradients. The performance of the FS-NOMAS was assessed in this respect in laboratory and field-based studies. The FS-NOMAS could reliably resolve gradients of 0.039 ppb between a height of 0.5 m and 1.0 m. The gradient resolution achieved corresponded to the ability to detect an inter-plot N2O flux difference of 26.4 μg N2O-N m-2 h-1 under the most commonly encountered conditions of atmospheric mixing (quantified here by a turbulent transfer coefficient), but this ranged from 11 to 59 μg N2O-N m-2 h-1 as the transfer coefficient ranged between its 5th and 95th percentile. Assuming a likely value of 100 μg N2O-N m-2 h-1 for post-grazing N2O fluxes from intensively grazed New Zealand dairy pasture, the system described here would be capable of detecting a mitigation efficacy of 26% for a single (40 min) comparison. We demonstrate that the system has considerably greater sensitivity to treatment effects by measuring cumulative fluxes over extended periods.

  7. The detectability of nitrous oxide mitigation efficacy in intensively grazed pastures using a multiple-plot micrometeorological technique

    Directory of Open Access Journals (Sweden)

    A. M. S. McMillan

    2014-05-01

    Full Text Available Methodologies are required to verify agricultural greenhouse gas mitigation at scales relevant to farm management. Micrometeorological techniques provide a viable approach for comparing fluxes between fields receiving mitigation treatments and control fields. However, they have rarely been applied to spatially verifying treatments aimed at mitigating nitrous oxide emission from intensively grazed pastoral systems. We deployed a micrometeorological system to compare N2O flux among several ~1.5 ha plots in intensively grazed dairy pasture. The sample collection and measurement system is referred to as the Field-Scale Nitrous Oxide Mitigation Assessment System (FS-NOMAS and used a tuneable diode laser absorption spectrometer to measure N2O gradients to high precision at four locations along a 300 m transect. The utility of the FS-NOMAS to assess mitigation efficacy depends largely on its ability to resolve very small vertical N2O gradients. The performance of the FS-NOMAS was assessed in this respect in laboratory and field-based studies. The FS-NOMAS could reliably resolve gradients of 0.039 ppb between a height of 0.5 and 1.0 m. The gradient resolution achieved corresponded to the ability to detect an inter-plot N2O flux difference of 26 μg N2O–N m−2 h−1 under the most commonly encountered conditions of atmospheric mixing (quantified here by a turbulent transfer coefficient, but this ranged from 11 to 59 μg N2O–N m−2 h−1 as the transfer coefficient ranged between its 5th and 95th percentile. Assuming a likely value of 100 μg N2O–N m−2 h−1 for post-grazing N2O fluxes from intensively grazed New Zealand dairy pasture, the system described here would be capable of detecting a mitigation efficacy of 26% for a single (40 min comparison. We demonstrate that the system has considerably greater sensitivity to treatment effects by measuring cumulative fluxes over extended periods.

  8. The detectability of nitrous oxide mitigation efficacy in intensively grazed pastures using a multiple-plot micrometeorological technique

    Science.gov (United States)

    McMillan, A. M. S.; Harvey, M. J.; Martin, R. J.; Bromley, A. M.; Evans, M. J.; Mukherjee, S.; Laubach, J.

    2014-05-01

    Methodologies are required to verify agricultural greenhouse gas mitigation at scales relevant to farm management. Micrometeorological techniques provide a viable approach for comparing fluxes between fields receiving mitigation treatments and control fields. However, they have rarely been applied to spatially verifying treatments aimed at mitigating nitrous oxide emission from intensively grazed pastoral systems. We deployed a micrometeorological system to compare N2O flux among several ~1.5 ha plots in intensively grazed dairy pasture. The sample collection and measurement system is referred to as the Field-Scale Nitrous Oxide Mitigation Assessment System (FS-NOMAS) and used a tuneable diode laser absorption spectrometer to measure N2O gradients to high precision at four locations along a 300 m transect. The utility of the FS-NOMAS to assess mitigation efficacy depends largely on its ability to resolve very small vertical N2O gradients. The performance of the FS-NOMAS was assessed in this respect in laboratory and field-based studies. The FS-NOMAS could reliably resolve gradients of 0.039 ppb between a height of 0.5 and 1.0 m. The gradient resolution achieved corresponded to the ability to detect an inter-plot N2O flux difference of 26 μg N2O-N m-2 h-1 under the most commonly encountered conditions of atmospheric mixing (quantified here by a turbulent transfer coefficient), but this ranged from 11 to 59 μg N2O-N m-2 h-1 as the transfer coefficient ranged between its 5th and 95th percentile. Assuming a likely value of 100 μg N2O-N m-2 h-1 for post-grazing N2O fluxes from intensively grazed New Zealand dairy pasture, the system described here would be capable of detecting a mitigation efficacy of 26% for a single (40 min) comparison. We demonstrate that the system has considerably greater sensitivity to treatment effects by measuring cumulative fluxes over extended periods.

  9. Methane, nitrous oxide and ammonia emissions from pigs housed on litter and from stockpiling of spent litter

    KAUST Repository

    Phillips, F. A.; Wiedemann, S. G.; Naylor, T. A.; McGahan, E. J.; Warren, B. R.; Murphy, C. M.; Parkes, Stephen; Wilson, J.

    2016-01-01

    Mitigation of agricultural greenhouse gas emissions is a target area for the Australian Government and the pork industry. The present study measured methane (CH4), nitrous oxide (N2O) and ammonia (NH3) from a deep-litter piggery and litter stockpile over two trials in southern New South Wales, to compare emissions from housing pigs on deep litter with those of pigs from conventional housing with uncovered anaerobic effluent-treatment ponds. Emissions were measured using open-path Fourier transform infrared spectrometry, in conjunction with a backward Lagrangian stochastic model. Manure excretion was determined by mass balance and emission factors (EFs) were developed to report emissions relative to volatile solids and nitrogen (N) input. Nitrous oxide emissions per animal unit (1 AU ≤ 500 kg liveweight) from deep-litter sheds were negligible in winter, and 8.4 g/AU.day in summer. Ammonia emissions were 39.1 in winter and 52.2 g/AU.day in summer, while CH4 emissions were 16.1 and 21.6 g/AU.day in winter and summer respectively. Emission factors averaged from summer and winter emissions showed a CH4 conversion factor of 3.6%, an NH3-N EF of 10% and a N2O-N EF of 0.01 kg N2O-N/kg N excreted. For the litter stockpile, the simple average of summer and winter showed an EF for NH3-N of 14%, and a N2O-N EF of 0.02 kg N2O-N/kg-N of spent litter added to the stockpile. We observed a 66% and 80% decrease in emissions from the manure excreted in litter-based housing with litter stockpiling or without litter stockpiling, compared with conventional housing with an uncovered anaerobic effluent-treatment pond. This provides a sound basis for mitigation strategies that utilise litter-based housing as an alternative to conventional housing with uncovered anaerobic effluent-treatment ponds. © CSIRO 2016.

  10. Methane, nitrous oxide and ammonia emissions from pigs housed on litter and from stockpiling of spent litter

    KAUST Repository

    Phillips, F. A.

    2016-05-05

    Mitigation of agricultural greenhouse gas emissions is a target area for the Australian Government and the pork industry. The present study measured methane (CH4), nitrous oxide (N2O) and ammonia (NH3) from a deep-litter piggery and litter stockpile over two trials in southern New South Wales, to compare emissions from housing pigs on deep litter with those of pigs from conventional housing with uncovered anaerobic effluent-treatment ponds. Emissions were measured using open-path Fourier transform infrared spectrometry, in conjunction with a backward Lagrangian stochastic model. Manure excretion was determined by mass balance and emission factors (EFs) were developed to report emissions relative to volatile solids and nitrogen (N) input. Nitrous oxide emissions per animal unit (1 AU ≤ 500 kg liveweight) from deep-litter sheds were negligible in winter, and 8.4 g/AU.day in summer. Ammonia emissions were 39.1 in winter and 52.2 g/AU.day in summer, while CH4 emissions were 16.1 and 21.6 g/AU.day in winter and summer respectively. Emission factors averaged from summer and winter emissions showed a CH4 conversion factor of 3.6%, an NH3-N EF of 10% and a N2O-N EF of 0.01 kg N2O-N/kg N excreted. For the litter stockpile, the simple average of summer and winter showed an EF for NH3-N of 14%, and a N2O-N EF of 0.02 kg N2O-N/kg-N of spent litter added to the stockpile. We observed a 66% and 80% decrease in emissions from the manure excreted in litter-based housing with litter stockpiling or without litter stockpiling, compared with conventional housing with an uncovered anaerobic effluent-treatment pond. This provides a sound basis for mitigation strategies that utilise litter-based housing as an alternative to conventional housing with uncovered anaerobic effluent-treatment ponds. © CSIRO 2016.

  11. Modeling Greenhouse Gas Emissions from Enteric Fermentation

    NARCIS (Netherlands)

    Kebreab, E.; Tedeschi, L.; Dijkstra, J.; Ellis, J.L.; Bannink, A.; France, J.

    2016-01-01

    Livestock directly contribute to greenhouse gas (GHG) emissions mainly through methane (CH4) and nitrous oxide (N2O) emissions. For cost and practicality reasons, quantification of GHG has been through development of various types of mathematical models. This chapter addresses the utility and

  12. Update of emission factors for nitrous oxide from agricultural soils on the basis of measurements in the Netherlands

    NARCIS (Netherlands)

    Kuikman, P.J.; Hoek, van der K.W.; Smit, A.; Zwart, K.B.

    2006-01-01

    Emissions of nitrous oxide (N2O) in the Netherlands are reported to the UNFCCC on the basis of a country specific methodology. In this study we have identified and analysed the values for emission factors in measurement from in the Netherlands in the period 1993 – 2003. The overall averaged emission

  13. HONO (nitrous acid) emissions from acidic northern soils

    Science.gov (United States)

    Maljanen, Marja; Yli-Pirilä, Pasi; Joutsensaari, Jorma; Martikainen, Pertti J.

    2015-04-01

    The photolysis of HONO (nitrous acid) is an important source of OH radical, the key oxidizing agent in the atmosphere, contributing also to removal of atmospheric methane (CH4), the second most important greenhouse gas after carbon dioxide (CO2). The emissions of HONO from soils have been recently reported in few studies. Soil HONO emissions are regarded as missing sources of HONO when considering the chemical reactions in the atmosphere. The soil-derived HONO has been connected to soil nitrite (NO2-) and also directly to the activity of ammonia oxidizing bacteria, which has been studied with one pure culture. Our hypothesis was that boreal acidic soils with high nitrification activity could be also sources of HONO and the emissions of HONO are connected with nitrification. We selected a range of dominant northern acidic soils and showed in microcosm experiments that soils which have the highest nitrous oxide (N2O) and nitric oxide (NO) emissions (drained peatlands) also have the highest HONO production rates. The emissions of HONO are thus linked to nitrogen cycle and also NO and N2O emissions. Natural peatlands and boreal coniferous forests on mineral soils had the lowest HONO emissions. It is known that in natural peatlands with high water table and in boreal coniferous forest soils, low nitrification activity (microbial production of nitrite and nitrate) limits their N2O production. Low availability of nitrite in these soils is the likely reason also for their low HONO production rates. We also studied the origin of HONO in one peat soil with acetylene and other nitrification inhibitors and we found that HONO production is not closely connected to ammonium oxidation (nitrification). Acetylene blocked NO emissions but did not affect HONO or N2O emissions, thus there is another source behind HONO emission from these soils than ammonium oxidation. It is still an open question if this process is microbial or chemical origin.

  14. Optimization of the nitrous vapors experimental conditions production by nitric acid electrochemical reduction

    International Nuclear Information System (INIS)

    Lemaire, M.

    1996-01-01

    Gaseous nitrogen oxides (NO and NO 2 ) involved as oxidizing agents in nuclear fuel reprocessing can be produced by electrochemical reduction of nitric acid. This is an interesting alternative to the existing process because no wastes are generated. voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0,05 V SHE and between 0,5 V SHE and 1 V SHE . The highest potential region reduction mechanism was studied by: classical micro-electrolysis methods, macro-electrolysis methods, infrared spectroscopy coupled to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric reduction can also explained by an other chemical reaction. If the potential value of platinum electrode is above 0,8 V SHE , products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author)

  15. 78 FR 12310 - Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2011

    Science.gov (United States)

    2013-02-22

    ... dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), hydrofluorocarbons (HFC), perfluorocarbons (PFC..., petrochemical production, phosphoric acid, titanium dioxide, lime production, and several fluorinated gas...

  16. Animal health and greenhouse gas intensity: the paradox of periparturient parasitism.

    Science.gov (United States)

    Houdijk, J G M; Tolkamp, B J; Rooke, J A; Hutchings, M R

    2017-09-01

    Here we provide the first known direct measurements of pathogen challenge impacts on greenhouse gas production, yield and intensity. Twin-rearing ewes were ad libitum fed pelleted lucerne from day -32 to 36 (day 0 is parturition), and repeatedly infected with 10,000 Teladorsagia circumcincta infective larvae (n=16), or sham-dosed with water (n=16). A third group of 16 ewes were fed at 80% of uninfected ewes' feed intake during lactation. Methane emissions were measured in respiration chambers (day 30-36) whilst total tract apparent nutrient digestibility around day 28 informed calculated manure methane and nitrous oxide emissions estimates. Periparturient parasitism reduced feed intake (-9%) and litter weight gain (-7%) and doubled maternal body weight loss. Parasitism reduced daily enteric methane production by 10%, did not affect the methane yield per unit of dry matter intake but increased the yield per unit of digestible organic matter intake by 14%. Parasitism did not affect the daily calculated manure methane and nitrous oxide production, but increased the manure methane and nitrous oxide yields per unit of dry matter intake by 16% and 4%, respectively, and per unit of digestible organic matter intake by 46% and 31%, respectively. Accounting for increased lucerne input for delayed weaning and maternal body weight loss compensation, parasitism increased the calculated greenhouse gas intensity per kg of lamb weight gain for enteric methane (+11%), manure methane (+32%) and nitrous oxide (+30%). Supplemented with the global warming potential associated with production of pelleted lucerne, we demonstrated that parasitism increased calculated global warming potential per kg of lamb weight gain by 16%, which was similar to the measured impact of parasitism on the feed conversion ratio. Thus, arising from a pathogen-induced feed efficiency reduction and modified greenhouse gas emissions, we demonstrated that ovine periparturient parasitism increases greenhouse gas

  17. Heterotrophs are key contributors to nitrous oxide production in mixed liquor under low C-to-N ratios during nitrification - batch experiments and modelling

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Pellicer i Nàcher, Carles; Petersen, Morten S.

    2017-01-01

    Nitrous oxide (N2O), a by-product of biological nitrogen removal during wastewater treatment, is produced by ammonia-oxidizing bacteria (AOB) and heterotrophic denitrifying bacteria (HB). Mathematical models are used to predict N2O emissions, often including AOB as the main N2O producer. Several...

  18. Nitrous oxide emission estimates using atmospheric observations of vertical profiles in a polluted agricultural region

    Science.gov (United States)

    Herrera, S.; Diskin, G. S.; Pusede, S.

    2016-12-01

    Nitrous oxide (N2O) is a long-lived and highly potent greenhouse gas that also destroys stratospheric ozone. Largely attributed to changes in agricultural sources, N2O concentrations are increasing at a steady rate of 0.8 ppb y-1 globally. Emission rates of N2O remain poorly constrained, with N2O sources arguably among the most uncertain of the long-lived greenhouse gases. This study quantifies N2O emissions at the kilometer-spatial scale in the wintertime in a region with both agricultural and urban sources, the San Joaquin Valley of California. To do this, we use the large number vertical profiles of N2O and other relevant trace gases measured by the P3 aircraft during the NASA DISCOVER-AQ campaign that took place throughout the San Joaquin Valley in January-February 2013. We exploit the observed variability in profile shape by time of day, day to day, and location (over urban versus agricultural sources), along with chemical and physical constraints on mixing and the timing of decoupling between the surface boundary layer and residual layers aloft.

  19. Catalytic Decomposition of Nitrous Oxide over Catalysts Prepared from Co/Mg-Mn/Al Hydrotalcite-like Compounds

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Jirátová, Květa; Kovanda, F.; Pacultová, K.; Lacný, Z.; Mikulová, Zuzana

    2005-01-01

    Roč. 60, 3-4 (2005), s. 289-297 ISSN 0926-3373 R&D Projects: GA ČR(CZ) GA106/05/0366; GA ČR(CZ) GA104/04/2116; GA ČR(CZ) GA106/02/0523 Institutional research plan: CEZ:AV0Z40720504 Keywords : decomposition of nitrous oxide * hydrotalcite-like compounds Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.809, year: 2005

  20. The effects of fire on biogenic soil emissions of nitric oxide and nitrous oxide

    Science.gov (United States)

    Levine, Joel S.; Cofer, Wesley R., III; Sebacher, Daniel I.; Boston, Penelope J.; Winstead, Edward L.; Sebacher, Shirley

    1988-01-01

    Measurements of biogenic soil emissions of nitric oxide (NO) and nitrous oxide (N2O) before and after a controlled burn conducted in a chaparral ecosystem on June 22, 1987, showed significantly enhanced emissions of both gases after the burn. Mean NO emissions from heavily burned and wetted (to simulate rainfall) sites exceeded 40 ng N/sq m s, and increase of 2 to 3 compared to preburn wetted site measurements. N2O emissions from burned and wetted sites ranged from 9 to 22 ng N/sq m s. Preburn N2O emissions from these wetted sites were all below the detection level of the instrumentation, indicating a flux below 2 ng N/sq m s. The flux of NO exceeded the N2O flux from burned wetted sites by factors ranging from 2.7 to 3.4. These measurements, coupled with preburn and postburn measurements of ammonium and nitrate in the soil of this chaparral ecosystem and measurements of NO and N2O emissions obtained under controlled laboratory conditions, suggest that the postfire enhancement of NO and N2O emissions is due to production of these gases by nitrifying bacteria.

  1. [Sedation with 50 % nitrous oxide/oxygen in paediatric dentistry].

    Science.gov (United States)

    Atash, R; Vanden Abbeele, A

    2008-09-01

    The management of paediatric dentistry treatment is essentially based on behaviour management but some behaviour troubles or mental retardation may hinder this kind of treatment at the dental office without any premedication. This often leads the dentist to change his treatment planning even if this may compromise the quality of treatment . Conscious sedation techniques enable stress and pain control during the active treatment phase and represent a useful alternative to general anaesthesia which cannot be used on a routine based level. Conscious sedation by the inhalation of nitrous oxide and oxygen (MEOPA) represents a good choice, as well as by its harmlessness as by its fast reversibility. MEOPA is a precious help in our practice, provided that its administration is totally under central and all contra-indication are respected. However sedation by inhalation should in no case be systematized and its goal must remain the progressive rehabilitation of the patient in a circuit of traditional ambulatory care.

  2. Eddy covariance observations of methane and nitrous oxide emissions. Towards more accurate estimates from ecosystems

    International Nuclear Information System (INIS)

    Kroon, P.S.

    2010-09-01

    About 30% of the increased greenhouse gas (GHG) emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are related to land use changes and agricultural activities. In order to select effective measures, knowledge is required about GHG emissions from these ecosystems and how these emissions are influenced by management and meteorological conditions. Accurate emission values are therefore needed for all three GHGs to compile the full GHG balance. However, the current annual estimates of CH4 and N2O emissions from ecosystems have significant uncertainties, even larger than 50%. The present study showed that an advanced technique, micrometeorological eddy covariance flux technique, could obtain more accurate estimates with uncertainties even smaller than 10%. The current regional and global trace gas flux estimates of CH4 and N2O are possibly seriously underestimated due to incorrect measurement procedures. Accurate measurements of both gases are really important since they could even contribute for more than two-third to the total GHG emission. For example: the total GHG emission of a dairy farm site was estimated at 16.10 3 kg ha -1 yr -1 in CO2-equivalents from which 25% and 45% was contributed by CH4 and N2O, respectively. About 60% of the CH4 emission was emitted by ditches and their bordering edges. These emissions are not yet included in the national inventory reports. We recommend including these emissions in coming reports.

  3. Regional nitrous oxide flux in Amazon basin

    International Nuclear Information System (INIS)

    Felippe, Monica Tais Siqueira D'Amelio

    2010-01-01

    Nitrous oxide (N 2 O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N 2 O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rain forest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N 2 O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajos National Forest (2000-2009) and Cuieiras Biologic Reserve (2004-2007), and the estimation of N 2 O fluxes for regions upwind of these sites using two methods: Column Integration Technique and Inversion Model - FLEXPART. To our knowledge, these regional scale N 2 O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. For the both methods, the fluxes upwind of Cuieiras Biologic Reserve exhibited little seasonality, and the annual mean was 1.9 ±1.6 mgN 2 Om -2 day -1 for the Column Integration Technique and 2.3±0.9 mgN 2 Om -2 day -1 for Inversion Model - FLEXPART. For fluxes upwind of Tapajos Nacional Forest, the Inversion Model - FLEXPART presented about half (0.9±1.7 mgN 2 Om -2 day -1 ) of the Column Integration Technique (2.0±1.1 mgN 2 Om -2 day -1 ) for the same period (2004-2008). One reason could be because the inversion model does not consider anthropic activities, once it had a good representation for less impacted area. Both regions presented similar emission during wet season. By Column Integration Technique, fluxes upwind Tapajos Nacional Forest were similar for dry and wet seasons. The dry season N 2 O fluxes exhibit significant correlations with CO fluxes, indicating a larger than expected source of N 2 O from biomass burning. The average CO:N 2 O ratio for all 38 profiles sampled during the dry season was 82±69 mol CO:molN 2 O and suggests a larger biomass burning contribution to the global N 2 O budget than previously reported. (author)

  4. Radiolytic gas production from concrete containing Savannah River Plant waste

    International Nuclear Information System (INIS)

    Bibler, N.E.

    1978-01-01

    To determine the extent of gas production from radiolysis of concrete containing radioactive Savannah River Plant waste, samples of concrete and simulated waste were irradiated by 60 Co gamma rays and 244 Cm alpha particles. Gamma radiolysis simulated radiolysis by beta particles from fission products in the waste. Alpha radiolysis indicated the effect of alpha particles from transuranic isotopes in the waste. With gamma radiolysis, hydrogen was the only significant product; hydrogen reached a steady-state pressure that increased with increasing radiation intensity. Hydrogen was produced faster, and a higher steady-state pressure resulted when an organic set retarder was present. Oxygen that was sealed with the wastes was depleted. Gamma radiolysis also produced nitrous oxide gas when nitrate or nitrite was present in the concrete. With alpha radiolysis, hydrogen and oxygen were produced. Hydrogen did not reach a steady-state pressure at 137 Cs and 90 Sr), hydrogen will reach a steady-state pressure of 8 to 28 psi, and oxygen will be partially consumed. These predictions were confirmed by measurement of gas produced over a short time in a container of concrete and actual SRP waste. The tests with simulated waste also indicated that nitrous oxide may form, but because of the low nitrate or nitrite content of the waste, the maximum pressure of nitrous oxide after 300 years will be 238 Pu and 239 Pu will predominate; the hydrogen and oxygen pressures will increase to >200 psi

  5. Landscape control of nitrous oxide emissions during the transition from conservation reserve program to perennial grasses for bioenergy

    Science.gov (United States)

    Debasish Saha; Benjamin M. Rau; Jason P. Kaye; Felipe Montes; Paul R. Adler; Armen R. Kemanian

    2016-01-01

    Future liquid fuel demand from renewable sources may, in part, be met by converting the seasonally wet portions of the landscape currently managed for soil and water conservation to perennial energy crops. However, this shift may increase nitrous oxide (N2O) emissions, thus limiting the carbon (C) benefits of energy crops. Particularly high emissions may occur during...

  6. Nitrous oxide production during nitrification from organic solid waste under temperature and oxygen conditions.

    Science.gov (United States)

    Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei

    2016-11-01

    Landfill aeration can accelerate the biological degradation of organic waste and reduce methane production; however, it induces nitrous oxide (N2O), a potent greenhouse gas. Nitrification is one of the pathways of N2O generation as a by-product during aerobic condition. This study was initiated to demonstrate the features of N2O production rate from organic solid waste during nitrification under three different temperatures (20°C, 30°C, and 40°C) and three oxygen concentrations (5%, 10%, and 20%) with high moisture content and high substrates' concentration. The experiment was carried out by batch experiment using Erlenmeyer flasks incubated in a shaking water bath for 72 h. A duplicate experiment was carried out in parallel, with addition of 100 Pa of acetylene as a nitrification inhibitor, to investigate nitrifiers' contribution to N2O production. The production rate of N2O ranged between 0.40 × 10(-3) and 1.14 × 10(-3) mg N/g-DM/h under the experimental conditions of this study. The rate of N2O production at 40°C was higher than at 20°C and 30°C. Nitrification was found to be the dominant pathway of N2O production. It was evaluated that optimization of O2 content is one of the crucial parameters in N2O production that may help to minimize greenhouse gas emissions and N turnover during aeration.

  7. Nitrous oxide cryotherapy for treatment of esophageal squamous cell neoplasia: initial multicenter international experience with a novel portable cryoballoon ablation system

    NARCIS (Netherlands)

    Canto, Marcia Irene; Abrams, Julian A.; Kunzli, Hannah T.; Weusten, Bas; Komatsu, Yoshihiro; Jobe, Blair A.; Lightdale, Charles J.

    2018-01-01

    Background and Aims: Early esophageal squamous cell neoplasia (ESCN) can be successfully treated by EMR, endoscopic submucosal dissection (ESD), or radiofrequency ablation. A new portable, battery-powered cryotherapy system using nitrous oxide (cryoballoon focal ablation system [CbFAS]) has been

  8. Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas.

    Science.gov (United States)

    Kanu, Abu B; Hill, Herbert H

    2007-10-15

    This work demonstrated the potential of using a secondary drift gas of differing polarizability from the primary drift gas for confirmation of a positive response for drugs or explosives by ion mobility spectrometry (IMS). The gas phase mobilities of response ions for selected drugs and explosives were measured in four drift gases. The drift gases chosen for this study were air, nitrogen, carbon dioxide and nitrous oxide providing a range of polarizability and molecular weights. Four other drift gases (helium, neon, argon and sulfur hexafluoride) were also investigated but design limitations of the commercial instrument prevented their use for this application. When ion mobility was plotted against drift gas polarizability, the resulting slopes were often unique for individual ions, indicating that selectivity factors between any two analytes varied with the choice of drift gas. In some cases, drugs like THC and heroin, which are unresolved in air or nitrogen, were well resolved in carbon dioxide or nitrous oxide.

  9. Optimization of conditions to produce nitrous gases by electrochemical reduction of nitric acid

    International Nuclear Information System (INIS)

    Lemaire, M.; CEA Centre d'Etudes de la Vallee du Rhone, 30 -Marcoule

    1996-01-01

    Gaseous nitrogen oxides (NO and NO 2 ) involved as oxidizing agents in nuclear fuel reprocessing can be an produced by electrochemical reduction of nitric acid. This could be an interesting alternative to the usual process because no wastes are generated. Voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0.05 V S HE and 0.3 V S HE and O.5 V S HE and 1 V S HE. The highest potential region reduction mechanism was studies by: classical micro-electrolysis methods; macro-electrolysis methods; infra-red spectroscopy couplet to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric acid reduction can also be explained by an other chemical reaction. In the potential value of platinum electrode is above 0.8 V S HE, products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author)

  10. Nitrous oxide emission from polyculture constructed wetlands: Effect of plant species

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yanhua [School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dong Chuan Road, Min Hang, Shanghai 200240 (China); Inamori, Ryuhei [Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Kong Hainan [School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dong Chuan Road, Min Hang, Shanghai 200240 (China)], E-mail: remanda@126.com; Xu Kaiqin [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506 (Japan); State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan Unviversity, Wuhan 430072 (China); Inamori, Yuhei [Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Kondo, Takashi [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506 (Japan); Zhang Jixiang [School of Economics and Management, Southeast University, Nanjing, Jiangsu 210096 (China)

    2008-03-15

    Loss of nitrogen from the soil-plant system has raised environmental concern. This study assessed the fluxes of nitrous oxide (N{sub 2}O) in the subsurface flow constructed wetlands (CWs). To better understand the mechanism of N{sub 2}O emission, spatial distribution of ammonia-oxidizing bacteria (AOB) in four kinds of wetlands soil were compared. N{sub 2}O emission data showed large temporal and spatial variation ranging from -5.5 to 32.7 mg N{sub 2}O m{sup -2} d{sup -1}. The highest N{sub 2}O emission occurred in the cell planted with Phragmites australis and Zizania latifolia. Whereas, the lower emission rate were obtained in the cell planted with P. australis and Typha latifolia. These revealed that Z. latifolia stimulated the N{sub 2}O emission. Transportation of more organic matter and oxygen for AOB growth may be the reason. The study of AOB also supported this result, indicating that the root structure of Z. latifolia was favored by AOB for N{sub 2}O formation. - Zizania latifolia has a large contribution to global warming.

  11. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    Science.gov (United States)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  12. Life cycle assessment of selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator

    DEFF Research Database (Denmark)

    Møller, Jacob; Munk, Bjarne; Crillesen, Kim

    2011-01-01

    Selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator was investigated using LCA. The relationship between NOx-cleaning and ammonia dosage was measured at the plant. Un-reacted ammonia – the ammonia slip – leaving the flue-gas cleaning system......-cleaning efficiency, the fate of the ammonia slip as well as the environmental impact from ammonia production, the potential acidification and nutrient enrichment from NOx-cleaning was calculated as a function of ammonia dosage. Since the exact fate of the ammonia slip could not be measured directly, a number...... of scenarios were set up ranging from “best case” with no ammonia from the slip ending up in the environment to “worst case” where all the ammonia slip eventually ended up in the environment and contributed to environmental pollution. In the “best case” scenario the highest ammonia dosage was most beneficial...

  13. Simultaneous measurements of formaldehyde and nitrous acid in dews and gas phase in the atmosphere of Santiago, Chile

    Science.gov (United States)

    Rubio, María A.; Lissi, Eduardo; Villena, Guillermo; Elshorbany, Y. F.; Kleffmann, Jörg; Kurtenbach, Ralf; Wiesen, Peter

    2009-12-01

    The amounts of formaldehyde and nitrous acid (HONO) in gas phase and dews of Santiago de Chile were simultaneously measured. Formaldehyde concentrations values in the liquid phase (dews) correlate fairly well with those in the gaseous phase and are even higher than those expected from gas-dew equilibrium. On the other hand, nitrite concentrations in dews were considerably smaller (ca. 15 times) than those expected from the gas-phase concentrations. This under-saturation is attributed to diffusion limitations due to the relatively large HONO solubility. In agreement with this, under-saturation increases with the rate of dew formation and the pH of the collected waters, factors that should increase the rate of gas to liquid HONO transfer required to reach equilibrium.

  14. Assessment of nitric oxide (NO) redox reactions contribution to nitrous oxide (N2 O) formation during nitrification using a multispecies metabolic network model.

    Science.gov (United States)

    Perez-Garcia, Octavio; Chandran, Kartik; Villas-Boas, Silas G; Singhal, Naresh

    2016-05-01

    Over the coming decades nitrous oxide (N2O) is expected to become a dominant greenhouse gas and atmospheric ozone depleting substance. In wastewater treatment systems, N2O is majorly produced by nitrifying microbes through biochemical reduction of nitrite (NO2(-)) and nitric oxide (NO). However it is unknown if the amount of N2O formed is affected by alternative NO redox reactions catalyzed by oxidative nitrite oxidoreductase (NirK), cytochromes (i.e., P460 [CytP460] and 554 [Cyt554 ]) and flavohemoglobins (Hmp) in ammonia- and nitrite-oxidizing bacteria (AOB and NOB, respectively). In this study, a mathematical model is developed to assess how N2O formation is affected by such alternative nitrogen redox transformations. The developed multispecies metabolic network model captures the nitrogen respiratory pathways inferred from genomes of eight AOB and NOB species. The performance of model variants, obtained as different combinations of active NO redox reactions, was assessed against nine experimental datasets for nitrifying cultures producing N2O at different concentration of electron donor and acceptor. Model predicted metabolic fluxes show that only variants that included NO oxidation to NO2(-) by CytP460 and Hmp in AOB gave statistically similar estimates to observed production rates of N2O, NO, NO2(-) and nitrate (NO3(-)), together with fractions of AOB and NOB species in biomass. Simulations showed that NO oxidation to NO2(-) decreased N2O formation by 60% without changing culture's NO2(-) production rate. Model variants including NO reduction to N2O by Cyt554 and cNor in NOB did not improve the accuracy of experimental datasets estimates, suggesting null N2O production by NOB during nitrification. Finally, the analysis shows that in nitrifying cultures transitioning from dissolved oxygen levels above 3.8 ± 0.38 to <1.5 ± 0.8 mg/L, NOB cells can oxidize the NO produced by AOB through reactions catalyzed by oxidative NirK. © 2015 Wiley Periodicals, Inc.

  15. Global oceanic production of nitrous oxide

    Science.gov (United States)

    Freing, Alina; Wallace, Douglas W. R.; Bange, Hermann W.

    2012-01-01

    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N2O) to estimate the concentration of biologically produced N2O and N2O production rates in the ocean on a global scale. Our approach to estimate the N2O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N2O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N2O are not taken into account in our study. The largest amount of subsurface N2O is produced in the upper 500 m of the water column. The estimated global annual subsurface N2O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr−1. This is in agreement with estimates of the global N2O emissions to the atmosphere and indicates that a N2O source in the mixed layer is unlikely. The potential future development of the oceanic N2O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed. PMID:22451110

  16. Global oceanic production of nitrous oxide.

    Science.gov (United States)

    Freing, Alina; Wallace, Douglas W R; Bange, Hermann W

    2012-05-05

    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N(2)O) to estimate the concentration of biologically produced N(2)O and N(2)O production rates in the ocean on a global scale. Our approach to estimate the N(2)O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N(2)O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N(2)O are not taken into account in our study. The largest amount of subsurface N(2)O is produced in the upper 500 m of the water column. The estimated global annual subsurface N(2)O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr(-1). This is in agreement with estimates of the global N(2)O emissions to the atmosphere and indicates that a N(2)O source in the mixed layer is unlikely. The potential future development of the oceanic N(2)O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed.

  17. Effect of Free Nitrous Acid on Nitrous Oxide Production and Denitrifying Phosphorus Removal by Polyphosphorus-Accumulating Organisms in Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zhijia Miao

    2018-01-01

    Full Text Available The inhibition of free nitrous acid (FNA on denitrifying phosphorus removal has been widely reported for enhanced biological phosphorus removal; however, few studies focus on the nitrous oxide (N2O production involved in this process. In this study, the effects of FNA on N2O production and anoxic phosphorus metabolism were investigated using phosphorus-accumulating organisms (PAOs culture highly enriched (91±4% in Candidatus Accumulibacter phosphatis. Results show that the FNA concentration notably inhibited anoxic phosphorus metabolism and phosphorus uptake. Poly-β-hydroxyalkanoate (PHA degradation was completely inhibited when the FNA concentration was approximately 0.0923 mgHNO2-N/L. Higher initial FNA concentrations (0.00035 to 0.0103 mgHNO2-N/L led to more PHA consumption/TN (0.444 to 0.916 mmol-C/(mmol-N·gVSS. Moreover, it was found that FNA, rather than nitrite and pH, was likely the true inhibitor of N2O production. The highest proportion of N2O to TN was 78.42% at 0.0031 mgHNO2-N/L (equivalent to 42.44 mgNO2-N/L at pH 7.5, due to the simultaneous effects of FNA on the subsequent conversion of NO2 into N2O and then into N2. The traditional nitrite knee point can only indicate the exhaustion of nitrite, instead of the complete removal of TN.

  18. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules.

    Science.gov (United States)

    Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi

    2015-12-01

    The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Combining nitrous oxide with carbon dioxide decreases the time to loss of consciousness during euthanasia in mice--refinement of animal welfare?

    Science.gov (United States)

    Thomas, Aurelie A; Flecknell, Paul A; Golledge, Huw D R

    2012-01-01

    Carbon dioxide (CO(2)) is the most commonly used euthanasia agent for rodents despite potentially causing pain and distress. Nitrous oxide is used in man to speed induction of anaesthesia with volatile anaesthetics, via a mechanism referred to as the "second gas" effect. We therefore evaluated the addition of Nitrous Oxide (N(2)O) to a rising CO(2) concentration could be used as a welfare refinement of the euthanasia process in mice, by shortening the duration of conscious exposure to CO2. Firstly, to assess the effect of N(2)O on the induction of anaesthesia in mice, 12 female C57Bl/6 mice were anaesthetized in a crossover protocol with the following combinations: Isoflurane (5%)+O(2) (95%); Isoflurane (5%)+N(2)O (75%)+O(2) (25%) and N(2)O (75%)+O(2) (25%) with a total flow rate of 3 l/min (into a 7 l induction chamber). The addition of N(2)O to isoflurane reduced the time to loss of the righting reflex by 17.6%. Secondly, 18 C57Bl/6 and 18 CD1 mice were individually euthanized by gradually filling the induction chamber with either: CO(2) (20% of the chamber volume.min-1); CO(2)+N(2)O (20 and 60% of the chamber volume.min(-1) respectively); or CO(2)+Nitrogen (N(2)) (20 and 60% of the chamber volume.min-1). Arterial partial pressure (P(a)) of O(2) and CO(2) were measured as well as blood pH and lactate. When compared to the gradually rising CO(2) euthanasia, addition of a high concentration of N(2)O to CO(2) lowered the time to loss of righting reflex by 10.3% (Peuthanasia and hence may reduce the duration of any stress or distress to which mice are exposed during euthanasia.

  20. Clinical experience with TENS and TENS combined with nitrous oxide-oxygen. Report of 371 patients.

    OpenAIRE

    Quarnstrom, F. C.; Milgrom, P.

    1989-01-01

    Transcutaneous electrical nerve stimulation (TENS) alone or TENS combined with nitrous oxide-oxygen (N2O) was administered for restorative dentistry without local anesthesia to 371 adult patients. A total of 55% of TENS alone and 84% of TENS/N2O visits were rated successful. A total of 53% of TENS alone and 82% of TENS/N2O patients reported slight or no pain. In multivariable analyses, pain reports were related to the anesthesia technique and patient fear and unrelated to sex, race, age, toot...

  1. Nitrous oxide for procedural analgesia at home in a child with epidermolysis bullosa.

    Science.gov (United States)

    Ingelmo, Pablo; Wei, Andrew; Rivera, Gonzalo

    2017-07-01

    Epidermolysis bullosa comprises a range of conditions characterized by fragile skin with painful blistering induced by minor trauma and friction. The Dowling-Meara variant is a severe form characterized by disseminated painful blistering requiring lifelong skin and wound care. The natural history of the disease is characterized by a chronic course that tends to improve with advancing age. Various multimodal analgesic strategies have been proposed for painful procedures in children with epidermolysis bullosa. In this case report, we describe the use of nitrous oxide for pain control at home of blister treatments in a 4-year-old child with the Dowling-Meara variant. © 2017 John Wiley & Sons Ltd.

  2. Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions

    Science.gov (United States)

    Rannik, Ü.; Haapanala, S.; Shurpali, N. J.; Mammarella, I.; Lind, S.; Hyvönen, N.; Peltola, O.; Zahniser, M.; Martikainen, P. J.; Vesala, T.

    2015-01-01

    Four gas analysers capable of measuring nitrous oxide (N2O) concentration at a response time necessary for eddy covariance flux measurements were operated from spring until winter 2011 over a field cultivated with reed canary grass (RCG, Phalaris arundinacea, L.), a perennial bioenergy crop in eastern Finland. The instruments were TGA100A (Campbell Scientific Inc.), CW-TILDAS-CS (Aerodyne Research Inc.), N2O / CO-23d (Los Gatos Research Inc.) and QC-TILDAS-76-CS (Aerodyne Research Inc.). The period with high emissions, lasting for about 2 weeks after fertilization in late May, was characterized by an up to 2 orders of magnitude higher emission, whereas during the rest of the campaign the N2O fluxes were small, from 0.01 to 1 nmol m-2 s-1. Two instruments, CW-TILDAS-CS and N2O / CO-23d, determined the N2O exchange with minor systematic difference throughout the campaign, when operated simultaneously. TGA100A produced the cumulatively highest N2O estimates (with 29% higher values during the period when all instruments were operational). QC-TILDAS-76-CS obtained 36% lower fluxes than CW-TILDAS-CS during the first period, including the emission episode, whereas the correspondence with other instruments during the rest of the campaign was good. The reasons for systematic differences were not identified, suggesting further need for detailed evaluation of instrument performance under field conditions with emphasis on stability, calibration and any other factors that can systematically affect the accuracy of flux measurements. The instrument CW-TILDAS-CS was characterized by the lowest noise level (with a standard deviation of around 0.12 ppb at 10 Hz sampling rate) as compared to N2O / CO-23d and QC-TILDAS-76-CS (around 0.50 ppb) and TGA100A (around 2 ppb). We identified that for all instruments except CW-TILDAS-CS the random error due to instrumental noise was an important source of uncertainty at the 30 min averaging level and the total stochastic error was frequently

  3. The Contamination of Commercial 15N2 Gas Stocks with 15N–Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements

    Science.gov (United States)

    Dabundo, Richard; Lehmann, Moritz F.; Treibergs, Lija; Tobias, Craig R.; Altabet, Mark A.; Moisander, Pia H.; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations. PMID:25329300

  4. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements.

    Science.gov (United States)

    Dabundo, Richard; Lehmann, Moritz F; Treibergs, Lija; Tobias, Craig R; Altabet, Mark A; Moisander, Pia H; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations.

  5. Methane and nitrous oxide emissions from livestock agriculture in 16 local administrative districts of Korea.

    Science.gov (United States)

    Ji, Eun Sook; Park, Kyu-Hyun

    2012-12-01

    .2%. Efforts by the local administrative offices to improve the accuracy of activity data are essential to improve GHG inventories. Direct measurements of GHG emissions from enteric fermentation and manure treatment systems will further enhance the accuracy of the GHG data. (Key Words: Greenhouse Gas, Methane, Nitrous Oxide, Carbon Dioxide Equivalent Emission, Climate Change).

  6. Role of nitrous acid during the dissolution of UO2 in nitric acid

    International Nuclear Information System (INIS)

    Deigan, N.; Pandey, N.K.; Kamachi Mudali, U.; Joshi, J.B.

    2016-01-01

    Understanding the dissolution behaviour of sintered UO 2 pellet in nitric acid is very important in designing an industrial scale dissolution system for the plutonium rich fast reactor MOX fuel. In the current article we have established the role of nitrous acid on the dissolution kinetics of UO 2 pellets in nitric acid. Under the chemical conditions that prevail in a typical Purex process, NO and NO 2 gases gets generated in the process streams. These gases produce nitrous acid in nitric acid medium. In addition, during the dissolution of UO 2 in nitric acid medium, nitrous acid is further produced in-situ at the pellet solution interface. As uranium dissolves oxidatively in nitric acid medium wherein it goes from U(IV) in solid to U(VI) in liquid, presence of nitrous acid (a good oxidizing agent) accelerates the reaction rate. Hence for determining the reaction mechanism of UO 2 dissolution in nitric acid medium, knowing the nitrous acid concentration profile during the course of dissolution is important. The current work involves the measurement of nitrous acid concentration during the course of dissolution of sintered UO 2 pellets in 8M starting nitric acid concentration as a function of mixing intensity from unstirred condition to 1500 RPM

  7. High-Frequency Nitrous Oxide Dynamics in an Ephemeral Agricultural Wetland

    Science.gov (United States)

    Lawrence, N.; Hall, S. J.

    2017-12-01

    Nitrous oxide (N2O) is a potent greenhouse gas and major contributor to climate change, and soil microbes are the largest source of N2O globally. Top-down measurements of N2O do not agree with scaled up estimations using local measurements, suggesting missing sources of N2O. Hot-spots and hot-moments are often invoked to explain missing emissions, but we lack a conceptual framework to predict when and where they will occur. We hypothesize that intensively farmed ephemeral wetlands with temporally variable moisture, which drives fluctuations in redox potential, provide ideal conditions for N2O production that may have been overlooked in previous field-scale research. Using high-frequency automated chamber measurements across a topographical gradient in a Midwestern agricultural field (in the southern Prairie Pothole region, Iowa), we have observed both spatial and temporal hotspots. After approximately five months of observation, the wetland soils had cumulative N2O emissions 71% higher than surrounding uplands. We also find strong evidence for the importance of hot moments, in that measurements representing the highest 20% of emissions make up 67% of the total N2O flux. These values correspond to heightened emissions in the days following spring thaw or fertilization and the 8 hours following rain events, after which N2O emissions typically returned to baseline levels. In addition to N2O emissions, we have also measured a suite of potential microbial drivers to inform a predictive framework for hotspots and moments in the context of topographic complexity and hydric soils. Our preliminary findings suggest that farmed wetlands representing 10% of the study region may contribute disproportionately to N2O emissions and could contribute to discrepancies in top-down and bottom-up budgets.

  8. The rate of aucubin, a secondary metabolite in Plantago lanceolata and potential nitrification inhibitor, needed to reduce ruminant urine patch nitrous oxide emissions

    Science.gov (United States)

    Gardiner, C. A.; Clough, T.; Cameron, K.; Di, H.; Edwards, G. R.

    2017-12-01

    Nitrous oxide (N2O) losses derived from grazing ruminant livestock urine patches account for 40% of global N2O emissions. It has been shown that Plantago lanceolata, an herb species used in grazed pastures, contains an active secondary metabolite (aucubin) that has the potential to be excreted by grazing ruminants and inhibit nitrification in the urine patch, a key step in soil N2O production. However, the urinary excretion rate of aucubin needed to significantly reduce urine patch N2O emissions remains unknown. Aucubin was dissolved in bovine urine at three rates (47, 243, and 486 kg ha-1), based on rates used in Dietz et al. (2013) and the calculated highest potential aucubin application rate, from Gardiner et al. (2017). A control, along with a urine treatment and the three aucubin treatments (all urine applied at 700 kg N ha-1), was applied to 20 g soil and incubated in the laboratory for 35 d. Soils were monitored for surface pH, inorganic N concentration (NH4+/NO3-), and gas (N2O and CO2) fluxes. This experiment is currently underway and the results will be presented at the conference. Dietz M, Machill S, Hoffmann H, Schmidtke K 2013. Inhibitory effects of Plantago lanceolata L. on soil N mineralization. Plant and Soil 368: 445-458. Gardiner CA, Clough TJ, Cameron KC, Di HJ, Edwards GR, de Klein CAM 2017. The potential inhibitory effects of Plantago lanceolata and its active secondary metabolite aucubin on soil nitrification and nitrous oxide emissions under ruminant urine patch conditions. Manuscript submitted for publication.

  9. Reevaluation of the global warming impacts of algae-derived biofuels to account for possible contributions of nitrous oxide.

    Science.gov (United States)

    Bauer, Sarah K; Grotz, Lara S; Connelly, Elizabeth B; Colosi, Lisa M

    2016-10-01

    The environmental impacts of algae biofuels have been evaluated by life-cycle assessment (LCA); however, these analyses have overlooked nitrous oxide (N2O), a potent greenhouse gas. A literature analysis was performed to estimate algal N2O emissions and assess the impacts of growth conditions on flux magnitudes. Nitrogen source and dissolved oxygen concentration were identified as possible key contributors; therefore, their individual and combined impacts were evaluated using bench-scale experiments. It was observed that maximum N2O emissions (77.5μg/galgae/day) occur under anoxic conditions with nitrite. Conversely, minimum emissions (6.25μg/galgae/day) occur under oxic conditions with nitrate. Aggregated N2O flux estimates were then incorporated into a LCA framework for algae biodiesel. Accounting for "low" N2O emissions mediated no significant increase (<1%) compared to existing GWP estimates; however, "high" N2O emissions mediate an increase of roughly 25%, potentially jeopardizing the anticipated economic and environmental performances of algae biofuels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Smets, Barth F.; Yuan, Zhiguo

    2013-01-01

    A multispecies one-dimensional biofilm model considering nitric oxide (NO) and nitrous oxide (N2O) productions for membrane aerated biofilm reactor (MABR) that remove nitrogen autotrophically through aerobic ammonia oxidation followed by Anammox is used to study the role of Anammox activity...... on the total nitrogen (TN) removal and the productions of NO and N2O. The model is applied to evaluate how periodic aeration as a control parameter reduces NO and N2O production but maintains high TN removal in MABR. The simulation results show over 3.5% of the removed TN could be attributed to NO and N2O...... production in MABR under the operational conditions optimal for TN removal (72%). An analysis of factors governing the Anammox activity in MABR shows that enhancing Anammox activity not only helps to achieve a high level of nitrogen removal but also reduces NO and N2O productions. Comparison of aeration...

  11. From the ground up: global nitrous oxide sources are constrained by stable isotope values.

    Directory of Open Access Journals (Sweden)

    David M Snider

    Full Text Available Rising concentrations of nitrous oxide (N2O in the atmosphere are causing widespread concern because this trace gas plays a key role in the destruction of stratospheric ozone and it is a strong greenhouse gas. The successful mitigation of N2O emissions requires a solid understanding of the relative importance of all N2O sources and sinks. Stable isotope ratio measurements (δ15N-N2O and δ18O-N2O, including the intramolecular distribution of 15N (site preference, are one way to track different sources if they are isotopically distinct. 'Top-down' isotope mass-balance studies have had limited success balancing the global N2O budget thus far because the isotopic signatures of soil, freshwater, and marine sources are poorly constrained and a comprehensive analysis of global N2O stable isotope measurements has not been done. Here we used a robust analysis of all available in situ measurements to define key global N2O sources. We showed that the marine source is isotopically distinct from soil and freshwater N2O (the continental source. Further, the global average source (sum of all natural and anthropogenic sources is largely controlled by soils and freshwaters. These findings substantiate past modelling studies that relied on several assumptions about the global N2O cycle. Finally, a two-box-model and a Bayesian isotope mixing model revealed marine and continental N2O sources have relative contributions of 24-26% and 74-76% to the total, respectively. Further, the Bayesian modeling exercise indicated the N2O flux from freshwaters may be much larger than currently thought.

  12. Representative concentration pathways and mitigation scenarios for nitrous oxide

    International Nuclear Information System (INIS)

    Davidson, Eric A

    2012-01-01

    The challenges of mitigating nitrous oxide (N 2 O) emissions are substantially different from those for carbon dioxide (CO 2 ) and methane (CH 4 ), because nitrogen (N) is essential for food production, and over 80% of anthropogenic N 2 O emissions are from the agricultural sector. Here I use a model of emission factors of N 2 O to demonstrate the magnitude of improvements in agriculture and industrial sectors and changes in dietary habits that would be necessary to match the four representative concentration pathways (RCPs) now being considered in the fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). Stabilizing atmospheric N 2 O by 2050, consistent with the most aggressive of the RCP mitigation scenarios, would require about 50% reductions in emission factors in all sectors and about a 50% reduction in mean per capita meat consumption in the developed world. Technologies exist to achieve such improved efficiencies, but overcoming social, economic, and political impediments for their adoption and for changes in dietary habits will present large challenges. (letter)

  13. Oxidation of a [Cu2S] complex by N2O and CO2: insights into a role of tetranuclearity in the CuZ site of nitrous oxide reductase.

    Science.gov (United States)

    Bagherzadeh, Sharareh; Mankad, Neal P

    2018-01-25

    Oxidation of a [Cu 2 (μ-S)] complex by N 2 O or CO 2 generated a [Cu 2 (μ-SO 4 )] product. In the presence of a sulfur trap, a [Cu 2 (μ-O)] species also formed from N 2 O. A [Cu 2 (μ-CS 3 )] species derived from CS 2 modeled initial reaction intermediates. These observations indicate that one role of tetranuclearity in the Cu Z catalytic site of nitrous oxide reductase is to protect the crucial S 2- ligand from oxidation.

  14. Mitigating nitrous oxide emissions from tea field soil using bioaugmentation with a Trichoderma viride biofertilizer.

    Science.gov (United States)

    Xu, Shengjun; Fu, Xiaoqing; Ma, Shuanglong; Bai, Zhihui; Xiao, Runlin; Li, Yong; Zhuang, Guoqiang

    2014-01-01

    Land-use conversion from woodlands to tea fields in subtropical areas of central China leads to increased nitrous oxide (N2O) emissions, partly due to increased nitrogen fertilizer use. A field investigation of N2O using a static closed chamber-gas chromatography revealed that the average N2O fluxes in tea fields with 225 kg N ha(-1) yr(-1) fertilizer application were 9.4 ± 6.2 times higher than those of woodlands. Accordingly, it is urgent to develop practices for mitigating N2O emissions from tea fields. By liquid-state fermentation of sweet potato starch wastewater and solid-state fermentation of paddy straw with application of Trichoderma viride, we provided the tea plantation with biofertilizer containing 2.4 t C ha(-1) and 58.7 kg N ha(-1). Compared to use of synthetic N fertilizer, use of biofertilizer at 225 kg N ha(-1) yr(-1) significantly reduced N2O emissions by 33.3%-71.8% and increased the tea yield by 16.2%-62.2%. Therefore, the process of bioconversion/bioaugmentation tested in this study was found to be a cost-effective and feasible approach to reducing N2O emissions and can be considered the best management practice for tea fields.

  15. Soil nitrate reducing processes - drivers, mechanisms for spatial variation, and significance for nitrous oxide production.

    Science.gov (United States)

    Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M; Daniell, Tim J

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate ([Formula: see text]) and production of the potent greenhouse gas, nitrous oxide (N(2)O). A number of factors are known to control these processes, including O(2) concentrations and moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub centimeter areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location, and potential for N(2)O production from soils.

  16. Spatial and temporal variability of nitrous oxide emissions in a mixed farming landscape of Denmark

    DEFF Research Database (Denmark)

    Schelde, Kirsten; Cellier, P; Bertolini, T

    2012-01-01

    Nitrous oxide (N2O) emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape in Denmark, to investigate the main drivers of variations in N2O...... yr−1) during the previous year when soil water conditions were favourable for N2O production during the first month following fertilizer application. Our findings confirm the importance of weather conditions as well as nitrogen management on N2O fluxes....

  17. Nitrous oxide emission from the agriculture in the Netherlands. Outline of effects of manure and ammonia measures

    International Nuclear Information System (INIS)

    Kros, J.; De Vries, W.; Oenema, O.; Velthof, G.; Kuikman, P.J.; Van Hove, B.

    2004-01-01

    By means of the model INITIATOR an integral outline was made of the effects of several measures within the framework of the manure and ammonia policy focusing on nitrous oxide emission. The results are compared with the IPCC method. The model INITIATOR is a mechanistic model by means of which the carbon cycle in the Netherlands can be differentiated on a regional scale as a function of land use, type of soil and hydrology [nl

  18. Nitrous oxide emissions from forests and pastures of various ages in the Brazilian Amazon

    Science.gov (United States)

    Melillo, J. M.; Steudler, P. A.; Feigl, B. J.; Neill, C.; Garcia, D.; Piccolo, M. C.; Cerri, C. C.; Tian, H.

    2001-12-01

    Nitrous oxide emissions from tropical forest soils are thought to account for 2.2-3.7 Tg N yr-1 of the total annual global production of 10-17 Tg N yr-1. Recent research suggests that clearing of tropical forest for pasture can increase N2O emissions but that the period of elevated emissions may be limited and fluxes from older pastures may be lower than from the original forest. Here we report N2O emissions from two land-use sequences in the Brazilian Amazon's state of Rondônia. Each sequence includes a forest and a set of pastures of different ages. One sequence contains a newly created pasture that we studied intensively through its first 2 years, including forest cutting, burning, and the planting of forage grasses. Emissions from the newly created pasture were about two and one half times the forest emissions during the first 2 years (5.0 kg N2O-N ha-1 yr-1 versus 1.9 kg N2O-N ha-1 yr-1). Nitrous oxide fluxes from pastures older than 3 years were on average about one third lower than fluxes from uncut forest (1.4 kg N2O-N ha-1 yr-1 versus 1.9 kg N2O-N ha-1 yr-1). The best predictor of N2O flux across the chronosequences was the magnitude of the NO3 pool in the upper 10 cm of soil measured at the time of gas sampling. Using a simple cohort model combined with deforestation rates estimated from satellite images by Brazil's Instituto de Pesquisas Espaciais (INPE) for the period 1978 through 1997, we estimate that for the Brazilian Amazon the basin-wide flux of N2O-N from pasture soils was 0.06 Tg in 1997. This is ˜8% of the combined forest plus pasture flux of 0.78 Tg N2O-N we estimate for the Brazilian part of the basin in 1997. In the absence of any forest-to-pasture conversion in the Brazilian part of the basin, we estimate that the basin-wide flux of N2O-N would have been only slightly larger: 0.80 Tg in 1997. Through a second modeling analysis we estimate that for the whole of the Amazon Basin, including parts of the basin outside of Brazil, the N2O

  19. Nitrous oxide, carbon dioxide and methane emissions from irrigated cropping systems as influenced by legumes, manure and fertilizer

    Energy Technology Data Exchange (ETDEWEB)

    Ellert, B.H.; Janzen, H.H. [Agriculture and Agri-Food Canada, Lethbridge, AB (Canada)

    2008-04-15

    Irrigated crops in Alberta require higher inputs of nitrogen (N) than rainfed crops. The aim of the study was to determine emissions of nitrous oxide (N{sub 2}O) from the soils of irrigated cropping systems that used inorganic fertilizer N at a site in Alberta. The study measured carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) levels in order to determine net greenhouse gas (GHG) emissions. The exchange of gases between the atmosphere and soil in selected treatments was measured in order to compare the effects of contrasting N inputs. Fluxes were measured bi-weekly from spring 2001 to spring 2004. The time period included annual and perennial legume crops; the termination of a perennial forage crop; manure application; and 2 growing seasons of test crops. Soil surface fluxes were measured using PVC chambers equipped with thermocouples. Gas samples were measured using gas chromatography. A linear least squares method was used to calculate gas concentrations. Results showed that soil CO{sub 2} and N{sub 2}O production rates were intertwined after legume production or manure application, but decoupled during early spring bursts of N{sub 2}O production. Higher soil CO{sub 2} emissions with alfalfa and manure-amended soils suggested that soil oxygen consumption during high CO{sub 2} emission periods may promote N{sub 2}O emissions. Appreciable proportions of N{sub 2}O were emitted outside the growing season. Results suggested that N{sub 2}O leakage is an inevitable hazard of crop production. The study highlighted the importance of understanding and quantifying N{sub 2}O emissions from intensive cropping systems. 22 refs., 4 tabs., 6 figs.

  20. Microbial production of nitrous oxide and nitric oxide in boreal peatlands

    International Nuclear Information System (INIS)

    Regina, K.

    1998-01-01

    Soils are an important source of nitrous oxide (N 2 O) and nitric oxide (NO). N 2 O is a greenhouse gas participating in both warming of the climate and the destruction of ozone, and NO is active in tropospheric chemistry. The fluxes and formation mechanisms of these gases in boreal Finnish peatlands were studied by both laboratory and field techniques. Special attention was paid to factors regulating their production, e.g. height of the water table, pH, temperature, nutrient level and nitrification activity. Both N 2 O and NO fluxes were detected in the peatlands, some of which were sources of these trace gases and some sinks. The flux rates of N 2 O ranged from negative values to several milligrammes per square metre per day. Natural peatlands were the lowest sources of N 2 O, often showing negative fluxes, whereas sites drained for forestry some decades ago had markedly higher fluxes. A site drained for agriculture (grassland) was the highest source found. NO fluxes were observed on the two drained sites studied, a forested fen and the same field of grass, but not on a natural fen with a high water table. NO fluxes amounted to 16-30 % of the N 2 O flux rates. The importance of the water table in regulating N 2 0 fluxes was demonstrated in field and laboratory studies. It was shown in the laboratory that even a short lowering of the water table, for 14 weeks at 20 deg C, induced N 2 0 fluxes from the fens that normally acted as sinks or only low sources. Raising the water table in peat monoliths from drained sites reduced the flux of N 2 O. Nutrient-rich peatlands had much higher capacities for N 2 O and NO production than poorer ones. The addition of KNO 3 , NH 4 Cl or urea to minerotrophic peat further increased the fluxes of N 2 O and NO, and also nitrogen mineralisation. There was a clear connection between the fluxes of N 2 0 and NO and nitrification activity measured as the numbers of nitrite-oxidising bacteria, nitrification potential or in situ net