WorldWideScience

Sample records for gas main pipelines

  1. Development of ecologically safe method for main oil and gas pipeline trenching

    Directory of Open Access Journals (Sweden)

    Akhmedov Asvar Mikdadovich

    2014-05-01

    Full Text Available Constructive, technical and technological reliability of major pipeline ensures ecological safety on different stages of life circle - beginning with project preparation activities up to the end of major pipeline operation. Even in the process of transition into new life circle stage, no matter if the pipeline needs major repairs or reconstruction, such technical and technological solutions should be found, which would preserve ecological stability of nature-anthropogenic system. Development of ecology protection technologies of construction, reconstruction and major repairs of main pipelines is of great importance not only for a region, but ensures ecological safety across the globe. The article presents a new way of trenching the main oil and gas pipeline, preservation and increase of ecological safety during its service. The updated technological plan is given in the paper for overhaul of the main oil and gas pipeline using the new technology of pipeline trenching. The suggested technical solution contributes to environment preservation with the help of deteriorating shells - the shells’ material decomposes into environment-friendly components: carbon dioxide, water and humus. The quantity of polluting agents in the atmosphere decreases with the decrease of construction term and quantity of technical equipment.

  2. Estimates of environmental pollution from compressor stations of main gas pipelines

    International Nuclear Information System (INIS)

    Kyarges, A.A.; Ablyazina, R.R.; Petukhova, N.N.

    1997-01-01

    In natural gas transmission through main pipelines compressor stations (CS) discharge pollutants. During operation of mains and auxiliary equipment, as a rule, natural gas (having in its components odorants), products of natural gas combustion and a number of other contaminants are emitted into the atmosphere. During operation of main and auxiliary equipment of CS up to 16 pollutants are emitted into the atmosphere. Existent emissions are discussed for a number of operating CS with different gas turbine units. Estimates are made of atmosphere from mains and auxiliary units. (R.P.)

  3. Temperature factors effect on occurrence of stress corrosion cracking of main gas pipeline

    Science.gov (United States)

    Nazarova, M. N.; Akhmetov, R. R.; Krainov, S. A.

    2017-10-01

    The purpose of the article is to analyze and compare the data in order to contribute to the formation of an objective opinion on the issue of the growth of stress corrosion defects of the main gas pipeline. According to available data, a histogram of the dependence of defects due to stress corrosion on the distance from the compressor station was constructed, and graphs of the dependence of the accident density due to stress corrosion in the winter and summer were also plotted. Data on activation energy were collected and analyzed in which occurrence of stress corrosion is most likely constructed, a plot of activation energy versus temperature is plotted, and the process of occurrence of stress corrosion by the example of two different grades of steels under the action of different temperatures was analyzed.

  4. THE OVERVIEW OF THE MAIN GAS PIPELINES IN THE BLACK SEA REGION: POLITICAL AND ECONOMIC ASPECTS

    Directory of Open Access Journals (Sweden)

    Corina GRIBINCEA

    2015-07-01

    Full Text Available Topicality. The Black Sea region is very dynamic in terms of economic development, security problems and interstate relations. All of the countries in this region are heterogeneous but energy issue plays a pivotal role in their foreign policy priorities. It is the only one common denominator that can both foster cooperation and catalyze conflict in the Black Sea basin. The problem of transporting energy has an impact not only on the Black Sea countries, but also on the Southeastern Europe, Russia, the Caspian Sea, Middle East, and ultimately the European consuming markets. Thus, the issue of energy transition needs the experts’ and scientists’ attention fixed on the Black Sea region in order to come together facing the latter-day challenges. The energy challenge has a multi-dimensional nature. Aim. Thus, this paper aims to provide an overview of the energy transaction issues focusing on the economic effects of the most important gas pipelines within the Black Sea region. Particular attention is going to be paid to the problem of the energy routes’ diversification and pipelines which connect the carbon-rich countries of the Middle East and Caspian region and Europe. Also, it is aimed to give a comprehensive analysis of the energy challenge within the Black sea region, focusing on energy efficiency of the gas pipelines which go through this extremely important energy hub. Methods - scientific methods of data analysis, historical and statistical overview, predictive analysis qualitative indicators, comparative method, method of description, case study. Results. The creation of a stable markets, interconnected and transparent natural gas supply would largely counteract the risks. The flexibility transport infrastructure, numerous and capable pipelines, underground storage capacities and their management may play an important role in the sector’s ability to manage supply shocks.

  5. Diagnosing in building main pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, L.G.; Gorelov, A.S.; Kurepin, B.N.; Orekhov, V.I.; Vasil' yev, G.G.; Yakovlev, Ye. I.

    1984-01-01

    General principles are examined for technical diagnosis in building main pipelines. A technique is presented for diagnosis during construction, as well as diagnosis of the technical state of the pipeline-construction machines and mechanisms. The survey materials could be used to set up construction of main pipelines.

  6. The pipes for gas and oil pipelines mains one-sided high-speed welding

    Directory of Open Access Journals (Sweden)

    Сергій Вікторович Щетинін

    2016-11-01

    Full Text Available Electromagnetic theory of the undercuts formation under the arc magnetic field action according to which as welding speed increases cooling intensifies and arc diameter reduces, induction and magnetic pressure increase, pinch-effect amplifies, has been proved. The arc concentrates, heat input and the pool side edges electrical resistance reduce with the result that current through the side walls and a downward electromagnetic force, under the action of which the liquid metal flows from the pool edges, increase and the undercuts form. In high-speed welding a composite electrode as compared with the wire electrode the heat input into the side edges and their electrical resistance increase; current and induction at the pool side edges and the electromagnetic force decrease that providing the seams qualitative formation and confirming the electromagnetic theory of the undercuts. With welding speed increasing the weld pool molten metal crystallization rate increases in proportion to it, microstructure gets reduced and welding stresses decrease, that providing the welds joints toughness rise. By increasing welding speed due to deflection rearward the arc pressure decreases, the molten metal movement rate into the back part of the pool grows, that resulting in the molten metal hydrodynamic pressure reduction. Due to simultaneous reduction of the arc pressure, of the downward electromagnetic force and of the molten metal hydrodynamic pressure, the crystallization rate increase and the pool molten state time reduction the backing bead formation on the melt backing improves greatly at the high-speed welding. The energy-saving process of one-sided high-speed welding of the pipes for gas and oil pipelines on the melt backing with the use of glass flux by means of a composite electrode, which provides quality and the welded joints toughness increase, has been developed

  7. Low temperature impact toughness of the main gas pipeline steel after long-term degradation

    Science.gov (United States)

    Maruschak, Pavlo; Danyliuk, Iryna; Bishchak, Roman; Vuherer, Tomaž

    2014-12-01

    The correlation of microstructure, temperature and Charpy V-notch impact properties of a steel 17G1S pipeline steel was investigated in this study. Within the concept of physical mesomechanics, the dynamic failure of specimens is represented as a successive process of the loss of shear stability, which takes place at different structural/scale levels of the material. Characteristic stages are analyzed for various modes of failure, moreover, typical levels of loading and oscillation periods, etc. are determined. Relations between low temperature derived through this test, microstructures and Charpy (V-notch) toughness test results are also discussed in this paper.

  8. Natural Gas Liquid Pipelines

    Data.gov (United States)

    Department of Homeland Security — Natural gas interstate and intrastate pipelines in the United States. Based on a variety of sources with varying scales and levels of accuracy and therefore accuracy...

  9. Recommendations for main line block valves installation in gas pipelines; Recomendacoes para instalacao de valvulas de bloqueio de linha tronco em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Frisoli, Caetano [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil); Oliveira, Valeriano Duque de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    Cases of gas pipelines block valves and its pneumatic actuators presenting problems during the final pipeline commissioning and pre-operation phases, like internal leaks, leaking to the atmosphere, pneumatic circuit defects caused by water and debris, are nearly common. The majority can be avoided if a series of measuring are to be planned and implemented, as well as if an adequate planning of commissioning operations and line gasification, valves and actuators, are to be applied. This paper shows the practical experience in the construction and commissioning of valves and its actuators in the Bolivia-Brazil gas pipeline, which, in the first construction phase had a series of problems. After the diagnosis a set of procedures was implemented in the secondary construction phase, resulting in insignificant problems detected. All measures and procedures taken in the planning process, as well as additional aspects related to the main line valve design, its by-passes and supports, are demonstrated. (author)

  10. Replacement of 13 valves by using an isolation plug in the 20 inches diameter main offshore gas pipeline at Cantarell oil field, Campeche Bay, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Carvahal Reyes, Jorge Omar; Ulloa Ochoa, Carlos Manuel [PEMEX, Exploracion y Produccion, MX (Mexico)

    2009-12-19

    In 2002 we changed 13 valves on deck of one gas production platform called Nohoch-A-Enlace at Cantarell Offshore Oil Field. The 20'' diameter gas pipeline and 200 km of length, transport and deliver gas for others production platforms in the Gas Lift System, So 2 millions of oil barrels per day depends of the operation of this gas pipeline but there was 13 valves on pig traps to be changed after 20 years of service to high pressure (64 to 63 kg/cm{sup 2}). We could not stop the operation of this pipeline and some little gas leaks were eliminated in some parts of the valves. This pipeline has two risers so the gas can be injected by two sides of the ring of 20 Km. So we found the proper technology in order to isolate one riser nad change 8 valves and the isolate the other and change the 5, and the gas lift system never stop during the plug and maintenance operations on platform. In the first isolation plug operation this tool run 20 mts inside the riser and was actionated and resists 65 Kg/cm{sup 2} of gas pressure during 44 hours so we changed 8 valves: 2 of 20'', 2 of 10'', 3 of 4'' and 1 of 8'' diameter. In the second isolation the plug run 30 mts inside the second risers and resist 64 Kg/cm{sup 2} of gas during 46 hours and we changed 5 valves of 20'' diameter. In the paper I will describe all the details of this successful operations and procedures. Also the aspects of Health, Security and Environment that we prepared one year before this operations at platform. Pemex save almost 2.5 millions of dollars because the gas lift system never stop and all valves were changed and now we can run cleaning and inspection tools inside the full ring. We used the first isolation plug in Latin America and we want to share this experience to all the pipeline operators in the world as a good practice in pipeline maintenance using plugging technology in the main and large pipelines of high pressure. (author)

  11. The research of qualitative indicators of gas pipelines during the ...

    African Journals Online (AJOL)

    The operation of gas pipelines is a complex of technical measures, aimed at preservation of the main stock of gas pipeline transportation facilities. The purpose of these measures is to maintain and to restore the initial operational capabilities of gas pipelines, in general and in particular areas. The line section of gas ...

  12. Natural gas pipeline technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by

  13. Natural disasters and the gas pipeline system.

    Science.gov (United States)

    1996-11-01

    Episodic descriptions are provided of the effects of the Loma Prieta earthquake (1989) on the gas pipeline systems of Pacific Gas & Electric Company and the Cit of Palo Alto and of the Northridge earthquake (1994) on Southern California Gas' pipeline...

  14. Theoretical study and design of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane and intended for cooling of gas transported in a gas-main pipeline

    KAUST Repository

    Petrenko, V.O.

    2011-11-01

    This paper describes the construction and performance of a novel combined system intended for natural gas transportation and power production, and for cooling of gas transported in a gas-main pipeline. The proposed system includes a gas turbine compressor, a combined electrogenerating plant and an ejector refrigeration unit operating with a hydrocarbon refrigerant. The combined electrogenerating plant consists of a high-temperature steam-power cycle and a low-temperature hydrocarbon vapor power cycle, which together comprise a binary vapor system. The combined system is designed for the highest possible effectiveness of power generation and could find wide application in gas-transmission systems of gas-main pipelines. Application of the proposed system would enable year-round power generation and provide cooling of natural gas during periods of high ambient temperature operation. This paper presents the main results of a theoretical study and design performance specifications of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane. © 2010 Elsevier Ltd and IIR. All rights reserved.

  15. Nova Gas's pipeline to Asia

    International Nuclear Information System (INIS)

    Lea, N.

    1996-01-01

    The involvement of the Calgary-based company NOVA Gas International (NGI) in Malaysia's peninsular gas utilization (PGU) project, was described. Phase I and II of the project involved linking onshore gas processing plants with a natural gas transmission system. Phase III of the PGU project was a gas transmission pipeline that began midway up the west coast of peninsular Malaysia to the Malaysia-Thailand border. The complex 549 km pipeline included route selection, survey and soil investigation, archaeological study, environmental impact assessment, land acquisition, meter-station construction, telecommunication systems and office buildings. NGI was the prime contractor on the project through a joint venture with OGP Technical Services, jointly owned by NGI and Petronas, the Thai state oil company. Much of NGI's success was attributed to excellent interpersonal skills, particularly NGI's ability to build confidence and credibility with its Thai partners

  16. East, West German gas pipeline grids linked

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Ruhrgas AG, Essen, has started up the first large diameter gas pipeline linking the gas grids of former East and West Germany. Ruhrgas last month placed in service a 40 in., 70 km line at Vitzeroda, near Eisenach, linking a new Ruhrgas pipeline in Hesse state with a 330 km gas pipeline built last year in Thuringia and Saxony states by Erdgasversorgungs GmbH (EVG), Leipzig. The new link enables pipeline operator EVG to receive 70 bcf/year of western European gas via Ruhrgas, complementing the 35 bcf/year of gas coming from the Commonwealth of Independent States via Verbundnetz Gas AG (VNG), Leipzig

  17. Integrity Evaluation of Oil and Gas Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Boong [Sungkyunkwan University, Suwon (Korea, Republic of)

    2001-02-15

    The length of oil and gas pipelines is increased much according to economic reasons and practicality, the construction of pipeline in Asia and Europe is going on global region in recently. This oil and gas pipelines is managed integrity to it's explosion property or environmental pollution riskiness. This paper is dealt with major defects type, using on integrity evaluation methods in developed countries, showing basic data to workout a countermeasure integrity evaluation of domestic pipelines.

  18. Mortise terrorism on the main pipelines

    Science.gov (United States)

    Komarov, V. A.; Nigrey, N. N.; Bronnikov, D. A.; Nigrey, A. A.

    2018-01-01

    The research aim of the work is to analyze the effectiveness of the methods of physical protection of main pipelines proposed in the article from the "mortise terrorism" A mathematical model has been developed that made it possible to predict the dynamics of "mortise terrorism" in the short term. An analysis of the effectiveness of physical protection methods proposed in the article to prevent unauthorized impacts on the objects under investigation is given. A variant of a video analytics system has been developed that allows detecting violators with recognition of the types of work they perform at a distance of 150 meters in conditions of complex natural backgrounds and precipitation. Probability of detection is 0.959.

  19. California Natural Gas Pipelines: A Brief Guide

    Energy Technology Data Exchange (ETDEWEB)

    Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Price, Don [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pezzola, Genny [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glascoe, Lee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-01-22

    The purpose of this document is to familiarize the reader with the general configuration and operation of the natural gas pipelines in California and to discuss potential LLNL contributions that would support the Partnership for the 21st Century collaboration. First, pipeline infrastructure will be reviewed. Then, recent pipeline events will be examined. Selected current pipeline industry research will be summarized. Finally, industry acronyms are listed for reference.

  20. QUANTITATIVE RISK MAPPING OF URBAN GAS PIPELINE NETWORKS USING GIS

    Directory of Open Access Journals (Sweden)

    P. Azari

    2017-09-01

    Full Text Available Natural gas is considered an important source of energy in the world. By increasing growth of urbanization, urban gas pipelines which transmit natural gas from transmission pipelines to consumers, will become a dense network. The increase in the density of urban pipelines will influence probability of occurring bad accidents in urban areas. These accidents have a catastrophic effect on people and their property. Within the next few years, risk mapping will become an important component in urban planning and management of large cities in order to decrease the probability of accident and to control them. Therefore, it is important to assess risk values and determine their location on urban map using an appropriate method. In the history of risk analysis of urban natural gas pipeline networks, the pipelines has always been considered one by one and their density in urban area has not been considered. The aim of this study is to determine the effect of several pipelines on the risk value of a specific grid point. This paper outlines a quantitative risk assessment method for analysing the risk of urban natural gas pipeline networks. It consists of two main parts: failure rate calculation where the EGIG historical data are used and fatal length calculation that involves calculation of gas release and fatality rate of consequences. We consider jet fire, fireball and explosion for investigating the consequences of gas pipeline failure. The outcome of this method is an individual risk and is shown as a risk map.

  1. Quantitative Risk Mapping of Urban Gas Pipeline Networks Using GIS

    Science.gov (United States)

    Azari, P.; Karimi, M.

    2017-09-01

    Natural gas is considered an important source of energy in the world. By increasing growth of urbanization, urban gas pipelines which transmit natural gas from transmission pipelines to consumers, will become a dense network. The increase in the density of urban pipelines will influence probability of occurring bad accidents in urban areas. These accidents have a catastrophic effect on people and their property. Within the next few years, risk mapping will become an important component in urban planning and management of large cities in order to decrease the probability of accident and to control them. Therefore, it is important to assess risk values and determine their location on urban map using an appropriate method. In the history of risk analysis of urban natural gas pipeline networks, the pipelines has always been considered one by one and their density in urban area has not been considered. The aim of this study is to determine the effect of several pipelines on the risk value of a specific grid point. This paper outlines a quantitative risk assessment method for analysing the risk of urban natural gas pipeline networks. It consists of two main parts: failure rate calculation where the EGIG historical data are used and fatal length calculation that involves calculation of gas release and fatality rate of consequences. We consider jet fire, fireball and explosion for investigating the consequences of gas pipeline failure. The outcome of this method is an individual risk and is shown as a risk map.

  2. Oil and Natural Gas Pipelines, North America, 2010, Platts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Oil and Natural Gas Pipeline geospatial data layer contains gathering, interstate, and intrastate natural gas pipelines, crude and product oil pipelines, and...

  3. Achieving Efficiency in Gas Pipeline Connection: Evidence from Ghana

    Directory of Open Access Journals (Sweden)

    Anthony Kudjo Gborgenu

    2016-06-01

    Full Text Available The demand for the use of natural gas is on the increase as an energy source. Natural gas transportation requires a continuous pipeline network from the source of gas across long distance to the various destinations. The main objective involves extending gas pipelines from Takoradi to all the regional capital towns in Ghana to meet the growing demands of its citizenry in order to provide economy and efficiency with regards to cost and environmental sustainability by developing a straight forward method of locating pipeline facilities and designing pipeline networks. The problem is formulated as a network of distances and the solution is presented based on Prim’s Algorithm for minimum connections. Data on distances are obtained from the Ghana Highways Authority. The total distance covered by the pipe line network if the existing road networks were used from Takoradi to all the regional capitals towns in Ghana is 5,094km. After Prim’s Algorithm was used, the total distance covered decreased to 1,590km which is about 68.8% reduction in the distance covered with regards to cost and the environmental damage caused by construction of pipelines (soil, forest, rivers, wetlands, noise from compressor stations during pipeline discharge and risk of pipeline leakage.

  4. Integrated diagnostics of northern gas pipelines; Diagnostic integre des gazoducs septentrionaux

    Energy Technology Data Exchange (ETDEWEB)

    Volsky, E.; Dedikov, E.; Ananenkov, A.; Salchov, Z.; Yakupov, Z. [Joint-Stock Company, Gazprom (Russian Federation)

    2000-07-01

    The main part of gas joint - stock company 'Gazprom' extracts from the northern deposits, which are situated in the permafrost zone. Ensuring of gas transporting pipeline's safety operation is a very complex and priority problem. On the basis of usage of this complex of methods the problem to ensure the safety operation is solved systematically: gas-mine - plant IV - derivation pipelines (condensate pipeline Yamburg Novy Urengoy, gas pipeline IV - GCS with negative temperature of transported products) taking into account 'co-ordination' dynamics of changes in pipeline GTS and technological modes of equipment operation. All researches was executed on the high professional level. (authors)

  5. Mathematical modeling of non-stationary gas flow in gas pipeline

    Science.gov (United States)

    Fetisov, V. G.; Nikolaev, A. K.; Lykov, Y. V.; Duchnevich, L. N.

    2018-03-01

    An analysis of the operation of the gas transportation system shows that for a considerable part of time pipelines operate in an unsettled regime of gas movement. Its pressure and flow rate vary along the length of pipeline and over time as a result of uneven consumption and selection, switching on and off compressor units, shutting off stop valves, emergence of emergency leaks. The operational management of such regimes is associated with difficulty of reconciling the operating modes of individual sections of gas pipeline with each other, as well as with compressor stations. Determining the grounds that cause change in the operating mode of the pipeline system and revealing patterns of these changes determine the choice of its parameters. Therefore, knowledge of the laws of changing the main technological parameters of gas pumping through pipelines in conditions of non-stationary motion is of great importance for practice.

  6. Outlook '98 - Gas and oil pipelines

    International Nuclear Information System (INIS)

    Curtis, B.

    1998-01-01

    Due to rising North American demand, especially by the United States, by the end of 1997 there were plans to build 15 new pipelines over the next three years, at an estimated cost of $17 billion. Canada''s proximity to the United States, combined with huge Canadian reserves, and the fact that Canada already supplies some 15 per cent of U.S. requirements, makes Canada the obvious choice for filling future demand. This explains why most, if not all, current pipeline expansion projects are targeting markets in the U.S. Market forces will determine which of the projects will actually go forward. From the point of view of the Canadian Energy Pipeline Association pipeline regulatory reform, pipeline safety, integrity and climate change will be the Association''s key concerns during 1998. To that end, the Association is cooperating with the National Energy Board in a multi-million dollar study of stress corrosion cracking. The Association has also developed a Manual of Recommended Practices for the use of member companies to assist them to tailor stress corrosion cracking practices to their own operations. Meeting Canada''s commitment at the Kyoto Conference for greenhouse gas emissions of six per cent below 1990 levels by the year 2008 to 2012 (in effect a 25 per cent reduction from the level anticipated in the year 2000), a very difficult task according to industry experts, is also among the high priority items on the pipeline industry''s agenda for 1998

  7. The Eastring gas pipeline in the context of the Central and Eastern European gas supply challenge

    Science.gov (United States)

    Mišík, Matúš; Nosko, Andrej

    2017-11-01

    Ever since the 2009 natural gas crisis, energy security has been a crucial priority for countries of Central and Eastern Europe. Escalating in 2014, the conflict between Ukraine and Russia further fuelled negative expectations about the future development of energy relations for the region predominantly supplied by Russia. As a response to the planned cessation of gas transit through the Brotherhood pipeline, which brings Russian gas to Europe via Ukraine and Slovakia, the Slovak transmission system operator Eustream proposed the Eastring pipeline. This Perspective analyses this proposal and argues that neither the perceived decrease in Slovak energy security nor the loss of economic rent from the international gas transit should be the main policy driver behind such a major infrastructure project. Although marketed as an answer to current Central and Eastern European gas supply security challenges, the Eastring pipeline is actually mainly focused on issues connected to the Slovak gas transit.

  8. 75 FR 5244 - Pipeline Safety: Integrity Management Program for Gas Distribution Pipelines; Correction

    Science.gov (United States)

    2010-02-02

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket No. PHMSA-RSPA-2004-19854; Amdt. 192-113] RIN 2137-AE15 Pipeline Safety: Integrity Management Program for Gas Distribution Pipelines; Correction AGENCY: Pipeline and Hazardous Materials Safety...

  9. Alliance Pipeline: opening doors for gas

    International Nuclear Information System (INIS)

    Edgeworth, A.

    2000-01-01

    An update on the status of the Alliance Pipeline, a regulated, high-pressure, rich-gas pipeline from northeastern British Columbia and northwest Alberta to the Chicago Hub, is provided. The mainline length of the pipeline is 2988 kms, with laterals of 698 kms. There are 14 mainline compressor stations; the maximum operating pressure is 1740 psi. The initial firm delivery contract capacity is 1.325 Bcfd; the line has 15-year shipping commitments of 1.3 Bcfd. As of Sept 26, 2000, all 36-inch and 42-inch pipe has been installed; only a 45 kms section of 4-inch to 24-inch lateral line remains to be installed. There are five receiving points in British Columbia and 32 in Alberta. U.S. demand for natural gas has grown 17.5 per cent during the past decade; further growth in demand of 20 per cent to 27 per cent is expected during the next decade. Canada's share of supplying North American demand has grown from 16 per cent to 25 per cent during the 1990s, and since Canada will have excess pipeline capacity of 1.5 to 2.0 Bcfd in the short-term, consequently, depending on market demand, Alliance Pipeline can provide a low-cost expansion option to further increase in Western Canada's share of the growing U.S. markets. The natural gas potential of Western Canada is considered to be substantial; development of this potential is dependent on low cost transportation and market/price signals

  10. An export gas pipeline for Bangladesh; Un gazoduc d'exportation pour le Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2002-08-01

    Unocal, one of the few foreign company operating in Bangladesh, has submitted in November 2001 a proposal of gas pipeline for the export of natural gas towards India and which should link the Bibiyana field to the main gas network of India: the Hazira-Bijaipur-Jagdishpur (HBJ) gas pipeline. However, the project of export of natural gas to India is a subject of controversy and the government has postponed several times its decision. (J.S.)

  11. Gas supplies of interstate natural gas pipeline companies 1990

    International Nuclear Information System (INIS)

    1992-01-01

    This publication provides information on the interstate pipeline companies' supply of natural gas in the United States during calendar year 1990, for use by the Federal Energy Regulatory Commission for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years

  12. 78 FR 53190 - Pipeline Safety: Notice to Operators of Hazardous Liquid and Natural Gas Pipelines of a Recall on...

    Science.gov (United States)

    2013-08-28

    ... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Notice to Operators of Hazardous Liquid and Natural Gas Pipelines of a Recall on Leak Repair Clamps Due to Defective Seal AGENCY: Pipeline... to Operators of Natural Gas and Hazardous Liquid Pipelines of a Recall on Leak Repair Clamps Due to...

  13. Thinking on Sichuan-Chongqing gas pipeline transportation system reform under market-oriented conditions

    Science.gov (United States)

    Duan, Yanzhi

    2017-01-01

    The gas pipeline networks in Sichuan and Chongqing (Sichuan-Chongqing) region have formed a fully-fledged gas pipeline transportation system in China, which supports and promotes the rapid development of gas market in Sichuan-Chongqing region. In the circumstances of further developed market-oriented economy, it is necessary to carry out further the pipeline system reform in the areas of investment/financing system, operation system and pricing system to lay a solid foundation for improving future gas production and marketing capability and adapting itself to the national gas system reform, and to achieve the objectives of multiparty participated pipeline construction, improved pipeline transportation efficiency and fair and rational pipeline transportation prices. In this article, main thinking on reform in the three areas and major deployment are addressed, and corresponding measures on developing shared pipeline economy, providing financial support to pipeline construction, setting up independent regulatory agency to enhance the industrial supervision for gas pipeline transportation, and promoting the construction of regional gas trade market are recommended.

  14. Natural gas pipelines: emerging market challenges

    International Nuclear Information System (INIS)

    Smart, A.; Balfe, P

    2001-01-01

    The Australian gas industry has come a long way in recent years. Most of the formerly government owned gas transmission, distribution and retail businesses have been privatised; major utility companies have been fundamentally restructured; the convergence of energy markets has seen many companies stepping outside the boundaries of their traditional businesses; and national competition policy has led to profound changes in the regulatory landscape. Yet despite the magnitude of these changes, it is clear that the journey of competitive reform has a long way to go. The Australian Gas Association's Industry Development Strategy identifies the potential for gas to increase its share of Australia's primary energy market, from around 18 percent at present to 22 percent by 2005, and 28 percent by 2015. Our analysis, using ACIL's Eastern Australian Gas Model, clearly shows that in the absence of major new sources of gas, these challenging targets will not be met and, indeed, there will be an increasing supply shortfall. However, with the emergence of new competitive supply sources such as Papua New Guinea and the Timor Sea, our modelling suggests that most of this demand can be satisfied at prices which will maintain gas' competitiveness in energy markets. Such developments provide both opportunities and challenges for the industry. In particular, they will profoundly affect the owners and operators of transmission pipeline systems. (Authors)

  15. PIPELINE CORROSION CONTROL IN OIL AND GAS INDUSTRY: A ...

    African Journals Online (AJOL)

    Corrosion in pipelines is one of the major challenges faced by oil and gas industries all over the world. This has made corrosion control or management a major factor to consider before setting up any industry that will transport products via pipelines. In this study the types of corrosion found on system 2A pipeline were; ...

  16. Managing changes of location classes of gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Sergio B.; Sousa, Antonio Geraldo de [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2009-12-19

    Most of the gas pipeline design codes utilize a class location system, where the design safety factor and the hydrostatic test factor are determined according to the population density in the vicinities of the pipeline route. Consequently, if an operator is requested or desires to maintain an existing gas pipeline in compliance with its design code, it will reduce the operational pressure or replace pipe sections to increase the wall thickness whenever a change in location class takes place. This article introduces an alternative methodology to deal with changes in location classes of gas pipelines. Initially, selected codes that utilize location class systems are reviewed. Afterwards, a model for the area affected by an ignition following a natural gas pipeline leak is described. Finally, a methodology to determine the MAOP and third part damage mitigation measures for gas transport pipelines that underwent changes in location class is presented. (author)

  17. Regular pipeline maintenance of gas pipeline using technical operational diagnostics methods

    Energy Technology Data Exchange (ETDEWEB)

    Volentic, J. [Gas Transportation Department, Slovensky plynarensky priemysel, Slovak Gas Industry, Bratislava (Slovakia)

    1997-12-31

    Slovensky plynarensky priemysel (SPP) has operated 17 487 km of gas pipelines in 1995. The length of the long-line pipelines reached 5 191 km, distribution network was 12 296 km. The international transit system of long-line gas pipelines ranged 1 939 km of pipelines of various dimensions. The described scale of transport and distribution system represents a multibillion investments stored in the ground, which are exposed to the environmental influences and to pipeline operational stresses. In spite of all technical and maintenance arrangements, which have to be performed upon operating gas pipelines, the gradual ageing takes place anyway, expressed in degradation process both in steel tube, as well as in the anti-corrosion coating. Within a certain time horizon, a consistent and regular application of methods and means of in-service technical diagnostics and rehabilitation of existing pipeline systems make it possible to save substantial investment funds, postponing the need in funds for a complex or partial reconstruction or a new construction of a specific gas section. The purpose of this presentation is to report on the implementation of the programme of in-service technical diagnostics of gas pipelines within the framework of regular maintenance of SPP s.p. Bratislava high pressure gas pipelines. (orig.) 6 refs.

  18. Numerical simulation of wall temperature on gas pipeline due to radiation of natural gas during combustion

    Directory of Open Access Journals (Sweden)

    Ilić Marko N.

    2012-01-01

    Full Text Available This paper presents one of the possible hazardous situations during transportation of gas through the international pipeline. It describes the case when at high-pressure gas pipeline, due to mechanical or chemical effect, cracks and a gas leakage appears and the gas is somehow triggered to burn. As a consequence of heat impingement on the pipe surface, change of material properties (decreasing of strength at high temperatures will occur. In order to avoid greater rapture a reasonable pressure relief rate needs to be applied. Standards in this particular domain of depressurizing procedure are not so exact (DIN EN ISO 23251; API 521. This paper was a part of the project to make initial contribution in defining the appropriate procedure of gas operator behaving during the rare gas leakage and burning situations on pipeline network. The main part of the work consists of two calculations. The first is the numerical simulation of heat radiation of combustible gas, which affects the pipeline, done in the FLUENT software. The second is the implementation of obtained results as a boundary condition in an additional calculation of time resolved wall temperature of the pipe under consideration this temperature depending on the incident flux as well as a number of other heat flow rates, using the Matlab. Simulations were done with the help of the “E.ON Ruhrgas AG” in Essen.

  19. MODELING AND AVAILABILITY ANALYZES OF A COMPLEX GAS PIPELINE NETWORK

    Energy Technology Data Exchange (ETDEWEB)

    Ainouche, A.; Ainouche, H.

    2007-07-01

    The network reliability, in the way of security of supply of international markets, is proved to be an essential criterion for the conservation of the market shares and the conquest of new customers. In relation with the importance and the existing configurations diversity of gas pipelines networks, the obtaining of a global availability model of a network is difficult to implement by the use of a classic approach based on the analysis of the whole of failure risks, the definition of their probability and the estimation of their impact in term of productivity. This because mainly of the huge dimensions of the phase space that would result from such a conception. To get round this problem we implemented a systemic type approach for the modeling of the availability of a complex gas pipelines network. The approach of modeling is of 'bottom-up' type. The model of coordination is a model of flow maximization whose formalization requires the representation of the gas pipeline network by the graphs theory. The developed tool can also be used as a stand of experimentation and to define by simulation the impact of every decision having the tendency to improve the availability of the network. (auth)

  20. Safety of the medical gas pipeline system

    Directory of Open Access Journals (Sweden)

    Sushmita Sarangi

    2018-01-01

    Full Text Available Medical gases are nowadays being used for a number of diverse clinical applications and its piped delivery is a landmark achievement in the field of patient care. Patient safety is of paramount importance in the design, installation, commissioning, and operation of medical gas pipeline systems (MGPS. The system has to be operational round the clock, with practically zero downtime and its failure can be fatal if not restored at the earliest. There is a lack of awareness among the clinicians regarding the medico-legal aspect involved with the MGPS. It is a highly technical field; hence, an in-depth knowledge is a must to ensure safety with the system.

  1. Environmental analysis for pipeline gas demonstration plants

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, L.H.

    1978-09-01

    The Department of Energy (DOE) has implemented programs for encouraging the development and commercialization of coal-related technologies, which include coal gasification demonstration-scale activities. In support of commercialization activities the Environmental Analysis for Pipeline Gas Demonstration Plants has been prepared as a reference document to be used in evaluating potential environmental and socioeconomic effects from construction and operation of site- and process-specific projects. Effluents and associated impacts are identified for six coal gasification processes at three contrasting settings. In general, impacts from construction of a high-Btu gas demonstration plant are similar to those caused by the construction of any chemical plant of similar size. The operation of a high-Btu gas demonstration plant, however, has several unique aspects that differentiate it from other chemical plants. Offsite development (surface mining) and disposal of large quantities of waste solids constitute important sources of potential impact. In addition, air emissions require monitoring for trace metals, polycyclic aromatic hydrocarbons, phenols, and other emissions. Potential biological impacts from long-term exposure to these emissions are unknown, and additional research and data analysis may be necessary to determine such effects. Possible effects of pollutants on vegetation and human populations are discussed. The occurrence of chemical contaminants in liquid effluents and the bioaccumulation of these contaminants in aquatic organisms may lead to adverse ecological impact. Socioeconomic impacts are similar to those from a chemical plant of equivalent size and are summarized and contrasted for the three surrogate sites.

  2. Energy geopolitics and Iran-Pakistan-India gas pipeline

    International Nuclear Information System (INIS)

    Verma, Shiv Kumar

    2007-01-01

    With the growing energy demands in India and its neighboring countries, Iran-Pakistan-India (IPI) gas pipeline assumes special significance. Energy-deficient countries such as India, China, and Pakistan are vying to acquire gas fields in different parts of the world. This has led to two conspicuous developments: first, they are competing against each other and secondly, a situation is emerging where they might have to confront the US and the western countries in the near future in their attempt to control energy bases. The proposed IPI pipeline is an attempt to acquire such base. However, Pakistan is playing its own game to maximize its leverages. Pakistan, which refuses to establish even normal trading ties with India, craves to earn hundreds of millions of dollars in transit fees and other annual royalties from a gas pipeline which runs from Iran's South Pars fields to Barmer in western India. Pakistan promises to subsidize its gas imports from Iran and thus also become a major forex earner. It is willing to give pipeline related 'international guarantees' notwithstanding its record of covert actions in breach of international law (such as the export of terrorism) and its reluctance to reciprocally provide India what World Trade Organization (WTO) rules obligate it to do-Most Favored Nation (MFN) status. India is looking at the possibility of using some set of norms for securing gas supply through pipeline as the European Union has already initiated a discussion on the issue. The key point that is relevant to India's plan to build a pipeline to source gas from Iran relates to national treatment for pipeline. Under the principle of national treatment which also figures in relation to foreign direct investment (FDI), the country through which a pipeline transits should provide some level of security to the transiting pipeline as it would have provided to its domestic pipelines. This paper will endeavor to analyze, first, the significance of this pipeline for India

  3. Natural gas markets and the creation of an export gas pipeline system in Eastern Russia

    International Nuclear Information System (INIS)

    Saneev, B.G.; Sokolov, A.D.; Popov, S.P.

    2003-01-01

    The world natural gas markets are analysed, with a special focus on the countries of Northeast Asia (NEA). The natural gas demands of China, Japan and South Korea, until the year 2020, is projected, considering a possible share of Russian gas. The resource potential of natural gas from the Siberian platform and the Sakhalin shelf is given as a sound basis for fuelling Russia's position in the natural gas market of NEA countries. Development of the powerful gas industry in the East of Russia faces some particular conditions that can decrease the effectiveness of investments. The eastern geopolitical direction is very important for Russia and the necessity to create a favourable political and economic environment for oil and gas export is of prime interest, as stressed in Energy Strategy for Russia till the Year 2020. In this context, the long-term market for natural gas in East Siberia and the Far East of Russia is investigated. Possible routes of natural gas export from Russia to NEA countries include three main directions: to the west of China with connection to the 'West-East gas pipeline', a route through and/or round Mongolia and, finally, a route along the Trans-Siberian or Baikal-Amur railroads to Russian ports in the Far East. As a result of complex studies, three stages in the creation of the unified gas pipeline system are suggested. Evaluation of the investments required for construction of such a natural gas pipeline system, expected gas volumes and prices on the markets show its high economic efficiency. In conclusion, the most valuable ideas are stressed. (author)

  4. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    Energy Technology Data Exchange (ETDEWEB)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  5. Methodology for environmental audit of execution in gas-pipelines and pipelines

    International Nuclear Information System (INIS)

    Hurtado Palomino, Maria Patricia; Vargas Bejarano, Carlos Hernando

    1999-01-01

    In first instance the constructive aspects and the environmental impact related with the gas-pipes and pipelines construction are presented; then a methodology to make the environmental audit of execution in gas-pipes and pipelines, is showed. They contemplate four stages basically: planning, pre-auditory, execution and analysis, and post-auditory with their respective activities. Also, it is given to know, generalities of the practical case, to evaluate the applicability of the proposed methodology

  6. Simulation of high consequence areas for gas pipelines

    Directory of Open Access Journals (Sweden)

    Orlando Díaz-Parra

    2018-01-01

    Full Text Available The gas pipeline is used for the transport of natural gas at a great distance. Risks derived from the handling of a combustible material transported under high pressure, by pipelines that pass close to where people live, makes it necessary to adopt prevention, mitigation and control measures to reduce the effect in case of ignition of a gas leak. This work shows the development of a new mathematical model to determine areas of high consequence and their application, using widely available and easy to use software, such as Google Earth and Excel, to determine and visualize the area up to which the level of radiation can affect the integrity of people and buildings. The model takes into account the pressure drop into the gas pipeline from the compression station, the gas leakage rate and possible forms of gas ignition. This development is an alternative to the use of specialized software and highly trained personnel. The simulation is applied to a traced of the Miraflores-Tunja gas pipeline, using a macro developed in Excel to determine the impact area and compare it with the coordinates of the vulnerable areas. The zones where these areas intersect are constituted in high consequence areas and are identified along with the sections of the pipeline that affect them, to provide the operator with a risk analysis tool for the determination and visualization of the gas pipeline and its environment.

  7. Investigation on potential SCC in gas transmission pipeline in China

    Energy Technology Data Exchange (ETDEWEB)

    Jian, S. [Petroleum Univ., Beijing (China); Zupei, Y.; Yunxin, M. [China Petroleum Pipeline Corp., Beijing (China). Science and Technology Center

    2004-07-01

    Stress corrosion cracking (SCC) is a common phenomenon that occurs on the outer surfaces of buried pipelines. This paper investigated aspects of SCC on 3 transmission pipelines on the West-East Gas Pipeline Project in China. The study was comprised of 3 different investigations: (1) an investigation of SCC cases on constructed pipelines; (2) an evaluation of SCC sensitivity of pipeline steels in typical soil environments; and (3) an analysis of soil environments and operation conditions of western pipelines. The study included a review of pipeline corrosion investigations, as well as an examination of pipeline failure cases. Investigative digs were conducted at 21 sites to test soil chemistries. Slow strain rate stress were conducted to evaluate SCC sensitivity of steel pipelines used in China. Potentiodynamic polarization tests were conducted to characterize the electrochemical behaviour of the X70 line pipe steel in different soil environments. Results of the study showed that the environmental conditions in many locations in China contributed to SCC in pipelines. SCC was observed on the surface of X70 steel pipe specimens in both marsh and saline environments. Seasonal temperature changes also contributed additional stress on pipelines. The movement of soil bodies in mountainous areas also contributed to stress and coating damage. It was concluded that proper cathodic protection can alleviate concentrations of local solutions under disbanded coatings. Overprotection of SCC will accelerate the growth of cracks and the degradation of coatings. Samples gathered from the solutions found under the disbanded coatings of pipelines will be used to form part of a reference database for predicting SCC in oil and gas pipelines in the future. 2 refs., 4 tabs., 5 figs.

  8. Optimal Energy Consumption Analysis of Natural Gas Pipeline

    OpenAIRE

    Liu, Enbin; Li, Changjun; Yang, Yi

    2014-01-01

    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. There...

  9. Software for natural gas pipeline design and simulation (gaspisim ...

    African Journals Online (AJOL)

    There is a sudden increase in demand and utilization of natural gas in Nigeria; this may be attributed to federal government policy on establishment of independent power plants and the rising cost of kerosene and fire wood. This increase in demand for natural gas call for design and construction of pipelines for natural gas ...

  10. 78 FR 13659 - Sierrita Gas Pipeline LLC; Notice OF Application

    Science.gov (United States)

    2013-02-28

    ... natural gas at the International Boundary between the United States and Mexico in Pima County, Arizona..., filed in the above referenced docket an application pursuant to section 7(c) of the Natural Gas Act (NGA... operate a new 59 mile, 36-inch interstate natural gas pipeline located between Tucson and Sasabe, Arizona...

  11. 78 FR 13658 - Sierrita Gas Pipeline LLC; Notice of Application

    Science.gov (United States)

    2013-02-28

    ... export of natural gas at the International ] Boundary between the United States and Mexico in Pima County..., filed in the above referenced docket an application pursuant to section 3 of the Natural Gas Act (NGA... operate a new 59 mile, 36-inch interstate natural gas pipeline located between Tucson and Sasabe, Arizona...

  12. GASVOL 18'' gas pipeline - risk based inspection study

    Energy Technology Data Exchange (ETDEWEB)

    Bjoernoey, Ola H.; Etterdal, Birger A. [Det Norske Veritas (DNV), Oslo (Norway); Guarize, Rosimar; Oliveira, Luiz F.S. [Det Norske Veritas (DNV) (Brazil); Faertes, Denise; Dias, Ricardo [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This paper describes a risk based approach and inspection planning as part of the Pipeline Integrity Management (PIM) system for the 95.5 km long 18'' GASVOL gas pipeline in the South eastern region of Brazil transporting circa 5 000 000 m3 dry gas per day. Pipeline systems can be subject to several degradation mechanisms and inspection and monitoring are used to ensure system integrity. Modern pipeline regulations and codes are normally based on a core safety or risk philosophy. The detailed design requirements presented in design codes are practical interpretations established so as to fulfill these core objectives. A given pipeline, designed, constructed and installed according to a pipeline code is therefore the realization of a structure, which, along its whole length, meets the applicable safety objectives of that code. The main objective of Pipeline Integrity Management (PIM) is to control and document the integrity of the pipeline for its whole service life, and to do this in a cost-effective manner. DNV has a specific approach to RBI planning, starting with an initial qualitative assessment where pipelines and damage type are ranked according to risk and potential risk reduction by an inspection and then carried forward to a quantitative detailed assessment where the level of complexity and accuracy can vary based on availability of information and owner needs. Detailed assessment requires significant effort in data gathering. The findings are dependent upon the accuracy of the inspection data, and on DNV's interpretation of the pipeline reference system and simplifications in the inspection data reported. The following specific failure mechanisms were investigated: internal corrosion, external corrosion, third party interference, landslides and black powder. RBI planning, in general words, is a 'living process'. In order to optimize future inspections, it is essential that the analyses utilize the most recent information regarding

  13. Deliverability on the interstate natural gas pipeline system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

  14. Energy geopolitics and Iran-Pakistan-India gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Shiv Kumar [Political Geography Division, Center for International Politics, Organization and Disarmament, School of International Studies, Jawaharlal Nehru University, New Delhi 110067 (India)]. E-mail: vermajnu@gmail.com

    2007-06-15

    With the growing energy demands in India and its neighboring countries, Iran-Pakistan-India (IPI) gas pipeline assumes special significance. Energy-deficient countries such as India, China, and Pakistan are vying to acquire gas fields in different parts of the world. This has led to two conspicuous developments: first, they are competing against each other and secondly, a situation is emerging where they might have to confront the US and the western countries in the near future in their attempt to control energy bases. The proposed IPI pipeline is an attempt to acquire such base. However, Pakistan is playing its own game to maximize its leverages. Pakistan, which refuses to establish even normal trading ties with India, craves to earn hundreds of millions of dollars in transit fees and other annual royalties from a gas pipeline which runs from Iran's South Pars fields to Barmer in western India. Pakistan promises to subsidize its gas imports from Iran and thus also become a major forex earner. It is willing to give pipeline related 'international guarantees' notwithstanding its record of covert actions in breach of international law (such as the export of terrorism) and its reluctance to reciprocally provide India what World Trade Organization (WTO) rules obligate it to do-Most Favored Nation (MFN) status. India is looking at the possibility of using some set of norms for securing gas supply through pipeline as the European Union has already initiated a discussion on the issue. The key point that is relevant to India's plan to build a pipeline to source gas from Iran relates to national treatment for pipeline. Under the principle of national treatment which also figures in relation to foreign direct investment (FDI), the country through which a pipeline transits should provide some level of security to the transiting pipeline as it would have provided to its domestic pipelines. This paper will endeavor to analyze, first, the significance of this

  15. THE SELECTION OF GAS PIPELINE ROUTE ON THE PLAN OF GAS SUPPLIED AREA

    OpenAIRE

    O. N. Medvedevа

    2011-01-01

    Problem statement. Selection of gas pipeline route exercises significant influence on the func-tioning of gas distribution system. The optimal solution of this problem would substantially reduce costs for construction and operation of gas supply system.Results and conclusions. In this paper, we give some recommendations on design of branch gas pipelines to increase the effectiveness of their operation. The results of technical and economic studies of gas distribution systems are presented. To...

  16. Statistics of interstate natural gas pipeline companies, 1991

    International Nuclear Information System (INIS)

    1993-01-01

    This report, presents financial and operating information of all major interstate natural gas pipeline companies that operated in the United States during 1991. This report is used by the Federal Energy Regulatory Commission (FERC), State utility commissions, other government agencies, and the general public. The information is taken from FERC Form 2, ''Annual Report of Major Natural Gas Companies,'' as filed with FERC

  17. software for natural gas pipeline design and simulation

    African Journals Online (AJOL)

    Global Journal

    www.globaljournalseries.com; Info@globaljournalseries.com. SOFTWARE FOR NATURAL GAS PIPELINE DESIGN AND. SIMULATION (GASPISIM). A. A. ADAMU. (Received 17 January 2017; Revision Accepted 17 March 2017). ABSTRACT. There is a sudden increase in demand and utilization of natural gas in Nigeria; ...

  18. Evaluation of stream crossing methods prior to gas pipeline construction

    International Nuclear Information System (INIS)

    Murphy, M.H.; Rogers, J.S.; Ricca, A.

    1995-01-01

    Stream surveys are conducted along proposed gas pipeline routes prior to construction to assess potential impacts to stream ecosystems and to recommend preferred crossing methods. Recently, there has been a high level of scrutiny from the Public Service Commission (PSC) to conduct these stream crossings with minimal effects to the aquatic community. PSC's main concern is the effect of sediment on aquatic biota. Smaller, low flowing or intermittent streams are generally crossed using a wet crossing technique. This technique involves digging a trench for the pipeline while the stream is flowing. Sediment control measures are used to reduce sediment loads downstream. Wider, faster flowing, or protected streams are typically crossed with a dry crossing technique. A dry crossing involves placing a barrier upstream of the crossing and diverting the water around the crossing location. The pipeline trench is then dug in the dry area. O'Brien and Gere and NYSEG have jointly designed a modified wet crossing for crossing streams that exceed maximum flows for a dry crossing, and are too wide for a typical wet crossing. This method diverts water around the crossing using a pumping system, instead of constructing a dam. The trench is similar to a wet crossing, with sediment control devices in place upstream and downstream. If streams are crossed during low flow periods, the pumping system will be able to reduce the majority of water flow and volume form the crossing area, thereby reducing ecological impacts. Evaluation of effects of this crossing type on the stream biota are currently proposed and may proceed when construction begins

  19. The Effect of Landslide on Gas Pipeline

    Directory of Open Access Journals (Sweden)

    Valkovič Vojtech

    2016-11-01

    Full Text Available The present paper deals with the calculation of stresses on the pipeline system embedded on a flexible substrate which is burdened by a landslide. As well as taking into account the probability of the influences acting on the pipe as wall thickness, and others.

  20. 78 FR 42889 - Pipeline Safety: Reminder of Requirements for Utility LP-Gas and LPG Pipeline Systems

    Science.gov (United States)

    2013-07-18

    ... Requirements for Utility LP-Gas and LPG Pipeline Systems AGENCY: Pipeline and Hazardous Materials Safety... Bulletin to remind owners and operators of liquefied petroleum gas (LPG) and utility liquefied petroleum... natural gas distribution system must meet the requirements of Part 192 and ANSI/NFPA 58 and 59 (2004) (192...

  1. Video Mosaicking for Inspection of Gas Pipelines

    Science.gov (United States)

    Magruder, Darby; Chien, Chiun-Hong

    2005-01-01

    A vision system that includes a specially designed video camera and an image-data-processing computer is under development as a prototype of robotic systems for visual inspection of the interior surfaces of pipes and especially of gas pipelines. The system is capable of providing both forward views and mosaicked radial views that can be displayed in real time or after inspection. To avoid the complexities associated with moving parts and to provide simultaneous forward and radial views, the video camera is equipped with a wide-angle (>165 ) fish-eye lens aimed along the axis of a pipe to be inspected. Nine white-light-emitting diodes (LEDs) placed just outside the field of view of the lens (see Figure 1) provide ample diffuse illumination for a high-contrast image of the interior pipe wall. The video camera contains a 2/3-in. (1.7-cm) charge-coupled-device (CCD) photodetector array and functions according to the National Television Standards Committee (NTSC) standard. The video output of the camera is sent to an off-the-shelf video capture board (frame grabber) by use of a peripheral component interconnect (PCI) interface in the computer, which is of the 400-MHz, Pentium II (or equivalent) class. Prior video-mosaicking techniques are applicable to narrow-field-of-view (low-distortion) images of evenly illuminated, relatively flat surfaces viewed along approximately perpendicular lines by cameras that do not rotate and that move approximately parallel to the viewed surfaces. One such technique for real-time creation of mosaic images of the ocean floor involves the use of visual correspondences based on area correlation, during both the acquisition of separate images of adjacent areas and the consolidation (equivalently, integration) of the separate images into a mosaic image, in order to insure that there are no gaps in the mosaic image. The data-processing technique used for mosaicking in the present system also involves area correlation, but with several notable

  2. The main causes of in situ internal pipeline painting failures; Fatores que podem implicar em falhas prematuras de pintura interna in situ de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Quintela, Joaquim P.; Vieira, Magda M.; Vieira, Gerson V. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Fragata, Fernando de L.; Amorim, Cristina da C. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Resources in coating technology have been used to increase the useful life of pipelines, to guarantee the carried product quality, to increase the operational trustworthiness, to reduce the maintenance costs, the personal and patrimonial risks and environmental damages. Parallel, in virtue of the pipelines natural ageing and operational problems, more advanced technologies, as the internal coating process in situ, have become an important method of pipelines rehabilitation. The aim of this work is to study the main factors that may influence the performance of an internal coating project, allowing the premature damages occurrence in pipelines, used in gas, oil and derivatives transport. (author)

  3. Literature Review: Theory and Application of In-Line Inspection Technologies for Oil and Gas Pipeline Girth Weld Defection

    Directory of Open Access Journals (Sweden)

    Qingshan Feng

    2016-12-01

    Full Text Available Girth weld cracking is one of the main failure modes in oil and gas pipelines; girth weld cracking inspection has great economic and social significance for the intrinsic safety of pipelines. This paper introduces the typical girth weld defects of oil and gas pipelines and the common nondestructive testing methods, and systematically generalizes the progress in the studies on technical principles, signal analysis, defect sizing method and inspection reliability, etc., of magnetic flux leakage (MFL inspection, liquid ultrasonic inspection, electromagnetic acoustic transducer (EMAT inspection and remote field eddy current (RFDC inspection for oil and gas pipeline girth weld defects. Additionally, it introduces the new technologies for composite ultrasonic, laser ultrasonic, and magnetostriction inspection, and provides reference for development and application of oil and gas pipeline girth weld defect in-line inspection technology.

  4. Applications of ZigBee Technology in the Safety Monitoring System of Low Gas Pipeline Transportation

    Directory of Open Access Journals (Sweden)

    Wei Deyu

    2015-01-01

    Full Text Available The existing safety monitoring system of low gas pipeline transportation establishes a wired communication network monitoring system mainly on the basis of industrial bus. It has problems such as large transmission signal attenuation, complex wiring, high-labor intensity, inconvenient installation and maintenance, high maintenance cost, and so on. Featuring low cost, power-saving, reliability, stability and flexibility, the wireless sensor network established by ZigBee wireless communication technology can realize the real-time all-dimensional dynamic monitoring on parameters of low gas pipeline transportation system and overcome the shortcomings and deficiencies of wired network system.

  5. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  6. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Di Bella, Francis A. [Concepts NREC, White River Junction, VY (United States)

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary to relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.

  7. Gas market distorting effects of imbalanced gas balancing rules: Inefficient regulation of pipeline flexibility

    Energy Technology Data Exchange (ETDEWEB)

    Keyaerts, Nico [University of Leuven (K.U.Leuven) Energy Institute - TME branch (Applied Mechanics and Energy Conversion), Celestijnenlaan 300A box 2421, B-3001 Heverlee (Belgium); Hallack, Michelle [ADIS-Groupe Reseaux Jean Monnet, Universite de Paris Sud 11, 27 Avenue Lombart, F-92260 Fontenay-aux-Roses (France); Glachant, Jean-Michel [ADIS-Groupe Reseaux Jean Monnet, Universite de Paris Sud 11, 27 Avenue Lombart, F-92260 Fontenay-aux-Roses (France); European University Institute RSCAS and Florence School of Regulation, 19 Via delle Fontanelle, 50014 San Domenico di Fiesole (Italy); D' haeseleer, William, E-mail: william.dhaeseleer@mech.kuleuven.b [University of Leuven (K.U.Leuven) Energy Institute - TME branch (Applied Mechanics and Energy Conversion), Celestijnenlaan 300A box 2421, B-3001 Heverlee (Belgium)

    2011-02-15

    This paper analyzes the value and cost of line-pack flexibility in liberalized gas markets through examination of the techno-economic characteristics of gas transport pipelines and the trade-offs between different ways to use the infrastructure: transport and flexibility. Line-pack flexibility is becoming increasingly important as a tool to balance gas supply and demand over different periods. In the European liberalized market context, a monopolist unbundled network operator offers regulated transport services and flexibility (balancing) services according to the network code and balancing rules. Therefore, gas policy makers should understand the role and consequences of line-pack regulation. The analysis shows that the line-pack flexibility service has an important economic value for the shippers and the TSO. Furthermore, the analysis identifies distorting effects in the gas market due to inadequate regulation of line-pack flexibility: by disregarding the sunk costs of flexibility in the balancing rules, the overall efficiency of the gas system is decreased. Finally, the analysis demonstrates that the actual costs of line-pack flexibility are related to the peak cumulative imbalance throughout the balancing period. Any price for pipeline flexibility should, therefore, be based on the related trade-off between the right to use the line-pack flexibility and the provision of transport services. - Research Highlights: {yields}Line-pack flexibility is a main gas balancing instrument. {yields}Capacity related costs of line-pack flexibility depend on peak cumulative imbalances. {yields}Line-pack pricing rules determine choice between ex ante and ex post balancing. {yields}Inefficient line-pack regulation causes gas market distortions.

  8. Air and gas pockets in sewerage pressure mains.

    Science.gov (United States)

    Lubbers, C L; Clemens, F

    2005-01-01

    In The Netherlands, wastewater is collected in municipal areas and transported to large centralised WWTPs by means of an extensive system of pressure mains. Over the past decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. For that reason, in practice their state of functioning is often not known. Failure of operation is only noticed when the capacity of the system proves to be insufficient to fulfil the minimum design capacity demand. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. Many causes may account for the reduction of the system's nominal capacity like an increased wall roughness, scaling or occurrence of free gas in the pipeline. The occurrence of free gas may be caused by degassing of dissolved (bio) gas or by air entrained at the pumps' inlet or at air valves. A research study is started that will focus on three main issues: The description of the gas-water phenomena in wastewater pressure mains with respect to transportation and dynamic hydraulic behaviour, A method to diagnose gas problems, and To overcome future problems by either applying remedial measures or improving the design of wastewater pressure systems. For this study, two experimental facilities are constructed, a small circuit for the study of multi-phase flow and a second, larger one for the research into diagnostic methods. This paper describes the preliminary results of the experiments in the multi-phase circuit.

  9. Residual stresses evaluation in a gas-pipeline crossing

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Maria Cindra [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Almeida, Manoel Messias [COMPAGAS, Curitiba, PR (Brazil); Rebello, Joao Marcos Alcoforado [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Souza Filho, Byron Goncalves de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The X-rays diffraction technique is a well established and effectiveness method in the determination of the residual and applied stresses in fine grained crystalline materials. It allows to characterize and to quantify the magnitude and direction of the existing surface stresses in the studied point of the material. The objective of this work is the evaluation of the surface stresses in a 10 in diameter Natural Gas Distribution Pipeline manufactured from API 5 L Gr B steel of COMPAGAS company, in a crossing with a Natural Gas Transportation Pipeline, in Araucaria-PR. This kind of evaluation is important to establish weather you have to perform a repositioning of one of the pipeline or not. The measurements had been made in two transversal sections of the pipe, the one upstream (170 mm of the external wall of the pipeline) and another one downstream (840 mm of the external wall of the pipeline). Each transversal section measurements where carried out in 3 points: 9 hours, 12 hours and 3 hours. In each measured point of the pipe surface, the longitudinal and transversal stresses had been measured. The magnitude of the surface residual stresses in the pipe varied of +180 MPa at the -210 MPa. The residual stress state on the surface of the points 12 hours region is characterized by tensile stresses and by compressive stresses in the points of 3 and 9 hours region. The surface residual stresses in gas-pipeline have been measured using X-ray diffraction method, by double exposure technique, using a portable apparatus, with Cr-K-alpha radiation. (author)

  10. Upgrading Algeria-Italy trans-Mediterranean natural gas pipeline

    International Nuclear Information System (INIS)

    Stella, G.

    1992-01-01

    The first trans-Mediterranean pipeline system, which went into service in 1983, had to be doubled in capacity in order to meet increased European demand for Algerian natural gas. After a brief review of the contractual, planning and construction history of the first pipeline, this paper discusses the strategies taken which led to the decision to double the line's capacity. Descriptions are then given of the different construction phases realized in Tunisia, the Sicilian Channel and Italian mainland. Focus is on construction schedules, problems and solutions. The report comes complete with details of project financing, organizing, materials supply programs, innovative technology applications, design philosophy and construction techniques

  11. US gas pipelines respond to FERC Order 636

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that U.S. pipelines are continuing to examine the react to the Federal Energy Regulatory Commission's Order 636. Among the latest responses: Bill Vititoe, president and chief executive officer of ANR Pipeline Co., a subsidiary of Coastal Corp., Houston, the his company's recently proposed comprehensive service restructuring and rate settlement basically is consistent with Order 636. Paul M. Anderson, executive vice-president of Panhandle Eastern Corp., Houston, the Order 63 likely will increase reliance on long term gas sales contracts and shrink or eliminate spot market sales

  12. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Antonia, O. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  13. 78 FR 44900 - Communication of Operational Information Between Natural Gas Pipelines and Electric Transmission...

    Science.gov (United States)

    2013-07-25

    ... transmission operators and interstate natural gas pipelines. The Commission intends to remove any barriers to...-17-000] Communication of Operational Information Between Natural Gas Pipelines and Electric... the Commission's regulations to provide explicit authority to interstate natural gas pipelines and...

  14. Traditional and incentive regulation - applications to natural gas pipelines in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Mansell, R.L.; Church, J.R.

    1995-12-31

    A study was conducted to examine alternative regimes for the regulation of major natural gas pipelines in Canada, with the specific objective of clarifying and analyzing key issues relating to these regulatory alternatives. An overview of the development and structure of the gas pipeline industry and a discussion of the main changes in the market and regulatory environment was included. The appropriateness of greater tolling flexibility and the role that competition plays in optimizing the use of existing pipelines was also discussed. Some of the incentive alternatives included price caps, automatic rate adjustment mechanisms, yardstick competition, profit sharing, benchmarking, capital cost incentives, and franchising. An evaluation of each alternative was provided. Examination of the various alternatives led to the conclusion that none of the new-style incentive regimes represent a panacea, nor is any of them uniformly better in terms of the key evaluation criteria than the traditional cost of service (COS) approach, especially that which incorporates streamlining. 163 refs., 13 figs.

  15. Engineering considerations for corrosion monitoring of gas gathering pipeline systems

    Energy Technology Data Exchange (ETDEWEB)

    Braga, T.G.; Asperger, R.G.

    1987-01-01

    Proper corrosion monitoring of gas gathering pipelines requires a system review to determine the appropriate monitor locations and types of monitoring techniques. This paper develops and discusses a classification of conditions such as flow regime and gas composition. Also discussed are junction categories which, for corrosion monitoring, need to be considered from two points of view. The first is related to fluid flow in the line and the second is related corrosion inhibitor movement along the pipeline. The appropriate application of the various monitoring techniques such as coupons, hydrogen detectors, electrical resistance probe and linear polarization probes are discussed in relation to flow regime and gas composition. Problems caused by semi-conduction from iron sulfide are considered. Advantages and disadvantages of fluid gathering methods such as pots and flow-through drips are discussed in relation to their reliability as on-line monitoring locations.

  16. Safety distance between underground natural gas and water pipeline facilities

    International Nuclear Information System (INIS)

    Mohsin, R.; Majid, Z.A.; Yusof, M.Z.

    2014-01-01

    A leaking water pipe bursting high pressure water jet in the soil will create slurry erosion which will eventually erode the adjacent natural gas pipe, thus causing its failure. The standard 300 mm safety distance used to place natural gas pipe away from water pipeline facilities needs to be reviewed to consider accidental damage and provide safety cushion to the natural gas pipe. This paper presents a study on underground natural gas pipeline safety distance via experimental and numerical approaches. The pressure–distance characteristic curve obtained from this experimental study showed that the pressure was inversely proportional to the square of the separation distance. Experimental testing using water-to-water pipeline system environment was used to represent the worst case environment, and could be used as a guide to estimate appropriate safety distance. Dynamic pressures obtained from the experimental measurement and simulation prediction mutually agreed along the high-pressure water jetting path. From the experimental and simulation exercises, zero effect distance for water-to-water medium was obtained at an estimated horizontal distance at a minimum of 1500 mm, while for the water-to-sand medium, the distance was estimated at a minimum of 1200 mm. - Highlights: • Safe separation distance of underground natural gas pipes was determined. • Pressure curve is inversely proportional to separation distance. • Water-to-water system represents the worst case environment. • Measured dynamic pressures mutually agreed with simulation results. • Safe separation distance of more than 1200 mm should be applied

  17. The redefinition of the american and british gas industries: the regulation of the access load to the gas pipelines networks

    International Nuclear Information System (INIS)

    David, L.

    2000-10-01

    The transport and distribution networks regulation is the main stakes of the regulation reform of the gas industries. This thesis analyzes the models applied in The Usa and in the United Kingdom. The first part deals with the gas industries deregulation in these two countries, the impacts on the economy and the organization of the gas industries. The second part presents a theoretical approach of the regulation applied to the prices of the natural ags transport by gas pipelines. Regulation by the service cost price and by price cap are compared. (A.L.B.)

  18. Economics of LNG and pipeline gas export from GC C

    International Nuclear Information System (INIS)

    White, N.

    1995-01-01

    This paper briefly reviews the economic and non-economic considerations underlying gas exports from the GC C and the Arabian Peninsula in general. It addresses four themes: policy issues, political risks, technical risks and economics. It examines the distance between the regional resource areas and the major gas markets in the Far East and Europe, and examines the implications for moving gas to those markets in liquid form or by pipeline, in terms of number of LNG vessels required, and capital costs. (Author)

  19. Considerations about the Urucu-Manaus gas pipeline design; Consideracoes sobre o projeto do gasoduto Urucu-Manaus

    Energy Technology Data Exchange (ETDEWEB)

    Villela, Claudio Henrique Lobianco G.; Correia, Luiz de Carvalho Dias [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The main purpose of this job is to present the characteristics that influenced the elaboration of the Urucu-Manaus Gas Pipeline Project and the difference between this pipeline and other pipelines already installed on the Amazon region. In this project were emphasized the aspects related to the route definition, mapping technologies that had not been utilized in our pipeline projects, the crossing of vast flooded areas, requiring specific studies, as well the minimization of the environment impacts, in this case the existence of animal species present only in this region. Other differential factor was the Rio Negro crossing, where the pipeline will be installed in the riverbed. The know-how attained with this project consolidates ever so the activity of building pipelines in tropical forest regions. (author)

  20. Pipelines update : new tolls and new opportunities in gas gathering

    International Nuclear Information System (INIS)

    Shelton, E.

    1999-01-01

    An overview of the new TransCanada energy transmission system was given. TransCanada has ownership interests in seven other North American natural gas pipelines and the integration of former NOVA Gas Transmission, TransCanada Energy Transmission and ANG Pipeline organizations into a single organization is nearing completion. Integration efforts have been driven by TransCanada's commitment to provide customers with lower costs and improved service levels. The service enhancements will include one-stop shopping, customer advisory councils, harmonized design criteria, optimized operations/maintenance, and consistent billing processes. The new toll design which will replace the current postage-stamp pricing regime offered by NGTL was also reviewed, emphasizing key features such as pricing, term linked tolls, interruptible/short term tolls, renewal incentive, risk/reward collar, transition period and new services

  1. Integral diagnostic in the failure causes of external corrosion of a natural gas transport pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Mendoza, J.L.; Saucedo-Robles, L.C.; Rodriguez-Clemente, H. [PEMEX Gas y Petroquimica Basica, Subdireccion de Ductos; Marina Nacional 329, Edificio B-1, Piso 8, Col. Huasteca, D.F., CP 11311 (Mexico); Gonzalez-Nunez, M.A. [Instituto de Investigaciones Electricas, Reforma 113, Col. Palmira, Cuernavaca, Morelos, CP 62490 (Mexico); Zavala-Olivares, G.; Hernandez-Gayosso, M.J. [Instituto Mexicano del Petroleo, Direccion de Exploracion y Produccion, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, D.F., CP 07730 (Mexico)

    2011-08-15

    The objective of this study consisted in investigating the possible causes which give rise to the presence of low wall pipe thicknesses on a 16'' natural gas transport pipeline, even though during the last 12-year period cathodic protection (CP) potentials were kept in the protection range at which external corrosion should not occur. Results from in-line inspection from a 16'' natural gas transport pipeline showed 46 indications with more than 80% wall thickness lost due to external corrosion in the second segment of the pipeline. Direct inspection at the indication locations, review of the CP system performance, pipeline maintenance programs and studies, allowed to make an integral diagnostic where it was found out that the main cause of external corrosion was an inappropriate coating application since the pipeline construction, this situation has originated the increase of CP shielding effects through time. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. The research on natural gas pipeline transportation price formulation method

    Directory of Open Access Journals (Sweden)

    YU Wenjia

    2014-02-01

    Full Text Available This paper will introduce a method of natural gas pipeline transportation price on the basis of two-part tariff.Distance,investment and income have been taken into consideration.The total fee is divided into three parts:reservation fee,usage fee and peak-load regulation fee.Because there are different types of users in the natural gas market who show great difference in the continuity and reliability of gas supply,capacity of bearing price,elastic demand and balance use of gas,according to the method,the different types of users can pay reasonable fee.This method not only considers the investment income recovery but also considers the different types of users paying a reasonable fee.We hope the new pricing model can give a reference to the development of China's natural gas industry.

  3. Gas elephants: Arctic projects revived by expanding markets and pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, G.

    2000-01-03

    The revival of interest in Arctic natural gas and the developing competition to extend the pipeline grid to Alaska and the Yukon and the Northwest territories are the subject of this report. Substantial agreement between competing interest groups is reported with respect to the need for Arctic gas and the willingness of the market to pay for bringing it south to consumers. The discussion centers on the construction of the Alliance Pipeline Project that will reportedly bring two billion cubic feet per day of excess capacity to transport natural gas from northeastern British Columbia to Chicago, and the 2,400 km long Foothills Pipelines System that carries about one-third of Canadian gas exports to middle-western states and California. Plans are to extend the line to 5,240 km by laying pipe in a giant Y pattern between Prudhoe Bay and the Mackenzie delta in the north, and the start of the Foothills System at Caroline in central Alberta. The estimated cost of the line is about $US 6 billion, using a 36-inch diameter line at increased pressures in place of the 56-inch diameter pipe used in the 1970s. Construction plans are similar for the rest of the big Y, the Dempster Lateral beside the Dempster Highway between Whitehorse and Inuvik. A competing project, the Northern Gas Pipeline Project is also discussed. This line would run east of Prudhoe Bay under the Beaufort Sea to the Mackenzie Delta; then south along the Mackenzie Valley to Alberta. Cost of this line is also estimated at $US 6 billion, however, it would have a capacity of four billion cubic feet per day, including 2.5 billion cubic feet from Alaska and 1.5 billion cubic feet from Canada. Strong revival of interest is also reported from the supply side, with BP Amoco, ARCO, Chevron Canada Resources, Ranger 0il Ltd., Paramount Resources, Berkley Petroleum Corporation, Canadian Forest Oil, Alberta Energy Company, Petro-Canada, Anderson Resources, and Poco Petroleum Ltd., all showing interest to mount new

  4. (210)Pb content in natural gas pipeline residues ("black-powder") and its correlation with the chemical composition.

    Science.gov (United States)

    Godoy, José Marcus; Carvalho, Franciane; Cordilha, Aloisio; Matta, Luiz Ernesto; Godoy, Maria Luiza

    2005-01-01

    The present work was carried out to assess the (210)Pb content in "black-powder" found in pigging operations on gas pipelines in Brazil, in particular, on the Campos Basin gas pipeline. Additionally, the chemical composition of such deposits was determined and an eventual correlation with (210)Pb concentration evaluated. Typical "black-powder" generated in the natural gas pipeline from Campos Basin oilfield contains mainly iron oxide ( approximately 81%) and residual organic matter ( approximately 9%). The (210)Pb content ranges from 4.9 to 0.04k Bqkg(-1) and seems to be inversely correlated with the distance to the platforms. On the other hand, (226)Ra concentration is higher on the pipeline branch between the platform and the onshore installations. (228)Ra was only observed in few samples, in particular, in the samples with the highest (226)Ra content.

  5. Residue management in the Bolivia-Brazil gas pipeline construction

    International Nuclear Information System (INIS)

    Freitas, Eduardo Lopes; Henrique, Paulo Roberto Pereira; Cantarino, Anderson Americo Alves

    2000-01-01

    The construction of the gas pipeline is a process sequential of assembly phases, where each one of those phases generates residues of the most varied types and amounts, being necessary the forecast of your generation in agreement with the activity that is being executed. During the accomplishment of the works they are generated a lot of times situations where are observed the inadequate disposition of the residues. Those practices, besides the environmental impact that they cause, it can cart in the future, the need of additional investments be proceeded in the recovery of the areas and removal of the residues. This work presents the Program of administration of Residues instituted during the construction of the pipeline Bolivia - Brazil, seeking, on a side to reduce to the minimum the generation of residues and of the other, moths handling guidelines and disposition, in way to minimize the environmental impacts caused by the same ones. (author)

  6. GASDUC-3: a gas pipeline with neutralization of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    D' Oliveira, Celso A.; Paula, Eliane H. de; Freire, Dilian A.D. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    PETROBRAS seeks to develop its projects following the contemporary premises of sustainable development. The Cabiunas-REDUC-3 Gas Pipeline (GASDUC-3), an undertaking from the Transportadora Associada de Gas - TAG (Associated Gas Transporter) in progress by PETROBRAS, is an example showing that interfacing with the environment can overcome legal questions to reach the realm of awareness and community spirit. In addition to the many programs directed specifically towards the fulfillment of environmental regulations, as defined by competent agencies, the GASDUC-3 is also inserted in the Carbon Free Program. In the Carbon Free Program, all the GHG emissions into the atmosphere during the construction of the gas pipeline will be compensated for with the neutralization of carbon through reforestation. Such initiative is considered unheard of in works with pipelines worldwide. An inventory that quantified the emission of GHG during the implementation of GASDUC-3 made it possible to quantify the reforestation to be implemented and to calculate the number of native species to be planted for absorption - during the course of their growth - of this same amount of carbon dioxide from the atmosphere. The trees are being planted especially in Permanent Preservation Areas (PPA), located in the Unidades de Conservacao do Bioma Mata Atlantica (Conservation Units of the Atlantic Forest Biome), inside the influence region of the gas pipeline, in accordance with the competent environmental agencies and owners. In this way, in addition to fixing carbon and contributing to the deceleration of global warming, the project also cooperates with the preservation of hydro and soil resources and the local and regional biodiversity. The recapturing of the already emitted GHG through reforestation faces bureaucratic and economic difficulties in order to be implemented, different from the emission reduction projects which are widely disseminated by means of Clean Development Mechanisms (CDM

  7. Optimization of oil-mixture “hot” pumping in main oil pipelines

    Science.gov (United States)

    Bekibayev, T. T.; Zhapbasbayev, U. K.; Ramazanova, G. I.

    2017-10-01

    The optimal conditions for high pour point and high-viscosity oil transportation through the main oil pipeline sections are determined. The optimization of “hot” pumping is investigated by determining the energy-saving operating conditions of pumps and heating furnaces. The objective function of optimality for the pipeline section with several stations is determined by a minimum costs of energy consumed by pumps and heating furnaces. The problem solving algorithm is constructed by new dynamic programming approach. The problem is divided into many overlapping subtasks with finding the optimal substructure. The object of each subtask is the cost function of pumps and heating furnaces at the stations.

  8. Strategy and use of pipelined natural gas in Brazil: the case of Rio de Janeiro State

    International Nuclear Information System (INIS)

    Rodrigues, M.G.

    1991-01-01

    The systems of energy distribution by pipelined fuel gas in the residential sector of the state of Rio de Janeiro is analyzed. It studies the potential market for the expansion of pipelined gas and its distribution in urban areas, and presents as well commentaries and recommendation on energy policy for the use of natural gas. (author)

  9. 78 FR 34703 - Pipeline Safety: Information Collection Activities, Revision to Gas Distribution Annual Report

    Science.gov (United States)

    2013-06-10

    ... Activities, Revision to Gas Distribution Annual Report AGENCY: Pipeline and Hazardous Materials Safety...) published a notice in the Federal Register of its intent to revise the gas distribution annual report (PHMSA... information collection is titled: ``Annual Report for Gas Distribution Pipeline Operators.'' Summary of Topic...

  10. 77 FR 10415 - Standards for Business Practices for Interstate Natural Gas Pipelines

    Science.gov (United States)

    2012-02-22

    ... roles and responsibilities of each participant under the Gas/Electric Operational Communication... industry segments-- Distributors, End Users, Pipelines, Producers, and Services (including marketers and...

  11. The Vulnerability Formation Mechanism and Control Strategy of the Oil and Gas Pipeline City

    Science.gov (United States)

    Chen, Y. L.; Han, L.

    2017-12-01

    Most of the pipelines of oil and gas pipelines in our country have been for more than 25 years. These pipes are buried underground and was difficult to daily test. In addition, it was vulnerable to environmental, corrosion and natural disasters, So there is a hidden nature of accidents. The rapid development of urbanization, population accumulation, dense building and insufficient safety range are all the reasons for the frequent accidents of oil and gas pipelines. Therefore, to appraise and know the safe condition of the city various regions oil and gas pipelines is vital significant. In order to ensure the safety of oil and gas pipeline city, this paper defines the connotation of oil and gas pipeline city vulnerability according to the previous research on vulnerability. Then from three perspectives of environment, structure and behavior, based on the analytical paradigm of “structure—vulnerability conduct—performance” about oil and gas, the influential indicators of vulnerable oil and gas pipelines were analysed, the vulnerability mechanism framework of Oil and gas pipeline city was also constructed. Finally, the paper proposed the regulating strategy of the vulnerability of the oil and gas pipeline city to decrease its vulnerability index, which can be realize the city’s vulnerability evaluation and provides new ideas for the sustainable development of the city.

  12. Fatigue assessment of a double submerged arc welded gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Fazzini, Pablo; Otegui, Jose Luis [Universidad Nacional Mar del Plata, Mar del Plata (Argentina). Instituto de Ciencia y Tecnologia de Materiales (INTEMA); Teutonico, Mauricio; Manfredi, Carlos [GIE S.A., Mar del Plata (Argentina)

    2005-07-01

    An uncommon blowout in a 24'' diameter, 7 mm thick API 5L X52 gas pipeline was due to fracture at the longitudinal double submerged arc weld. Oddly enough for gas pipelines, it was found that fatigue cracks had propagated from a large embedded weld defect of lack of fusion resulting from severe geometrical mismatch between inner and outer weld passes. What makes this failure particularly interesting is that: previous in line inspections failed to detect any defect, no evidence of third party damage was found, and very few large pressure cycles had been recorded during the last 5 years of service, which were believed to be representative of the entire service life of the pipeline. Fatigue tests were carried out to characterize propagation of fatigue cracks in weld metal, it was found that a large Paris exponent made the few large amplitude cycles most contributing to crack propagation. Crack growth path and striation patterns were studied. Fatigue growth was modelled by integrating experimental results and by extrapolating striation spacing in the fracture surface of the failed pipe. Crack growth path and striation patterns were studied. It was found that microstructure discontinuities govern propagation at low {delta}K, but one striation per cycle was produced at large {delta}K, due to a mostly ductile propagation mode. Fatigue growth was modelled by integrating experimental results and by extrapolating striation spacing in the fracture surface of the failed pipe. It was found that in the early life of the line many more large pressure cycles than expected had occurred. Good correspondence between predicted and actual fatigue lives was in this way obtained (author)

  13. Assessing fugitive emissions of CH4 from high-pressure gas pipelines in the UK.

    Science.gov (United States)

    Boothroyd, Ian M; Almond, Sam; Worrall, Fred; Davies, Rosemary K; Davies, Richard J

    2018-03-16

    Natural gas pipelines are an important source of fugitive methane emissions in lifecycle greenhouse gas assessments but limited monitoring has taken place of UK pipelines to quantify fugitive emissions. This study investigated methane emissions from the UK high-pressure pipeline system (National Transmission System - NTS) for natural gas pipelines. Mobile surveys of CH 4 emissions were conducted across four areas in the UK, with routes bisecting high-pressure pipelines (with a maximum operating pressure of 85bar) and separate control routes away from the pipelines. A manual survey of soil gas measurements was also conducted along one of the high-pressure pipelines using a tunable diode laser. For the pipeline routes, there were 26 peaks above 2.1ppmv CH 4 at 0.23peaks/km, compared with 12 peaks at 0.11peaks/km on control routes. Three distinct thermogenic emissions were identified on the basis of the isotopic signal from these elevated concentrations with a peak rate of 0.03peaks/km. A further three thermogenic emissions on pipeline routes were associated with pipeline infrastructure. Methane fluxes from control routes were statistically significantly lower than the fluxes measured on pipeline routes, with an overall pipeline flux of 627 (241-1123 interquartile range) tonnes CH 4 /km/yr. Soil gas CH 4 measurements indicated a total flux of 62.6ktCH 4 /yr, which equates to 2.9% of total annual CH4 emissions in the UK. We recommend further monitoring of the UK natural gas pipeline network, with assessments of transmission and distribution stations, and distribution pipelines necessary. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Vale do Aco pipeline: pipeline natural gas implementation in ArcelorMittal Monlevade steel work; Gasoduto Vale do Aco: implantacao do gas natural via gasoduto na ArcelorMittal Monlevade

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Eduardo Sergio da Silva; Arantes, Luiz Flavio Mourao; Ribeiro, Vicente Aleixo Pinheiro [ArcelorMittal Monlevade, Joao Monlevade, MG (Brazil)

    2011-12-21

    Since September 2010, ArcelorMittal Monlevade has gained flexibility and an important opportunity to reduce the cost of its energy mix due to the arrival of the Natural Gas (NG) via Steel Valley Pipeline. The proposal of the project included the substitution of the Liquefied Petroleum Gas (LPG), Fuel Oil and Compressed Natural Gas for natural gas via pipeline. To support the investment decision, in addition to domestic economic and technical aspects, the macro economic environment concerning the NG was also taken into account. This paper shows the analysis for adjustment of internal equipment, the structure of the contract, the conceptual project of the gas distribution built inside the main events, the gains achieved, the alternatives for the acquisition of NG and operational flexibility of ArcelorMittal Monlevade in case of interruption of supply of natural gas. (author)

  15. 76 FR 52652 - National Fuel Gas Supply Corporation; Tennessee Gas Pipeline Company; Notice of Availability of...

    Science.gov (United States)

    2011-08-23

    ... and Tennessee Gas Pipeline Company's (TGP) proposed Station 230C Project in the above referenced dockets. National Fuel and TGP request authorization to construct facilities in Pennsylvania and New York... environmental effects of the construction and operation of National Fuel's and TGP's proposed projects in...

  16. 76 FR 39864 - Tennessee Gas Pipeline Company; Dominion Gas Transmission, Inc.; Notice of Availability of the...

    Science.gov (United States)

    2011-07-07

    ... environmental assessment (EA) for Tennessee Gas Pipeline Company's (TGP) proposed Northeast Supply Diversification Project (TGP's Project) and Dominion Transmission, Inc.'s (DTI) proposed Ellisburg to Craigs Project (DTI's Project) in the above referenced dockets. TGP and DTI request authorization to construct...

  17. Multi objective optimization of line pack management of gas pipeline system

    International Nuclear Information System (INIS)

    Chebouba, A

    2015-01-01

    This paper addresses the Line Pack Management of the ''GZ1 Hassi R'mell-Arzew'' gas pipeline. For a gas pipeline system, the decision-making on the gas line pack management scenarios usually involves a delicate balance between minimization of the fuel consumption in the compression stations and maximizing gas line pack. In order to select an acceptable Line Pack Management of Gas Pipeline scenario from these two angles for ''GZ1 Hassi R'mell- Arzew'' gas pipeline, the idea of multi-objective decision-making has been introduced. The first step in developing this approach is the derivation of a numerical method to analyze the flow through the pipeline under transient isothermal conditions. In this paper, the solver NSGA-II of the modeFRONTIER, coupled with a matlab program was used for solving the multi-objective problem

  18. Research into methods of pipe end demagnetization under main pipeline repair

    Directory of Open Access Journals (Sweden)

    P.N. Dobrodeyev

    2014-06-01

    Full Text Available Efficiency of pipe end demagnetization methods is experimentally investigated to avoid arc magnetism at repair welding jobs on main pipelines. It is found that multi-polar biased static and dynamic demagnetization provides an acceptable level of magnetic flux density on pipe ends and stability of their magnetic state, which allows shortening repair time by means of executing demagnetization in parallel with other operation procedures.

  19. Corrosion Prevention And Control In High Pressure Oil And Gas Transmission Pipelines

    International Nuclear Information System (INIS)

    Hafez, M.T.; Radwan, M.H.; Jones, D.G.

    2004-01-01

    At the start of the 1990s there were concerns over the increasing threat of corrosion to the integrity of high-pressure oil and gas transmission pipelines. For example: corrosion was the major cause of reportable incidents in North America (1]. Corrosion was the major cause of pipeline failure in the Gulf of Mexico [2]. Corrosion in a North American onshore oil pipeline had required over $1 billion in repairs(3]. Internal corrosion along the complete length of pipelines had resulted in replacement[4] . However, the worldwide published failure statistics indicate that the incidents of corrosion are not increasing year on year(5-9]. Indeed, CONCA WE[8,9] statistics (for pipelines In Western Europe) show that the failure rate from corrosion (the most likely failure mode with increasing age) has not increased with pipeline age (Figure 1). In fact the statistics for gas pipelines in Europe

  20. Polar gamma ray mode for testing weld quality natural gas pipeline

    International Nuclear Information System (INIS)

    Shahout, A. M.; Mahmood, A.Sh.

    2005-01-01

    The polar gamma-ray radiography method was studied extensively, gamma ray from Ir 192 source was used to detect weld defects in the main gas pipeline extending from Kh oms to Tripoli, gamma ray radiographic inspections were carried out according to the Astm(1) standards, and the radiographs were analyzed according to quality specifications API(2) standard-1104. The polar gamma ray mode has been applied to specimens of weld joints of pipes used in this pipeline in the reg [the kilometer 118(3)] and [the kilometer 123], and weld joints in the SLR 7 stz in the region [the kilometer 125]. The results obtained from gamma-rays have discussed and analyzed

  1. Annual survey on the natural gas market: 2008 main results

    International Nuclear Information System (INIS)

    2009-09-01

    This document presents and briefly comments the main data of the natural gas market in France in 2008: gas production, gas transit (entry points receiving gas from various origins and export points to Spain and Switzerland), gas storage, gas distribution, gas sales in the different French regions and to different kinds of customers or industries

  2. Gas Main Sensor and Communications Network System

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf

    2006-05-31

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetooth PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.

  3. Planning the network of gas pipelines through modeling tools

    Energy Technology Data Exchange (ETDEWEB)

    Sucupira, Marcos L.L.; Lutif Filho, Raimundo B. [Companhia de Gas do Ceara (CEGAS), Fortaleza, CE (Brazil)

    2009-07-01

    Natural gas is a source of non-renewable energy used by different sectors of the economy of Ceara. Its use may be industrial, residential, commercial, as a source of automotive fuel, as a co-generation of energy and as a source for generating electricity from heat. For its practicality this energy has a strong market acceptance and provides a broad list of clients to fit their use, which makes it possible to reach diverse parts of the city. Its distribution requires a complex network of pipelines that branches throughout the city to meet all potential clients interested in this source of energy. To facilitate the design, analysis, expansion and location of bottlenecks and breaks in the distribution network, a modeling software is used that allows the network manager of the net to manage the various information about the network. This paper presents the advantages of modeling the gas distribution network of natural gas companies in Ceara, showing the tool used, the steps necessary for the implementation of the models, the advantages of using the software and the findings obtained with its use. (author)

  4. Tunnel construction used as solution for the Cabiunas-REDUC-3 gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    D' Oliveira, Celso A.; Teixeira, Andre N. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    The construction of tunnels for pipeline routes has started being adopted as a solution for technical, environmental and safety issues in the oil and gas industry. Although it is not yet a common practice, PETROBRAS decided to use this type of construction on part of 178 extension kilometers of the main line for the Cabiunas-REDUC-3 Gas Pipeline located in the Gavioes mountains in the district of Cachoeiras de Macacu (RJ). The project implementation follows a growing trend of combining efficiency and environmental protection during its execution. Because the region is full of steep grades and is located in an environmentally sensitive area, the use of a tunnel connection removes some of the risks associated with that type of terrain. Among the many technical challenges involved in the project, one must include: access through dense forest, moving personnel, building material and equipment over step terrain and providing protection from corrosion. And as far as protecting the environment is concerned, the use of a pipeline results in a significant reduction in the loss of native vegetation and damage to the ecosystem. To increase these advantages, PETROBRAS seeks to adopt the kinds of construction methods that are most adequate for the challenge at hand, while producing the best results for the project. Whether using new or tried-and-true methods, the focus is always on perfecting the quality of service provided. (author)

  5. State of art of seismic design and seismic hazard analysis for oil and gas pipeline system

    Science.gov (United States)

    Liu, Aiwen; Chen, Kun; Wu, Jian

    2010-06-01

    The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design. Based on the importance of pipeline and consequence of its failure, oil and gas pipeline can be classified into three pipe classes, with exceeding probabilities over 50 years of 2%, 5% and 10%, respectively. Performance-based design requires more information about ground motion, which should be obtained by evaluating seismic safety for pipeline engineering site. Different from a city’s water pipeline network, the long-distance oil and gas pipeline system is a spatially linearly distributed system. For the uniform confidence of seismic safety, a long-distance oil and pipeline formed with pump stations and different-class pipe segments should be considered as a whole system when analyzing seismic risk. Considering the uncertainty of earthquake magnitude, the design-basis fault displacements corresponding to the different pipeline classes are proposed to improve deterministic seismic hazard analysis (DSHA). A new empirical relationship between the maximum fault displacement and the surface-wave magnitude is obtained with the supplemented earthquake data in East Asia. The estimation of fault displacement for a refined oil pipeline in Wenchuan M S8.0 earthquake is introduced as an example in this paper.

  6. GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf

    2004-09-30

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. In Phase II of this three-phase program, an improved prototype system was built for low-pressure cast-iron and high-pressure steel (including a no-blow installation system) mains and tested in a serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The experiment was carried out in several open-hole excavations over a multi-day period. The prototype units (3 total) combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-repeater-slave configuration in serial or ladder-network arrangements. It was verified that the system was capable of performing all data-sampling, data-storage and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and the system was demonstrated to run off in-ground battery- and above-ground solar power. The remote datalogger access and storage-card features were demonstrated and used to log and post-process system data. Real-time data-display on an updated Phase-I GUI was used for in-field demonstration and troubleshooting.

  7. Estimating Greenhouse Gas Emissions Level of A Natural Gas Pipeline – Case Study from A to B Point in West Java-Indonesia

    Directory of Open Access Journals (Sweden)

    Dianita Cindy

    2016-01-01

    Full Text Available Indonesia is one of the highest greenhouse emitters in the world. As a response of this problem, Indonesia declared the national action plan to focus on national greenhouse gas (GHG reduction by 26 % by 2020. To achieve this target, Government puts energy sector as one of the top priorities since it is the second strongest contributor to national GHG emissions. The main purpose of this paper is to apply the method of fugitive emissions calculation to the existing natural gas pipeline in Indonesia. Fugitive emissions are the major component of GHG emissions from natural gas systems and methane (CH4, the primary component of natural gas pipeline, is a potent GHG. Tiered approaches from Interstate Natural Gas Association of America (INGAA are implemented in this paper as the estimation guidelines. A case study of a natural gas pipeline system in Indonesia is analyzed to compare the GHG emissions level resulted from Tier 1 and Tier 2 methods. In these methods, the input data are pipeline length, the number of compressor stations, and the number of meter and pressure regulation stations. In this case, the GHG emissions level of Tier 2 is significantly different from Tier 1. The variation of pipeline length shows that for the length under 479.2 miles, Tier 1 gives lower amount of CO2 equivalent than Tier 2. The differences of these estimation methods and results can be furtherly developed to provide relevant information and recommendation for the Companies and Government to record the emissions level from natural gas transmission pipeline according to their needs and purposes.

  8. Comparisons of sediment losses from a newly constructed cross-country natural gas pipeline and an existing in-road pipeline

    Science.gov (United States)

    Pamela J. Edwards; Bridget M. Harrison; Daniel J. Holz; Karl W.J. Williard; Jon E. Schoonover

    2014-01-01

    Sediment loads were measured for about one year from natural gas pipelines in two studies in north central West Virginia. One study involved a 1-year-old pipeline buried within the bed of a 25-year-old skid road, and the other involved a newly constructed cross-country pipeline. Both pipelines were the same diameter and were installed using similar trenching and...

  9. Natural gas in France: main results in 2008

    International Nuclear Information System (INIS)

    2008-01-01

    This document briefly presents and comments the main data about natural gas in France: gas consumption, natural gas-based electricity production, refineries, energetic final consumption of natural gas, non-energetic final consumption of natural gas, gas imports and suppliers (countries), national production, and stocks

  10. Facilitating major additions to gas pipeline capacity: innovative approaches to financing, contracting, and regulation

    International Nuclear Information System (INIS)

    Schlesinger, B.; George, R.

    1997-01-01

    The North American gas pipeline industry is in the process of changing from a highly regulated merchant business to a less-regulated, more competitive, transportation industry. This has changed the risk profiles of many companies. This study examined various innovative approaches to successfully financing major pipeline projects emphasizing pipeline capacity financing, contractual terms between shippers and pipelines, and regulatory developments. Besides suggesting options to enhance prospects for financing major pipeline expansion projects, the study also aimed at creating a better understanding of the regulatory market and commercial changes in the pipeline industry and their financing implications. The study also includes a review of the evolution in gas markets and a record of consultations with lenders, producers, marketers and users. Innovative financing, contracting and regulatory solutions are identified and assessed. 25 refs., 17 tabs., 16 figs

  11. EU Security of Gas Supplies: Solidarity Runs Through the Pipeline

    International Nuclear Information System (INIS)

    Aoun, Marie-Claire; Rutten, Daan

    2016-05-01

    The ongoing efforts to lessen the European Union's (EU) vulnerability to gas shortages by adopting internal measures were triggered by the Ukrainian gas disputes of 2006 and 2009. The latter deprived several EU Member States of 20% of their gas supplies (30% of imports) for 14 days in the middle of winter due to tensions with Russia. This prompted Member States in 2010 to adopt a Regulation for the Security of Gas Supply, replacing the skeletal 2004 Directive. Since 2014, tensions have increased significantly between the EU and Russia, the block's main gas supplier. Although this has not led to any gas supply disruptions in Europe, and this time Ukraine has been able to revert to reverse flows, national production and storage withdrawals to replace the Russian gas flows, there remains a perceived elevated risk of gas supply disruptions to the EU, especially by certain Member States. This led the European Commission (EC) to publish its first-ever European Energy Security Strategy in May 2014, which was followed by the Gas Stress Tests of October 2014. In February 2015, the EC published its Energy Union Strategy Framework, which was strongly motivated by energy security concerns. In that context, the EC announced a series of proposals for its gas and electricity markets in 2016 and 2017, among which was the 'Sustainable Energy Security Package' (hereafter: Package). This Package, published in February 2016, consists of four proposals. Two of them have a legislative nature, namely a Regulation for Security of Gas Supply and a Decision on Intergovernmental Agreements on energy. The two non-legislative proposals are strategy papers dealing respectively with LNG and Gas Storage, and Heating and Cooling. The purpose of this paper is to focus on the proposed Regulation and to offer considerations on some of its provisions, in particular on the move from the national to the regional level of cooperation and on the legislative formalization of solidarity

  12. Gas pipeline Opon - Barrancabermeja. Consumption at low cost with environmental cleaning

    International Nuclear Information System (INIS)

    Carta Petrolera

    1997-01-01

    The gas pipeline Opon-Barrancabermeja, is part of a project to produce hydrocarbons in the Carare Region. For this line will be transported natural gas of the Opon Field, in Simitarra (Colombia). The benefits that it brings the presence of the gas pipeline for the community have to see from the same construction of the net, joined with diverse programs that link to communities of the influence areas, in aspects related with health, education, environmental reparation and agricultural diversification

  13. Gas market distorting effects of imbalanced gas balancing rules. Inefficient regulation of pipeline flexibility

    Energy Technology Data Exchange (ETDEWEB)

    Keyaerts, Nico; D' haeseleer, William [University of Leuven (K.U.Leuven) Energy Institute - TME branch (Applied Mechanics and Energy Conversion), Celestijnenlaan 300A box 2421, B-3001 Heverlee (Belgium); Hallack, Michelle [ADIS-Groupe Reseaux Jean Monnet, Universite de Paris Sud 11, 27 Avenue Lombart, F-92260 Fontenay-aux-Roses (France); Glachant, Jean-Michel [ADIS-Groupe Reseaux Jean Monnet, Universite de Paris Sud 11, 27 Avenue Lombart, F-92260 Fontenay-aux-Roses (France); European University Institute RSCAS and Florence School of Regulation, 19 Via delle Fontanelle, 50014 San Domenico di Fiesole (Italy)

    2011-02-15

    This paper analyzes the value and cost of line-pack flexibility in liberalized gas markets through examination of the techno-economic characteristics of gas transport pipelines and the trade-offs between different ways to use the infrastructure: transport and flexibility. Line-pack flexibility is becoming increasingly important as a tool to balance gas supply and demand over different periods. In the European liberalized market context, a monopolist unbundled network operator offers regulated transport services and flexibility (balancing) services according to the network code and balancing rules. Therefore, gas policy makers should understand the role and consequences of line-pack regulation. The analysis shows that the line-pack flexibility service has an important economic value for the shippers and the TSO. Furthermore, the analysis identifies distorting effects in the gas market due to inadequate regulation of line-pack flexibility: by disregarding the sunk costs of flexibility in the balancing rules, the overall efficiency of the gas system is decreased. Finally, the analysis demonstrates that the actual costs of line-pack flexibility are related to the peak cumulative imbalance throughout the balancing period. Any price for pipeline flexibility should, therefore, be based on the related trade-off between the right to use the line-pack flexibility and the provision of transport services. (author)

  14. 75 FR 59705 - SourceGas Distribution LLC; Bay Gas Storage, LLC; Enterprise Texas Pipeline LLC; Dow Intrastate...

    Science.gov (United States)

    2010-09-28

    ...; Docket No. PR10-110-000; Docket No. PR10-112-000; Docket No. PR10- 113-000 (Not Consolidated) SourceGas Distribution LLC; Bay Gas Storage, LLC; Enterprise Texas Pipeline LLC; Dow Intrastate Gas Company; ONEOK Field Services Company, L.L.C.; Corning Natural Gas Corporation; Notice of Baseline Filings September 21, 2010...

  15. Estimating Greenhouse Gas Emissions Level of A Natural Gas Pipeline – Case Study from A to B Point in West Java-Indonesia

    OpenAIRE

    Dianita Cindy; Saputra Asep Handaya

    2016-01-01

    Indonesia is one of the highest greenhouse emitters in the world. As a response of this problem, Indonesia declared the national action plan to focus on national greenhouse gas (GHG) reduction by 26 % by 2020. To achieve this target, Government puts energy sector as one of the top priorities since it is the second strongest contributor to national GHG emissions. The main purpose of this paper is to apply the method of fugitive emissions calculation to the existing natural gas pipeline in Indo...

  16. 75 FR 8053 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-02-23

    ... Natural Gas Act for authorization to replace a two mile section of the 12-inch diameter XT pipeline by constructing approximately two miles of 20-inch diameter pipeline, located in Johnson County, Missouri, all as.... Enter the docket number excluding the last three digits in the docket number field to access the...

  17. Logistic management system for natural gas transportation by pipelines; Sistema de gestao de logistica de transporte de gas por gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sidney Pereira dos; Castro, Antonio Orestes de Salvo [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Leal, Jose Eugenio [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)

    2008-07-01

    An efficient management of the natural gas business chain, based on pipeline transmission network and taking into consideration the interaction between the main players such as shippers, suppliers, transmission companies and local distribution companies, requires the use of decision-making support systems to maximize resources and mitigate contingencies due to gas supply shortfalls, operational contingencies from scheduled and non-scheduled equipment outages as well as market demand shortfalls. This work presents a practical utilization of technologies such as thermohydraulic simulation of gas flow through pipelines, Monte Carlo simulation for compressor station availability studies and economic risk evaluation related to potential revenue losses and contractual penalties and linear programming for maximization and minimization objective function. The proposed system allows the definition of the optimum availability level to be maintained by the Transporter, by means of installing redundancy, to mitigate losses related to revenue and contractual penalties. Identifies, quantifies and justifies economically the installation of stand-by compressor units, mitigating Transporter exposure to losses due to capacity shortfalls as consequence of scheduled and non-scheduled outages. (author)

  18. Alarm management in gas pipeline plant: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Juliano; Lima, Marcelo; Leitao, Gustavo; Guedes, Luiz Affonso [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Branco, Nicolau; Coelho, Robson; Elias, Gustavo Passos; Nunes, Marcelo [Transportadora Brasileira Gasoduto Bolivia-Brasil (TBG), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In order to improve the requirements of industrial processes, many decision support systems have been introduced in recent years. In this context, the alarm management systems have great relevance. On the other hand, the informatics revolution allowed a great increase of information concerning the operation of the industrial processes. Currently, process operators handle an excessive number of about 1.500 alarms per day. Thus, this overdose of information implies in the discredit of alarms. Then, in order to improve the operation activities of industrial processes, it is mandatory to incorporate procedures to evaluate and rationalize alarms. Since the EMMUA191 Standard is the reference guide to alarm management, but it does not specify how to execute an alarm management procedure, in this paper, a systematic procedure to evaluate alarms configurations in industrial processes is proposed. This procedure is in line with EMMUA191 and is composed by the following steps: to use statistics analyses to identify problematic alarms, such as occurrence, intermittency, correlation, and flooding calculation; to indicate problematic alarm group; and to propose a set of actions to be implemented. To validate our proposal, we present a case study in a gas pipeline plant using the BR-AlarmExpert software. (author)

  19. Pipelines integrity management in Transportadora de Gas del Sur; Gerenciamento de la integridad de gasoductos en Transportadora de Gas del Sur

    Energy Technology Data Exchange (ETDEWEB)

    Espineira, Eduardo [Transportadora de Gas del Sur (TGS) (Argentina). Gerencia de Integridad de Gasoductos

    2003-07-01

    To control the integrity of a buried gas pipeline system is not an easy task for a gas pipeline operator. As the threats that affect pipeline integrity are many, it is critical to obtain, visualize, and analyze a great quantity of data in order to ensure a safe and continuous gas supply. This task becomes even more complex in the case of pipelines installed long time ago, where time pays an important role in the formation and development of defects. It is essential to maintain a policy of permanent evaluation, monitoring and repair that allows to evaluate the integrity plan developed and to make the changes that might be necessary. The TGS pipeline system consists of 7400 Km of pipe with an average age of 30 years, going across a great variety of soils and zones with distinctive geographical features that demand the continuous investment of money. This study describes the integrity plan set up by TGS and its evolution in time, including the main tasks related to information gathering and analysis, as well as all rehabilitation tasks. The evaluation of the integrity plan implementation, and the evolution of failure rates in time with respect to the related investments are also described. Finally, the analysis includes the information management systems applied by TGS such as the Geographic Information System . (author)

  20. The Application of Simulation Method in Isothermal Elastic Natural Gas Pipeline

    Science.gov (United States)

    Xing, Chunlei; Guan, Shiming; Zhao, Yue; Cao, Jinggang; Chu, Yanji

    2018-02-01

    This Elastic pipeline mathematic model is of crucial importance in natural gas pipeline simulation because of its compliance with the practical industrial cases. The numerical model of elastic pipeline will bring non-linear complexity to the discretized equations. Hence the Newton-Raphson method cannot achieve fast convergence in this kind of problems. Therefore A new Newton Based method with Powell-Wolfe Condition to simulate the Isothermal elastic pipeline flow is presented. The results obtained by the new method aregiven based on the defined boundary conditions. It is shown that the method converges in all cases and reduces significant computational cost.

  1. Study of Agglomeration Characteristics of Hydrate Particles in Oil/Gas Pipelines

    Directory of Open Access Journals (Sweden)

    Wuchang Wang

    2015-01-01

    Full Text Available The force acting on hydrate particles is the critical factor to hydrate slurry stability which serves as fundamental basis for slurry flow assurance. A comprehensive analysis of forces acting on the hydrate particles was executed to determine the major agglomeration forces and separation forces, and comparison of forces reveals that the main agglomeration force is capillary force and the main separation force is shear force. Furthermore, four main influencing factors deciding the hydrate particle agglomeration were also analyzed and calculated, which shows contacting angle of capillary bridge is the most important factor for hydrate particles agglomeration, while interface tension of oil and water is the least important one. Some methods must be adopted to change the surface of hydrate agglomerates from hydrophile to lipophilicity so as to control the agglomeration of hydrate particle, which is the significant guarantee for safe flow of oil and gas transporting pipeline with hydrate particles.

  2. Integrity management of Brazil-Bolivia gas pipeline to reduce risks due third party damage

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Carlos Renato Aragonez de; Monte, Oswaldo [PETROBRAS, Rio de Janeiro, RJ (Brazil); Colen, Eustaquio; Cunha, Roberto de Souza; Oliveira, Hudson Regis de [Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil); Lima, Rogerio de Souza [RSL Consultoria Geoprojetos (Brazil); Schultz Neto, Walter [Milton Braga Assessoria Tecnica (Brazil)

    2005-07-01

    The Bolivia-Brazil Natural Gas Pipeline has 2.600 kilometers from Rio Grande City in Bolivia to Canoas City, in the south of Brazil. The right-of-way crosses a lot of types of topography and areas subjected to various kinds of anthropological actions, like areas in class locations 3, locals under agricultural activities, forests and minerals explorations, and near constructions of highway and railway, industrial constructions, new pipelines in the same right-of -way, channels, dams, that requires special projects to avoid that the gas pipeline could be subject to strengths that were not consider in the original design. The aim of this paper is to present the jobs developed by TBG during seven years of gas pipeline operations, as public awareness program, procedures to design, construct and inspect specials constructions along and near the right-of -way, control of mineral and forest explorations, monitoring and controlling of excavations on the right-of-way to install new pipelines and optical cables, to reduce risks of gas pipeline damage due third party, as a component of TBG' Managing Integrity Gas Pipeline Program. (author)

  3. 2001 in review: recent Canadian regulatory developments affecting natural gas pipelines

    International Nuclear Information System (INIS)

    Sanderson, C.W.

    2002-01-01

    The natural gas delivery system witnessed unprecedented bottlenecks and frenzied markets as a result of the unprecedented prices for natural gas at the beginning of 2001. This situation was especially serious in Western Canada. It brought to light, to both producers and consumers, that transportation constraints have a major impact on the industry. The importance of the regulatory framework governing natural gas transmission was re-emphasized with this heightened awareness. The author reviewed and outlined the significant regulatory decisions and the events of 2001 and early 2002 which had an impact on the regulation of natural gas pipelines in Canada. Some important federal decisions made by the National Energy Board, which in turn led to provincial decisions, are summarized in this paper, with special emphasis placed on the situation of both British Columbia and Alberta. On the federal side, the author reviewed pipeline harmonization; guidelines for negotiated traffic, tolls, and tariffs; and consultation with Aboriginal Peoples. The major gas pipelines applications and decisions mentioned are: Multi-pipeline cost of capital, Maritimes and North-East Pipeline Limited, TransCanada, Westcoast, and Petro-Canada Medicine Hat Pipeline. The next section of the presentation deals with potential Northern pipelines and the last section deals with the provincial picture in Alberta and British Columbia. refs., figs

  4. 75 FR 10242 - Tennessee Gas Pipeline Company; Notice of Availability of the Environmental Assessment for the...

    Science.gov (United States)

    2010-03-05

    ... (TGP) in the above referenced docket. TGP requests authorization to expand its natural gas pipeline... potentially affected by TGP's proposal and participate in the NEPA analysis. These cooperating agencies will...

  5. Cracking resistance study of steel for gas pipelines; Badania odpornosci stali przeznaczonej na rurociagi gazowe

    Energy Technology Data Exchange (ETDEWEB)

    Wasiak, J.; Bilous, W.; Hajewska, E.; Szteke, W.; Wagner, T. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1996-12-31

    The results of cracking resistance of steel tubes for gas pipelines have been performed. The temperature dependence of mechanical properties of X56 steel used as tube material have been shown. 2 refs, 6 figs, 4 tabs.

  6. Oil and Gas Pipelines in the Gulf of Mexico from BOEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A line file representing locations of the pipeline infrastructure in the Gulf of Mexico associated with the oil and gas industry is presented. These layers were...

  7. Use of GRASS for routing gas pipeline rights-of-way

    International Nuclear Information System (INIS)

    Sydelko, P.J.

    1992-01-01

    This study, sponsored by the Gas Research Institute (GRI), was conducted to illustrate how a GIS (Geographic Information System) can be used to assess alternative routes for new gas pipeline rights-of-way (ROWs). The results show that a least-cost analysis using GRASS (Geographic Resources Analysis and Support System) is a good method for siting new gas pipeline ROWs on the basis of environmental and engineering constraints to pipeline construction and maintenance. The cost and time needed to use this least-cost approach compare favorably with the current methods used by gas pipeline company planners and engineers. The types of criteria used, as well as the costs or weights given to the criteria, can be changed easily. This provides the flexibility to assess several alternatives quickly and easily

  8. Prospects of natural gas demand and pipeline projects in the East Asia

    International Nuclear Information System (INIS)

    Ishii, A.

    1997-01-01

    The development of the natural gas industry in East Asia was discussed. It was predicted that by 2010, the demand for natural gas could potentially reach 80 billion cubic feet per day. This represents an 8 per cent per year growth rate from a 1995 baseline. Similarly, it was predicted that by 2010, the region's natural gas supply could potentially reach 65 billion cubic feet per day which would represent 2.5 times the supply of natural gas in 1995. The additional demand will most likely be supplied from the Middle East in the form of liquefied natural gas (LNG), from Eastern Russia through pipelines of LNG, or from North America in the form of LNG. Some gas may also be supplied from Central Asia through pipelines. The price and cost of natural gas are major uncertainties in the future of the East Asian gas demand. Pipeline projects from Russia to China were discussed. Japan and Korea are also interested in collaborating on the feasibility study with Russia and China on a 3,400 km pipeline of 60 inch diameter from the Koviktinskoye gas field through Mongolia to Beijing, Tianjin and Korea, transporting 20 to 30 billion cubic metres of gas annually. A natural gas pipeline project transporting gas from the southern edge of the Sakhalin Island to the Tokyo area was also discussed. The project would involve construction of a 2,200 km 40-48 inch pipeline, much of it undersea, transporting 6 to 12 million tonnes of liquid natural gas, annually

  9. Feasibility study on rehabilitation and optimization of gas pipeline network/system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions, a survey was conducted on repairs and optimization of gas pipeline net/system in Bangladesh. In the survey, the measurement of methane gas concentration, wind direction/velocity and temperature was made for 16 stations of BC pipeline and BD pipeline including Ring Line. As a result of the measurement, the amount of methane leakage totaled 5,300 tons/year including 1,300 tons in BD pipeline, 2,500 tons in BC pipeline and 1,500 tons in Ring Line. For repairs/optimization of the pipeline net/system, the necessity of the following was pointed out: exchanges of gaskets, piping and valves; repairs of portions of the pipeline exposure; exchanges of pressure control valves and flowmeters; repair of the corrosion prevention system. In this improvement project, the reduction amount of greenhouse effect gas emissions will be 5,300 tons/year and approximately 106,000 tons in 20 years. The conservation will amount to 0.66 MMUS$/year. (NEDO)

  10. Pipeline politics—A study of India′s proposed cross border gas projects

    International Nuclear Information System (INIS)

    Nathan, Hippu Salk Kristle; Kulkarni, Sanket Sudhir; Ahuja, Dilip R.

    2013-01-01

    India′s energy situation is characterized by increasing energy demand, high fossil fuel dependency, large import shares, and significant portion of population deprived of modern energy services. At this juncture, natural gas, being the cleanest fossil fuel with high efficiency and cost effectiveness, is expected to play an important role. India, with only 0.6% of proven world reserves, is not endowed with adequate natural gas domestically. Nevertheless, there are gas reserves in neighbouring regions which gives rise to the prospects of three cross border gas pipeline projects, namely, Iran–Pakistan–India, Turkmenistan–Afghanistan–Pakistan–India, and Myanmar–Bangladesh–India. This study is a political analysis of these pipeline projects. First, it provides justification on use of natural gas and promotion of cross border energy trade. Then it examines these three pipeline projects and analyses the security concerns, role of different actors, their positions, shifting goals, and strategies. The study develops scenarios on the basis of changing circumstances and discusses some of the pertinent issues like technology options for underground/underwater pipelines and role of private players. It also explores impact of India′s broader foreign relations and role of SAARC on the future of pipelines and proposes energy induced mutually assured protection (MAP) as a concept for regional security. -- Highlights: •We justify the need for cross border energy trade through gas pipelines for India. •We examine prospective pipeline projects—IPI, TAPI, MBI and their security issues. •We develop scenarios and analyze role of actors, their positions, and strategies. •We discuss technology and policy options for realizing these gas pipelines. •We propose energy induced mutually assured protection (MAP) for regional security

  11. Improvement of Regulatory Requirements for Ensuring the Quality of Underground Gas Pipelines in Conditions of Corrosion Fatigue

    Directory of Open Access Journals (Sweden)

    Larysa Yuzevych

    2017-09-01

    Full Text Available The article develops recommendations for improvement of normative documents concerning the quality of underground metal pipelines (gas pipelines under conditions of fatigue and the impact of an aggressive environment, taking into account cathodic (electrochemical protection. It is established that the basis of information provision of normative documents is the method which includes the following main criteria: the value of the minimum current density of cathode protection; minimum security potential; maximum protective potential, minimal displacement of protective potential; strength criteria of pipe material; criteria of strength of phase layer between the metal and the coating; the strength of the metal in the defect of the insulation coating. It has been found out that the system "metal pipe - insulating dielectric coating" is characterized by such basic procedures as: identification of hazards; various variants of load asymmetry; evaluation of the boundary and optimal values of potentials and currents for the system of cathodic protection of the pipeline. The prospect of further research in this area is determination of the complex indicator of quality and reliability of the linear part of underground main gas pipelines on the basis of research results (submitted information support.

  12. Natural gas pipeline system: Feasibility study, final project report. Export trade information

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The report documents the results of a feasibility study conducted for the Federal Ministry of Economy, Czech and Slovak Federal Republic. The purpose of the study was to develop an optimized plan for the construction of a new pipeline in the Slovak Republic to replace and expand the capacity of the existing Brotherhood Pipeline. The document is broken into 14 sections: (1) Introduction; (2) Base Reference Data; (3) Assessment of Rehabilitation of Existing Secondary Transmission and Distribution Systems; (4) Cost of Customer Conversions to Gas Fired Systems; (5) Assessment of SPP's Technical and Safety Standards; (6) Market Demand Projection; (7) New System Design Parameters; (8) Reliable Capacity of Existing Brotherhood Pipeline; (9) New Pipeline Transportation System Configuration; (10) Project Schedules; (11) Estimated Costs; (12) Pipeline Optimization; (13) Economic Analysis; and (14) Conclusions and Recommendations.

  13. Minimizing Strength Consequences Resulting From Excavation of Buried Gas Pipeline For In-Operation Insulation Renovations

    Science.gov (United States)

    Jančo, Roland

    2011-12-01

    Because of economic reasons many of the maintenance and repair activities on buried gas pipeline are performed during its operation. By excavating the earth from the sides of the pipeline in certain lengths, there is a possibility that the resulting additional bending load of the pipe will occur due to its deflection. This is caused by the additional compressive force which originates in the buried pipeline as a result of a detained strain, when the longitudinal strain in the pipeline due to service conditions (internal pressure and heating) cannot be realized. In the paper a numerical simulation (using ANSYS program) of pipeline elbow due to excavation for insulation repair and the following backfilling will be presented.

  14. Coalbed methane : evaluating pipeline and infrastructure requirements to get gas to market

    International Nuclear Information System (INIS)

    Murray, B.

    2005-01-01

    This Power Point presentation evaluated pipeline and infrastructure requirements for the economic production of coalbed methane (CBM) gas. Reports have suggested that capital costs for CBM production can be minimized by leveraging existing oil and gas infrastructure. By using existing plant facilities, CBM producers can then tie in to existing gathering systems and negotiate third party fees, which are less costly than building new pipelines. Many CBM wells can be spaced at an equal distance to third party gathering systems and regulated transmission meter stations and pipelines. Facility cost sharing, and contracts with pipeline companies for compression can also lower initial infrastructure costs. However, transmission pressures and direct connect options for local distribution should always be considered during negotiations. The use of carbon dioxide (CO 2 ) commingling services was also recommended. A map of the North American gas network was provided, as well as details of Alberta gas transmission and coal pipeline overlays. Maps of various coal zones in Alberta were provided, as well as a map of North American pipelines. refs., tabs., figs

  15. Development of a new solvent-free flow efficiency coating for natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Fogg, Graham A.; Morse, Jennifer [Bredero Shaw, Houston, TX (United States)

    2005-07-01

    Pipeline design engineers have traditionally considered external anti-corrosion coatings for the protection of gas transmission pipelines, with less consideration given to the benefits of internal flow efficiency coatings. This paper reviews the benefits of using a traditional solvent-based flow efficiency coating, and the relationship between the internal surface roughness of a pipe, the pressure drop across the pipeline, and the maximum flow rate of gas through the pipeline. To improve upon existing solvent-based flow efficiency coatings, a research program was undertaken to develop a solvent-free coating. The stages in the development of this coating are discussed, resulting in the plant application of the coating and final qualification to API RP 5L2. (author)

  16. Oil and gas pipelines with hydrophobic surfaces better equipped to deal with gas hydrate flow assurance issues

    DEFF Research Database (Denmark)

    Perfeldt, Christine Malmos; Sharifi, Hassan; von Solms, Nicolas

    2015-01-01

    Gas hydrate deposition can cause plugging in oil and gas pipelines with resultant flow assurance challenges. Presently, the energy industry uses chemical additives in order to manage hydrate formation, however these chemicals are expensive and may be associated with safety and environmental...... crystallizer. This indicates that 10 to 14 times less KHI is needed in the presence of a hydrophobically coated surface. These experimental studies suggest that the use of hydrophobic surfaces or pipelines could serve as an alternative or additional flow assurance approach for gas hydration mitigation...... and management....

  17. Mathematical model of a multi-loop network of gas pipelines at various modes of current

    Directory of Open Access Journals (Sweden)

    Orifjon Sh. Bozorov

    2012-05-01

    Full Text Available A method of hydraulic calculation of a multi-loop network of gas pipelines based on Kirchhoff’s laws is offered. As completing relations, the formula for the change of pressure on elementary sites of the horizontal gas pipe, received on the basis of Leybenzon’s generalized formula of resistance is used.

  18. Simplification of executive procedures for construction and assembly of terrestrial gas pipelines through illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Filho, Mario D.C.; Bresci, Claudio T.; Dantas, Augusto Cesar de C.; Machado, Clara C. Torres S. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Sobreiro, Flavia L. [Telsan Engenharia, Belo Horizonte, MG (Brazil)

    2009-07-01

    This study aims to show a simple, efficient and fun method that seeks to minimize the weaknesses and help to increase the perception of risk analysis and systematization the operation discipline. This project uses the methodology of images illustrated in the executive procedures, and is based on the activities of construction and assembly, HSE and social communication in gas pipeline ventures, setting and maintaining access to practical information, yet are prepared a work instructions that summarize each process, as a form of material support in training. Among several objectives that have shaped the strategies for this project, the main is to provide the workforce engaged in the activities of field, greater facility in implementing the technical information contained in the procedures, from a wider and better understanding of the guidelines described in the documentation. (author)

  19. 18 CFR 260.9 - Reports by natural gas pipeline companies on service interruptions and damage to facilities.

    Science.gov (United States)

    2010-04-01

    ... pipeline companies on service interruptions and damage to facilities. 260.9 Section 260.9 Conservation of..., NATURAL GAS ACT STATEMENTS AND REPORTS (SCHEDULES) § 260.9 Reports by natural gas pipeline companies on service interruptions and damage to facilities. (a)(1) Every natural gas company must report to the...

  20. THE DEVELOPMENT AND THE STRATEGY OF THE OIL AND GAS PIPELINES OF RUSSIA

    Science.gov (United States)

    Motomura, Masumi

    The Russian oil and gas industry earns more than half of the Russian tax revenue and foreign currency, and has been playing the role of the backbone of the state economy through the eras of the Soviet Union and the Russian Federation. With the elongation of distance to the European market from the oil producing regions, starting from Baku in the era of Imperial Russia to the Second Baku (Volga-Ural) and the third Baku (West Siberia) in turn, the role of the oil pipeline system as the transportation infrastructure became more and more important and the deployment of pipelines has become one of the indispensable pillars of oil strategy. Now, the oil pipeline network is to reach the Pacific Ocean, which will enable Northeast Asia to be added as a destination for Russian oil, with a result of expanding influence for Russia in these regions. On the other hand, gas exports from the Soviet Union to Eastern Europe started in 1967 by constructing a trunk pipeline from Ukraine, which was extended to West Germany in 1973, overcoming the confrontation between the East and the West and becoming a regional stabilizer. The United States considered this pipeline as an energy weapon and criticized this deal by saying that when Soviet gas flows to Western Europe, its political influence must flow like the gas itself. However, the Soviet Union collapsed in 1991, while gas transportation continued without any disruption. This is evidence that the gas pipeline from the Soviet Union was purely for a business purpose and was not politicized. Recently, Russia is aiming to export gas to northeastern Asia, which is expected to be a new stabilizer in this region, although different types of diffi culties (especially about the method of determination of the gas price) still need to be resolved.

  1. PIPELINE CORROSION CONTROL IN OIL AND GAS INDUSTRY: A ...

    African Journals Online (AJOL)

    user

    compared to other methods and thus constant monitoring is needed to achieve optimum efficiency. Keywords: Corrosion, Cathodic ... no impress current. This shows the difference between the pipe/soil potential and the natural potential. Table 1: Material/Specification for system 2A pipeline. Specifications. Designation.

  2. Risk analysis of urban gas pipeline network based on improved bow-tie model

    Science.gov (United States)

    Hao, M. J.; You, Q. J.; Yue, Z.

    2017-11-01

    Gas pipeline network is a major hazard source in urban areas. In the event of an accident, there could be grave consequences. In order to understand more clearly the causes and consequences of gas pipeline network accidents, and to develop prevention and mitigation measures, the author puts forward the application of improved bow-tie model to analyze risks of urban gas pipeline network. The improved bow-tie model analyzes accident causes from four aspects: human, materials, environment and management; it also analyzes the consequences from four aspects: casualty, property loss, environment and society. Then it quantifies the causes and consequences. Risk identification, risk analysis, risk assessment, risk control, and risk management will be clearly shown in the model figures. Then it can suggest prevention and mitigation measures accordingly to help reduce accident rate of gas pipeline network. The results show that the whole process of an accident can be visually investigated using the bow-tie model. It can also provide reasons for and predict consequences of an unfortunate event. It is of great significance in order to analyze leakage failure of gas pipeline network.

  3. The impact of the Vancouver Island natural gas pipeline construction on water quality

    International Nuclear Information System (INIS)

    Li Gaoshe.

    1993-04-01

    A study was initiated to evaluate the impact of construction of the Vancouver Island natural gas pipeline on water quality, where the pipeline passed along or through lakes and streams. The main concern was for the potential defilement of community water supplies when construction occurred in community watersheds. When water becomes turbid from rainfall runoff passing through construction areas, disinfection processes are rendered inefficacious and at specified turbidity levels, the water becomes too risky to drink without alternative disinfection such as boiling. The weekly environmental surveillance reports generated during construction are reviewed. The material is organized to relate construction practices with weather patterns, thereby showing the resultant effects on water quality (turbidity). The effectiveness of construction measures in reducing the risk of contamination and water turbidity at intakes is assessed. Generally, water turbidity during project construction was acceptable although it sometimes reached very high levels. These high levels resulted from incidents or mistakes that were usually related to rainy days. Among the 12 types of work activity, bridge construction, drilling, and grading caused relatively slight increases in water turbidity levels, while backfilling and ditching caused the greatest increase in turbidity. Improvements in inspection and monitoring programs are recommended. A key recommendation is that construction work be stopped on rainy days. 6 refs., 4 figs., 20 tabs

  4. Simulations of severe slugging during depressurization of an oil/gas pipeline

    Directory of Open Access Journals (Sweden)

    M. Nordsveen

    1997-01-01

    Full Text Available Dynamic simulators for pipelines with multiphase flow have proved to be important computational tools for both design and operational support of oil and gas production systems. One important aim of such simulators is to predict the arrival time and magnitude of outlet liquid transients after production changes made by an operator of a pipeline. A multiphase flow simulator (OLGA-94.1 with a two-fluid model has been applied to simulate depressurization of a pipeline during a shutdown procedure. During depressurization liquid slugs may form and propagate towards the outlet. The importance of the numerical method for predictions of such transients is demonstrated by using an Eulerian, finite difference, implicit, upwind scheme both with and without a front tracking scheme. First the initial conditions for the depressurization is established from a shut-down simulation where the production at the inlet is closed down, and the liquid comes to rest at low points along the pipeline. A realistic depressurization is simulated by opening a choke at the outlet of the pressurized pipeline. The numerical scheme without front tracking (standard scheme gives outlet gas and liquid flow rates which are smeared out in time due to numerical diffusion. Simulations with the front tracking scheme give intermittent gas-liquid flow arriving as sharp fronts at the outlet. The total remaining fluid in the pipeline after the depressurization is larger when using the standard scheme.

  5. Remote monitoring of a natural gas pipeline using fiber optic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Cauchi, Sam; Morison, William Donald [Fiber Optic Systems Technology Inc. (FOX-TEK), Bedford, Nova Scotia (Canada)

    2009-07-01

    The pipeline network referred to herein transports natural gas from the NE part of British Columbia through Western Canada into the US Mid-West. Across over 2000 km of the operator's large diameter transmission pipeline system are numerous river crossings and other geotechnical hazards that are continuously identified and risk ranked using a variety of methods, including in line inspection and geotechnical surveys. One particular section of the operator's mainline near Edmonton, Alberta, where railway tracks have recently been installed overtop this vital natural gas transport pipeline, will be the focus of this paper. In order to protect the pipeline from soil stresses to be imposed by heavy cyclic loading during construction of the railway tracks and when trains begin passing overtop, protective concrete structures were constructed around the pipeline within the vicinity of the tracks. While these structures assist in maintaining the integrity of the pipeline in the presence of heavy loading forces, they simultaneously prevent any subsequent access to the pipeline for general inspection and repair. As a result, prior to the construction of the protective concrete structures, the operator made multiple modifications to the pipeline's integrity system within the area of the proposed tracks. This included the enhancement of the cathodic protection to further prevent external corrosion, and the installation of fiber optic strain gauges at multiple sites to ensure that strain levels remain within tolerable limits under the inaccessible area. Background information on operator's pipeline and the layout of the protective concrete structures and railways will be presented in addition to field data obtained using the fiber optic strain monitoring system. An introduction to fiber optic strain gauges will be given, followed by a discussion on the design and installation of the sensors themselves. The particular method used to analyze the strain data is

  6. Fiscal 1999 basic survey report for promotion of joint implementation. Feasibility study for rehabilitation and optimization of pipelines for reduction of greenhouse gas emission; 1999 nendo onshitsu koka gas haishutsu sakugen no tame no pipeline no rihabiri, saitekika no tame no F/S chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A survey is conducted of the actual state of leaks from natural gas pipelines and of the energy-saving and greenhouse gas-reducing effects of pipeline rehabilitation, with the clean development mechanism (CDM) borne in mind. Comilla and Chittagong are the areas that are covered by the survey. Natural gas leaks from the main pipelines BC and BD are calculated to be 5,300 and 5,600 tons/year, respectively. Total leakage across the country is estimated at 85,000 tons/year. Approximately 41% of the imbalance is explained by leakage while the rest is attributable to errors in gas flow measurement etc. The total leakage from branch pipelines is approximately three times larger than that from main pipelines, and some measures need to be taken to remedy the situation. For the densely populated city of Dhaka which finds itself in a network of branch pipelines, in particular, rehabilitation and optimization of its accessory power stations etc. are quite important. Measures for leakage if properly implemented will not only reduce the amount of leakage but also prevent ignition or explosion for the minimization of economic loss and for the assurance of safety. Error-free gas flow measurement if realized will strengthen the foundation on which sales are performed. (NEDO)

  7. Application of Fracture-Mechanics Approach to Gas Pipelines

    Czech Academy of Sciences Publication Activity Database

    Gajdoš, Lubomír; Šperl, Martin

    VII, č. 73 (2011), s. 480-487 ISSN 2010-376X R&D Projects: GA ČR(CZ) GAP105/10/2052; GA ČR(CZ) GPP105/10/P555 Grant - others:GAMPO(CZ) FT-TA5/076 Program:FT Institutional research plan: CEZ:AV0Z20710524 Keywords : axial crack * fracture-mechanics * J integral * pipeline wall Subject RIV: JL - Materials Fatigue, Friction Mechanics

  8. An Investigation of Induced Voltages to an Underground Gas Pipeline from an Overhead Transmission Line

    Science.gov (United States)

    Isogai, Hiroshi; Ametani, Akihiro; Hosokawa, Yuji

    This paper has investigated induced voltages characteristics from an overhead transmission line to a buried gas pipeline by applying a modeling method of the induced voltages proposed by the authors. EMTP simulation results agree with analytical results obtained from a well-known formula. The induced voltages are significantly dependent on the configuration of an overhead line. A horizontal line induces the largest voltage to the gas pipeline, and an induced voltage by a vertical twin-circuit line is smaller by about 20% than that by a vertical single-circuit line.

  9. Competition in the natural gas pipeline industry: An economic policy analysis

    International Nuclear Information System (INIS)

    Gallick, E.C.

    1993-01-01

    The Federal Energy Regulatory Commission (FERC) currently regulates the price at which natural gas can be sold by regulated interstate natural gas pipelines. Whether pipelines should be deregulated depends, to an important extent, on the competitive nature of the market. The key question is whether pipelines can successfully raise price (i.e., the transport fee) and reduce output if the market is deregulated. In most natural gas pipeline markets, there are a small number of current suppliers. Opponents of deregulation argue that the unrestrained market power of pipelines in many local markets will introduce inefficiencies in the sale of natural gas. Implicit in their arguments is a narrow view of competition: the number of current suppliers. The competitive effect of potential entry is largely ignored. These commentators would argue that without potential entry, it may be true that the net social cost of deregulation exceeds the costs of maintaining present regulation. A study was conducted to determine the extent to which potential entry might constrain the exercise of market power by natural gas pipelines if price and entry regulation is removed. Potential entrants are defined in the context of antitrust markets. That is, these markets are consistent with the Department of Justice (DOJ) Merger Guidelines. The study attempts to quantify the effects of potential entry on the market power of current suppliers. The selection of potential entrants therefore considers a number of factors (such as the size of the nearby supplier and the distance to the market) that are expected to affect the likelihood of collision in a deregulated market. The policy implications of the study are reviewed

  10. The gas century: worldwide LNG developments may deal death blow to Alaskan pipeline dream

    International Nuclear Information System (INIS)

    Lorenz, A.

    2004-01-01

    The growing interest in liquefied natural gas (LNG), which casts doubt on the viability of the Alaska gas pipeline, and the potential impacts on Canadian gas exports to the United States are discussed. There is currently a proposal before Congress for an Alaskan LNG project, and consensus appears to be building among American energy experts and law-makers that building a multitude of LNG facilities would be more flexible and cheaper than building the proposed Alaska pipeline. As further proof of the growing popularity of LNG, U.S. industry lobbyists are said to be rapidly gaining congressional support for the idea of building eight to ten billion cubic feet per day of LNG capacity along the U. S. coast. Either development, -- LNG facilities or the Alaska pipeline -- have the potential to seriously impact Canadian natural gas exports. If the Alaska pipeline is built, the addition of five billion cubic feet per day of new gas on the market would cause gas prices to fall; if the U.S. decides to subsidize its gas industry, Canadian gas would be put at a serious disadvantage. Conversely, if the Alaskan LNG proposal were to succeed, the potential demise of the Alaska pipeline would mean the loss of about 12,000 jobs that would be created during the Canadian construction phase of the pipeline, as well as the loss of tariffs. Industry experts predict that by 2005 LNG terminals will dot the periphery of the U. S. coast line; to prepare for these eventualities, Canadian companies, such as Irving Oil, TransCanada Pipelines and EnCana are taking note, and are scrambling not to be left out of the game. As proof of the seriousness of their concern, Irving Oil is adding a Can$500 million LNG facility to its Canaport terminal on the Scotian shelf; TCPL is working to supply an LNG terminal offshore Massachusetts, and EnCana is refurbishing a Louisiana salt cavern to prepare for storage of gas delivered to the Gulf Coast

  11. 78 FR 62010 - Empire Pipeline, Inc.; National Fuel Gas Supply Corporation; Notice of Intent To Prepare an...

    Science.gov (United States)

    2013-10-11

    ... Energy Regulatory Commission Empire Pipeline, Inc.; National Fuel Gas Supply Corporation; Notice of... Comments on Environmental Issues, and Notice of Public Scoping Meeting The staff of the Federal Energy... operation of facilities by Empire Pipeline, Inc. and National Fuel Gas Supply Corporation (Collectively...

  12. Continuous-time system identification from discrete-time measurements with application to natural gas pipeline modeling

    Science.gov (United States)

    Walters, Everton St. Patrick

    This work was motivated by the need to model a network of natural gas pipelines and its corresponding demand pipeline, in order to make predictions of the pressures at critical junctions in the network Development of such a model amounts to a system identification problem with limited information. In order to solve this problem, we developed a demand model that would provide estimates of the gas usage for the communities serviced by the pipeline network. The parameters of the demand model were estimated using an adaptive genetic algorithm. This new algorithm was first developed and compared with existing genetic algorithms. A discussion of the role played by crossover and mutation operators in the genetic algorithm was also presented. Based on the theory of gas dynamics and the known pipeline network topology, a resistor-capacitor network analog to the pipeline network was developed. The parameters of the resistor-capacitor model were estimated using ordinary least squares techniques. We first studied and developed a number principles and guidelines for a class of system identification problems. One of the main areas studied was the development of a generalized framework for least squares "parameter" identification of continuous-time systems from discrete-time measurements of the states of the continuous-time system. Subsequently, we extended our generalized framework to the least squares parameter identification of a class of resistor-capacitor networks. We also studied the effects on the estimated results of the integration scheme used in the process and the noise levels in the measured data. A demonstration of the benefits of the incorporation of the maximum available structural information of the system being modeled was also presented. Finally, we developed a set of guidelines for the required input signal frequencies and sampling frequencies to provide acceptable identification results for both the plant-model-match and reduced-order modeling problems

  13. Field price deregulation and the carrier status of natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Broadman, H.G.; Montgomery, W.D.; Russell, M.

    1985-04-01

    The move to deregulate natural gas field markets is likely to stimulate changes in the regulations of the downstream segments of the industry. A system that provides greater incentives for pipelines to engage voluntarily in contract carriage is an incremental change in the current regulatory regime. The authors develop a method of analyzing the determinants of the carrier status of natural gas pipelines to help sort out the issues underlying these proposals. Basing their analysis on the notion that the different institutional constraints imposed by various regulatory regimes assign different bundles of economic functions to pipelines, they argue that an optimal regulatory configuration is one that brings about a consistent mapping of institutional and economic incentives to maximize economic welfare. 8 references.

  14. Rapid, Vehicle-Based Identification of Location and Magnitude of Urban Natural Gas Pipeline Leaks.

    Science.gov (United States)

    von Fischer, Joseph C; Cooley, Daniel; Chamberlain, Sam; Gaylord, Adam; Griebenow, Claire J; Hamburg, Steven P; Salo, Jessica; Schumacher, Russ; Theobald, David; Ham, Jay

    2017-04-04

    Information about the location and magnitudes of natural gas (NG) leaks from urban distribution pipelines is important for minimizing greenhouse gas emissions and optimizing investment in pipeline management. To enable rapid collection of such data, we developed a relatively simple method using high-precision methane analyzers in Google Street View cars. Our data indicate that this automated leak survey system can document patterns in leak location and magnitude within and among cities, even without wind data. We found that urban areas with prevalent corrosion-prone distribution lines (Boston, MA, Staten Island, NY, and Syracuse, NY), leaked approximately 25-fold more methane than cities with more modern pipeline materials (Burlington, VT, and Indianapolis, IN). Although this mobile monitoring method produces conservative estimates of leak rates and leak counts, it can still help prioritize both leak repairs and replacement of leak-prone sections of distribution lines, thus minimizing methane emissions over short and long terms.

  15. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Myers

    2005-04-15

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  16. The method of predicting the process of condensation of moisture and hydrate formation in the gas pipeline

    OpenAIRE

    Хвостова, Олена Вікторівна

    2014-01-01

    The problem of ensuring the required value of one of the natural gas quality indicators during its transportation to the consumer - moisture content is considered in the paper. The method for predicting possible moisture condensation and hydrate formation processes in gas pipelines considering mixing gas flows with different moisture content was developed.Predicting the moisture condensation and hydrate formation in gas pipelines is an actual task since a timely prevention of these processes ...

  17. 76 FR 18751 - National Fuel Gas Supply Corporation; Tennessee Gas Pipeline Company; Notice of Intent To Prepare...

    Science.gov (United States)

    2011-04-05

    ... Supply Corporation (National Fuel) and Tennessee Gas Pipeline Company (TGP). National Fuel's Northern... County, Pennsylvania. TGP's Station 230C Project would involve construction and operation of facilities... Need To Know?'' was attached to the project notice National Fuel and TGP provided to landowners. This...

  18. 77 FR 37669 - Natural Gas Pipeline Company of America LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2012-06-22

    ... continual repair and replacement of deteriorated parts, and are costly to test to assure continue compliance... Bruce H. Newsome, Vice President, Regulatory Products and Services, Natural Gas Pipeline Company of...-3070, or by email bruce[email protected] . This filing is available for review at the...

  19. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines

    International Nuclear Information System (INIS)

    Briottet, L.; Batisse, R.; De Dinechin, G.; Langlois, P.; Thiers, L.

    2012-01-01

    By limiting the pipes thickness necessary to sustain high pressure, high-strength steels could prove economically relevant for transmitting large gas quantities in pipelines on long distance. Up to now, the existing hydrogen pipelines have used lower-strength steels to avoid any hydrogen embrittlement. The CATHY-GDF project, funded by the French National Agency for Research, explored the ability of an industrial X80 grade for the transmission of pressurized hydrogen gas in large diameter pipelines. This project has developed experimental facilities to test the material under hydrogen gas pressure. Indeed, tensile, toughness, crack propagation and disc rupture tests have been performed. From these results, the effect of hydrogen pressure on the size of some critical defects has been analyzed allowing proposing some recommendations on the design of X80 pipe for hydrogen transport. Cost of Hydrogen transport could be several times higher than natural gas one for a given energy amount. Moreover, building hydrogen pipeline using high grade steels could induce a 10 to 40% cost benefit instead of using low grade steels, despite their lower hydrogen susceptibility. (authors)

  20. Mobile hybrid LiDAR & infrared sensing for natural gas pipeline monitoring compendium.

    Science.gov (United States)

    2016-01-01

    This item consists of several documents that were created throughout the Mobile Hybrid LiDAR & Infrared Sensing for Natural Gas Pipeline Monitoring project, No. RITARS-14-H-RUT, which was conducted from January 15, 2014 to June 30, 2016. Documents in...

  1. 75 FR 45108 - Enterprise Alabama Intrastate, LLC Yankee Gas Services Company Kinder Morgan Tejas Pipeline LLC...

    Science.gov (United States)

    2010-08-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-63-000; Docket No. PR10-64-000; Docket No. PR10-66- 000] Enterprise Alabama Intrastate, LLC Yankee Gas Services Company Kinder Morgan Tejas Pipeline LLC (Not Consolidated); Notice of Baseline Filings July 26, 2010. Take...

  2. Study of gas pipelines cracks using transmission and scattering measures with nuclear technique

    International Nuclear Information System (INIS)

    Freitas, Marcela F.; Salgado, César M.

    2017-01-01

    Most of the natural gas production is transported through pipelines that require periodic inspections to evaluate the structural integrity of the pipelines due to possible defects caused by degradation that can rupture causing leakage of the fluid causing major disasters. Based on this, the project presents a methodology for predicting cracks in pipe used in gas pipelines. The approximation is based on the principles of gamma densitometry to calculate the density of the pipe wall in order to investigate possible cracks. The natural gas fluid is found in such systems and interferes in the density calculations and therefore will be considered in the simulations. The detection system uses a narrow beam geometry appropriately, comprising gamma ray source ( 137 Cs) and NaI(Tl) 3 ″ x 3 ″ detectors for calculating transmitted and scattered photons. Different positioning angles of the detector are investigated. In this study, the MCNP-X code is used to perform the simulations, in order to develop a counting geometry. Simulations of different thicknesses of the crack were also used to determine the minimum thickness detected by the two NaI(Tl) detectors. Having equipment that can estimate cracks present in pipes used in gas pipelines, in addition to predicting their location can reduce costs and make a major contribution to this sector. (author)

  3. Natural disasters and the gas pipeline system. Topical report, August 1994-June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Atallah, S.; Saxena, S.; Martin, S.B.; Willowby, A.B.; Alger, R.

    1996-11-15

    Episodic descriptions are provided of the effect of the Loma Prieta earthquake (1989) on the gas pipeline systems of Pacific Gas & Electric Company and the City of Palo Alto and of the Northridge earthquake (1994) on Southern California Gas` pipeline system. The emergency response plans and activities of South Carolina Electric & Gas Company during hurricane Hugo (1989) and of City Gas Company of Florida and other small gas companies during hurricane Andrew (1992) are also reviewed. Descriptions of the great Flood of 1993 and its effects on the operations of Iowa-Illinois Gas & Electric Company and Laclede Gas Company and of the San Jacinto River Floods on the transmission lines of Valero Gas Co. are also provided. Local and federal regulatory requirements, and the current practices by the gas industry for dealing with natural disasters, such as through preventive measures (e.g., strapping of water heaters, excess flow valves), and the tracking of weather-related events are described. The important role that preplanning and coordination with the local emergency response bodies and other gas utilities plays during a natural disaster is examined.

  4. Construction and assembly of the Urucu-Coari-Manaus gas pipeline; Construcao e montagem do gasoduto Urucu-Coari-Manaus

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Antonio E.; Sarno, Ruy [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    This paper aims to present the strategies adopted for the development of the construction and assembly of the Urucu-Coari-Manaus Gas Pipeline and its branches, emphasizing the logistics. With 662 km of extension and crossing 7 Amazonian counties, the construction of this pipeline will take in consideration particular aspects of the region (wavy relief, local population, Amazonian forest and diverse water bodies) and its interference in the works, mainly transport of workers and equipment, distribution of supplying points of fuels and foods, and localization of support work sites. Considering the importance of the region watercourses, techniques for its passages were studied, on a case by case basis and the conventional process, directional drilling and special launching for the passage of the Black river have been adopted. Moreover, this paper presents the activities summary of both environmental licensing process and pre communication related to the communities directly affected by the works, aiming at the beginning of the services of construction and assembly, as well as a story brief of the experiences gathered during the construction of the Poliduto and the Urucu-Coari Gas Pipeline, both constructed between the years of 1997 and 1999. (author)

  5. Sulfate reducing bacteria detection in gas pipelines; Deteccao de bacterias redutoras de sulfato em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Lutterbach, Marcia Teresa S.; Oliveira, Ana Lucia C. de; Cavalcanti, Eduardo H. de S. [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil). Div. de Corrosao e Degradacao]. E-mails: marciasl@int.gov.br; analucia@int.gov.br; eduardoh@int.gov.br

    2004-07-01

    Microbiology induced corrosion (MIC) process associated with sulfate reducing bacteria (BRS) are one of the most important matter of concern for the oil and gas industry as 77% of failures have been attributed this sort of degradation. Corrosion products found present in gas transportation pipelines, the so-called 'black-powder' problem, are also a nuisance and source of economic losses for the gas industry. According to the literature, the incidence of black-powder can be ascribed to the metabolism of BRS that can be found in the gas environment. Integrity monitoring programs of gas pipelines adopt pigging as an important tool for internal corrosion monitoring. Solid residue such as the black-powder, collected by pigging, as well as the condensed, can be seen as a very valuable samples for microbiological analyses that can be used to detect and quantify bacteria related to the incidence of MIC processes. In the present work results concerning samples collected by pigging and condensed are presented. Small populations of viable BRS have been found in the pipeline. It can be seen that the inclusion of microbiological analyses of solid and liquid residues as a complementary action in the integrity monitoring programs adopted by gas transportation industry can be very helpful on the decision making concerning preventive and corrective actions to be taken in order to maintain the CIM processes under control. (author)

  6. Carbon dioxide corrosion: Modelling and experimental work applied to natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Loldrup Fosboel. P.

    2007-10-15

    CO{sub 2} corrosion is a general problem in the industry and it is expensive. The focus of this study is an oil gas production related problem. CO{sub 2} corrosion is observed in offshore natural gas transportation pipelines. A general overview of the problem is presented in chapter 1. The chemical system consists mainly of CO{sub 2}-Na{sub 2}CO{sub 3}-NaHCO{sub 3}-MEG-H{sub 2}O. Sodium is injected in the pipelines as NaOH in order to pH-stabilize the pipeline to avoid corrosion and MEG is injected in order to prevent gas hydrates. There are a great number of models available in the literature which may predict CO{sub 2} corrosion. These models are not very accurate and assume ideality in the main part of the equation. This thesis deals with aspect of improving the models to account for the non-ideality. A general overview and extension of the theory behind electrochemical corrosion is presented in chapter 2 to 4. The theory deals with the basic thermodynamics of electrolytes in chapter 2, the extension and general description of electrolyte mass transport in chapter 3, and the electrochemical kinetics of corrosion in chapter 4. A literature overview of CO{sub 2} corrosion is shown in chapter 5 and possible extensions of the models are discussed. A list of literature cites is given in chapter 6. The literature review in chapter 5 shows how FeCO{sub 3} plays a main part in the protection of steel. Especially the solubility of FeCO{sub 3} is an important factor. Chapter 7 discusses and validates the thermodynamic properties of FeCO{sub 3}. The study shows that there is a discrepancy in the properties of FeCO{sub 3}. Sets of consistent thermodynamic properties of FeCO{sub 3} are given. A mixed solvent electrolyte model is regressed in chapter 8 for the CO{sub 2}-Na{sub 2}CO{sub 3}-NaHCO{sub 3}-MEG-H{sub 2}O system. Parameters of the extended UNIQUAC model is fitted to literature data of VLE, SLE, heat excess and validated against heat capacity data. The model is also

  7. Study on Resources Assessment of Coal Seams covered by Long-Distance Oil & Gas Pipelines

    Science.gov (United States)

    Han, Bing; Fu, Qiang; Pan, Wei; Hou, Hanfang

    2018-01-01

    The assessment of mineral resources covered by construction projects plays an important role in reducing the overlaying of important mineral resources and ensuring the smooth implementation of construction projects. To take a planned long-distance gas pipeline as an example, the assessment method and principles for coal resources covered by linear projects are introduced. The areas covered by multiple coal seams are determined according to the linear projection method, and the resources covered by pipelines directly and indirectly are estimated by using area segmentation method on the basis of original blocks. The research results can provide references for route optimization of projects and compensation for mining right..

  8. Urucu-Manaus gas pipeline: challenges and solutions; Gasoduto Urucu-Manaus: desafios e solucoes

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Mauro de O.; Machado, Otto Luiz de M.; Moura, Marcos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The challenge of building and develop a gas pipeline such as Urucu-Manaus, in the middle of Amazon rain forest, it is beyond to conventional engineering solutions that is common used in this kind of contract. The development of this venture join a large variety of activities since the several techniques of pipeline construction to the improvement the skills of the local workers but never to leave out important points such as integrated management of work, for instance, safety, environment care, health, communication with the involved parts, archaeology, goods and services acquisition, telecommunications and the mean of transportation to equipment and workers. (author)

  9. Auction design for gas pipeline transportation capacity-The case of Nabucco and its open season

    International Nuclear Information System (INIS)

    Pickl, Matthias; Wirl, Franz

    2011-01-01

    As a response to the Russian dominance of the EU's natural gas supplies and the EU's increasing gas demands, major gas pipeline projects are currently under way to enhance the EU's energy supply security. Oftentimes to raise financing and to allocate gas transportation capacities, auctions are carried out to allow gas shippers to book transportation rights. In recent years, auctions have emerged as one of the most successful allocation mechanisms in the microeconomic theory. However, different auction designs can lead to different outcomes making the choice of auction design a decisive one, especially for divisible-good auctions. This paper seeks to give a formulation of an optimal auction design for gas pipeline transportation capacity. Specifically three different mechanisms are tested: (i) NPV allocation; (ii) pro rata allocation; and (iii) optimization. In addition, Nabucco is taken as a case study to empirically show results of such auction designs. Results show that a trade-off between revenue optimization and fair allocation can be observed: allocation per optimization is the favorable auction design when revenue maximization is more important than fair allocation. On the other hand, pro rata allocation is the auction design to be chosen when fairness of allocation is considered most central. - Research highlights: → Auction design for gas pipeline transportation capacity. → Empirical market-survey of Nabucco pipeline project auction as input data. → Testing of three different allocation mechanisms: (i) NPV allocation; (ii) pro rata allocation; and (iii) optimization. → Results show a trade-off between revenue optimization and fair allocation. → Allocation per optimization is the favorable auction design when revenue maximization is more important than fair allocation. → On the other hand, pro rata allocation is the auction design to be chosen when fairness of allocation is considered most central.

  10. Development of a Free-Swimming Acoustic Tool for Liquid Pipeline Leak Detection Including Evaluation for Natural Gas Pipeline Applications

    Science.gov (United States)

    2010-08-01

    Significant financial and environmental consequences often result from line leakage of oil product pipelines. Product can escape into the surrounding soil as even the smallest leak can lead to rupture of the pipeline. From a health perspective, water...

  11. China's modern day Great Wall : the 40 inch West to East Gas Pipeline Project

    International Nuclear Information System (INIS)

    Gray, L.A.B.

    2004-01-01

    In order to fuel China's economic growth, PetroChina began construction of the West to East Natural Gas Pipeline Project (WEPP) in 2001 to transport large quantities of natural gas reserves from the Tarim Basin in the Xinjiang Autonomous Region in far western China to markets in eastern China. The WEPP is the first large diameter, cross-country pipeline project ever constructed in China, and was the first to use automatic welding and automatic ultrasonic inspection on pipelines in China. This paper addressed the management, engineering, procurement and construction challenges of the WEPP. Upon completion of the 3,800 km, 1.016 mm mainline pipeline, construction will begin on other major facilities, such 294 km of lateral line, dual fiber optic conduits with the mainline, 1,100 km of access roads, 23 metering stations, 18 pigging stations, 10 compressor stations, 16 mountain tunnels, 16 aerial crossings, 1 crossing of the Yangtze River, 3 crossings of the Yellow River, a gas control center, and SCADA system. Houston-based Universal Ensco Inc. was awarded a contract to perform a feasibility study as well as a construction supervision contract by PetroChina for the WEPP. Universal also designed a gas turbine drive compressor station at Lunnan and an electric drive compressor station at Zhengzhou. This paper demonstrated that business in China for foreign companies in the pipeline industry is evolving and several changes can be expected as the state planned economy is reformed to a free market economy. 4 refs., 5 tabs., 17 figs.

  12. Evaluation of the sources of error in the linepack estimation of a natural gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Marco, Fabio Capelassi Gavazzi de [Transportadora Brasileira Gasoduto Bolivia-Brasil S.A. (TBG), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The intent of this work is to explore the behavior of the random error associated with determination of linepack in a complex natural gas pipeline based on the effect introduced by the uncertainty of the different variables involved. There are many parameters involved in the determination of the gas inventory in a transmission pipeline: geometrical (diameter, length and elevation profile), operational (pressure, temperature and gas composition), environmental (ambient / ground temperature) and those dependent on the modeling assumptions (compressibility factor and heat transfer coefficient). Due to the extent of a natural gas pipeline and the vast amount of sensor involved it is infeasible to determine analytically the magnitude of resulting uncertainty in the linepack, thus this problem has been addressed using Monte Carlo Method. The approach consists of introducing random errors in the values of pressure, temperature and gas gravity that are employed in the determination of the linepack and verify its impact. Additionally, the errors associated with three different modeling assumptions to estimate the linepack are explored. The results reveal that pressure is the most critical variable while the temperature is the less critical. In regard to the different methods to estimate the linepack, deviations around 1.6% were verified among the methods. (author)

  13. GIS (Geographic Information Systems) based automatic tool for selection of gas pipeline corridors

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Denise F.; Menezes, Paulo Cesar P.; Paz, Luciana R.L.; Garcia, Katia C.; Cruz, Cristiane B.; Pires, Silvia H.M.; Damazio, Jorge M.; Medeiros, Alexandre M.

    2009-07-01

    This paper describes a methodology developed to build total accumulated surfaces in order to better select gas pipelines corridor alternatives. The methodology is based on the minimization of negative impacts and the use of Geographic Information Systems (GIS), allowing an automatic method of construction, evaluation and selection of alternatives, that will contribute to the decision making process. It is important to emphasize that this paper follows the assumptions presented on the research reports of a project sponsored by the Ministry of Mines and Energy (MME) and elaborated at the Electric Power Research Center (CEPEL), called 'Development of a Geographic Information System to Oil and Gas Sectors in Brazil', and also the studies d GTW Project (Gas to Wire). Gas pipelines, as for their linear characteristic, may cross a variety of habitats and settlements, increasing the complexity of their environmental management. Considering this reality, this paper presents a methodology that takes into account different environmental criteria (layers), according to the area impacted. From the synthesis of the criteria it is presented the total accumulated surface. It is showed an example of a hypothetical gas pipeline connection between two points using the total accumulated surface. To select the 'impact scores' of the features, the gas pipeline was considered as a linear feature, but the result is a region, formed by pixels, each pixel with an accumulated impact score lower than some arbitrary measure. This region is called 'corridor', and it is the final result obtained using the proposed methodology. (author)

  14. A Numerical Corrosion Rate Prediction Method for Direct Assessment of Wet Gas Gathering Pipelines Internal Corrosion

    Directory of Open Access Journals (Sweden)

    Wenlong Jia

    2012-10-01

    Full Text Available The paper introduces a numerical internal corrosion rate prediction method into the internal corrosion direct assessment (ICDA process for wet gas gathering pipelines based on the back propagation (BP, the genetic algorithm (GA and BP, and the particle swarm optimization and BP artificial neural networks (ANNs. The basic data were collected in accordance with the terms established by the National Association of Corrosion Engineers in the Wet Gas Internal Corrosion Direct Assessment (WG-ICDA SP0110, and the corrosion influencing factors, which are the input variables of the ANN model, are identified and refined by the grey relational analysis method. A total of 116 groups of basic data and inspection data from seven gathering pipelines in Sichuan (China are used to develop the numerical prediction model. Ninety-five of the 116 groups of data are selected to train the neural network. The remaining 21 groups of data are chosen to test the three ANNs. The test results show that the GA and BP ANN yield the smallest number of absolute errors and should be selected as the preferred model for the prediction of corrosion rates. The accuracy of the model was validated by another 54 groups of excavation data obtained from pipeline No. 8, whose internal environment parameters are similar to those found in the training and testing pipelines. The results show that the numerical method yields significantly better absolute errors than either the de Waard 95 model or the Top-of-Line corrosion model in WG-ICDA when applying the approach to specific pipelines, and it can be used to investigate a specific pipeline for which the data have been collected and the ANN has been developed in WG-ICDA SP0110.

  15. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    Energy Technology Data Exchange (ETDEWEB)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  16. [Gas pipeline leak detection based on tunable diode laser absorption spectroscopy].

    Science.gov (United States)

    Zhang, Qi-Xing; Wang, Jin-Jun; Liu, Bing-Hai; Cai, Ting-Li; Qiao, Li-Feng; Zhang, Yong-Ming

    2009-08-01

    The principle of tunable diode laser absorption spectroscopy and harmonic detection technique was introduced. An experimental device was developed by point sampling through small multi-reflection gas cell. A specific line near 1 653. 7 nm was targeted for methane measurement using a distributed feedback diode laser as tunable light source. The linearity between the intensity of second harmonic signal and the concentration of methane was determined. The background content of methane in air was measured. The results show that gas sensors using tunable diode lasers provide a high sensitivity and high selectivity method for city gas pipeline leak detection.

  17. Securing Supply and Demand: Natural Gas Pipelines and the Europe-Russia Relationship

    Science.gov (United States)

    2009-12-01

    Challenge,” The National Interest, issue 88 (Mar/Apr 2007): 50. 2 Guy Chazan, “New Route to Europe Cleared For Natural Gas From Russia,” Wall Street Journal Eastern...to Double Capacity of Gas Pipeline,” The Wall Street Journal (Eastern Edition), 16 May 2009, A6. 34 Evans-Pritchard, “Europe Breaks Free from...http://dx.doi.org/10.1080/13518040802313746. Chazan, Guy. “New Route to Europe Cleared For Natural Gas From Russia,” Wall Street Journal Eastern

  18. New role for communication fibre optic cables in water utility for leak detection on main water pipeline

    Directory of Open Access Journals (Sweden)

    Graovac Radojica M.

    2015-01-01

    Full Text Available During construction of main water pipeline it is usual practice to lay fibre optic communication cable along water pipe. This cable is one of the up to date communication media which is used for the connection purposes of water control SCADA equipment as well as for establishing of telephone communication between water utility plants. By developing of new electronic equipment known as DTS (Distributed Temperature Sensing and DAS (Distributed Acoustic Sensing equipment it has been opened the possibility, with this equipment and by utilizing of dedicated optical fibres of optical fibre communication cable as a sensor, to detect leakage point by temperature monitoring or monitoring of acoustic changes along water pipeline (as detection of temperature change of soil at leakage point or detection of acoustic change at leakage point.

  19. Evaluation of revegetation progress and erosion-prone areas along oil and gas pipelines in Azerbaijan

    Energy Technology Data Exchange (ETDEWEB)

    Bayramov, Emil [BP British Petroleum, Baku (Azerbaijan)

    2012-09-15

    The construction of the Baku-Tbilisi-Ceyhan (BTC) oil and South Caucasus gas (SCP) pipelines was completed in 2005 and 2006, respectively. The Azerbaijan section of the BTC oil and SCP gas pipelines is 442 km long and lies in a 44 m wide corridor named as the Right-of-Way (RoW). BTC and SCP pipelines are aligned parallel to each other within the RoW. The construction process significantly disturbed vegetation and soil cover along the RoW of the pipelines. The revegetation and erosion control measures were conducted after the completion of construction to restore disturbed footprints of construction. The general goals of the present studies, dedicated to the environmental monitoring and erosion control measures were to evaluate the status of the revegetation in 2007 since the completion of the construction activities and to determine erosion-prone areas along the RoW. Quantitative assessment of vegetation cover (VC) was based on the regression and RMSE analysis using IKONOS NDVI 2007 and in-situ estimation of VC percentage for the normalization of NDVI to VC. The prediction of erosion-prone areas was based on the Universal Soil Loss Equation (USLE). The prediction reliability of USLE was evaluated using in-situ collected erosion occurrences. (orig.)

  20. Designing a reliable leak bio-detection system for natural gas pipelines.

    Science.gov (United States)

    Batzias, F A; Siontorou, C G; Spanidis, P-M P

    2011-02-15

    Monitoring of natural gas (NG) pipelines is an important task for economical/safety operation, loss prevention and environmental protection. Timely and reliable leak detection of gas pipeline, therefore, plays a key role in the overall integrity management for the pipeline system. Owing to the various limitations of the currently available techniques and the surveillance area that needs to be covered, the research on new detector systems is still thriving. Biosensors are worldwide considered as a niche technology in the environmental market, since they afford the desired detector capabilities at low cost, provided they have been properly designed/developed and rationally placed/networked/maintained by the aid of operational research techniques. This paper addresses NG leakage surveillance through a robust cooperative/synergistic scheme between biosensors and conventional detector systems; the network is validated in situ and optimized in order to provide reliable information at the required granularity level. The proposed scheme is substantiated through a knowledge based approach and relies on Fuzzy Multicriteria Analysis (FMCA), for selecting the best biosensor design that suits both, the target analyte and the operational micro-environment. This approach is illustrated in the design of leak surveying over a pipeline network in Greece. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Multi-attribute risk assessment for risk ranking of natural gas pipelines

    International Nuclear Information System (INIS)

    Brito, A.J.; Almeida, A.T. de

    2009-01-01

    The paper presents a decision model for risk assessment and for risk ranking of sections of natural gas pipelines based on multi-attribute utility theory. Pipeline hazard scenarios are surveyed and the reasons for a risk assessment model based on a multi-attribute approach are presented. Three dimensions of impact and the need to translate decision-makers' preferences into risk management decisions are highlighted. The model approaches these factors by using a multi-attribute utility function, in order to produce multi-dimensional risk measurements. By using decision analysis concepts, this model quantitatively incorporates the decision-maker's preferences and behavior regarding risk within clear and consistent risk measurements. In order to support the prioritizing of critical sections of pipeline in natural gas companies, this multi-attribute model also allows sections of pipeline to be ranked into a risk hierarchy. A numerical application based on a real case study was undertaken so that the effectiveness of the decision model could be verified

  2. Risk analysis for construction and operation of gas pipeline projects in pakistan

    International Nuclear Information System (INIS)

    Mubin, S.; Mubin, G.

    2008-01-01

    In order to cater for its high energy demand, Pakistan is planning to import natural gas through pipelines from neighboring countries. For fully utilizing the imported gas, providing it to end customers, the infrastructure of gas pipeline needs to be developed. Therefore, huge investment has been done and proposed in this sector in coming future. Considering geological, topographical, geopolitical and climatic conditions of the country, there is added risk of earthquake, landslides and floods. Due to current geopolitical situation there is a persistent threat of unrest and terrorism in the country. Instable Government policies, high rate of inflation, rapid change in material prices are also important risk factors. All these factors make the situation very complex in quantifying the risk especially for a project in which the risk impact factor rises exponentially in case of risk occurrence. In this paper, most appropriate risk classification is made based on technological, organizational, political, natural climatic, security and environmental risk factors. Effort has been made to device a simpler risk management methodology to analyze and manage risks of gas pipeline project. In the proposed risk management model Monte Carlo simulation has been used to identify critical risks. (author)

  3. 76 FR 7238 - Pipeline Safety: Dangers of Abnormal Snow and Ice Build-Up on Gas Distribution Systems

    Science.gov (United States)

    2011-02-09

    ... of moisture in equipment and snow or ice blocking regulator or relief valve vents which could prevent... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2011-0028] Pipeline Safety: Dangers of Abnormal Snow and Ice Build-Up on Gas Distribution Systems...

  4. The new gas law and the concession of use of pipeline; A nova lei do gas e a concessao para uso de gasoduto

    Energy Technology Data Exchange (ETDEWEB)

    Fiad, Patricia S. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Faculdade de Direito; Lima, Juliana Cardoso de [Escritorio Doria, Jacobina, Rosado e Gondinho Advogados, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The development of the gas industry and the recent energy crises in Latin America demand an adequate answer from the legal framework. There are three main projects in course in Legislative which aim at regulating the gas industry specifically: Law Project n. 226 of 2005, of ex-senator Tourinho; Law Project n. 6.673 of 2006, of Executive; and Law Project n. 6.666 of 2006, of Deputy Luciano Zica. The pipeline is the materialization of the integration among the countries of the continent. The adoption of mechanisms to make feasible the regional integration and to stimulate the private sector, in order to react against the progressive deficit between consumption and exploration of energy, becomes fundamental to the industry. In compliance with the current legislation, the transportation of gas is made through authorization. The discussion focus on the possibility of public tender for concession of the service and how it would stimulate the market. (author)

  5. Friction factor in smooth and rough gas pipelines. An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Sletfjerding, Elling

    1999-01-01

    Flow of high pressure natural gas in pipelines has been studied experimentally. Pipeline flow of natural gas is characterized by high Reynolds numbers due to the low viscosity and relatively high density of pressurized gas. Friction factor correlations for high Reynolds number flow in smooth and rough pipes were developed. To study the effect of wall roughness on pipe flow at high Reynolds numbers 8 test pipes with different wall roughness were fabricated. The wall roughness in 6 of the test pipes was varied by adding glass beads in an epoxy coating applied on the pipe wall. One test pipe was treated with a smooth epoxy coating and one was left untreated. The inner diameter of the test pipes was 150 mm. Measurements of the pressure drop in the pipes were made in a closed flow loop at line pressures of 25, 70, 95 and 120 bar. The Reynolds number of the flow was varied in the range 2-30 million. The wall roughness of the test pipes was measured with a stylus instrument. Correlations between the directly measured wall roughness and the friction factor at fully rough flow conditions were presented. To characterize the wall roughness of the test pipes a parameter combining a measure of the roughness height (R{sub q}) and the texture of the wall roughness was used. Due to the high Reynolds number of the flow, minute irregularities of the pipe wall had significant effect on the friction factor in the pipe. The measured wall roughness of the test pipes was in the range 1.4 < R{sub q} <31 (my)m. The flow experiments in test pipes was compared with data from operating pipelines in the North Sea. The offshore pipelines are coated with the same epoxy coating as used in the test pipes. The friction factor in coated offshore gas pipelines showed smooth behavior when the additional pressure drop due to welds were accounted for. The study of coated gas pipelines showed that the friction factor was significantly lower than predicted by standard correlations.

  6. Dynamic behaviour of high-pressure natural-gas flow in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gato, L.M.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: lgato@mail.ist.utl.pt; Henriques, J.C.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: jcch@mail.ist.utl.pt

    2005-10-01

    The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas.

  7. The Trans-Saharan Gas Pipeline: an illusion or a real prospect?

    International Nuclear Information System (INIS)

    Auge, B.

    2010-01-01

    The African continent holds 8% of global natural gas reserves. Its relative economic weakness and the almost total absence of natural gas networks means there is very limited internal gas consumption - almost none outside of Algeria and Egypt - giving it considerable exporting capabilities. A pipeline joining up Sub-Saharan Africa with the European Union (EU) is therefore a reasonably logical project in economic terms. The two interested blocks have been discussing this with increasing intensity since early 2000. On the face of it the strategy seems obvious, the European area has three important gas producers: Norway (a non-EU member but closely associated with its energy policy), Great Britain and the Netherlands, with respective outputs of 99.2, 69.5 and 67.5 billion m 3 in 2008. However, Norwegian and Dutch production will begin to decrease in several years time; and British production has already fallen considerably since 2000. Britain currently imports one-third of its gas for domestic consumption (93.9 billion m3 in 2008). Logically EU imports are going to increase progressively. And yet, a fear of dependency on Russian natural gas - currently the average rate of Russian gas supply amongst the EU 27 is 25% - in the near future, is leading the EU to consider diversifying its supply source. Without this diversification Russia could be supplying around 70% of the European market (27 countries) by 2050. Presently some EU countries clearly favour an increase in 're-gasification' plants in order to import more liquefied natural gas (LNG): France, Italy, Spain, the United Kingdom, the Netherlands, and Poland. The Persian Gulf countries, Egypt and Algeria and the U.S. will supply these new plants. The Trans-Saharan Gas Pipeline (TSGP) which would link Nigeria to Niger and Algeria, itself connected to Spain and Italy by existing pipelines or those currently under construction, could turn out to be an additional supply option in the long term. However, if this 4,128 km

  8. Guidelines for Constructing Natural Gas and Liquid Hydrocarbon Pipelines Through Areas Prone to Landslide and Subsidence Hazards

    Science.gov (United States)

    2009-01-01

    These guidelines provide recommendations for the assessment of new and existing natural gas and liquid hydrocarbon pipelines subjected to potential ground displacements resulting from landslides and subsidence. The process of defining landslide and s...

  9. Gas Pipelines, LP and LNG, Gas transmission line work provided to AIMS from Kansas Gas Service. Data is limited to CUE (Collaborative Utility Exchange) Participants and subcontractors of them., Published in 2004, Johnson County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Gas Pipelines, LP and LNG dataset current as of 2004. Gas transmission line work provided to AIMS from Kansas Gas Service. Data is limited to CUE (Collaborative...

  10. Rock removal under gas pipeline with expanded cement technique and repair with composite sleeve

    Energy Technology Data Exchange (ETDEWEB)

    Souza Filho, Byron Goncalves de; Frota, Cristiane Souto [PETROBRAS, Rio de Janeiro, RJ (Brazil); Matsuo, Fabio Massatoshi Ferreira [Transportadora Brasileira Gasoduto Bolivia-Brasil (TBG), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Amid the great challenges of transporting natural gas to the major cities in Brazil, TBG (Transportadora Brasileira Gasoduto Bolivia-Brasil), which owns and operates the largest pipeline in Latin America, with a length of approximately 2,600 km of pipelines (from 32 inches o 16 inches), built between 1998 and 2000 and started commercial operation in July 1999. During its maintenance inspection, using geometric pigs and pigs MFL / Inertial, located a dent in the pipe with approximately 4.7% of deformation with dimensions of 670 mm x 600 mm, caused by accommodation of the pipeline on a rock about 5 m of width. With the pipeline in operation and and 10% lowering the historic pressure, as the internal procedure of the TBG, the rock was removed using the technique of expansive cement, which is to perforate several roles on the rock and then apply the expansive cement which after 24 hours cause cracks, splitting the rock into slabs. The visual, ultrasonic and liquid penetrant inspections were made and repair with sleeve of composite material was achieved. This paper describes the whole methodology and experience of execution, including the results of inspection with pig, removal of the rock with the expansive cement, execution of repair and report photography. (author)

  11. Prediction of long-term frost heave of chilled gas pipelines by centrifuge modeling

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, V.; Clark, J.; Hawlader, B. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada). C-Core; Zhou, J. [TransCanada PipeLines Ltd., Calgary, AB (Canada)

    2004-07-01

    The behaviour of pipelines operating under harsh northern conditions has been studied at full-scale test facilities since the 1970s in order to develop and calibrate various theories and analytical models. The studies have addressed the issue of predicting frost heave of chilled pipelines. The use of chilled gas transmission for northern pipelines is touted as being an effective solution to preserve permafrost and to increase throughput. Frost heave occurs in soil as in-situ pore water freezes and additional free water advances to the freezing front leading to the formation of ice lenses. The amount of heave depends on soil type, cooling rate, thermal gradient and availability of a water source. The extent of deformation of both frozen and unfrozen soil also plays a role in the amount of heave. In recent years, centrifuge modeling of frost heave processes have provided useful information. Small-scale models have been constructed and tested under increased gravitational acceleration to replicate full-scale conditions. The key benefits are the reduced scale and time effects used in the modeling of the frost heave, allowing for sequential studies on soil types, pipe temperatures, groundwater and climatic conditions. This paper presented an interpretation of test results. Comparison with full-scale test sites has shown promising results, but some further verification exercises are warranted, particularly in the design methodology that allows for reliable and accurate prediction of pipeline behaviour as it passes through discontinuous permafrost or changing soil type. 14 refs., 2 tabs., 9 figs.

  12. Rejection of seamless pipe noise in magnetic flux leakage data obtained from gas pipeline inspection

    Science.gov (United States)

    Afzal, Muhammad; Udpa, Satish; Udpa, Lalita; Lord, William

    2000-05-01

    Natural gas is traditionally transmitted from production facilities to customer locations through a vast pipeline network. A major segment of this network employs seamless pipes. This is especially true for smaller diameter transmission and distribution lines. Manufacturing process associated with the production of seamless pipes contribute to a helical variation in the pipe along the axis. The deformation introduces an artifact in the data obtained from MFL inspection of these pipelines. This seamless pipe noise is usually correlated with signals generated by defects and other elements (joints, tees, etc.) in pipelines, and can therefore, mask their indications in MFL data. This warrants the need for methods to improve signal-to-noise ratio (SNR) in MFL data from seamless pipes. This paper presents a technique for detecting signals in MFL data from seamless pipes. The approach processes the data in various steps. First, a wavelet based denoising technique is applied to reduce the noise due to instrumentation and other sources. An adaptive filtering approach is then applied to reject seamless noise in the data. Since the inspection of pipelines typically generates vast amounts of data, it is imperative that the algorithm be computationally efficient. The processing method has to be robust in that it should be data independent. The approach described in this paper meet these criteria. Results from application of the approach to data from field tests are presented.

  13. A Robust Bayesian Approach to an Optimal Replacement Policy for Gas Pipelines

    Directory of Open Access Journals (Sweden)

    José Pablo Arias-Nicolás

    2015-06-01

    Full Text Available In the paper, we address Bayesian sensitivity issues when integrating experts’ judgments with available historical data in a case study about strategies for the preventive maintenance of low-pressure cast iron pipelines in an urban gas distribution network. We are interested in replacement priorities, as determined by the failure rates of pipelines deployed under different conditions. We relax the assumptions, made in previous papers, about the prior distributions on the failure rates and study changes in replacement priorities under different choices of generalized moment-constrained classes of priors. We focus on the set of non-dominated actions, and among them, we propose the least sensitive action as the optimal choice to rank different classes of pipelines, providing a sound approach to the sensitivity problem. Moreover, we are also interested in determining which classes have a failure rate exceeding a given acceptable value, considered as the threshold determining no need for replacement. Graphical tools are introduced to help decisionmakers to determine if pipelines are to be replaced and the corresponding priorities.

  14. Conditions of the optimum development of a high-pressure natural gas pipeline system regarding up-to-date gas economy. [Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Csako, D.; Torok, A.; Vasvari, V.

    1980-03-01

    Hungarian engineers enumerate the factors to consider in the planning, construction, and expansion of gas pipeline systems to obtain an optimum solution, both technically and economically. Future development of pipeline systems in Hungary will place equal emphasis on system quality and network expansion.

  15. Defining Toll Fee of Wheeling Renewable with Reference to a Gas Pipeline in Indonesia

    Science.gov (United States)

    Hakim, Amrullah

    2017-07-01

    Indonesia has a huge number of renewable energy sources (RE) however; the utilization of these is currently very low. The main challenge of power production is its alignment with consumption levels; supply should equal demand at all times. There is a strong initiative from corporations with high energy demand, compared to other sectors, to apply a renewable portfolio standard for their energy input, e.g. 15% of their energy consumption requirement must come from a renewable energy source. To support this initiative, the utilization of power wheeling will help large factories on industrial estates to source firm and steady renewables from remote sites. The wheeling renewable via PLN’s transmission line has been regulated under the Ministry Decree in 2015 however; the tariff or toll fee has not yet been defined. The potential project to apply wheeling renewable will obtain power supply from a geothermal power plant, with power demand from the scattered factories under one company. This is the concept driving the application of power wheeling in the effort to push the growth of renewable energy in Indonesia. Given that the capacity of PLN’s transmission line are normally large and less congested compared to distribution line, the wheeling renewable can accommodate the scattered factories locations which then results in the cheaper toll fee of the wheeling renewable. Defining the best toll fee is the main topic of this paper with comparison of the toll fee of the gas pipeline infrastructure in Indonesia, so that it can be applied massively to achieve COP21’s commitment.

  16. Detecting Methane From Leaking Pipelines and as Greenhouse Gas in the Atmosphere

    Science.gov (United States)

    Riris, Haris; Numata, Kenji; Li, Steven; Wu, Stewart; Ramanathan, Anand; Dawsey, Martha

    2012-01-01

    Laser remote sensing measurements of trace gases from orbit can provide unprecedented information about important planetary science and answer critical questions about planetary atmospheres. Methane (CH4) is the second most important anthropogenically produced greenhouse gas. Though its atmospheric abundance is much less than that of CO2 (1.78 ppm vs. 380 ppm), it has much larger greenhouse heating potential. CH4 also contributes to pollution in the lower atmosphere through chemical reactions, leading to ozone production. Atmospheric CH4 concentrations have been increasing as a result of increased fossil fuel production, rice farming, livestock, and landfills. Natural sources of CH4 include wetlands, wild fires, and termites, and perhaps other unknown sources. Important sinks for CH4 include non-saturated soils and oxidation by hydroxyl radicals in the atmosphere. Remotely measuring CH4 and other biogenic molecules (such as ethane and formaldehyde) on Mars also has important implications on the existence of life on Mars. Measuring CH4 at very low (ppb) concentrations from orbit will dramatically improve the sensitivity and spatial resolution in the search for CH4 vents and sub-surface life on other planets. A capability has been developed using lasers and spectroscopic detection techniques for the remote measurements of trace gases in open paths. Detection of CH4, CO2, H2O, and CO in absorption cells and in open paths, both in the mid- IR and near-IR region, has been demonstrated using an Optical Parametric Amplifier laser transmitter developed at GSFC. With this transmitter, it would be possible to develop a remote sensing methane instrument. CH4 detection also has very important commercial applications. Pipeline leak detection from an aircraft or a helicopter can significantly reduce cost, response time, and pinpoint the location. The main advantage is the ability to rapidly detect CH4 leaks remotely. This is extremely important for the petrochemical industry

  17. Remedial measures to tame the frost heaves at gas distribution stations in west-east gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Daoming; Gong, Jing [Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum (China); Wang, Xiaoping; Li, Kai; Jiang, Yongtao [West-East Gas Pipeline Company (China)

    2010-07-01

    In China, a pipeline running 3900 kilometers from Xinjiang to the Yangtze River Delta area and with a capacity of 12 billion cubic meters of gas annually was put into operation in 2004. Due to subfreezing gas temperatures, the distribution stations have since then suffered from frost heaves. One method to address this issue could be to install gas-fueled heaters, however, that would imply important additional costs as well as problems in acquiring land. The aim of this paper is to present and compare different methods to deal with the frost heaves issue. Soil replacement with a water mitigation technique was found to be the best option based on geotechnical survey, calculations and data; this technique was successfully applied to several distribution stations with different water tables. A frost heaves mitigation method was developed herein and proved to be more cost effective than gas-fueled heaters.

  18. U.S., Canadian pipelines producers lining up to meet Mexican gas demand growth

    International Nuclear Information System (INIS)

    Koen, A.D.

    1992-01-01

    This paper reports on prospects for continued strong growth in Mexican demand for natural gas imports that have U.S. and Canadian producers and pipelines queueing up to serve expected demand. In 1991, more than 25 U.S. companies exported a combined 61.7 bcf of gas into Mexico, an increase of more than 390% from 1990's total of 15.7 bcf. According to the Department of Energy Office of Fuels Programs (OFP), about 27.5 bcf of gas left the U.S. for Mexico in fourth quarter 1991 alone, an average 299 MMcfd. DOE has granted short term authorization to more than 65 countries to export gas into Mexico. Another 25 companies have short term export applications pending

  19. Cost Minimization Model of Gas Transmission Line for Indonesian SIJ Pipeline Network

    Directory of Open Access Journals (Sweden)

    Septoratno Siregar

    2003-05-01

    Full Text Available Optimization of Indonesian SIJ gas pipeline network is being discussed here. Optimum pipe diameters together with the corresponding pressure distribution are obtained from minimization of total cost function consisting of investment and operating costs and subjects to some physical (Panhandle A and Panhandle B equations constraints. Iteration technique based on Generalized Steepest-Descent and fourth order Runge-Kutta method are used here. The resulting diameters from this continuous optimization are then rounded to the closest available discrete sizes. We have also calculated toll fee along each segment and safety factor of the network by determining the pipe wall thickness, using ANSI B31.8 standard. Sensitivity analysis of toll fee for variation of flow rates is shown here. The result will gives the diameter and compressor size and compressor location that feasible to use for the SIJ pipeline project. The Result also indicates that the east route cost relatively less expensive than the west cost.

  20. LNG versus pipelines: a case study applied to the actual unbalance in Northeastern natural gas market; GNL versus gasodutos: um estudo applicado ao atual desequilibrio do mercado nordestino de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Rechelo Neto, Carlos A. [Sao Paulo Univ., SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-graduacao em Energia; Sauer, Ildo L. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Unidade de Gas e Energia

    2005-07-01

    Against the backdrop of global oil industry trends and the specificity of the Brazilian energy sector, this study evaluates whether the option to develop a national market linked with a plan to export liquefied natural gas produced in Brazil is financially advantageous relative to the traditional pipeline alternative for the aim of satisfying the current natural gas deficit in the Northeast region. To this end, this dissertation analyses the economic conditions for Brazilian LNG in the international gas market, mainly for European and North-American gas markets. Employing a probabilistic analysis based on the Monte Carlo method and given the premises adopted and the amount of information available at the time of writing, the study concludes that, while the international LNG market has enjoyed vigorous growth in recent years, the option of using it as a strategy to develop local market is a less attractive investment choice compared with the pipeline alternative. (author)

  1. Web-based continuous internal corrosion monitoring of a sweet natural gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Cauchi, Sam; Vorozcovs, Andrew [Fiber Optic Systems Technology Inc. (FOX-TEK), Bedford, Nova Scotia (Canada)

    2009-07-01

    Inspection of pipelines susceptible to internal corrosion is a key ingredient in maintaining their reliable throughput. While conventional inspection consisting of in line inspection, radiography and ultrasound remain the mainstay of most integrity programs, challenging circumstances in some cases make the availability of such data inadequate, cost prohibitive, and at times entirely unavailable. These scenarios include aggressive internal corrosion, expensive excavation conditions, low or stagnant flow, and non-piggable pipeline segments. While some gas pipelines in these circumstances are considered relatively low risk and low consequence, due to the significant reclamation costs and cleanup time associated with liquid pipelines, those areas identified as being high-risk are often high-consequence and thus require a specialized inspection solution. For areas deemed to be at high-risk, or areas of low-risk with high consequence, Electrical Field Mapping (EFM) has provided a practical solution to safe operation without introducing expensive and potentially dangerous dig programs. Historically, however, this inspection approach has required manual data acquisition as part of a scheduled EFM site visit schedule. Due to the tedious nature of this data acquisition approach, the remoteness of some pipeline inspection sites and the complexity of data analysis, it has been difficult to closely monitor the most critical assets on a continuous basis. The manual component of this approach also often eliminates EFM as a practical solution due to lack of properly trained personnel. In this paper, we will discuss a new approach to data acquisition where data is acquired, transmitted, analyzed, and displayed completely automatically and remotely with virtually no human overhead or recurring operating costs. An overview of the PinPoint monitoring setup covering 180 degrees of pipe circumference is described. This advanced EFM system allows operators to observe, essentially in real

  2. Optimal design of a gas transmission network: A case study of the Turkish natural gas pipeline network system

    Science.gov (United States)

    Gunes, Ersin Fatih

    Turkey is located between Europe, which has increasing demand for natural gas and the geographies of Middle East, Asia and Russia, which have rich and strong natural gas supply. Because of the geographical location, Turkey has strategic importance according to energy sources. To supply this demand, a pipeline network configuration with the optimal and efficient lengths, pressures, diameters and number of compressor stations is extremely needed. Because, Turkey has a currently working and constructed network topology, obtaining an optimal configuration of the pipelines, including an optimal number of compressor stations with optimal locations, is the focus of this study. Identifying a network design with lowest costs is important because of the high maintenance and set-up costs. The quantity of compressor stations, the pipeline segments' lengths, the diameter sizes and pressures at compressor stations, are considered to be decision variables in this study. Two existing optimization models were selected and applied to the case study of Turkey. Because of the fixed cost of investment, both models are formulated as mixed integer nonlinear programs, which require branch and bound combined with the nonlinear programming solution methods. The differences between these two models are related to some factors that can affect the network system of natural gas such as wall thickness, material balance compressor isentropic head and amount of gas to be delivered. The results obtained by these two techniques are compared with each other and with the current system. Major differences between results are costs, pressures and flow rates. These solution techniques are able to find a solution with minimum cost for each model both of which are less than the current cost of the system while satisfying all the constraints on diameter, length, flow rate and pressure. These results give the big picture of an ideal configuration for the future state network for the country of Turkey.

  3. Evaluation of corrosiveness grade of the main pipeline system within the machine-room of the Cen Juragua

    International Nuclear Information System (INIS)

    Camacho C, J.; Corvo P, F.

    1998-01-01

    It is realized a study of the corrosion process and the products formed over the carbon steel in different points of the machine-room of the Electronuclear plant of Juragua (Cuba) particularly in the pipelines considering the specific characteristics of corrosion under roof which has been less studied. The determination of corrosiveness grade was carried out by gravimetric methods (lost and gain weight) in the different coats of the machine-room not existing a correlation between them in according to results with those ones obtained by Infrared Spectroscopy, in which there is not a correlation between the band intensities (lepidocrocite/ goethite) and the corrosion; however both explain different parts of corrosive process. Also it is realized the corrosion products analysis by chemical methods and by Atomic Absorption Spectrometry, obtaining the concentration of the major anions and cations of importance for the corrosion, not existing a meaning correlation between them and the corrosion velocity by what it was determined the absorption isotherms, obtaining as result a microporous structure in the formed oxides which was capable to retain and to absorb water and pollutants which could be this the main cause of corrosion. By analyzing the high concentration of iron and the low concentration of the remainder anions and cations it is possible to make the traditional chemical washes which are less expensive and greater effectiveness. All the obtained results are very important to assure the conditions of the pipelines systems installed at the presence of Government and Foreign organizations which are interested for the protection and conservation measures in the pipelines system. (Author)

  4. Operator splitting method for simulation of dynamic flows in natural gas pipeline networks

    Science.gov (United States)

    Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.; Chertkov, Michael

    2017-12-01

    We develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme is unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.

  5. Determination of flow rates of oil, water and gas in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Roach, G.J.; Watt, J.S.; Zastawny, H.W. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lucas Heights, NSW (Australia). Div. of Mineral Physics

    1993-12-31

    This paper describes a multiphase flow meter developed by CSIRO for determining of the flow rates of oil, water and gas in high pressure pipelines, and the results of a trial of this flow meter on an offshore oil platform. Two gamma-ray transmission gauges are mounted about a pipeline carrying the full flow of oil, water and gas. The flow rates are determined by combining single energy gamma-ray transmission measurements which determine the mass per unit area of fluids in the gamma-ray beam as a function of time, dual energy gamma-ray transmission (DUET) which determine the approximate mass fraction of oil in the liquids, cross-correlation of gamma-ray transmission measurements, with one gauge upstream of the other, which determines flow velocity, pressure and temperature measurements, and knowledge of the specific gravities of oil and (salt) water, and solubility of the gas in the liquids, all as a function of pressure and temperature. 3 figs.

  6. A novel process for small-scale pipeline natural gas liquefaction

    International Nuclear Information System (INIS)

    He, T.B.; Ju, Y.L.

    2014-01-01

    Highlights: • A novel process was proposed to liquefy natural gas by utilizing the pressure exergy. • The process is zero energy consumption. • The maximum liquefaction rate of the process is 12.61%. • The maximum exergy utilization rate is 0.1961. • The economic analysis showed that the payback period of the process is quit short. - Abstract: A novel process for small-scale pipeline natural gas liquefaction is designed and presented. The novel process can utilize the pressure exergy of the pipeline to liquefy a part of natural gas without any energy consumption. The thermodynamic analysis including mass, energy balance and exergy analysis are adopted in this paper. The liquefaction rate and exergy utilization rate are chosen as the objective functions. Several key parameters are optimized to approach the maximum liquefaction rate and exergy utilization rate. The optimization results showed that the maximum liquefaction rate is 12.61% and the maximum exergy utilization rate is 0.1961. What is more, the economic performances of the process are also discussed and compared by using the maximum liquefaction rate and exergy utilization rate as indexes. In conclusion, the novel process is suitable for pressure exergy utilization due to its simplicity, zero energy consumption and short payback period

  7. Pigging analysis for gas-liquid two phase flow in pipelines

    International Nuclear Information System (INIS)

    Kohda, K.; Suzukawa, Y.; Furukawa, H.

    1988-01-01

    A new method to analyze transient phenomena caused by pigging in gas-liquid two-phase flow is developed. During pigging, a pipeline is divided into three sections by two moving boundaries, namely the pig and the leading edge of the liquid slug in front of the pig. The basic equations are mass, momentum and energy conservation equations. The boundary conditions at the moving boundaries are determined from the mass conservation across the boundaries, etc. A finite difference method is used to solve the equations numerically. The method described above is also capable of analyzing transient two-phase flow caused by pressure and flow rate changes. Thus the over-all analysis of transient two-phase flow in pipelines becomes possible. A series of air-water two-phase flow pigging experiments was conducted using 105.3 mm diameter and 1436.5 m long test pipeline. The agreement between the measured and the calculated results is very good

  8. Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ning Yu

    2011-12-01

    Full Text Available In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point’s position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.

  9. Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks.

    Science.gov (United States)

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.

  10. The influence of the internal microbiome on the materials used for construction of the transmission natural gas pipelines in the Lodz Province

    OpenAIRE

    Staniszewska Agnieszka; Jastrzębska Magdalena; Ziemiński Krzysztof

    2017-01-01

    This paper presents investigation results of the influence of gas microbes on the biocorrosion rate of the materials used for gas pipelines construction in the Lodz Province. Samples of two types of carbon steel and cast iron were stored in the laboratory pipeline model reflecting the real conditions of working natural gas pipelines were. In the next step the influence of cathodic protection with parameters recommended for protection of underground structures was tested. Analyses of biologica...

  11. Modeling of composite coupling technology for oil-gas pipeline section resource-saving repair

    Science.gov (United States)

    Donkova, Irina; Yakubovskiy, Yuriy; Kruglov, Mikhail

    2017-10-01

    The article presents a variant of modeling and calculation of a main pipeline repair section with a composite coupling installation. This section is presented in a shape of a composite cylindrical shell. The aim of this work is mathematical modeling and study of main pipeline reconstruction section stress-strain state (SSS). There has been given a description of a structure deformation mathematical model. Based on physical relations of elasticity, integral characteristics of rigidity for each layer of a two-layer pipe section have been obtained. With the help of the systems of forces and moments which affect the layers differential equations for the first and second layer (pipeline and coupling) have been obtained. The study of the SSS has been conducted using the statements and hypotheses of the composite structures deformation theory with consideration of interlayer joint stresses. The relations to describe the work of the joint have been stated. Boundary conditions for each layer have been formulated. To describe the deformation of the composite coupling with consideration of the composite cylindrical shells theory a mathematical model in the form of a system of differential equations in displacements and boundary conditions has been obtained. Calculation of a two-layer cylindrical shell under the action of an axisymmetric load has been accomplished.

  12. Analysis of the changes in the consumption profile of the system use gas in Bolivia-Brazil Gas Pipeline after integration with the Campinas-Rio Gas Pipeline; Analise das alteracoes do perfil de consumo de gas de sistema no Gasoduto Bolivia-Brasil apos a interligacao deste gasoduto com o Campinas-Rio

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Almir Beserra dos; Bisaggio, Helio da Cunha; Veloso, Luciano de Gusmao [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The natural gas pipeline transport is carried out by one or more compression stations. Each station possesses one or more compressors. The compressor's fuel is usually natural gas itself. The amount of natural gas consumed by the compressors fluctuates daily according to the demand at the city-gates. The daily operational result of a pipeline is known as imbalance. The imbalance is the difference between the natural gas entering into a in a pipeline and the volume delivered in the city-gates added to system use gas. The imbalance analyses in a pipeline that uses natural gas powered compressors requires the analyses of the system use gas. The aim of this work is to study the system use gas in the Bolivia-Brazil pipeline using the available data from the Superintendencia de Comercializacao e Movimentacao de Petroleo, seus Derivados e Gas Natural - ANP and compare the change of the volume consumed before and after the entry into operation of the Campinas-Rio gas pipeline. (author)

  13. The Merluza gas pipeline : a complete multiphase flow analysis, coupling pig launching with pressure constrained survival analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, R.M.; Maricato, A.L.G. [Petrobras Research and Development Center, Rio de Janeiro (Brazil)

    2004-07-01

    The 214 km, 16-inch diameter Merluza wet gas pipeline transports gas from the offshore Merluza gas field to an onshore treatment facility at Presidente Barnardes Refinery in Sao Paulo, Brazil. It is unique in that it carries a considerable amount of condensate, requiring frequent pigging. In addition, the capacity requirements at the pipeline tail are variable. The cycling nature has necessitated a survival analysis for both packing and drafting operations, accounting for up to 4 pigs operating simultaneously within the line. Operational limits of the slug catcher also present pressure constraints downstream of the pipeline. This paper presented the results of a set of pipeline flow numerical simulations for the pipeline. The objective was to estimate the imbalances caused by the presence of more than one pig within the line. Pig motion was evaluated by tracking and the pressure was explained by the accumulated volume downstream of the pig. The work was conceived under the two-phase flow domain, using OlgaS, a well known commercial two-phase flow numerical simulator. The results of the simulation were in good agreement with measured operational data, and allowed the operational programmer to optimize pig launching. The simulation also made it possible to take full advantage of the maximum pipeline capacity. 1 tab., 10 figs.

  14. Nord stream: not just a pipeline. An analysis of the political debates in the Baltic Sea region regarding the planned gas pipeline from Russia to Germany

    Energy Technology Data Exchange (ETDEWEB)

    Whist, Bendik Solum

    2008-11-15

    This report is an analysis of the planned gas pipeline from Russia to Germany through the Baltic Sea known as Nord Stream. Although not yet realised, the project has, since its birth, been the subject of harsh criticism and opposition by a significant number of states that consider themselves affected by the pipeline. Whereas the Baltic States and Poland have interpreted the pipeline as a politically motivated strategy that will increase Russia's leverage on them and threaten their energy security, the debate in Sweden was at first mostly concerned with the prospect of increased Russian military presence in the Swedish Exclusive Economic Zone. The potential environmental impact of the pipeline has been, and continues to be, an overarching concern shared by all the littoral states of the Baltic Sea. Proponents of Nord Stream, most notably Germany, Russia and the Nord Stream consortium, have largely dismissed the concerns as unwarranted and argue that the pipeline is a common European project that all EU-members should embrace, as it will provide much-needed gas to an increasingly energy-thirsty union. This report is an extensive study of the divergent attitudes and debates that have surged in the region regarding Nord Stream, and the aim is to provide plausible explanations as to why the interpretations of the project have been so different in the various states. The report is based on a variety of sources, including several first-hand interviews with researchers and government officials in the Baltic Sea region. (author). refs.,fig.,tabs

  15. A historical case in the Bolivia-Brazil Natural Gas Pipeline: five years of stress monitoring at the Curriola river slope

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Joao Carlos de [Transportadora Brasileira Gasoduto Bolivia-Brasil S.A., Rio de Janeiro, RJ (Brazil); Goncalves Junior, Armando Albertazzi; Viotti, Matias Roberto [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2009-07-01

    The Bolivia-Brazil Natural Gas Pipeline is approximately 3,500 kilometers long since the city of Rio Grande, in Bolivia, until the city of Canoas, in the South of Brazil. The south spread of the pipeline - approximately 850 kilometers long - is characterized by a steep topography combined with a variety of geological sites, such as colluviums deposits and debris flow areas. Within such a scenario, a spot nearby Curriola River, as can be seen in Figure 1.a, it shows hillsides with slopes of almost 40 degrees of inclination. Every year, mainly along the rainy season, mass movements tend to overburden the pipeline, jeopardizing its integrity. Because of this, geotechnical works have been done and, since 2004 up to 2008, mechanical stress surveys were applied. This paper aims to summarize all mechanical investigations made, including residual stresses assessment, the variation of the state of mechanical stresses along those years, methodology and full interpretation of the data acquired. From this gross data, internal pressure loading and residual stresses have been discounted from the combined stresses assessed, so as to indicate only the ground interaction and main direction of the corresponding loading. All this together with geotechnical models is intended to support mitigation measures for global stress relieving and preserving the pipeline's integrity. (author)

  16. Examination Of Defect In Gas Pipeline By Gamma Transmission Scanning And Computed Tomography Techniques

    International Nuclear Information System (INIS)

    Dang Nguyen The Duy; Bui Trong Duy; Nguyen Huu Quang; Dang Nguyen Tuan; Pham Van Dao

    2011-01-01

    The transmission gamma scanning and computed tomography (CT) are advanced non-destructive testing techniques which can provide visual information to end-user. In recent years, industrial gamma scanning and CT equipment have been continuously improved in physical configuration and image reconstruction software have been supplemented with advanced algorithms, that can satisfy end-users with high quality computed tomography images. The first generation CT system with configuration of one source - one detector which is designed and fabricated by the Centre for Applications of Nuclear Technique in Industry (CANTI) is a dedicated equipment for examination of corrosion, erosion or blockage in petroleum pipeline. The equipment have two options of measurement: gamma transmission scanning and computed tomography scanning. The associated image reconstruction software have three image reconstruction algorithms: analytical (FBP), algebraic (ART) and statistical (EM) along with some advanced image processing techniques. CANTI had utilized the equipment to examine some fraction of gas transportation pipeline of PetroVietnam Gas Company, detected and evaluated the extent of defects, quickly providing useful information for the inspection and maintenance tasks of the client. (author)

  17. Use of geographic information systems for applications on gas pipeline rights-of-way

    Energy Technology Data Exchange (ETDEWEB)

    Sydelko, P.J.; Wilkey, P.L.

    1992-12-01

    Geographic information system (GIS) applications for the siting and monitoring of gas pipeline rights-of-way (ROWS) were developed for areas near Rio Vista, California. The data layers developed for this project represent geographic features, such as landcover, elevation, aspect, slope, soils, hydrography, transportation, endangered species, wetlands, and public line surveys. A GIS was used to develop and store spatial data from several sources; to manipulate spatial data to evaluate environmental and engineering issues associated with the siting, permitting, construction, maintenance, and monitoring of gas pipeline ROWS; and to graphically display analysis results. Examples of these applications include (1) determination of environmentally sensitive areas, such as endangered species habitat, wetlands, and areas of highly erosive soils; (2) evaluation of engineering constraints, including shallow depth to bedrock, major hydrographic features, and shallow water table; (3) classification of satellite imagery for landuse/landcover that will affect ROWS; and (4) identification of alternative ROW corridors that avoid environmentally sensitive areas or areas with severe engineering constraints.

  18. Monitoring internal corrosion in natural gas pipelines; Monitoracao da corrosao interna em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Ana C.V.; Silva, Djalma R.; Pimenta, Gutemberg S. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Barbosa, Andrea F.F. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2003-07-01

    For susceptibilities to the corrosion of the pipelines and equipment made in carbon steel and used by the natural gas, it makes be necessary to identify the acting corrosive agents and monitoring them along time, controlling failures for internal corrosion. Also, of that process it origins the black powder (solid particles) that can not commit the structural integrity of the equipment, but it can also bring the company other implications very serious, like quality of the sold product, as well as stops due to blockages and wastes for erosion of the equipment. The monitoring methodology and control of the corrosion in field consisted of the use of corrosion test equipment, chemical characterization of samples of black powder and liquids and analysis of the operational data of processes and plants. Like this, it was identified for the gas pipeline in analysis the most responsible parameters for the corrosive action of the fluid, establishing a controlling methodology and operational actions to maintain the corrosion rates at safe levels and structural warranty of the same. (author)

  19. Capital structure in LNG infrastructures and gas pipelines projects: Empirical evidences and methodological issues

    International Nuclear Information System (INIS)

    Pierru, Axel; Roussanaly, Simon; Sabathier, Jérôme

    2013-01-01

    This paper provides new empirical insights on the capital structure of project-financed LNG infrastructures and gas pipeline projects, by using data relating to projects whose financial close occurred between June 2004 and March 2011. Most results are consistent with the basic view of risk-averse funds suppliers. Especially, the projects located in risky countries and larger projects tend to exhibit lower debt ratios and less-concentrated equity ownerships. In addition, regasification projects appear to have a more diluted equity ownership. Methodological issues raised by the financing of these projects are also examined from a capital-budgeting perspective. In particular, the equity residual method, usually used by industrial practitioners to value these projects, should be adjusted. - Highlights: • This paper provides new empirical insights on the capital structure of project-financed LNG and gas pipeline infrastructures. • Most of our results are consistent with the basic view of risk-averse funds suppliers. • Projects located in risky countries exhibit lower debt ratios and less-concentrated equity ownerships. • Larger projects and regasification projects also have less concentrated equity ownerships. • From a capital-budgeting viewpoint, we examine methodological issues raised by the financing of these projects

  20. Study on Near Distributed Dynamic Model of a Multifountain-and-multiconfluent Network System of Steam Main-pipeline and Parallel Coursing Units

    Science.gov (United States)

    Lei, Pan; Jiong, Shen

    2007-06-01

    According to the deficiency of the prior modeling methods on main-pipeline system, the paper advances a near distributed modeling way based on subsection, combination and delamination for parallel coursing units and main-pipeline system to fully show its distributed dynamics by an easy-simulated mode of expression. Firstly, a principle is established to plot out the main-pipeline into some short pipe-sections between each pair of fountain/confluent points. Secondly, a near distributed decoupling transfer function matrix model without steady error for each pipe-section is built by rationally approximate deduction and then joined with the dynamic models of the fountain/confluent at the two ends of the pipe-section to form the near distributed model of each subsection. Finally, a smooth arithmetic is adopted to joint all the conterminous subsections into a whole system model. The modeling method above decreases the dimension of matter space and integrates more influence factors on the system dynamic characteristics into the built model, such as pipe length, diameter and the thermodynamics of working fluid, so it more particularly reflects the distributed dynamic characteristics of a multifountain-and-multiconfluent network system of steam main-pipeline and parallel coursing units than before, and can act well as the simulated research object for advanced main-pipeline system control arithmetic and distributed control technology or even validates them. Some simulation experiments have been done and produced good results to prove the validity of the modeling method.

  1. Research on application of GIS and GPS in inspection and management of city gas pipeline network

    Science.gov (United States)

    Zhou, Jin; Meng, Xiangyin; Tao, Tao; Zhang, Fengpei

    2018-01-01

    To solve the problems existing in the current Gas Company patrol management, such as inaccurate attendance, whether or not the patrol personnel exceed the scope of patrol inspection. This paper Proposed that we apply the SuperMap iDeskTop 8C plug-in desktop GIS application and development platform, the positioning function of GPS and the data transmission function of 3G/4G/GPRS/Ethernet to develop a gas pipeline inspection management system. We build association between real-time data, pipe network information, patrol data, map information, spatial data and so on to realize the bottom data fusion, use the mobile location system and patrol management client to achieve real-time interaction between the client and the mobile terminal. Practical application shows that the system has completed the standardized management of patrol tasks, the reasonable evaluation of patrol work and the maximum utilization of patrol resources.

  2. Membrane-Coated Electrochemical Sensor for Corrosion Monitoring in Natural Gas Pipelines

    Directory of Open Access Journals (Sweden)

    J. Beck

    2017-07-01

    Full Text Available Electrochemical sensors can be used for a wide range of online in- situ process monitoring applications. However, the lack of a consistent electrolyte layer has previously limited electrochemical monitoring in gas and supercritical fluid streams. A solid state sensor is being designed that uses an ion conducting membrane to perform conductivity and corrosion measurements in natural gas pipelines up to 1000 psi. Initial results show that membrane conductivity measurements can be correlated directly to water content down to dew points of 1°C with good linearity. Corrosion monitoring can also be performed using methods such as linear polarization resistance and electrochemical impedance spectroscopy (EIS, though care must be taken in the electrode design to minimize deviation between sensors.

  3. Design and demonstration of an analysis Information system for magnetic flux leakage inspection of natural gas pipeline. Final letter report

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, G.J.; Saffell, B.A.

    1996-10-01

    A staff exchange was conducted for the mutual benefit of the Department of Energy, the Gas Research Institute (GRI), Vetco Pipeline Services Inc. (VPSI), and the Pacific Northwest National Laboratory. This staff exchange provided direct exposure by a Laboratory staff member knowledgeable in inspection, integrity assessment, and robotic capabilities of the Laboratory to the needs of the natural gas pipeline industry. The project included an assignment to the GRI Pipeline Simulation Facility (PSF) during the period preceding the commissioning of the flow loop. GRI is interested in exploiting advanced technology at the National Laboratories. To provide a sense of the market impact, it is estimated that $3 billion was spent in 1993 for the repair, renovation, and replacement of distribution piping. GRI has goals of saving the distribution industry $500 million in Operations and Maintenance costs and having an additional $250M savings impact on transmission pipelines. The objectives of the project included: (1) For PNNL staff to present technology to GRI and PSF staff on non- destructive evaluation, robotics, ground penetrating radar, and risk based inspection guidelines for application to the operation and maintenance of natural gas pipelines. (2) For GRI and PSF staff to discuss with PNNL staff opportunities for improving the industrial competitiveness of operation and maintenance services. (3) To explore the basis for partnership with GRI and PSF staff on technology transfer topics. In this project, staff exchanges were conducted to GRI`s Pipeline Simulation Facility and to VPSI. PNNL . staff had access to the $10M GRI Pipeline Simulation Facility (PSF) at West Jefferson, Ohio. The facility has a 4,700-ft. long pipe loop, an NDE laboratory, and a data analysis laboratory. PNNL staff had access to the VPSI`s facility in Houston, TX. VPSI has developed some of the most sophisticated inspection tools currently used in the pipeline inspection industry.

  4. Loading and stress analysis of gas pipeline structures; Analise de esforcos e tensoes em estruturas de gasodutos durante despressurizacoes

    Energy Technology Data Exchange (ETDEWEB)

    Frisoli, Caetano [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil); Frota, Cristiane Souto [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil); Silva, Luis Fernando Figueira da; Carvalho, Marcio da Silveira [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica; Savi, Marcelo Amorim [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Dept. de Engenharia Mecanica; Pacheco, Pedro Manuel Calas Lopes [Centro Federal de Educacao Tecnologica do Rio de Janeiro (CEFET-RJ), Rio de Janeiro, RJ (Brazil)

    2003-07-01

    Repairing and maintenance activities on Bolivia-Brazil gas pipeline often need blow down lines. During the blow down process, the high speed of discharging gases imposes great efforts to the structures. A detailed analysis of this situation is essential for a safe operation. This paper describes two phases of a project, developed under TBG coordination. It consists in analyzing the stress and forces involved in this operation, in order to design facilities to blow down pipes and develop a safe blow down procedure for the gas pipeline. The first phase consists of a supersonic flowing simulation in the blow down gas pipeline device. The pressure behavior, mass flow and the speed at the device's ending point are calculated for different operational conditions. In the second phase, the equivalent loading caused by blow down operations is used as input in a stress analysis program to determine stress, critical sessions evaluation and material recommendations for blow down devices. (author)

  5. Gas-liquid two-phase flow behavior in terrain-inclined pipelines for gathering transport system of wet natural gas

    DEFF Research Database (Denmark)

    Yang, Yan; Li, Jingbo; Wang, Shuli

    2018-01-01

    The Volume of Fluid method and Re-Normalisation Group (RNG) k-ε turbulence model were employed to predict the gas-liquid two-phase flow in a terrain-inclined pipeline with deposited liquids. The simulation was carried out in a 22.5 m terrain-inclined pipeline with a 150 mm internal diameter...... on the liquid level under the suction force which caused by the negative pressure around the elbow, and then it touched to the top of the pipe. When the liquid blocked the pipe, the pressure drop between the upstream and downstream of the elbow increased with the increase of the gas velocity. At larger gas...

  6. Determination of acoustic speed for improving leak detection and location in gas pipelines.

    Science.gov (United States)

    Li, Shuaiyong; Wen, Yumei; Li, Ping; Yang, Jin; Yang, Lili

    2014-02-01

    The commonly used cross-correlation technique for leak location requires that the acoustic speed is known and invariable. In practice, the gas leakage-induced acoustic waves propagate along multiple paths including in-pipe gas and pipe wall, and the acoustic waves in different transmission paths exhibit different acoustic speeds and different dispersive behaviors, which bring a great challenge for leak detection and location in the gas pipelines. In this study, based on the vibration theory of cylindrical elastic thin shell, the wavenumber formulae in different transmission paths are derived to predict the acoustic speeds and the acoustical coupling between the in-pipe gas and the pipe wall is analyzed to determine the dominant transmission path. In addition, the velocity dispersions in the dominant transmission path are suppressed by selection of a characteristic frequency band of the gas leakage-induced acoustic waves. The theoretical predictions are verified in the experiment and the results show that the theoretical acoustic speed is slightly larger than the measured acoustic speed. Thus, the theoretical acoustic speed formula is modified considering the effect of the structural loss factor and consequently the location error using the modified acoustic speed is reduced by two times compared to that using the theoretical acoustic speed.

  7. Research on Connection and Function Reliability of the Oil&Gas Pipeline System

    Directory of Open Access Journals (Sweden)

    Xu Bo

    2017-01-01

    Full Text Available Pipeline transportation is the optimal way for energy delivery in terms of safety, efficiency and environmental protection. Because of the complexity of pipeline external system including geological hazards, social and cultural influence, it is a great challenge to operate the pipeline safely and reliable. Therefore, the pipeline reliability becomes an important issue. Based on the classical reliability theory, the analysis of pipeline system is carried out, then the reliability model of the pipeline system is built, and the calculation is addressed thereafter. Further the connection and function reliability model is applied to a practical active pipeline system, with the use of the proposed methodology of the pipeline system; the connection reliability and function reliability are obtained. This paper firstly presented to considerate the connection and function reliability separately and obtain significant contribution to establish the mathematical reliability model of pipeline system, hence provide fundamental groundwork for the pipeline reliability research in the future.

  8. Main issues on Sonatrach's gas agenda in the coming years

    International Nuclear Information System (INIS)

    Mazari-Boufares, M.

    1999-01-01

    This presentation describes the organization and objectives of the Algerian company Sonatrach. The natural gas strategy of Sonatrach is: (1) Renew and develop natural gas reserves, (2) Secure the long-term supply of Algeria, (3) Implement and develop international sales through a long-term marketing policy. In 1997 Algerian gas accounted for 22% of the European gas imports and 13% of its consumption. There is some discussion on potential suppliers for the European gas market and on the important hydrocarbon reserves

  9. INFLUENCE OF JET-TO-MAIN STREAM TURNING ANGLE IN FLUID FLOW FROM CYLINDRICAL NOZZLE OF COLLECTOR-PIPELINE ON FLOW COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Vasyl IVANIV

    Full Text Available For intake cylindrical nozzles with orthogonal lateral jet outlets, dependences of the flow coefficient  on (1 Reynolds number , (2 jet-to-main stream turning angle , which is measured relative to the direction of the main stream in a collector-pipeline, as well as (3 the ratio  of the diameter of the outlet hole of the nozzle to that of the collector-pipeline are obtained. The ratio  influences the value of the coefficient of flow more considerably than the jet-to-main stream turning angle does. The magnitude of flow coefficient varies most abruptly in the range of the magnitude of the ratio  from 0.35 to 0.40. For adjustment of non-uniformity of the fluid inflow into the pressure pipelines along their lengths, the nozzles of 0.35 0.40 are the most suitable ones.

  10. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  11. Evaluation of the condensation potential of hydrocarbon fluids in the national gas pipeline system; establishing of adequate operational schemes

    International Nuclear Information System (INIS)

    Pineda Gomez, Cesar Augusto; Arenas Mantilla, Oscar Armando; Santos Santos, Nicolas

    2007-01-01

    For transporting industry of natural gas by pipeline systems, it's vital to guarantee the integrity of their lines, in order to decrease operational costs and prevent accidents that may damaging against people's safety, the environment or the infrastructure itself. in this paper it's presented the principal compounds from o technical study about principal net and its distribution branches to municipalities of the National System Transport of Natural Gas pointed by the Colombian Natural Gas Company - ECOGAS, (specifically the Cusiana - Porvenir - La Belleza, La Belleza - Cogua, La Belleza - Vasconia, Vasconia - Neiva and Vasconia - Cali gas lines, (see Figure 1). The principal objective is evaluate the possible condensation of hydrocarbons fluids inside gas lines, due to compositional characteristics of the gas, the different topographical conditions along the gas line route and the actual and future operational conditions to be implemented in the system. The evaluation performed over this gas streams, generates transcendental information in the creation of safe operational limits that minimizing the existence of obstacle problems and damages over pipeline systems and process equipment, due to the presence of liquid hydrocarbons inside these flow lines. This article has been prepared in four sections in order to guarantee easy access to each one of the steps involved in the study. Section one presents the compositional and thermodynamic analysis of feeding gas streams; in section two, its presented the required information for modeling gas lines with definition of the gas pipeline numerical simulation model in stable state; section three presents the sensitivity analysis for gas variation upon loading gas composition at the inlet point of the system, variation of the operational conditions (flow, pressure and gas temperature) and environment temperatures for the different inlet points (branches) with verification of compliance of the Unique Transport Regulation

  12. New test for oil soluble/water dispersible gas pipeline inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Stegmann, D.W.; Asperger, R.G.

    1987-01-01

    The wheel test provides good mixing of the condensate and water phases, the coupons are exposed to both phases. Therefore, the wheel test cannot distinguish between inhibitors that need continuous mixing of the these phases to maintain a water dispersion of the inhibitor and inhibitors that will self disperse into the water. This concept becomes important for pipelines in stratified flow where the water can settle out. In these cases with low turbulence, the inhibitor must self disperse into the water to be effective. The paper describes a test method to measure the effectiveness of an inhibitor and its ability to self disperse. The effectiveness of several inhibitors as predicted by the new test method is discussed relative to data from the wheel test and breaker tests. Field performance of these inhibitors in a gas gathering line, with liquids in stratified flow, are cities and compared with the results of the various laboratory tests.

  13. Real-time electronic monitoring of a pitted and leaking gas gathering pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.; Hewitt, P.G.

    1986-08-01

    Hydrogen patch, flush electrical resistance, and flush linear polarization proves wre used with flush coupons to monitor corrosion rates in a pitted and leaking sour gas gathering line. Four inhibitors were evaluated in stopping the leaks. Inhibitor residuals and the amount and ratio of water and condensate in the lines were measured at five locations along the line. The best inhibitor reduced reduced the pit-leak frequency by over a factor of 10. Inhibitor usage rate was optimized using the hydrogen patch current as a measure of the instantaneous corrosion rate. Improper pigging was identified as a cause of corrosion transients. This problem is discussed in relation to the pigging of pipelines in stratified flow where moving fluids are the carriers for continuously injected corrosion inhibitors.

  14. Development of an API 5L X-70 grade steel for sour gas resistance pipeline application

    Science.gov (United States)

    Mendoza, R.; Huante, J.; Camacho, V.; Alvarez-Fregoso, O.; Juarez-Islas, J. A.

    1999-10-01

    An API 5L X-70 grade steel for large diameter pipeline application with sour gas resistance was developed by electric arc furnace processing, furnace ladle treatment, vacuum degassing, ladle treatment, and continuous casting, followed by three different controlled rolling schedules and air cooling or accelerated cooling. Mechanical properties equivalent to those of an API 5L X-70 grade steel were achieved in slabs with content ranges from 0.25 to 0.37 wt% C, 1.31 to 1.53 wt% Mn, 0.082 to 0.095 wt% Nb, and 0.008 to 0.015 wt% Ti. The slabs were processed by using a controlled rolled and accelerated cooling schedule.

  15. Transport diphasique de gaz et de condensat. Aspects techniques et économiques Technical and Economic Aspects of Two-Phase Pipelining of Gas and Condensate

    Directory of Open Access Journals (Sweden)

    Bourgeois T.

    2006-11-01

    Full Text Available L'évacuation diphasique de la production d'un gisement de gaz à condensat présente des avantages importants, en particulier sur le plan économique. Les caractéristiques des écoulements diphasiques sont exposées, avec les conséquences principales sur la définition d'un schéma d'exploitation. Une comparaison économique est ensuite présentée, pour illustrer la réduction des investissements qui peut être apportée par l'évacuation diphasique de la production. Enfin, les recherches françaises sur les écoulements diphasiques dans les conduites pétrolières sont brièvement décrites, ainsi qu'un exemple de calcul sur une conduite de gaz à condensat en exploitation diphasique. The two-phase pipelining of a wet gas field production presents many advantages, especially from an economic point of view. The characteristics of two-phase flow are described, together with their main consequences on the operational scheme. Then an economic comparison is made to illustrate the reduction in investment costs that can by achieved with two-phase pipelining. Research in France on two-phase flow in gas and condensate pipelines is briefly described, and an example is given of the designing of a wet-gas pipeline currently being operated in the two-phase mode.

  16. 77 FR 31347 - Tennessee Gas Pipeline Company, L.L.C.; Notice of Availability of the Environmental Assessment...

    Science.gov (United States)

    2012-05-25

    ... environmental assessment (EA) for the MPP Project, proposed by Tennessee Gas Pipeline Company, L.L.C. (TGP) in the above-referenced docket. TGP requests authorization to construct and operate 7.9 miles of looped... connection with its evaluation of TGP's Clean Water Act (Section 404) permit application for the MPP Project...

  17. 77 FR 68763 - Tennessee Gas Pipeline Company, L.L.C.; Notice of Intent To Prepare an Environmental Assessment...

    Science.gov (United States)

    2012-11-16

    ... facilities by Tennessee Gas Pipeline Company, L.L.C. (TGP) in Bradford and Tioga Counties, Pennsylvania. The... this proposed project and encourage them to comment on their areas of concern. TGP provided landowners... viewing on the FERC Web site ( www.ferc.gov ). Summary of the Proposed Project TGP proposes to construct...

  18. 77 FR 27048 - Tennessee Gas Pipeline Company, L.L.C.; Notice of Intent To Prepare an Environmental Assessment...

    Science.gov (United States)

    2012-05-08

    ... facilities by Tennessee Gas Pipeline Company, L.L.C. (TGP) in Lafourche Parish, Louisiana. The Commission... proposed project and encourage them to comment on their areas of concern. TGP provided landowners with a... the FERC Web site ( www.ferc.gov ). Summary of the Proposed Project TGP proposes to abandon in place...

  19. Papers of the Canadian Energy Pipeline Association's 7. annual climate change workshop : energy efficiency and greenhouse gas reduction opportunities

    International Nuclear Information System (INIS)

    2003-01-01

    This conference focused on the role that Canadian pipeline companies will play in addressing greenhouse gas emissions. Ninety-five per cent of Canada's oil and gas is transported by pipeline. The Canadian Energy Pipeline Association (CEPA) is a national association representing all the major crude oil and natural gas transportation companies in Canada which operate 100,000 kilometres of pipeline in the country. CEPA's ongoing commitment to climate change includes a commitment to participate in the climate change process, share best management practices, develop energy efficient technology, and position Canadian companies so that they can be part of the solution. It was emphasized that a strong commitment to an effective innovation strategy will be crucial to a successful long term energy policy that meets both economic and environmental objectives. One of the key messages at the conference was that Canada's climate change policies should be consistent with those of the United States, its major trading partner, to ensure that Canada is not placed at a competitive disadvantage within North American and world energy markets. It was also noted that greenhouse gas emissions should be reduced in all consuming and producing sectors of the economy through energy efficiency practices and not through reductions in Canadian industry output for domestic or export markets. Five presentations were indexed separately for inclusion in the database. tabs., figs

  20. The Corrosion control in the Bolivia-Brazil Gas Pipeline; O controle da corrosao no Gasoduto Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Jorge Fernando Pereira [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This paper presents the techniques and procedures adopted for the corrosion control of the Bolivia-Brazil Gas Pipeline. In buried pipes, the corrosion process may occur on the external surface in contact with the surrounding soil as well on the internal surface in contact with the conveyed fluid, being necessary the simultaneous mitigation of the both processes. (author)

  1. Local wall thickness reductions in operative high-pressure gas pipelines; Lokale Wanddickenminderungen an in Betrieb befindlichen Gashochdruckleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Hass, Georg [Netzdienste Rhein-Main GmbH, Frankfurt am Main (Germany); Hoffmann, Ulrich [Verbundnetz Gas AG (VNG), Leipzig (Germany); Konarske, Juergen [RWE Westfalen-Weser-Ems Netzservice GmbH, Recklinghausen (Germany); Soppa, Thorsten [NG Netz Gas+Wasser (Germany); Steiner, Michael [Open Grid Europe GmbH, Essen (Germany)

    2011-04-15

    TUeV Nord, Salzgitter Mannesmann Forschung and DVGW investigated methods to assess local wall thickness reductions in operative high-pressure gas pipelines. Methods described in the relevant literature were reviewed with regard to the limiting criteria defined for maximum permissible wall thickness reductions. (orig./GL)

  2. Risk Analysis on Leakage Failure of Natural Gas Pipelines by Fuzzy Bayesian Network with a Bow-Tie Model

    Directory of Open Access Journals (Sweden)

    Xian Shan

    2017-01-01

    Full Text Available Pipeline is the major mode of natural gas transportation. Leakage of natural gas pipelines may cause explosions and fires, resulting in casualties, environmental damage, and material loss. Efficient risk analysis is of great significance for preventing and mitigating such potential accidents. The objective of this study is to present a practical risk assessment method based on Bow-tie model and Bayesian network for risk analysis of natural gas pipeline leakage. Firstly, identify the potential risk factors and consequences of the failure. Then construct the Bow-tie model, use the quantitative analysis of Bayesian network to find the weak links in the system, and make a prediction of the control measures to reduce the rate of the accident. In order to deal with the uncertainty existing in the determination of the probability of basic events, fuzzy logic method is used. Results of a case study show that the most likely causes of natural gas pipeline leakage occurrence are parties ignore signage, implicit signage, overload, and design defect of auxiliaries. Once the leakage occurs, it is most likely to result in fire and explosion. Corresponding measures taken on time will reduce the disaster degree of accidents to the least extent.

  3. Study on quantitative risk assessment model of the third party damage for natural gas pipelines based on fuzzy comprehensive assessment

    International Nuclear Information System (INIS)

    Qiu, Zeyang; Liang, Wei; Lin, Yang; Zhang, Meng; Wang, Xue

    2017-01-01

    As an important part of national energy supply system, transmission pipelines for natural gas are possible to cause serious environmental pollution, life and property loss in case of accident. The third party damage is one of the most significant causes for natural gas pipeline system accidents, and it is very important to establish an effective quantitative risk assessment model of the third party damage for reducing the number of gas pipelines operation accidents. Against the third party damage accident has the characteristics such as diversity, complexity and uncertainty, this paper establishes a quantitative risk assessment model of the third party damage based on Analytic Hierarchy Process (AHP) and Fuzzy Comprehensive Evaluation (FCE). Firstly, risk sources of third party damage should be identified exactly, and the weight of factors could be determined via improved AHP, finally the importance of each factor is calculated by fuzzy comprehensive evaluation model. The results show that the quantitative risk assessment model is suitable for the third party damage of natural gas pipelines and improvement measures could be put forward to avoid accidents based on the importance of each factor. (paper)

  4. Hybrid Laser/GMAW of High Strength Steel Gas Transmission Pipelines

    Science.gov (United States)

    2008-07-01

    Pipelines will be an integral part of our energy distribution systems for the foreseeable future. Operators are currently considering the installation of tens of billions of dollars of pipeline infrastructure. In a number of cases, the cost of export...

  5. Application of pre-stressed technology in the crossing construction of the China–Myanmar Gas Pipeline

    Directory of Open Access Journals (Sweden)

    Xuejun Wang

    2015-01-01

    Full Text Available Concrete structure is commonly used in the anchorages of a large cable-suspended pipeline crossing construction. With the increase of span and load, the stress on the concrete anchorages may rise rapidly. In case of traditional anchoring structure fixed by anchor rods, concrete cracking will occur, thereby reducing the anchorage life. To solve this problem, the pre-stressed structure was designed to effectively improve the efficiency of anchoring and reduce engineering cost. In the crossing construction of China–Myanmar Gas Pipeline, the pre-stressed technology was used to establish an effective pre-stressed anchoring system, which integrates the pre-stressed structures (e.g. tunnel anchorages in the anchors and the optimization measures (e.g. positioning mode, anchorage structure, concrete placement, pre-stressed, and medium injection, in line with the crossing structure and load features of this project. The system can delay the occurrence of concrete cracking and enhance the stress durability of the structure and anchoring efficiency. This technology has been successfully applied in the crossing construction of China–Myanmar Gas Pipeline, with good economic and social benefits, indicating that this technology is a new effective solution to the optimization of suspended pipeline anchorage structures, providing technical support for the development of pipeline crossing structure.

  6. Comparative QRA (Quantitative Risk Analysis) of natural gas distribution pipelines in urban areas; Analise comparativa dos riscos da operacao de linhas de gas natural em areas urbanas

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz Fernando S. de [Energy Solutions South America (Brazil); Cardoso, Cassia de O.; Storch, Rafael [Det Norske Veritas (DNV) (Brazil)

    2008-07-01

    The natural gas pipeline network grows around the world, but its operation inherently imposes a risk to the people living next to pipelines. Due to this, it is necessary to conduct a risk analysis during the environmental licensing in Brazil. Despite the risk analysis methodology is well established, some points of its application for the distribution pipelines are still under discussion. This paper presents a methodology that examines the influences of major projects and operating parameters on the risk calculation of a distribution pipeline accident in urban areas as well as the possible accident scenarios assessment complexity. The impact of some scenarios has been evaluated using a Computational Fluid Dynamics tool. The results indicate that, under certain conditions, the risks from the pipeline operation under operating pressures of 20 bar may be acceptable in location class 3 or even in class 4. These results play a very important role if management decisions on the growth of the distribution of natural gas network in densely populated areas as well as in the improvement of laws to control the activity of distribution of natural gas. (author)

  7. Dry hyperbaric gas metal arc welding of subsea pipelines: experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Amin S.

    2012-07-01

    Ambitions in exploration of oil and gas fields at deeper water depth require continuous investigation and maintenance. The transportation pipelines laid in deep waters are both subjected to corrosion and buckling due to environmental phenomena. They may also often undergo branching (namely hot tapping) to redirect (or add to) the transportation paths. Mechanical joints and welding are both considered as available alternatives when sectioning and replacement of the pipes at shallow waters is necessary, yet, welding is more promising for deep waters where remote operation is central. Fusion welding on the other hand comprises several technological detractions for sound operations under high ambient pressures disregarding its low cost and flexibility. The foremost detracting phenomenon in the arc welding is called 'arc root constriction', which is defined as arc geometry shrinkage under the increased pressure. Consequently, the power delivery to the weld pool at different pressure levels is a major worry. Effects of ionization and dissociation energies of different gases and mixtures, partial pressure of environmental gases including hydrogen and oxygen, gasification and degasification of the weld metal, inclusions that affect the phase transformation, absorption and desorption kinetics, oxidation and deoxidation reactions and many more are the phenomena that can possibly be altered by the gas type and ambient pressure level. Spattering and fume generation is a problematic issue since the arc is rather unstable under high pressure. Thus, seeking the effect of different chamber gas mixtures on welding parameters, final microstructure and mechanical properties is the main objective of this work.Statistical analysis of the collected voltage and current waveforms is carried out to identify the source of arc misbehavior and instability (discussed in Paper I). The stochastic parameters is related to the electrical stability and resolved into a number of varying

  8. The Trans-Afghanistan Gas Pipeline as a Factor of Afghanistan’s Integration into the Greater East Asia: Comparative Analysis of Arguments Pro et Contra

    Directory of Open Access Journals (Sweden)

    Yuriy Pavlovich Laletin

    2010-01-01

    Full Text Available The article focuses on a project of Trans-Afghan gas pipeline and its role in the future development of Afghanistan and the Greater East Asia. The author analyzes the historical stages of the project and challenges to its realization, as well as the current situation in Afghanistan aggravated by the fighting of the Taliban and warlords, drug trafficking, terrorist threat and ethnic conflicts. However, one of the main obstacles to the realization of the infrastructural plan is a competition between projects of neighboring countries.

  9. A fully coupled finite element model for stress distribution in buried gas pipeline

    International Nuclear Information System (INIS)

    Yahya Sukirman; Zainal Zakaria; Woong Soon Yue

    2001-01-01

    The study of stress-strain relationship is very important in many designs of buried structures over the years. The behavior and mechanism between the interaction of soil and buried structures such as a natural pipeline will mostly contributes to the integrity of the pipeline. This paper presents a fully coupled finite element of consolidation analysis model to study the stress-strain distribution along a buried pipeline before it excess its maximum deformation limit. The behavior of the soil-pipeline system can be modelled by a non-linear elasto-plastic based on Mohr-Coulomb and critical state yield surfaces. The deformation and deflection of the pipeline due to drained and external loading condition will be considered here. Finally the stress-strain distribution of the buried pipeline will be utilised to obtain the maximum deformation limit and the deflection of the buried pipeline. (Author)

  10. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Myers

    2003-11-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  11. Pipeline investigation report : natural gas compressor station occurrence : Gazoduc TQM Inc., December 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    On December 28, 2000, a release of natural gas resulted in an explosion that destroyed the electrical and services building at the Gazoduc TQM East Hereford compressor station, damaging the compressor building. Before the occurrence, the station had been shut down due to a manual initiation of the station's emergency shutdown system. A maintenance person was sent to the station to reinitiate the electric motor-driven compressor unit. The on-site maintenance person was seriously injured. This report presents factual information about the accident, the injuries and the damage to equipment. It also reviews particulars of the pipeline system, the compressor station design, construction and operations. An analysis of the natural gas stream found an unknown product in the compressor station. A history of previous explosions, ruptures, leaks and fires was presented along with quality control programs. Findings as to the causes and contributing factors of the accident were revealed along with findings as to risk and safety actions. tabs., figs.

  12. Decision 99-13: Crestar Energy Inc. applications to construct and operate sour gas batteries and pipelines, Vulcan Field

    International Nuclear Information System (INIS)

    1999-06-01

    On 1 December 1998, the applicant applied pursuant to Part 4 of the Pipeline Act and Section 7.001 of the Oil and Gas Conservation Regulations for approval to construct and operate a sour gas pipeline and various surface facilities to tie in three wells. These are located at Legal Subdivision 12 of Section 36, Township 16, Range 24, West of the fourth Meridian (12-36 facility), Lsd 10-35-16-24 WM4 (10-35 facility), and Lsd 7-26-16-24 WM4 (7-26 facility), to an existing pipeline and proposed surface facility at Lsd 16-16-16-24 WM4. The 10-35, 7-26 and 16-16 facilities would each have a separator, a flare knockout drum, and a flare stack. The 12-36 facility would have two separators, one for each of the two producing zones at the 12-36 facility, a flare knockout drum, and flare stack. A compressor would be installed at the 16-16 facility. All fluids would be measured and re-injected into the pipeline for removal at the 16-16 facility. All proposed flare stacks would consists of a continuously burning sweet gas pilot and would be used for emergencies, routine well servicing, and pigging operations only. The pipeline would be designated as a Level 1 facility, and would transport up to 18 moles of hydrogen sulfide per kilomole of natural gas. Although the Board approved Application No. 1037084 after carefully considering the evidence, subject to meeting all the regulatory requirements and conditions set out in Attachment 1, it rejected Application No. 1033453

  13. MODELLING OF THE GAS DIFFUSION IN FLEXIBLE PIPELINES FOR OIL & GAS PRODUCTION

    Directory of Open Access Journals (Sweden)

    Marius STAN

    2017-05-01

    Full Text Available This presentation describes a model used to study gas diffusion through layers of flexible pipes by time. The temperature gradient pipe is considered as temperature dependent permeability rates. This model is coupled with a calculation that indicate changes in pressure and volume of vapors resulting in the annular space. Associated mathematical models and methods for solving the results obtained are presented in Math Soft with a user-friendly interface that helps in data entry and processing results. In this presentation will show the possibilities of this software.

  14. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure

    Energy Technology Data Exchange (ETDEWEB)

    Haeseldonckx, Dries; D' haeseleer, William [Division of Energy Conversion, University of Leuven (K.U. Leuven), Celestijnenlaan 300A, 3001 Leuven (Belgium)

    2007-07-15

    In this paper, the transport and distribution aspects of hydrogen during the transition period towards a possible full-blown hydrogen economy are carefully looked at. Firstly, the energetic and material aspects of hydrogen transport through the existing natural-gas (NG) pipeline infrastructure is discussed. Hereby, only the use of centrifugal compressors and the short-term security of supply seem to constitute a problem for the NG to hydrogen transition. Subsequently, the possibility of percentwise mixing of hydrogen into the NG bulk is dealt with. Mixtures containing up to 17 vol% of hydrogen should not cause difficulties. As soon as more hydrogen is injected, replacement of end-use applications and some pipelines will be necessary. Finally, the transition towards full-blown hydrogen transport in (previously carrying) NG pipelines is treated. Some policy guidelines are offered, both in a regulated and a liberalised energy (gas) market. As a conclusion, it can be stated that the use of hydrogen-natural gas mixtures seems well suited for the transition from natural gas to hydrogen on a distribution (low pressure) level. However, getting the hydrogen gas to the distribution grid, by means of the transport grid, remains a major issue. In the end, the structure of the market, regulated or liberalised, turns out not to be important. (author)

  15. North America pipeline map

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    This map presents details of pipelines currently in place throughout North America. Fifty-nine natural gas pipelines are presented, as well as 16 oil pipelines. The map also identifies six proposed natural gas pipelines. Major cities, roads and highways are included as well as state and provincial boundaries. The National Petroleum Reserve is identified, as well as the Arctic National Wildlife Refuge. The following companies placed advertisements on the map with details of the services they provide relating to pipeline management and construction: Ferus Gas Industries Trust; Proline; SulfaTreat Direct Oxidation; and TransGas. 1 map

  16. Natural gas corridors among the EU and its main suppliers. Simulation results with the dynamic GASTALE model

    International Nuclear Information System (INIS)

    Lise, W.; Van Oostvoorn, F.; Hobbs, B.F.

    2006-06-01

    European demand for natural gas has grown and is expected to expand considerably in the next decades. This growth is partly induced by the environmental policy targets, e.g., the Kyoto protocol, and the European energy market liberalisation. However, this development also poses a challenge for the energy consumers in the EU and other gas importing countries with respect to the increasing dependency on gas imports and consequently also the security of gas supplies. First, briefly the business-as-usual (BAU) scenario with a focus on the required gas infrastructure is presented. The analysis focuses on interactions among demand, supply and gas transport infrastructure, pipeline and LNG transport, storage, and necessary investments in the natural gas market over the period 2005-2030. For dealing with the great uncertainties that are part of our long term future, a number of policy scenarios in addition to the BAU case are formulated to study the impact of demand uncertainty and delaying investment behaviour on the gas transport infrastructure (pipeline transport, LNG facilities and storage capacity) required in the long run in Europe. In addition, some of the key tradeoffs among investments in pipelines, LNG liquifaction and regasification facilities, and storage capacity are investigated. The analyses in this paper indicate that substantial investments in gas transport corridors are needed to provide for security of supply. Especially the pipeline connections running from East to West need to be prioritised. The future gas price largely depends upon the sufficient availability of gas from Russia, Iran, and Central Asian countries

  17. TBG's equipment for gas pipeline repair and bypass in service; Equipamentos da TBG para execucao de reparos e bypass em operacao no Gasoduto Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Lemgruber, Nelson Arthur Pinto; Vasconcellos, Carlos Renato Aragonez de; Frota, Cristiane Souto [Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The Bolivia-Brazil Natural Gas Pipeline - GASBOL - begins in the city of Santa Cruz of La Sierra, in Bolivia, arriving in Canoas (RS), in Brazil, traveling an extension of 3.150 km. TBG is the owner and operator from 2.593 km in Brazilian soil, with maximum nominal diameter 32 inches, capacity of transportations until 30 million cubic meter a day, and MAOP 100 bar. This work presents the main available resources in TBG for repair of the gas pipeline, as clamps for small repairs, bolt-on clamps, equipment for hot tapping and execution of by pass in-service, cold cutter machine, air movers for removal the gas of the line, and movable systems of emergency illumination. The location of the equipment is detailed, the main technical and operational characteristics, as well as aspects observed in simulated accomplished in the operational units of TBG and presents the planning for acquisition of new equipment. (author)

  18. Burst strength behaviour of an aging subsea gas pipeline elbow in different external and internal corrosion-damaged positions

    Directory of Open Access Journals (Sweden)

    Geon Ho Lee

    2015-05-01

    Full Text Available Evaluation of the performance of aging structures is essential in the oil and gas industry, where the inaccurate prediction of structural performance can have significantly hazardous consequences. The effects of structure failure due to the significant reduction in wall thickness, which determines the burst strength, make it very complicated for pipeline operators to maintain pipeline serviceability. In other words, the serviceability of gas pipelines and elbows needs to be predicted and assessed to ensure that the burst or collapse strength capacities of the structures remain less than the maximum allowable operation pressure. In this study, several positions of the corrosion in a subsea elbow made of API X42 steel were evaluated using both design formulas and numerical analysis. The most hazardous corrosion position of the aging elbow was then determined to assess its serviceability. The results of this study are applicable to the operational and elbow serviceability needs of subsea pipelines and can help predict more accurate replacement or repair times.

  19. Influence of the compressibility factor in the determination of gas pipeline design pressure; Influencia do fator de compressibilidade na determinacao da pressao de projeto de gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Santos Junior, Sergio J. Furley dos; Silva, Breno S.; Provenzano, Carlos E.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    In order to verify the high-pressure gas pipeline economic feasibility, it is presented in this paper the influence of the compressibility factor in the gas flow. The objective is to study the existent correlation regarding pressure, distance between compression stations, actual flow and diameter. It is developed an economic analyses considering a gas pipeline with 1000 km length, carrying 30,000x10{sup 3} Std m{sup 3}/day. This study is repeated for several diameters and pressures, varying the intermediate compression station quantity and required power. It is also verified the influence of the total length of the pipeline on the economic feasibility. It is concluded that a high-pressure gas pipeline is worthwhile when it carries large amount of gas in long distance. (author)

  20. ASSESSMENT OF DIVERSITY OF POLISH VOIVODSHIPS BY LEVEL OF GAS PIPELINE INFRASTRUCTURE DEVELOPMENT USING MULTIDIMENSIONAL COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Marek URBANIK

    2016-06-01

    Full Text Available In the paper differentiation of gas pipeline infrastructure development in the Polish voivodships was presented. To illustrate this diversity the method of cluster analysis is used, obtained on the basis of statistical data collected by the Central Statistical Office (CSO. In order to conduct a preliminary review procedure for classification of individual provinces in relation to the assessment of the development of gas pipeline infrastructure linear classification was used, involved determining synthetic measure, which is the average of the variable components, through which voivodships were ordered. In order to estimate the distance between the clusters the variance analysis was used with the implementation of the Ward method. The analysis was performed on the basis of the following indicators: average increase in length of the gas network (an average for the total voivodoship 164.2 km, growth of the gas network in comparison to the first year of observation (123%, number of gas connections per 1 km of gas pipe (18.87 no∙km-1, the length of the network per unit area (5.37 m∙ha-1, intensity of network loading (84.15 m3∙d-1∙km-1, inhabitants having access to the gas system in % of total population (51.33%. In the analysis five clusters were grouped. Critical value was determined and segregation of individual clusters was made, taking into account the dominant parameters.

  1. Mobile hybrid LiDAR & infrared sensing for natural gas pipeline monitoring, final report.

    Science.gov (United States)

    2016-01-01

    The natural gas distribution system in the U.S. has a total of 1.2 million miles of mains and about 65 million service lines as of 2012 [1]. This distribution system consists of various material types and is subjected to various threats which vary ac...

  2. Process for increasing the capacity and/or energetic efficiency of pressure-intensifying stations of petroleum and natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Belcsak, Z.; Luptak, E.; Palfalvi, G.; Vadas, Z.; Vasvari, V.; Wenzel, B.

    1982-03-30

    The invention is used in the field of pressure-intensifying stations of natural gas and oil pipelines. The essential character of the process according to the invention is that steam is produced in a boiler heated with the outgoing flue gas of a gas turbine driving the compressor. The steam is conducted into the steam turbine for futher driving the compressor. The main feature of the equipment according to the invention is that the ratio of the simultaneously operating gas turbines and steam turbines may vary from the equivalent to triple value, the ratio is suitably double, and the stand-by machine unit is driven always by gas turbine, separate flue gas boiler is connected to each of the gas turbines, while the boilers are equipped with supplementary and/or substituting automatic heater. Advantages of the invention are that it: reduces the self-consumption by about 1/3 rd, and improves the safety of the pressure-intensification realizable in existing pressure-intensifying stations.

  3. Laboratory criteria of crack resistance of high-strength steels for gas main pipelines

    Science.gov (United States)

    Pyshmintsev, I. Yu.; Arabei, A. B.; Farber, V. M.; Khotinov, V. A.; Lezhnin, N. V.

    2012-04-01

    Low-carbon ferrite-bainite pipe steels of the K65 (Kh80) strength grade produced by two manufacturing companies have been studied using different mechanical tests and fractographic analysis of fractured surfaces. The results demonstrate that the energy capacity a ( a c) and the true relative reduction at fracture φf upon tensile tests, as well as the level of KCV -40 ≥ 250 J/cm2 and the relative width of the zone of homogeneous ductile fracture L C/ B at the fracture surface of Charpy samples upon impact bending tests, can be used as the laboratory criteria of crack resistance.

  4. Analyzing Drivers of Conflict in Energy Infrastructure Projects: Empirical Case Study of Natural Gas Pipeline Sectors

    Directory of Open Access Journals (Sweden)

    Chan Young Park

    2017-11-01

    Full Text Available Energy infrastructure projects have caused various conflicts between stakeholders, particularly among the residents around construction sites and operators. The conflicts are largely due to the “Not in My Backyard” mentality associated with hazardous projects. In natural gas pipeline (NGP projects, conflicts have been increasing with the increase in a wider range of linear projects, and they have been worsening because of the lack of clear countermeasures. This study proposes an effective conflict management strategy for NGP projects in Korea. To achieve the objectives, 25 conflict drivers were identified and 143 case-based surveys were conducted to determine the causal relationship between the drivers and the level of conflict using structural equation modeling (SEM. The SEM results show that factors such as economic (e.g., decreased value of the land, construction-related (e.g., disturbance due to using the original route and site, and safety-related characteristics (e.g., concerns about explosions and accidents are the most important in understanding the causes of conflicts. Based on the causal relationship, five key strategies were proposed to manage the critical conflicts. This study can serve as a basis for implementing better conflict management plans in the future for a more sustainable project execution.

  5. Patterns identification in supervisory systems of nuclear reactors installations and gas pipelines systems using self-organizing maps

    International Nuclear Information System (INIS)

    Doraskevicius Junior, Waldemar

    2005-01-01

    Self-Organizing Maps, SOM, of Kohonen were studied, implemented and tested with the aim of developing, for the energy branch, an effective tool especially for transient identification in nuclear reactors and for gas pipelines networks logistic supervision, by classifying operations and identifying transients or abnormalities. The digital system for the test was developed in Java platform, for the portability and scalability, and for belonging to free development platforms. The system, executed in personal computers, showed satisfactory results to aid in decision taking, by classifying IRIS (International Reactor Innovative and Secure) reactor operation conditions (data from simulator) and by classifying Southeast (owner: TRANSPETRO - Brazil) gas pipeline network. Various adaptations were needed for such business, as new topologies for the output layer of artificial neural network and particular preparation for the input data. (author)

  6. Environmental management programs of the Bolivia-Brazil gas pipeline; Programa de gestao ambiental do gasoduto Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Helio Joaquim dos [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    One of the largest South America's enterprises of energy integration of the Bolivia/Brazil gas pipeline in Brazilian side own and operated by TBG has interacted with 05 states, 137 districts and 06 environment governmental entities (IBAMA and States' department) of environment multilateral financial institutions and group of ten of other governmental and not governmental organizations. The level of approved investment was of the order of 1,5 billion dollars, of which about 29 million had been destined the ambient activities. Thus, without precedents in Brazil this work presents the plan of ambient management of the enterprise, created to develop and implement the ambient programs during the construction and operation of the gas pipeline stage. The work here presented will give prominence to the programs of ambient compensation and social communication inside Brazil. (author)

  7. Energy intensity, life-cycle greenhouse gas emissions, and economic assessment of liquid biofuel pipelines.

    Science.gov (United States)

    Strogen, Bret; Horvath, Arpad; Zilberman, David

    2013-12-01

    Petroleum fuels are predominantly transported domestically by pipelines, whereas biofuels are almost exclusively transported by rail, barge, and truck. As biofuel production increases, new pipelines may become economically attractive. Location-specific variables impacting pipeline viability include construction costs, availability and costs of alternative transportation modes, electricity prices and emissions (if priced), throughput, and subsurface temperature. When transporting alcohol or diesel-like fuels, pipelines have a lower direct energy intensity than rail, barge, and trucks if fluid velocity is under 1 m/s for 4-inch diameter pipelines and 2 m/s for 8-inch or larger pipelines. Across multiple hypothetical state-specific scenarios, profit-maximizing design velocities range from 1.2 to 1.9 m/s. In costs and GHG emissions, optimized pipelines outperform trucks in each state and rail and barge in most states, if projected throughput exceeds four billion liters/year. If emissions are priced, optimum design diameters typically increase to reduce pumping energy demands, increasing the cost-effectiveness of pipeline projects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. 75 FR 36615 - Pipeline Safety: Information Collection Gas Distribution Annual Report Form

    Science.gov (United States)

    2010-06-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... contained in the pipeline safety regulations at 49 CFR parts 190-199. PHMSA has revised burden estimates... require operators to perform a ``root cause'' analysis of each failure. Based on discussion at the...

  9. Non-invasive and non-intrusive gas flow measurement based on the dynamic thermal characteristics of a pipeline

    Science.gov (United States)

    Fan, Zichuan; Cai, Maolin; Xu, Weiqing

    2012-10-01

    This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results.

  10. Non-invasive and non-intrusive gas flow measurement based on the dynamic thermal characteristics of a pipeline

    International Nuclear Information System (INIS)

    Fan, Zichuan; Cai, Maolin; Xu, Weiqing

    2012-01-01

    This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results. (paper)

  11. Legal and regulatory possibility of connection between interstate natural gas distribution networks instead of constructing transport pipelines; Possibilidade juridoco-regulatoria da conexao interestadual entre redes de distribuicao de gas natural como alternativa a construcao de gasodutos de transporte

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Gustavo Mano [Andrade, Mano - Advogados, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    According to Revista Brasil Energia (2011a), the local natural gas distribution concessionaire in the State of Sao Paulo Gas Brasiliano Distribuidora - GBD, plans to expand its distribution pipeline network in western Sao Paulo up to the border of the State of Minas Gerais, near the region known as Minas Triangle where a connection with the pipeline network of the State of Minas Gerais' natural gas distribution company, Companhia de Gas de Minas Gerais - GASMIG shall be built in order to supply natural gas to an ammonia plant to be built by PETROBRAS in the City of Uberaba. Still according to the publication, the project described above would be an alternative to the construction of a transportation pipeline that, since the enforcement of the Gas Law - Law No. 11.909/09 (Brasil, 2009), should be subject to concession contracts preceded by a complex, and probably delayed, planning and procurement. However, there is a transportation pipeline project, deriving from the Bolivia-Brazil transportation pipeline near the city of Sao Carlos, in Sao Paulo, crossing the Minas Triangle and finishing in the State of Goias. This project is owned by TGBC Company. The existence of two gas pipeline projects with very similar paths to supply virtually the same regions and based on different regulatory frameworks, one consisting of a connection between the distribution networks of different States and another based on the concept of pipeline transportation of gas under the legal and regulatory federal jurisdiction raises the discussion about the possibility of legal and regulatory interstate connections of distribution pipeline networks as an alternative to planning, allocation and construction of a transportation pipelines. This article aims to examine the legal and regulatory foundations of both alternatives and delineate the limits of performance of States and Federal Government on legislation and regulation concerning the movement of natural gas pipeline through the Country

  12. Environmental optimisation of natural gas fired engines. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Kvist, T. et al.

    2010-10-15

    The overall aim of the project has been to assess to which extent it is possible to reduce the emissions by adjusting the different engines examined and to determine the cost of the damage caused by emissions from natural gas combustion. However, only health and climate effects are included. The emissions of NO{sub x}, CO and UHC as well as the composition of the hydrocarbon emissions were measured for four different stationary lean-burn natural-gas fired engines installed at different combined heat and power (CHP) units in Denmark. The units were chosen to be representative of the natural gas fired engine-based power production in Denmark. The measurements showed that NO{sub x} emissions were relatively more sensitive to engine setting than UHC, CO and formaldehyde emissions. By reducing the NO{sub x} emissions to 40 % of the initial value (from 500 to 200 mg/m3(n) at 5 % O{sub 2}) the UHC emission was increased by 10 % to 50 % of the initial value. The electrical efficiency was reduced by 0.5 to 1.0 percentage point. Externalities in relation to power production are defined as the costs, which are not directly included in the price of the produced power. Health effects related to air pollution from power plants fall under this definition and usually dominate the results on external costs. For determination of these effects the exposure of the population, the impact of the exposure and the societal costs accompanying the impacts have been evaluated. As expected, it was found that when the engines are adjusted in order to reduce NO{sub x} emissions, the emission of UHC increases and vice versa. It was found that at high NO{sub x} emission levels (500 mg/m3{sub n} at 5 % O{sub 2}) the external costs related to the NO{sub x} emissions are 15 to 25 times the costs related to UHC emissions. At low NO{sub x} emission levels (200 mg/m3{sub n} at 5 % O{sub 2}) the costs related to NO{sub x} are 5 to 8 times the costs related to UHC emissions. Apparently, the harmfulness

  13. 50 CFR 29.21-9 - Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid or...

    Science.gov (United States)

    2010-10-01

    ... transportation of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom... Regulations § 29.21-9 Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid... of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom...

  14. Sweden and the NEGP: A Pilot Study of the North European Gas Pipeline and Sweden's Dependence on Russian Energy

    International Nuclear Information System (INIS)

    Larsson, Robert L.

    2006-06-01

    Developments between 2004 and 2006 indicate that a North European Gas Pipeline (NEGP) through the Baltic Sea, from Russia to Germany, may be realised in the coming decade. This would provide Europe with yet another opportunity to diversify its import channels of gas. It is however reasonable to assume that the NEGP also could change the strategic pattern and be a source of friction. The NEGP may rock the regional stability and reduce the potential of the new EU members to become security providers in Europe's northern dimension. It also gives increased leverage and influence to Russia, a state that has moved in an authoritarian direction under President Putin. The aim of this pilot study is to elucidate on the NEGP pipeline and Sweden's increasing dependence on Russian energy. A subsidiary aim is to outline a set of concerns that have bearing on the situation for the EU and Baltic Sea Region and that need to be further addressed. In conclusion, the NEGP will enhance Russia's direct leverage on Poland, Ukraine, and Belarus, as it will allow Russia to turn off gas supplies without affecting exports to other parts of Europe. Russia will also increase its leverage over the states that will or may be connected to the NEGP (Germany, and possibly Belgium, Denmark, the Netherlands and the UK). Even if Sweden is not embracing the NEGP, it is today highly sensitive as it imports most of its energy. It is increasingly dependent on Russian oil and is partly dependent on imports of electricity from Russia. Should the NEGP materialise and Sweden becomes connected in the future, it would likely be dependent also on natural gas. It is of paramount importance for the energy security of the connected states how the pipeline is constructed and operated. If there will be technical possibilities for Russia to tamper with the flow of gas to individual states without affecting supply to others, there are tangible threats to the importing states

  15. Risk assessment in gas and oil pipelines based on the fuzzy Bow-tie technique

    Directory of Open Access Journals (Sweden)

    P. Heyrani

    2016-04-01

      Conclusion: Considering the recognized factors leading to destruction of pipelines and their most notable outcomes, instructions on how to control and reduce the potential consequences were suggested, with emphasis on the removal of the most probable causes.

  16. 75 FR 16337 - Standards for Business Practices for Interstate Natural Gas Pipelines

    Science.gov (United States)

    2010-04-01

    ... pipeline business practices and electronic communications to incorporate by reference into its regulations... enumerated exceptions. This rule upgrades the Commission's current business practice and communication... business practices and electronic communications) \\1\\ to incorporate by reference the most recent version...

  17. Development of reliability-based design and assessment standards for onshore gas transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Joe; Rothwell, Brian [TransCanada PipeLines Ltd., Calgary, AB (Canada); Nessim, Maher; Zhou, Wenxing [C-FER Technologies, Edmonton, AB (Canada)

    2005-07-01

    Onshore pipelines have traditionally been designed with a deterministic stress based methodology. The changing operating environment has however imposed many challenges to the pipeline industry, including heightened public awareness of risk, more challenging natural hazards and increased economic competitiveness. To meet the societal expectation of pipeline safety and enhance the competitiveness of the pipeline industry, significant efforts have been spent for the development of reliability-based design and assessment (RBDA) methodology. This paper will briefly review the technology development in the RBDA area and the focus will be on the progresses in the past years in standard development within the American Society of Mechanical Engineers (ASME) and the Canadian Standard Association (CSA) organizations. (author)

  18. Modeling Hydrodynamic State of Oil and Gas Condensate Mixture in a Pipeline

    Directory of Open Access Journals (Sweden)

    Dudin Sergey

    2016-01-01

    Based on the developed model a calculation method was obtained which is used to analyze hydrodynamic state and composition of hydrocarbon mixture in each ith section of the pipeline when temperature-pressure and hydraulic conditions change.

  19. A Comparison of American, Norwegian, and Russian Standards in Calculating the Wall Thickness of Submarine Gas Pipeline

    Directory of Open Access Journals (Sweden)

    Cindy Dianita

    2016-04-01

    Full Text Available One of the key issues in the pipeline design is wall thickness calculation. This paper highlights a comparison of wall thickness calculation methods of submarine gas pipeline based on Norwegian Standard (DNV-OS-F101, Indonesian Standard SNI 3474 which refers to American Standard(ASME B31.8, and Russian Standard (VN39-1.9-005-98. A calculation of wall thickness for a submarine gas pipeline in Indonesia (pressure 12 MPa, external diameter 668 mm gives the results of 18.2 mm (VN39-1.9-005-98, 16 mm (ASME B31.8, and 13.5 mm (DNV-OS-F101.The design formula of hoop stress due to internal pressure is interpreted in different ways for every standard. Only Norwegian Standard requires calculating hoop stresses in the inner surface, which leads to a decreased value of the wall thickness. Furthermore, the calculation of collapse factor dueto external pressure is only regulated in Americanand Norwegian Standards while Russian Standard uses that factor as an intermediate parameter in calculating local buckling. For propagation buckling, either Russian or American Standard explains empirical formula of critical hydrostatics pressure as the input in propagation buckling calculation. This formula is almost similar to the empirical formula of Norwegian Standard. From the comparison of these standards, DNV OS-F101 gives more stringent requirements than others

  20. Regeneration of vegetation on wetland crossings for gas pipeline rights-of-way one year after construction

    International Nuclear Information System (INIS)

    Shem, L.M.; Zimmerman, R.E.; Zellmer, S.D.; Van Dyke, G.D.; Rastorfer, J.R.

    1993-01-01

    Four wetland crossings of gas pipeline rights-of-way (ROWs), located in Florida, Michigan, New Jersey, and New York, were surveyed for generation of vegetation roughly one year after pipeline construction was completed. Conventional trench-and-fill construction techniques were employed for all four sites. Estimated areal coverage of each species by vegetative strata within transect plots was recorded for plots on the ROW and in immediately adjacent wetlands undisturbed by construction activities. Relative success of regeneration was measured by percent exposed soil, species diversity, presence of native and introduced species, and hydric characteristics of the vegetation. Variable site factors included separation and replacement of topsoil, final grading of the soil, application of seed and fertilizer, and human disturbance unrelated to construction. Successful regeneration exhibited greater dependency on the first three factors listed

  1. Studies for the requirements of automatic and remotely controlled shutoff valves on hazardous liquids and natural gas pipelines with respect to public and environmental safety

    Energy Technology Data Exchange (ETDEWEB)

    Oland, C. Barry [XCEL Engineering, Inc. (United States); Rose, Simon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Engineering Science and Technology Div.; Grant, Herb L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fabrication, Hoisting and Rigging Div.; Lower, Mark D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fabrication, Hoisting and Rigging Div.; Spann, Mark A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Facility Management Div.; Kirkpatrick, John R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Sciences and Engineering Div.; Sulfredge, C. David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Sciences and Engineering Div.

    2012-12-01

    This study assesses the effectiveness of block valve closure swiftness in mitigating the consequences of natural gas and hazardous liquid pipeline releases on public and environmental safety. It also evaluates the technical, operational, and economic feasibility and potential cost benefits of installing automatic shutoff valves (ASVs) and remote control valves (RCVs) in newly constructed and fully replaced transmission lines. Risk analyses of hypothetical pipeline release scenarios are used as the basis for assessing: (1) fire damage to buildings and property in Class 1, Class 2, Class 3, and Class 4 high consequence areas (HCAs) caused by natural gas pipeline releases and subsequent ignition of the released natural gas; (2) fire damage to buildings and property in HCAs designated as high population areas and other populated areas caused by hazardous liquid pipeline releases and subsequent ignition of the released propane; and (3) socioeconomic and environmental damage in HCAs caused by hazardous liquid pipeline releases of crude oil. These risk analyses use engineering principles and fire science practices to characterize thermal radiation effects on buildings and humans and to quantify the total damage cost of socioeconomic and environmental impacts. The risk analysis approach used for natural gas pipelines is consistent with risk assessment standards developed by industry and incorporated into Federal pipeline safety regulations. Feasibility evaluations for the hypothetical pipeline release scenarios considered in this study show that installation of ASVs and RCVs in newly constructed and fully replaced natural gas and hazardous liquid pipelines is technically, operationally, and economically feasible with a positive cost benefit. However, these results may not apply to all newly constructed and fully replaced pipelines because site-specific parameters that influence risk analyses and feasibility evaluations often vary significantly from one pipeline segment to

  2. Surface electromagnetic technology for the external inspection of oil and gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mousatov, A.; Nakamura, E.; Delgado, O.; Flores, A. [Mexican Petroleum Institute, Mexico City (Mexico); Nakamura, E. [Moscow State University, Moscow (Russian Federation); Shevnin, V. [Moscow State University (Russian Federation)

    2009-07-01

    In this paper we present a surface electromagnetic technology for the non-destructive pipeline coating inspection (SEMPI). This technology allows: determination of the depth and plane position of pipelines, quantitative evaluation of the insulation resistance and delimitation of zones with coating damages, estimation of the performance of the cathodic protection system (CPS) and detection of its connections to out-of-service pipes and other grounded constructions, and assessment of the soil aggressively. The SEMPI technology is based on the approximation of pipelines by heterogeneous transmission lines with variable leakage conductance and pipe impedance to represent insulation coating and wall thickness damages. Based on the result of simulations, we have optimized the field measurements and developed the interpretation procedure of experimental data. The field operations include surface measurements of magnetic field, voltage on the control posts of the CPS and soil resistivity. In zones with coating damages the detailed measurements can be performed using magnetic or electric field to increase the resolution in localizing and evaluating the insulation damages. The SEMPI technology has been applied for inspections of pipelines with different technical characteristics in complicated environmental conditions. The examples presented in this work confirm the high efficiency of the developed technology for external integrity evaluation of pipelines. (author)

  3. Thermo-hydraulic modelling of the South East Gas Pipeline System - an integrated model; Modelagem termo-hidraulica do Sistema de Gasodutos do Sudeste : um modelo integrado

    Energy Technology Data Exchange (ETDEWEB)

    Vianna Neto, Armando M.; Santos, Arnaldo M.; Mercon, Eduardo G. [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This paper presents the development of an integrated simulation model, for the numerical calculation of thermal-hydraulic behaviors in the Brazilian southeast onshore gas pipeline flow system, remotely operated by TRANSPETRO's Gas Pipeline Control Centre (CCG). In its final application, this model is supposed to provide simulated results at the closer range to reality, in order to improve gas pipeline simulation studies and evaluations for the system in question. Considering the fact that numerical thermo-hydraulic simulation becomes the CCG's most important tool to analyze the boundary conditions to adjust the mentioned gas flow system, this paper seeks and takes aim to the optimization of the following prime attributions of a gas pipeline control centre: verification of system behaviors, face to some unit maintenance stop or procedure, programmed or not, or to some new gas outlet or inlet connection to the system; daily operational compatibility analysis between programmed and realized gas volumes; gas technical expedition and delivery analysis. Finally, all this work was idealized and carried out within the one-phase flow domain (dry gas) (author)

  4. Integration of Wind Energy, Hydrogen and Natural Gas Pipeline Systems to Meet Community and Transportation Energy Needs: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Shahryar Garmsiri

    2014-04-01

    Full Text Available The potential benefits are examined of the “Power-to-Gas” (P2G scheme to utilize excess wind power capacity by generating hydrogen (or potentially methane for use in the natural gas distribution grid. A parametric analysis is used to determine the feasibility and size of systems producing hydrogen that would be injected into the natural gas grid. Specifically, wind farms located in southwestern Ontario, Canada are considered. Infrastructure requirements, wind farm size, pipeline capacity, geographical dispersion, hydrogen production rate, capital and operating costs are used as performance measures. The model takes into account the potential production rate of hydrogen and the rate that it can be injected into the local gas grid. “Straw man” systems are examined, centered on a wind farm size of 100 MW integrating a 16-MW capacity electrolysis system typically producing 4700 kg of hydrogen per day.

  5. Open access to natural gas pipeline transportation in North America: Lessons for the European internal energy market

    International Nuclear Information System (INIS)

    Dreyfus, D.A.; Koklauner, A.B.

    1991-01-01

    The North American natural gas industry's experience with deregulation is described, with emphasis on the transition to competition and the conditions for viability under open access. Lessons learned from the North American experience are then examined for relevance to the European situation, which is emphasizing greater access to transmission systems. It is found likely that the European proposal will frequently operate only to facilitate negotiations among players already active in the gas market, and is less likely to introduce a large number of independent transactions or new merchants. Challenges for the system will include: government assurance of reliability to domestic gas users who have made arrangements with foreign suppliers; administration of pipeline grids; resolution of competing claims on available transmission services; planning for future suppliers; and impact on investment. 8 refs., 1 fig

  6. The redefinition of the american and british gas industries: the regulation of the access load to the gas pipelines networks; La restructuration des industries gazieres americaine et britannique: la reglementation de la charge d'acces aux reseaux de gazoducs

    Energy Technology Data Exchange (ETDEWEB)

    David, L

    2000-10-01

    The transport and distribution networks regulation is the main stakes of the regulation reform of the gas industries. This thesis analyzes the models applied in The Usa and in the United Kingdom. The first part deals with the gas industries deregulation in these two countries, the impacts on the economy and the organization of the gas industries. The second part presents a theoretical approach of the regulation applied to the prices of the natural ags transport by gas pipelines. Regulation by the service cost price and by price cap are compared. (A.L.B.)

  7. Inspection of Bolivia-Brazil Gas Pipeline with MFL pig; Inspecao por pig instrumentado no trecho Paulinia-Guararema do gasoduto Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kiyoshi [Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    After 7 years operating Bolivia-Brazil gas pipeline, the TBG-Transportadora Brasileira Gasoduto Bolivia Brasil S.A., the owner and the operator of de pipeline, has considered the need of inspect the gas pipeline in the Paulinia-Guararema section, which is a branch of the mainline from Corumba, a city in Mato Grosso do Sul state to Canoas a city in Rio Grande do Sul state. This section has been chosen during first inspection stage, since it has electrical interferences by electrified transmission lines and other pipelines in the same area. This paper describes the TBG experiences on launching corrosion detection PIG, since the identification of necessity to analysis of what to do. (author)

  8. AANA journal course: update for nurse anesthetists--medical gases, hospital pipelines, and medical gas cylinders: how safe are they?

    Science.gov (United States)

    Petty, W C

    1995-08-01

    Medical gases which hospital personnel are familiar with include oxygen, nitrous oxide, medical air, carbon dioxide, and nitrogen. Their composition and packaging is defined by the Code of Federal Regulations and the United States Pharmacopeia/National Formulary. Unfortunately, numerous safety issues and even cases of death occur each year that relate to the use of these gases in medical settings. This review documents incidents of near hits and deaths of patients from pipeline and gas cylinder use and describes the key role that anesthesia and healthcare personnel play in verifying the integrity of gases used and the systems which deliver them.

  9. GIS as a practical and powerful tool for gas pipeline design and planning; GIS como ferramenta pratica e poderosa para projeto e planejamento de gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sidney P. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Gas pipeline design and planning requires the management of huge quantity of information related to environmental, socio-economic and engineering data. To optimize the design process and guarantee a high level of quality and reliability a GIS solution was implemented that proved to be worth taking and adopted the state of the art of the technology available in the market. This paper will present the GIS solution implemented at PETROBRAS Gas and Energy based on APDM, a pipeline data model that is a result of a joint work that has been developed by specialized worldwide oil and gas companies. Two applications developed in house will also be presented, one is the application called Scenario Builder that is related to gas pipeline thermo-hydraulic simulation fully integrated with GIS technology and the other is called Project Viewer that provides different ways of having quick access and visualization of the existing and ongoing projects. (author)

  10. Multi-criteria aid for group decision making on gas pipeline risk analysis; Apoio multicriterio a decisao em grupo na analise de risco em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Yuri G.; Cavalcante, Cristiano A.V.; Brito, Anderson J. de M.; Almeida, Adiel T. de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2008-07-01

    Risks are, by nature, subjective, and therefore, complex. They present multidimensional aspects and involve various stakeholders. The pipelines transmission and distribution of natural gas (NG) involve various scenarios of risks, resulting from the distinct environments where the supply chain of NG is inserted. This paper proposes a multi criteria model for group decision support, based on the GDSS PROMETHEE approach, for risk assessment in pipelines sections. The proposed model aims to establish a ranking between the sections of a pipeline network, in order to provide insights to the definition of risk mitigation actions. (author)

  11. Verification of the correlation between the 210 Pb and the chemical composition of the incrustations found on gas pipelines and the implication on radiological protection

    International Nuclear Information System (INIS)

    Gomes, Franciane Martins de Carvalho

    2004-01-01

    In the last decades, the occurrence of solid residual deposits, known as black powder, in natural-gas pipelines, gathering systems and compression equipment from gas industries has raised increasing regulatory concerns in terms of radiological protection. Concerns are also raised about the waste disposal and management of the radioactive residues eventually produced. Recent projections indicate a significant increase in the production of natural-gas and its products, due to a growing commercial demand, which leads to the production of huge amounts of residues. Thus, more information is needed in order to allow a preliminary evaluation of the radiological profile of this type of industry. In black powder residues, the most prevalent radioisotope is 210 Pb. The present work aimed to investigate the correlation between the chemical composition of the residue and the concentration of 210 Pb, in black powder samples collected at Bacia de Campos, in the State of Rio de Janeiro, Brazil. The main objective was to generate information to regulatory authorities, to the National Commission of Nuclear Energy (CNEN) and to companies that produce natural-gas, such as PETROBRAS. Based on the information, the gas producing companies could elaborate radiological protection guidelines, and also decide about the need for implementation of a waste management program at the installation. The samples of black powder analyzed at the present work have confirmed the existence of such correlation between the concentration of 210 Pb and chemical parameters. In principle, the present results make the use of such correlation feasible for preliminary evaluations of the 210 Pb levels in natural-gas installations. On the other hand, given the geographic limitations, a broader study is recommended, in order to evaluate the investigated correlation, which could be used as a guiding tool for the Brazilian industry of production and processing of natural-gas.(author)

  12. 77 FR 58616 - Pipeline Safety: Information Collection Activities, Revision to Gas Transmission and Gathering...

    Science.gov (United States)

    2012-09-21

    ... submitted to the Office of Management and Budget (OMB) for approval. DATES: Comments on this notice must be... Management Center, Room 10102 NEOB, 725 17th Street NW., Washington, DC 20503, ATTN: Desk Officer for the U.S... Petroleum Institute (API) and American Oil Pipelines Association (AOPL);--Trade Associations (10) Interstate...

  13. Natural gas corridors between the EU and its main suppliers: Simulation results with the dynamic GASTALE model

    Energy Technology Data Exchange (ETDEWEB)

    Lise, Wietze [Energy Markets and International Environmental Policy Group, ECN Policy Studies, Energy Research Centre of the Netherlands, Amsterdam (Netherlands); IBS Research and Consultancy, Agahamami Cadessi 1/6, Cihangir 34433, Beyoglu, Istanbul (Turkey); Hobbs, Benjamin F. [Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Van Oostvoorn, Frits [Energy Markets and International Environmental Policy Group, ECN Policy Studies, Energy Research Centre of the Netherlands, Amsterdam (Netherlands)

    2008-06-15

    Growth in gas demand poses a challenge for European energy consumers and other gas-importing countries in terms of an increasing dependency on gas imports and consequently also supply security. This paper focuses on interactions among demand, supply, and investments in natural gas corridors, namely pipeline transport, LNG, and storage facilities, affecting the European natural gas market over the period 2005-2030. A number of policy scenarios, including a business-as-usual (BAU) scenario, are formulated to study the impact of demand uncertainty and delays in investment on the gas transport infrastructure required in the long run in Europe. The analyses indicate that substantial investments in gas transport corridors are needed to accommodate imports and seasonal demand variations. Analysis of scenarios of supply interruption, in the form of suddenly reduced import capacity for particular pipeline routes, indicates that portions of Europe could experience price increases of up to 100% in the case of a year-long interruption. To accommodate import needs and to mitigate possible disruptions, pipeline connections running from East to West need to be given special priority. (author)

  14. Natural gas corridors between the EU and its main suppliers: Simulation results with the dynamic GASTALE model

    International Nuclear Information System (INIS)

    Lise, Wietze; Hobbs, Benjamin F.; Van Oostvoorn, Frits

    2008-01-01

    Growth in gas demand poses a challenge for European energy consumers and other gas-importing countries in terms of an increasing dependency on gas imports and consequently also supply security. This paper focuses on interactions among demand, supply, and investments in natural gas corridors, namely pipeline transport, LNG, and storage facilities, affecting the European natural gas market over the period 2005-2030. A number of policy scenarios, including a business-as-usual (BAU) scenario, are formulated to study the impact of demand uncertainty and delays in investment on the gas transport infrastructure required in the long run in Europe. The analyses indicate that substantial investments in gas transport corridors are needed to accommodate imports and seasonal demand variations. Analysis of scenarios of supply interruption, in the form of suddenly reduced import capacity for particular pipeline routes, indicates that portions of Europe could experience price increases of up to 100% in the case of a year-long interruption. To accommodate import needs and to mitigate possible disruptions, pipeline connections running from East to West need to be given special priority. (author)

  15. Northern entanglement : Arctic gas pipeline plans caught in web of competing interests, but dire supply-demand forecasts indicate line will be built

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2005-01-01

    This article discussed land access and regulatory issues surrounding decisions to stop field work of the Mackenzie Valley pipeline in the spring of 2005. Although current supply and demand balances in natural gas markets argue that the pipeline will be beneficial, Imperial Oil and its partners have halted activities such as geotechnical data-gathering programs and preparatory work on contracting construction. The project's future depends on the successful resolution of First Nations land claims, governmental disputes and various activist groups protesting the pipeline's construction. Imperial Oil has suggested that the pipeline presents a significant opportunity for the people of the North to reduce their reliance on government and will create jobs and business opportunities for Aboriginal people. In the aftermath of work stoppage, Alberta's former Energy Minister stated that imports of Liquefied Natural Gas (LNG) and Alaska gas from the proposed Alaska Highway Pipeline Project may arrive on the market in advance of the Mackenzie Valley project, which would affect the project's financial future. It was noted that access and benefits agreements with First Nations stakeholders have yet to be reached. Lawsuits involving the Deh Cho First Nations were examined. It was also suggested that Imperial Oil has not included information on the Alberta portion of the project in its environmental impact assessment. It was concluded that if the Mackenzie Delta line isn't in service by 2010, North American consumers can expect to spend an extra $190 billion on gas from 2011 to 2020. 3 figs

  16. 78 FR 30918 - Natural Gas Pipeline Company of America LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-05-23

    ....208, and 157(213) of the Commission's Regulations under the Natural Gas Act (NGA) as amended, requesting authority to convert one (1.0) Bcf of cushion gas to working gas at its Herscher Mount Simon... flexibility with the ability to withdraw additional working gas from the Mount Simon Reservoir instead of the...

  17. Large renewables - Hydrogen energy systems: pipelines for gathering and transmission from windpower and other diffuse, dispersed energy sources, as hydrogen gas

    International Nuclear Information System (INIS)

    Leighty, W.; Hirata, M.; O'Hashi, K.; Asahi, H.; Benoit, J.; Keith, G.

    2003-01-01

    We need many large new transmission systems for gathering and delivering Earth's vast, diverse, dispersed, renewable energy resources. Both high voltage direct current electricity (HVDC) and gaseous hydrogen (GH2) pipeline are attractive, complementary, and competitive. New natural gas (NG) transmission pipeline systems may be built with line pipe capable of 100% GH2, for future conversion to 'renewables-hydrogen service' (RHS) at up to 100% GH2, to bring energy from windpower, biomass and other renewable sources to market as, and after, the NG is depleted. Sour-service X65 or composite reinforced line pipe (CRLP) may be well-suited. Since well-constructed and well-maintained pipelines have very long service lives, the increased investment required for construction with RHS-capable line pipe may be justified. These pipeline systems may be retrofitted with compressors, meters, valves and other fittings necessary for future RHS, for the nascent 'renewables-hydrogen economy'. Although industry has been safely pipelining GH2 for decades, these systems are not designed for frequently-varying pressure and for large-scale, long-distance, cross-country collection, from many dispersed nodes from diverse sources, as required by RHS. No pipelines for such service exist. The public is unfamiliar with hydrogen and anxious about its safety. Thus, a new pilot-scale R and D and demonstration pipeline system, an International Renewable Hydrogen Transmission Demonstration Facility (IRHTDF), is needed. (author)

  18. Analysis of the generation and monitoring of impact on fauna in the gas pipeline works in the current environmental legislation; Analise da geracao e monitoramento do impacto sobre a fauna silvestre em obras de gasodutos face a legislacao ambiental vigente

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, Flaviana V.; Serricchio, Claudio [PETROBRAS, Rio de Janeiro, RJ (Brazil); Akahori, Lisa [TELSAN Engenharia e Servicos Ltda, Vitoria, ES (Brazil); Nascimento, Reinaldo R. [IMC Saste - Construcoes, Servicos e Comercio Ltda., Sao Paulo, SP (Brazil)

    2008-07-01

    The impacts to wildlife in areas where gas pipelines will be implemented are considerable, changing the existing balance. The main environmental measure adopted in the cases is the deployment of the Fauna Management Programme. This programme is sub - divided into two: Monitoring and Rescue of the fauna. The tracking step starts before the installation of the venture, with the completion of a first in order to identify the impacts before the venture, and finishes two years after the end of the works. These studies are based on guidelines set in the Normative Instruction of the environmental licensor agency, in which the criteria for implementation are restrictive, often without making a license agency distinction of methodology for enterprises with different characteristics. This article intended to review the criteria and the procedures established by the legislation and its real applicability in gas pipeline projects face to the environmental impacts identified to this activity. For this analysis, the methodology used was the case study of two gas pipelines: Cabiunas - Vitoria (GASCAV) and Cacimbas - Catu (GASCAC). The results allowed to conclude that the actions developed to the Sub-Programme of Rescue of the fauna are satisfactory to control environmental impacts and that the Sub-Programme of Monitoring of the fauna just confirm behaviors and information's previous detected. (author)

  19. Living and working near pipelines : Landowner guide 2002

    International Nuclear Information System (INIS)

    Anon

    2002-01-01

    The transportation of natural gas, oil and other commodities is effected by pipelines throughout most of the country. Safety in the vicinity of a pipeline is very important because damage to a pipeline could result in adverse conditions to public safety and/or the environment. Before digging, written approval must be obtained from the pipeline company. If a landowner is having difficulty negotiating an agreement with the pipeline company, they should call the National Energy Board. It is illegal to construct or excavate without authorization, and approval or denial of a request must be granted within 10 business days by the pipeline company. Three days are allowed to the pipeline company to locate its pipeline. A section dealing with pipeline right-of-way is included, as well as the safety zone and the restricted area. A 10-step checklist of safety tips assists the landowner in taking the appropriate measures in the vicinity of a pipeline. A brief overview of the responsibilities of the National Energy Board is provided, followed by a list of the main pipelines regulated by the National Energy Board. 2 figs

  20. Preliminary analysis of selected gas dynamic problems. [space shuttle main engine main combustion transients and IUS nozzle flow

    Science.gov (United States)

    Prozan, R. J.; Farmer, R. C.

    1985-01-01

    The VAST computer code was used to analyze SSME main combustion chamber start-up transients and the IUS flow field for a damaged nozzle was investigated to better understand the gas dynamic considerations involved in vehicle problems, the effect of start transients on the nozzle flow field for the SSME, and the possibility that a damaged nozzle could account for the acceleration anomaly noted on IUS burn. The results obtained were compared with a method of characteristics prediction. Pressure solutions from both codes were in very good agreement and the Mach number solution on the nozzle centerline deviates substantially for the high expansions for the SSME. Since this deviation was unexpected, the phenomenon is being further examined.

  1. 75 FR 35700 - Revisions to Forms, Statements, and Reporting Requirements for Natural Gas Pipelines

    Science.gov (United States)

    2010-06-23

    ...) the disposition of any excess gas and the accounting recognition given to such disposition, including... recognition given to such disposition, including the basis of valuing the gas and the specific accounts... 35705

  2. A hybrid Delphi-SWOT paradigm for oil and gas pipeline strategic planning in Caspian Sea basin

    International Nuclear Information System (INIS)

    Tavana, Madjid; Pirdashti, Mohsen; Kennedy, Dennis T.; Belaud, Jean-Pierre; Behzadian, Majid

    2012-01-01

    The Caspian Sea basin holds large quantities of both oil and natural gas that could help meet the increasing global demand for energy resources. Consequently, the oil and gas potential of the region has attracted the attention of the international oil and gas industry. The key to realizing the energy producing potential of the region is the development of transnational export routes to take oil and gas from the landlocked Caspian Sea basin to world markets. The evaluation and selection of alternative transnational export routes is a complex multi-criteria problem with conflicting objectives. The decision makers (DMs) are required to consider a vast amount of information concerning internal strengths and weaknesses of the alternative routes as well as external opportunities and threats to them. This paper presents a hybrid model that combines strength, weakness, opportunity and threat (SWOT) analysis with the Delphi method. - Highlights: ► The evaluation and selection of the pipeline routes is a multi-criteria problem. ► A hybrid SWOT-Delphi method is proposed to evaluate five potential routes. ► The Southern and Northern routes are chosen as the best and second-best options. ► The second best option is identified to provide some degree of diversification.

  3. Historical case - welding on service in Brazil Bolivia gas pipeline at 92 Bar of pressure, in Tres Lagoas, Mato Grosso do Sul, Brazil; Caso historico: execucao de soldagem em operacao no gasoduto Bolivia-Brasil a pressao de 92 BAR, em Tres Lagoas, Mato Grosso do Sul, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Carlos Renato Aragonez de [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)]|[PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Lobao Filho, Jesualdo Pereira [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil); Alcatrao, Mauro dos Santos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The Bolivia-Brazil Natural Gas Pipeline - GASBOL - begins in the city of Santa Cruz of La Sierra, in Bolivia, arriving in Canoas (RS), in Brazil, traveling an extension of 3.150 km. TBG is the owner and operator from 2.593 km in Brazilian soil, with maximum nominal diameter 32 inches, capacity of transportations until 30 million cubic meter a day, and MAOP 100 bar. This work presents the steps for the qualification the welding procedure and the jobs for the welding in service at 92 bar of pressure, the measures to guarantee the integrity of the gas pipeline, including lines support, requirements for hydrostatic testing and the main equipment used during the jobs. It is made reference to an accident happened several month after in service welding in gas pipeline and presents the respective cause. (author)

  4. Mechanical Properties of High-Nb X80 Steel Weld Pipes for the Second West-to-East Gas Transmission Pipeline Project

    Directory of Open Access Journals (Sweden)

    Gui-ying Qiao

    2017-01-01

    Full Text Available The mechanical properties of steel pipe have great effects on the integrality and operation safety of gas transmission pipeline. In order to reduce the cost of the steel pipe, the high-Nb X80 pipeline steels with the different alloying systems have been used in the Second West-to-East Gas Transmission Pipeline Project. Nevertheless, an investigation into the effects of chemical composition on the mechanical properties of steel pipes is lacking. In this work, the chemical composition and mechanical properties of high-Nb X80 grade steel pipes with a diameter of ϕ1,219 mm and a wall thickness of 22 mm, which are coiled by steels manufactured by three mills, have been analyzed. Furthermore, the effects of chemical composition of the steels on the mechanical properties of the pipe body and weld joint were discussed.

  5. Structural assessment procedure of corroding submarine gas pipelines using on-line inspection data

    International Nuclear Information System (INIS)

    Nordin Yahaya

    2000-01-01

    This paper presents 'the alternative approach of overall procedure in the assessment of corroded pipelines using data gathered by the on-line inspection device. The methodology adopts a generalised approach of analysing pipeline inspection data and a prediction of the structural reliability due to the deteriorating corrosion environment. The whole assessment methodology is divided into four separate stages; 1 to IV. Stages 1 and 11 are the initial procedure prior to the actual analysis of the inspection data. The scope of this paper is concerted into the procedure to be taken in Stage 111 where the stage is sub-divided into 3 major steps; Part A, B and C. These procedures are Part A (statistical and probabilistic analysis of the inspection data) and Part B (the application of extreme value statistics) and C (reliability assessment). Stage IV (risk assessment) is the final step in the procedure where the consequences of failure are evaluated. The proposed risk-based assessment procedure is more systematic and reliable to account for a huge amount of collected data usually obtained in an on-line inspection using the intelligent devices. The outcomes of this risk-based methodology can be very useful in the decision-making process by the operation management. This in turn will produce an efficient inspection, repair and maintenance program and enhanced the optimised return in investment. (author)

  6. Velocity measurement of two-phase liquid-gas flow in a horizontal pipeline using gamma densitometry

    Science.gov (United States)

    Hanus, R.; Zych, M.; Petryka, L.

    2014-08-01

    This paper presents application of gamma-ray absorption method to liquid-gas flow investigation in a pipeline. In the described measurement two sealed 241Am radioactive sources and probes with NaI(Tl) scintillation crystals have been used. For the analysis of digital signals provided by detectors, a traditional cross-correlation function (CCF), and modified correlation methods based on the quotient of CCF and average magnitude difference function (AMDF), as well as the quotient of CCF, and average square difference function (ASDF) have been proposed. Exemplary results of the mean velocity determination of the gaseous phase transported by a liquid in the water-air mixture flow were demonstrated and the evaluation of its uncertainty have been presented.

  7. Customer service drives pipelines' reorganization

    International Nuclear Information System (INIS)

    Share, J.

    1997-01-01

    The concept behind formation of Enron Transportation and Storage tells plenty about this new gas industry. When executives at the Enron Gas Pipeline Group considered plans last year to streamline operations by merging the support functions of Transwestern Pipeline and their other wholly owned pipeline company, Northern Natural Gas, seamless customer service was foremost on their agenda. Instead of worrying about whether employees would favor one pipeline over the other, perhaps to the detriment of customers, they simply created a new organization that everyone would swear the same allegiance to. The 17,000-mile, 4.1 Bcf/d Northern system serves the upper Midwest market and two major expansion projects were completed there last year. Transwestern is a 2,700-mile system with an eastward capacity of 1 Bcf/d and westward of 1.5 Bcf/, that traditionally served California markets. It also ties into Texas intrastate markets and, thanks to expansion of the San Juan lateral, to southern Rocky Mountain supplies. Although Enron Corp. continues to position itself as a full-service energy company, the Gas Pipeline Group continues to fuel much of corporate's net income, which was $584 million last year. With ET and S comprising a significant portion of GPG's income, it was vital that the merger of Northern's 950 employees with Transwestern's 250 indeed be a seamless one. It was not easy either psychologically or geographically with main offices in Omaha, NE and Houston as well as operations centers in Minneapolis, MN; Amarillo, TX; W. Des Moines, IA; and Albuquerque, NM. But the results have been gratifying, according to William R. Cordes, President of ET and S and Nancy L. Gardner, Executive Vice President of Strategic Initiatives

  8. A historical case in the Bolivia-Brazil natural gas pipeline: slope on the Curriola River; Caso historico no Gasoduto Bolivia-Brasil: encosta no Rio Curriola

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Hudson Regis; Vasconcellos, Carlos Renato Aragonez de [Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The Bolivia-Brazil Natural Gas Pipeline has 2.593 kilometers since Rio Grande City in Bolivia until Canoas City, in south Brazil. The pipeline crosses a lot of types of geological fields and difficult topography. The south spread of the gas pipeline is the most interesting because of its hard topography combined with the variety of geological materials, such as, colluvium deposits and debris flow areas. Curriola River is located at the kilometer 408, north part of Parana State. In this area, the pipeline crosses slopes of 45 degrees of inclination. The down part of Curriola's slope is composed by a non-resistance material (clay and little rock blocks) with a high porosity. Every year, during the rainy seasons, tension cracks are observed evidencing the earth movement. The slope stability is above the minimum expected for pipeline operation. The aim of this paper is to present the site characterization of the Curriola River Slope, together with all the investigation made in order to supply the studies with condensed information for the slope stabilization. (author)

  9. 76 FR 78636 - Southern Star Central Gas Pipeline, Inc.; Supplemental Notice of Intent To Prepare an...

    Science.gov (United States)

    2011-12-19

    ... certificated boundary and buffer zone of the existing Alden Gas Storage Field by Southern Star Central Gas... requests authorization to expand its existing certificated boundary and buffer zone of its existing Alden... storage field boundary and buffer zone under these general headings: Geology and soils; Land use; Water...

  10. 77 FR 43711 - Standards for Business Practices of Interstate Natural Gas Pipelines

    Science.gov (United States)

    2012-07-26

    ... scheduling are not all that is required to ensure gas supplies to gas-fired generation. Spectra Entities... generation.\\30\\ \\29\\ Commenters on the Version 2.0 NOPR, and the abbreviations used to identify them, are... of time requests for NAESB WGQ Definitions (x.2.z Standards). The NAESB WGQ Definitions specify and...

  11. Contamination of medical gas and water pipelines in a new hospital building.

    Science.gov (United States)

    Eichhorn, J H; Bancroft, M L; Laasberg, L H; du Moulin, G C; Saubermann, A J

    1977-04-01

    Medical gases and water were sampled and tested for purity prior to the opening of a 176-bed addition to a 450-bed general hospital. Contamination was found. In delivered oxygen, compressed air, and nitrous oxide, this consisted of a volatile hydrocarbon at an initial concentration of 10 parts per million and a dust of fine gray particulate matter. In water from new taps bacterial contamination with as many 400,000 organisms per 100 ml was present. All these contaminants were considered potential hazards to patient safety. Studies were done to help delineate the nature and origin of these contaminants. Each contaminant was eventually largely eliminated by purging the respective pipeline systems with continuous flows. Planners, builders, and responsible medical personnel must be aware of the potential for such hazards in a new hospital building.

  12. Failure analysis of leakage caused by perforation in an L415 steel gas pipeline

    Directory of Open Access Journals (Sweden)

    Zhiyong Liu

    2017-10-01

    Full Text Available The reasons for the failure of a buried pipeline perforated during construction were investigated by a chemical composition analysis; a metallographic test; macromorphology observation; characterization of the corrosion products by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction; field medium characterization; and an analysis of the working conditions. The results revealed that the material composition and organization of the steel pipe conformed to API Specification 5CT. However, the reason for the perforation of the L415 steel pipe was an ultrahigh growth rate of pitting corrosion, as high as 14 mm per year. We confirmed that the synergistic effect of a high partial pressure of oxygen introduced by an improper packing process and concentrated Cl− in the corrosion product layer, which originated from groundwater with a high salt concentration that was used for the water pressure test, were responsible for the failure process.

  13. An analysis of the economic impact of non-pipeline options for developing Newfoundland's offshore natural gas resources

    International Nuclear Information System (INIS)

    Locke, W.; Millan, S.; Rodgers, B.

    2001-06-01

    The technical and economic feasibility of four non-pipeline development options for Newfoundland's offshore natural gas resources are examined. The options are: compressed natural gas (CNG) that is incremental to FPSO oil development (CNG FPSO Incremental); CNG as part of a Grand Bank System Gas Hub( CNG GBS Gas Hub); liquefied natural gas (LNG) that is incremental to FPSO oil development (LNG FPSO Incremental) and combined Fischer-Tropsch (gas-to-liquid technology) that is incremental to FPSO oil development (combined methanol/F-T). The economic impacts of each development option were considered in terms of project viability, employment and income impacts created through the supply of goods and services, employment effects resulting from project expenditures, incomes generated to Newfoundland factors of production, GDP impacts, and provincial treasury impacts, net of equalization losses. Results indicate that the largest employment and income impacts on the Newfoundland economy would be generated by the CNG GBS Gas Hub option (2,000 person-years of employment per year and $110 million income annually). The other three cases provide an equivalent level of benefits with an annual average of 1,650 person-years of employment and $90 million in incomes to business and labour. Each option is expected to generate between $16 and $21 million per annum to the Newfoundland treasury, net of equalization losses. GDP impacts are also close for all all four options, and provide no basis for preference of any option. In terms of project viability, the CNG FPSO Incremental option is considered by far the most attractive with a 33.7 per cent rate of return and a net present value of $1 billion, followed by the CNG GBS Gas Hub option at 18.3 per cent rate of return and a net present value of $317 million. The LNG FPSO incremental option has an internal rate of return of 17.8 per cent and a net present value of $263 million. The combined methanol/F-T option is not considered

  14. Lowering of pipeline in the Peloneas's Beach and mechanical protection of pipeline in main and secondary piers; Rebaixamento de dutos na Praia das Peloneas e protecao mecanica de dutos nos piers principal e secundario

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Ana Paula da Silva M.; Basilio, Kenia Afonso [PLANAVE, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The growing concern of PETROBRAS with the environmental protection aspects is intimately related with the need of developing preventive works of protection to the pipelines of the company. A study was accomplished in the pipelines inside the Guanabara Bay, whose goals was divided in three parts: identification of the risk areas for the pipelines; determination of the minimum depth of burying of the pipelines so that the risk in appreciation is minimized; identification of the areas in that the burying or a complemental burying make herself necessary. The study went based on to theory of conservation of energy, being admitted the non preservative embarkation system, and in the theory of the elasticity. For such a commercial program of finite elements was used. With base in the limits foreseen in the study, two critical areas of the Guanabara Bay were considered, which already suffered intervention with lowering. (author)

  15. ForGATE - A Forest Sector Greenhouse Gas Assessment Tool for Maine: Calibration and Overview

    Science.gov (United States)

    Chris Hennigar; Luke Amos-Binks; Ryan Cameron; John Gunn; David A. MacLean; Mark Twery

    2013-01-01

    This report describes the background calibration, inputs, and outputs of ForGATE, a forest sector greenhouse gas (GHG) accounting tool designed primarily to communicate information relevant to the evaluation of projected net GHG exchange in the context of Maine's forests, the Northeast forest sector, and alternative national or regional carbon (C) accounting...

  16. Efficiency analysis on the use of internal lining in the Bolivia-Brazil gas pipeline; Analise da eficiencia do uso de revestimento interno na tubulacao do gasoduto Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Frisoli, Caetano [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil); Silva, Marcos Jose Moraes da [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Bittencourt, Maria Angelica Santos; Coelho Junior, Robson Teixeira [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The internal lining in gas pipelines aims the reduction of roughness and, consequently, the friction factor, therefore resulting in a reduction of pressure drop in natural gas flowing. During Bolivia-Brazil gas pipeline basic design, the cost benefit of internal coating was analyzed, in terms of friction factor reduction and distances between Compressor Stations. It was observed an increase of transport capacity and reduction of compressors' power, thus leading to its utilization. Since the pipeline is already in operation, using a SCADA system with Advanced Functions, a comparison between the current real friction factor in the pipeline with that theoretical values used during the design phase becomes possible. Through this comparison, it is possible to evaluate internal coating's efficiency, quantifying its real benefit for gas pipelines. (author)

  17. The Main Principles of Adminisrative Licensing in Oil and Gas Sector of Norway

    Directory of Open Access Journals (Sweden)

    Nicolay N. Shvets

    2015-01-01

    Full Text Available The present article is dedicated to the analysis of administrative licensing procedure in Norwegian oil and gas sector. That is one of the most important mechanisms of state regulation in this area. The paper explores a wide range of reasons for choosing precisely this model of interaction between oil and gas companies and the state. The main aspects of the present administrative licensing system are highlighted in the article. Particular attention is paid to pre-qualification of oil and gas companies, participating in licensing rounds, especially to different criteria for choosing oil and gas companies that will operate on Norwegian Continental Shelf. Further conditions of their cooperation are provided. Moreover, the article refers to the role and the functions of state bodies in Norway that control and govern the licensing process - the Ministry of Petroleum and Energy and the Petroleum Directorate - and describes different types of licenses that exist in oil and gas sector of Norway. In conclusion the article shows numerous advantages of using the administrative licensing system in oil and gas sector, its impact on the economy of Norway and the possibility of its application in the oil and gas sector of Russia.

  18. Security resolution minute for natural gas distribution pipeline; Minuta de resolucao de seguranca na distribuicao do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Teles, Marcus de Barros [ARCE - Agencia Reguladora de Servicos Publicos Delegados do Estado do Ceara, Fortaleza, CE (Brazil)

    2003-07-01

    In the current scenery of natural gas distribution regulation, there is no specific resolution about security. The security is boarded in few concession contracts of some private gas companies, but not as principal theme. The security resolution minute presented in this paper aim break the direct and indirect causes of accidents, eliminating their potential. In this new point of view, the quality of services is the principal cause to guarantee the security of natural gas distribution systems. The methodology used to develop the minute was based on the research of Brazilian and American resolutions of state regulation agencies, concession contracts of private distribution gas companies, American code of federal regulation, ASME code for pressure piping B31.8 - 1999 edition and the NBR 12712 standard. The result of the research was the elaboration of an specific minute resolution of security that can be used as reference in the fiscalization of the natural gas distribution piping companies activities. This minute, can be an important instrument to avoid accidents and incidents, eliminating prejudices to the people, to properties, to environment and to the image of natural gas distribution companies and regulation agencies. (author)

  19. Economic and Strategic Expectations from Trans Anatolian Natural Gas Pipeline Project

    Directory of Open Access Journals (Sweden)

    Elchin Suleymanov

    2016-12-01

    Full Text Available Following the successful implementation of the oil strategy, Azerbaijan began to define strategic objectives in relation to gas export policy. Currently, Azerbaijan is the only country in the region exporting gas to the international markets (Turkey, Russia, Georgia. For this reason, it is seen as “the provider and participant” of Southern Gas Corridor by EU. In this direction, Azerbaijan aims to be the country of an important and strategic natural gas exporter. From Shahdeniz field to the end European user, it targets to take part in the every ring of the value chain. These assumptions bring Azerbaijan to the position of a remarkable natural gas supplier for the export of large amount of gas to the European markets through Nabucco West. The implementation of the project with financial and technical capabilities of Azerbaijan and Turkey has made it a project to be realized between Turkey-Azerbaijan. TANAP means Turkey and Azerbaijan will emerge together in the European market for energy transportation. Along with Baku-Tbilisi-Ceyhan and Baku-Tbilisi-Erzurum, TANAP has reinforced Turkey’s position as a necessary energy corridor in delivering the energy resources of the Caspian Sea to the Western markets. In this paper, expected strategic and economic outcomes of TANAP are analyzed.

  20. A new integrated planning model for gas compression and transmission through a complex pipeline network; Um novo modelo de planejamento integrado de compressao e escoamento de gas para uma rede complexa

    Energy Technology Data Exchange (ETDEWEB)

    Iamashita, Edson K. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Galaxe, Frederico; Arica, Jose [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil)

    2005-07-01

    The aim of this paper is to show a new approach to solve integrated gas balance planning problems that defines the best compression and transmission strategy for a system with a large number of platforms or compression units that are interlinked with the delivery points through a complex gas pipeline network. For solving the proposed optimization problem is used a genetic meta-heuristic technique, where the fitness function of the algorithm is the Profit function of the gas balance, being considered the incomes and costs besides the pipeline network constraints, representing the compression system and transmission network near to the real operational condition. Newton Raphson's method is used to solve the nonlinear system that represents the calculation of the pressure drop in the gas pipeline network that can contain various cycles. This model could be used for design and optimization of gas pipeline networks, as well as for the gas balance planning of an existent network looking for the profit maximization. (author)

  1. Pipe locator for imaging underground pipelines (abstract)

    Science.gov (United States)

    Miyamoto, Y.; Wasa, Y.; Mori, K.; Kondo, Y.

    1988-11-01

    Recently, it becomes more important to locate the complex piping patterns such as tee, bend, riser, and the others with high accuracy for maintenance and protection of city gas pipelines. Hence, we have developed a new pipe locator system for imaging the complex underground pipelines using magnetic remote sensing techniques. The main framework of this development is the application of the pattern recognition of the magnetic field distribution to the location of buried pipelines in urban areas. The first step for imaging the complex pipelines is to measure the three-dimensional magnetic field distribution with high accuracy which is generated by the passage of the alternating signal current through buried pipeline. For this purpose a portable trolley unit which is capable of scanning the ground to collect data, the 10 three-axes coil sensors with a sensitivity of 1 μG which are aligned in the unit, and a filter system using a FFT signal processor which eliminates urban magnetic noise as high as 10 mG in some cases, were developed. The second step is to process the magnetic field distribution data, to extract the feature of the underground pipeline using the contour diagram and the three-dimensional drawing of the magnetic field, and to identify the complex piping patterns. Further, we recognized that a nonlinear least-square method algorithm for calculation of the pipeline's position was useful to improve the location accuracy.

  2. GEOINFORMATION ECOLOGY-GEOMORPHOLOGIC ZONING OF MAIN PIPELINE ROUTES ACCORDING TO THE CONDITIONS OF RELIEF-FORMING PROCESSES IN THE ASIAN-PACIFIC REGION

    Directory of Open Access Journals (Sweden)

    I. S. Voskresensky

    2017-01-01

    Full Text Available The paper considers the experience of using geoinformation systems (GIS for local geomorphologic zoning. Within the main pipeline routes (MPR during the construction, the morphology of the relief and the surface cover of loose new deposits changes. As a result, dangerous relief-forming processes arise or are activated. Regional assessments of the geomorphological risk factor of nature management can be optimized on the basis of highlighting the individual features of the terrain of the routes in the GIS environment for geomorphologic zoning. The section of the route of the MPR ESPO within the Amur Region of the Russian Federation has been considered. GIS are used as the main methodical technique for local ecology-geomorphologic zoning under conditions of development of dangerous geomorphological processes. The necessity of local ecologygeomorphologic zoning is connected with the facts of activation of existing or newly emerging exogenous relief-forming processes established by now. They can have consequences in the form of emergencies. For example, when a route crosses the valleys of small rivers, a paragenesis of exogenous relief-forming processes (ERP occurs in the form of “landslide-gully formation and lateral erosion” or activation of the process of “deflation – mass displacement of slope deposits” on gentle slopes in areas of their inflections. Thus, the application of GIS for the allocation of local ecologogeomorphological sections of the ICP routes with the determining conditions for the development of dangerous ERP will make it possible to increase the efficiency of forecasting the change in terrain and landscapes in general. The proposed empirical methodology for the analysis of “local ecologogeomorphologic zoning” was developed and applied to the trunk pipelines of Russia. Examples are given of individual sections of the MPR ESPO within the Amur-Zeya Plain, which occupies the vast part of the Amur River basin in the south

  3. Energy Equation Derivation of the Oil-Gas Flow in Pipelines Dérivation de l’équation d’énergie de l’écoulement huile-gaz dans des pipelines

    Directory of Open Access Journals (Sweden)

    Duan J.M

    2012-09-01

    Full Text Available In the simulation of oil-gas pipeline multiphase flow, thermodynamic computation is an important process interacting with the hydraulic calculation and it influences the convergence of the program and the accuracy of the results. The form of the energy equation is the key to the thermodynamic computation. Based on the energy equation of oil-gas flow in pipeline, the Explicit Temperature Drop Formula (ETDF is derived for oilgas steady state temperature calculation. This new energy equation has considered many factors, such as Joule-Thomson effect, pressure work, friction work and impact of terrain undulation and heat transfer Oil & Gas Science and Technology – Rev. IFP Energies nouvelles with the surroundings along the line. So it is an overall form of energy equation, which could describe the actual fact of multiphase pipeline accurately. Therefore, some standpoints in literatures on the temperature calculation of oil-gas two-phase flow in pipelines are reviewed. Elimination of temperature iteration loop and integration of the explicit temperature equation, instead of enthalpy energy equation, into the conjugated hydraulic and thermal computation have been found to improve the efficiency of algorithm. The calculation applied to both the component model, also applied to the black-oil model. This model is incorporated into the component model and black-oil model, respectively, and two simulations are carried out with two practical pipeline Yingmai-Yaha and Lufeng multiphase pipeline and the temperature results are compared with the simulation calculated by the OLGA and the measured. It is shown that this model has simulated the temperature distribution very well. Finally, we analyzed the influence of the specific heat capacity of oil and gas on the temperature of the mixture of fluids and the influence of the Joule-Thomson effect on the temperature distribution on the pipeline. It is shown that the Joule-Thomson coefficient is a key factor to

  4. Pipeline engineering

    CERN Document Server

    Liu, Henry

    2003-01-01

    PART I: PIPE FLOWSINTRODUCTIONDefinition and Scope Brief History of PipelinesExisting Major PipelinesImportance of PipelinesFreight (Solids) Transport by PipelinesTypes of PipelinesComponents of PipelinesAdvantages of PipelinesReferencesSINGLE-PHASE INCOMPRESSIBLE NEWTONIAN FLUIDIntroductionFlow RegimesLocal Mean Velocity and Its Distribution (Velocity Profile)Flow Equations for One-Dimensional AnalysisHydraulic and Energy Grade LinesCavitation in Pipeline SystemsPipe in Series and ParallelInterconnected ReservoirsPipe NetworkUnsteady Flow in PipeSINGLE-PHASE COMPRESSIBLE FLOW IN PIPEFlow Ana

  5. Natural gas supplies

    International Nuclear Information System (INIS)

    2009-01-01

    After having briefly commented the share of natural gas in the primary consumed energy in Europe and in France, and the reasons for its evolution, this document highlights that gas is mainly used for heating, electricity production and industrial purposes, that Europe possesses limited gas resources and must therefore rely on importations. It comments the diversification of supply sources, evokes new gas-pipeline projects between Europe and producer countries (mainly Russia), and briefly comments the development of liquefied natural gas

  6. The main cooling system of the RSG-GAS: a study of dissabilities

    International Nuclear Information System (INIS)

    Sudiyono

    1999-01-01

    The RSG-GAS has been operating since August 1987 until now. During that period it has been many papers explain the performance and the safety features of the system. Those papers does not mean any think to the system, but the wickednesses of the system. Is still remain stick on it. This paper describes the wickednesses of the RSG-GAS main cooling system with an objective that their will be a corrective action of the management to improve the system so that such wickednesses can be minimized or even be avoided

  7. Ability for construction of administrative serve from gas pipelines; Competencia para constituicao de servidao administrativa dos dutos de gas

    Energy Technology Data Exchange (ETDEWEB)

    Souza Neto, Gaudencio Jeronimo de; Araujo, Izabella Maria Medeiros e; Mendonca, Fabiano Andre de Souza [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Faculdade de Direito

    2004-07-01

    The work in focus longs for to elucidate the relative question to the institution of administrative servitude for the passage of the natural gas ducts. Preliminarily, we will deal with the question of the the citizen's access of fuels, dedicating to the social function of the national system of supplying. We objectify to demonstrate the importance of the industry of the natural gas for the economic development of the country because it's an energy alternative to oil, more vulnerable to the oscillations of the international market. In this context, we stand out the relevance of the activities of transport and distribution as way of access to the natural gas and the necessary legal instrument to the viability of these activities, that it is the administrative servitude, through which the passage of the gas-lines in particular properties is possible. We will define who in the State is competent to declare the public utility of areas to institute the servitude and to forward the resultant of the authorization of the administrative proceeding. The used criterion is the principle of the predominance of the interest, that it is the general principle of the distribution of the abilities in the Federal Constitution. (author)

  8. Social and environmental assessment: a preliminary data base on population and territory in the undertakings pipelines: a natural gas pipeline GASBEL II; Avaliacao socioambiental - base de dados preliminar sobre populacao e territorio em empreendimentos de dutos - estudo de caso: avaliacao socioambiental GASBEL II

    Energy Technology Data Exchange (ETDEWEB)

    Bartolini, Marcia; Bach, Vanessa [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Ismerio, Marcia [Pallos Consultorias, Rio de Janeiro, RJ (Brazil); Leal, Edna Mara [Camargo Correa Engenharia (Brazil)

    2008-07-01

    The social environmental assessment consists in an instrument of planning which principal objective is to know the social ambient that will be changed by the PETROBRAS' pipe undertakings, that are planning to be implemented and will be analyzed by the licensers environmental organs. When pipeline projects are planned, their route cross some regions and ecological sensitive areas, therefore, the attitude of consider the social environmental aspects at the planning stage through the use of valuation instruments, anticipating, the potential social and environmental impacts, assumes more importance in integrating management of these undertakings. This presentation has the main objective to stand out the relevance of the social environmental assessment realization as preliminary knowledge base to the undertakings, since the research results developed represents a support of information about the regions where the undertakings install themselves in distinct stages: environmental permits, assembly and construction and operating. The social environmental assessment of the project named GASBEL II is presented as a case study once it allow to observe a gas pipeline transport project to be implemented at different regions and areas. The Pipeline will cross two different federal states, where the local research boarded many communities with different ways and conditions of life, territory use, cultural expressions and other aspects. (author)

  9. 77 FR 22387 - Pipeline Safety: Information Collection Activities, Revision to Gas Transmission and Gathering...

    Science.gov (United States)

    2012-04-13

    .... The revisions to these forms will allow for the reporting of detailed information regarding the pipe involved with the weld. This information includes basic information such as pipe size, diameter, and... this granularity which was lost during the 2010 revision to the gas transmission annual report. Parts D...

  10. 78 FR 13663 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-02-28

    ... further migration. The gas recovery laterals will be installed pursuant to the automatic provisions of... placed on the Commission's environmental mailing list, will receive copies of the environmental documents.... Environmental commenter's will not be required to serve copies of filed documents on all other parties. However...

  11. Airflow Model Testing to Determine the Distribution of Hot Gas Flow and O/F Ratio Across the Space Shuttle Main Engine Main Injector Assembly

    Science.gov (United States)

    Mahorter, L.; Chik, J.; McDaniels, D.; Dill, C.

    1990-01-01

    Engine 0209, the certification engine for the new Phase 2+ Hot Gas Manifold (HGM), showed severe deterioration of the Main Combustion Chamber (MCC) liner during hot fire tests. One theory on the cause of the damage held that uneven local distribution of the fuel rich hot gas flow through the main injector assembly was producing regions of high oxidizer/fuel (O/F) ratio near the wall of the MCC liner. Airflow testing was proposed to measure the local hot gas flow rates through individual injector elements. The airflow tests were conducted using full scale, geometrically correct models of both the current Phase 2 and the new Phase 2+ HGMs. Different main injector flow shield configurations were tested for each HGM to ascertain their effect on the pressure levels and distribution of hot gas flow. Instrumentation located on the primary faceplate of the main injector measured hot gas flow through selected injector elements. These data were combined with information from the current space shuttle main engine (SSME) power balances to produce maps of pressure, hot gas flow rate, and O/F ratio near the main injector primary plate. The O/F distributions were compared for the different injector and HGM configurations.

  12. The influence of the internal microbiome on the materials used for construction of the transmission natural gas pipelines in the Lodz Province

    Science.gov (United States)

    Staniszewska, Agnieszka; Jastrzębska, Magdalena; Ziemiński, Krzysztof

    2017-10-01

    This paper presents investigation results of the influence of gas microbes on the biocorrosion rate of the materials used for gas pipelines construction in the Lodz Province. Samples of two types of carbon steel and cast iron were stored in the laboratory pipeline model reflecting the real conditions of working natural gas pipelines were. In the next step the influence of cathodic protection with parameters recommended for protection of underground structures was tested. Analyses of biological corrosion products generated on the test surface were carried out using a scanning electron microscope with an X-ray analyzer. The level of ATP was measured to confirm presence of the adsorbed microorganisms on the observed structures. Corrosion rates were determined by gravimetric methods. In the course of the study it was revealed that the rate of biocorrosion of steel is lower than that for cast iron. Our results also proved that the weight corrosion rate depends on the number of adhered microorganisms. In addition, it has been found that application of the carbon steel cathodic protection decreases its weight corrosion rate. The information obtained will help to increase the knowledge on the rate of biological corrosion causing losses/pits inside gas pipline.

  13. Review of the Ikhil gas development and pipeline regulatory and environmental process : lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    This paper presented a case study of a gas development project in order to identify strengths and weaknesses in the environmental assessment process, permitting processes, and monitoring procedures related to Mackenzie Delta hydrocarbon developments. The Ikhil project is the sole oil and gas production and transportation facility situated within the Inuvialuit Settlement Region (ISR). The study involved interviews with members of the oil and gas industry, federal regulators and agencies, Inuvialuit agencies and organizations, and government agencies within the Northwest Territories (NT). Issues related to permitting requirements, regulatory approvals, assessment methodologies and environmental management plans were discussed. Results indicated that the majority of respondents approved of the regulatory process. However, respondents agreed that further guidelines are needed to assist project proponents in determining an approach for the collection and use of traditional knowledge and an understanding of cumulative effects. Other recommendations included clarifying the environmental review process for trans-boundary projects; the development of guidelines for the disposal of drilling wastes; and further refinement and clarifications of the roles of various agencies. 10 refs., 3 tabs., 1 fig.

  14. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  15. Operation and design of gas pipeline with cross geographical areas with big altitude changes: importance of the dynamic analysis; Diseno y operacion de gasoductos en zonas de elevadas diferencias altimetricas: importancia del analisis dinamico

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Oscar [Transportadora de Gas del Norte S.A. (Argentina)

    2003-07-01

    The Natural Gas Demand has increased constantly in the last decades. It was mainly due to the discovery of enormous gas reserves, the opening of the energetic markets and its utilization as fuel for power generation The supply of new markets in Latin America has meant the development of several interconnection projects among countries. The development of projects crossing the Andes Mountains, with big altitude differences, impose new requirements for the design and pipeline operation The purpose of this paper is to continue the analysis of the gas pipeline modeling methods which cross geographical areas with big altitude changes, specifically under the dynamic point of view In these cases, the operating parameters are strongly linked to the analysis and comprehension of transient phenomenon and consequently an efficient line pack management. The demand suing is fundamental when systems crossing this kind of geographical areas are designed and operated The design should consider the response time, having capacity to support a demand variation. Finally the impact in the commercial operation of this phenomenon is analyzed, due to the possibility to detect idle capacity or optimize solutions, reducing investment and assurance an operation without risks. Thus in the design period , the capability of bringing a reliability service at a reduced cost is emphasized in benefit of the customers. (author)

  16. Fundamental study on leak detection of underground gas pipeline using passive acoustic method; Judogata onkyo keisoku ni yoru maisetsu gas dokan hason kasho no kenshutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Jinguji, M.; Imaizumi, H.; Kunimatsu, S.; Isei, T. [National Institute for Resources and Environment, Tsukuba (Japan)

    1997-05-27

    With an objective to detect gas leaking from an underground gas pipeline, discussions have been given on a method which utilizes acoustic characteristics of leakage. On leaking sound generated from damaged portions, the form of damaging was hypothesized as pinholes, and spectra of leaking sounds from holes with different diameters were measured. The dominant frequency decreases as the hole diameter increases, while it is in a region of relatively high frequency of 1 kHz or higher. However, detection from the ground surface was impossible when cover soil has thickness from 0.5 to 1.5 m. In an experiment to measure leaking sound inside the pipe, pressure in the pipe was adjusted to 0.02 atm which is a standard pressure for a low-pressure pipe, and the sound was measured when the hole diameters were varied. In any of the results obtained by varying the hole diameter, spectra having the dominant frequency in the region of 1 kHz or higher were measured. In addition, it was found that sound pressure difference of as much as 50 dB at maximum is generated as compared with a case of no sound leakage. The above results verified that monitoring the high frequency of 1 kHz or higher is effective in detecting leakage from small damages. 2 refs., 4 figs.

  17. Fishing intensity around the BBL pipeline

    NARCIS (Netherlands)

    Hintzen, Niels

    2016-01-01

    Wageningen Marine Research was requested by ACRB B.V. to investigate the fishing activities around the BBL pipeline. This gas pipeline crosses the southern North Sea from Balgzand (near Den Helder) in the Netherlands to Bacton in the UK (230km). This pipeline is abbreviated as the BBL pipeline. Part

  18. Environmental assessment on PETROBRAS pipeline projects: case study of Cacimbas-Catu gas pipeline; Engenharia de avaliacao ambiental no processo de concepcao de projetos de dutos da PETROBRAS - estudo de caso do Gasoduto Cacimbas (ES) - Catu (BA)

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Wilson Jose de; Pereira Junior, Edson R.; Fonseca, Renata A. Almeida; Rocha, Marcelo de Andrade; Soares, Luis Felipe [PETROBRAS Engenharia, RJ (Brazil). Engenharia de Avaliacao Ambiental

    2005-07-01

    The environmental assessment process is one of the most important phases in the implementation of pipeline projects. For that reason, new technologies and work procedures are used to perform the environmental assessment of areas where pipeways will be implemented. Since the quality of environmental assessment studies influences the social acceptance of projects and, consequently, the time required to obtain the environmental permits, PETROBRAS (Engenharia/IETEG/ETEG/EAMB) applies advanced technological tools to acquire remote sensing data (conventional / digital aero-surveys and satellite images), as well as software for digital image processing and integration and spatial analysis of information. Information about the physical, biological and socioeconomic environments are further verified and complemented through field trips using helicopters. This process makes it possible to identify environmentally favorable corridors to develop guidelines for the implementation of the pipeline, assuring its environmental feasibility, and produces relevant data to support the Environmental Impact Assessment Study, the Environmental Impact Assessment Report and the Risk Analysis Study. As an example of the application of this methodology, this paper presents results of the assessment of the Cacimbas / Catu gas pipeline, which is currently being permitted and is planned to be implemented in areas of high environmental complexity. (author)

  19. Gas pipeline internal painting: an economical advantage; Uso da pintura interna em gasodutos: uma vantagem economica

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Christian E.; Santos, Paulo T. [Soco-Ril do Brasil S.A., Pindamonhangaba, SP (Brazil)]|[Faculdade de Engenharia Quimica de Lorena (FAENQUIL), SP (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Oliveira, Luiz C. [Confab Industrial S.A., Pindamonhangaba, SP (Brazil)]|[Faculdade de Engenharia Quimica de Lorena (FAENQUIL), SP (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Campos, Paulo H. [Confab Industrial S.A., Pindamonhangaba, SP (Brazil)

    2003-07-01

    Focusing the fabulous financial losses due to the corrosion problems, it had been necessary increase the range of new technologies and developments regarding material protection. The application of internal painting systems have become the most employed protection technical, showing a lot of benefits: improved flow characteristics of gas, reduced energy consumption of pumping, reduced pressure drops, easily application, inspection and maintenance, faster commissioning, reduced deposition of condensate and microorganism, excellent preventing corrosion during storage and operation, and others. The present paper describe the advantages and the technical and financial benefits of liquid epoxy internal coating. (author)

  20. Criteria of assessment for local wall thickness reductions in operative high-pressure gas pipelines; Beurteilungskriterien fuer lokale Wanddickenminderungen an in Betrieb befindlichen Gashochdruckleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Hass, Georg [NetzDienste Rhein/Main GmbH, Frankfurt am Main (Germany); Hoffman, Ulrich [VNG - Verbundnetz Gas AG, Leipzig (Germany); Konarske, Juergen [RWE Westfalen-Weser-Ems Netzservice GmbH, Recklinghausen (Germany); Soppa, Thorsten [NG Netz Gas+Wasser (Germany). Bau/Betrieb Hochdrucknetz; Steiner, Michael [Open Grid Europe GmbH, Essen (Germany). Integritaet/Werkstofftechnik

    2011-07-01

    TUeV Nord, Salzgitter Mannesmann Forschung and DVGW investigated methods to assess local wall thickness reductions in operative high-pressure gas pipelines. Methods described in the relevant literature were reviewed with regard to the limiting criteria defined for maximum permissible wall thickness reductions. On the basis of this literature study and additional calculations, a comparative evaluation of the available methods was made. Several methods were identified that are compatible with the existing safety concept and general availability. It was found that - nearly independent of the method - burst safeties of 1.8 to 2.0 were used. The ultimate goal is the development of a German standard evaluation concept for local wall thickness reductions in high-pressure gas pipelines in order to avoid uncertainties and/or misinterpretations.

  1. Last 20 years of gas hydrates in the oil industry : challenges and achievements in predicting pipeline blockage

    Energy Technology Data Exchange (ETDEWEB)

    Estanga, D.A.; Creek, J.; Subramanian, S.; Kini, R.A. [Chevron Energy Technology Co., Houston, TX (United States)

    2008-07-01

    This paper reviewed how the successes of the past 20 years have shaped the new hydrate focus. It also outlined innovative tools for hydrate plugging prediction. Tools such as CSMHyK-OLGA were developed to address the design and operational challenges associated with offshore production regarding flow assurance in the area of gas hydrates. The effort to understand the complex behavior of gas hydrates in multiphase flow has resulted in new hydrate blockage models. Although the hydrate community continues to debate the impact of kinetics, agglomeration, and oil chemistry effects on hydrate blockage formation in pipelines and wellbores, the petroleum industry still relies on thermodynamic strategies that completely prevent hydrates in production systems. However, these complex strategies such as thermal insulation, electric heating, dead oil displacement, and methanol injection are costly, particularly for marginal fields. As such, research continues in developing a comprehensive multiphase flow simulator capable of handling the transient aspects of production operations, notably shut-in, restart, blowdown and blockage prediction. Model predictions are leading to new operating strategies based on risk management approach. This paper discussed the challenges and opportunities that have shifted the focus from prevention of hydrates to prevention of blockage. Some initial successes in the development of a first generation empirical tool for the prediction of hydrate blockages in flow lines were also presented along with new experimental data that explained how hydrate blockages can manifest in the field. It was concluded that additional research is needed to solve the problem of hydrate plugging mechanism. 12 refs., 6 figs.

  2. 76 FR 57726 - Take Notice That the Commission Has Received the Following Natural Gas Pipeline Rate and Refund...

    Science.gov (United States)

    2011-09-16

    ... Docket Numbers: RP11-2558-000. Applicants: Big Sandy Pipeline, LLC. Description: Big Sandy Pipeline, LLC.../2011. Filed Date: 09/08/2011. Accession Number: 20110908-5021. Comment Date: 5 p.m. Eastern Time on... 385.211 and 385.214) on or before 5 p.m. Eastern time on the specified comment date. Protests may be...

  3. Deflating the shale gas potential of South Africa's Main Karoo basin

    Directory of Open Access Journals (Sweden)

    Michiel O. de Kock

    2017-09-01

    Full Text Available The Main Karoo basin has been identified as a potential source of shale gas (i.e. natural gas that can be extracted via the process of hydraulic stimulation or ‘fracking’. Current resource estimates of 0.4–11x109 m3 (13–390 Tcf are speculatively based on carbonaceous shale thickness, area, depth, thermal maturity and, most of all, the total organic carbon content of specifically the Ecca Group’s Whitehill Formation with a thickness of more than 30 m. These estimates were made without any measurements on the actual available gas content of the shale. Such measurements were recently conducted on samples from two boreholes and are reported here. These measurements indicate that there is little to no desorbed and residual gas, despite high total organic carbon values. In addition, vitrinite reflectance and illite crystallinity of unweathered shale material reveal the Ecca Group to be metamorphosed and overmature. Organic carbon in the shale is largely unbound to hydrogen, and little hydrocarbon generation potential remains. These findings led to the conclusion that the lowest of the existing resource estimates, namely 0.4x109 m3 (13 Tcf, may be the most realistic. However, such low estimates still represent a large resource with developmental potential for the South African petroleum industry. To be economically viable, the resource would be required to be confined to a small, well-delineated ‘sweet spot’ area in the vast southern area of the basin. It is acknowledged that the drill cores we investigated fall outside of currently identified sweet spots and these areas should be targets for further scientific drilling projects. Significance: This is the first report of direct measurements of the actual gas contents of southern Karoo basin shales. The findings reveal carbon content of shales to be dominated by overmature organic matter. The results demonstrate a much reduced potential shale gas resource presented by the Whitehill

  4. Correlation between designed wall thickness of gas pipelines and external and internal corrosion processes; Adequacao de espessura de parede projetada em funcao de processos de corrosao externa e interna em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Jose Antonio da Cunha Ponciano [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Engenharia Metalurgica

    2004-07-01

    Corrosion control on gas pipelines plays an important role on the assessment of pipeline integrity and reliability. In many countries a great extension of buried pipelines is used on transport and distribution systems. This extension will be certainly increased in a near future due to the increasing consumption of natural gas. Inadequate corrosion control can drive to pipeline failures, bringing up the possibility of accidents in populated or environmental protected areas, bringing together severe economical, legal and environmental consequences. Corrosion is frequently considered as a natural and inevitable phenomenon. Based upon this assumption, some recommendations are included on design standards of gas pipelines in order to compensate its detrimental effect. The aim of this work is to present a review of the correlation between external corrosion process and the guidelines established during the project phase of gas pipelines. It is intended to contribute for a better understanding of the impacts of corrosion on integrity, reliability and readiness of gas transport and distribution systems. Some aspects regarding external corrosion of pipelines extracted from technical papers will be summarised. Information provided will be compared to design criterion prescribed by the NBR 12712 Standard. (author)

  5. The legal nature of gas marketers' entitlement to access to gas pipelines and the negotiated TPA contracts of the German gas industry; Zur Rechtsnatur des energierechtlichen Anspruchs auf Zugang zu Gasversorgungsnetzen und des Gasdurchleitungsvertrages

    Energy Technology Data Exchange (ETDEWEB)

    Frank, T.; Ziller, G. [Ruhrgas AG, Essen (Germany). Hauptbereich Recht

    2002-07-01

    In the course of activities for establishing a legal framework of third-party access (TPA) to gas pipelines in the liberalising national gas markets and the EU internal market in natural gas, some issues of a legal and practical nature could not be resolved to date. Although the article discusses the two essential issues mentioned in the title exclusively from the perspective of national and EC energy law, the legal analysis is also of significance to practice. (orig./CB) [German] Der auf nationaler und europaeischer Ebene zunehmend an Bedeutung gewinnende Zugang zu Gasversorgungsnetzen fuer Durchleitungskunden beinhaltet neben einer Reihe von praktischen auch viele rechtliche Fragen, die bislang nicht oder nur unzureichend beantwortet sind. Der Beitrag behandelt zwei der Fragestellungen aus juristischer Sicht, deren Beantwortung aber auch fuer die Praxis von grosser Bedeutung ist. (orig.)

  6. Integrated natural gas pipeline control and customer service system of Gasum; Le systeme integre de controle des canalisations de gaz et de service au consommateur chez Gasum

    Energy Technology Data Exchange (ETDEWEB)

    Aho, J.; Manty, O.; Ahlnas, B. [Gasul Oy (Finland)

    2000-07-01

    Due to the rapid development of the information technology, ageing is not the only driving force for replacing old computer systems with more sophisticated ones. The Finnish natural Gas company, Gasum Oy, has recently taken into use a new control and monitoring system for natural gas pipeline. A special customer service system, developed by Gasum Oy, is closely connected to monitoring system. It provides up-to-date information to all customers of Gasum Oy. The information is layered in three confidential levels: general information, operational data and invoicing information. The system is operating interactively in confidential Extranet. Inside Gasum Oy to meet the needs of departments outside the control room, a new GID system is developed. GID is a way to present pipeline process data and its further modifications with a very user-friendly interface based on geographical map. The system is based on data warehouse architecture and it is working on company's Intranet. This makes it possible to present various secrecy level information based on user ID. Gasum's new SCADA is not only the base for operating the pipeline, but it also provides lot of vital information to other systems serving different user groups within natural gas business in Finland. (authors)

  7. Long-term contracts for European gas supply - an empirical analysis of the changing nature of pipeline and LNG-contracts

    International Nuclear Information System (INIS)

    Neumann, Anne

    2005-01-01

    As the structure of the European natural gas market is evolving towards more competition and more diverse market structures than before, the nature of the long-term contracts for European natural gas supply is also undergoing change. Experience from other liberalization processes, such as in the U.S. or the UK, suggests that the importance of long-term contracts diminishes over time, but that they remain an important element of supply. In Europe long-term contracts are still considered as a firm basis for investment and financing of capital-intensive infrastructure with a high degree of asset and relationship-specificity. Literature on institutional economics also suggests that long-term contracts act as a device to overcome the ''hold-up'' problem of relationship-specific investments in infrastructure (Klein, Crawford, and Alchian, 1987; Williamson, 1975, 1985). On the other hand, Hartley and Brito (2002) show that more flexible markets also imply a lower degree of asset specificity, thus requiring less fixed contracts. This paper explores the changing nature of long-term contracts for European natural gas supply, with a particular focus on differences between contracts for pipeline gas and liquefied natural gas (LNG). Traditionally, Europe relied on very long-term contracts for pipeline gas (Russia, Norway, Algeria). More recently, increasing LNG supplies are contemplated as a more flexible source of natural gas: The international LNG market is becoming more flexible, LNG can be sourced from a variety of sellers, and the cost of LNG supplies and infrastructure is coming down rapidly (Jensen, 2004). Thus, the evaluation of investing in LNG infrastructure (and the so bought flexibility and possibility of arbitraging profits) may be higher than committing to fixed/predetermined flows of pipeline gas. We ask whether this is reflected in the observed contracts. The paper is based on standard contract theory (Bolton and Dewatripont, 2005). We apply a microeconomic

  8. Effects of the construction of a high density earth fill over the Merluza gas pipeline right-of-way; Efeitos da construcao de aterro de alta densidade sobre a faixa do gasoduto Merluza

    Energy Technology Data Exchange (ETDEWEB)

    Musman, Jacqueline V.R.; Soares, Jose P. [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    In this work, we present the studies for evaluation of the effects of the construction of a high-density earth fill over Merluza gas pipeline right-of-way. The earth fill construction has provoked vertical displacements because of consolidation of the foundation soil, which is consisted of soft clay deposits. So the pipeline is being submitted to tension stresses. The studies included pipeline stress-strain analyses, hardness tests and displacements calculation based on consolidation theory. IPT - Instituto de Pesquisas Tecnologicas made the pipeline stress-strain analyses using the finite element method. Theses analyses indicated tension stresses above the yield limits in some elements. CENPES - Centro de Pesquisas da PETROBRAS made some hardness tests to verify the numerical results. After this, TRANSPETRO evaluated the vertical displacements using consolidation theory. Some laboratory tests were made using undisturbed samples of the soft soil. All these studies were made to verify safety and structural integrity of the gas pipeline. (author)

  9. Mitigating the consequences of extreme events on strategic facilities: evaluation of volcanic and seismic risk affecting the Caspian oil and gas pipelines in the Republic of Georgia.

    Science.gov (United States)

    Pasquarè, F A; Tormey, D; Vezzoli, L; Okrostsvaridze, A; Tutberidze, B

    2011-07-01

    In this work we identify and quantify new seismic and volcanic risks threatening the strategic Caspian oil and gas pipelines through the Republic of Georgia, in the vicinity of the recent Abuli Samsari Volcanic Ridge, and evaluate risk reduction measures, mitigation measures, and monitoring. As regards seismic risk, we identified a major, NW-SE trending strike-slip fault; based on the analysis of fault planes along this major transcurrent structure, an about N-S trend of the maximum, horizontal compressive stress (σ1) was determined, which is in good agreement with data instrumentally derived after the 1986, M 5.6 Paravani earthquake and its aftershock. Particularly notable is the strong alignment of volcanic vents along an about N-S trend that suggests a magma rising controlled by the about N-S-directed σ1. The original pipeline design included mitigation measures for seismic risk and other geohazards, including burial of the pipeline for its entire length, increased wall thickness, block valve spacing near recognized hazards, and monitoring of known landslide hazards. However, the design did not consider volcanic risk or the specific seismic hazards revealed by this study. The result of our analysis is that the Baku-Tbilisi-Ceyhan (BTC) oil pipeline, as well as the Baku-Tbilisi-Erzerum South Caucasian natural gas pipeline (SCP) were designed in such a way that they significantly reduce the risk posed by the newly-identified geohazards in the vicinity of the Abuli-Samsari Ridge. No new measures are recommended for the pipeline itself as a result of this study. However, since the consequences of long-term shut-down would be very damaging to the economies of Western Europe, we conclude that the regionally significant BTC and SCP warrant greater protections, described in the final section of or work. The overall objective of our effort is to present the results in a matrix framework that allows the technical information to be used further in the decision

  10. Gas pipeline supervision - Automatic traceability; Surveillance des canalisations de gaz - Tracabilite automatique

    Energy Technology Data Exchange (ETDEWEB)

    Dezobry, J.; Leon-Garcia, C.; Trembley, Y.

    2002-07-01

    Most of the damages occurring in a gas distribution network are caused by local human activities like for example, earthworks. To prevent such damages a general monitoring scheme is set up. The one introduced by the company Gaz de France currently consists of checking the whole network by fixedly scheduled patrols by car, aircraft, helicopter, as well as by walking, aiming at detecting unannounced construction works and supervising works in progress. The article reports on a new, computer-assisted monitoring scheme designed to improve the overall efficiency and reduce cost. All types of vehicles used for the supervision are equipped with a global-positioning-system (GPS) device for the monitoring of their trajectories. From the data analysis, which includes geographic information system (GIS) capabilities, the supervision frequency is available for each network section. Accordingly, the following patrols may be optimized and the best transportation selected, with priority given to the sections which have been neglected so far. This concept has been successfully tested on a network section of 300 km near Paris involving five monitoring cars. Gaz de France plans its extension to whole network (30,000 km).

  11. Planned and proposed pipeline regulations

    International Nuclear Information System (INIS)

    De Leon, C.

    1992-01-01

    The Research and Special Programs Administration administers the Natural Gas Pipeline Safety Act of 1968 (NGPSA) and the Hazardous Liquid Pipeline Safety Act of 1979 (HLPSA). The RSPA issues and enforces design, construction, operation and maintenance regulations for natural gas pipelines and hazardous liquid pipelines. This paper discusses a number of proposed and pending safety regulations and legislative initiatives currently being considered by the RSPA and the US Congress. Some new regulations have been enacted. The next few years will see a great deal of regulatory activity regarding natural gas and hazardous liquid pipelines, much of it resulting from legislative requirements. The office of Pipeline Safety is currently conducting a study to streamline its operations. This study is analyzing the office's business, social and technical operations with the goal of improving overall efficiency, effectiveness, productivity and job satisfaction to meet the challenges of the future

  12. Chechnya: the pipeline front

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-11-01

    This article examines the impact of the Russian campaign against Chechnya on projects for oil and gas pipelines from the new Caspian republics, which are seeking financial support. Topics discussed include the pipeline transport of oil from Azerbaijan through Chechnya to the Black Sea, the use of oil money to finance the war, the push for non-Russian export routes, the financing of pipelines, the impact of the war on the supply of Russian and Turkmenistan gas to Turkey, the proposed construction of the Trans Caspian pipeline, the weakening of trust between Russia and its neighbours, and the potential for trans Caucasus republics to look to western backers due to the instability of the North Caucasus. (UK)

  13. Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state

    International Nuclear Information System (INIS)

    Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip

    2014-01-01

    Highlights: • Validated CFD models for decompression and dispersion of CO 2 releases from pipelines. • Incorporation of real gas EOS into CFD code for source strength estimation. • Demonstration of better performance of SST k–ω turbulence model for jet flow. • Demonstration of better performance of real gas EOS compared to ideal gas EOS. • Demonstration of superiority of CFD models over a commercial risk assessment package. - Abstract: Transportation of CO 2 in high-pressure pipelines forms a crucial link in the ever-increasing application of Carbon Capture and Storage (CCS) technologies. An unplanned release of CO 2 from a pipeline presents a risk to human and animal populations and the environment. Therefore it is very important to develop a deeper understanding of the atmospheric dispersion of CO 2 before the deployment of CO 2 pipelines, to allow the appropriate safety precautions to be taken. This paper presents a two-stage Computational Fluid Dynamics (CFD) study developed (1) to estimate the source strength, and (2) to simulate the subsequent dispersion of CO 2 in the atmosphere, using the source strength estimated in stage (1). The Peng–Robinson (PR) EOS was incorporated into the CFD code. This enabled accurate modelling of the CO 2 jet to achieve more precise source strength estimates. The two-stage simulation approach also resulted in a reduction in the overall computing time. The CFD models were validated against experimental results from the British Petroleum (BP) CO 2 dispersion trials, and also against results produced by the risk management package Phast. Compared with the measurements, the CFD simulation results showed good agreement in both source strength and dispersion profile predictions. Furthermore, the effect of release direction on the dispersion was studied. The presented research provides a viable method for the assessment of risks associated with CCS

  14. Pipeline system operability review

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Kjell [Det Norske Veritas (Norway); Davies, Ray [CC Technologies, Dublin, OH (United States)

    2005-07-01

    Pipeline operators are continuously working to improve the safety of their systems and operations. In the US both liquid and gas pipeline operators have worked with the regulators over many years to develop more systematic approaches to pipeline integrity management. To successfully manage pipeline integrity, vast amounts of data from different sources needs to be collected, overlaid and analyzed in order to assess the current condition and predict future degradation. The efforts undertaken by the operators has had a significant impact on pipeline safety, nevertheless, during recent years we have seen a number of major high profile accidents. One can therefore ask how effective the pipeline integrity management systems and processes are. This paper will present one methodology 'The Pipeline System Operability Review' that can evaluate and rate the effectiveness of both the management systems and procedures, as well as the technical condition of the hardware. The result from the review can be used to compare the performance of different pipelines within one operating company, as well as benchmark with international best practices. (author)

  15. Leak detection technologies for oil and gas pipelines; Tecnologias para deteccao e localizacao de vazamento em dutos de oleo e ou gas

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Julio R. [MTT Aselco Automacao Ltda., Sao Paulo, SP (Brazil)

    2005-07-01

    Two concepts are available for leak detection in oil and/or gas pipelines: On-line leak detection system and off-line leak detection technique. The off-line leak detection technique is, usually, portable and does net configure a 'system'. This technique includes hydro-test, acoustic emission of high frequency, tracer of chemical substances, ultrasonic flow meter (UT), thermographic infra-red mapping, electromagnetic offset registration, etc. Since most of those methods requests stop of the system or depend on direct and detailed inspection of the whole monitored piping they are limited to the off-line inspection. In the current days there are only two technologies applied to detect and locate leaks on-line: The acoustic Leak Detection System and the modeling of computerized simulation also called as RTM (Real Time Modeling), RTTM or Mass Balance. There are still other techniques in the market, as acoustic emission, pressure analysis (PPA) beyond other rough techniques, without good results. Even some of these techniques are working without success, they are still used to accomplish with government standards. (author)

  16. CARMA LARGE AREA STAR FORMATION SURVEY: STRUCTURE AND KINEMATICS OF DENSE GAS IN SERPENS MAIN

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katherine I.; Storm, Shaye; Mundy, Lee G.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Fernández-López, Manuel; Looney, Leslie W.; Segura-Cox, Dominique [Department of Astronomy, University of Illinois, Urbana-Champaign, IL 61801 (United States); Rosolowsky, Erik [Departments of Physics and Statistics, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC V1V 1V7 (Canada); Arce, Héctor G.; Plunkett, Adele L. [Department of Astronomy, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States); Ostriker, Eve C. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Shirley, Yancy L. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Kwon, Woojin [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); Kauffmann, Jens [Max Planck Institut für Radioastronomie, Auf dem Hügel 69 D-53121, Bonn Germany (Germany); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Volgenau, N. H. [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Tassis, Konstantinos, E-mail: ijlee9@astro.umd.edu [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, PO Box 2208, GR-710 03, Heraklion, Crete (Greece); and others

    2014-12-20

    We present observations of N{sub 2}H{sup +} (J = 1 → 0), HCO{sup +} (J = 1 → 0), and HCN (J = 1 → 0) toward the Serpens Main molecular cloud from the CARMA Large Area Star Formation Survey (CLASSy). We mapped 150 arcmin{sup 2} of Serpens Main with an angular resolution of ∼7''. The gas emission is concentrated in two subclusters (the NW and SE subclusters). The SE subcluster has more prominent filamentary structures and more complicated kinematics compared to the NW subcluster. The majority of gas in the two subclusters has subsonic to sonic velocity dispersions. We applied a dendrogram technique with N{sub 2}H{sup +}(1-0) to study the gas structures; the SE subcluster has a higher degree of hierarchy than the NW subcluster. Combining the dendrogram and line fitting analyses reveals two distinct relations: a flat relation between nonthermal velocity dispersion and size, and a positive correlation between variation in velocity centroids and size. The two relations imply a characteristic depth of 0.15 pc for the cloud. Furthermore, we have identified six filaments in the SE subcluster. These filaments have lengths of ∼0.2 pc and widths of ∼0.03 pc, which is smaller than a characteristic width of 0.1 pc suggested by Herschel observations. The filaments can be classified into two types based on their properties. The first type, located in the northeast of the SE subcluster, has larger velocity gradients, smaller masses, and nearly critical mass-per-unit-length ratios. The other type, located in the southwest of the SE subcluster, has the opposite properties. Several YSOs are formed along two filaments which have supercritical mass per unit length ratios, while filaments with nearly critical mass-per-unit-length ratios are not associated with YSOs, suggesting that stars are formed on gravitationally unstable filaments.

  17. Long-Range Untethered Real-Time Live Gas Main Robotic Inspection System

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf; Daphne D' Zurko

    2004-10-31

    Under funding from the Department of Energy (DOE) and the Northeast Gas Association (NGA), Carnegie Mellon University (CMU) developed an untethered, wireless remote controlled inspection robot dubbed Explorer. The project entailed the design and prototyping of a wireless self-powered video-inspection robot capable of accessing live 6- and 8-inch diameter cast-iron and steel mains, while traversing turns and Ts and elbows under real-time control with live video feedback to an operator. The design is that of a segmented actively articulated and wheel-leg powered robot design, with fisheye imaging capability and self-powered battery storage and wireless real-time communication link. The prototype was functionally tested in an above ground pipe-network, in order to debug all mechanical, electrical and software subsystems, and develop the necessary deployment and retrieval, as well as obstacle-handling scripts. A pressurized natural gas test-section was used to certify it for operation in natural gas at up to 60 psig. Two subsequent live-main field-trials in both cast-iron and steel pipe, demonstrated its ability to be safely launched, operated and retrieved under real-world conditions. The system's ability to safely and repeatably exidrecover from angled and vertical launchers, traverse multi-thousand foot long pipe-sections, make T and varied-angle elbow-turns while wirelessly sending live video and handling command and control messages, was clearly demonstrated. Video-inspection was clearly shown to be a viable tool to understand the state of this critical buried infrastructure, irrespective of low- (cast-iron) or high-pressure (steel) conditions. This report covers the different aspects of specifications, requirements, design, prototyping, integration and testing and field-trialing of the Explorer platform.

  18. 1998 Annual Study Report. Standardization of methods for evaluating characteristics of high-strength, large-diameter steel pipes for superhigh-pressure natural gas pipelines; 1998 nendo seika hokokusho. Chokoatsu tennen gas pipeline yo kokyodo daikei kokan no tokusei hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The pipelines for safely transmitting superhigh-pressure natural gas should have excellent characteristics. The steel pipe is required to have a sufficient toughness, more concretely Charpy impact-absorbing energy, to prevent propagating shear fracture characteristic of natural gas pipelines. Recently, the natural gas pipeline is increasingly required to have higher design pressures (15 Mpa or higher) and grade (X80 or higher). In order to develop the techniques for simulating crack propagation in the propagating shear fracture of natural gas pipe lines as part of the programs to cope with these trends, the 1998 efforts were directed to reviewing the research results obtained so far and analysis of the problems to be solved and tasks to be taken, based on which the analytical procedure for gas releasing phenomena during the fracture process was basically developed, the material characteristic data were collected by the laboratory scale toughness tests, and the preliminary tests with rupture disks were conducted to verify the above analytical procedure. These efforts have established the bases for evaluating the characteristics of high-strength, large-diameter steel pipes in the light of safety against fracture, and greatly advanced the program towards the final target of developing the international specification drafts for toughness. (NEDO)

  19. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  20. Northern pipelines : backgrounder

    International Nuclear Information System (INIS)

    2002-04-01

    Most analysts agree that demand for natural gas in North America will continue to grow. Favourable market conditions created by rising demand and declining production have sparked renewed interest in northern natural gas development. The 2002 Annual Energy Outlook forecasted U.S. consumption to increase at an annual average rate of 2 per cent from 22.8 trillion cubic feet to 33.8 TCF by 2020, mostly due to rapid growth in demand for electric power generation. Natural gas prices are also expected to increase at an annual average rate of 1.6 per cent, reaching $3.26 per thousand cubic feet in 2020. There are currently 3 proposals for pipelines to move northern gas to US markets. They include a stand-alone Mackenzie Delta Project, the Alaska Highway Pipeline Project, and an offshore route that would combine Alaskan and Canadian gas in a pipeline across the floor of the Beaufort Sea. Current market conditions and demand suggest that the projects are not mutually exclusive, but complimentary. The factors that differentiate northern pipeline proposals are reserves, preparedness for market, costs, engineering, and environmental differences. Canada has affirmed its role to provide the regulatory and fiscal certainty needed by industry to make investment decisions. The Government of the Yukon does not believe that the Alaska Highway Project will shut in Mackenzie Delta gas, but will instead pave the way for development of a new northern natural gas industry. The Alaska Highway Pipeline Project will bring significant benefits for the Yukon, the Northwest Territories and the rest of Canada. Unresolved land claims are one of the challenges that has to be addressed for both Yukon and the Northwest Territories, as the proposed Alaska Highway Pipeline will travel through traditional territories of several Yukon first Nations. 1 tab., 4 figs

  1. Impacts of fuel oil substitution by natural gas in a pipeline network scheduling; Impactos da substituicao do oleo combustivel por gas natural na programacao de uma rede de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Souza Filho, Erito M.; Bahiense, Laura; Ferreira Filho, Virgilio J.M. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil)

    2012-07-01

    In recent decades, due to the advancement and computational methods for solving optimization problems, the number of articles addressing the scheduling of products has grown. The mathematical models developed have proved useful to schedule from a single pipeline with multiple products to complex networks of multiple pipelines. Moreover, the planning of these activities is of even greater importance when considering the existence of new environmental requirements to be applied to production and marketing of petroleum products. An example of this paradigm shift is the reduction in fuel oil consumption due to increased share of natural gas in the Brazilian energy matrix. In this context, this paper proposes a mathematical model to obtain feasible solutions for problems of scheduling a network of pipelines considering replacing all or part of the demand for fuel oil to natural gas. We tested the model on three real instances of a multi commodity network consists of 4 terminals, 4 refineries and 8 unidirectional pipelines, considering a planning horizon of one week. (author)

  2. Preventive, reducing and compensation actions for environmental impacts of Coari-Manaus gas pipeline; Medidas preventivas, mitigadoras e compensatorias de impactos socioambientais do Projeto Gasoduto Coari-Manaus

    Energy Technology Data Exchange (ETDEWEB)

    Mannarino, Ronaldo P. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Rangel, Antonio Carlos F. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Coordenacao de Projetos Especiais da Area de Gas e Energia

    2004-07-01

    The estimated reserve of natural gas of 124,5 billions m3 existent in the Solimoes basin it's the big thermometrical market existent on the Manaus city, actually supplied with liquid fuels, they had become economically viable the construction of a gas pipeline establishing connection it offers of the demand. However, given the complexity of the Amazonian landscape, the ambient aspects need to be studied with use of tools and methodologies integrators, also contemplating the social aspects. A multi discipline group of researches, led for Centro de Ciencias Ambientais from Universidade Federal do Amazonas - CCA/UFAM they had carried through diagnosis of the influences area of Coari-Manaus gas pipeline had as base research developed for PIATAM (Potenciais Impactos e Riscos Ambientais do Transporte de Petroleo e Gas no Amazonas) project during 24 months in the region enclosed for the tracing considered. During the study of UFAM and in the Official Audiences of the licence process had done consultation for the involved communities, and the results served of base for proposal to the prevention of negative impacts, reduce and compensation of inevitable impacts. The legal and institutional requisites are argued and are considered a way to consolidate the existing regulation on the subject having as basic premise the compatibility of the local and regional interests with the necessity of economic development of the country. (author)

  3. Pipeline dreams face up to reality

    International Nuclear Information System (INIS)

    Ryan, Orla

    1999-01-01

    This article gives details of two gas pipelines which are expected to be built in Turkey to meet the estimated demand for gas. The Bluestream joint ENI/Gasprom project pipeline will convey Russian gas across the Black Sea to Turkey, and the PSG joint Bechtel/General Electric venture will bring gas from Turkmenistan to Turkey across the Caspian Sea. Construction of the pipelines and financing aspects are discussed. (uk)

  4. Pipeline integrity : control by coatings

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, A.S. [Indian Inst. of Technology, Bombay (India)

    2008-07-01

    This presentation provided background information on the history of cross-country pipelines in India. It discussed the major use of gas. The key users were described as being the power and fertilizer industries, followed by vehicles using compressed natural gas to replace liquid fuels and thereby reduce pollution. The presentation also addressed the integrity of pipelines in terms of high production, safety, and monitoring. Integrity issues of pipelines were discussed with reference to basic design, control of corrosion, and periodic health monitoring. Other topics that were outlined included integrity by corrosion control; integrity by health monitoring; coatings requirements; classification of UCC pipeline coatings; and how the pipeline integrity approach can help to achieve coatings which give design life without any failure. Surface cleanliness, coating conditions, and the relationship between temperature of Epoxy coating and the time of adhesive coating were also discussed. Last, the presentation provided the results of an audit of the HBJ pipeline conducted from 1999 to 2000. tabs., figs.

  5. Research on the electromagnetic radiation characteristics of the gas main switch of a capacitive intense electron-beam accelerator

    Science.gov (United States)

    Qiu, Yongfeng; Liu, Jinliang; Yang, Jianhua; Cheng, Xinbing; Li, Guolin

    2017-11-01

    Strong electromagnetic fields are radiated during the operation of the intense electron-beam accelerator (IEBA), which may lead to the nearby electronic devices out of order. In this paper, the research on the electromagnetic radiation characteristic of the gas main switch of a capacitive IEBA is carried out by the methods of theory analysis and experiment investigation. It is obtained that the gas main switch is the dominating radiation resource. In the absence of electromagnetic shielding for the gas main switch, when the pulse forming line of the IEBA is charged to 700 kV, the radiation field with amplitude of 3280 V/m, dominant frequency of 84 MHz and high frequency 100 MHz is obtained at a distance of 10 meters away from the gas main switch. The experimental results of the radiation field agree with the theoretical calculations. We analyze the achievements of several research groups and find that there is a relationship between the rise time (T) of the transient current of the gas main switch and the dominant frequency (F) of the radiation field, namely, F*T=1. Contrast experiment is carried out with a metal shield cover for the gas main switch. Experimental results show that for the shielded setup the radiation field reduces to 115 V/m, the dominant frequency increases to 86.5 MHz at a distance of 10 away meters from the gas main switch. These conclusions are beneficial for further research on the electromagnetic radiation and protection of the IEBA.

  6. Annual survey on the natural gas market: 2008 main results; Enquete annuelle sur le marche du gaz naturel: principaux resultats 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-09-15

    This document presents and briefly comments the main data of the natural gas market in France in 2008: gas production, gas transit (entry points receiving gas from various origins and export points to Spain and Switzerland), gas storage, gas distribution, gas sales in the different French regions and to different kinds of customers or industries.

  7. Design and stabilization works of the km 767 slope of Bolivia-Brazil gas pipeline; Projeto e obra de estabilizacao do talude do km 767 do gasoduto Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Hudson R.; Vasconcellos, Carlos Renato Aragonez de [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The Bolivia-Brazil Natural Gas Pipeline starts at Santa Cruz de La Sierra city, in Bolivia, and goes until Canoas City (RS) in Brazil, with a total extent of 3,150 km. The pipeline crosses in the 2,593 km established in Brazilian soil, the most diverse types of geology and geomorphology. Along the line, the right-of-way (ROW) also crosses a lot of roads, railways, rivers and lakes. During a routine inspection (foot patrol), signs of instability were detected at an embankment slope of a highway of the Santa Catarina state, at the pipeline crossing. An eventual failure of this slope could put the pipeline at risk. The aim of this paper is to present the aspects of the stabilizations phases, since field investigation, design, works, instrumentation, until monitoring. Emphasis is given to the design criteria to pipeline safety. The solution adopted is composite by soil nailing, a changing of slope inclination and superficial drainage system. (author)

  8. Origins of natural gas and the main controlling factors of gas accumulation in the Middle Ordovician assemblages in Jingxi area, Ordos Basin

    Directory of Open Access Journals (Sweden)

    Xinshe Liu

    2016-05-01

    Full Text Available During the progressive exploration of the Jingbian Gas Field in the Ordos Basin, multiple gas-bearing regions have been discovered in the dolomite reservoirs in the Middle Ordovician assemblages of Lower Paleozoic in Jingxi area, but these gas-bearing regions and intervals are significantly different in terms of gas enrichment degrees. So far, however, the reasons for the difference have not been figured out. In this paper, the origin and source of natural gas in the Middle Ordovician assemblages in Jingxi area was investigated on the basis of geochemical data (e.g. natural gas composition and carbon isotope, and then the main factors controlling the gas accumulation were analyzed. It is shown that the natural gas in the Middle Ordovician assemblages in the Middle Ordovician assemblages in Jingxi area is similar to that in the Upper Ordovician assemblages and Upper Paleozoic reservoir in terms of genesis and sources, and they are mainly the Upper Paleozoic coaliferous gas with some oil-derived gas. Under the influence of hydrocarbon generation center of coal source rocks and the source–rock–reservoir contact relationship, the proportion of coaliferous gas increases areally from the north to the south and vertically from Ma55 sub-member of the Lower Ordovician Majiagou Fm. It is concluded that the natural gas enrichment degree is controlled by the gas charging capacity at the hydrocarbon-supplying windows. Second, the vertical migration and distribution of natural gas is dominated by the differences of Ma55−Ma510 transport pathways. And third, the lateral migration direction of natural gas and the range of gas accumulation are controlled by the superimposition relationship between structures and reservoirs.

  9. Advanced functions using VBA for the Yacuiba Rio Grande (GASYRG) gas pipeline; Funcoes avancadas usando VBA no gasoduto Yacuiba Rio Grande

    Energy Technology Data Exchange (ETDEWEB)

    Torres Vega, Raul [TRANSIERRA S.A., Santa Cruz (Bolivia)

    2005-07-01

    The Yacuiba - Rio Grande Gas Pipeline is remote operated from the Supervision and Control Center (CSC) located in the offices of Transierra S.A. in Santa Cruz de la Sierra, Bolivia. This operation is made by means of a SCADA system based on satellite communication, it starts off at Yacuiba and finishes in Rio Grande, where it deliveries the export gas to Brazil. An Advanced Functions application was developed at the Transierra's CSC, This application runs under Intellution's iFix (HMI of the SCADA) in a Windows platform. It gathers transportation data in real time and by means of a mathematical process and a steady state simulation it makes the following on line calculations: Line Pack, Leak Detection, Transport Efficiency, Pressure Estimate in intermediate points and gas real velocity in the pipeline. The application was developed using Visual BASIC for Applications (VBA) (included in Intellution's iFix) and by means of an interphase to a historical server (iHistorian, Intellution) it is possible to store the obtained results, this integration also allows for the creation of graphs and trends with a great flexibility and to activate alarm points. With a practically null investment, this application replaces high cost specialized packages that are accessories to simulation or SCADA applications. (author)

  10. Characterization of real gas properties for space shuttle main engine fuel turbine and performance calculations

    Science.gov (United States)

    Harloff, G. J.

    1986-01-01

    Real thermodynamic and transport properties of hydrogen, steam, the SSME mixture, and air are developed. The SSME mixture properties are needed for the analysis of the space shuttle main engine fuel turbine. The mixture conditions for the gases, except air, are presented graphically over a temperature range from 800 to 1200 K, and a pressure range from 1 to 500 atm. Air properties are given over a temperature range of 320 to 500 K, which are within the bounds of the thermodynamics programs used, in order to provide mixture data which is more easily checked (than H2/H2O). The real gas property variation of the SSME mixture is quantified. Polynomial expressions, needed for future computer analysis, for viscosity, Prandtl number, and thermal conductivity are given for the H2/H2O SSME fuel turbine mixture at a pressure of 305 atm over a range of temperatures from 950 to 1140 K. These conditions are representative of the SSME turbine operation. Performance calculations are presented for the space shuttle main engine (SSME) fuel turbine. The calculations use the air equivalent concept. Progress towards obtaining the capability to evaluate the performance of the SSME fuel turbine, with the H2/H2O mixture, is described.

  11. Explorer-II: Wireless Self-Powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    Energy Technology Data Exchange (ETDEWEB)

    Carnegie Mellon University

    2008-09-30

    Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design, field-trial and Magnetic Flux Leakage (MFL) sensor evaluation program for the next-generation Explorer-II (X-II) live gas main Non-destructive Evaluation (NDE) and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The resulting robot-train system with CAD renderings of the individual modules. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules

  12. Diagnostics and reliability of pipeline systems

    CERN Document Server

    Timashev, Sviatoslav

    2016-01-01

    The book contains solutions to fundamental problems which arise due to the logic of development of specific branches of science, which are related to pipeline safety, but mainly are subordinate to the needs of pipeline transportation.          The book deploys important but not yet solved aspects of reliability and safety assurance of pipeline systems, which are vital aspects not only for the oil and gas industry and, in general, fuel and energy industries , but also to virtually all contemporary industries and technologies. The volume will be useful to specialists and experts in the field of diagnostics/ inspection, monitoring, reliability and safety of critical infrastructures. First and foremost, it will be useful to the decision making persons —operators of different types of pipelines, pipeline diagnostics/inspection vendors, and designers of in-line –inspection (ILI) tools, industrial and ecological safety specialists, as well as to researchers and graduate students.

  13. Hazard identification studies applied to oil pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Savio, Augusto; Alpert, Melina L. [TECNA S.A., Buenos Aires (Argentina)], e-mail: asavio@tecna.com, e-mail: malpert@tecna.com

    2008-07-01

    In order to assess risks inherent to an Oil Pipeline, it is imperative to analyze what happens 'outside the process'. HAZID (HAZard IDentification) studies are mainly carried out for this purpose. HAZID is a formal study which identifies hazards and risks associated to an operation or facility and enable its acceptability assessment. It is a brainstorming exercise guided by a typical 'Checklist', divided into four Sections: External, Facilities and Health Hazards and Issues pertaining to Project Execution, which are further subdivided into Hazard Categories. For each Category, there are 'Guide-words' and 'Prompts'. Even if an Oil Pipeline Risk Assessment can be performed by means of the above referred 'Checklist', carrying out the actual process can become lengthy and annoying due to the lack of specificity. This work aims at presenting the most suitable 'Checklist' for the identification of Oil Pipeline Risk Assessment, although it could be used for Gas Pipeline Risk Assessment too. Prepared ad hoc, this list, is based on the spill causes established by CONCAWE (CONservation of Clean Air Water in Europe). Performing Oil Pipeline Risk Assessment by means of specially formulated Checklist enables the Study Team to easily identify risks, shortens execution time and provides both accuracy and specificity. (author)

  14. 77 FR 1674 - Tennessee Gas Pipeline Company, L.L.C.; Notice of Intent To Prepare an Environmental Assessment...

    Science.gov (United States)

    2012-01-11

    ... Pipeline Company, L.L.C. (TGP) in Potter, McKean, Mercer, and Venango Counties, Pennsylvania. The... condemnation proceedings where compensation would be determined in accordance with state law. TGP provided... for viewing on the FERC Web site ( www.ferc.gov ). Summary of the Proposed Project TGP proposes to...

  15. Book Review - V Pogoretskyy, Freedom of Transit and Access to Gas Pipeline Networks Under WTO Law (Cambridge University Press, 2017)

    NARCIS (Netherlands)

    Marhold, Anna

    2017-01-01

    In Freedom of Transit and Access to Pipeline Networks under WTO Law, the author appropriately introduces the topic by stating that energy is featuring increasingly prominently as a topic in international trade law. Indeed, while being a dormant issue in the World Trade Organization (“WTO” forum for

  16. 77 FR 43586 - Southern Star Central Gas Pipeline, Inc.; Notice of Intent To Prepare an Environmental Assessment...

    Science.gov (United States)

    2012-07-25

    ...'s current environmental mailing list for this project. State and local government representatives... parallel to an existing pipeline. \\2\\ The appendices referenced in this notice will not appear in the... Historic Preservation Office (SHPO), and to solicit their views and those of other government agencies...

  17. Market evaluation and investment planning in natural gas industry in Brazil: development of the net distribution pipeline; Avaliacao de mercado e planejamento de investimentos na industria de gas natural no Brasil: perspectivas de crescimento da malha de gasodutos de distribuicao

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Pedro L.; Pamplona, Edson O. [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)

    2008-07-01

    This paper proposes to develop a real options model to decision-making investments in flexible technologies. As a result, finding a closed-form solution, derived from the partial differential equation of the value of flexibility provided by alternative fuels. However, you can present and analysis the results of a practical application using the method to solve real options problems known as binomial model. Initially presents a brief explanation on the method of discounted cash flow, its failures and changes to the real options analysis. In the sequence chart an overview of the natural gas industry on Brazil, emphasizing the need for consistent investments evaluations in the sector. The next section shows the proposed development of mathematical model for assessing the flexibility to choose, obtained by the exchange of fuel for transport of gas pipeline distribution of natural gas. The model takes as the case scenario where the flexible pipeline can carry both natural gas and hydrogen, and the evaluation of the option of exchanging input gives more value to the investment opportunity, and consider the optimum conditions where the option to be exercised. Keywords: Decision Making, Real Options; Natural Gas, Flexible Technology. (author)

  18. DEVELOPMENT OF SOFTWARE SYSTEM FOR MONITORING OF STRESS CORROSION CRACKING OF THE PIPELINE UNDER TENSION

    Directory of Open Access Journals (Sweden)

    Z. K. Abaev

    2016-01-01

    Full Text Available The software and hardware development tendency, providing the automated monitoring and control of basic and auxiliary technological processes of gas transportation via system of main gas pipelines has been revealed. The article discusses the stages of creation of the software of system of monitoring corrosion cracking under tension (SCC. The new useful adequate regression models development determining the risk level of LCC is shown. A ranking sections algorithm of main gas pipeline (MG on the propensity to SCC is presented. Adequate developed regression equation determining the LCC risk level has been developed. To count the main gas pipeline lifetime the variable rank of the danger of SCC (RSCC on the basis of methods of fuzzy logic is proposed to use. Implementation of the fuzzy model was carried out using the graphical tools developed in MATLAB using the expansion pack Fuzzy Logic Toolbox. The working algorithm of developed program and the screen forms are presented.

  19. Metrological control of the gas flow and analysis of mass conservation in Bolivia-Brasil gas pipeline; Controle metrologico da vazao de gas e analise da conservacao de massa no gasoduto Bolivia-Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Palhares, Julio Cesar [TBG - Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil); Orlando, Alcir de Faro; Frota, Mauricio Nogueira [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Curso de Pos-graduacao em Metrologia para Qualidade Industrial

    2005-07-01

    International gas pipelines reflect a integrated commerce and impose a metrological challenge for the custody transferences that indistinctly imply in significant economic impact. This work argues the complex analysis of the mass balance and expression of uncertainties of the Gasoduto Bolivia-Brasil (3.150 Km of length, 557 Km in Bolivian territory and 2.593 Km that cross Brazil of West for East), today carrying approximately 60% from its maximum capacity (30 million of cubic meters daily), operating for the Transportadora Brasileira Gasoduto Bolivia Brasil S.A., a enterprise controlled by PETROBRAS Gas S/A (GASPETRO). The TBG measuring methods always taking care of the necessities of the customers as well as being lined up with the changes of the natural gas market. In six years of existence, the TBG came along with the legislation created for regulating agency in formation and adjusted to the establishment of the contract inspector, important landmarks of the evolution of the market. This work presents the definitions that guide the metrological subjects of the TBG, making use of efficient tools in answers for each demand and searching to satisfy its proper necessities, the necessities of its customers and the new demands of the regulating agency. (author)

  20. Leaks in gas mains - Location using GIS and GPS; Leckstellen in Gasrohrnetzen. Aufspueren mit Unterstuetzung durch GIS und GPS

    Energy Technology Data Exchange (ETDEWEB)

    Huber, D.

    2009-07-01

    This article takes a look how leaks in gas mains can be located with the help of geographical information systems (GIS) and the satellite-based Global Positioning System (GPS). The advantages for long-term planning and, in future, maintenance work are stressed. Experienced gained by the IWB utility in Basel, Switzerland, is discussed. Here, a system for the monitoring and maintenance of the whole of the City of Basel's natural gas supply network is discussed. Cost savings and a particularly improved increase in the quality of leak detection work is noted. Modern technology using GPS-based equipment in the detection of leaks in the gas mains is reviewed. An example of the documentation of the gas mains in a GIS system is given.

  1. Energy direct inputs and greenhouse gas emissions of the main industrial trawl fishery of Brazil.

    Science.gov (United States)

    Port, Dagoberto; Perez, Jose Angel Alvarez; de Menezes, João Thadeu

    2016-06-15

    This study provides first-time estimates of direct fuel inputs and greenhouse gas emissions produced by the trawl fishing fleet operating off southeastern and southern Brazil. Analyzed data comprised vessel characteristics, landings, fishing areas and trawling duration of 10,144 fishing operations monitored in Santa Catarina State from 2003 to 2011. Three main fishing strategies were differentiated: 'shrimp trawling', 'slope trawling' and 'pair trawling'. Jointly these operations burned over 141.5millionl of diesel to land 342.3millionkg of fish and shellfish. Annually, 0.36-0.48l were consumed for every kg of catch landed. Because all fishing strategies relied on multispecific catches to raise total incomes, estimates of fuel use intensity were generally low but increased 316-1025% if only nominal targets were considered. In nine years, trawling operations emitted 104.07GgC to the atmosphere, between 36,800-49,500tons CO2 per year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. 77 FR 31001 - Southern Natural Gas Company, L.L.C.; Notice of Intent To Prepare an Environmental Assessment for...

    Science.gov (United States)

    2012-05-24

    ...-diameter natural gas pipeline between MP 389.8 and MP 392.0 (B-Line); Repair or remove two exposed segments... agreement, the pipeline company could initiate condemnation proceedings where compensation would be... 70 year old North Main Loop Line in Calhoun and Cleburne Counties, Alabama. The pipeline developed...

  3. Sweden and the NEGP: A Pilot Study of the North European Gas Pipeline and Sweden's Dependence on Russian Energy

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Robert L.

    2006-06-15

    Developments between 2004 and 2006 indicate that a North European Gas Pipeline (NEGP) through the Baltic Sea, from Russia to Germany, may be realised in the coming decade. This would provide Europe with yet another opportunity to diversify its import channels of gas. It is however reasonable to assume that the NEGP also could change the strategic pattern and be a source of friction. The NEGP may rock the regional stability and reduce the potential of the new EU members to become security providers in Europe's northern dimension. It also gives increased leverage and influence to Russia, a state that has moved in an authoritarian direction under President Putin. The aim of this pilot study is to elucidate on the NEGP pipeline and Sweden's increasing dependence on Russian energy. A subsidiary aim is to outline a set of concerns that have bearing on the situation for the EU and Baltic Sea Region and that need to be further addressed. In conclusion, the NEGP will enhance Russia's direct leverage on Poland, Ukraine, and Belarus, as it will allow Russia to turn off gas supplies without affecting exports to other parts of Europe. Russia will also increase its leverage over the states that will or may be connected to the NEGP (Germany, and possibly Belgium, Denmark, the Netherlands and the UK). Even if Sweden is not embracing the NEGP, it is today highly sensitive as it imports most of its energy. It is increasingly dependent on Russian oil and is partly dependent on imports of electricity from Russia. Should the NEGP materialise and Sweden becomes connected in the future, it would likely be dependent also on natural gas. It is of paramount importance for the energy security of the connected states how the pipeline is constructed and operated. If there will be technical possibilities for Russia to tamper with the flow of gas to individual states without affecting supply to others, there are tangible threats to the importing states.

  4. The importance of environmental communications in gas pipeline projects; A importancia da pre-comunicacao ambiental no licenciamento, implantacao e operacao de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Marcia Bartolini; Sarno, Ruy Alberto Campos [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The Environmental Pre-Communication is a tool developed to identify the profiles of communities surrounding the marked area (lifestyle, resources, fragilities, beliefs, culture and wishes), how they make their living, and production (community dependence relationship with ecosystems, such as rivers and subsistence areas), social organization, needs and expectations. Besides developing a social economic diagnostic, pre-communication prepares a community perception study. Regarding gas pipelines, the area of study comprehends 200 m towards each side of gas pipeline right-of-way in rural areas and 400 m towards each side in urban areas. Pre-Communication diagnostic, which is included in the process of environmental licensing, is aimed at subsidizing EIS (Environmental Impact Statement), providing data which help to elaborate mitigating and compensatory plans and programs. Moreover, diagnostic information make it possible to run public forums before Public Hearings take place, aiming at clarifying specific community issues related to construction and reduction of resistances, avoiding problems and conflicts. Also, during the entrepreneurship implementation phase, there is the advantage to know the bordering community and its daily activities, increasing the effectiveness of Environmental Programs. (author)

  5. Fishing activity near offshore pipelines, 2017

    NARCIS (Netherlands)

    Machiels, Marcel

    2018-01-01

    On the North Sea bottom lie numerous pipelines to link oil- or gas offshore drilling units, - platforms and processing stations on land. Although pipeline tubes are coated and covered with protective layers, the pipelines risk being damaged through man-made hazards like anchor dropping and fishing

  6. Tunnels: different construction methods and its use for pipelines installation

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Tales; Soares, Ana Cecilia; Assis, Slow de; Bolsonaro, Ralfo; Sanandres, Simon [Petroleo do Brasil S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In a continental dimensions country like Brazil, the pipeline modal faces the challenge of opening ROW's in the most different kind of soils with the most different geomorphology. To safely fulfill the pipeline construction demand, the ROW opening uses all techniques in earthworks and route definition and, where is necessary, no digging techniques like horizontal directional drilling, micro tunneling and also full size tunnels design for pipelines installation in high topography terrains to avoid geotechnical risks. PETROBRAS has already used the tunnel technique to cross higher terrains with great construction difficult, and mainly to make it pipeline maintenance and operation easier. For the GASBOL Project, in Aparados da Serra region and in GASYRG, in Bolivia, two tunnels were opened with approximately 700 meters and 2,000 meters each one. The GASBOL Project had the particularity of being a gallery with only one excavation face, finishing under the hill and from this point was drilled a vertical shaft was drilled until the top to install the pipeline section, while in GASYRG Project the tunnel had two excavation faces. Currently, two projects are under development with tunnels, one of then is the Caraguatatuba-Taubate gas pipeline (GASTAU), with a 5 km tunnel, with the same concepts of the GASBOL tunnel, with a gallery to be opened with the use of a TBM (Tunneling Boring Machine), and a shaft to the surface, and the gas pipeline Cabiunas-Reduc III (GASDUC III) project is under construction with a 3.7 km tunnel, like the GASYRG tunnel with two faces. This paper presents the main excavation tunneling methods, conventional and mechanized, presenting the most relevant characteristics from both and, in particular, the use of tunnels for pipelines installation. (author)

  7. Leadership Pipeline

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård

    2012-01-01

    Artiklen analyserer grundlaget for Leadership Pipeline modellen med henblik på en vurdering af substansen bag modellen, og perspektiverne for generalisering af modellen til en dansk organisatorisk kontekst.......Artiklen analyserer grundlaget for Leadership Pipeline modellen med henblik på en vurdering af substansen bag modellen, og perspektiverne for generalisering af modellen til en dansk organisatorisk kontekst....

  8. Research on the electromagnetic radiation characteristics of the gas main switch of a capacitive intense electron-beam accelerator

    Directory of Open Access Journals (Sweden)

    Yongfeng Qiu

    2017-11-01

    Full Text Available Strong electromagnetic fields are radiated during the operation of the intense electron-beam accelerator (IEBA, which may lead to the nearby electronic devices out of order. In this paper, the research on the electromagnetic radiation characteristic of the gas main switch of a capacitive IEBA is carried out by the methods of theory analysis and experiment investigation. It is obtained that the gas main switch is the dominating radiation resource. In the absence of electromagnetic shielding for the gas main switch, when the pulse forming line of the IEBA is charged to 700 kV, the radiation field with amplitude of 3280 V/m, dominant frequency of 84 MHz and high frequency 100 MHz is obtained at a distance of 10 meters away from the gas main switch. The experimental results of the radiation field agree with the theoretical calculations. We analyze the achievements of several research groups and find that there is a relationship between the rise time (T of the transient current of the gas main switch and the dominant frequency (F of the radiation field, namely, F*T=1. Contrast experiment is carried out with a metal shield cover for the gas main switch. Experimental results show that for the shielded setup the radiation field reduces to 115 V/m, the dominant frequency increases to 86.5 MHz at a distance of 10 away meters from the gas main switch. These conclusions are beneficial for further research on the electromagnetic radiation and protection of the IEBA.

  9. Inspection of the Sloka Branch pipeline. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    By agreement between Latvijas gaze and DONG (the Danish State Gas Company) the Sloka branch on the main gas pipeline Riga-Liepaja was selected for inspection. This pipeline is 30.5 km long and was constructed in 1966/67. The objective of the project has been, based on detailed inspection of relative short lengths of pipe, to determine the integrity of the pipeline and to give advice concerning the continued use as a high pressure transmission pipeline. A further objective has been to provide Latvijas gaze with a package of modern cathodic protection measuring instruments and the necessary know-how for using the instruments. The objectives have been met as follows: Based on a document review together with measurements and observations in the field and in the laboratory, the condition of approximately 10 km of pipeline has been evaluated; Recommendations are given in this report with the aim of extending the life of the pipeline; A cathodic protection instrument package was delivered and a two week training course was arranged in Latvia for Latvijas gaze`s staff covering the use of the instruments. (EG)

  10. Decommissioning end of life oilfield facilities and pipelines : the first step to the safe and efficient remediation of oil and gas sites

    International Nuclear Information System (INIS)

    Kitchen, J.; Thygesen, S.

    2005-01-01

    Environmentally sound decommissioning practices in the remediation and reclamation process were reviewed, with reference to abandoned oil and gas facilities and pipelines. There are inherent dangers associated with aged infrastructure, and decommissioning companies should be the first service on site to ensure that all facilities have been located, removed and cleaned. All licensed, unlicensed and on-lease pipelines are required to be properly abandoned. Site research is needed to identify any industry or government regulated requirements that may impact the decommissioning process. Decommissioning companies are also responsible for recording all relevant site information so that it can be conveyed to remediation and reclamation companies. A knowledge of landowner sensitivities, weather affected access, unlicensed facilities and locations of historic contamination are crucial to all parties involved. Additional documentation, such as photographs and survey drawings, can assist remediation and reclamation companies in locating areas of concern. Once a well has been abandoned in Alberta, surface equipment, cement pads, debris and produced liquids associated with the well license must be removed within 12 months of the cutting and capping operation. Records of the removal and cleanup activities must be retained by the licensee. Many sites have been sitting dormant for several years and can be harboring dangerous production fluids, asbestos, Hantavirus and other hazardous materials. All equipment must be steam-cleaned by qualified personnel and all production fluids and contaminated water from the cleaning process must be captured and transported to a waste facility. All equipment that is deemed re-usable can be returned to inventory or re-used. Equipment that can not be salvaged is sold for recycling at a steel mill. All pipelines are required to be cleaned of hydrocarbons, purged and left with a medium of inert gas or atmospheric air. Residual fluids left in a

  11. Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    Energy Technology Data Exchange (ETDEWEB)

    Susan Burkett; Hagen Schempf

    2006-01-31

    Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design of the next-generation Explorer-II (X-II) live gas main NDE and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules and their arrangement, still allow the robot to configure itself to perform any-angle (up to 90 deg) turns in any orientation (incl. vertical), and enable the live launching and

  12. Implications of greenhouse gas emission mitigation scenarios for the main Asian regions

    NARCIS (Netherlands)

    van Ruijven, B.J.|info:eu-repo/dai/nl/304834521; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; van Vliet, J.; Mendoza Beltran, A.; Deetman, S.; den Elzen, M.G.J.

    2012-01-01

    In order to limit global mean temperature increase, long-term greenhouse gas emissions need to be reduced. This paper discusses the implications of greenhouse gas emission reductions for major Asian regions (China, India, Indonesia, South-East Asia, Japan and Korea) based on results from the IMAGE

  13. Start up of the Nord Stream pipeline. A new way of bringing Russian gas to Europe; Mise en service du gazoduc nord stream. Une nouvelle voie pour le gaz russe vers l'Europe

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, L.

    2011-07-01

    With construction beginning in 2005 to carry Russian production in Western Siberia and the Barents Sea to Germany and Western Europe, Nord Stream has become since September 6, 2011 one of the longest submarine gas pipelines in the world. Crossing a sensitive geopolitical space between the NATO's area of influence and that of Russia, the pipeline has raised fears in coastal States of possible interference by their Russian neighbour. The impact of Nord Stream on the environment has led to new applications of the Law of the Sea and international environmental law and the pipeline has been subject to a true 'green conditionality'. The European pipeline largely stayed away from the implementation of what is sometimes called 'German-Russian' project. (author)

  14. Optimal hub location in pipeline networks

    Energy Technology Data Exchange (ETDEWEB)

    Dott, D.R.; Wirasinghe, S.C.; Chakma, A. [Univ. of Calgary, Alberta (Canada)

    1996-12-31

    This paper discusses optimization strategies and techniques for the location of natural gas marketing hubs in the North American gas pipeline network. A hub is a facility at which inbound and outbound network links meet and freight is redirected towards their destinations. Common examples of hubs used in the gas pipeline industry include gas plants, interconnects and market centers. Characteristics of the gas pipeline industry which are relevant to the optimization of transportation costs using hubs are presented. Allocation techniques for solving location-allocation problems are discussed. An outline of the research in process by the authors in the field of optimal gas hub location concludes the paper.

  15. Diagnosis of the Main Busbar II Panel Components Ageing of RSG-GAS Electrical System by Using Infrared Thermography

    International Nuclear Information System (INIS)

    Teguh Sulistyo; Kiswanto; Roziq Himawan; Ari Satmoko

    2007-01-01

    To support the operation of RSG-GAS safely, the diagnosis of the ageing of main busbar II BHD/BHE/BHF panel components of RSG-GAS electrical system have been done. By using infrared thermography type Thermo Tracer TH9100PM VI/PW VI. The results of the diagnosis showed that some of the components under degradation with various rate. It can cause the system failure. By understanding the components ageing degradation mechanism and performing the preventive and predictive maintenance and safety of RSG-GAS electrical system earlier, the possibility of accident can be avoided. (author)

  16. La Francaise de l'energie, the main natural gas producer in France, is extracting gas from coal

    International Nuclear Information System (INIS)

    2017-01-01

    LFDE (La Francaise de l'Energie) is a small company located in the East of France which is specialized in the extraction of gas (96 pc methane) contained in the coal of ancient coal basins. After a brief historical review of coal extraction in France and of the creation and development of LFDE, this article presents the geological and technical expertise of LFDE teams, which enabled to identify a large unexploited resource of coal gas, develop the extraction and recovery processes and equipment, study the environmental issue (and its social and public opinion aspects), the economic performance, etc

  17. Main drivers of natural gas prices in the Czech Republic after the market liberalisation

    International Nuclear Information System (INIS)

    Slabá, Monika; Gapko, Petr; Klimešová, Andrea

    2013-01-01

    One of the goals of the European Commission in the energy sector is creating a single competitive European market. The decision to liberalise energy markets has far-reaching consequences not only for gas companies, but also for the rest of the real economy in view of the fact that natural gas is being used as an important primary energy source in several sectors of production and in the power industry. We aim to answer how liberalisation/unbundling has influenced gas pricing/prices in the Czech Republic. We investigate the individual components of end-customer gas prices according to the value chain and we define and structure the drivers of these components. We use a case study from the Czech Republic, one of the Central and Eastern European countries, which, contrary to the old Member States, is buying most of its gas from one supplier (high import dependence and low supply diversity) and where the transmission and distribution network is characterised by a sufficient contractual and physical capacity. We stress that next to basic conditions on the European gas market (import dependency on external gas producers) legal and institutional conditions and the initial market structure of each Member State are also important for the results of the liberalisation. - Highlights: ► We deal with gas pricing in the Czech Republic after liberalisation/unbundling. ► The TSO, DSO price components have increased, the SSO price component has decreased. ► Commodity price for Households started to relate to hub prices. ► Commodity price for Corporates remained oil-linked, however discounts were provided. ► Only some Corporates experienced savings in total purchasing costs of gas.

  18. 77 FR 5472 - Pipeline Safety: Expanding the Use of Excess Flow Valves in Gas Distribution Systems to...

    Science.gov (United States)

    2012-02-03

    ...: Expanding the Use of Excess Flow Valves in Gas Distribution Systems to Applications Other Than Single-Family... Safety: Expanding the Use of Excess Flow Valves (EFVs) in Gas Distribution Systems to Applications Other... the use of EFVs in gas distribution systems. On January 10, 2012, PHMSA received a request to extend...

  19. Main factors for large accumulations of natural gas in the marine carbonate strata of the Eastern Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Quanyou Liu

    2017-04-01

    Full Text Available The natural gas accumulation zone, where the marine carbonate rock strata are developed, was formed in the eastern Sichuan Basin under the influence of several main tectonic movements (Caledonian Movement, Indosinian Movement, Yanshanian Movement, and Himalayan Movement. Most natural gas reservoirs exhibit the structural-stratigraphic traps together with multistage accumulation, late-stage adjustment and reformation, et cetera. The natural gas accumulation zone (or so-called gas reservoir groups is controlled by the following main factors: multi-sourced and multi-formed hydrocarbons for marine source rocks (i.e. Lower Silurian Longmaxi Formation, Lower Permian, Upper Permian Longtan Formation, paleo-uplift, paleoslope, and the hinge belt controlled by the steep dip structures, namely the Lower and Middle Triassic high-quality gypsum. Three sets of high-quality source rocks (i.e. S1l, P1, P2l account for the abundant hydrocarbon supply for natural gas accumulation in the eastern Sichuan area, especially in the destructed oil reservoir formed earlier. The said destructed oil reservoir not only provides the preservation space for natural gas reservoir that will take place later, but it also provides the hydrocarbon source for thermal cracking of hydrocarbons and thermochemical sulfate reduction (TSR. Although the gas reservoirs in the eastern part of the Sichuan Basin experienced multi-stage adjustment and reformation at later times, the thick and high-quality gypsum as well as the mudstone, as available caprocks, have offered a good preservation condition for the underlying gas reservoirs. The paleohighs (e.g. Luzhou paleohigh and Kaijiang paleohigh, the Permian platform margin slope, and the structurally transformed slope under the function of the steep dip anticline in the eastern Sichuan not only form the high-quality carbonate reservoir, but they also became favorable for oil and gas accumulation. The difference in hydrocarbon generation

  20. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines

    Science.gov (United States)

    Son, Min; Ko, Sangho; Koo, Jaye

    2014-06-01

    A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.

  1. Chile's pipelines - who's out in the cold?

    International Nuclear Information System (INIS)

    Bellhouse, G.

    1998-01-01

    There is a battle on in Northern Chile to supply the region with gas and electricity. Two pipelines and a transmission line are being built, but there is insufficient demand to merit the construction of all of these projects. It is widely believed that the first pipeline to be finished will be the overall winner, but the situation is not that simple. A more sensible conclusion could be the merger of the two pipeline projects, rationalising supply of gas to the region. (Author)

  2. Yacuiba - Rio Grande Gas Pipeline (GASYRG), in Bolivia. The development of a company and the construction of the pipeline in a regulated and competitive environment; Gasoducto Yacuiba - Rio Grande (GASYRG), in Bolivia - experiencias de la creacion de una empresa y de la construccion del gasoducto bajo las condiciones de un escenario competitivo e regulado

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Mauro de Oliveira; Montano, Jose Ruben [Transierra S.A. (Bolivia)

    2003-07-01

    In order to fulfill contractual agreements, three Bolivian companies decided to create Transierra S.A., a gas transportation company that would increase the gas transportation capacity from the gas fields, located in the Southern part of Bolivia. The overall objective was to build and operate a gas pipeline from Yacuiba to Rio Grande in time to comply with already agreed dates to star commercial operation. The creation of the company and the construction process were conducted in a highly competitive and regulated environment. Construction completion schedules were tight; therefore, under the previously mentioned scenario, the company implemented creative strategies to achieve its goals. (author)

  3. 30 CFR 250.1004 - Safety equipment requirements for DOI pipelines.

    Science.gov (United States)

    2010-07-01

    ... subsea tie-in shall be equipped with only a block valve. (7) Gas-lift or water-injection pipelines on... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Pipelines and Pipeline Rights-of... a flow safety valve (FSV). (ii) For sulphur operations, incoming pipelines delivering gas to the...

  4. Excellent impact performance of PVC pipeline materials in gas distribution networks after many years of service (CD-rom)

    NARCIS (Netherlands)

    Visser, Roy; Hermkens, R.M.J.; Wolters, Mannes; Weller, J.; Warnet, Laurent; Beckervordersandforth, C.; Verberg, G.H.B.; Kramer, M.

    2008-01-01

    It has been about fifty years ago since the first unplasticized poly(vinyl chloride) (uPVC) pipes were installed for use in gas distribution purposes. Currently, about 22,500 km of uPVC is still in use in the Dutch gas distribution network. The pipes were originally designed for a lifetime of 50

  5. Synthesis and Crosslinking of Polyether-Based Main Chain Benzoxazine Polymers and Their Gas Separation Performance

    Directory of Open Access Journals (Sweden)

    Muntazim Munir Khan

    2018-02-01

    Full Text Available The poly(ethylene glycol-based benzoxazine polymers were synthesized via a polycondensation reaction between Bisphenol-A, paraformaldehyde, and poly(ether diamine/(Jeffamine®. The structures of the polymers were confirmed by proton nuclear magnetic resonance spectroscopy (1H-NMR, indicating the presence of a cyclic benzoxazine ring. The polymer solutions were casted on the glass plate and cross-linked via thermal treatment to produce tough and flexible films without using any external additives. Thermal properties and the crosslinking behaviour of these polymers were studied by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. Single gas (H2, O2, N2, CO2, and CH4 transport properties of the crosslinked polymeric membranes were measured by the time-lag method. The crosslinked PEG-based polybenzoxazine membranes show improved selectivities for CO2/N2 and CO2/CH4 gas pairs. The good separation selectivities of these PEG-based polybenzoxazine materials suggest their utility as efficient thin film composite membranes for gas and liquid membrane separation technology.

  6. Leadership Pipeline

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård

    2013-01-01

    I artiklen undersøges det empiriske grundlag for Leader- ship Pipeline. Først beskrives Leadership Pipeline modellen om le- delsesbaner og skilleveje i opadgående transitioner mellem orga- nisatoriske ledelsesniveauer (Freedman, 1998; Charan, Drotter and Noel, 2001). Dernæst sættes fokus på det...... forholdet mellem kontinuitet- og diskontinuitet i ledel- seskompetencer på tværs af organisatoriske niveauer præsenteres og diskuteres. Afslutningsvis diskuteres begrænsningerne i en kompetencebaseret tilgang til Leadership Pipeline, og det foreslås, at succesfuld ledelse i ligeså høj grad afhænger af...

  7. Differential accumulation and distribution of natural gas and its main controlling factors in the Sinian Dengying Fm, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shugen Liu

    2015-01-01

    Full Text Available In order to disclose the genetic relationship between the hydrocarbon reservoirs and the transformation mechanism between ancient and modern gas reservoirs in the Sinian Dengying Fm in the Sichuan Basin, by using the drilling data, and geologic, geophysical and geochemical methods together, the differential accumulation and distribution of natural gas and its main controlling factors in this study area were identified following the idea of corroborating macroscopic, mesoscopic and microscopic results each other. The results demonstrate as follows. (1 The crude oil in the paleo-oil reservoirs of the Dengying Fm cracked into gas to form the early overpressure paleo-gas reservoirs 100 Ma. From 100 Ma to 20 Ma, the constant uplifting of the Sichuan Basin coupled with the shift of structural highs and the initial occurrence of Weiyuan anticline caused the adjustment of the early overpressure paleo-gas reservoirs into the late overpressure paleo-gas reservoirs. (2 With the increase of uplifting magnitude since 20 Ma, the formations overlying the Dengying Fm in Weiyuan structure experienced rapid erosion, resulting in decline of the caprock sealing ability and damage to the preservation conditions. Therefore, the natural gas in the Dengying Fm started to leak and dissipate from the eroded window of the Lower Triassic Jialingjiang Fm located on the top of the Weiyuan anticline, which is the beginning of the differential accumulation and dissipation of the natural gas in the Dengying Fm across the Sichuan Basin. During the process of the differential accumulation and dissipation, the gas below the spill point of the structural gas traps in Ziyang, Jinshi and Longnüsi–Moxi–Anpingdian–Gaoshiti areas migrated to the Weiyuan anticline along the unconformity of the Dengying Fm, and dissipated through the eroded window of the Jialingjiang Fm on the top of the Weiyuan anticline, resulting in a transformation of abnormal high pressure of gas reservoir

  8. The opening of natural gas and electricity markets for professional customers. Main lessons learned - December 2006

    International Nuclear Information System (INIS)

    2006-12-01

    This document reports and comments the results of a survey on the knowledge, perceptions and behaviours of professionals regarding the energy market, and more precisely the opening of gas and electricity markets. The objectives were to identify motivations or obstacles perceived by professionals about changing their provider, to get an insight of their global opinion on market opening, and on questions and false ideas about it, to assess the level of knowledge about market opening introduced in July 2004, to identify the related changes for them, and whether they know new providers and modalities to change provider, and to assess their intention in terms of fidelity or change within a 6 month delay

  9. Gas pipelines involved in sliding movements: safeguard actions Este site (Padova - Italy); Conduites de gaz concernees par les glissements de terrain: mesures preventives dans la commune d'Este (Padoue - Italie)

    Energy Technology Data Exchange (ETDEWEB)

    Tomassini, D.; Glavina, S.; Raffaeli, E.; Stelluti, S. [Snamprogetti, ENI Group (Italy); Giurlani, G. [SNAM, ENI Group (Italy)

    2000-07-01

    This paper presents the design and the construction methodology of local re-routing on buried gas pipelines involved in sliding movements. The re-routing layouts are defined on the basis of the results obtained by structural analysis concerning pipe-soil interaction, by research and development studies and by the indications of International Codes and Standards regarding this argument. The analysis of slide movement permits to define the displacement field in terms of extension and direction, to be used in the following pipe-soil interaction analysis. In order to protect the pipeline from future slide displacements, the re-routing pipeline layout is optimised and aimed construction specifications are defined, even considering possible road crossings. In particular the definition of the local re-routing on the Alfonsine - S. Bonifacio DN 300 (12'') gas pipeline, in Este site is described. The realised intervention permits to guarantee safe operations of the gas transportation, even if large sliding displacements occurs, and to limit maintenance interventions aimed to remove the stresses due to the cumulated slow slide movements. (authors)

  10. Network transportation model with capacity restrictions for the Bolivia Brazil gas pipeline influence area; Modelo de transporte em rede com restricoes de capacidade para a area de influencia do Gasoduto Bolivia Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Patricia Mannarino; Carpio, Lucio Guido Tapia [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Planejamento Energetico

    2004-07-01

    We present the application of a network transportation model, with capacity restrictions, to determine the minimal cost of supply of a group of markets at the Bolivia Brazil Gas Pipeline influence area, as a function of city gate price. We consider the potential of integration of pipeline transportation at the South Cone, looking forward to supply the Brazilian market. The city gate price consists of the sum of commodity price plus transportation tariffs over every gas pipeline through which the gas passes (except distribution pipelines). There is no distinction related to product quality (e.g. heating value) among suppliers, or among end uses (thermal, thermoelectric or chemical). The model is numerically solved by linear programming. Flow direction alternatives and transportation tariffs alternatives (postal and by zone) are proposed. The model allows, among other applications: identification of the lowest cost supply strategy, identification of network flow capacity bottlenecks, determination of operation and expansion marginal costs using dual solution analysis, investigation of alternative sceneries through sensibility analysis and appreciation of non-optimal solutions that might be attractive. (author)

  11. Verification of the correlation between the {sup 210} Pb and the chemical composition of the incrustations found on gas pipelines and the implication on radiological protection; Verificacao da correlacao entre a atividade de {sup 210}Pb e a composicao quimica de incrustacoes encontradas em linhas de gas e a implicacao em protecao radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Franciane Martins de Carvalho

    2004-07-01

    In the last decades, the occurrence of solid residual deposits, known as black powder, in natural-gas pipelines, gathering systems and compression equipment from gas industries has raised increasing regulatory concerns in terms of radiological protection. Concerns are also raised about the waste disposal and management of the radioactive residues eventually produced. Recent projections indicate a significant increase in the production of natural-gas and its products, due to a growing commercial demand, which leads to the production of huge amounts of residues. Thus, more information is needed in order to allow a preliminary evaluation of the radiological profile of this type of industry. In black powder residues, the most prevalent radioisotope is {sup 210}Pb. The present work aimed to investigate the correlation between the chemical composition of the residue and the concentration of {sup 210}Pb, in black powder samples collected at Bacia de Campos, in the State of Rio de Janeiro, Brazil. The main objective was to generate information to regulatory authorities, to the National Commission of Nuclear Energy (CNEN) and to companies that produce natural-gas, such as PETROBRAS. Based on the information, the gas producing companies could elaborate radiological protection guidelines, and also decide about the need for implementation of a waste management program at the installation. The samples of black powder analyzed at the present work have confirmed the existence of such correlation between the concentration of {sup 210}Pb and chemical parameters. In principle, the present results make the use of such correlation feasible for preliminary evaluations of the {sup 210}Pb levels in natural-gas installations. On the other hand, given the geographic limitations, a broader study is recommended, in order to evaluate the investigated correlation, which could be used as a guiding tool for the Brazilian industry of production and processing of natural-gas.(author)

  12. Sustainable prevention of resource conflicts. Case studies and scenarios for the Nabucco pipeline (report 3.1); Rohstoffkonflikte nachhaltig vermeiden. Fallstudie und Szenarien zur Nabucco-Pipeline (Teilbericht 3.1)

    Energy Technology Data Exchange (ETDEWEB)

    Taenzler, Dennis; Westerkamp, Meike [Adelphi Research, Berlin (Germany); Supersberger, Nikolaus; Ritthoff, Michael; Bleischwitz, Raimund [Wuppertal Institut (Germany)

    2011-04-15

    The controversial discussion over natural gas supply in Europe has been going on for several years now; it all started with the controversy between Russia, Europe's main supplier country, and Ukraine and Belorus. The wish to reduce the dependence on Russian imports resulted in several European projects. One of them is the so-called Nabucco pipeline, which will transport natural gas from the Caspian region to Western Europe without touching Russian territory. A comprehensive view of the case study and the scenarios derived from it shows that the supply and demand situation in the European Union will be the central element of all developments. The economic efficiency of the Nabucco pipeline will depend on the implementation of efficiency strategies within the EU. In case of peak gas production, it is difficult to see how the Nabucco pipeline will be affected; it will depend largely on the regions in which natural gas production will decline the most. Cooperative regimes may develop along the Nabucco pipeline if the pipeline is viewed not only as an economic project but also as an approach to getting many actors together with maximum benefit to all. For the EU itself, the Nabucco pipeline is an important instrument for reducing dependence on Russian natural gas. However, Nabucco will compete with the NordStream pipeline that is currently being laid through the Baltic Sea. The NordStream pipeline is contraproductive in that it increases dependence on Russian natural gas. At the same time, the existing energy partnership between the EU and Russia is to be deepened. In principle, the Nabucco pipeline is a relevant approach to avoiding possible supply and dependence conflicts on a transnational level. (orig./RHM)

  13. Energy policy and cooperation in Southeast Asia: The history, challenges, and implications of the trans-ASEAN gas pipeline (TAGP) network

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2009-01-01

    This article explores the proposed multibillion dollar Trans-ASEAN Gas Pipeline (TAGP) network in Southeast Asia, focusing on the interests that have promoted the TAGP and why. Based on extensive field research, textual analysis of government reports, and more than 100 research interviews at government institutions, multilateral development banks, universities, consulting firms, energy companies, and nongovernmental organizations, this article assesses the challenges facing the TAGP in terms of promotion, implementation, and operation. It explores the genesis of the TAGP project and the drivers pushing Southeast Asian investment in natural gas, with a special emphasis on the development needs of the region. It also investigates the numerous technical, economic, legal, political, social, and environmental impediments to the TAGP project. The article concludes that the rhetoric of regional energy cooperation touted by the Association of Southeast Asian Nations (ASEAN) does not match its actual practice, and that in many cases discussions of regionalism and energy security are intended to obscure opportunistic thinking within individual countries.

  14. Energy policy and cooperation in Southeast Asia: The history, challenges, and implications of the trans-ASEAN gas pipeline (TAGP) network

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)], E-mail: bsovacool@nus.edu.sg

    2009-06-15

    This article explores the proposed multibillion dollar Trans-ASEAN Gas Pipeline (TAGP) network in Southeast Asia, focusing on the interests that have promoted the TAGP and why. Based on extensive field research, textual analysis of government reports, and more than 100 research interviews at government institutions, multilateral development banks, universities, consulting firms, energy companies, and nongovernmental organizations, this article assesses the challenges facing the TAGP in terms of promotion, implementation, and operation. It explores the genesis of the TAGP project and the drivers pushing Southeast Asian investment in natural gas, with a special emphasis on the development needs of the region. It also investigates the numerous technical, economic, legal, political, social, and environmental impediments to the TAGP project. The article concludes that the rhetoric of regional energy cooperation touted by the Association of Southeast Asian Nations (ASEAN) does not match its actual practice, and that in many cases discussions of regionalism and energy security are intended to obscure opportunistic thinking within individual countries.

  15. Energy policy and cooperation in Southeast Asia. The history, challenges, and implications of the trans-ASEAN gas pipeline (TAGP) network

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)

    2009-06-15

    This article explores the proposed multibillion dollar Trans-ASEAN Gas Pipeline (TAGP) network in Southeast Asia, focusing on the interests that have promoted the TAGP and why. Based on extensive field research, textual analysis of government reports, and more than 100 research interviews at government institutions, multilateral development banks, universities, consulting firms, energy companies, and nongovernmental organizations, this article assesses the challenges facing the TAGP in terms of promotion, implementation, and operation. It explores the genesis of the TAGP project and the drivers pushing Southeast Asian investment in natural gas, with a special emphasis on the development needs of the region. It also investigates the numerous technical, economic, legal, political, social, and environmental impediments to the TAGP project. The article concludes that the rhetoric of regional energy cooperation touted by the Association of Southeast Asian Nations (ASEAN) does not match its actual practice, and that in many cases discussions of regionalism and energy security are intended to obscure opportunistic thinking within individual countries. (author)

  16. Transmission pipeline calculations and simulations manual

    CERN Document Server

    Menon, E Shashi

    2014-01-01

    Transmission Pipeline Calculations and Simulations Manual is a valuable time- and money-saving tool to quickly pinpoint the essential formulae, equations, and calculations needed for transmission pipeline routing and construction decisions. The manual's three-part treatment starts with gas and petroleum data tables, followed by self-contained chapters concerning applications. Case studies at the end of each chapter provide practical experience for problem solving. Topics in this book include pressure and temperature profile of natural gas pipelines, how to size pipelines for specified f

  17. Microbial corrosion and cracking in steel. A concept for evaluation of hydrogen-assisted stress corrosion cracking in cathodically protected high-pressure gas transmission pipelines

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo

    of high-strength pipeline steel and the concentration of hydrogen present in the steel. B. Determine the degree hydrogen absorption by cathodically protected steel exposed in natural soil sediment, which include activity of sulphate-reducing bacteria (SRB). C. Compare the above points with fracture...... crack propagation. This resulted in threshold curves that can be used for assessment of the risk of hydrogen-assisted cracking as a function of operating pressure and hydrogen content - having the flaw size as discrete parameter. The results are to be used mainly on a conceptual basis......, but it was indicated that the requirements for crack propagation include an overprotective CP-condition, a severe sulphate-reducing environment, as well as a large flaw (8 mm or a leak in the present case). A 1 mm flaw (which may be the maximum realistic flaw size) is believed to be unable to provoke crack propagation...

  18. An analysis of the thickness influence in performance and structural integrity of gas pipelines; Um estudo sobre a influencia de rigidez de dutos no desempenho e na integridade de gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Waldir T.; Pinto, Rosa Irene T. [Fundacao Universidade Federal do Rio Grande (FURG), RS (Brazil)

    2004-07-01

    This work presents an analysis on the influence of the changes on pipe rigidity on the safety of buried gas pipelines. The work consists of the adoption of a parameter defined by the ratio between the wall thickness and the diameter of the pipe to assess the pipeline structural performance under several loading conditions, such as internal pressure, external pressure, external loading, longitudinal analysis, and corrosion. Results for a 14 inches pipe with wall thicknesses of 5.6 mm, 7.1 mm, and 7.9 mm are presented for each one of the loading conditions. These results show that for most cases a small increase in the wall thickness leads to significant increase of the pipeline safety. This suggests that in many cases the adoption of wall thicker than them minimum thickness suggested by technical codes present a better cost/benefit relation. (author)

  19. The opening of electricity and gas markets to professional clients. Main lessons - December 2007

    International Nuclear Information System (INIS)

    2007-01-01

    Since 2004, electricity and gas markets are opened to all professional clients who can freely chose their energy supplier. A quantitative inquiry has been carried out by BVA on behalf of the French Energy Regulatory Commission (CRE) on a sample of 1503 companies representative of both the private and public sectors. The aim of this inquiry is to gain information on the following points: what are the professionals' motivations or brakes concerning the change of energy supplier? What is their general opinion about markets opening? What are the false questions or ideas? what is their level of knowledge about the July 2004 opening of energy markets? What has it changed for them? Do they know the new suppliers? What are the new terms and conditions? What is their intention (faithfulness or changing). The lessons learnt from this inquiry are summarized in this document. (J.S.)

  20. Finite element method for transient flow of homogeneous gas-liquid mixtures in rigid and quasi-rigid pipelines

    International Nuclear Information System (INIS)

    Haj Kacem, Yassine; Hadj-Taieb, Ezzedine

    2017-01-01

    A numerical solution based on the finite element method is presented to describe wave propagations in the transient flow of homogeneous gas-liquid mixtures in rigid and quasi-rigid pipes. The rigid model is deduced by neglecting the liquid compressibility and the pipe wall elasticity against the gas compressibility. But, these two parameters are taken into consideration in the quasi-rigid model. The effect of fluid compressibility on the pressure waves of transient flow is then analyzed and confronted to the pipe wall elasticity. To validate the reliability of the model presented herein, the numerical results are compared with those obtained by the finite difference method and experiment. The results show that the pressure wave propagation is significantly influenced by gas-fluid mass ratio and pipe wall elasticity. (authors)

  1. Implications of greenhouse gas emission mitigation scenarios for the main Asian regions

    International Nuclear Information System (INIS)

    Ruijven, Bas J. van; Vuuren, Detlef P. van; Vliet, Jasper van; Mendoza Beltran, Angelica; Deetman, Sebastiaan; Elzen, Michel G.J. den

    2012-01-01

    In order to limit global mean temperature increase, long-term greenhouse gas emissions need to be reduced. This paper discusses the implications of greenhouse gas emission reductions for major Asian regions (China, India, Indonesia, South-East Asia, Japan and Korea) based on results from the IMAGE modelling framework. Energy use in regions and economic sectors is affected differently by ambitious climate policies. We find that the potential for emission reduction varies widely between regions. With respect to technology choices in the power sector, we find major application of CO 2 storage in Indonesia and India, whereas Korea and India apply more solar and wind. Projections for Japan include a (debatable) large share of nuclear power. China and, India, and South-East Asia, show a diverse technology choice in the power sector. For the industry sector, we find that the recent rapid growth in China limits the potential for emission reduction in the next decades, assuming that recently built coal-based industry facilities are in use for the next decades. For the residential sector, the model results show that fewer households switch from traditional fuels to modern fuels in GHG mitigation scenarios. With respect to co-benefits, we find lower imports of fossil energy in mitigation scenarios and a clear reduction of air pollutant emissions. - Highlights: ► The potential for emission reduction varies widely between regions. ► Some regions have attractive CO 2 storage capacity; others have low-cost solar/wind potential. ► The recent rapid growth of Chinese industry may limit emission reduction potential for decades. ► Fewer households switch from traditional fuels to modern fuels in mitigation scenarios. ► Mitigation scenarios show less fossil energy import and reduction of air pollutant emission.

  2. 1000 m HDD drilling in rock on a steep slope in an earthquake zone. DA 278 mm gas pipeline installed in the Hohenzollern zone at gradients of up to 40 %; 1000 m HDD-Felsbohrung am Steilhang im Erdbebengebiet. Gaspipeline DA 278 mm bei bis zu 40 % Gefaelle im Hohenzollerngebiet verlegt

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, H.J. [Tracto-Technik GmbH und Co. KG, Lennestadt (Germany); Bunger, S. [Max Wild GmbH, Horizontalbohrtechnik, Berkheim (Germany)

    2008-01-15

    The construction of a natural gas optimization system for Albstadtwerke involved the installation of a new natural gas pipeline from Stetten bei Hechingen to Zollersteighof bei Albstadt across a length of 5 km. The project necessitated drilling through the rock of the Albtrauf strata in order to overcome a difference in elevation of some 230 m. The new pipeline has been assuring Albstadt's gas supplies since October 1, 2007. (orig.)

  3. Understanding the formation process of the liquid slug in a hilly-terrain wet natural gas pipeline

    DEFF Research Database (Denmark)

    Yang, Yan; Li, Jingbo; Wang, Shuli

    2017-01-01

    condition on the liquid slug formation is discussed including pipe diameter, inclination angle, gas superficial velocity and liquid holdup. The results show that the pipe is blocked by the liquid slug at the moment of slug formed. The pipe pressure suddenly increases, and then decreases gradually...... in the process of liquid slug formation and motion. The pipe pressure drop and liquid holdup decrease along with the increasing inclination angle of ascending pipe. On the contrary, they rise with the increase of the inclination angle of descending pipe. Higher gas superficial velocity and liquid holdup result...

  4. Excellent impact performance of PVC pipeline materials in gas distribution networks after many years of service (CD-rom)

    OpenAIRE

    Visser, Roy; Hermkens, R.M.J.; Wolters, Mannes; Weller, J.; Warnet, Laurent; Beckervordersandforth, C.; Verberg, G.H.B.; Kramer, M.

    2008-01-01

    It has been about fifty years ago since the first unplasticized poly(vinyl chloride) (uPVC) pipes were installed for use in gas distribution purposes. Currently, about 22,500 km of uPVC is still in use in the Dutch gas distribution network. The pipes were originally designed for a lifetime of 50 years, but due to positive experiences the question arises if (and how long) the lifetime can be extended without any concessions to safety. This is supported by the data of leak surveys presented in ...

  5. Prediction of mineral scale formation in wet gas condensate pipelines and in MEG (mono ethylene glycol) regeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Sandengen, Kristian

    2006-12-20

    Gas hydrate formation is a serious problem in the oil and gas industry, since its formation can plug wells and prevent production. The gas hydrate is a crystalline solid with a natural gas molecule surrounded by a cage of water molecules. It forms at high pressures and low temperatures. This is a problem for offshore gas wells, where the temperature is low in transport lines from well to the production facilities. Mono Ethylene Glycol (MEG) is commonly used as hydrate inhibitor. Classified as a thermodynamic inhibitor, this additive functions just as antifreeze in an automotive radiator. When producing oil and gas there will in most cases also be produced some water, which can contain dissolved salts. These salts may precipitate and they tend to deposit on surfaces. Deposition of inorganic minerals from brine is called scale. Generally MEG has the adverse effect of lowering the solubility of most salts. A common method to prevent corrosion in flow lines is to increase pH by adding basic agents (e.g. NaOH, NaHCO{sub 3}) to the MEG stream. In such cases, carbonate salts are particularly troublesome since an increase in pH by one unit, will reduce the solubility by two orders of magnitude. Thus there will be a trade off between good corrosion protection (high pH) and scale control (low pH). The aim of this work has been to develop a model that can predict mineral solubility in the presence of MEG. Experimental solubility data, together with thermodynamic data taken from literature, have been utilized to construct empirical functions for the influence of MEG on mineral scale formation. These functions enabled the expansion of an already existing aqueous scale model into a model valid for water+MEG mixed solutions. The aqueous scale model combines an equation of state (gas+oil phase) with the Pitzer ion interaction model (water phase) to describe the multiphase behaviour of gas-oil-water systems. This work summarizes the theoretical foundation and proposes how to work

  6. Microbiologically influenced corrosion in petroleum product pipelines--a review.

    Science.gov (United States)

    Muthukumar, N; Rajasekar, A; Ponmariappan, S; Mohanan, S; Maruthamuthu, S; Muralidharan, S; Subramanian, P; Palaniswamy, N; Raghavan, M

    2003-09-01

    Microbiologically influenced corrosion is responsible for most of the internal corrosion problems in oil transportation pipelines and storage tanks. One problematic area in treating gas lines is the occurrence of the stratification of water in the line. Under these conditions, corrosion inhibitors do not come into contact properly and oil and inhibitors undergo degradation. The role of bacteria on oil degradation, the consequences of oil degradation in fuel systems and its influence on corrosion have been explained in detail. Besides, factors influencing on degradation of oil and corrosion inhibitors have also been discussed. Mechanism of microbiologically influenced corrosion in oil pipeline has been explained. Many of the misapplication of biocides/inhibitors occur mainly because the characteristics of biocides/inhibitors are not considered before use in pipeline industry. List of biocides and monitoring programme have been collected from literature and presented.

  7. 76 FR 72666 - Pipeline Safety: Expanding the Use of Excess Flow Valves in Gas Distribution Systems to...

    Science.gov (United States)

    2011-11-25

    ... distribution system supplies natural gas, including hospitals, schools, and commercial enterprises; (C) The technical feasibility and cost of the installation of such valves; (D) The public safety benefits of the installation of such valves; (E) The location of customer meters; and (F) Such other factors as the Secretary...

  8. Establishment of native species on a natural gas pipeline: the importance of seeding rate, aspect, and species selection

    Science.gov (United States)

    Melissa A. Thomas-Van Gundy; Pamela J. Edwards; Thomas M. Schuler

    2018-01-01

    With the increase in natural gas production in the United States, land managers need solutions and best practices to mitigate potential negative impacts of forest and soil disturbance and meet landowner objectives and desired conditions. Mitigation often includes the use of native seed mixes for maintaining plant diversity, controlling nonnative invasive species, and...

  9. 76 FR 41788 - Southern Star Central Gas Pipeline, Inc.; Notice of Intent To Prepare an Environmental Assessment...

    Science.gov (United States)

    2011-07-15

    ... the expansion of the certificated boundary and buffer zone of the existing Alden Gas Storage Field by... Star requests authorization to expand its existing certificated boundary and buffer zone of its... Star proposes to expand the storage field boundary and buffer zone by an additional 1,592 acres and...

  10. 75 FR 81602 - Tennessee Gas Pipeline Company; Notice of Intent To Prepare an Environmental Assessment for the...

    Science.gov (United States)

    2010-12-28

    ... construction of the new Southwick Compressor Station 260A at 248 Feeding Hills Road in the Town of Southwick... electrical line. Ancillary equipment will also include an emergency generator, hot water boiler and space heater, all fueled by natural gas. In order to connect the Compressor Station to the Northampton Lateral...

  11. An inviscid three-dimensional analysis of the Space Shuttle main engine hot-gas manifold

    Science.gov (United States)

    Liang, P. Y.

    1983-01-01

    A numerical study using an inviscid three-dimensional Lagrangian fluid dynamics code has been conducted as a part of an overall effort to understand the flow behavior in the SSME fuel side hot-gas manifold. The model simulates flow from the high-pressure fuel turbine exit through the transfer ducts, including the effects of swirl, inlet flow symmetry, and presence of straightening vanes and struts; a separate, more-detailed effort is in progress that includes viscosity and turbulence effects. The simplified model presented is divided into two parts, the first includes the 180-degree turnaround duct downstream of the turbine exit and the spherical fuel bowl section, while the second models the three transfer ducts. The two parts of the model are coupled together with the interface conditions being updated through iteration. Results indicate that a transverse pressure differential of 165 psi would be imposed on the turbine exit and that unstable flow separation occurs around the vanes, struts, and within the transfer ducts. The three transfer ducts show a mass flux split of approximately 41, 21, and 38 percent. Results to date are encouraging that certain flow characteristics can be usefuly represented using a relatively coarse grid inviscid code.

  12. Distribution of gas from Canaport LNG

    International Nuclear Information System (INIS)

    Thompson, W.

    2006-01-01

    Construction of the Canaport Liquefied Natural Gas (LNG) project will begin in 2006. Public consultations are currently being held for the 145 km pipeline from Canaport to Bailleyville, Maine. It is expected that both the facility and the pipeline will be operational by 2008. This presentation provided details of the New Brunswick (NB) Department of Energy's (DOE) regulatory oversight of the Canaport Liquefied Natural Gas (LNG) project. The DOE is responsible for ensuring diversity and security of supply; economic efficiency; economic development opportunities and protection of the environment. The Canaport LNG facility will provide an additional 500 to 600 temporary jobs over a 2 to 3 year period, as well as 20 full-time jobs once the plant is operational. Tax revenues, access roads and the construction of a pipeline to Bailleyville, Maine will also have positive impacts on the NB economy. The facility will provide a secure long term supply of natural gas for the region. In order to support its energy goals, the DOE has proposed amendments to provide for the distribution of gas from the plant to NB customers. A proposed LNG franchise to allow for direct distribution of gas from the LNG plant to customers was discussed. Issues concerning the Gas Distribution Act and the New Pipeline Act of 2006 were also examined. It was concluded that public consultations are currently being held for the 145 km pipeline, and that both the facility and the pipeline are expected to be operational by 2008. refs., tabs., figs

  13. Supervision system for safety valves and operative metering station of the Yacuiba-Rio Grande Gas Pipeline; Sistema de supervisao para valvulas de seguranca e estacoes de medicao operativas do gasoducto Yacuiba-Rio Grande

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Fernando; Marques, Ailton [Transierra S.A., La Paz (Bolivia)

    2005-07-01

    One of the most critical points for the opportune intervention that compromises the operations of TRANSIERRA S.A., is the integrity of the facilities, the adjacent communities and the environment are the Shut Down Valves (SDV) of the GASYRG Gas pipeline. The GASYRG (Yacuiba Rio Grande Gas pipeline) with an extension of 432 Km and a Pipeline diameter of 32 inches presents 2 Receipt Stations, 1 Delivery Point and 11 Line Valves. The pipeline operation is made by satellite and SCADA applications; it is supervised and controlled on-line at the points of delivery and receipt; monitoring of the SDV's was left aside; because of this it was necessary to develop a Remote Supervision System. This system combines remote devices with the Control Philosophy of Report By-Exception, Low Orbit Satellite System, Internet application and Intranet. The mentioned information is sent in e-mail format to a Satellite Teleport located in London, England. The process information is sent via Internet to TRANSIERRA's SCADA Servers for its interpretation and display in the HMI of the GASYRG supervisory system. (author)

  14. Research on the internal pressure behavior of metal gas distribution pipelines with different types of tubing defects

    Directory of Open Access Journals (Sweden)

    Filip Stefan Mihai

    2017-01-01

    Full Text Available The paper aims to approach an important subject related to natural gas distribution networks which, depending on the expansion of the localities, are composed of intercommunicating pipes, pressure reducing stations and branch connections fittings. The urban networks are the most complex ones and the rural areas networks are the simplest. However, irrespective of their installation, they must meet the safety operating requirements as much as possible. According to standards, all these components must be tight and pressure resistant. In this regard, we intend to approach a very important issue related to the behavior of the tubular steel material showing corrosion and/or material defects, and to the internal stress caused by the gas pressure on the walls of the tubing material.

  15. EMISSION OF SOIL GAS RADON CONCENTRATION AROUND MAIN CENTRAL THRUST IN UKHIMATH (RUDRAPRAYAG) REGION OF GARHWAL HIMALAYA.

    Science.gov (United States)

    Aswal, Sunita; Kandari, Tushar; Sahoo, B K; Bourai, A A; Ramola, R C

    2016-10-01

    In this paper, the result of systematic measurement of the soil gas radon concentrations is discussed and the background values are defined along and around the Main Central Thrust (MCT) in Ukhimath region of Garhwal Himalaya, India. The Ukhimath region is being subjected to intense neotectonic activities like earthquake and landslide. For the systematic study, the measurement has been done in grid pattern form along and across the MCT. The soil gas radon concentrations were measured using RAD7 with appropriate accessories and followed proper protocol proposed by the manufacturer. The soil gas concentration was measured at different depths 10, 30 and 50 cm with a wide range of different points from the MCT. At 10 cm depth, the soil gas radon concentration was found to vary from 125 to 800 Bq m -3 with an average of 433 Bq m -3 ; at 30 cm, it was found to vary from 203 to 32 500 Bq m -3 with an average of 2387 Bq m -3 ; and at 50 cm, it was found to vary from 1330 to 46 000 Bq m -3 with an average of 15 357 Bq m -3 The data analysis clearly reveals anomalous values along the fault. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Emission of soil gas radon concentration around main central thrust in Ukhimath (Rudraprayag) region of Garhwal Himalaya

    International Nuclear Information System (INIS)

    Aswal, Sunita; Kandari, Tushar; Bourai, A.A.; Ramola, R.C.; Sahoo, B.K.

    2016-01-01

    In this paper, the result of systematic measurement of the soil gas radon concentrations is discussed and the background values are defined along and around the Main Central Thrust (MCT) in Ukhimath region of Garhwal Himalaya, India. The Ukhimath region is being subjected to intense neotectonic activities like earthquake and landslide. For the systematic study, the measurement has been done in grid pattern form along and across the MCT. The soil gas radon concentrations were measured using RAD7 with appropriate accessories and followed proper protocol proposed by the manufacturer. The soil gas concentration was measured at different depths 10, 30 and 50 cm with a wide range of different points from the MCT. At 10 cm depth, the soil gas radon concentration was found to vary from 125 to 800 Bq m -3 with an average of 433 Bq m -3 ; at 30 cm, it was found to vary from 203 to 32 500 Bq m -3 with an average of 2387 Bq m -3 ; and at 50 cm, it was found to vary from 1330 to 46 000 Bq m -3 with an average of 15 357 Bq m -3 . The data analysis clearly reveals anomalous values along the fault. (authors)

  17. Assessing Hydrate Formation in Natural Gas Pipelines Under Transient Operation / Ocena zjawiska tworzenia się hydratów w warunkach nieustalonego przepływu gazu w gazociągach

    Science.gov (United States)

    Osiadacz, Andrzej

    2013-03-01

    This work presents a transient, non-isothermal compressible gas flow model that is combined with a hydrate phase equilibrium model. It enables, to determine whether hydrates could form under existing operating conditions in natural gas pipelines. In particular, to determine the time and location at which the natural gas enters the hydrate formation region. The gas flow is described by a set of partial differential equations resulting from the conservation of mass, momentum, and energy. Real gas effects are determined by the predictive Soave-Redlich-Kwong group contribution method. By means of statistical mechanics, the hydrate model is formulated combined with classical thermodynamics of phase equilibria for systems that contain water and both hydrate forming and non-hydrate forming gases as function of pressure, temperature, and gas composition. To demonstrate the applicability a case study is conducted.

  18. Instrumented Pipeline Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  19. Analisa Tegangan Pada Vertical Subsea Gas Pipeline Akibat Pengaruh Arus dan Gelombang Laut dengan Metode Elemen Hingga

    Directory of Open Access Journals (Sweden)

    Rafli Ramadani

    2015-12-01

    Full Text Available Pipa gas bawah laut merupakan salah satu cara utama yang paling cepat, aman, ekonomis, dan dapat diandalkan dalam pendistribusian gas dari offshore. Faktor tegangan pada jalur pipa gas bawah laut merupakan kunci utama dalam proses operasinya. Tegangan tersebut dapat disebabkan dari beban internal pada pipa ataupun beban eksternal yang berasal dari lingkungan dimana pipa tersebut beroperasi. Untuk mengetahui distribusi tegangan pada pipa akibat beban eksternal berupa arus dan gelombang laut maka dilakukan simulasi dengan metode Computational Fluid Dynamic (CFD menggunakan software SOLIDWORKS untuk pembuatan obyek dan domain yang selanjutnya disimulasikan menggunakan software ANSYS FLUENT dan AQWA 14. Simulasi dilakukan pada pipa vertikal dimana dalam simulasi pipa tersebut dibagi menjadi tiga bagian. Pipa bagian atas memiliki panjang pipa sebesar 7700 mm pada garis air 15400 mm – 23000 mm, pipa bagian tengah memiliki panjang 7700 pada garis air 7700 mm – 15400 mm, dan pipa bagian bawah memiliki panjang 4650 mm untuk pipa lurusnya dan memiliki tambahan elbow 90° dengan jari-jari sebesar 3050 m berada pada garis air 0 mm – 7700 mm. Selanjutnya, simulasi dilakukan dengan variasi kecepatan arus sebesar 0.48 m/s untuk potongan pipa bagian tengah dan 0.75 m/s untuk potongan pipa bagian bawah. Sedangkan untuk pipa bagian atas disimulasikan dengan periode gelombang sebesar 6.4 s dengan tinggi gelombang sebesar 2.3 m. dari hasil pemodelan dan simulasi didapatkan distribusi tegangan dan tegangan maksimum untuk setiap potongan pipa. Potongan pipa bagian bawah memiliki tegangan maksimum sebesar 1830.629 Pa. Potongan pipa bagian tengah memiliki tegangan maksimum sebesar 18.68415 Pa. potongan pipa bagian atas memiliki tegangan maksimum sebesar 6733.2 Pa. Dari ketiga simulasi tersebut dapat disimpulkan bahwa beban gelombang yang paling besar dampaknya untuk pipa vertikal tersebut. Umur sisa kelelahan untuk pipa vertikal adalah sebesar 65982173.7 tahun

  20. The capacity increase of the Bolivia-Brasil Gas Pipeline to 30 MMm{sup 3} diameter. Relative aspects to the enterprise; O aumento de capacidade do gasoduto Bolivia-Brasil para 30 MMm{sup 3}/dia nominal. Aspectos relativos ao empreendimento

    Energy Technology Data Exchange (ETDEWEB)

    D' Oliveira, Celso Araripe; Igreja, Carlos Alexandre Fanjul [PETROBRAS, Rio de Janeiro, RJ (Brazil); Claussen, Edgard Soares; Castro, Raymundo Cesar de Mello Araujo [Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    GASBOL - Gasoduto Bolivia - Brasil Gas Pipeline had its natural gas transport capacity increased from 17 MMm3/day to 30 MMm3/day, in the period of November 1999 - May 2003, with the bidding, engineering design, procurement, construction, commissioning, start-up, tests, assisted operation and acceptance of 8 (eight) compression stations (ECOMP's), equipped with 02 (two) groups of solar compressors and turbines-MHI, 15000 HP, each. This paper presents aspects relative to that Project, including the characterization / description of the pipeline and the compression plants, the EPC type contract, the several construction phases and, the management aspects of costs and schedule. In addition, a historic of the main facts will be presented, including, the problems and the solutions adopted in the technical and management areas. The main positive and negative aspects will also be presented. These aspects have been discussed in a workshop with the participation of the Engineering Service of PETROBRAS and TBG. Finally, we will present the conclusions and recommendations learned with the experience of this Project, in order to give feedback for new Projects. (author)

  1. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  2. Fatigue crack growth behaviour of semi-elliptical surface cracks for an API 5L X65 gas pipeline under tension

    Science.gov (United States)

    Shaari, M. S.; Akramin, M. R. M.; Ariffin, A. K.; Abdullah, S.; Kikuchi, M.

    2018-02-01

    The paper is presenting the fatigue crack growth (FCG) behavior of semi-elliptical surface cracks for API X65 gas pipeline using S-version FEM. A method known as global-local overlay technique was used in this study to predict the fatigue behavior that involve of two separate meshes each specifically for global (geometry) and local (crack). The pre-post program was used to model the global geometry (coarser mesh) known as FAST including the material and boundary conditions. Hence, the local crack (finer mesh) will be defined the exact location and the mesh control accordingly. The local mesh was overlaid along with the global before the numerical computation taken place to solve the engineering problem. The stress intensity factors were computed using the virtual crack closure-integral method (VCCM). The most important results is the behavior of the fatigue crack growth, which contains the crack depth (a), crack length (c) and stress intensity factors (SIF). The correlation between the fatigue crack growth and the SIF shows a good growth for the crack depth (a) and dissimilar for the crack length (c) where stunned behavior was resulted. The S-version FEM will benefiting the user due to the overlay technique where it will shorten the computation process.

  3. Habitat diversity in the Northeastern Gulf of Mexico: Selected video clips from the Gulfstream Natural Gas Pipeline digital archive

    Science.gov (United States)

    Raabe, Ellen A.; D'Anjou, Robert; Pope, Domonique K.; Robbins, Lisa L.

    2011-01-01

    This project combines underwater video with maps and descriptions to illustrate diverse seafloor habitats from Tampa Bay, Florida, to Mobile Bay, Alabama. A swath of seafloor was surveyed with underwater video to 100 meters (m) water depth in 1999 and 2000 as part of the Gulfstream Natural Gas System Survey. The U.S. Geological Survey (USGS) in St. Petersburg, Florida, in cooperation with Eckerd College and the Florida Department of Environmental Protection (FDEP), produced an archive of analog-to-digital underwater movies. Representative clips of seafloor habitats were selected from hundreds of hours of underwater footage. The locations of video clips were mapped to show the distribution of habitat and habitat transitions. The numerous benthic habitats in the northeastern Gulf of Mexico play a vital role in the region's economy, providing essential resources for tourism, natural gas, recreational water sports (fishing, boating, scuba diving), materials, fresh food, energy, a source of sand for beach renourishment, and more. These submerged natural resources are important to the economy but are often invisible to the general public. This product provides a glimpse of the seafloor with sample underwater video, maps, and habitat descriptions. It was developed to depict the range and location of seafloor habitats in the region but is limited by depth and by the survey track. It should not be viewed as comprehensive, but rather as a point of departure for inquiries and appreciation of marine resources and seafloor habitats. Further information is provided in the Resources section.

  4. Growth in European gas demand

    International Nuclear Information System (INIS)

    Clement, B.

    1993-01-01

    The last three decades witnessed mainly the development of gas pipeline systems as a result of major onshore and offshore gas strikes in the fifties and sixties as well as the increase in gas sales on market segments which has been previously cornered by oil and coal products. Power generation currently is an additional potential market for which the availability of adequate resources plays a major role

  5. Environmental assessment on karstic formations for implantation of a terrestrial pipeline: case study of the Cacimbas-Catu gas pipeline; Avaliacao ambiental para implantacao de dutos terretres em terrenos carsticos: estudo de caso Gasoduto Cacimbas-Catu

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, Shanty Navarro; Oliveira, Wilson Jose de; Braun, Oscar [PETROBRAS, Rio de Janeiro, RJ (Brazil)] (and others)

    2008-07-01

    This work concerns in the development of a study on mapping and detection of structures and geological and geotechnical features associated with karstic relief and its implications in terms of ground stability to support the pipeline as well as from the point of view of cavities / caves conservation, potentially impacted by this activity. The limited mobility of track, carried by the existing restrictions, make the route of the Cacimbas-Catu pipeline pass through the cities of Itapebi (BA), Belomonte (BA), Mascote (BA) e Camaca (BA), where the local geology is characterized by rocks of Rio Pardo Group, dating from the Superior proterozoic (lower sequence predominantly carbonatic and upper sequence predominantly terrigenous). The study included a survey of secondary data, a field survey confirming karstic features, a 2D and subsequently 3D tomography survey, and a drilling survey to direct research at points of geo-electrical anomalies. The work did not identify underground cavities on the Cacimbas-Catu pipeline route. Even taking the studies presented geo-electric anomalies the direct investigation did not confirm the presence of voids in sub-surface, which enables the implementation of pipelines in this place, however the presence of electric anomalies with high resistivity indicate geotechnical areas where special care should be taken in relation to the stability of the ground. (author)

  6. German-Russian relations in the gas sector. Economic boundary conditions, interorganisational networks and negotiations concerning the Nord Stream Pipeline; Deutsch-russische Beziehungen im Gassektor. Wirtschaftliche Rahmenbedingungen, Interorganisationsnetzwerke und die Verhandlungen zur Nord Stream Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Michael

    2012-07-01

    The relations between energy-political and economic actors in Germany and Russia are investigated by network analysis methods and compared with regard to the changes between 2002 and 2007. Effects on concrete negotiations are illustrated by the example of the Nord Stream Pipeline. (orig./RHM)

  7. Report of study group 4.1 ''pipeline ageing and rehabilitation''

    Energy Technology Data Exchange (ETDEWEB)

    Serena, L.

    2000-07-01

    This report describes the work on the subject 'pipeline ageing and rehabilitation' carried out by the Study Group 4.1 and related to the triennium 1997 - 2000. The report is focused on ageing and rehabilitation of natural gas transmission pipelines and more in detail on the following topics: - Definition of pipeline ageing; - Different ageing elements; - Main causes of ageing; - Inspections and monitoring; - Repair methods on ageing pipelines; - Programmes and strategies for pipeline maintenance and rehabilitation. The report includes the state of the art of the different techniques used to assess pipeline ageing such as pig inspection, landslide areas monitoring as well as advanced monitoring methods used nowadays by pipeline operators; a clarification of the concepts for different maintenance approaches is also presented. In addition the report gives some information regarding repair methods in use, the methodologies to evaluate the defects and the philosophy on which each repair system is based. The remaining topics deal with the strategies of pipelines and coating rehabilitation, locus the attention in the economical and technical considerations also beyond the ageing concept and describe in details the main causes of ageing as indicated by operators. A questionnaire on these topics was in fact distributed and the obtained results are included in this report. (author)

  8. Saint John lateral pipeline project: comprehensive study report

    International Nuclear Information System (INIS)

    1999-02-01

    A descripion is given of the results of an environmental impact assessment of the construction of a natural gas pipeline that will bring gas from Maritimes and Northeast Pipeline Management Ltd.'s (M and NP) main transmission pipeline to clients in Lake Utopia and Saint John, NB. It will be 110 km long, and the Saint John lateral will join the mainline approximately 2 km south of Big Kedron Lake, NB. Various institutional, industrial, commercial and residential clients will be able to access the pipeline in the future, and it is intended to be capable of future expansion for markets along its route and for markets that become economically feasible in the future. A matrix was developed that relates environmental resources to Environmental Components of Concern (ECCs), and to the rationale for exclusion/inclusion of the ECC as a Valued Environmental Component (VECs). The positive benefits of the pipeline to clients in the Saint John area include: reduced dependence on foreign oil, fuel switching and price competition, lower air emission pollution, increased energy efficiency, and a source of energy that is secure and reliable. VECs were selected based on: concerns of various stakeholders including the public, community groups, scientific parties, Aboriginal groups, government officials and agencies, relevant regulations; relevant literature; and past evaluation experiences, including future developments of the proposed study area. Further selection of the VECs required an examination of the issues picked out via scoping to determine the ways in which the overall project could affect the ECCs, and included construction, operation, decommissioning/abandonment, malfunctions and accidents of the pipeline. The phases of the project as they impacted residually and cumulatively on the VECs were evaluated, and impacts on Valued Socio-Economic Components (VSCs) were assessed also. The mitigation efforts taken will minimize the potential effects of the project on VECs and VSCs

  9. 18 CFR 2.57 - Temporary certificates-pipeline companies.

    Science.gov (United States)

    2010-04-01

    ...-pipeline companies. 2.57 Section 2.57 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Natural Gas Act § 2.57 Temporary certificates—pipeline companies... the proposed construction is of major proportions. Pipeline companies are accordingly urged to conduct...

  10. 49 CFR 192.755 - Protecting cast-iron pipelines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Protecting cast-iron pipelines. 192.755 Section... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.755 Protecting cast-iron pipelines. When an operator has knowledge that the support for a segment of a buried cast-iron...

  11. Development of high productivity pipeline girth welding

    International Nuclear Information System (INIS)

    Yapp, David; Liratzis, Theocharis

    2010-01-01

    The trend for increased oil and gas consumption implies a growth of long-distance pipeline installations. Welding is a critical factor in the installation of pipelines, both onshore and offshore, and the rate at which the pipeline can be laid is generally determined by the speed of welding. This has resulted in substantial developments in pipeline welding techniques. Arc welding is still the dominant process used in practice, and forge welding processes have had limited successful application to date, in spite of large investments in process development. Power beam processes have also been investigated in detail and the latest laser systems now show promise for practical application. In recent years the use of high strength steels has substantially reduced the cost of pipeline installation, with X70 and X80 being commonly used. This use of high strength pipeline produced by thermomechanical processing has also been researched. They must all meet three requirments, high productivity, satisfactory weld properties, and weld quality

  12. 49 CFR 192.937 - What is a continual process of evaluation and assessment to maintain a pipeline's integrity?

    Science.gov (United States)

    2010-10-01

    ... Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE... completing the baseline integrity assessment of a covered segment, an operator must continue to assess the...

  13. Stress analysis and mitigation measures for floating pipeline

    Science.gov (United States)

    Wenpeng, Guo; Yuqing, Liu; Chao, Li

    2017-03-01

    Pipeline-floating is a kind of accident with contingency and uncertainty associated to natural gas pipeline occurring during rainy season, which is significantly harmful to the safety of pipeline. Treatment measures against pipeline floating accident are summarized in this paper on the basis of practical project cases. Stress states of pipeline upon floating are analyzed by means of Finite Element Calculation method. The effectiveness of prevention ways and subsequent mitigation measures upon pipeline-floating are verified for giving guidance to the mitigation of such accidents.

  14. Corporate social responsibility along pipelines: communities and corporations working together

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Edison D.R.; Lopes, Luciano E.; Danciguer, Lucilene; Macarini, Samuel; Souza, Maira de [Grupo de Aplicacao Interdisciplinar a Aprendizagem (GAIA), Campinas, SP (Brazil)

    2009-07-01

    In this paper we present GAIA's findings in three corporate social responsibility projects along pipelines owned by three Brazilian companies in gas, oil and mining sectors. The projects had as the main goal to improve the relationship with communities in the companies' direct influence areas. Clearly, the relationship with communities along pipelines is essential to prevent and reduce industrial hazards. The damage in pipelines due to agriculture, buildings, intentional perforations and traffic of heavy vehicles may cause fatal accidents, environmental and material losses. Such accidents have negative consequences with regard to economy, image and relationship with communities and environmental agencies. From communities' perspective, pipelines deteriorate their life quality due to risk of industrial hazards nearby their houses. The lack of proper information about the pipelines remarkably increases insecurity feelings and discourses against the companies among community leaders. The methodology developed by GAIA comprises companies' and communities' interests and encompasses nine stages. 1. Socio-environmental appraisal or inventory, mapping main risks, communities' needs and their leaders. 2. Communication plan, defining strategies, languages and communication vehicles for each stakeholder group. 3. Inter-institutional meetings to include other institutions in the program. 4. Launching seminar in partnership with local authorities, divulging companies' actions in the cities with pipelines. 5. Multiplier agents formation, enabling teachers, local leaders and government representatives to disseminate correct information about the pipelines such as their functioning, hazard prevention, maintenance actions, and restrictions of activities over the pipelines. 6. Formation on project management, enabling teachers, local leaders and government representatives to elaborate, fund raise and manage socio environmental projects aimed at

  15. Performance comparison between turbine and ultrasonic flowmeters for gas pipelines; Comparacao de desempenho entre medidores de vazao para gas natural tipo turbina e tipo ultra-sonico

    Energy Technology Data Exchange (ETDEWEB)

    Roz, Fabio da; Palhares, Julio Cesar de M.; Nunes, Marcus Vinicius B.; Pinto, Nancy Flora Alves [TBG - Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The performance analysis of natural gas flowmeters Turbine and Ultra-sonic Type installed in a same stream connected to a flow computers for 18 months it allowed to identify errors between Ultra-sonic flowmeter and Turbine flowmeter. All measurements of the measured volumes during test period were stored in flow computers and they were tabulated for analysis and study. The measured values were compared making possible analysis of measurement errors between the two instruments. All maintenance events of the measurement system in subject were registered, allowing analysis of all fails occurred during the test period. (author)

  16. The challenges of working values of SEH (Safety, Environment and Health) in the construction of Urucu / Manaus Gas Pipeline in the Amazon rain forest; Os desafios de trabalhar os valores de SMS (Seguranca, Meio ambiente e Saude) na construcao do Gasoduto Urucu/Manaus na Floresta Amazonica

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Jeane Ramos; Rocha, Katia Rosilene Soares da; Paredio, Lindoneide Lima [Concremat Engenharia e Tecnologia, Rio de Janeiro, RJ (Brazil); Pellin, Madson Weider Elgaly [JPTE Engenharia, Sao Jose dos Campos, SP (Brazil); Barreto, Jean Luis Campos [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This work, aims to sharpen the main difficulties of acting in SMS and the corrective and preventive measures in the work of the pipeline Urucu / Manaus, located in the influence of the Solimoes River, covering several municipalities in the state of Amazonas (Coari, Codajas, Caapiranga, Anama, Iranduba, Manaus). Such pipeline has three spread, namely Spread A, from Urucu to Coari, Spread B1, from Coari to Anama, and Spread B2, from Anama to Manaus. For the purpose of the present case, we have focused on the Spread B2, from the city of Anama to Manaus, from km 475 to Km 662, being 174,400 m long. Its main line ends right within the premises of the Refinaria Isaac Sabba (a local refinery), which is located at Rua Rio Quixito - Distrito Industrial. The purpose of the pipeline is to convey natural gas to the Pressure Regulating Station, which is located close by the aforementioned refinery. The gas is transported to Maua Thermoelectrical, to generate energy for certain areas of the Amazon capital city. The information has been obtained through observations made on the difficulties faced by the workers to comply with safety behaviour while carrying out their activities. Also, by using several tools, such us Auditoria Comportamental (Behaviour Auditing) - Audicomp, Aplicacao de Listas de Verificacao - LV's (Verification Lists), as well as Indice de Praticas Seguras - IPS (Safety Practices Index). The collected data is analysed, and displayed in graphics, tables and processed in PETROBRAS internal systems, such Audicomp (Behaviour Auditing), SALV (Verification Lists Application System), and Auditoria de IPS (Safety Practices Index Auditing). The main difficulties to implement SMS (Safety, Environment and Health) in a pipeline works in the Amazon require from the transportation logistics, communication problems, lack of enough local skilled labor, the adverse region's season conditions, both flood and dry seasons, as well as to commit the local population with

  17. Treatment screening for internal corrosion control of PETROBRAS oil pipelines; Selecao de tratamento para controle da corrosao interna de oleodutos da PETROBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Cynthia de Azevedo; Muller, Eduardo Gullo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Antunes, Warlley Ligorio; Shioya, Nilce Hiromi; Salvador, Angelica Dias [PETROBRAS, RJ (Brazil). Unidade de Negocios da Bacia de Campos

    2005-07-01

    The use of corrosion inhibitors is spread out in oil and gas industry and is the most common methodology to control pipeline internal corrosion. However, their effectiveness depends on the pipeline material, inhibitor composition, flow type and scale characteristics. When a pipeline has heavy scale deposits, thick bacterial biofilm, or oxygen contamination, the corrosion control via filmic inhibitors is not effective. So, the only way to control internal corrosion of an oil pipeline is to primary identifies the corrosive agent and the main corrosion mechanism. The monitoring of the inhibitor efficiency and the determination of minimal residual concentration to prevent corrosion, are also fundamental. In this paper, is presented the criteria used to identify the main corrosion mechanism of oil pipelines, the treatment proposed in each case and the techniques employed in real time corrosion monitoring. (author)

  18. Emissions of polluting substances in the atmosphere at construction of the pipeline Bolshoy Chagan - Atyrau

    International Nuclear Information System (INIS)

    Gilazhov, E.G.

    2005-01-01

    Full text : The main pipelines of Kazakhstan represent the most complicated mechanized and the automated hydraulic system which has been very branched out and long. It is equipped by powerful pump stations, lines and constructions of technological communication, telemechanics and automatics, fire-prevention devices, on occasion - furnaces of heating. Construction Oil and gas pipeline Bolschoy Chagan - Atyrau is intended for transportation of a mix of oil, acting on NPS Bolschoy Chagan with Karachaganak Oil and gas deposits (KNGKM), up to Atyrau for pumping in pipeline system of the Caspian pipeline consortium. The maximal volume of a transported product from Bolschoy Chagan up to pipeline KTK will make 10 million tons a year at full projected volume from KNGKM up to Atyrau - 11 million tons/years. The line Oil and gas pipeline Bolschoy Chagan - Atyrau is covered by a network of highways - soil, rural, with a covering and with the improved covering. The largest settlements located in a strip of passage of a line the following: Bolschoy Chagan, Kushum, Budarino, Chapaev, Mergenevo, Lbishchenskoe, Tajpak, Eltaj, Kulagino, Orlik, Green, Mahambet, Sarajshyk. The line Oil and gas pipeline represents a broken line in length of 455,25 km, stretched with the north on the south. The Earth, allocated under construction Oil and gas pipeline now are used for an agricultural production, mainly pasturable cattle breeding, and also in a small degree for cultivation grain, vegetable and agro cultures. According to influence of the equipment used at construction and operation Oil and gas pipeline on atmospheric air, inventory of sources of emissions is lead to an atmosphere in view of duration of work during which sources of emissions have been revealed all, total and as much as possible single emissions from stationary sources are calculated. It has been revealed, that here take place, both stationary sources of emissions, and mobile to which all motor transport concerns, and also

  19. Millennium Pipeline Presentation : a new northeast passage

    International Nuclear Information System (INIS)

    Wolnik, J.

    1997-01-01

    Routes of the proposed Millennium Pipeline project were presented. The pipeline is to originate at the Empress gas field in Alberta and link up to eastern markets in the United States. One of the key advantages of the pipeline is that it will have the lowest proposed rates from Empress to Chicago and through links via affiliates to New York and other eastern markets. It will include 380 miles of new 36-inch pipeline and have a capacity of 650 million cubic feet per day. In many instances it will follow existing rights-of-way. The pipeline is expected to be in service for the 1999 winter heating season. The project sponsors are Columbia Gas Transmission, CMS Energy, MCN Energy, and Westcoast Energy. 6 figs

  20. Tools and techniques for schedule's controlling: tracking system and control of Urucu-Manaus gas-pipeline construction, stretch B1

    Energy Technology Data Exchange (ETDEWEB)

    Zuany, Valdenise Marques; Dias, Jose Luiz Gomes [CONCREMAT Engenharia e Tecnologia S/A, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The goal is to show the monitoring systems and deadline control, using the PMBOK{sup R} project management tools, in the Construction and Assembly of the Coari-Manaus Gas-pipeline, stretch B1, which includes the cities of Coari, Codajas, Anori and Anama, in the state of Amazon, in the Northern Undertaking Implementation (IENOR), an Engineering division of the PETROBRAS System. This report presents the practical effects of the usage of three schedule control tools of the project: Performance Measurement, using the technique of the Earned Value Management (EVM), which integrates cost, schedule and physical progress of the enterprise to determine the variations of schedule and performance; Project Management Software, MSProject, which allows schedule's elaboration and makes the tracking of the planned dates possible (baseline) in relation to real dates and forecasts the trend level, the effects of changes in the project's schedule, demonstrating its utility as a schedule control tool; and Schedule Variance Analysis, which adopts practical data to reach the pessimistic, most likely and optimistic expectations. The implantation of these tools was based in the Work Breakdown Structure of the enterprise. The application of these three tools in the tracking and control of the enterprise demonstrates that, the use of information and techniques deriving from the planning and control can be an important support for project management and decision taking, comparing the results gotten in the implantation of the plan with its actual realization, defining, thus, the necessary corrective actions, generating learned lessons to use in future projects. (author)

  1. Main conditions and effectiveness of gas fuel use for powering of dual fuel IC self-ignition engine

    Directory of Open Access Journals (Sweden)

    Stefan POSTRZEDNIK

    2015-09-01

    Full Text Available Internal combustion engines are fuelled mostly with liquid fuels (gasoline, diesel. Nowadays the gaseous fuels are applied as driving fuel of combustion engines. In case of spark ignition engines the liquid fuel (petrol can be totally replaced by the gas fuels. This possibility in case of compression engines is essentially restricted through the higher self-ignition temperatures of the combustible gases in comparison to classical diesel oil. Solution if this problem can be achieved by using of the dual fuel system, where for ignition of the prepared fuel gas - air mixture a specified amount of the liquid fuel (diesel oil should be additionally injected into the combustion chamber. For assurance that the combustion process proceeds without mistakes and completely, some basic conditions should be satisfied. In the frame of this work, three main aspects of this problem are taken into account: a. filling efficiency of the engine, b. stoichiometry of the combustion, c. performance of mechanical parameters (torque, power. A complex analysis of these conditions has been done and some achieved important results are presented in the paper.

  2. THE EFFICIENCY OF GAS-PUMPING UNITS

    Directory of Open Access Journals (Sweden)

    E. I. Kupreev

    2016-01-01

    Full Text Available . The reliability of the gas transmission network of the JSC “Gazprom Transgaz Belarus” depends on the efficiency of gas compressor units. Pipeline transport takes the first place among all the other ways to deliver gas because it ensures a uniform and uninterrupted supply of gas at minimum costs. The main objects of main gas pipelines include process areas, including several compressor stations and sections of the pipeline between them. Currently, a significant part of the main equipment of the gas industry is approaching its deadline of operation, which causes decrease in energy efficiency and reliability of the transmission system. At compressor plants of the JSC “Gazprom Transgaz Belarus” there are more than 4000 gas compressor units in operation including about 80% ones with gas turbine drives. It is clear that the drives of these units take a significant proportion of the pumped gas. For many years the company invests and actively participates in the creation of modern gas-pumping units practicing the wide use of conversion potential of the CIS countries. In recent years, a comprehensive approach to the assessment of the reliability and efficiency of objects of gas pipelines on the basis of mathematical modeling is actively applied. Together with the development of computer supervisory and control this opens up opportunities to improve energy efficiency in pipeline transport of gas on the basis of mathematical models and processes. The real effect obtaining is based on the actual performance of the equipment that needs to be monitored over time and to clarify.

  3. Decree 368/013 To grant to Resume Gas S A the concession to build and operate the pipeline linking the re gasification terminal Puntas de Sayago with Southern Cross Pipeline

    International Nuclear Information System (INIS)

    2013-01-01

    Terminal project to be installed in the Resume Tips by Resume Gas S A under Boot mode (Build, Operate, Own, Transfer) in order to receive liquefied natural gas, re gasify and injecting it into the transmission network in the country

  4. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

    2005-07-20

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  5. 76 FR 44985 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Science.gov (United States)

    2011-07-27

    ... of underwater pipe should include the use of visual inspection by divers or instrumented detection... operators of gas and hazardous liquid pipelines to communicate the potential for damage to pipeline... facilities to determine and take appropriate action concerning changes in class location, failures, leakage...

  6. Removable pipeline plug

    International Nuclear Information System (INIS)

    Vassalotti, M.; Anastasi, F.

    1984-01-01

    A removable plugging device for a pipeline, and particularly for pressure testing a steam pipeline in a boiling water reactor, wherein an inflatable annular sealing member seals off the pipeline and characterized by radially movable shoes for holding the plug in place, each shoe being pivotally mounted for self-adjusting engagement with even an out-of-round pipeline interior

  7. Tubular lining material for pipelines having bends

    Energy Technology Data Exchange (ETDEWEB)

    Moringa, A.; Sakaguchi, Y.; Hyodo, M.; Yagi, I.

    1987-03-24

    A tubular lining material for pipelines having bends or curved portions comprises a tubular textile jacket made of warps and wefts woven in a tubular form overlaid with a coating of a flexible synthetic resin. It is applicable onto the inner surface of a pipeline having bends or curved portions in such manner that the tubular lining material with a binder onto the inner surface thereof is inserted into the pipeline and allowed to advance within the pipeline, with or without the aid of a leading rope-like elongated element, while turning the tubular lining material inside out under fluid pressure. In this manner the tubular lining material is applied onto the inner surface of the pipeline with the binder being interposed between the pipeline and the tubular lining material. The lining material is characterized in that a part of all of the warps are comprised of an elastic yarn around which, over the full length thereof, a synthetic fiber yarn or yarns have been left-and/or right-handedly coiled. This tubular lining material is particularly suitable for lining a pipeline having an inner diameter of 25-200 mm and a plurality of bends, such as gas service pipelines or house pipelines, without occurrence of wrinkles in the lining material in a bend.

  8. Legal and regulation stability of the pipeline gas distribution market as strong tools for the sustainable development; A estabilidade juridica e regulatoria no mercado de distribuicao de gas canalizado como poderosas ferramentas de alcance de desenvolvimento sustentavel

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira, Katia Valverde [Companhia Distribuidora de Gas (CEG), Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This study examines, in general, the transformation of the role of the Brazilian state to intervener in supervisory of the services, through the delegation of responsibility for the exploitation of public services to private enterprise, and the creation of regulatory agencies. The study pointing to the necessity of a legal and regulatory stable scenario in the regulation of these services, as enables of private investment mechanisms and, as a consequence of sustainable economic development. The success of the neo liberal state model is examined, specifically in relation to the market of pipeline gas distribution, showing the environmental, economic and social benefits that brought in this sector, the private investment and stability so far reasonably observed in this segment. The work also indicating, in general, the risks and issues most relevant, from the investor and markets point of view, to attract and maintain investment and to reduce the cost of private capital, concluding, in an objective, that to respect investors rights is in fact, to preserve the public interest, which means that the success of the investor does not mean the failure of regulator/judge.

  9. Natural gas industry faces more uncertainty in the upcoming decade

    International Nuclear Information System (INIS)

    Steffes, D.W.

    1995-01-01

    The monumental discontinuity of the past decade in the natural gas industry was the change of the interstate gas pipeline industry from serving as a merchant function to a common carrier function. The main reason this change could come about was a past strategic error on the part of the interstate pipeline companies. In the early 1980s, they misread the gas supply signals and entered into uneconomical take or pay contracts at unreasonably high prices. This strategic mistake essentially bankrupted all of the pipeline companies. Their submittal to the Federal Energy Regulatory Commission (FERC) forced them to allow open access on their pipelines. The FERC then allowed them to buy their way out of their bad take or pay contracts. The method of pricing natural gas at the wellhead was the other big change. Instead of the major interstate pipeline continuing with a form of mandating area rates, each producer can now deal directly with anyone wanting to purchase the gas. The transportation is available due to these pipelines becoming common carriers. These two discontinuities allowed new paper interstate pipelines to come into existence

  10. Protection of pipelines affected by surface subsidence

    International Nuclear Information System (INIS)

    Luo, Y.; Peng, S.S.; Chen, H.J.

    1998-01-01

    Surface subsidence resulting from underground coal mining can cause problems for buried pipelines. A technique for assessing the level of stress on a subsidence-affected pipeline is introduced. The main contributors to the stress are identified, and mitigation techniques for reducing the stress are proposed. The proposed mitigation techniques were then successfully tested. 13 refs., 8 figs., 2 tabs

  11. Integrated system of competitive management as distinguishing for companies of gas pipelines networks construction; Sistema integrado de gestao como diferencial competitivo para empresas de construcao de redes de gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Jose R.R. de; Sobral, Maria do C.M.; Silva, J.J. Rego [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2004-07-01

    The perspective of fast and noticeable expansion of the natural gas market has stimulated investments in projects of natural gas distribution network. The roadblocks overcoming in this expansion, demands an adequate coordination between both, the environmental and power generation policy. In this article some aspects are discussed considering the integration between quality management and environment, using as a reference the NBR ISO 9001 and NBR ISO 14001 standards, which have been implemented in building companies involved in the construction of gas pipelines in urban regions. The implementation of these systems is understood as a competitive differential, contributing for companies' business strategy in a coherent way with the current concept of sustainable development. Finally, a brief model of implementation of a progressive environmental management system is presented, based on NBR ISO 14001 standards and the principles established in the System of Qualification for Companies of the Brazilian Program of the Habitat Quality and Productivity - PBQP-H. (author)

  12. Pitting growth modelling in buried oil and gas pipelines using statistical techniques; Modelado del crecimiento de picaduras en tuberias enterradas que transportan hidrocarburos utilizando tecnicas estadisticas

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, J. C.; Caleyo, F.; Valorm, A.; Hallen, J. M.

    2011-07-01

    New deterministic and stochastic predictive models are proposed for external pitting corrosion in underground pipelines. The deterministic model takes into consideration the local chemical and physical properties of the soil as well as the pipeline coating to predict the time dependence of pitting depth and rate in a range of soils. This model, based on results from a field study, was used to conduct Monte Carlo simulations that established the probability distribution of pitting depth and growth rate in the studied soils and their evolution over the life of the pipeline. In the last stage of the study, an empirical Markov chain-based stochastic model was developed for predicting the evolution of pitting corrosion depth and rate distributions from the observed properties of the soil. (Author) 18 refs.

  13. Reliability evaluation of oil pipelines operating in aggressive environment

    Science.gov (United States)

    Magomedov, R. M.; Paizulaev, M. M.; Gebel, E. S.

    2017-08-01

    In connection with modern increased requirements for ecology and safety, the development of diagnostic services complex is obligatory and necessary enabling to ensure the reliable operation of the gas transportation infrastructure. Estimation of oil pipelines technical condition should be carried out not only to establish the current values of the equipment technological parameters in operation, but also to predict the dynamics of changes in the physical and mechanical characteristics of the material, the appearance of defects, etc. to ensure reliable and safe operation. In the paper, existing Russian and foreign methods for evaluation of the oil pipelines reliability are considered, taking into account one of the main factors leading to the appearance of crevice in the pipeline material, i.e. change the shape of its cross-section, - corrosion. Without compromising the generality of the reasoning, the assumption of uniform corrosion wear for the initial rectangular cross section has been made. As a result a formula for calculation the probability of failure-free operation was formulated. The proposed mathematical model makes it possible to predict emergency situations, as well as to determine optimal operating conditions for oil pipelines.

  14. Isotope dilution analysis for urinary fentanyl and its main metabolite, norfentanyl, in patients by isotopic fractionation using capillary gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Sera, Shoji; Goromaru, Tsuyoshi [Fukuyama Univ., Hiroshima (Japan). Faculty of Pharmacy and Pharmaceutical Sciences; Sameshima, Teruko; Kawasaki, Koichi; Oda, Toshiyuki

    1998-07-01

    Isotope dilution analysis was applied to determine urinary excretion of fentanyl (FT) and its main metabolite, norfentanyl (Nor-FT), by isotopic fractionation using a capillary gas chromatograph equipped with a surface ionization detector (SID). Urinary FT was determined quantitatively in the range of 0.4-40 ng/ml using deuterium labeled FT (FT-{sup 2}H{sub 19}), as an internal standard. We also performed isotope dilution analysis of Nor-FT in urine. N-Alkylation was necessary to sensitively detect Nor-FT with SID. Methyl derivative was selected from 3 kinds of N-alkyl derivatives to increase sensitivity and peak resolution, and to prevent interference with urinary compound. Nor-FT concentration was quantitatively determined in the range of 10-400 ng/ml using deuterium labeled Nor-FT (Nor-FT-{sup 2}H{sub 10}). No endogenous compounds or concomitant drugs interfered with the detection of FT and Nor-FT in the urine of patients. The present method will be useful for pharmacokinetic studies and the evaluation of drug interactions in FT metabolism. (author)

  15. Isotope dilution analysis for urinary fentanyl and its main metabolite, norfentanyl, in patients by isotopic fractionation using capillary gas chromatography

    International Nuclear Information System (INIS)

    Sera, Shoji; Goromaru, Tsuyoshi; Sameshima, Teruko; Kawasaki, Koichi; Oda, Toshiyuki

    1998-01-01

    Isotope dilution analysis was applied to determine urinary excretion of fentanyl (FT) and its main metabolite, norfentanyl (Nor-FT), by isotopic fractionation using a capillary gas chromatograph equipped with a surface ionization detector (SID). Urinary FT was determined quantitatively in the range of 0.4-40 ng/ml using deuterium labeled FT (FT- 2 H 19 ), as an internal standard. We also performed isotope dilution analysis of Nor-FT in urine. N-Alkylation was necessary to sensitively detect Nor-FT with SID. Methyl derivative was selected from 3 kinds of N-alkyl derivatives to increase sensitivity and peak resolution, and to prevent interference with urinary compound. Nor-FT concentration was quantitatively determined in the range of 10-400 ng/ml using deuterium labeled Nor-FT (Nor-FT- 2 H 10 ). No endogenous compounds or concomitant drugs interfered with the detection of FT and Nor-FT in the urine of patients. The present method will be useful for pharmacokinetic studies and the evaluation of drug interactions in FT metabolism. (author)

  16. Remote monitoring of cathodic protection rectifiers of the Bolivia-Brazil Gas Pipeline using low orbit satellite telephone; Monitoracao remota de retificadores de protecao catodica do Gasoduto Bolivia-Brasil utilizando telefone via satelite de baixa orbita

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Jorge Fernando Pereira [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The present paper has for objective to present the information collected during definitions, development, implementation, testing and operation phases of the Pilot System for monitoring of the Cathodic Protection Rectifiers MS-10 and SP-09, installed on the Bolivia-Brazil Gas Pipeline. The adopted solution for the Pilot System includes, basically, communication through low-earth satellite telephone, inter linked to the public telephone net, acquisition and data transmission system (Remote Terminal Unit) and data reception in the Supervision and Control Room. (author)

  17. Efficiency improvements in pipeline transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.; Horton, J. F.

    1977-09-09

    This report identifies potential energy-conservative pipeline innovations that are most energy- and cost-effective and formulates recommendations for the R, D, and D programs needed to exploit those opportunities. From a candidate field of over twenty classes of efficiency improvements, eight systems are recommended for pursuit. Most of these possess two highly important attributes: large potential energy savings and broad applicability outside the pipeline industry. The R, D, and D program for each improvement and the recommended immediate next step are described. The eight technologies recommended for R, D, and D are gas-fired combined cycle compressor station; internally cooled internal combustion engine; methanol-coal slurry pipeline; methanol-coal slurry-fired and coal-fired engines; indirect-fired coal-burning combined-cycle pump station; fuel-cell pump station; drag-reducing additives in liquid pipelines; and internal coatings in pipelines.

  18. Efectos de la instalación de un gasoducto sobre algunas propiedades del suelo superficial y la cobertura vegetal en el NE de Chubut Gas-pipeline installation effects on superficial soil properties and vegetation cover in Northeastern Chubut

    Directory of Open Access Journals (Sweden)

    Esteban Kowaljow

    2008-07-01

    , sobre todo, por la baja calidad de los sedimentos extraídos de los horizontes inferiores de la zanja.In this work we describe the impact of a gas-pipeline installation and the replacing of the material removed in part of the clear-cutting, on some physical and chemical properties of the soils and vegetation in three ecological sites of Northeastern Chubut. In these sites we identified four different areas: area 1, clear-cut strip, where the traffic of heavy machinery was intense; area 2, clear-cut strip, with soil and vegetation replaced; and other two areas in the undisturbed adjacent steppe: mounds associated to shrubs and mound interspaces. The highest bulk densities were recorded in area 1 and in the mound interspaces (1.43 Mg m-3. The penetrometer resistance was significantly higher in the areas 1 and 2, recording values higher than 1 MPa. The infiltration rate was much higher in the mound (261 mm h-1 than in the other areas. The infiltration rate of area 2 (85 mm h-1 was higher than that of area 1 (35 mm h-1 and the mound interspaces (50 mm h-1. Total nitrogen and organic carbon content in soils of the areas 1 and 2 were similar to those of the mound interspaces and significantly lower than those of the mound, except in the area 2 of one ecological site. Clear-cut and topsoil removal, and the subsequent traffic of heavy machinery caused by underground gas-pipeline installation produced a strong impact on the physical properties of these soils. The main limitation in the highly disturbed soils was the decrease in the infiltration rate, mainly due to high compaction and low porosity. This may in part explain the slow vegetation cover recovery in the area 1. The replacement of the stripped sediment and vegetation on the disturbed strip did not improve the recovery of the vegetation cover. It was mainly due to the low quality of the sediments extracted from the pipeline ditch.

  19. The pipeline service obligation under changing LDC purchasing practices

    International Nuclear Information System (INIS)

    Neff, S.J.

    1990-01-01

    Historically, interstate natural gas pipelines served as aggregators and transporters of gas supplies from the producing fields to the city-gate. In turn, local distribution companies (LDCs) bought gas from pipelines at the city-gate under long-term sales contracts and resold the gas to retail customers. Once a pipeline/LDC sales relationship was established through a regulated certificate process, the LDC was assured of gas supply up to the level of its contract demand (CD) at just and reasonable rates until abandonment of the pipeline's sales service obligation was granted by the Federal Energy Regulatory Commission (FERC). During the years of regulated wellhead pricing and limited gas deliverability, pipelines signed long-term take-or-pay contracts with producers to induce them to develop and commit new gas supplies. Those supply cost obligations were reflected in tariff minimum bill provisions. For years, this pipeline/LDC arrangement was mutually beneficial and provided assured firm service. With the load diversity on large interstate pipeline systems and the make-up provisions under take-or-pay clauses, these gas purchase contracts provided supply reliability without negative economic consequence to the pipelines. Then, with the issuance of FERC Order Nos. 380, 436, and 500, LDCs' obligations to purchase gas from pipeline suppliers according to the terms of those long term sales agreements were irrevocably altered. The impacts of those long term sales agreements were irrevocably altered. The impacts of those orders the elimination of minimum bills and the advent of open access transportation caused a serious erosion of the mutual obligations between pipelines and their LDC customers. The result has been a significant loss of pipeline sales markets as LDC customers have chosen alternative supplied, often at the urging of state public utility commissions (PUCs) to lower short-term costs

  20. Natural gas distribution network of Lima and Callao, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Maroye, Stephane; Aerssens, Andre [Tractebel Engineering, Lima (Peru)

    2005-07-01

    In May 2002, Suez-Tractebel was awarded by the government of Peru a 30-year concession for the construction and operation of the gas distribution network in Lima, Peru. On 10 July, 2004, first gas was delivered to Lima, 1 month ahead of the official date. This gas distribution network, operated by GNLC (Gas Natural de Lima y Callao), delivers gas to some of the largest industries and power generators in and around Lima and the harbour area of Callao. Gas delivered in Lima comes through a 700 km HP gas pipeline from Camisea fields. This pipeline is operated by TGP (Transportadora de Gas del Peru). A City Gate is located at Lurin, on the southern side of the city. The gas distribution network is made of a 62 km main pipeline (20') with 25 km laterals. The main pipeline is operated at 50 bar, as the main customer, the Etevensa power plant, is located on the northern side of the city. Due to this high operating pressure combined to the surroundings, specific design philosophies were adopted to meet the extreme safety requirements. This paper highlights the specific measures taken during construction phase and the experience of the first months of operation of this challenging project. (author)

  1. Repair methods for damaged pipeline beyond diving depth

    OpenAIRE

    Mohammadi, Keramat

    2011-01-01

    Master's thesis in Offshore Technology Mechanical damage of a subsea pipeline is found as one of the most severe concern in management of pipeline integrity. The need to reach and bring the hydrocarbons from the fields located in deep and ultra-deep waters, imposes the need to improve the technologies and techniques in order to repair any unacceptable damage in pipeline. The main objective of this work is to investigate various methods for repairing a subsea pipeline that has been damaged ...

  2. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

    2004-04-12

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created

  3. Pipeline developments 1998 and beyond : more choices, more difficult decisions

    International Nuclear Information System (INIS)

    VanderSchee, K.

    1998-01-01

    Some of the basic economic principles that drive gas prices and gas flows across North America, and the pressures these have placed on the pipeline sector, are reviewed. Of pressing importance to the natural gas industry in Western Canada is the prospect that in the near future industrial gas users in eastern Canada will have a wider array of pipeline choices available to them than ever before. This will mean that the users will face more offerings from more pipeline providers, forcing pipeline owners to make more difficult decisions regarding new pipeline capacity. Variables such as price, terms and conditions will become increasingly negotiable. Market power concerns also remain an important issue. As a result, there is increasing call for market-based financial regulation of pipelines. 'Market gaming' a condition where a firm manipulates the market to its own market advantage is also receiving considerable attention. The latter is of particular concern in the United States. Against this background, the nature of competition (or the lack of it) in natural gas transport, the influence of short-term service revenues for pipelines, pipeline commitments through subsidiaries, and concerns over short term pipeline valuations skewing investment decisions, are issues that will continue to invite much attention. Regarding market outlook, it was noted that significantly increased export capacity from Alberta could raise the costs of Alberta supplies to eastern Canadian end-users relative to other supply/transport options which may now be viable economic alternatives. figs

  4. Environmental audit guidelines for pipelines

    International Nuclear Information System (INIS)

    1991-01-01

    Environmental auditing is a form of management control which provides an objective basis by which a company can measure the degree of compliance with environmental regulations. Other benefits of this type of auditing include improved environmental management, furthering communication on environmental issues of concern within the company, and provision of documentation on environmental diligence. A series of environmental audit guidelines for pipelines is presented in the form of lists of questions to be asked during an environmental audit followed by recommended actions in response to those questions. The questions are organized into seven main categories: environmental management and planning; operating procedures; spill prevention; management of wastes and hazardous materials; environmental monitoring; construction of pipelines; and pipeline abandonment, decommissioning and site reclamation

  5. ANALYSIS ON TECHNOLOGICAL PROCESSES CLEANING OIL PIPELINES

    Directory of Open Access Journals (Sweden)

    Mariana PǍTRAŞCU

    2015-05-01

    Full Text Available In this paper the researches are presented concerning the technological processes of oil pipelines.We know several technologies and materials used for cleaning the sludge deposits, iron and manganese oxides, dross, stone, etc.de on the inner walls of drinking water pipes or industries.For the oil industry, methods of removal of waste materials and waste pipes and liquid and gas transport networks are operations known long, tedious and expensive. The main methods and associated problems can be summarized as follows: 1 Blowing with compressed air.2 manual or mechanical brushing, sanding with water or dry.3 Wash with water jet of high pressure, solvent or chemical solution to remove the stone and hard deposits.4 The combined methods of cleaning machines that use water jets, cutters, chains, rotary heads cutters, etc.

  6. Regulatory assessment with regulatory flexibility analysis and paperwork reduction act analysis : draft regulatory evaluation : Notice of Proposed Rulemaking -- Pipeline Safety : Polyamide-11 (PA-11) plastic pipe design pressures

    Science.gov (United States)

    2007-06-01

    The Pipeline and Hazardous Materials Safety Administration (PHMSA) is proposing changes to the Federal pipeline safety regulations in 49 CFR Part 192, which cover the transportation of natural gas by pipeline. Specifically, PHMSA is proposing to chan...

  7. Case history: recovery of the Bolivia-Brazil natural gas pipeline at the Vocoroca reservoir crossing Parana state; Caso historico: recuperacao da travessia do gasoduto Bolivia-Brazil no reservatorio da barragem de Vocoroca-Parana

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Hudson Regis; Vasconcellos, Carlos Renato Aragonez de [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The Bolivia-Brazil Natural Gas Pipeline - GASBOL - begins in the city of Santa Cruz of La Sierra, in Bolivia, arriving in Canoas (RS), in Brazil, traveling an extension of 3.150 Km. Of this total, 2.593 Km are in Brazilian soil. In the kilometer 526+500m of the south spread, GASBOL crosses the reservoir of the Vocoroca's dam (COPEL), which had its operational level reduced, in face of the station of the droughts that usually reaches the area in the months of March to September. The lowing of the reservoir caused the turn of the course of Fojo River (Sao Joaozinho River) to its natural quota, forming a waterfall, whose hydraulic gradient caused the removal of the sediment and part of the foundation soil, discovering the pipe that was with space free from approximately 13 m of length. This paper discusses the solution adopted, as well as the several details of the recovery project, besides geotechnical and hydraulic studies and the aspects of safety of the Gas Pipeline. (author)

  8. Improvement activities to soil stabilization near Bolivia-Brazil gas pipeline crossing through an embankment over a corrugated drainage pipe, at Km 247 in Mato Grosso do Sul, Brazil; Melhorias para estabilidade do gasoduto Bolivia-Brasil em cruzamento de aterro sobre tubo de drenagem tipo ARMCO, no km 247 em Mato Grosso do Sul

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, Kemal Vieira [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil); Costa, Cesar Augusto [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Campo Grande, MS (Brazil). Gerencia Regional Centro Oeste (CRGO)

    2005-07-01

    A hundred and seventy kilometers from Campo Grande city, on Mato Grosso do Sul State, the Brasil-Bolivia Gas Pipeline crosses a 8,5 meters high landfill, over a drainage systems made of a 2,8 meters of diameter corrugated pipe. This drainage pipe was installed to allow the drainage of the valley, and the landfill above it was built so the Gas pipeline could cross easier the 80 meters deep and 30 degree vertices valley. This paper illustrates the work tasks and solutions taken to monitor and guarantee the integrity of the drainage and landfill structures, as well as the integrity of the Gas Pipeline. Some of the work tasks illustrated are the investigation of the support conditions of the Gas Pipeline, the analysis of a drainage system under the pipeline, on a rocky soil, the analysis of the stability of the landfill, the construction of a gravity retaining walls and the monitoring of the deformations on the drainage pipe. (author)

  9. A Small Leak Detection Method Based on VMD Adaptive De-Noising and Ambiguity Correlation Classification Intended for Natural Gas Pipelines.

    Science.gov (United States)

    Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo

    2016-12-13

    In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods.

  10. A Small Leak Detection Method Based on VMD Adaptive De-Noising and Ambiguity Correlation Classification Intended for Natural Gas Pipelines

    Directory of Open Access Journals (Sweden)

    Qiyang Xiao

    2016-12-01

    Full Text Available In this study, a small leak detection method based on variational mode decomposition (VMD and ambiguity correlation classification (ACC is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF, an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM and back propagation neural network (BP methods.

  11. A Novel Method to Enhance Pipeline Trajectory Determination Using Pipeline Junctions

    Directory of Open Access Journals (Sweden)

    Hussein Sahli

    2016-04-01

    Full Text Available Pipeline inspection gauges (pigs have been used for many years to perform various maintenance operations in oil and gas pipelines. Different pipeline parameters can be inspected during the pig journey. Although pigs use many sensors to detect the required pipeline parameters, matching these data with the corresponding pipeline location is considered a very important parameter. High-end, tactical-grade inertial measurement units (IMUs are used in pigging applications to locate the detected problems of pipeline using other sensors, and to reconstruct the trajectories of the pig. These IMUs are accurate; however, their high cost and large sizes limit their use in small diameter pipelines (8″ or less. This paper describes a new methodology for the use of MEMS-based IMUs using an extended Kalman filter (EKF and the pipeline junctions to increase the position parameters’ accuracy and to reduce the total RMS errors even during the unavailability of above ground markers (AGMs. The results of this new proposed method using a micro-electro-mechanical systems (MEMS-based IMU revealed that the position RMS errors were reduced by approximately 85% compared to the standard EKF solution. Therefore, this approach will enable the mapping of small diameter pipelines, which was not possible before.

  12. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-12-31

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  13. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-08-17

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners

  14. Automated Laser Ultrasonic Testing (ALUT) of Hybrid Arc Welds for Pipeline Construction, #272

    Science.gov (United States)

    2009-12-22

    One challenge in developing new gas reserves is the high cost of pipeline construction. Welding costs are a major component of overall construction costs. Industry continues to seek advanced pipeline welding technologies to improve productivity and s...

  15. Pipeline integrity: ILI baseline data for QRA

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Todd R. [Tuboscope Pipeline Services, Houston, TX (United States)]. E-mail: tporter@varco.com; Silva, Jose Augusto Pereira da [Pipeway Engenharia, Rio de Janeiro, RJ (Brazil)]. E-mail: guto@pipeway.com; Marr, James [MARR and Associates, Calgary, AB (Canada)]. E-mail: jmarr@marr-associates.com

    2003-07-01

    The initial phase of a pipeline integrity management program (IMP) is conducting a baseline assessment of the pipeline system and segments as part of Quantitative Risk Assessment (QRA). This gives the operator's integrity team the opportunity to identify critical areas and deficiencies in the protection, maintenance, and mitigation strategies. As a part of data gathering and integration of a wide variety of sources, in-line inspection (ILI) data is a key element. In order to move forward in the integrity program development and execution, the baseline geometry of the pipeline must be determined with accuracy and confidence. From this, all subsequent analysis and conclusions will be derived. Tuboscope Pipeline Services (TPS), in conjunction with Pipeway Engenharia of Brazil, operate ILI inertial navigation system (INS) and Caliper geometry tools, to address this integrity requirement. This INS and Caliper ILI tool data provides pipeline trajectory at centimeter level resolution and sub-metre 3D position accuracy along with internal geometry - ovality, dents, misalignment, and wrinkle/buckle characterization. Global strain can be derived from precise INS curvature measurements and departure from the initial pipeline state. Accurate pipeline elevation profile data is essential in the identification of sag/over bend sections for fluid dynamic and hydrostatic calculations. This data, along with pipeline construction, operations, direct assessment and maintenance data is integrated in LinaViewPRO{sup TM}, a pipeline data management system for decision support functions, and subsequent QRA operations. This technology provides the baseline for an informed, accurate and confident integrity management program. This paper/presentation will detail these aspects of an effective IMP, and experience will be presented, showing the benefits for liquid and gas pipeline systems. (author)

  16. Economic approach of pipelines: TBG (Transportadora Brasileira Gasoduto Brasil-Bolivia) case; Analise economica de gasoduto: o caso TBG (Transportadora Brasileira Gasoduto Brasil-Bolivia)

    Energy Technology Data Exchange (ETDEWEB)

    Pinho, Celso P.; Pettendorfer, Erick P. [Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The objective of this paper is offer to the industry an example of successful project finance in an emergent country. The Bolivia-Brazil pipeline was projected to develop an industry of natural gas in Brazil. The total costs invested was around US$ 1, 5 billion (Brazilian side) and BID, BIRD, CAF, BEI, BNDES- Finame, Marubeni, Mediocredito with main lenders. There are tree contracts with Ship or Pay clauses that are the main guarantees of the project. We will describe the mains variables of this project and the economic model that was created to calculate the tariff and project all financial reports of Bolivia-Brazil Pipeline. (author)

  17. Bolivia-Brazil gas pipeline: a study on the economic viability; Gasoduto Bolivia-Brasil: um estudo sobre a viabilidade economica

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fabiano Ionta Andrade; Almeida, Isaque da Silva [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil); Guerra, Sinclair Mallet Guy [Universidade de Sao Paulo (USP), SP (Brazil)

    2008-07-01

    In the year of 2003 the Brazilian government, as form of to stimulate the demand for natural gas in the country and to promote the success of the investment accomplished in the construction of the pipe line Bolivia-Brazil, it lowered the price of the Bolivian commodity' in US$0,85/MMBTU. In the end of 2005 and mainly in 2006, the current Bolivian president Evo Morales nationalized the energy reservations of your country. To main change it is related to the price of sale of the Bolivian input. The values stipulated in contract they were broken and new negotiations are in process. The maximum capacity of transport of natural gas was reached in 2007. However, before the crisis established due to the measure taken by the government from Bolivia, Brazil suspended the investments in compressors and the projections of increase of this capacity were stagnated. One of the forecasts was to increase in at least more 50% of the current capacity or even in 100% in a more promising scenery. Before this context this research makes the analysis of economical viability regarding the construction of the pipe line Bolivia-Brazil in agreement with three sceneries. The first of them suggests that the investments foreseen in compressors it was stopped and, this way, the pipe line will operate it ties the end of the amortization with your current maximum capacity. The second scenery already suggests that the investments were not interrupted, in other words, the current maximum capacity was overcome in 50%. Similarly to the previous ones, the third scenery makes reference the overrun of the current capacity in 100%. The methodology used for such an analysis it was lent of the financial mathematics and it is treated of the calculation of TIR and of VPL. Both studies show that in agreement with TIR (15%) and VPL the economical viability is satisfactory. The president of PETROBRAS is renegotiating the contract and the investments will probably be retaken. This measured it seeks to

  18. Leaks in gas pipelines. Leak detection with the aid of GIS and GPS; Leckstellen in Gasrohrnetzen. Aufspueren mit Unterstuetzung durch GIS und GPS

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Detlef; Berteld, Michael [Industrielle Werke Basel (Switzerland)

    2009-12-15

    The GPS technology has made gas leak detection more efficient. By linking it with the documentation of the Geographic Information System (GIS), gas grid monitoring, long-term planning and also maintenance can be optimized considerably. After successful testing, Industrielle Werke Basel (IWB) introduced the system for their whole gas grid. Apart from cost savings, there was also a significant quality improvement in gas leak detection. (orig.)

  19. Fault detection using artificial neural networks in pipelines for transport of oil and gas; Deteccao de falhas utilizando redes neurais artificiais em dutos para transporte de petroleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Guia, Jose G.C. da; Araujo, Adevid L. de [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Engenharia Mecanica; Irmao, Marcos A. da Silva [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Engenharia de Processos; Silva, Antonio A. [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Engenharia Mecanica

    2003-07-01

    The condition monitoring and diagnostic of structural faults in pipelines are an important problem for the petroleum's industry, being necessary to develop supervisory systems for detection, prediction and evaluation of a fault in the pipelines to avoid environmental and financial damages. In this work, three types of Artificial Neural Networks (ANNs) are reviewed and used to detect and locate a fault in a simulated pipe. The simulated pipe was modeled through the Finite Elements Method. In Neural Networks' analysis, the first six natural frequencies of the pipe are used as networks' inputs. The used ANNs were the Multi-Layer Perceptron Network with backpropagation, the Probabilistic Neural Network and the Generalized Regression Neural Network. After the analysis, it was concluded that the ANN are a good computational tool in problems of faults detection on pipelines with a great precision. In the localization of the faults were obtained errors smaller than 5%. (author)

  20. 75 FR 61461 - Central New York Oil and Gas Company, LLC; Notice of Availability of the Environmental Assessment...

    Science.gov (United States)

    2010-10-05

    ... Compressor Station with Tennessee Gas Pipeline Company's (TGP) pipeline in Bradford County, Pennsylvania; An... Pipeline Company's and TGP's pipelines, respectively. The EA has been placed in the public files of the...