WorldWideScience

Sample records for gas ion catcher

  1. Development of a thermal ionizer as ion catcher

    NARCIS (Netherlands)

    Traykov, E.; Dammalapati, U.; De, S.; Dermois, O. C.; Huisman, L.; Jungmann, K.; Kruithof, W.; Mol, A. J.; Onderwater, C. J. G.; Rogachevskiy, A.; da Silva e Silva, M.; Sohani, M.; Versolato, O.; Willmann, L.; Wilschut, H. W.

    2008-01-01

    An effective ion catcher is all important part of a radioactive beam Facility that is based on in-flight production. The catcher stops fast radioactive products and emits them as singly charged slow ions. Current ion catchers are based on stopping in He and H-2 gas. However, with increasing

  2. An inductively heated hot cavity catcher laser ion source

    CERN Document Server

    Reponen, M; Pohjalainen, I; Rothe, S; Savonen, M; Sonnenschein, V; Voss, A

    2015-01-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Agisotopes. A proof-of-principle experiment has been realized by implanting primary 107Ag21+ ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z94Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusio...

  3. Nuclear targets, recoil ion catchers and reaction chambers

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Schuck, C; Collatz, R; Meunier, R; Ledu, D; Folger, H; Lafoux, A; Lagrange, JM; Pautrat, M; Waast, B; Phillips, WR; Blunt, D; Durell, JL; Varley, BJ; Dagnall, PG; Dorning, SJ; JONES, MA; Smith, AG; Bacelar, JCS; Rzaca-Urban, T; Amzal, N; Meliani, Z; Vanhorenbeeck, J; Passoja, A; Urban, W

    1998-01-01

    The main features of nuclear targets, recoil ion catchers and reaction chambers used in nuclear spectroscopic investigations involving in-beam multi-e-gamma spectrometers are discussed. The relative importance of the F-ray background due to the accelerated ion-target and the recoil-ion-target

  4. Investigations of space charge effects in the cryogenic gas filled stopping cell for the FRS ion catcher

    Energy Technology Data Exchange (ETDEWEB)

    Heisse, Fabian [IKTP, TU Dresden (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Dickel, Timo; Plass, Wolfgang; Geissel, Hans; Scheidenberger, Christoph [II. Physikalisches Institut, JLU Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Reiter, Moritz Pascal; Rink, Ann-Kathrin [II. Physikalisches Institut, JLU Giessen (Germany); Zuber, Kai [IKTP, TU Dresden (Germany); Collaboration: FRS Ion Catcher-Collaboration

    2015-07-01

    At the FRS Ion Catcher experiment precision mass measurements of short lived projectile and fission fragments are performed. Therefore highly charged ions with relativistic energies need to be thermalized to kinetic energies of several eV. This process takes place in the cryogenic gas filled stopping cell (CSC). All stopping cells suffer at large ion rates under space charge effects, which lead to decreasing efficiencies and can also influence the extraction time. Thus the understanding of space charge effects is of greatest importance to make full use of the higher yields at future rare ion beam facilities like FAIR. For this purpose simulation with the software SIMION {sup registered} concerning space charge effects were done. In this presentation the calculated transport efficiency of the CSC for different intensities, electric fields and spill structures are discussed and compared with measured results. Furthermore an outlook and first results of the simulation for the new CSC for the Low-Energy Branch at FAIR are given.

  5. A laser ablation ion source for the FRS ion catcher

    Energy Technology Data Exchange (ETDEWEB)

    Rink, Ann-Kathrin; Ebert, Jens; Petrick, Martin; Reiter, Pascal [Justus Liebig Universitaet Giessen (Germany); Dickel, Timo; Geissel, Hans; Plass, Wolfgang; Scheidenberger, Christoph [Justus Liebig Universitaet Giessen (Germany); GSI, Darmstadt (Germany); Purushothamen, Sivaji [GSI, Darmstadt (Germany)

    2013-07-01

    The FRS Ion Catcher was developed to serve as test bench for the low energy branch of the Super FRS to slow down exotic nuclei and prepare them for further measurements/ experiments. It consists of a cryogenic stopping cell to thermalise the ions, a diagnostic unit for stopping cell characterisation and various radiofrequency quadrupole structures to guide the ions to the Multiple-Reflection Time-of-Flight Mass Spectrometer for mass measurements, α spectroscopy and isobar separation. To characterise the extraction times of the stopping cell, which is one of the main performance parameters of such a cell, a laser ablation ion source has been develped and tested. This ion source provides a sharply defined starting point of the ions for the extraction time measurement. In the future this source will provide reference ions to calibrate the mass spectrometer for accurate mass measurements.

  6. Core catcher cooling for a gas-cooled fast breeder

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schretzmann, K.

    1976-01-01

    Water, molten salts, and liquid metals are under discussion as coolants for the core catcher of a gas-cooled fast breeder. The authors state that there is still no technically mature method of cooling a core melt. However, the investigations carried out so far suggest that there is a solution to this problem. (RW/AK) [de

  7. Development of fast-release solid catchers for rare isotopes

    Science.gov (United States)

    Nolen, Jerry; Greene, John; Elam, Jeffrey; Mane, Anil; Sampathkumaran, Uma; Winter, Raymond; Hess, David; Mushfiq, Mohammad; Stracener, Daniel; Wiendenhoever, Ingo

    2015-04-01

    Porous solid catchers of rare isotopes are being developed for use at high power heavy ion accelerator facilities such as RIKEN, FRIB, and RISP. Compact solid catchers are complementary to helium gas catchers for parasitic harvesting of rare isotopes in the in-flight separators. They are useful for short lived isotopes for basic nuclear physics research and longer-lived isotopes for off-line applications. Solid catchers can operate effectively with high intensity secondary beams, e.g. >> 1E10 atoms/s with release times as short as 10-100 milliseconds. A new method using a very sensitive and efficient RGA has been commissioned off-line at Argonne and is currently being shipped to Florida State University for in-beam measurements of the release curves using stable beams. The same porous solid catcher technology is also being evaluated for use in targets for the production of medical isotopes such as 211-At. Research supported by the U.S. DOE Office of Nuclear Physics under the SBIR Program and Contract # DE-AC02-06CH11357 and a University of Chicago Comprehensive Cancer Center/ANL Pilot Project.

  8. Collimator system for the stabilization of the dynamical residual-gas pressure in the heavy-ion synchrotron SIS18; Kollimatorsystem zur Stabilisierung des dynamischen Restgasdruckes im Schwerionensynchrotron SIS18

    Energy Technology Data Exchange (ETDEWEB)

    Omet, Carsten

    2009-01-15

    In order to achieve higher beam intensities of heavy ion beams in ring accelerators, low charge state ions can be used. By lowering the charge state, the space charge limit is shifted to higher particle numbers and stripping losses can be avoided. During test operation of the SIS18 at GSI with high intensity low charge state heavy ion beams, strong intensity dependent beam losses have been observed. It was found that these beam losses are originated to a large extent by the change of charge state of the circulating ions during collisions with residual gas atoms. The resulting deviation of m/q relative to the reference ion leads, in combination with dispersive elements in the ion optic lattice, to a modified trajectory, followed by the loss of the ion on the beam pipe. At the impact position, loosely bound residual gas molecules are released by ion stimulated desorption which increases the residual gas pressure locally. This pressure rise itself enhances the charge exchange rate, which can develop into a self amplifying process of pressure rise and subsequent beam loss. A method for the stabilization of the dynamic residual gas pressure is the use of special catcher systems, which minimize the production of desorption gases and remove them by strong pumping. Therefore, the pressure on the beam axis should remain as stable as possible. Other processes, e.g. Coulomb scattering of the beam ions by residual gas particles and unavoidable systematic beam losses can increase the gas pressure additionally. The pressure in the accelerator is further subjected to ionization of the residual gas atoms themselves, thermal out gassing of the beam pipes, insertions and pumps. In this work, a detailed numerical model of the interplay between the residual gas pressure dynamics in the accelerator, possible stabilization measures, e.g. by catchers and the resulting beam life time has been developed. The forecasted beam life times and pressures are verified by machine experiments, as

  9. Measurements of isomers at the FRS ion catcher

    Energy Technology Data Exchange (ETDEWEB)

    Hornung, Christine [Justus-Liebig Universitaet Giessen (Germany); Collaboration: FRS Ion Catcher-Collaboration

    2016-07-01

    Projectile fragmentation and fission reactions at in-flight facilities are important production mechanisms to access short-lived exotic nuclei. It is a challenge to describe the angular momentum distribution after the collision of relativistic nuclei. This can be experimentally accessed by measuring the population of isomeric states. Isomeric ratios and excitation energies of isomers of short-lived exotic nuclei can be determined at the FRS Ion Catcher at GSI. At the FRS, projectile and fission fragments are produced at relativistic energies, separated in-flight and range-focused. They are slowed down and thermalized in a cryogenic stopping cell. In a multi-purpose RFQ beamline alpha spectroscopy can be performed. Alternatively the ions can be transported to a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS), where masses of the ground and isomeric states can be measured simultaneously with high resolving power. The MR-TOF-MS can also be used to spatially separate the ions in order to provide isomerically clean ion beams. During a recent experiment isomer-to-ground state ratios and excitation energies of uranium projectile and fission fragments produced at 1 GeV/u were measured. The ratios, measured with the MR-TOF-MS, were verified by alpha spectroscopy. Furthermore the ratios were compared to calculations based on an abrasion-ablation model of fragmentation.

  10. The FRS Ion Catcher : A facility for high-precision experiments with stopped projectile and fission fragments

    NARCIS (Netherlands)

    Plass, W. R.; Dickel, T.; Purushothaman, S.; Dendooven, P.; Geissel, H.; Ebert, J.; Haettner, E.; Jesch, C.; Ranjan, M.; Reiter, M. P.; Weick, H.; Amjad, F.; Ayet, S.; Diwisch, M.; Estrade, A.; Farinon, F.; Greiner, F.; Kalantar-Nayestanaki, N.; Knoebel, R.; Kurcewicz, J.; Lang, J.; Moore, I.; Mukha, I.; Nociforo, C.; Petrick, M.; Pfuetzner, M.; Pietri, S.; Prochazka, A.; Rink, A. -K.; Rinta-Antila, S.; Schaefer, D.; Scheidenberger, C.; Takechi, M.; Tanaka, Y. K.; Winfield, J. S.; Yavor, M. I.

    2013-01-01

    At the FRS Ion Catcher at GSI, projectile and fission fragments are produced at relativistic energies, separated in-flight, range-focused, slowed down and thermalized in a cryogenic stopping cell. A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) is used to perform direct mass

  11. Genealogy of gas cells for low-energy RI-beam production

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Michiharu, E-mail: mw@riken.jp

    2013-12-15

    Highlights: • In order to overcome serious limitations in the universality of the traditional isotope separator on-line technique, various endeavors have been made on gas catcher cells for converting relativistic RI-beams from in-flight separators to low-energy RI-beams. • The origin of the gas catcher is found in the IGISOL (Ion guide isotope separator on-line) technique. • Many developments have been made over the years to overcome the various difficulties and drawbacks found in the IGISOL technique. -- Abstract: In order to overcome serious limitations in the universality of the traditional isotope separator on-line technique, various endeavors have been made on gas catcher cells for converting relativistic RI-beams from in-flight separators to low-energy RI-beams. The origin of the gas catcher is found in the IGISOL (Ion guide isotope separator on-line) technique. Many developments have been made over the years to overcome the various difficulties and drawbacks found in the IGISOL technique.

  12. Genealogy of gas cells for low-energy RI-beam production

    International Nuclear Information System (INIS)

    Wada, Michiharu

    2013-01-01

    Highlights: • In order to overcome serious limitations in the universality of the traditional isotope separator on-line technique, various endeavors have been made on gas catcher cells for converting relativistic RI-beams from in-flight separators to low-energy RI-beams. • The origin of the gas catcher is found in the IGISOL (Ion guide isotope separator on-line) technique. • Many developments have been made over the years to overcome the various difficulties and drawbacks found in the IGISOL technique. -- Abstract: In order to overcome serious limitations in the universality of the traditional isotope separator on-line technique, various endeavors have been made on gas catcher cells for converting relativistic RI-beams from in-flight separators to low-energy RI-beams. The origin of the gas catcher is found in the IGISOL (Ion guide isotope separator on-line) technique. Many developments have been made over the years to overcome the various difficulties and drawbacks found in the IGISOL technique

  13. Status and outlook of the FRS ion catcher at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Jens [Justus-Liebig-Universitaet Giessen (Germany)

    2016-07-01

    Exotic nuclei are produced in stellar processes like the p- and r-process and are essential for our understanding of nucleosynthesis beyond iron. They have an unusual ratio of neutrons to protons and short half-lives in common. Important production methods for exotic nuclei in the laboratory are projectile fragmentation and fission of heavy ions. Nuclei produced this way have energies up to several GeV/u and must be slowed down and separated from other beam products and contaminants for high-accuracy low-energy experiments with traps and lasers. This is tested by the FRS Ion Catcher, which is a test bench for the low energy branch of the Super-FRS at FAIR. There, the nuclei are separated in-flight, range-bunched, slowed-down in the fragment separator and subsequently thermalized in a cryogenic stopping cell. The ions extracted from the stopping cell will be transported to a multiple-reflection time-of-flight mass spectrometer for high accuracy mass measurements, decay spectroscopy or separation and preparation for further experiments. A novel technical method allows mass measurements of nuclides with half-lifes of about 1ms such as {sup 215}Po. From our online campaign in 2014 almost background-free α-spectroscopy, mass selected decay spectroscopy and measurements of excitation energies and isomeric ratios are presented together with instrumental advances.

  14. Developing Confident Softball Catchers

    Science.gov (United States)

    Kellers, Peggy

    2004-01-01

    Training softball catchers is challenging. The nature of the position makes it one of the most difficult to play because of the breadth of a catcher's responsibilities. Although the demands on a pitcher or other players are significant, their roles are less complex than the catcher's, who is actively involved in the game at many different levels…

  15. Characterization of a cryogenic ion guide at IGISOL

    NARCIS (Netherlands)

    Saastamoinen, A.; Moore, I. D.; Ranjan, M.; Dendooven, P.; Penttila, H.; Perajarvi, K.; Popov, A.; Aysto, J.

    2012-01-01

    A small volume cryogenic ion guide has been characterized at the IGISOL facility, Jyvaskyla, as a prototype to verify whether there are any major obstacles to the use of high-density cryogenic helium gas for the stopping and extraction of high-energy ions from a large volume cryogenic ion catcher.

  16. Half-life and mass measurement of the short-lived {sup 215}Po isotope (1.78 ms) at the FRS ion catcher

    Energy Technology Data Exchange (ETDEWEB)

    Rink, Ann-Kathrin; Bergmann, Julian; Ebert, Jens; Hornung, Christine; Miskun, Ivan; Reiter, Moritz P. [Justus-Liebig Universitaet Giessen (Germany); Ayet San Andres, Samuel; Dickel, Timo; Plass, Wolfgang R.; Scheidenberger, Christoph [Justus-Liebig Universitaet Giessen (Germany); GSI, Darmstadt (Germany); Geissel, Hans; Purushothaman, Sivaji [GSI, Darmstadt (Germany)

    2016-07-01

    At the Low-Energy Branch (LEB) of the Super-FRS at FAIR, precision experiments with exotic nuclei will be performed using ion traps and lasers. The nuclei will be produced at relativistic energies, slowed down, thermalised in a cryogenic stopping cell (CSC) and made available to various experiments. The thermalisation is a challenging task because of the large energy straggling of the nuclei after production, which requires a stopping cell with large areal densities. Also, the process needs to be performed on a millisecond time scale in order to give access to short-lived nuclides. This method has already been successfully applied at the FRS Ion Catcher at GSI using a prototype CSC. Recently the potential of the method has been demonstrated by the mass and half-life measurement of the {sup 215}Po nuclide with a half-life of 1.78 ms only. The multiple-reflection time-of-flight mass spectrometer at the FRS Ion Catcher has been used to determine the mass to a sub-ppm accuracy and to provide a mass-selected beam for alpha spectroscopy. Furthermore, experiments have been performed with the prototype CSC in order to test novel concepts to be used with the final version of the CSC for the LEB.

  17. Recoil implantation reactions in binary mixtures of catcher complexes and in mixed ligand catchers

    International Nuclear Information System (INIS)

    Sekine, Tsutomu; Sano, Masaaki; Yoshihara, Kenji

    1989-01-01

    Recoil implantation reactions were studied in binary mixtures of catcher complexes of tris(β-diketonato)metal(III) and in single-component catcher complexes of Cr(acac) n (dbm) 3-n where n=1 and 2. For the mixtures of M(acac) 3 and M(dbm) 3 , the products of 51 Cr(acac) 3 and 51 Cr(dbm) 3 were obtained as major components while 51 Cr(acac) 2 (dbm) and 51 Cr(acac)(dbm) 2 were seen as minor components. For the single component catcher complexes, predominant chemical species were parent retention type compounds. In addition to retentions there were product distributions which indicated a strong preference for acac pickup. The results were interpreted by a model which involves displacement reaction as a main process and ligand pickup reactions as side processes. (orig.)

  18. A review of the core catcher design in LMR

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Hahn, Do Hee

    2001-08-01

    The overwhelming emphasis in reactor safety is on the prevention of core meltdown. Moreover, although there have been several accidents that have resulted in some fuel melting, to date there have been no accidents severe enough to cause the syndrome of core collapse, reactor vessel melt-through, containment penetration, and dispersal into the ground. Nevertheless, a number of proposals have been made for the design of core catcher systems to control or stop the motion of the molten core mass should such an accident take place. Core catchers may differ in both their location within the reactor system and in the mechanism that is used to cool and control the motion of the core debris. In this report the classification, configuration and main features of the core catcher are described. And also, The core catcher design technologies and processes are presented. Finally the core catcher provisions in constructed and planned LMRs (Liquid Metal Reactors) are summarized and the preliminary assessment on the core catcher installation in KALIMER is presented

  19. Preliminary design of a borax internal core-catcher for a gas cooled fast reactor

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schumacher, G.

    1976-09-01

    Preliminary thermal calculations show that a core-catcher appears to be feasible, which is able to cope with the complete meltdown of the core and blankets of a 1,000 MWe GCFR. This core-catcher is based on borax (Na 2 B 4 O 7 ) as dissolving material of the oxide fuel and of the fission products occuring in oxide form. The borax is contained in steel boxes forming a 2.1 meter thick slab on the base of the reactor cavity inside the prestressed concrete reactor vessel, just underneath the reactor core. The fission products are dispersed in the pool formed by the liquid borax. The heat power density in the pool is conveniently reduced and the resulting heat fluxes at the borders of the pool can be safely carried away through the PCRV liner and its water cooling system. (orig.) [de

  20. The internal core catcher in Super Phenix 1

    International Nuclear Information System (INIS)

    Le Rigoleur, C.; Kayser, G.; Maurin, G.; Magnon, B.

    1982-07-01

    The internal core catcher in SUPER PHENIX 1 is described here in some detail. The fuel retention capabilities are presented for situations of increasing severity. The first situation corresponds to the core catcher design. It relates to a hypothetical subassembly accident that would cause a limited quantity of fuel, corresponding to the mass of seven subassemblies, to be deposited on the core catcher. For this situation and at all levels of the analysis, the most conservative assumptions are made in order to prove the integrity of the core catcher. The second situation corresponds to a hypothetical larger core melt accident. In this case, for some of the parameters, assumptions are made that correspond to the most likely situations based on engineering considerations. Then the maximum retention capabilities are presented

  1. Heat removal capability of core-catcher with inclined cooling channels

    International Nuclear Information System (INIS)

    Suzuki, Y.; Tahara, M.; Kurita, T.; Hamazaki, R.; Morooka, S.

    2009-01-01

    A core-catcher is one of the mitigation systems that provide functions of molten corium cooling and stabilization during a severe accident. Toshiba has been developing a compact core-catcher to be placed at the lower drywell floor in the containment vessel for the next generation BWR as well as near term ABWR. This paper presents the evaluation of heat removal capability of the core-catcher with inclined cooling channels, our verification status and plan. The heat removal capability of the core-catcher is analyzed by using the newly developed two-phase flow analysis code which incorporates drift flux parameters for inclined channels and the CHF correlation obtained from SULTAN tests. Effects of geometrical parameters such as the inclination and the gap size of the cooling channel on the heat removal capability are also evaluated. These results show that the core-catcher has sufficient capability to cool the molten corium during a severe accident. Based on the analysis, it has been shown that the core-catcher has an efficient capability of heat removal to cool the molten corium. (author)

  2. A multi-crucible core-catcher concept: Design considerations and basic results

    International Nuclear Information System (INIS)

    Szabo, I.

    1995-01-01

    A multi-crucible core-catcher concept to be implemented in new light water reactor containments has recently been proposed. This paper deals with conceptual design considerations and the various ways this type of core-catcher could be designed to meet requirements for reactor application. A systematic functional analysis of the multi-crucible core-catcher concept and the results of the preliminary design calculation are presented. Finally, the adequacy of the multi-crucible core-catcher concept for reactor application is discussed. (orig.)

  3. Modeling of melt retention in EU-APR1400 ex-vessel core catcher

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, V. S.; Sulatsky, A. A.; Khabensky, V. B.; Sulatskaya, M. B. [Alexandrov Research Inst. of Technology NITI, Sosnovy Bor (Russian Federation); Gusarov, V. V.; Almyashev, V. I.; Komlev, A. A. [Saint Petersburg State Technological Univ. SPbSTU, St.Petersburg (Russian Federation); Bechta, S. [KTH, Stockholm (Sweden); Kim, Y. S. [KHNP, 1312 Gil 70, Yuseongdaero, Yuseong-gu, Daejeon (Korea, Republic of); Park, R. J.; Kim, H. Y.; Song, J. H. [KAERI, 989 Gil 111, Daedeokdaero, Yuseong-gu, Daejeon (Korea, Republic of)

    2012-07-01

    A core catcher is adopted in the EU-APR1400 reactor design for management and mitigation of severe accidents with reactor core melting. The core catcher concept incorporates a number of engineering solutions used in the catcher designs of European EPR and Russian WER-1000 reactors, such as thin-layer corium spreading for better cooling, retention of the melt in a water-cooled steel vessel, and use of sacrificial material (SM) to control the melt properties. SM is one of the key elements of the catcher design and its performance is critical for melt retention efficiency. This SM consists of oxide components, but the core catcher also includes sacrificial steel which reacts with the metal melt of the molten corium to reduce its temperature. The paper describes the required properties of SM. The melt retention capability of the core catcher can be confirmed by modeling the heat fluxes to the catcher vessel to show that it will not fail. The fulfillment of this requirement is demonstrated on the example of LBLOCA severe accident. Thermal and physicochemical interactions between the oxide and metal melts, interactions of the melts with SM, sacrificial steel and vessel, core catcher external cooling by water and release of non-condensable gases are modeled. (authors)

  4. Nuclear reactor core catcher

    International Nuclear Information System (INIS)

    1977-01-01

    A nuclear reactor core catcher is described for containing debris resulting from an accident causing core meltdown and which incorporates a method of cooling the debris by the circulation of a liquid coolant. (U.K.)

  5. Experiments on performance of the multi-layered in-vessel core catcher

    International Nuclear Information System (INIS)

    Kang, K.H.; Kim, S.B.; Park, R.J.; Cheung, F.B.; Suh, K.Y.; Rempe, J.L.

    2004-01-01

    LAVA-GAP experiments are in progress to investigate the performance of the in-vessel core catcher using alumina melt as a corium simulant. The hemispherical in-vessel core catcher made of carbon steel was installed inside the lower head vessel with a uniform gap of 10 mm. Until now, two types of the in-vessel core catcher were used in this study. The first one is a single layered in-vessel core catcher without an internal coating of the LAVA-GAP-2 test, and the other one is a two layered in-vessel core catcher with a 0.5 mm-thick ZrO 2 internal coating of the LAVA-GAP-3 test. Current LAVA-GAP experimental results indicate that an internally coated in-vessel core catcher has better thermal performance compared with an uncoated in-vessel core catcher. Metallurgical inspections on the test specimens of the LAVA-GAP-3 test have been performed to examine the performance of the coating material and the base carbon steel. Although the base carbon steel had experienced a severe thermal attack to the extent that the microstructures were changed and re-crystallization occurred, the carbon steel showed stable and pure chemical compositions without any oxidation and interaction with the coating layer. In terms of the material aspects, these metallurgical inspection results suggest that the ZrO 2 coating performed well. (authors)

  6. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  7. Internal corium catcher of a nuclear reactor

    International Nuclear Information System (INIS)

    Anatolii S Vlasov; Vladimir N Mineev; Aleksandr S Sidorov; Yuri A Zeigarnik

    2005-01-01

    Full text of publication follows: A corium catcher is one of the main devices of a nuclear reactor that provides corium melt and fission products retention within a containment during severe accidents. Several studies and design developments have shown that corium retention within a reactor vessel can be attained with a moderate capacity of the latter (up to 600 - 650 MW el.). With a higher reactor capacity external corium catchers are applied both at Russian (VVER-1000) and European (EPR) reactors. In the external catcher of a VVER-1000 reactor, most technological problems are solved due to using sacrificial material. They are as follows: (a) endo-thermal interaction of corium and sacrificial material reduces a level of the temperatures in the final melt pool; (b) solution in the melt of a great amount of the sacrificial material reduces the specific heat release density and the heat flux density at the boundaries of a melt; (c) due to changing of the oxide-component density an inverse stratification of the metallic and oxide components of the corium takes place, thus excluding heat-flux focusing in the zone of the metallic layer and making it possible to supply water on the free surface of the corium without a danger of incipience of the vapor explosion; (d) final oxidation of zirconium occurs without hydrogen generation. The above principles have been realized in the external catcher of the VVER- 1000 reactor at Tyanvan NPS that is presently under construction in China. Successfully solving of the problems concerning to the external catcher makes it possible to return on the new conceptual and technological basis to the idea of retention of the corium melt inside the vessel of a nuclear reactor of large capacity, that is, to provide the reactor vessel to play a role of an internal catcher. For this purpose, a reactor vessel is elongated by approximately two meters. In the lower part of the vessel, on elliptical bottom, pieces of sacrificial material are arranged

  8. Performance experiments on the in-vessel core catcher during severe accidents

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Park, Rae Joon; Cho, Young Rho; Kim, Sang Baik

    2004-01-01

    A US-Korean International Nuclear Energy Research Initiative (INERI) project has been initiated by the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korean Atomic Energy Research Institute (KAERI) to determine if IVR is feasible for high power reactors up to 1500 MWe by investigating the performance of enhanced ERVC and in-vessel core catcher. This program is initially focusing on the Korean Advanced Power Reactor 1400 MWe (APR1400) design. As for the enhancement of the coolability through the ERVC, boiling tests are conducted by using appropriate coating material on the vessel outer surface to promote downward facing boiling and selecting an improved vessel/insulation design to facilitate water flow and steam venting through the insulation in this program. Another approach for successful IVR are investigated by applying the in-vessel core catcher to provide an 'engineered gap' between the relocated core materials and the water-filled reactor vessel and a preliminary design for an in-vessel core catcher was developed during the first year of this program. Feasibility experiments using the LAVA facility, named LAVA-GAP experiments, are in progress to investigate the core catcher performance based on the conceptual design of the in-vessel core catcher proposed in this INERI project. The experiments were performed using 60kg of Al 2 O 3 thermite melt as a core material simulant with a 1/8 linear scale mock-up of the reactor vessel lower plenum. The hemispherical in-vessel core catcher was installed inside the lower head vessel maintaining a uniform gap of 10mm from the inner surface of the lower head vessel. Two types of the core catchers were used in these experiments. The first one was a single layered in-vessel core catcher without internal coating and the second one was a two layered in-vessel core catcher with an internal coating of 0.5mm-thick ZrO 2 via the plasma

  9. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry.

    Science.gov (United States)

    Gao, Xiaoye; Fang, Jie; Xue, Bin; Fu, Linglan; Li, Hongbin

    2016-09-12

    Constructing hydrogels from engineered proteins has attracted significant attention within the material sciences, owing to their myriad potential applications in biomedical engineering. Developing efficient methods to cross-link tailored protein building blocks into hydrogels with desirable mechanical, physical, and functional properties is of paramount importance. By making use of the recently developed SpyCatcher-SpyTag chemistry, we successfully engineered protein hydrogels on the basis of engineered tandem modular elastomeric proteins. Our resultant protein hydrogels are soft but stable, and show excellent biocompatibility. As the first step, we tested the use of these hydrogels as a drug carrier, as well as in encapsulating human lung fibroblast cells. Our results demonstrate the robustness of the SpyCatcher-SpyTag chemistry, even when the SpyTag (or SpyCatcher) is flanked by folded globular domains. These results demonstrate that SpyCatcher-SpyTag chemistry can be used to engineer protein hydrogels from tandem modular elastomeric proteins that can find applications in tissue engineering, in fundamental mechano-biological studies, and as a controlled drug release vehicle.

  10. A condensed review of the core catcher in the LMR

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Hahn, Do hee

    2001-03-01

    The overwhelming emphasis in reactor safety is on the prevention of core meltdown. Moreover, although there have been several accidents that have resulted in some fuel melting, to date there have been no accidents severe enough to cause the syndrome of core collapse, reactor vessel melt-through, containment penetration, and dispersal into the ground. Nevertheless, a number of proposals have been made for the design of core catcher systems to control or stop the motion of the molten core mass should such an accident take place. Core catchers may differ in both their location within the reactor system and in the mechanism that is used to cool and control the motion of the core debris. In this report the classification, configuration and main features of the core catcher are described. And also, the core catcher provisions in constructed and planned LMRs (Liquid Metal Reactors) are summarized

  11. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  12. Gas-ion laser with gas pressure maintenance means

    International Nuclear Information System (INIS)

    Thatcher, J.B.

    1975-01-01

    A gas-ion laser is described including means to maintain the ionizable gas in the laser cavity at a rather constant pressure over an extended period of time to significantly increase the useful life of the gas-ion laser. The gas laser includes a gas makeup system having a high pressure source or storage container and a regulating valve. The valve has a permeable solid state orifice member through which the gas flows from the high pressure source to the laser cavity to replenish the gas in the laser cavity and maintain the gas pressure in the cavity rather constant. The permeable orifice member is selected from a solid state material having a permeability that is variable in relation to the magnitude of the energy applied to the orifice member. The gas-ion laser has a valve operating means such as a heater for varying the applied energy such as thermal energy to the member to regulate the gas flow. Additionally, the gas-ion laser has a valve control means that is responsive to the gas pressure in the laser cavity for controlling the valve control means to maintain the pressure at a desired level. (U.S.)

  13. An internal core catcher for a pool L.M.F.B.R. and connected studies

    International Nuclear Information System (INIS)

    Le Rigoleur, C.; Kayser, G.

    1979-01-01

    This paper describes an internal core catcher for a pool LMFBR. Problems related to retention of debris are studied: downward progression of debris from the core to the core catcher, debris bed formation, heat transfer below the core catcher plate and to the main vessel, mechanical resistance. These results are used to estimate the performances of the internal core catcher for a given core melt-down-accident. It is seen that for a uniform thickness layer on the core catcher the retention capabilities are satisfactory. Then the problem of a heap of debris is approached. Dryout is studied. Uncertainties related to the bed characteristics and problems of extended dryout beds are put forward

  14. Experimental study on natural ventilation performance of one-sided wind catcher

    NARCIS (Netherlands)

    Montazeri, H.; Azizian, R.

    2008-01-01

    Hydrodynamic performance of a one-sided wind catcher was investigated by experimental wind tunnel and smoke visualization testing. Wind catchers or what is called Baud-Geers in Persian language was a main component of buildings in central region of Iran and the neighboring countries. A Baud-Geer is

  15. Radiation Simulations and Development of Concepts for High Power Beam Dumps, Catchers and Pre-separator Area Layouts for the Fragment Separators for RIA

    CERN Document Server

    Ronningen, Reginald; Beene, James R; Blideanu, Valetin; Boles, Jason; Bollen, Georg; Burgess, Thomas; Carter, Ken; Conner, David L; Gabriel, Tony A; Geissel, Hans; Gomes, Itacil C; Heilbronn, Lawrence; Iwase, Hiroshi; Lawton, Don; Levand, Anthony; Mansur, Louis; Momozaki, Yoichi; Morrissey, David; Nolen, Jerry; Reed, Claude; Remec, Igor; Rennich, Mark; Reyes, Susana; Sherrill, Bradley; Stein, Werner; Stoyer, Mark; Stracener, Dan; Wendel, Mark; Zeller, Al

    2005-01-01

    The development of high-power beam dumps and catchers, and pre-separator layouts for proposed fragment separators of the Rare-Isotope Accelerator (RIA) facility are important in realizing how to handle the 400 kW in the primary beam. We will present examples of pre-conceptual designs of beam dumps, fragment catchers, and the pre-separator layout. We will also present examples of ongoing work on radiation simulations using the heavy-ion-transport code PHITS, characterizing the secondary radiation produced by the high-power ion beams interacting with these devices. Results on radiation heating of targets, magnet coils, associated hardware and shielding, component activation, and levels of radiation dose will be presented. These initial studies will yield insight into the impact of the high-power dissipation on fragment separator design, remote handling concepts, nuclear safety and potential facility hazard classification, shielding design, civil construction design, component design, and material choices. Furth...

  16. New sacrificial material for ex-vessel core catcher

    Energy Technology Data Exchange (ETDEWEB)

    Komlev, Andrei A., E-mail: komlev@kth.se [Kungliga Tekniska Högskolan (KTH), AlbaNova University Centre, Nuclear Power Safety Division, Roslagstullsbacken 21, SE-106 91, Stockholm (Sweden); Almjashev, Vyacheslav I., E-mail: vac@mail.ru [A.P. Aleksandrov Research Institute of Technology, NITI, DSAR, Sosnovy Bor, 188540 (Russian Federation); Bechta, Sevostian V., E-mail: bechta@safety.sci.kth.se [Kungliga Tekniska Högskolan (KTH), AlbaNova University Centre, Roslagstullsbacken 21, SE-106 91, Stockholm (Sweden); Khabensky, Vladimir B., E-mail: vladimirkhabensky@gmail.com [A.P. Aleksandrov Research Institute of Technology, NITI, DSAR, Sosnovy Bor, 188540 (Russian Federation); Granovsky, Vladimir S., E-mail: gran@niti.ru [A.P. Aleksandrov Research Institute of Technology, NITI, DSAR, Sosnovy Bor, 188540 (Russian Federation); Gusarov, Victor V., E-mail: victor.v.gusarov@gmail.com [Ioffe Institute, 26 Polytekhnicheskaya Str., St. Petersburg, 194021 (Russian Federation)

    2015-12-15

    A new functional (sacrificial) material has been developed in the Fe{sub 2}O{sub 3}–SrO–Al{sub 2}O{sub 3}–CaO system based on strontium hexaferrite ceramic in concrete matrix. The method of producing SM has been advanced technologically; this technological effectiveness allows the SM to be used in ex-vessel core catchers with corium spreading as well as in crucible-type core catchers. Critical properties regarding the efficiency of SM in ex-vessel core catchers, such as porosity, pycnometric density, apparent density, solidus and liquidus temperatures, and water content have been measured. Suitable fractions of SrFe{sub 12}O{sub 19} and high alumina cement (HAC) were found in the SM based on thermodynamic analysis of the SM/corium interaction. The use of sacrificial steel as an additional heat adsorption component in the core catcher allowed us to increase the mass fraction range of SrFe{sub 12}O{sub 19} in the SM from 0.3−0.5 to 0.3–0.85. The activation temperature of the SM/corium interaction has been shown to correspond to the liquidus temperature of the local composition at the SM/corium interface. The calculated value of this temperature was 1716 °C. Analysis of phase transformations in the SrO–Fe{sub 2}O{sub 3} system revealed advantages of the SrFe{sub 12}O{sub 19}–based sacrificial material compared with the Fe{sub 2}O{sub 3}-contained material owing to the time proximity of SrFe{sub 12}O{sub 19} decomposition and corium interaction activation. - Highlights: • A sacrificial material (SM) was developed for ex-vessel core catcher. • Suitable proportions in the SrFe{sub 12}O{sub 19}–Al{sub 2}O{sub 3}·CaO–Fe system were determined. • Hydrogen release limitation was shown for ex-vessel corium retention with the SM. • Calculated temperature of the active initiation of corium/SM interaction is 1716 °C. • Functional properties of the SM were measured.

  17. AnimalCatcher: a digital camera to capture various reactions of animals

    OpenAIRE

    Tsukada, Koji; Oki, Maho; Kurihara, Kazutaka; Furudate, Yuko

    2015-01-01

    People often have difficulty to take pictures of animals, since animals usually do not react with cameras nor understand verbal directions. To solve this problem, we developed a new interaction technique, AnimalCatcher, which can attract animals' attention easily. The AnimalCatcher shoots various sounds using directional speaker to capture various reactions of animals. This paper describes concepts, implementation, and example pictures taken in a zoo.

  18. Improvements to core-catchers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T C.W.

    1969-07-22

    A core catcher consists of a generally annular holder adapted to be contained within a core barrel with sets of dogs circumferentially disposed in the holder. Each set of dogs consists of at least 2 dogs of different lengths pivotally mounted in the holder to swing inward. The dogs in each set are vertically superimposed. They are of upward decreasing length, with the arc of swing of the vertically adjacent dogs overlapping. (8 claims)

  19. Experimental Study for Effects of the Stud shape of the Core Catcher System

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyusang; Son, Hong Hyun; Jeong, Uiju; Seo, Gwang Hyeok; Shin, Doyoung; Jeun, Gyoodong; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    In preparation of potential severe accidents, a nuclear power plant is equipped with diverse systems of engineering safety features or mitigation system dedicated to the severe accidents conditions. As a common strategy, a number of nuclear power plants adopt the in-vessel retention (IVR) and/or external reactor vessel cooling (ERVC) strategies. With the ERVC strategy, an additional system (core catcher system) to catch molten core penetrating the reactor pressure vessel (RPV) was proposed for advanced light water reactor. The core catcher system is for Ex-vessel in the European Advanced Power Reactor 1400 (EU-APR1400) to acquire a European license certificate. It is to confine molten materials in the reactor cavity while keeping coolable geometry in case that the RPV failure occurs. The system consists of a carbon steel body, sacrificial material, protection material and engineered cooling channel. As shown in Fig 1, the engineered cooling channel of the ex-vessel core catcher was adopted to remove sensible heat and decay heat of the molten corium using cooling water flooded from the In-Containment Refueling Water Storage Tank (IRWST) by gravity. A large number of studs are placed in the cooling channel to support the core catcher body. While installation of the studs is unavoidable, the studs tend to interfere in the smooth streamline of the core catcher channel. The distorted streamline could affect the temperature distribution and overall coolability of the system. Thus, it is of importance to investigate the effects of studs on the coolability of the core catcher system. In the current research, to evaluate the effect of a stud on the streamline and natural convective boiling performance, numerical and experimental approaches were taken. As a part of numerical approach, CFD simulation using ANSYS/FLUENT was carried out. The objective was to predict disturbance of the streamline and temperature distribution due to the interference of the studs. Through the CFD

  20. Simulant melt experiments on performance of the in-vessel core catcher

    International Nuclear Information System (INIS)

    Kyoung-Ho Kang; Rae-Joon Park; Sang-Baik Kim; Suh, K.Y.; Cheung, F.B.; Rempe, J.L.

    2005-01-01

    Full text of publication follows: LAVA-GAP experiments are in progress to investigate the performance of the in-vessel core catcher using alumina melt as a corium simulant. The hemispherical in-vessel core catcher made of carbon steel was installed inside the lower head vessel with uniform gap of 5 mm or 10 mm to the inner surface of the lower head vessel. As a performance test of the in-vessel core catcher, the effects of base steel and internal coating materials and gap thickness between the core catcher and the lower head vessel were examined in this study. In the LAVA-GAP-2 and LAVA-GAP-3 tests, the base steel was carbon steel and the gap thickness was 10 mm. On the other hand, in the LAVA-GAP-4 and LAVA-GAP-5 tests, the base steel was stainless steel and the gap thickness was 5 mm. Actual composition of the coating material for the LAVA-GAP-4 test was 92% of ZrO 2 - 8% of Y 2 O 3 including 95% of Ni - 5% of Al bond coat same as the LAVA-GAP-3 test. In these tests, the thickness of ZrO 2 internal coating was 0.5 mm. To examine the effects of the coating material, in-vessel core catcher with a 0.6 mm-thick ZrO 2 coating without bond coat was used in the LAVA-GAP-5 test. This report summarizes the experimental results and the post metallurgical inspection results of the LAVA-GAP-4 and LAVA-GAP- 5 tests. In the LAVA-GAP-4 and LAVA-GAP-5 tests, the core catcher was failed and it was stuck to the inner surface of the lower head vessel. LAVA-GAP-4 and LAVA-GAP-5 test results imply that 5 mm thick gap is rather small for sufficient water ingression and steam venting through the gap. In case of small gap size, water is boiled off and steam increases pressure inside the gap and so water can not ingress into the gap at the initial heat up stage. Metallurgical inspections on the test specimens indicate that the internal coating layer might melt totally and dispersed in the base steel and the solidified iron melt and so the detection frequencies of Zr and O are trivial all

  1. Laboratory studies of the meltfront propagation in a borax core-catcher

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Werle, H.

    1980-08-01

    A series of seven laboratory experiments concerning the meltdown of a borax core catcher have been performed. By the selection of the simulant materials the most important thermophysical properties of the core catcher materials were taken into account. Fission product heating of the molten core masses was simulated by electrolytically heating of the molten region. The experiments reveal interesting details of the phenomena to be expected during melt-down of a borax core catcher, especially on the flow pattern, the mixing processes of molten materials and the layer formation the melt. The most interesting result is that the ratio of downward to sideward melting rate is heavily reduced by high melting barriers and that a cubic structure of barriers will not equalize downward and sideward melting rates. A super 8 film is available as additional information. (orig.) [de

  2. C-terminal peptide extension via gas-phase ion/ion reactions

    Science.gov (United States)

    Peng, Zhou; McLuckey, Scott A.

    2015-01-01

    The formation of peptide bonds is of great importance from both a biological standpoint and in routine organic synthesis. Recent work from our group demonstrated the synthesis of peptides in the gas-phase via ion/ion reactions with sulfo-NHS reagents, which resulted in conjugation of individual amino acids or small peptides to the N-terminus of an existing ‘anchor’ peptide. Here, we demonstrate a complementary approach resulting in the C-terminal extension of peptides. Individual amino acids or short peptides can be prepared as reagents by incorporating gas phase-labile protecting groups to the reactive C-terminus and then converting the N-terminal amino groups to the active ketenimine reagent. Gas-phase ion/ion reactions between the anionic reagents and doubly protonated “anchor” peptide cations results in extension of the “anchor” peptide with new amide bond formation at the C-terminus. We have demonstrated that ion/ion reactions can be used as a fast, controlled, and efficient means for C-terminal peptide extension in the gas phase. PMID:26640400

  3. Heavy ion source support gas mixing experiments

    International Nuclear Information System (INIS)

    Hudson, E.D.; Mallory, M.L.

    1977-01-01

    Experiments on mixing an easily ionized support gas with the primary ion source gas have produced large beam enhancements for high charge state light ions (masses less than or equal to 20). In the Oak Ridge Isochronous Cyclotron (ORIC), the beam increase has been a factor of 5 or greater, depending on ion species and charge state. Approximately 0.1 cc/min of the easily ionized support gas (argon, krypton, or xenon) is supplied to the ion source through a separate gas line and the primary gas flow is reduced by approximately 30 percent. The proposed mechanism for increased intensity is as follows: The heavier support gas ionizes readily to a higher charge state, providing increased cathode heating. The increased heating permits a reduction in primary gas flow (lower pressure) and the subsequent beam increase

  4. 76 FR 79764 - Requested Administrative Waiver of the Coastwise Trade Laws: Vessel DREAM CATCHER; Invitation for...

    Science.gov (United States)

    2011-12-22

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration [Docket No. MARAD-2011-0156] Requested Administrative Waiver of the Coastwise Trade Laws: Vessel DREAM CATCHER; Invitation for Public Comments AGENCY... DREAM CATCHER is: INTENDED COMMERCIAL USE OF VESSEL: ``Passenger charter.'' GEOGRAPHIC REGION: ``Georgia...

  5. Materials interaction tests to identify base and coating materials for an enhanced in-vessel core catcher design

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Knudson, D.L.; Condie, K.G.; Swank, W.D. [Idaho National Engineering and Environmental Laboratory, Idaho Falls ID (United States); Cheung, F.B. [Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park PA (United States); Suh, K.Y. [Seoul National University, Department of Nuclear Engineering, Seoul (Korea, Republic of); Kim, S.B. [Korea Atomic Energy Research Institute, Severe Accident Research Project, Taejon (Korea, Republic of)

    2004-07-01

    An enhanced in-vessel core catcher is being designed and evaluated, it must ensure In-Vessel Retention of core materials that may relocate under severe accident conditions in advanced reactors. To reduce cost and simplify manufacture and installation, this new core catcher design consists of several interlocking sections that are machined to fit together when inserted into the lower head. If needed, the core catcher can be manufactured with holes to accommodate lower head penetrations. Each section of the core catcher consists of two material layers with an option to add a third layer (if deemed necessary): a base material, which has the capability to support and contain the mass of core materials that may relocate during a severe accident; an insulating oxide coating material on top of the base material, which resists interactions with high-temperature core materials; and an optional coating on the bottom side of the base material to prevent any potential oxidation of the base material during the lifetime of the reactor. Initial evaluations suggest that a thermally-sprayed oxide material is the most promising candidate insulator coating for a core catcher. Tests suggest that 2 coatings can provide adequate protection to a stainless steel core catcher: -) a 500 {mu}m thick zirconium dioxide coating over a 100-200 {mu}m Inconel 718 bond coating, and -) a 500 {mu}m thick magnesium zirconate coating.

  6. Numerical Analysis on Heat Flux Distribution through the Steel Liner of the Ex-vessel Core Catcher

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Hong; Choi, Choeng Ryul [ELSOLTEC, Yongin (Korea, Republic of); Kim, Byung Jo; Lee, Kyu Bok [KEPCO, Gimcheon (Korea, Republic of); Hwang, Do Hyun [KHNP-CRI, Daejeon (Korea, Republic of)

    2016-05-15

    In order to prevent material failure of steel container of the core catcher system due to high temperatures, heat flux through the steel liner wall must be kept below the critical heat flux (CHF), and vapor dry-out of the cooling channel must be avoided. In this study, CFD methodology has been developed to simulate the heat flux distribution in the core catcher system, involving following physical phenomena: natural convection in the corium pool, boiling heat transfer and solidification/melting of the corium. A CFD methodology has been developed to simulate the thermal/hydraulic phenomena in the core catcher system, and a numerical analysis has been carried out to estimate the heat flux through the steel liner of the core catcher. High heat flux values are formed at the free surface of the corium pool. However, the heat flux through the steel liner is maintained below the critical heat flux.

  7. Experimental study on two-phase flow natural circulation in a core catcher cooling channel for EU-APR1400 using air-water system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Won [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Nguyen, Thanh Hung [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ha, Kwang Soon; Kim, Hwan Yeol; Song, Jinho [Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Park, Hyun Sun [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Revankar, Shripad T., E-mail: shripad@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2017-05-15

    Highlights: • Two-phase flow regimes and transition behavior were observed in the coolant channel. • Test were conducted for natural circulation with air-water. • Data were obtained on flow regime, void fraction, flow rates and re-wetting time. • The data were related to a cooling capability of core catcher system. - Abstract: Ex-vessel core catcher cooling system driven by natural circulation is designed using a full scaled air-water system. A transparent half symmetric section of a core catcher coolant channel of a pressurized water reactor was designed with instrumentations for local void fraction measurement and flow visualization. Two designs of air-water top separator water tanks are studied including one with modified ‘super-step’ design which prevents gas entrainment into down-comer. In the experiment air flow rates are set corresponding to steam generation rate for given corium decay power. Measurements of natural circulation flow rate, spatial local void fraction distribution and re-wetting time near the top wall are carried out for various air flow rates which simulate boiling-induced vapor generation. Since heat transfer and critical heat flux are strongly dependent on the water mass flow rate and development of two-phase flow on the heated wall, knowledge of two-phase flow characteristics in the coolant channel is essential. Results on flow visualization showing two phase flow structure specifically near the high void accumulation regions, local void profiles, rewetting time, and natural circulation flow rate are presented for various air flow rates that simulate corium power levels. The data are useful in assessing the cooling capability of and safety of the core catcher system.

  8. Inert gas handling in ion plating systems

    International Nuclear Information System (INIS)

    Goode, A.R.; Burden, M.St.J.

    1979-01-01

    The results of an investigation into the best methods for production and monitoring of the inert gas environment for ion plating systems are reported. Work carried out on Pirani gauges and high pressure ion gauges for the measurement of pressures in the ion plating region (1 - 50mtorr) and the use of furnaces for cleaning argon is outlined. A schematic of a gas handling system is shown and discussed. (UK)

  9. Physics of gas breakdown for ion beam transport in gas

    International Nuclear Information System (INIS)

    Olson, C.L.; Poukey, J.W.; Hinshelwood, D.D.; Rose, D.V.; Hubbard, R.F.; Lampe, M.; Neri, J.M.; Ottinger, P.F.; Slinker, S.P.; Stephanakis, S.J.; Young, F.C.; Welch, D.R.

    1993-01-01

    Detailed analysis, experiments, and computer simulations are producing a new understanding of gas breakdown during intense ion beam transport in neutral gas. Charge neutralization of beam micro clumps is shown to limit the net clump potentials to a non-zero value π min , which can lead to divergence growth and axial energy spreading. At pressures approx-gt 1 Torr, plasma shielding should substantially reduce this effect Current neutralization has been studied in experiments on the GAMBLE II accelerator. The importance of fast electrons (knockons and runaways) has been established in IPROP simulations, which are in agreement with the experiments. For light ion fusion parameters with pressures approx-gt 1 Torr, very small net current fractions (much-lt 1%) appear feasible, permitting ballistic transport in gas. Self-pinched requires higher net current fractions (≥ 2%) and preliminary IPROP code results indicate that this appears achievable for small-radius intense beams in lower pressure gases (approx-gt Torr). Several self-pinched transport concepts look promising. The importance of these results for both light ion fusion and heavy ion fusion is discussed

  10. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  11. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  12. Evaluation of downmotion time interval molten materials to core catcher during core disruptive accidents postulated in LMFR

    International Nuclear Information System (INIS)

    Voronov, S.A.; Kiryushin, A.I.; Kuzavkov, N.G.; Vlasichev, G.N.

    1994-01-01

    Hypothetical core disruptive accidents are postulated to clear potential of a reactor plant to withstand extreme conditions and to generate measures for management and mitigation of accidents consequence. In Russian advanced reactors there is a core catcher below the diagrid to prevent vessel bottom melting and to localize fuel debris. In this paper the calculation technique and estimation of relocation time of molten fuel and materials are presented in the case of core disruptive accidents postulated for LMFR reactor. To evaluate minimum interval of fuel relocation time the calculations for different initial data are provided. Large mass of materials between the core and the catcher in LMFR reactor hinders molten materials relocation toward the vessel bottom. That condition increases the time interval of reaching core catcher by molten fuel. Computations performed allowed to evaluate the minimum molten materials relocation time from the core to the core catcher. This time interval is in a range of 3.5-5.5 hours. (author)

  13. Hayabusa2 Sample Catcher and Container: Metal-Seal System for Vacuum Encapsulation of Returned Samples with Volatiles and Organic Compounds Recovered from C-Type Asteroid Ryugu

    Science.gov (United States)

    Okazaki, Ryuji; Sawada, Hirotaka; Yamanouchi, Shinji; Tachibana, Shogo; Miura, Yayoi N.; Sakamoto, Kanako; Takano, Yoshinori; Abe, Masanao; Itoh, Shoichi; Yamada, Keita; Yabuta, Hikaru; Okamoto, Chisato; Yano, Hajime; Noguchi, Takaaki; Nakamura, Tomoki; Nagao, Keisuke

    2017-07-01

    The spacecraft Hayabusa2 was launched on December 3, 2014, to collect and return samples from a C-type asteroid, 162173 Ryugu (provisional designation, 1999 JU3). It is expected that the samples collected contain organic matter and water-bearing minerals and have key information to elucidate the origin and history of the Solar System and the evolution of bio-related organics prior to delivery to the early Earth. In order to obtain samples with volatile species without terrestrial contamination, based on lessons learned from the Hayabusa mission, the sample catcher and container of Hayabusa2 were refined from those used in Hayabusa. The improvements include (1) a mirror finish of the inner wall surface of the sample catcher and the container, (2) adoption of an aluminum metal sealing system, and (3) addition of a gas-sampling interface for gas collection and evacuation. The former two improvements were made to limit contamination of the samples by terrestrial atmosphere below 1 Pa after the container is sealed. The gas-sampling interface will be used to promptly collect volatile species released from the samples in the sample container after sealing of the container. These improvements maintain the value of the returned samples.

  14. Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.

    Science.gov (United States)

    Maisser, Anne; Premnath, Vinay; Ghosh, Abhimanyu; Nguyen, Tuan Anh; Attoui, Michel; Hogan, Christopher J

    2011-12-28

    We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1 : 49.5 : 49.5, formic acid : methanol : water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase

  15. Vascular changes of the hand in professional baseball players with emphasis on digital ischemia in catchers.

    Science.gov (United States)

    Ginn, T Adam; Smith, Adam M; Snyder, Jon R; Koman, L Andrew; Smith, Beth P; Rushing, Julia

    2005-07-01

    Repetitive trauma to the hand is a concern for baseball players. The present study investigated the effects of repetitive trauma and the prevalence of microvascular pathological changes in the hands of minor league professional baseball players. In contrast to previous investigators, we documented the presence of abnormalities in younger, asymptomatic individuals. Thirty-six baseball players on active minor league rosters underwent a history and physical examination of both hands as well as additional specialized tests, including Doppler ultrasound, a timed Allen test, determination of digital brachial pressure indices, and ring sizing of fingers. Data were compared between gloved hands and throwing hands, hitters and nonhitters, and players at four different positions (catcher [nine subjects], outfielder [seven subjects], infielder [five subjects], and pitcher [fifteen subjects]). Digital brachial indices in the ring fingers of the gloved (p healthy professional baseball players in all positions, with a significantly higher prevalence in catchers, prior to the development of clinically important ischemia. Repetitive trauma resulting from the impact of the baseball also leads to digital hypertrophy in the index finger of the gloved hand of catchers. Gloves currently used by professional catchers do not adequately protect the hand from repetitive trauma.

  16. Mobilities of positive ions in gas ionization chambers

    International Nuclear Information System (INIS)

    Kusumegi, Asao

    1990-01-01

    Observed ion mobilities of organic molecules in Ar are compared with a complete polarization model to examine the performance of the model, and its applicability is discussed. In spite of its simplicity, the polarization model (small sphere limit) is found to agree satisfactorily with observed mobilities in the case of alkali ions in Ar. However, the model fails to account for the mobility of Ar + in Ar due to a resonant charge transfer interaction between the ion and the parent gas. On the other hand, the values of k, a parameter which depends on the kinetic and the potential energy of the relevant ion, derived from observed ion mobilities of organic molecules in Ar and in the parent gas are found to be close to each other. Except for few cases, it appears that the complete polarization model gives a reasonable approximation for the positive ion mobilities of organic molecules in Ar, though the importance of the ion mass identification is significant in considering the applicability of the model to the positive ion mobility of those organic molecules in Ar used in a gas ionization chamber. (N.K.)

  17. The relationship between gluteal muscle activation and throwing kinematics in baseball and softball catchers.

    Science.gov (United States)

    Plummer, Hillary A; Oliver, Gretchen D

    2014-01-01

    The purpose of this study was to determine the relationship between gluteal muscle activation and pelvis and trunk kinematics when catchers throw to second base. Forty-two baseball and softball catchers (14.74 ± 4.07 years; 161.85 ± 15.24 cm; 63.38 ± 19.98 kg) participated in this study. Muscle activity of the bilateral gluteus maximus and medius as well as pelvis and trunk kinematics throughout the throwing motion were analyzed. It was discovered that at foot contact, there were 2 significant inverse relationships between stride leg gluteus maximus activity and pelvis axial rotation (r = -0.31, r2 = 0.10, p = 0.05), and between trunk axial rotation and pelvis lateral flexion (r = -0.34, r2= 0.12, p = 0.03). In addition, at foot contact, a significant positive relationship between the drive leg (throwing arm side) and trunk flexion (r = 0.33, r2 = 0.11, p = 0.04) was present. The results of this study provide evidence of gluteal activation both concentrically and eccentrically, in attempt to control the pelvis and trunk during the throwing motion of catchers. The gluteal muscles play a direct role in maintaining the stability of the pelvis, and catchers should incorporate strengthening of the entire lumbopelvic-hip complex into their training regimen. Incorporating concentric and eccentric gluteal exercises will help to improve musculoskeletal core stability, thereby assisting in upper extremity injury prevention.

  18. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.

    Science.gov (United States)

    Prentice, Boone M; McLuckey, Scott A

    2013-02-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.

  19. Studies of gas phase ion/molecule reactions by Fourier transform ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Kleingeld, J.C.

    1984-01-01

    An important field in which Fourier-transform ion cyclotron resonance has useful applications is that of gas phase ion chemistry, the subject of this thesis. First, the general picture of ion-molecule reactions in the gas phase is discussed. Next, some positive ion-molecule reactions are described, whereas the remaining chapters deal with negative ion-molecule reactions. Most of these studies have been performed using the FT-ICR method. Reactions involving H 3 O - and NH 4 - ions are described whereas the other chapters deal with larger organic complexes. (Auth.)

  20. A versatile gas interface for routine radiocarbon analysis with a gas ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, L., E-mail: wacker@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Fahrni, S.M. [Department of Chemistry and Biochemistry, University of Bern, 3012 Berne (Switzerland); Oeschger Centre for Climate Change Research, University of Bern, 3012 Berne (Switzerland); Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland); Hajdas, I. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Molnar, M. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Institute of Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Synal, H.-A. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Szidat, S. [Department of Chemistry and Biochemistry, University of Bern, 3012 Berne (Switzerland); Oeschger Centre for Climate Change Research, University of Bern, 3012 Berne (Switzerland); Zhang, Y.L. [Department of Chemistry and Biochemistry, University of Bern, 3012 Berne (Switzerland); Oeschger Centre for Climate Change Research, University of Bern, 3012 Berne (Switzerland); Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland)

    2013-01-15

    In 2010 more than 600 radiocarbon samples were measured with the gas ion source at the MIni CArbon DAting System (MICADAS) at ETH Zurich and the number of measurements is rising quickly. While most samples contain less than 50 {mu}g C at present, the gas ion source is attractive as well for larger samples because the time-consuming graphitization is omitted. Additionally, modern samples are now measured down to 5 per-mill counting statistics in less than 30 min with the recently improved gas ion source. In the versatile gas handling system, a stepping-motor-driven syringe presses a mixture of helium and sample CO{sub 2} into the gas ion source, allowing continuous and stable measurements of different kinds of samples. CO{sub 2} can be provided in four different ways to the versatile gas interface. As a primary method, CO{sub 2} is delivered in glass or quartz ampoules. In this case, the CO{sub 2} is released in an automated ampoule cracker with 8 positions for individual samples. Secondly, OX-1 and blank gas in helium can be provided to the syringe by directly connecting gas bottles to the gas interface at the stage of the cracker. Thirdly, solid samples can be combusted in an elemental analyzer or in a thermo-optical OC/EC aerosol analyzer where the produced CO{sub 2} is transferred to the syringe via a zeolite trap for gas concentration. As a fourth method, CO{sub 2} is released from carbonates with phosphoric acid in septum-sealed vials and loaded onto the same trap used for the elemental analyzer. All four methods allow complete automation of the measurement, even though minor user input is presently still required. Details on the setup, versatility and applications of the gas handling system are given.

  1. Calculations with ANSYS/FLOTRAN to a core catcher benchmark

    International Nuclear Information System (INIS)

    Willschuetz, H.G.

    1999-01-01

    There are numerous experiments for the exploration of the corium spreading behaviour, but comparable data have not been available up to now in the field of the long-term behaviour of a corium expanded in a core catcher. For the calculations a pure liquid oxidic melt with a homogeneous internal heat source was assumed. The melt was distributed uniformly over the spreading area of the EPR core catcher. All codes applied the well known k-ε-turbulence-model to simulate the turbulent flow regime of this melt configuration. While the FVM-code calculations were performed with three dimensional models using a simple symmetry, the problem was modelled two-dimensionally with ANSYS due to limited CPU performance. In addition, the 2D results of ANSYS should allow a comparison for the planned second stage of the calculations. In this second stage, the behaviour of a segregated metal oxide melt should be examined. However, first estimates and pre-calculations showed that a 3D simulation of the problem is not possible with any of the codes due to lacking computer performance. (orig.)

  2. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    Science.gov (United States)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  3. A Preliminary Study of the Core Catcher System on Various Stud Shapes using FLUENT

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Uiju; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2014-10-15

    As a kind of in-vessel retention (IVR) strategies, reactor cavity flooding is used for Westinghouse's AP1000 and South Korea's OPR1000. Moreover, the European Pressurized Reactor (EPR) has adopted an ex-vessel core catcher strategy rather than the IVR strategy. Although the mitigation strategies suggested are vigorously considered, there are still various issues due to its uncertainties and complex phenomena during severe accidents. In this study, to assess the effect of studs installed on the core catcher body, a CFD analysis for coolant channels having rectangular or cylinder shaped studs is carried out. In this study, numerical simulations for the different stud shapes of the core catcher system were carried out using ANSYS FLUENT. For a comparison work, the rectangular and cylinder shaped stud were modeled with the same initial and boundary conditions. The major findings observed from this study can be summarized as follows. - The simulation results showed the 31% reduced amount of pressure drop for the case of the cylinder shaped studs as compared with the reference case, which is for the rectangular studs. - The tendency of reduced pressure drop is well in accord with the flow distribution. The fluid velocities around the studs were greatly distorted for the rectangular studs than those around the cylinder studs. - The distorted stream of fluid could affect heat transfer from core catcher body, and result in locally additional damages. This result may suggest the necessity of finding an optimized stud shape. For more improved comparison work, an additional simulation is planned including different stud shapes.

  4. WIND EROSION INTENSITY DETERMINATION USING SOIL PARTICLE CATCHER DEVICES

    Directory of Open Access Journals (Sweden)

    Lenka Lackóová

    2013-12-01

    Full Text Available To analyze wind erosion events in the real terrain conditions, we proposed to construct a prototype of soil particle catcher devices to trap soil particles. With these devices we are able to measure the intensity of wind erosion at six different heights above the soil surface in one location or at three different heights in two places. It is possible to use them for six different places at the same time as well. We performed field measurements to determine the amount of soil particles transported by the wind between 26th – 31st March 2012. Each measuring took 60 minutes. After this time the soil particle catchers were emptied and further measurements carried out. At the beginning we selected two places for measurement (soil HPJ 16 and 37 at two heights, one above the other. Then we used two measuring systems 40 m apart at two sites (D2 and D4 and the soil captured at two heights (0, 1. The maximum weight of soil particles trapped in measuring system D2 at height (0 was 1242.7 g at a wind speed of 9.6 ms-1. At measurement height (1 the maximum weight was 72.7 g trapped at the same average hourly rate, but during different measurement events. The measuring system at D4 trapped the highest amount of soil at a wind speed of 8.9 ms-1 (1141.7 g at height (0 and at a speed of 9.3 ms-1 (22.3 g at height (1. During the measurements with the two basic measuring systems D4 and D2, we measured the wind erosion intensity together with soil particle catchers D1 and D3. D3 was placed between devices D4 and D2, D1 was 20 m ahead D2. Soil particle catchers were placed on the soil surface at height position (0. We measured increasing soil erosion downwind on four locations spaced at 20 m. The results show that with there is an increasing quantity of particles collected as the erosive surface length increases, due to the so-called snowball effect. We analyzed selected trapped soil samples in order to determine the size of the soil particles and their proportion

  5. The Quake-Catcher Network: Bringing Seismology to Homes and Schools

    Science.gov (United States)

    Lawrence, J. F.; Cochran, E. S.; Christensen, C. M.; Saltzman, J.; Taber, J.; Hubenthal, M.

    2011-12-01

    The Quake-Catcher Network (QCN) is a collaborative initiative for developing the world's largest, low-cost strong-motion seismic network by utilizing sensors in and attached to volunteer internet-connected computers. QCN is not only a research tool, but provides an educational tool for teaching earthquake science in formal and informal environments. A central mission of the Quake-Catcher Network is to provide scientific educational software and hardware so that K-12 teachers, students, and the general public can better understand and participate in the science of earthquakes and earthquake hazards. With greater understanding, teachers, students, and interested individuals can share their new knowledge, resulting in continued participation in the project, and better preparation for earthquakes in their homes, businesses, and communities. The primary educational outreach goals are 1) to present earthquake science and earthquake hazards in a modern and exciting way, and 2) to provide teachers and educators with seismic sensors, interactive software, and educational modules to assist in earthquake education. QCNLive (our interactive educational computer software) displays recent and historic earthquake locations and 3-axis real-time acceleration measurements. This tool is useful for demonstrations and active engagement for all ages, from K-college. QCN provides subsidized sensors at 49 for the general public and 5 for K-12 teachers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes to a broader audience. Academics are taking QCN to classrooms across the United States and around the world. The next time you visit a K-12 classroom or teach a college class on interpreting seismograms, bring a QCN sensor and QCNLive software with you! To learn how, visit http://qcn.stanford.edu.

  6. Compact permanent magnet H⁺ ECR ion source with pulse gas valve.

    Science.gov (United States)

    Iwashita, Y; Tongu, H; Fuwa, Y; Ichikawa, M

    2016-02-01

    Compact H(+) ECR ion source using permanent magnets is under development. Switching the hydrogen gas flow in pulse operations can reduce the gas loads to vacuum evacuation systems. A specially designed piezo gas valve chops the gas flow quickly. A 6 GHz ECR ion source equipped with the piezo gas valve is tested. The gas flow was measured by a fast ion gauge and a few ms response time is obtained.

  7. Collision cross section calculations for polyatomic ions considering rotating diatomic/linear gas molecules

    International Nuclear Information System (INIS)

    Larriba-Andaluz, Carlos; Hogan, Christopher J.

    2014-01-01

    Structural characterization of ions in the gas phase is facilitated by measurement of ion collision cross sections (CCS) using techniques such as ion mobility spectrometry. Further information is gained from CCS measurement when comparison is made between measurements and accurately predicted CCSs for model ion structures and the gas in which measurements are made. While diatomic gases, namely molecular nitrogen and air, are being used in CCS measurement with increasingly prevalency, the majority of studies in which measurements are compared to predictions use models in which gas molecules are spherical or non-rotating, which is not necessarily appropriate for diatomic gases. Here, we adapt a momentum transfer based CCS calculation approach to consider rotating, diatomic gas molecule collisions with polyatomic ions, and compare CCS predictions with a diatomic gas molecule to those made with a spherical gas molecular for model spherical ions, tetra-alkylammonium ions, and multiply charged polyethylene glycol ions. CCS calculations are performed using both specular-elastic and diffuse-inelastic collisions rules, which mimic negligible internal energy exchange and complete thermal accommodation, respectively, between gas molecule and ion. The influence of the long range ion-induced dipole potential on calculations is also examined with both gas molecule models. In large part we find that CCSs calculated with specular-elastic collision rules decrease, while they increase with diffuse-inelastic collision rules when using diatomic gas molecules. Results clearly show the structural model of both the ion and gas molecule, the potential energy field between ion and gas molecule, and finally the modeled degree of kinetic energy exchange between ion and gas molecule internal energy are coupled to one another in CCS calculations, and must be considered carefully to obtain results which agree with measurements

  8. Thermal-Hydraulic Effects of Stud Shape and Size on the Safety Margin of Core Catcher System

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyusang; Son, Hong Hyun; Jeong, Uiju; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2015-10-15

    With the ERVC strategy, an additional system (core catcher system) to catch molten core penetrating the reactor pressure vessel (RPV) was proposed for advanced light water reactor. The newly engineered corium cooling system, that is, an ex-vessel core catcher system has been designed and adapted in some nuclear power plants such as VVER-1000, EPR, ESBWR, EU-APR1400 to mention a few. For example, Russia adopted a crucible-type core catcher for VVER-1000. On the other hand, a way to catch melt spreading is adopted by several countries, such as EPR in France, ESBWR in USA, ABWR in japan, and EU-APR1400 in Korea In Korea, the core catcher system has been designed and implemented for the European Advanced Power Reactor 1400 (EU-APR1400) to acquire a European license certificate. It is to confine molten materials in the reactor cavity while maintaining a coolable geometry in case that RPV failure occurs. The core catcher system consists of a carbon steel body, sacrificial material, protection material and engineered cooling channel. While installation of the studs is unavoidable, the studs tend to interfere in the smooth streamline of the core catcher channel. The distorted streamline could affect the overall thermal-hydraulic performance including two-phase heat transfer coefficient and critical heat flux (CHF) of the system. Thus, it is of importance to investigate the thermal-hydraulic effects of studs on the coolability, especially the CHF of the core catcher system. With aforementioned importance, pool boiling experiments were carried out with stud shape of, rectangular, cylinder, and elliptic and for stud sizes of 10, 15, 20, and 25 mm under the condition of atmospheric saturated water. A particular attention was focused on observing local vapor behavior around the studs and finding any hot spots, where the vapors are accumulated. The occurrence of the CHF is anticipated at the back side of the studs. The visual observation and CHF measurements indicate that the

  9. Thermal-Hydraulic Effects of Stud Shape and Size on the Safety Margin of Core Catcher System

    International Nuclear Information System (INIS)

    Song, Kyusang; Son, Hong Hyun; Jeong, Uiju; Kim, Sung Joong

    2015-01-01

    With the ERVC strategy, an additional system (core catcher system) to catch molten core penetrating the reactor pressure vessel (RPV) was proposed for advanced light water reactor. The newly engineered corium cooling system, that is, an ex-vessel core catcher system has been designed and adapted in some nuclear power plants such as VVER-1000, EPR, ESBWR, EU-APR1400 to mention a few. For example, Russia adopted a crucible-type core catcher for VVER-1000. On the other hand, a way to catch melt spreading is adopted by several countries, such as EPR in France, ESBWR in USA, ABWR in japan, and EU-APR1400 in Korea In Korea, the core catcher system has been designed and implemented for the European Advanced Power Reactor 1400 (EU-APR1400) to acquire a European license certificate. It is to confine molten materials in the reactor cavity while maintaining a coolable geometry in case that RPV failure occurs. The core catcher system consists of a carbon steel body, sacrificial material, protection material and engineered cooling channel. While installation of the studs is unavoidable, the studs tend to interfere in the smooth streamline of the core catcher channel. The distorted streamline could affect the overall thermal-hydraulic performance including two-phase heat transfer coefficient and critical heat flux (CHF) of the system. Thus, it is of importance to investigate the thermal-hydraulic effects of studs on the coolability, especially the CHF of the core catcher system. With aforementioned importance, pool boiling experiments were carried out with stud shape of, rectangular, cylinder, and elliptic and for stud sizes of 10, 15, 20, and 25 mm under the condition of atmospheric saturated water. A particular attention was focused on observing local vapor behavior around the studs and finding any hot spots, where the vapors are accumulated. The occurrence of the CHF is anticipated at the back side of the studs. The visual observation and CHF measurements indicate that the

  10. Heat Transfer Analysis of the European Pressurized Water Reactor (EPR) Core Catcher Test Facility Volley

    Energy Technology Data Exchange (ETDEWEB)

    Pikkarainen, Mika; Laine, Jani; Purhonen, Heikki; Kyrki-Rajamaeki, Riitta [Lappeenranta University of Technology, P.O. 20 53851 Lappeenranta (Finland); Sairanen, Risto [Radiation and Nuclear Safety Authority, P.O. 14 00881 Helsinki (Finland)

    2008-07-01

    The EPR is designed to cope with severe accidents, involving core meltdown. A specific melt spreading area has been designed within the containment. This core catcher will be flooded by water, which transfers the decay heat to the containment heat removal system. To improve cooling, horizontal flow channels made of cast iron are located also below the core catcher. STUK, the radiation and nuclear safety authority in Finland, wanted an independent study of the functionality of the core catcher design. Effect of the presence of insulation material and boric acid in the cooling water was to be studied, as well as the general behavior of the system in different phases of the flooding of the core melt spreading area. To verify the function of the core catcher design, a scaled down test facility was built at Lappeenranta University of Technology. Since there are some physical restrictions of a test facility computational tools were applied especially for the tests where steady state conditions could not be reached without endangering the integrity of the test facility. This paper introduces the Volley test facility, computational simulations and compares them with the test results. Simulated temperatures of those Volley tests, which could be run until steady state conditions, are very close to the measured temperatures. It can be concluded also, that the temperatures are evidently below the cast iron melting point with heat fluxes used in the tests, if there is a small flow inside the cooling channels or even in case when only a few adjacent cooling channels are totally dry. (authors)

  11. Heat Transfer Analysis of the European Pressurized Water Reactor (EPR) Core Catcher Test Facility Volley

    International Nuclear Information System (INIS)

    Pikkarainen, Mika; Laine, Jani; Purhonen, Heikki; Kyrki-Rajamaeki, Riitta; Sairanen, Risto

    2008-01-01

    The EPR is designed to cope with severe accidents, involving core meltdown. A specific melt spreading area has been designed within the containment. This core catcher will be flooded by water, which transfers the decay heat to the containment heat removal system. To improve cooling, horizontal flow channels made of cast iron are located also below the core catcher. STUK, the radiation and nuclear safety authority in Finland, wanted an independent study of the functionality of the core catcher design. Effect of the presence of insulation material and boric acid in the cooling water was to be studied, as well as the general behavior of the system in different phases of the flooding of the core melt spreading area. To verify the function of the core catcher design, a scaled down test facility was built at Lappeenranta University of Technology. Since there are some physical restrictions of a test facility computational tools were applied especially for the tests where steady state conditions could not be reached without endangering the integrity of the test facility. This paper introduces the Volley test facility, computational simulations and compares them with the test results. Simulated temperatures of those Volley tests, which could be run until steady state conditions, are very close to the measured temperatures. It can be concluded also, that the temperatures are evidently below the cast iron melting point with heat fluxes used in the tests, if there is a small flow inside the cooling channels or even in case when only a few adjacent cooling channels are totally dry. (authors)

  12. Toxic fluoride gas emissions from lithium-ion battery fires.

    Science.gov (United States)

    Larsson, Fredrik; Andersson, Petra; Blomqvist, Per; Mellander, Bengt-Erik

    2017-08-30

    Lithium-ion battery fires generate intense heat and considerable amounts of gas and smoke. Although the emission of toxic gases can be a larger threat than the heat, the knowledge of such emissions is limited. This paper presents quantitative measurements of heat release and fluoride gas emissions during battery fires for seven different types of commercial lithium-ion batteries. The results have been validated using two independent measurement techniques and show that large amounts of hydrogen fluoride (HF) may be generated, ranging between 20 and 200 mg/Wh of nominal battery energy capacity. In addition, 15-22 mg/Wh of another potentially toxic gas, phosphoryl fluoride (POF 3 ), was measured in some of the fire tests. Gas emissions when using water mist as extinguishing agent were also investigated. Fluoride gas emission can pose a serious toxic threat and the results are crucial findings for risk assessment and management, especially for large Li-ion battery packs.

  13. Sizing of "Mother Ship and Catcher" Concepts for LEO Small Debris Capture

    Science.gov (United States)

    Bacon, John B.

    2009-01-01

    Most Low Earth Orbit (LEO) debris lies in a limited number of inclination "bands" associated with launch latitudes, or with specific useful orbit inclinations (such as polar orbits). Such narrow inclination bands generally have a uniform spread over all possible Right Ascensions of Ascending Node (RAANs), creating a different orbit plane for nearly every piece of debris. This complicates concept of rendezvous and capture for debris removal. However, a low-orbiting satellite will always phase in RAAN faster than debris objects in higher orbits at the same inclination, potentially solving the problem. Such a base can serve as a single space-based launch facility (a "mother ship") that can tend and then send tiny individual catcher devices for each debris object, as the facility drifts into the same RAAN as the higher object. This presentation will highlight characteristic system requirements of such an architecture, including structural and navigation requirements, power, mass and dV budgets for both the mother ship and the mass-produced common catcher devices that would clean out selected inclination bands. The altitude and inclination regime over which a band is to be cleared, the size distribution of the debris, and the inclusion of additional mission priorities all affect the sizing of the system. It is demonstrated that major LEO hazardous debris reductions can be realized in each band with a single LEO launch of a single mother ship, with simple attached catchers of total mass less than typical commercial LEO launch capability.

  14. Heat transfer analysis to investigate the core catcher plate assembly in SFR

    International Nuclear Information System (INIS)

    Patil, Swapnil; Sharma, Anil Kumar; Velusamy, K.; Nashine, B.K.; Selvaraj, P.

    2015-01-01

    Severe accident scenario in Sodium Cooled Fast Reactor (SFR) is the major concern for public acceptance. After severe accident, the molten core continuously generates substantial decay heat. However, an in-vessel core catcher plate is provided to remove the decay heat passively. The numerical investigation of pool hydraulics phenomena in sodium pool of typical Indian SFR has been carried out. The debris may form a heap with different angle over the core catcher plate due to molten fuel density and interaction force. Therefore, the debris bed with different heap angle has been analyzed for steady and transient state conditions. The governing equation of fluid flow and heat transfer are solved by finite volume method based solver with the k-ε turbulent model. The time period Δ for which temperature is exceeding above safety limit with different debris heap angle have been established. (author)

  15. Gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance mass spectrometry

    International Nuclear Information System (INIS)

    Joergensen, S.I.

    1985-01-01

    The subject of this thesis is gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry (chapter 2 contains a short description of this method). Three chapters are mainly concerned with mechanistic aspects of gas phase ion/molecule reactions. An equally important aspect of the thesis is the stability and reactivity of α-thio carbanions, dipole stabilized carbanions and homoenolate anions, dealt with in the other four chapters. (Auth.)

  16. Assessment of the MARS Code Using the Two-Phase Natural Circulation Experiments at a Core Catcher Test Facility

    Directory of Open Access Journals (Sweden)

    Dong Hun Lee

    2017-01-01

    Full Text Available A core catcher has been developed to maintain the integrity of nuclear reactor containment from molten corium during a severe accident. It uses a two-phase natural circulation for cooling molten corium. Flow in a typical core catcher is unique because (i it has an inclined cooling channel with downwards-facing heating surface, of which flow processes are not fully exploited, (ii it is usually exposed to a low-pressure condition, where phase change causes dramatic changes in the flow, and (iii the effects of a multidimensional flow are very large in the upper part of the core catcher. These features make computational analysis more difficult. In this study, the MARS code is assessed using the two-phase natural circulation experiments that had been conducted at the CE-PECS facility to verify the cooling performance of a core catcher. The code is a system-scale thermal-hydraulic (TH code and has a multidimensional TH component. The facility was modeled by using both one- and three-dimensional components. Six experiments at the facility were selected to investigate the parametric effects of heat flux, pressure, and form loss. The results show that MARS can predict the two-phase flow at the facility reasonably well. However, some limitations are obviously revealed.

  17. Ion-enhanced gas-surface chemistry: The influence of the mass of the incident ion

    International Nuclear Information System (INIS)

    Gerlach-Meyer, U.; Coburn, J.W.; Kay, E.

    1981-01-01

    There are many examples of situations in which a gas-surface reaction rate is increased when the surface is simultaneously subjected to energetic particle bombardment. There are several possible mechanisms which could be involved in this radiation-enhanced gas-surface chemistry. In this study, the reaction rate of silicon, as determined from the etch yield, is measured during irradiation of the Si surface with 1 keV He + , Ne + , and Ar + ions while the surface is simultaneously subjected to fluxes of XeF 2 or Cl 2 molecules. Etch yields as high as 25 Si atoms/ion are observed for XeF 2 and Ar + on Si. A discussion is presented of the extent to which the results clarify the mechanisms responsible for ion-enhanced gas-surface chemistry. (orig.)

  18. Gas cluster ion beam equipments for industrial applications

    International Nuclear Information System (INIS)

    Matsuo, J.; Takaoka, G.H.; Yamada, I.

    1995-01-01

    30 keV and 200 keV gas cluster ion beam equipments have been developed for industrial applications. A gas cluster source with a non-cooled nozzle was used for both the equipments. Sufficient monomer ion suppression was achieved by using an ExB filter and chromatic lenses mass filter with low extraction voltage. These equipments are suitable to be used for low-damage surface treatment of metals, insulators and semiconductors without heavy metal contamination. (orig.)

  19. Approximation of the characteristics of ion drift in parent gas

    Energy Technology Data Exchange (ETDEWEB)

    Golyatina, R. I.; Maiorov, S. A., E-mail: mayorov-sa@mail.ru [Russian Academy of Science, Prokhorov General Physics Institute (Russian Federation)

    2017-01-15

    The drift velocities of noble-gas and mercury ions in a constant homogeneous electric field are calculated using Monte Carlo simulations. The ion mobility is analyzed as a function of the field strength and gas temperature. The fitting parameters for calculating the drift velocity by the Frost formula at gas temperatures of 4.2, 77, 300, 1000, and 2000 K are obtained. A general approximate formula for the drift velocity as a function of the reduced field and gas temperature is derived.

  20. Integrated CFD investigation of heat transfer enhancement using multi-tray core catcher in SFR

    International Nuclear Information System (INIS)

    Rakhi; Sharma, Anil Kumar; Velusamy, K.

    2017-01-01

    Highlights: • Heat transfer enhancement using multi-tray core catcher for SFR is investigated. • The capability of a single core collector tray is estimated. • Double and triple collector trays with innovative designs is discussed. • Provision of openings in the trays contributed to enhanced natural circulation. - Abstract: To render future SFR more robust and safe, certain BDBE have been considered in the recent years. A Core Disruptive Accident leading to a whole core meltdown scenario has gained the interest of researchers. Various design concepts and safety measures have been suggested and incorporated in design to address such a low probability scenario. A core catcher concept, in particular, has proved to be inevitable as an in-vessel core retention device in SFR for safe retention of core debris arising out after the severe accident. This study aims to analyse the cooling capability of the innovative design concept of core catcher to remove decay heat of degraded core after the accident. First, the capability of single collection tray is established and then the study is extended to two and three collection trays with different design concepts. Transient forms of governing equations of mass, momentum and energy conservations along with k-ε turbulence model are solved by finite volume based CFD solver. Boussinesq approximation is invoked to model buoyancy in sodium. The study shows that a single collection tray is capable of removing up to 20 MW decay heat load in a typical 500 MWe pool type SFR. Further, studies are carried out to improve the natural circulation of sodium around the source, in the lower plenum and to distribute core debris of the whole core to multiple collection trays. It is found that the double and triple collection trays can accommodate decay loads up to 29 MW. Provision of openings in the collection trays has proved to be effective in improving the heat transfer and sodium flow as well as in distributing the core debris to the

  1. KATS experiments to simulate corium spreading in the EPR core catcher concept

    International Nuclear Information System (INIS)

    Eppinger, B.; Fieg, G.; Schuetz, W.; Stegmaier, U.

    2001-01-01

    In future Light Water Reactors special devices (core catchers) might be required to prevent containment failure by basement erosion after reactor pressure vessel melt-through during a core meltdown accident. Quick freezing of the molten core masses is desirable to reduce release of radioactivity. Several concepts of core catcher de-vices have been proposed based on the spreading of corium melt onto flat surfaces with subsequent cooling by flooding with water. Therefore a series of experiments to investigate high temperature melt spreading on flat surfaces has been carried out using alumina-iron thermite melts as a simulant. The oxidic thermite melt is conditioned by adding other oxides to simulate a realistic corium melt as close as possible. Spreading of oxidic and metallic melts have been performed in one- and two-dimensional geometry. Substrates were chemically inert ceramic layers, dry concrete and concrete with a shallow water layer on top. (authors)

  2. A study of a wind catcher assisted adsorption cooling channel for natural cooling of a 2-storey building

    International Nuclear Information System (INIS)

    Haghighi, A.P.; Pakdel, S.H.; Jafari, A.

    2016-01-01

    This study proposes a new system composing of a wind catcher and a solar driven two-bed silica gel–water adsorption chiller in order to provide natural cooling of a two-story building. The wind catcher provides the required ventilation, and the air flowing though the wind catcher is cooled by the cooling plates fed by the adsorption chiller. The performance of the system is studied theoretically under different ambient conditions such as wind velocity, solar radiation, air temperature and relative humidity. In addition, the influence of geometric parameters such as size of the apertures, wind catcher's height and dimensions of the cooling plates and the number of them are studied. Furthermore, the system's capability to provide thermal comfort in the living space is investigated. It is found that at lower ACH (air change per hour) values, inlet air's temperature and absolute humidity reduce more. In addition, with the rise of the cooling plates' length, the cooling effect increases. The results indicated that with the increase of ACH values, thermal comfort condition is achieved for larger cooling demands. Furthermore, the system was found to be able to cool the air between 10 and 20 °C under different ambient conditions. - Highlights: • A new system consisting of a wind catcher and a solar adsorption chiller is proposed. • The values of ACH were compared under different geometrical parameters. • With the increase of ACH, thermal comfort can be achieved for larger cooling demands. • Thermal comfort is achieved for a maximum of 2200 W cooling demand in a 50 m 3 room. • Application of the system is found to be beneficial in hot and humid climates.

  3. Ion source development for the on-line isotope separator at GSI

    International Nuclear Information System (INIS)

    Kirchner, R.; Burkard, K.; Hueller, W.; Klepper, O.

    1991-08-01

    The progress in the understanding of ion sources for isotope separation on-line and the feasibility of bunched beams of relatively refractory elements is reported. The ultra-high temperature FEBIAD-H ion source, facilitating the mounting of catchers and window compared to the earlier F-version, enables bunched beams of the elements with adsorption enthalpies up to almost 6 eV, e.g. of Be, Al, Ca, Cr, Fe, Co, Ni, Sr, Pd, Ba, Yb, and Au. This way also chemical selectivity for these elements may be achieved, at least to some extent, for isotopes with halflives > or approx.1 minute, including especially the difficult separation of alkaline-earth isotopes from isobaric alkalines. These studies reveal, however, also a principal difficulty in the on-line separation of refractory elements, namely their tendency, increasing with ΔH a , to re-diffuse after release from the catcher into the bulk of the hot source enclosure. (orig.)

  4. Gas Chromatographic-Ion Trap Mass Spectrometric Analysis of Volatile Organic Compounds by Ion-Molecule Reactions Using the Electron-Deficient Reagent Ion CCl{3/+}

    Science.gov (United States)

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl{3/+} was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl{3/+} could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl{3/+} with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M + CCl3 - HCl]+ for aromatic hydrocarbons, [M - OH]+ for saturated cyclic ether, ketone, and alcoholic compounds, [M - H]+ ion for monoterpenes, M·+ for sesquiterpenes, [M - CH3CO]+ for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl{3/+} were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds.

  5. Materials problems related to the core catcher of sodium cooled reactors

    International Nuclear Information System (INIS)

    Goetzmann, O.

    1975-05-01

    There are in principal two possible solutions for the external core catcher as far as materials are concerned. 1) A barrier consisting of a material with a high melting point, 2) a tray of comparatively low melting material with a high solubility for the fuel. In case of the first concept one has to look for materials whose melting temperatures are above the temperature of the molten core. Based on metallurgical reasons it seems very likely that the molten core does not exceed a temperature in the range between 2,500 and 2,800 0 C. Due to the compatibility situation with the molten core only a few high melting oxides will be suitable as liner materials for a core catcher. In the second case basalt or concrete, if free of water and lime, are suitable materials. Graphite is a high melting material, however, due to its behaviour with the molten core it should be listed under the second group. By the reaction of graphite with the core materials the melt can be kept liquid down to temperatures of around 1,100 0 C. The evolution of CO by this reaction should be supportable. It is an endothermal reaction. Experiments on the behaviour of core catcher materials have shown that sodium is capable of penetrating into sintered bodies of UO 2 with densities of 90% TD at temperatures higher than 200 0 C. This may lead to the desintegration of these bodies. The exposure to moist air has not done much harm to UO 2 pellets of densities from 80 to 90% TD. Even after one year of exposure, swelling or desintegration could not be observed. Sodium is also capable of penetrating into bodies of synthetic carbon and graphite. Only well graphitized material will not be destroyed. (orig.) [de

  6. The thermodynamic properties of a new type catcher bearing used in active magnetic bearings system

    International Nuclear Information System (INIS)

    Jin, Chaowu; Zhu, Yili; Xu, Longxiang; Xu, Yuanping; Zheng, Yantong

    2015-01-01

    Normally a rotor levitated by active magnetic bearings (AMBs) system would rotate without contacting with any stator component, but the possibility still remains that the supporting force might lose temporarily or permanently, thus requiring the Catcher bearings (CBs) to provide backup protection in case of the failure of AMBs. A new type CB with two separate rolling element bearing series could have the speed distribution between the inner race and intermediate race according to certain ratio, in which the speed of each roller element bearing decreases with the limit speed of the whole CB increasing, offering high capability to sustain its initial rotation speed. Based on the theory of heat transfer, tribology, and rotor dynamics, this paper analyzes the thermal structure of double-decker catcher bearing (DDCB) and single-decker catcher bearing (SDCB), respectively. Through this structure, the thermal resistances and equations of heat transfer can be obtained. Then we calculate the friction heat and temperature distribution in the various CBs upon rotor's dropping on SDCB or DDCB, followed by the discussion on the CBs temperature rise's effects on lubrication conditions and rotor dynamics parameters. Finally various experiments are carried out to measure the temperature rise of different CBs. The results obtained validate the theoretical analysis and also provide main methods to reduce heat generation. Using DDCB is proved to be effective to reduce the temperature rise. - Highlights: • The DDCB is a more suitable catcher bearing for AMBs. • Compared to SDCB, using DDCB, the temperature rise can decrease in the same states. • A lower viscosity of lubricant may induce a lower temperature rise. • The inner raceway temperature of the first layer bearing is the highest. • Reducing the unbalance mass of the rotor is a method to decrease the temperature rise

  7. Monitoring of trace chloride ions at different stages of the gas production process

    Directory of Open Access Journals (Sweden)

    A.Y. El Naggar

    2015-01-01

    Full Text Available Fifty gas and liquid samples at different stages of Obaiyed gas plant in Egypt were selected and subjected for determining chloride ion and hydrocarbon compositions. The trace levels of chloride in the water extracted from natural gas, condensate, Benfield and glycol samples were achieved using ion chromatograph (IC, electrical, conductivity and potentiometric methods, respectively. The hydrocarbon compositions were analyzed and evaluated using capillary gas chromatography. The chloride ions in natural gas and condensate are a function of water content and their concentration mainly depends on the separation efficiency. Variability in natural gas and condensate compositions seasonally is not an uncommon occurrence. Our aim is monitoring of chloride ion to select and optimize the conditions of sweetening and dehydration regenerators in order to follow and prevent their gradient in gas plant.

  8. Beamed neutron emission driven by laser accelerated light ions

    Science.gov (United States)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ˜ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  9. Rapid ion-exchange separations of actinides

    International Nuclear Information System (INIS)

    Usuda, Shigekazu

    1988-01-01

    For the purpose of studying short-lived actinide nuclides, three methods for rapid ion exchange separation of actinide elements with mineral acid-alcohol mixed media were developed: anion exchange with nitric acid-methyl alcohol mixed media to separate the transplutonium and rare earth elements from target material, U or Pu and Al catcher foils; anion exchange with hydrochloric acid-methyl alcohol media to separate Am+Cm, Bk and Cf+Fm from the target, catcher foils and major fission products; and cation exchange with hydrochloric acid-methyl alcohol media and with concentrated hydrochloric acid to separate the transplutonium elements as a group from the rare earths after eliminating the large amounts of U, Al, Cu, Fe etc. The methods enable one to perform rapid and effective separation at elevated temperature (90 deg C) and immediate source preparation for alpha-ray spectrometry. (author) 47 refs.; 10 figs

  10. Further work on sodium borates as sacrificial materials for a core-catcher

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Roth, A.; Werle, H.

    1982-01-01

    Sodium borates are suitable low melting point sacrificial materials for a core-catcher of a fast reactor. Concept, design and initial development work have been described previously. Here we report on the measurements of density, volumetric thermal expansion coefficients and viscosity of borax and sodium metaborate, pure and with various percentages of dissolved UO 2 . The density of these molten salts was measured with the buoyancy method in the temperature range 850 - 1300 0 C, while the viscosity was measured in the temperature range 700 - 1250 0 C with a Haake viscosity balance. Simulation experiments with low melting point materials were performed to investigate the ratio of the downward to sideward melt velocity. The results of these experiments show that this ratio is equal to 0.34 for a solid to liquid density ratio rho = 1.66. For the real borax core-catcher rho = 4 and this would correspond to a velocity ratio of about one

  11. Development of intense high-energy noble gas ion beams from in-terminal ion injector of tandem accelerator using an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda.makoto@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Tokai Research and Development Center, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Nakanoya, T.; Hanashima, S.; Takeuchi, S. [Japan Atomic Energy Agency (JAEA), Tokai Research and Development Center, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan)

    2011-10-21

    An ECRIS-based heavy ion injector was constructed in the high-voltage terminal of JAEA-Tokai Tandem Accelerator to develop new beam species of highly charged noble gas ions. This work was associated with a lot of development to operate the ion source on the 20UR Pelletron high voltage terminal in high pressure SF{sub 6} gas environment. Highly charged ions of N, O, Ne, Ar, Kr and Xe have been accelerated satisfactorily. Operating data integrated during many years long beam delivery service are summarized.

  12. Assessment of cleaning efficiency of the polydisperse gas flow in double-flow dedusting system

    Directory of Open Access Journals (Sweden)

    O.G. Butenko

    2016-05-01

    Full Text Available One of priority problems of nature protection activity at the industrial enterprises is upgrading the gas emissions cleaning of polydispersed dust. To solve the problem of catching of small fraction dust the double-flow dedusting system has been offered. Aim: The aim of the work is to determine the dependency type of the cleaning efficiency of polydisperse gas flow on gas separation factor double-flow dedusting system. Materials and methods: The analysis of influence of gas separation factor in the dividing device of double-flow dedusting system on its efficiency is carried out. By drawing up the mass balance of system on gas and on the mass of dust the general dependence for breakthrough of the main catcher, characterizing overall effectiveness of system, is received. Results: It is shown that value of breakthrough factor of the main catcher depends on dimensionless efficiency factors of the equipment. The received general dependence of breakthrough factor on separation factor allows to define the optimum value of separation factor for any combined dedusting system.

  13. Development and test of a cryocatcher-prototype for the control of the dynamic vacuum in SIS100

    International Nuclear Information System (INIS)

    Bozyk, Lars

    2012-01-01

    In the FAIR project (Facility for Antiproton and Ion Research) at the GSI Helmholtz Centre for Heavy Ion Research GmbH, high intensity heavy ion beams will be provided by the superconducting synchrotron SIS100. Medium charge state ions will be used instead of high charge state ions. The medium charge state ions on the one hand shift the space charge limit towards higher intensities and, on the other hand, avoid intensity losses in stripper stages. The most demanding challenges in the operation with medium charge state heavy ions are beam losses due to charge exchange in collisions with residual gas molecules. Further ionized ions are separated from the circulating beam and get lost on the chamber wall, while releasing a big amount of gas via ion stimulated desorption. The local pressure rise increases the probability for further charge exchange of beam ions, and a self-amplification can evolve. This process may result in a complete beam loss. One way to damp this amplification is given by the installation of ion-catchers or collimators, which ensure perpendicular loss on special low desorbing surfaces at the positions of beam loss. The ion optical lattice of the SIS100 of the FAIR accelerator complex has been optimized for the usage of collimators. Almost 100% of the ionization losses can be caught by the ion-catcher system. In the arcs of the synchrotron, a total of 60 ion-catchers is located between the superconducting quadrupoles in a cryogenic environment. This thesis adresses the development, the construction, and the test of a cryocatcher prototype. In SIS18, an ion-catcher system has been installed successfully. In this work it is compared to the ion-catcher system of SIS100, and different measurements with the existing system are presented. Based on the requirements for the new system, the collimator block and its support structure, as well as the surrounding cryogenic, copper plated vacuum chamber is described. The cold surface of the vacuum chamber acts

  14. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    CERN Document Server

    Molvik, A W; Mahner, E; Kireeff Covo, M; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Krämer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2007-01-01

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  15. Xenon gas field ion source from a single-atom tip

    Science.gov (United States)

    Lai, Wei-Chiao; Lin, Chun-Yueh; Chang, Wei-Tse; Li, Po-Chang; Fu, Tsu-Yi; Chang, Chia-Seng; Tsong, T. T.; Hwang, Ing-Shouh

    2017-06-01

    Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ˜150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.

  16. CFD-calculations to a core catcher benchmark

    International Nuclear Information System (INIS)

    Willschuetz, H.G.

    1999-04-01

    There are numerous experiments for the exploration of the corium spreading behaviour, but comparable data have not been available up to now in the field of the long term behaviour of a corium expanded in a core catcher. The difficulty consists in the experimental simulation of the decay heat that can be neglected for the short-run course of events like relocation and spreading, which must, however, be considered during investigation of the long time behaviour. Therefore the German GRS, defined together with Battelle Ingenieurtechnik a benchmark problem in order to determine particular problems and differences of CFD codes simulating an expanded corium and from this, requirements for a reasonable measurement of experiments, that will be performed later. First the finite-volume-codes Comet 1.023, CFX 4.2 and CFX-TASCflow were used. To be able to make comparisons to a finite-element-code, now calculations are performed at the Institute of Safety Research at the Forschungszentrum Rossendorf with the code ANSYS/FLOTRAN. For the benchmark calculations of stage 1 a pure and liquid melt with internal heat sources was assumed uniformly distributed over the area of the planned core catcher of a EPR plant. Using the Standard-k-ε-turbulence model and assuming an initial state of a motionless superheated melt several large convection rolls will establish within the melt pool. The temperatures at the surface do not sink to a solidification level due to the enhanced convection heat transfer. The temperature gradients at the surface are relatively flat while there are steep gradients at the ground where the no slip condition is applied. But even at the ground no solidification temperatures are observed. Although the problem in the ANSYS-calculations is handled two-dimensional and not three-dimensional like in the finite-volume-codes, there are no fundamental deviations to the results of the other codes. (orig.)

  17. Dependence of energy per molecule on sputtering yields with reactive gas cluster ions

    International Nuclear Information System (INIS)

    Toyoda, Noriaki; Yamada, Isao

    2010-01-01

    Gas cluster ions show dense energy deposition on a target surface, which result in the enhancement of chemical reactions. In reactive sputtering with gas cluster ions, the energy per atom or molecule plays an important role. In this study, the average cluster size (N, the number of atoms or molecules in a cluster ion) was controlled; thereby the dependences of the energy per molecule on the sputtering yields of carbon by CO 2 cluster ions and that of Si by SF 6 /Ar mixed gas cluster ions were investigated. Large CO 2 cluster ions with energy per molecule of 1 eV showed high reactive sputtering yield of an amorphous carbon film. However, these ions did not cause the formation of large craters on a graphite surface. It is possible to achieve very low damage etching by controlling the energy per molecule of reactive cluster ions. Further, in the case of SF 6 /Ar mixed cluster ions, it was found that reactive sputtering was enhanced when a small amount of SF 6 gas (∼10%) was mixed with Ar. The reactive sputtering yield of Si by one SF 6 molecule linearly increased with the energy per molecule.

  18. Intentions of fast noble gas ions with clean and with oxidized monocrystalline copper surfaces

    International Nuclear Information System (INIS)

    Wit, A.G.J. de.

    1979-01-01

    The thesis reports investigations concerning the distorted shape of the energy distribution of scattered noble gas ions, and investigations of angular distributions of these ions where a quantitative interpretation is less hampered by preferential neutralization. Low energy noble gas ion scattering is used to study the interactions between oxygen gas and Cu(110) surfaces. (Auth.)

  19. Simulation of ion beam scattering in a gas stripper

    Energy Technology Data Exchange (ETDEWEB)

    Maxeiner, Sascha, E-mail: maxeiner@phys.ethz.ch; Suter, Martin; Christl, Marcus; Synal, Hans-Arno

    2015-10-15

    Ion beam scattering in the gas stripper of an accelerator mass spectrometer (AMS) enlarges the beam phase space and broadens its energy distribution. As the size of the injected beam depends on the acceleration voltage through phase space compression, the stripper becomes a limiting factor of the overall system transmission especially for low energy AMS system in the sub MV region. The spatial beam broadening and collisions with the accelerator tube walls are a possible source for machine background and energy loss fluctuations influence the mass resolution and thus isotope separation. To investigate the physical processes responsible for these effects, a computer simulation approach was chosen. Monte Carlo simulation methods are applied to simulate elastic two body scattering processes in screened Coulomb potentials in a (gas) stripper and formulas are derived to correctly determine random collision parameters and free path lengths for arbitrary (and non-homogeneous) gas densities. A simple parametric form for the underlying scattering cross sections is discussed which features important scaling behaviors. An implementation of the simulation was able to correctly model the data gained with the TANDY AMS system at ETH Zurich. The experiment covered transmission measurements of uranium ions in helium and beam profile measurements after the ion beam passed through the He-stripper. Beam profiles measured up to very high stripper densities could be understood in full system simulations including the relevant ion optics. The presented model therefore simulates the fundamental physics of the interaction between an ion beam and a gas stripper reliably. It provides a powerful and flexible tool for optimizing existing AMS stripper geometries and for designing new, state of the art low energy AMS systems.

  20. Effect of the gas mixing technique on the production efficiency of ion beams extracted from an electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Tarvainen, O.; Suominen, P.; Koivisto, H.

    2004-01-01

    In this work the effect of gas mixing on the production efficiency of ion beams extracted from an ECR ion source has been studied with the JYFL 6.4 GHz electron cyclotron resonance ion source (ECRIS). It was found that the gas mixing affects strongly the confinement of ions in the plasma of the ECRIS. The information obtained can be used to minimize the consumption of expensive materials or isotopes and to reduce contamination of the plasma chamber. It was observed that the carbon contamination, which is built up when the MIVOC method is used could be decreased with the aid of the gas mixing technique. The best mixing gas for this purpose was found to be oxygen

  1. Ion swarm data for electrical discharge modeling in air and flue gas mixtures

    International Nuclear Information System (INIS)

    Nelson, D.; Benhenni, M.; Eichwald, O.; Yousfi, M.

    2003-01-01

    The first step of this work is the determination of the elastic and inelastic ion-molecule collision cross sections for the main ions (N 2 + , O 2 + , CO 2 + , H 2 O + and O - ) usually present either in the air or flue gas discharges. The obtained cross section sets, given for ion kinetic energies not exceeding 100 eV, correspond to the interactions of each ion with its parent molecule (symmetric case) or nonparent molecule (asymmetric case). Then by using these different cross section sets, it is possible to obtain the ion swarm data for the different gas mixtures involving N 2 , CO 2 , H 2 O and O 2 molecules whatever their relative proportions. These ion swarm data are obtained from an optimized Monte Carlo method well adapted for the ion transport in gas mixtures. This also allows us to clearly show that the classical linear approximations usually applied for the ion swarm data in mixtures such as Blanc's law are far to be valid. Then, the ion swarm data are given in three cases of gas mixtures: a dry air (80% N 2 , 20% O 2 ), a ternary gas mixture (82% N 2 , 12% CO 2 , 6% O 2 ) and a typical flue gas (76% N 2 , 12% CO 2 , 6% O 2 , 6% H 2 O). From these reliable ion swarm data, electrical discharge modeling for a wire to plane electrode configuration has been carried out in these three mixtures at the atmospheric pressure for different applied voltages. Under the same discharge conditions, large discrepancies in the streamer formation and propagation have been observed in these three mixture cases. They are due to the deviations existing not only between the different effective electron-molecule ionization rates but also between the ion transport properties mainly because of the presence of a highly polar molecule such as H 2 O. This emphasizes the necessity to properly consider the ion transport in the discharge modeling

  2. Pulsed gas feed to the ion source

    International Nuclear Information System (INIS)

    Tanaka, Shigeru; Shibata, Takemasa

    1976-11-01

    Hydrogen gas feed to the ion source of a neutral beam injector for the JFT-2 tokamak has been pulsed by a set of gas reservoir, solenoid valve and variable leak. During the pulse width the flow rate is constant except for its initial overshoot. After detailed study of the temporal behaviour, the solenoid valve and variable leak were replaced with a piezo-electric valve, resulting in improvement of the rise and decay. (auth.)

  3. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  4. Feed gas contaminant control in ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis [Allentown, PA; Minford, Eric [Laurys Station, PA; Waldron, William Emil [Whitehall, PA

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  5. Ion mobilities in Xe/Ne and other rare-gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, D; Pitchford, L C [Centre de Physique des Plasmas et Applications de Toulouse (CPAT), UMR 5002 CNRS, 118 route de Narbonne, 31062 Toulouse (France); Phelps, A V [JILA, University of Colorado and National Institute of Technology, Boulder, Colorado (United States); Urquijo, J de [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Post Office Box 48-3, 62251, 80309-0440 Cuernavaca, Moreno (Mexico); Basurto, E [Departmento de Ciencias Basicas, Universidad Autonoma Metropolitana, 02200 Mexico Distrito Federal (Mexico)

    2003-10-01

    The ion mobility or drift velocity data important for modeling glow discharges in rare gas mixtures are not generally available, nor are the ion-neutral scattering cross sections needed to calculate these data. In this paper we propose a set of cross sections for Xe{sup +} and Ne{sup +} collisions with Xe and Ne atoms. Ion mobilities at 300 K calculated using this cross section set in a Monte Carlo simulation are reported for reduced field strengths, E/N, up to 1500x10{sup -21} V m{sup 2}, in pure gases and in Xe/Ne mixtures containing 5% and 20% Xe/Ne, which are mixtures of interest for plasma display panels (PDPs). The calculated Xe{sup +} mobilities depend strongly on the mixture composition, but the Ne{sup +} mobility varies only slightly with increasing Xe in the mixture over the range studied here. The mobilities in pure gases compare well with available experimental values, and mobilities in gas mixtures at low E/N compare well with our recent measurements which will be published separately. Results from these calculations of ion mobilities are used to evaluate the predictions of Blanc's law and of the mixture rule proposed by Mason and Hahn [Phys. Rev. A 5, 438 (1972)] for determining the ion mobilities in mixtures from a knowledge of the mobilities in each of the pure gases. The mixture rule of Mason and Hahn is accurate to better than 10% at high field strengths over a wide range of conditions of interest for modeling PDPs. We conclude that a good estimate of ion mobilities at high E/N in Xe/Ne and other binary rare gas mixtures can be obtained using this mixture rule combined with known values of mobilities in parent gases and with the Langevin form for mobility of rare gas ions ion in other gases. This conclusion is supported by results in Ar/Ne mixtures which are also presented here.

  6. The Dream Catcher Meditation: a therapeutic technique used with American Indian adolescents.

    Science.gov (United States)

    Robbins, R

    2001-01-01

    This article describes a short-term treatment insight-oriented model for American Indian adolescents, called Dream Catcher Meditation. It is aimed at helping clients' express unconscious conflicts and to facilitate differentiation and healthy mutuality. Though its duration can vary, twelve sessions are outlined here. Session descriptions include goals and sample questions. Also included are anecdotal material and reflections about cultural relevancy.

  7. Unexpected mobility of OH+ and OD+ molecular ions in cooled helium gas

    International Nuclear Information System (INIS)

    Isawa, R; Yamazoe, J; Tanuma, H; Ohtsuki, K

    2012-01-01

    Mobilities of OH + and OD + ions in cooled helium gas have been measured at gas temperature of 4.3 K. Measured mobilities of both ions as a function of an effective temperature T eff show a minimum around 80 K, and they are approaching to the polarization limits at very low T eff . These findings will be related to the extremely strong anisotropy of the interaction potential between the molecular ion and helium atom.

  8. R + D work on gas-cooled breeder development

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Jacobs, G.; Meyer, L.; Rehme, K.; Schumacher, G.; Wilhelm, D.

    1978-01-01

    The development work for the gas-cooled breeder in the Karlsruhe Nuclear Research Center may be assigned to two different groups: a) Investigations on fuel elements. b) Studies concerning the safety of gas-cooled fast breeder reactors. To the first group there belongs the work related to the: - heat transfer between fuel elements and coolant gas, - influence of increased content of water vapor in helium or the fuel rods. The second group concerns: - establishing a computer code for transient calculations in the primary and secondary circuit of a gas-cooled fast breeder reactor, - steam reactivity coefficients, - the core destruction phase of hypothetical accidents, - the core-catcher using borax. (orig./RW) [de

  9. Spin polarization of a magnetic electron gas induced by a van Vleck ion

    International Nuclear Information System (INIS)

    Palermo, L.; Silva, X.A. do

    1978-11-01

    The mutual polarization of a magnetic electron gas and a van Vleck ion, interacting via exchange, are theoretically investigated using the double-time Green function method. A pair of equations describing the dynamics of the electron gas and the ion are conveniently decoupled and an analytic expression for the electron gas polarization, which depends on the square of the exchange parameter, is obtained. Besides a RKKY-like term, a new term associated to the process of formation of the magnetic moment of the ion appears [pt

  10. Experimental and numerical study on natural ventilation performance of various multi-opening wind catchers

    NARCIS (Netherlands)

    Montazeri, H.

    2011-01-01

    Wind catcher as a natural ventilation system is increasingly used in modern buildings to minimize the consumption of non-renewable energy and reduce the harmful emissions. Height, cross section of the air passages and also place and the number of openings are the main factors which affect the

  11. Flow Boiling on a Downward-Facing Inclined Plane Wall of Core Catcher

    International Nuclear Information System (INIS)

    Kim, Hyoung Tak; Bang, Kwang Hyun; Suh, Jung Soo

    2013-01-01

    In order to investigate boiling behavior on downward-facing inclined heated wall prior to the CHF condition, an experiment was carried out with 1.2 m long rectangular channel, inclined by 10 .deg. from the horizontal plane. High speed video images showed that the bubbles were sliding along the heated wall, continuing to grow and combining with the bubbles growing at their nucleation sites in the downstream. These large bubbles continued to slide along the heated wall and formed elongated slug bubbles. Under this slug bubble thin liquid film layer on the heated wall was observed and this liquid film prevents the wall from dryout. The length, velocity and frequency of slug bubbles sliding on the heated wall were measured as a function of wall heat flux and these parameters were used to develop wall boiling model for inclined, downward-facing heated wall. One approach to achieve coolable state of molten core in a PWR-like reactor cavity during a severe accident is to retain the core melt on a so-called core catcher residing on the reactor cavity floor after its relocation from the reactor pressure vessel. The core melt retained in the core catcher is cooled by water coolant flowing in an inclined cooling channel underneath as well as the water pool overlaid on the melt layer. Two-phase flow boiling with downward-facing heated wall such as this core catcher cooling channel has drawn a special attention because this orientation of heated wall may reach boiling crisis at lower heat flux than that of a vertical or upward-facing heated wall. Nishikawa and Fujita, Howard and Mudawar, Qiu and Dhir have conducted experiments to study the effect of heater orientation on boiling heat transfer and CHF. SULTAN experiment was conducted to study inclined large-scale structure coolability by water in boiling natural convection. In this paper, high-speed visualization of boiling behavior on downward-facing heated wall inclined by 10 .deg. is presented and wall boiling model for the

  12. Organic positive ions in aircraft gas-turbine engine exhaust

    Science.gov (United States)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  13. Secondary ions produced from condensed rare gas targets under highly charged MeV/amu heavy ion bombardment

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Kumagai, H.; Matsuo, T.

    1994-01-01

    Secondary ions produced from condensed rare gas targets are observed under MeV/amu, highly charged, heavy ion impact. The intensities of the observed cluster ions decrease smoothly as the cluster sizes become large but show some discontinuities at particular sizes of cluster ions. This seems to be closely related to the stabilities of cluster ion structures. It is also noted that very few doubly charged or practically no triply/higher charged ions have been observed, in sharp contrast to that of some condensed molecular targets. (orig.)

  14. Gas-phase ion-molecule reactions and high-pressure mass spectrometer, 1

    International Nuclear Information System (INIS)

    Hiraoka, Kenzo

    1977-01-01

    The reasons for the fact that the research in gas-phase ion-molecule reactions, to which wide interest is shown, have greatly contributed to the physical and chemical fields are that, first it is essential in understanding general phenomena concerning ions, second, it can furnish many unique informations in the dynamics of chemical reactions, and third, usefulness of '' chemical ionization'' methods has been established as its application to chemical analysis. In this review, the history and trend of studies and equipments in gas-phase ion-molecule reactions are surveyed. The survey includes the chemical ionization mass spectrometer for simultaneously measuring the positive and negative ions utilizing a quadrupole mass spectrometer presented by Hunt and others, flowing afterglow method derived from the flowing method which traces neutral chemical species mainly optically, ion cyclotron resonance mass spectrometer, trapped ion mass spectrometer and others. Number of reports referred to ion-molecule reactions issued during the last one year well exceeds the total number of reports concerning mass spectrometers presented before 1955. This truly shows how active the research and development are in this field. (Wakatsuki, Y.)

  15. Basic studies of a gas-jet-coupled ion source for on-line isotope separation

    International Nuclear Information System (INIS)

    Anderl, R.A.; Novick, V.J.; Greenwood, R.C.

    1980-01-01

    A hollow-cathode ion source was used in a gas-jet-coupled configuration to produce ion beams of fission products transported to it from a 252 Cf fission source. Solid aerosols of NaCl and Ag were used effectively as activity carriers in the gas-jet system. Flat-plate skimmers provided an effective coupling of the ion source to the gas jet. Ge(Li) spectrometric measurements of the activity deposited on an ion-beam collector relative to that deposited on a pre-skimmer collector were used to obtain separation efficiencies ranging from 0.1% to > 1% for Sr, Y, Tc, Te, Cs, Ba, Ce, Pr, Nd and Sm. The use of CCl 4 as a support gas resulted in a significant enhancement of the alkaline-earth and rare-earth separation efficiencies

  16. Study of heat removal by natural convection from the internal core catcher in PFBR using water model experiments

    International Nuclear Information System (INIS)

    Jasmin Sudha, A.; Punitha, G.; Das, S.K.; Lydia, G.; Murthy, S.S.; Malarvizhi, B.; Harvey, J.; Kannan, S.E.

    2005-01-01

    Full text of publication follows: In the event of a core meltdown accident in a Fast Breeder Reactor, the molten core material settling on the bottom of the main vessel can endanger the structural integrity of the main vessel. In the design of Prototype Fast Breeder Reactor in India, the construction of which is about to commence, a core catcher is provided as the internal core retention device to collect and retain the core debris in a coolable configuration. Heat transfer by natural convection above and below the core catcher plate, in the zone beneath the core support structure is evaluated from water mockup experiments in the 1:4 geometrically scaled setup. These studies were undertaken towards comparison of experimentally measured temperatures at different locations with the numerical results. The core catcher assembly consists of a core catcher plate, a heat shield plate and a chimney. Decay heat from the core debris is simulated by electrical heating of the heat shield plate. An opening is provided in the cover plate to reproduce the situation in the actual accident where the core debris would have breached a part of the core support structure. Experiments were carried out with different heat flux levels prevailing upon the heat shield plate. Temperature monitoring was done at more than 100 locations, distributed both on the solid components and in water. The temperature data was analysed to get the temperature profile at different steady state conditions. Flow visualisation was also carried out using water soluble dye to establish the direction of the convective currents. The captured images show that water flows through the slots provided in the top portion of the chimney in the upward direction as evidenced from the diffusion of dye injected inside the chimney. Both the temperature data and flow visualisation confirm mixing of water through the opening in the core support structure which indicates that natural convection is set up in that zone

  17. Resonance ionization laser ion sources for on-line isotope separators (invited)

    International Nuclear Information System (INIS)

    Marsh, B. A.

    2014-01-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented

  18. Power-law distributions for a trapped ion interacting with a classical buffer gas.

    Science.gov (United States)

    DeVoe, Ralph G

    2009-02-13

    Classical collisions with an ideal gas generate non-Maxwellian distribution functions for a single ion in a radio frequency ion trap. The distributions have power-law tails whose exponent depends on the ratio of buffer gas to ion mass. This provides a statistical explanation for the previously observed transition from cooling to heating. Monte Carlo results approximate a Tsallis distribution over a wide range of parameters and have ab initio agreement with experiment.

  19. Ion transport membrane module and vessel system with directed internal gas flow

    Science.gov (United States)

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  20. Cross section determination for the higher ionization of rare gas ions by electron collisions

    International Nuclear Information System (INIS)

    Becker, R.; Frodl, R.; Klein, H.; Schmidt, W.; Clausnitzer, G.; Klinger, H.; Mueller, A.; Salzborn, E.; Fuchs, G.; Viehboeck, F.

    1975-01-01

    The higher ionization of rare gas ions is reported on, which were excited by an electron beam using a crossed-beam technique. A detector for the identification of metastable excited rare gas ions was developed. (WL) [de

  1. GAS PHASE ION CHEMISTRY OF COUMARINS: AB INITIO ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    The gas phase ion chemistry of coumarins using electron ionization (EI), positive chemical ionization (PCI) and ... Figure 1. Generic chemical structures of the coumarins in this study. ..... Part of this work was conducted using the resources of ...

  2. Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 3. Relating Solution-Phase to Gas-Phase Structures.

    Science.gov (United States)

    Kondalaji, Samaneh Ghassabi; Khakinejad, Mahdiar; Valentine, Stephen J

    2018-06-01

    Molecular dynamics (MD) simulations have been utilized to study peptide ion conformer establishment during the electrospray process. An explicit water model is used for nanodroplets containing a model peptide and hydronium ions. Simulations are conducted at 300 K for two different peptide ion charge configurations and for droplets containing varying numbers of hydronium ions. For all conditions, modeling has been performed until production of the gas-phase ions and the resultant conformers have been compared to proposed gas-phase structures. The latter species were obtained from previous studies in which in silico candidate structures were filtered according to ion mobility and hydrogen-deuterium exchange (HDX) reactivity matches. Results from the present study present three key findings namely (1) the evidence from ion production modeling supports previous structure refinement studies based on mobility and HDX reactivity matching, (2) the modeling of the electrospray process is significantly improved by utilizing initial droplets existing below but close to the calculated Rayleigh limit, and (3) peptide ions in the nanodroplets sample significantly different conformers than those in the bulk solution due to altered physicochemical properties of the solvent. Graphical Abstract ᅟ.

  3. Research and development of ion surfing RF carpets for the cyclotron gas stopper at the NSCL

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, A.E. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87544 (United States); Brodeur, M. [University of Notre Dame, Notre Dame, IN (United States); Bollen, G.; Morrissey, D.J.; Schwarz, S. [National Superconducting Cyclotron Laboratory, Michigan State University, 640 S. Shaw Lane, East Lansing, MI 48824 (United States)

    2016-06-01

    A model device to transport thermal ions in the cyclotron gas stopper, a next-generation beam thermalization device under construction at the National Superconducting Cyclotron Laboratory, is presented. Radioactive ions produced by projectile fragmentation will come to rest at distances as large as 45 cm from the extraction orifice of the cyclotron gas stopper. The thermalized ions will be transported to the exit by RF carpets employing the recently developed “ion surfing” method. A quarter-circle prototype RF carpet was tested with potassium ions, and ion transport velocities as high as 60 m/s were observed over distances greater than 10 cm at a helium buffer gas pressure of 80 mbar. The transport of rubidium ions from an RF carpet to an electrode below was also demonstrated. The results of this study formed the basis of the design of the RF carpets for use in the cyclotron gas stopper.

  4. Integral Transport Analysis Results for Ions Flowing Through Neutral Gas

    Science.gov (United States)

    Emmert, Gilbert; Santarius, John

    2017-10-01

    Results of a computational model for the flow of energetic ions and neutrals through a background neutral gas will be presented. The method models reactions as creating a new source of ions or neutrals if the energy or charge state of the resulting particle is changed. For a given source boundary condition, the creation and annihilation of the various species is formulated as a 1-D Volterra integral equation that can quickly be solved numerically by finite differences. The present work focuses on multiple-pass, 1-D ion flow through neutral gas and a nearly transparent, concentric anode and cathode pair in spherical, cylindrical, or linear geometry. This has been implemented as a computer code for atomic (3He, 3He +, 3He + +) and molecular (D, D2, D-, D +, D2 +, D3 +) ion and neutral species, and applied to modeling inertial-electrostatic connement (IEC) devices. The code yields detailed energy spectra of the various ions and energetic neutral species. Calculations for several University of Wisconsin IEC and ion implantation devices will be presented. Research supported by US Dept. of Homeland Security Grant 2015-DN-077-ARI095, Dept. of Energy Grant DE-FG02-04ER54745, and the Grainger Foundation.

  5. Modeling of gas flow in the simulation of H- ion source

    International Nuclear Information System (INIS)

    Ogasawara, M.; Okuda, Y.; Shirai, M.; Mitsuhashi, S.; Hatayama, A.

    1996-01-01

    Actual gas supply into the ion source is modeled. Filling pressure is related to gas flow rate and conductance of the H - extraction system. The rate equation for the H 2 molecule with gas inflow and outflow rates related with the filling pressure are employed in the numerical simulation of a negative hydrogen ion source. With the results of numerical simulation, the H number conservation relation and pressure balance equation are shown to be inaccurate especially for higher electron temperature. Actually for 5 eV of electron temperature, lost H 2 density amounts to 79% and the pressure becomes 5 times the original pressure of 5 mTorr. Even for a low pressure of 3 mTorr, the lost fraction is 67% for 5 eV of the electron temperature. This inaccuracy is large in high power and even for low pressure operation of the ion source. copyright 1996 American Institute of Physics

  6. The smoke ion source: A device for the generation of cluster ions via inert gas condensation

    International Nuclear Information System (INIS)

    McHugh, K.M.; Sarkas, H.W.; Eaton, J.G.; Bowen, K.H.; Westgate, C.R.

    1989-01-01

    We report the development of an ion source for generating intense, continuous beams of both positive and negative cluster ions. This device is the result of the marriage of the inert gas condensation method with techniques for injecting electrons directly into expanding jets. In the preliminary studies described here, we have observed cluster ion size distributions ranging from n=1-400 for Pb n + and Pb n - and from n=12-5700 for Li n - . (orig.)

  7. Scattering of low energy noble gas ions from a metal surface

    International Nuclear Information System (INIS)

    Luitjens, S.B.

    1980-01-01

    Reflection of low energy (0.1-10 keV) noble gas ions can be used to analyse a solid surface. To study charge exchange processes, the ion fractions of neon and of argon, scattered from a Cu(100) surface, have been determined. (Auth.)

  8. Measurements of hydrogen gas stopping efficiency for tin ions from laser-produced plasma

    Science.gov (United States)

    Abramenko, D. B.; Spiridonov, M. V.; Krainov, P. V.; Krivtsun, V. M.; Astakhov, D. I.; Medvedev, V. V.; van Kampen, M.; Smeets, D.; Koshelev, K. N.

    2018-04-01

    Experimental studies of stopping of ion fluxes from laser-produced plasma by a low-pressure gas atmosphere are presented. A modification of the time-of-flight spectroscopy technique is proposed for the stopping cross-sectional measurements in the ion energy range of 0.1-10 keV. The application of the proposed technique is demonstrated for Sn ion stopping by H2 gas. This combination of elements is of particular importance for the development of plasma-based sources of extreme ultraviolet radiation for lithographic applications.

  9. Understanding "The Catcher in the Rye": A Student Casebook to Issues, Sources, and Historical Documents.

    Science.gov (United States)

    Pinsker, Sanford; Pinsker, Ann

    The social, cultural, and historical documents and commentary in this casebook illuminate the reading of "The Catcher in the Rye," a novel that has become an important rite of passage for many young adults. In addition to a literary analysis, the casebook acquaints students with the larger world in which Holden Caulfield, the…

  10. Gas separation techniques with liquid Ar for production of 11C ions

    International Nuclear Information System (INIS)

    Hojo, Satoru; Honma, Toshihiro; Kanazawa, Mitsutaka; Muramatsu, Masayuki; Sakamoto, Yukio; Sugiura, Akinori; Suzuki, Naokata; Noda, Koji

    2009-01-01

    Heavy-ion cancer therapy with 12 C-beam has been carried out at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences) since 1994. One of the feasibility study in HIMAC is to use a positron emitter beam such as 11 C-beam for the cancer therapy. A nuclear reaction, 14 N (p,α) 11 C will be applied in the present study; it can be expected to obtain a considerably large number of 11 C-particles by utilizing the commonly used short-lives RI production techniques for PET (Positron Emission Tomography). The amount of 11 C gas is limited in this technique. The 11 CO 2 gas was produced from N 2 gas that is irradiated high-energy proton beam. Therefore, CO 2 gas separation from N 2 gas is very important. The gas-separation techniques with cryogenic system utilizing a liquid Ar were tested by dummy gas (N 2 + 12 CO 2 ). Details of the gas-separation techniques and measurement of CO 2 partial pressure are discussed. (author)

  11. A lattice-gas model of the ion current across the solid interface: fast-ion conductor - intercalate

    International Nuclear Information System (INIS)

    Nachev, I.; Balkanski, M.

    1994-12-01

    The transport of Lithium ions across the material interface: fast-ion conducting glass - intercalate is simulated by a non-trivial lattice-gas model. The model takes explicitly into account the influence of the Coulomb correlations, the site-blocking effect and the boundary conditions on the ion kinetics. Potential device applications of the model are pointed out by computing the current density of Lithium ions for material parameters of the real interface: doped ternary borate glass - Indium Selenide, which constitute the electrolyte and the cathode, respectively, of a thin-film microbattery with improved performance. (author). 10 refs, 4 figs

  12. Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas.

    Science.gov (United States)

    Kanu, Abu B; Hill, Herbert H

    2007-10-15

    This work demonstrated the potential of using a secondary drift gas of differing polarizability from the primary drift gas for confirmation of a positive response for drugs or explosives by ion mobility spectrometry (IMS). The gas phase mobilities of response ions for selected drugs and explosives were measured in four drift gases. The drift gases chosen for this study were air, nitrogen, carbon dioxide and nitrous oxide providing a range of polarizability and molecular weights. Four other drift gases (helium, neon, argon and sulfur hexafluoride) were also investigated but design limitations of the commercial instrument prevented their use for this application. When ion mobility was plotted against drift gas polarizability, the resulting slopes were often unique for individual ions, indicating that selectivity factors between any two analytes varied with the choice of drift gas. In some cases, drugs like THC and heroin, which are unresolved in air or nitrogen, were well resolved in carbon dioxide or nitrous oxide.

  13. Average equilibrium charge state of 278113 ions moving in a helium gas

    International Nuclear Information System (INIS)

    Kaji, D.; Morita, K.; Morimoto, K.

    2005-01-01

    Difficulty to identify a new heavy element comes from the small production cross section. For example, the production cross section was about 0.5 pb in the case of searching for the 112th element produced by the cold fusion reaction of 208 Pb( 70 Zn,n) 277 ll2. In order to identify heavier elements than element 112, the experimental apparatus with a sensitivity of sub-pico barn level is essentially needed. A gas-filled recoil separator, in general, has a large collection efficiency compared with other recoil separators as seen from the operation principle of a gas-filled recoil separator. One of the most important parameters for a gas-filled recoil separator is the average equilibrium charge state q ave of ions moving in a used gas. This is because the recoil ion can not be properly transported to the focal plane of the separator, if the q ave of an element of interest in a gas is unknown. We have systematically measured equilibrium charge state distributions of heavy ions ( 169 Tm, 208 Pb, 193,209 Bi, 196 Po, 200 At, 203,204 Fr, 212 Ac, 234 Bk, 245 Fm, 254 No, 255 Lr, and 265 Hs) moving in a helium gas by using the gas-filled recoil separator GARIS at RIKEN. Ana then, the empirical formula on q ave of heavy ions in a helium gas was derived as a function of the velocity and the atomic number of an ion on the basis of the Tomas-Fermi model of the atom. The formula was found to be applicable to search for transactinide nuclides of 271 Ds, 272 Rg, and 277 112 produced by cold fusion reactions. Using the formula on q ave , we searched for a new isotope of element 113 produced by the cold fusion reaction of 209 Bi( 70 Zn,n) 278 113. As a result, a decay chain due to an evaporation residue of 278 113 was observed. Recently, we have successfully observed the 2nd decay chain due to an evaporation residue of 278 113. In this report, we will present experimental results in detail, and will also discuss the average equilibrium charge sate of 278 113 in a helium gas by

  14. Resonance ionization in a gas cell: a feasibility study for a laser ion source

    International Nuclear Information System (INIS)

    Qamhieh, Z.N.; Vandeweert, E.; Silverans, R.E.; Duppen, P. van; Huyse, M.; Vermeeren, L.

    1992-01-01

    A laser ion source based on resonance photo-ionization in a gas cell is proposed. The gas cell, filled with helium, consists of a target chamber in which the recoil products are stopped and neutralized, and an ionization chamber where the atoms of interest are selectively ionized by the laser light. The extraction of the ions from the ionization chamber through the exit hole-skimmer setup is similar to the ion-guide system. The conditions to obtain an optimal system are given. The results of a two-step one-laser resonance photo-ionization of nickel and the first results of laser ionization in a helium buffer gas cell are presented. (orig.)

  15. Optimizing hot-ion production from a gas-injected washer gun

    International Nuclear Information System (INIS)

    McCarrick, M.J.; Ellis, R.F.; Booske, J.H.; Koepke, M.

    1987-01-01

    This paper reports the results of a study to maximize the ion temperature of the plasma generated by a gas-injected washer gun. We characterize the gun discharge and the plasma output as a function of the controllable gun parameters. For hydrogen we find a maximum ion temperature of 100 eV with typical densities ranging from 2 x 10 11 to 5 x 10 12 cm -3 . A primary feature of the pulsed gun discharge is the observation of large amplitude rf fluctuations on the cathode voltage. The fluctuation amplitude varies with discharge current and with the quantity of injected gas. We show that the scaling of the fluctuation level with gun parameters is in agreement with that expected of an unstable beam-plasma system. We find a linear relation between the square of the fluctuation amplitude and the product of the plasma density times the ion temperature of the plasma output nT/sub i/, suggesting a stochastic wave-induced heating mechanism

  16. 77 FR 44572 - Second Fishing Capacity Reduction Program for the Longline Catcher Processor Subsector of the...

    Science.gov (United States)

    2012-07-30

    ... long-line catcher processors harvesting non-pollock groundfish were required to pay and forward a fee... reports (4 hours), and tendering fish buyer/fish seller reports when a person fails either to pay or to... discrepancy in the name appearing on LLP Licenses and other documents was material). (2) [Reserved] (e...

  17. Ion counting method and it's operational characteristics in gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Fujii, Toshihiro

    1976-01-01

    Ion counting method with continuous channel electron multiplier which affords the direct detection of very small ion currents and it's operational characteristics were studied in gas chromatography-mass spectrometry. Then this method was applied to the single ion detection technique of GC-MS. A detection limit was measured, using various standard samples of low level concentration. (auth.)

  18. A cold cathode of a gas-discharge electron-ion gun

    International Nuclear Information System (INIS)

    1974-01-01

    A cold cathode of a gas-discharge electron-ion gun is constructed in order to continuously replace the eroded material by feeding a wire or a set of coaxial cylinders in the spot where the ions hit the cathode. In this way, the form of the cathode and the electric-field configuration is preserved which guarantees the conservation of a sharp narrow electron beam profile

  19. Solvation of ions in the gas-phase: a molecular dynamics simulation

    Science.gov (United States)

    Cabarcos, Orlando M.; Lisy, James M.

    1996-07-01

    Molecular dynamics simulations have been performed on the collision between a cesium ion and a cluster of twenty methanol molecules. This process, generating a solvated ion, was studied over a range (1 to 25 eV) of eight collision energies. Preliminary analysis of this gas phase solvation has included the distribution of final ion cluster sizes, fragmentation patterns, solvation timescales and energetics. Two distinct patterns have emerged: a ballistic penetration of the neutral cluster at the higher collision energies and an evaporative evolution of the cluster ion at lower collision energies.

  20. 77 FR 58775 - Second Fishing Capacity Reduction Program for the Longline Catcher Processor Subsector of the...

    Science.gov (United States)

    2012-09-24

    ... long-line catcher processors harvesting non-pollock groundfish were required to pay and forward a fee... seller reports when a person fails either to pay or to collect the loan repayment fee (2 hours). These... Act, or whether a discrepancy in the name appearing on LLP Licenses and other documents was material...

  1. 76 FR 39794 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Catcher...

    Science.gov (United States)

    2011-07-07

    .... 101126522-0640-02] RIN 0648-XA539 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... species catch (PSC) sideboard limit specified for the shallow-water species fishery for catcher/processors...

  2. Development of intense pulsed heavy ion beam diode using gas puff plasma gun as ion source

    International Nuclear Information System (INIS)

    Ito, H.; Higashiyama, M.; Takata, S.; Kitamura, I.; Masugata, K.

    2006-01-01

    A magnetically insulated ion diode with an active ion source of a gas puff plasma gun has been developed in order to generate a high-intensity pulsed heavy ion beam for the implantation process of semiconductors and the surface modification of materials. The nitrogen plasma produced by the plasma gun is injected into the acceleration gap of the diode with the external magnetic field system. The ion diode is operated at diode voltage approx. =200 kV, diode current approx. =2 kA and pulse duration approx. =150 ns. A new acceleration gap configuration for focusing ion beam has been designed in order to enhance the ion current density. The experimental results show that the ion current density is enhanced by a factor of 2 and the ion beam has the ion current density of 27 A/cm 2 . In addition, the coaxial type Marx generator with voltage 200 kV and current 15 kA has been developed and installed in the focus type ion diode. The ion beam of ion current density approx. =54 A/cm 2 is obtained. To produce metallic ion beams, an ion source by aluminum wire discharge has been developed and the aluminum plasma of ion current density ∼70 A/cm 2 is measured. (author)

  3. Charge-state related effects in sputtering of LiF by swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W. [Ludwig-Maximilians-Universität München, 85748 Garching (Germany); Ban-d' Etat, B. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Bender, M. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Boduch, P. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Grande, P.L. [Univ. Fed. Rio Grande do Sul, BR-91501970 Porto Alegre, RS (Brazil); Lebius, H.; Lelièvre, D. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Marmitt, G.G. [Univ. Fed. Rio Grande do Sul, BR-91501970 Porto Alegre, RS (Brazil); Rothard, H. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Seidl, T.; Severin, D.; Voss, K.-O. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Toulemonde, M., E-mail: toulemonde@ganil.fr [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Trautmann, C. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2017-02-01

    Sputtering experiments with swift heavy ions in the electronic energy loss regime were performed by using the catcher technique in combination with elastic recoil detection analysis. The angular distribution of particles sputtered from the surface of LiF single crystals is composed of a jet-like peak superimposed on a broad isotropic distribution. By using incident ions of fixed energy but different charges states, the influence of the electronic energy loss on both components is probed. We find indications that isotropic sputtering originates from near-surface layers, whereas the jet component may be affected by contributions from depth up to about 150 nm.

  4. A gas-silicon telescope for medium-heavy ion detection

    International Nuclear Information System (INIS)

    Kozik, T.; Buschmann, J.; Neudold, M.

    1985-12-01

    A ΔE-E telescope for the identification of medium-heavy ions is presented. The specific energy loss is measured with a gas ionization chamber, and the residual energy is determined with a silicon surface barrier detector. The main features of the collecting electrical field and the timing properties of the device are discussed under theoretical aspects. The gas supply system, its electronic control unit, and the operating procedures are described. Two different versions of the coincidence electronics are shown. The experimental performance of the gas-silicon telescope is demonstrated and is found to be close to the best Z-resolution which can be obtained with this technique. (orig.) [de

  5. The mobilies of chiral molecular cluster ions in He gas

    International Nuclear Information System (INIS)

    Saito, Kazuyuki; Matoba, Shiro; Koizumi, Tetsuo; Kojima, Takao M; Tanuma, Hajime; Shiromaru, Haruo

    2012-01-01

    We measured the mobilities of Li + -(2-butanol) and Li + -(limonene) ions in He gas at room temperature using a drift tube mass spectrometer. The zero field mobilities of Li + -(2-Butanol) and Li + -(Limonene) were much lower than the polarization limit, indicating that the geometric collision cross-sections between the cluster ions and He atom were larger than the cross-sections predicted by the presence of a polarization force alone.

  6. 75 FR 38938 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Catcher...

    Science.gov (United States)

    2010-07-07

    .... 0910131362-0087-02] RIN 0648-XX31 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water Species...: NMFS is prohibiting directed fishing for species that comprise the shallow-water species fishery for... (PSC) sideboard limit specified for the shallow-water species fishery for catcher/processors subject to...

  7. The injection of inert gas ions into solids: their trapping and escape

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.; Donnelly, S.E.; Ingram, D.C.; Webb, R.P.

    1980-01-01

    The first part of this contribution will review experimental studies of the trapping probabilities of ions injected into solids as a function of ion energy and indicate how the data can be modelled theoretically. It will be demonstrated that trapping is a two stage process, the first involving penetration into the solid and the second requiring atom dissolution and experimental evidence will be cited to show how the latter process may be dominant for light ions which create little radiation damage. For low ion fluences, injected atoms are generally trapped in isolation but as fluence increases gas-defect complexes are formed and it will be shown how post bombardment thermal evaluation studies can provide evidence for the growth of these complexes. Concomitant with trapping however, dissolved gas may be evolved from the solid by some form of sputtering process, sometimes by mechanisms much more efficient than congruent sputtering of the solid together with the trapped species. Measurements of the trapped atom concentration-ion fluence behaviour and of the evolution of one initially trapped species by bombardment with a second species provide information on the physical processes involved in trapped atom sputtering and upon the mechanism of gas incorporation saturation and experimental studies in this area, together with some first approximation theoretical investigations will be discussed. It will be shown that an important mechanism in dictating incorporation saturation, in addition to sputtering, is the atomic saturation of the solid by the implant. (author)

  8. catcher: A Software Program to Detect Answer Copying in Multiple-Choice Tests Based on Nominal Response Model

    Science.gov (United States)

    Kalender, Ilker

    2012-01-01

    catcher is a software program designed to compute the [omega] index, a common statistical index for the identification of collusions (cheating) among examinees taking an educational or psychological test. It requires (a) responses and (b) ability estimations of individuals, and (c) item parameters to make computations and outputs the results of…

  9. Intense ion beam transport in magnetic quadrupoles: Experiments on electron and gas effects

    International Nuclear Information System (INIS)

    Seidl, P.A.; Molvik, A.W.; Bieniosek, F.M.; Cohen, R.H.; Faltens, A.; Friedman, A.; Kireef Covo, M.; Lund, S.M.; Prost, L.; Vay, J-L.

    2004-01-01

    Heavy-ion induction linacs for inertial fusion energy and high-energy density physics have an economic incentive to minimize the clearance between the beam edge and the aperture wall. This increases the risk from electron clouds and gas desorbed from walls. We have measured electron and gas emission from 1 MeV K + incident on surfaces near grazing incidence on the High-Current Experiment (HCX) at LBNL. Electron emission coefficients reach values >100, whereas gas desorption coefficients are near 10 4 . Mitigation techniques are being studied: A bead-blasted rough surface reduces electron emission by a factor of 10 and gas desorption by a factor of 2. We also discuss the results of beam transport (of 0.03-0.18 A K + ) through four pulsed room-temperature magnetic quadrupoles in the HCX at LBNL. Diagnostics are installed on HCX, between and within quadrupole magnets, to measure the beam halo loss, net charge and expelled ions, from which we infer gas density, electron trapping, and the effects of mitigation techniques. A coordinated theory and computational effort has made significant progress towards a self-consistent model of positive-ion beam and electron dynamics. We are beginning to compare experimental and theoretical results

  10. Numerical modeling of laser-driven ion acceleration from near-critical gas targets

    Science.gov (United States)

    Tatomirescu, Dragos; Vizman, Daniel; d’Humières, Emmanuel

    2018-06-01

    In the past two decades, laser-accelerated ion sources and their applications have been intensely researched. Recently, it has been shown through experiments that proton beams with characteristics comparable to those obtained with solid targets can be obtained from gaseous targets. By means of particle-in-cell simulations, this paper studies in detail the effects of a near-critical density gradient on ion and electron acceleration after the interaction with ultra high intensity lasers. We can observe that the peak density of the gas jet has a significant influence on the spectrum features. As the gas jet density increases, so does the peak energy of the central quasi-monoenergetic ion bunch due to the increase in laser absorption while at the same time having a broadening effect on the electron angular distribution.

  11. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, T., E-mail: asaji@oshima-k.ac.jp; Ohba, T. [Oshima National College of Maritime Technology, 1091-1 Komatsu, Suo-oshima, Oshima, Yamaguchi 742-2193 (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Racz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Tér 18/c (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  12. A gas ionisation Direct-STIM detector for MeV ion microscopy

    International Nuclear Information System (INIS)

    Norarat, Rattanaporn; Guibert, Edouard; Jeanneret, Patrick; Dellea, Mario; Jenni, Josef; Roux, Adrien; Stoppini, Luc; Whitlow, Harry J.

    2015-01-01

    Direct-Scanning Transmission Ion Microscopy (Direct-STIM) is a powerful technique that yields structural information in sub-cellular whole cell imaging. Usually, a Si p-i-n diode is used in Direct-STIM measurements as a detector. In order to overcome the detrimental effects of radiation damage which appears as a broadening in the energy resolution, we have developed a gas ionisation detector for use with a focused ion beam. The design is based on the ETH Frisch grid-less off-axis Geiger–Müller geometry. It is developed for use in a MeV ion microscope with a standard Oxford Microbeams triplet lens and scanning system. The design has a large available solid angle for other detectors (e.g. proton induced fluorescence). Here we report the performance for imaging ReNcells VM with μm resolution where energy resolutions of <24 keV fwhm could be achieved for 1 MeV protons using isobutane gas

  13. Ion-neutral gas reactions in a collision/reaction cell in inductively coupled plasma mass spectrometry: Correlation of ion signal decrease to kinetic rate constants

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Patrick J. [Trace Element Research Laboratory, School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH 43210 (United States); Department of Chemistry, The Ohio State University, 120 18th Avenue, Columbus, OH 43210 (United States); Olesik, John W., E-mail: olesik.2@osu.edu [Trace Element Research Laboratory, School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH 43210 (United States)

    2015-03-01

    Reaction gas flow rate dependent Ar{sub 2}{sup +} and Ar{sup +} signals are correlated to fundamental kinetic rate coefficients. A simple calculation, assuming that gas exits the reaction cell due only to effusion, is described to estimate the gas pressure in the reaction cell. The value of the product of the kinetic rate constant and the ion residence time in the reaction cell can be determined from experimental measurement of the decrease in an ion signal as a function of reaction gas flow rate. New kinetic rate constants are determined for the reaction of CH{sub 3}F with Ar{sup +} and Ar{sub 2}{sup +}. - Highlights: • How to determine pressure and the product of the kinetic rate constant times the ion residence time in reaction cell • Relate measured ICP-DRC-MS signals versus gas flow rate to kinetic rate constants measured previously using SIFT-MS • Describe how to determine previously unmeasured kinetic rate constants using ICP-DRC-MS.

  14. The injection of inert gas ions into solids: their trapping and escape

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.; Donnelly, S.E.; Ingram, D.C.; Webb, R.P.

    1980-01-01

    Basic information is required to understand fission gas generation and its consequence for swelling and embrittlement in fission reactors, for understanding and controlling first wall problems in fusion reactors and for attempting to design storage for active gas waste. In all of these areas the rare gas atoms are generated with kinetic energy and may thus interact differently, during their slowing down, with the solid than if they had been introduced more gently (e.g. via diffusion) into the solid. An important method of simulating the behaviour of such energetic rare gas atoms in solids is via external irradiation of the solid with rare gas ions of appropriate species and energies and it is the purpose of this review to evaluate studies of this nature. The review is divided into three parts. The first describes experimental techniques, discusses the results of measurements of how ions penetrate into and may be retained in a solid, and outlines theoretical interpretations of the data. The mechanisms of gas atom dissolution and thermal transport in solids are of profound importance and so, in the second part of this review, attention is devoted to how the technique of post-implantation thermal evolution spectrometry can be employed to attempt to understand some of these processes. Particular attention is paid to the difficulties of unique interpretation of evolution spectra. In the final section, consideration will be given to the processes which lead to the inevitable saturation of solids undergoing continued irradiation with rare gas ions and experimental measurements and their probable interpretation will be discussed. Since many materials are of importance in the context of this symposium, reference will be made to as broad a range of studies as possible. (author)

  15. Extraction of highly charged ions from the Berlin Electron Beam Ion Trap for interactions with a gas target

    International Nuclear Information System (INIS)

    Allen, F.I.; Biedermann, C.; Radtke, R.; Fussmann, G.

    2006-01-01

    Highly charged ions are extracted from the Berlin Electron Beam Ion Trap for investigations of charge exchange with a gas target. The classical over-the-barrier model for slow highly charged ions describes this process, whereby one or more electrons are captured from the target into Rydberg states of the ion. The excited state relaxes via a radiative cascade of the electron to ground energy. The cascade spectra are characteristic of the capture state. We investigate x-ray photons emitted as a result of interactions between Ar 17+ ions at energies ≤5q keV with Ar atoms. Of particular interest is the velocity dependence of the angular momentum capture state l c

  16. Analysis of Ion-Exchange Resin Capability of the RSG-GAS Demineralized Water System (GCA01)

    International Nuclear Information System (INIS)

    Diyah Erlina Lestari; Setyo Budi Utomo; Harsono

    2012-01-01

    The Demineralized water system (GCA01) is a system which is function to process raw water to be demineralized water using ion exchange resin unit consisting of a column of cation exchange resins, anion exchange resin column and the column resin mix bed. After certain time the ion exchange resins to be saturated so that is needed regeneration. The RSG-GAS demineralized water system (GCA01) not operated continuously and indication of when does an ion exchange resin regeneration on The RSG-GAS demineralized water system (GCA01) is the water conductivity from anion exchange resin column output indicates ≥ 5μS/cm. Analysis of capability of the ion exchange resin demineralized water system (GCA01) line I has been performed. The analysis was done by comparing the time required in the system operating cycle of regeneration to the next regeneration during the period 2011 and 2012. From the results of the analysis showed the cycle regeneration time is varies. This shows that ion exchange resin capability of the RSG-GAS demineralized water system (GCA01) is varies depending on the raw water quality and success of the regeneration ion exchange resin. (author)

  17. Low pressure gas detectors for molecular-ion break up studies

    International Nuclear Information System (INIS)

    Breskin, A.; Chechik, R.; Zwang, N.

    1981-01-01

    Two detector systems for Molecular ions like OH + and CH 2 + and like H 2 + and H 3 + were developed and are described. The first detector is installed in a magnetic spectrometer. Both systems are made of various types of gas detectors operating at low pressures. In the study of the Coulomb explosion of molecular ions like OH + , CH 2 + or H 3 + these detectors provide the position and time coordinates of all the fragments of the molecular ion, in coincidence, in order to determine their energy and angular distribution. In the case of molecules containing atoms other than hydrogen, information on the electronic charge state is obtained. (H.K.)

  18. Ion Mobility Spectrometry-Mass Spectrometry Coupled with Gas-Phase Hydrogen/Deuterium Exchange for Metabolomics Analyses

    Science.gov (United States)

    Maleki, Hossein; Karanji, Ahmad K.; Majuta, Sandra; Maurer, Megan M.; Valentine, Stephen J.

    2018-02-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) in combination with gas-phase hydrogen/deuterium exchange (HDX) and collision-induced dissociation (CID) is evaluated as an analytical method for small-molecule standard and mixture characterization. Experiments show that compound ions exhibit unique HDX reactivities that can be used to distinguish different species. Additionally, it is shown that gas-phase HDX kinetics can be exploited to provide even further distinguishing capabilities by using different partial pressures of reagent gas. The relative HDX reactivity of a wide variety of molecules is discussed in light of the various molecular structures. Additionally, hydrogen accessibility scoring (HAS) and HDX kinetics modeling of candidate ( in silico) ion structures is utilized to estimate the relative ion conformer populations giving rise to specific HDX behavior. These data interpretation methods are discussed with a focus on developing predictive tools for HDX behavior. Finally, an example is provided in which ion mobility information is supplemented with HDX reactivity data to aid identification efforts of compounds in a metabolite extract.

  19. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    Duesterhoeft, H.; Pippig, R.

    1986-01-01

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  20. Investigation of gas discharge ion sources for on-line mass separation

    International Nuclear Information System (INIS)

    Kirchner, R.

    1976-03-01

    The development of efficient gas discharge ion sources with axial beam extraction for on-line mass separation is described. The aim of the investigation was to increase the ion source temperature, the lifetime and the ionisation yield in comparison to present low-pressure are discharge ion sources and to reduce the ion current density from usually 1 to 100 mA/cm 3 . In all ion sources the pressure range below the minimal ignition pressure of the arc discharge was investigated. As a result an ion source was developed which works at small changes in geometry and in electric device of a Nielsen source with high ionization yield (up to 50% for xenon) stabil and without ignition difficulties up to 10 -5 Torr. At a typical pressure of 3 x 10 -5 Torr ion current and ion current density are about 1 μA and 0.1 mA/cm 3 respectively besides high yield and a great emission aperture (diameter 1.2 mm). (orig.) [de

  1. A scaling study of the natural circulation flow of the ex-vessel core catcher cooling system of a 1400MW PWR for designing a scale-down test facility

    International Nuclear Information System (INIS)

    Rhee, Bo. W.; Ha, K. S.; Park, R. J.; Song, J. H.

    2012-01-01

    A scaling study on the steady state natural circulation flow along the flow path of the ex-vessel core catcher cooling system of 1400MWe PWR is described. The scaling criteria for reproducing the same thermalhydraulic characteristics of the natural circulation flow as the prototype core catcher cooling system in the scale-down test facility is derived and the resulting natural circulation flow characteristics of the prototype and scale-down facility analyzed and compared. The purpose of this study is to apply the similarity law to the prototype EU-APR1400 core catcher cooling system and the model test facility of this prototype system and derive a relationship between the heating channel characteristics and the down-comer piping characteristics so as to determine the down-comer pipe size and the orifice size of the model test facility. As the geometry and the heating wall heat flux of the heating channel of the model test facility will be the same as those of the prototype core catcher cooling system except the width of the heating channel is reduced, the axial distribution of the coolant quality (or void fraction) is expected to resemble each other between the prototype and model facility. Thus using this fact, the down-comer piping design characteristics of the model facility can be determined from the relationship derived from the similarity law

  2. Ex-vessel core catcher design requirements and preliminary concepts evaluation

    International Nuclear Information System (INIS)

    Friedland, A.J.; Tilbrook, R.W.

    1974-01-01

    As part of the overall study of the consequences of a hypothetical failure to scram following loss of pumping power, design requirements and preliminary concepts evaluation of an ex-vessel core catcher (EVCC) were performed. EVCC is the term applied to a class of devices whose primary objective is to provide a stable subcritical and coolable configuration within containment following a postulated accident in which it is assumed that core debris has penetrated the Reactor Vessel and Guard Vessel. Under these assumed conditions a set of functional requirements were developed for an EVCC and several concepts were evaluated. The studies were specifically directed toward the FFTF design considering the restraints imposed by the physical design and construction of the FFTF plant

  3. Ion beam characteristics of the controlatron/zetatron family of the gas filled neutron tubes

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.S.; Shope, L.A.; O' Neal, M.L.; Boers, J.E.; Bickes, R.W. Jr.

    1981-03-01

    A gas filled tube used to produce a neutron flux with the D(T,He/sup 4/)n reaction is described. Deuterium and tritium ions generated in a reflex discharge are extracted and accelerated to 100 keV by means of an accelerator electrode onto a deutero-tritide target electrode. The electrodes are designed to focus the ion beam onto the target. Total tube currents consisting of extracted ions, unsuppressed secondary electrons, and ions generated by interactions with the background gas are typically 100 mA. The characteristics of the extracted ion beam are discussed. Accelerating voltages greater than 50 kV are required to focus the beam through the accelerator aperture for configurations that give beams with the proper energy density onto the target. The perveance of the beam is discussed. Maximum perveance values are 2 to 20 nanopervs. Tube focusing and neutron production characteristics are described.

  4. Operation of a TFTR ion source with a ground potential gas feed into the neutralizer

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Dudek, L.E.; Grisham, L.R.; Newman, R.A.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.; Wright, K.E.

    1991-01-01

    TFTR long pulse ion sources have been operated with gas fed only into the neutralizer. Gas for the plasma generator entered through the accelerator rather than directly into the arc chamber. This modification has been proposed for tritium beam operation to locate control electronics at ground potential and to simplify tritium plumbing. Source operation with this configuration and with the nominal gas system that feeds gas into both the ion source and the center of the neutralizer are compared. Comparison is based upon accelerator grid currents, beam composition, and neutral power delivered to the calorimeter. Charge exchange in the accelerator can be a significant loss mechanism in both systems at high throughput. A suitable operating point with the proposed system was found that requires 30% less gas than used presently. The extracted D + , D + 2 , and D + 3 fractions of the beam were found to be a function of the gas throughput; at similar throughputs, the two gas feed systems produced similar extracted ion fractions. Operation at the proposed gas efficient point results in a small reduction (relative to the old high throughput mode) in the extracted D + fraction of the beam from 77% to 71%, with concomitant changes in the D + 2 fraction from 18% to 26%, and 6% to 3% for D + 3 . The injected power is unchanged, ∼2.2 MW at 95 kV

  5. Ion transport membrane reactor systems and methods for producing synthesis gas

    Science.gov (United States)

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  6. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.

    Science.gov (United States)

    Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan

    2017-09-08

    In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

  7. Multiaperture ion beam extraction from gas-dynamic electron cyclotron resonance source of multicharged ions

    International Nuclear Information System (INIS)

    Sidorov, A.; Dorf, M.; Zorin, V.; Bokhanov, A.; Izotov, I.; Razin, S.; Skalyga, V.; Rossbach, J.; Spaedtke, P.; Balabaev, A.

    2008-01-01

    Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be ∼70 π mm mrad, and the total extracted beam current obtained at 14 kV extraction voltage was ∼25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data

  8. Deprotonation effect of tetrahydrofuran-2-carbonitrile buffer gas dopant in ion mobility spectrometry.

    Science.gov (United States)

    Fernandez-Maestre, Roberto; Meza-Morelos, Dairo; Wu, Ching

    2016-06-15

    When dopants are introduced into the buffer gas of an ion mobility spectrometer, spectra are simplified due to charge competition. We used electrospray ionization to inject tetrahydrofuran-2-carbonitrile (F, 2-furonitrile or 2-furancarbonitrile) as a buffer gas dopant into an ion mobility spectrometer coupled to a quadrupole mass spectrometer. Density functional theory was used for theoretical calculations of dopant-ion interaction energies and proton affinities, using the hybrid functional X3LYP/6-311++(d,p) with the Gaussian 09 program that accounts for the basis set superposition error; analytes structures and theoretical calculations with Gaussian were used to explain the behavior of the analytes upon interaction with F. When F was used as a dopant at concentrations below 1.5 mmol m(-3) in the buffer gas, ions were not observed for α-amino acids due to charge competition with the dopant; this deprotonation capability arises from the production of a dimer with a high formation energy that stabilized the positive charge and created steric hindrance that deterred the equilibrium with analyte ions. F could not completely strip other compounds of their charge because they either showed steric hindrance at the charge site that deterred the approach of the dopant (2,4-lutidine, and DTBP), formed intramolecular bonds that stabilized the positive charge (atenolol), had high proton affinity (2,4-lutidine, DTBP, valinol and atenolol), or were inherently ionic (tetraalkylammonium ions). This selective deprotonation suggests the use of F to simplify spectra of complex mixtures in ion mobility and mass spectrometry in metabolomics, proteomics and other studies that generate complex spectra with thousands of peaks. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Aqueous nitrite ion determination by selective reduction and gas phase nitric oxide chemiluminescence

    Science.gov (United States)

    Dunham, A. J.; Barkley, R. M.; Sievers, R. E.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    An improved method of flow injection analysis for aqueous nitrite ion exploits the sensitivity and selectivity of the nitric oxide (NO) chemilluminescence detector. Trace analysis of nitrite ion in a small sample (5-160 microL) is accomplished by conversion of nitrite ion to NO by aqueous iodide in acid. The resulting NO is transported to the gas phase through a semipermeable membrane and subsequently detected by monitoring the photoemission of the reaction between NO and ozone (O3). Chemiluminescence detection is selective for measurement of NO, and, since the detection occurs in the gas-phase, neither sample coloration nor turbidity interfere. The detection limit for a 100-microL sample is 0.04 ppb of nitrite ion. The precision at the 10 ppb level is 2% relative standard deviation, and 60-180 samples can be analyzed per hour. Samples of human saliva and food extracts were analyzed; the results from a standard colorimetric measurement are compared with those from the new chemiluminescence method in order to further validate the latter method. A high degree of selectivity is obtained due to the three discriminating steps in the process: (1) the nitrite ion to NO conversion conditions are virtually specific for nitrite ion, (2) only volatile products of the conversion will be swept to the gas phase (avoiding turbidity or color in spectrophotometric methods), and (3) the NO chemiluminescence detector selectively detects the emission from the NO + O3 reaction. The method is free of interferences, offers detection limits of low parts per billion of nitrite ion, and allows the analysis of up to 180 microL-sized samples per hour, with little sample preparation and no chromatographic separation. Much smaller samples can be analyzed by this method than in previously reported batch analysis methods, which typically require 5 mL or more of sample and often need chromatographic separations as well.

  10. Ground state of a hydrogen ion molecule immersed in an inhomogeneous electron gas

    International Nuclear Information System (INIS)

    Diaz-Valdes, J.; Gutierrez, F.A.; Matamala, A.R.; Denton, C.D.; Vargas, P.; Valdes, J.E.

    2007-01-01

    In this work we have calculated the ground state energy of the hydrogen molecule, H 2 + , immersed in the highly inhomogeneous electron gas around a metallic surface within the local density approximation. The molecule is perturbed by the electron density of a crystalline surface of Au with the internuclear axis parallel to the surface. The surface spatial electron density is calculated through a linearized band structure method (LMTO-DFT). The ground state of the molecule-ion was calculated using the Born-Oppenheimer approximation for a fixed-ion while the screening effects of the inhomogeneous electron gas are depicted by a Thomas-Fermi like electrostatic potential. We found that within our model the molecular ion dissociates at the critical distance of 2.35a.u. from the first atomic layer of the solid

  11. Magnetically insulated ion diode with a gas-breakdown plasma anode

    International Nuclear Information System (INIS)

    Greenly, J.B.; Ueda, M.; Rondeau, G.D.; Hammer, D.A.

    1987-12-01

    An active anode plasma source has been developed for use in a magnetically insulated ion diode operated on a 10 sup(10)W pulsed power generator. This source uses an inductive voltage from a single turn coil to break down an annular gas puff produced by a supersonic nozzle. The resulting plasma is magnetically driven toward the radial insulating magnetic field in the diode accelerating gap and stagnates at a well-defined surface after about 300ns to form a plasma anode layer defined by magnetic flux surfaces. An ion beam is then extracted from this plasma layer by applying a 150kV, 1 μs pulse to the accelerating gap. Optimization of the timing of the gas puff, the plasma production discharge and the high voltage pulse has resulted in 1μs duration 75-150KeV ion beam pulses with >100A/cm sup(2) peak ion current density over an area of about 400cm sup(2). Up to 5J/cm sup(2) has been collected by a 4cm sup(2) calorimeter. The diode impedance history can be varied so that rising, flat, and falling voltage pulse waveforms can be produced. Streak photographs of beamlets impinging on a scintillator and time integrated targets both show beam divergence angles ≤3 sup(0). However, under certain operating conditions, large excursions (∼25 sup(0)) in mean aiming angle on time scales of 20-200ns are observed. (author)

  12. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Ahmet S., E-mail: asozcan@us.ibm.com [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Lavoie, Christian; Jordan-Sweet, Jean [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Alptekin, Emre; Zhu, Frank [IBM Semiconductor Research and Development Center, 2070 Route 52, Hopewell Junction, New York 12533 (United States); Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M. [TEL Epion Inc., 900 Middlesex Turnpike, Bldg. 6, Billerica, Massachusetts 01821 (United States)

    2016-04-21

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  13. Buffer gas cooling of ions stored in an R.F. trap: Computed properties of the ionic cloud

    International Nuclear Information System (INIS)

    Alili, A.; Andre, J.; Vedel, F.

    1988-01-01

    The spatial and energetic properties of an ion cloud confined in an RF quadrupole trap, together with the lifetimes of the confined ions, have been computed by statistical methods and recently by a simulation method. The influences of different parameters such as ion mass, buffer gas mass, working point in the stability diagram, 'weak' space-charge and shape of the velocity distribution of the cooling buffer gas have been investigated and are described. (orig.)

  14. Measurements of ion mobility in argon and neon based gas mixtures

    CERN Document Server

    INSPIRE-00507268

    2017-01-01

    As gaseous detectors are operated at high rates of primary ionisation, ions created in the detector have a considerable impact on the performance of the detector. The upgraded ALICE Time Projection Chamber (TPC) will operate during LHC Run$\\,3$ with a substantial space charge density of positive ions in the drift volume. In order to properly simulate such space charges, knowledge of the ion mobility $K$ is necessary. To this end, a small gaseous detector was constructed and the ion mobility of various gas mixtures was measured. To validate the corresponding signal analysis, simulations were performed. Results are shown for several argon and neon based mixtures with different $\\textrm{CO}_2$ fractions. A decrease of $K$ was measured for increasing water content.

  15. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Priya Darshni, E-mail: kaushik.priyadarshni@gmail.com [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Ivanov, Ivan G.; Lin, Pin-Cheng [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Kaur, Gurpreet [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Eriksson, Jens [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Lakshmi, G.B.V.S. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Amity Institute of Nanotechnology, Noida 201313 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Aziz, Anver; Siddiqui, Azher M. [Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Syväjärvi, Mikael [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Yazdi, G. Reza, E-mail: yazdi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden)

    2017-05-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO{sub 2} and NH{sub 3} gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10{sup 13} ions/cm{sup 2}). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and

  16. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    International Nuclear Information System (INIS)

    Kaushik, Priya Darshni; Ivanov, Ivan G.; Lin, Pin-Cheng; Kaur, Gurpreet; Eriksson, Jens; Lakshmi, G.B.V.S.; Avasthi, D.K.; Gupta, Vinay; Aziz, Anver; Siddiqui, Azher M.; Syväjärvi, Mikael; Yazdi, G. Reza

    2017-01-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO_2 and NH_3 gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10"1"3 ions/cm"2). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and spintronic

  17. The Influence of Several Doped Ions on Gas Sensitivity of Hematite

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The dehydrating activation energies of the hematite with several doped ions used for the alcohol sensor were determinated by thermogravimetric differential thermal analyzer (TG-DTA) and the grain size of the samples were observed with TEM. The hematites with different doping amounts of Sn4 + were investigated by Mossbauer spectrometer. It shows that the different doped ion is of influence for grain growth of the hematite. The decrease of grain size stemmed from the doped ion causes gas sensitivity for alcohol to increase and the dehydrating activation energy to decrease correspondingly. When the different amounts of Sn4 + is doped in hematite, the microstructure of the hematite can be influenced.

  18. Dual magnetic separator for TRIμP

    International Nuclear Information System (INIS)

    Berg, G.P.A.; Dermois, O.C.; Dammalapati, U.; Dendooven, P.; Harakeh, M.N.; Jungmann, K.; Onderwater, C.J.G.; Rogachevskiy, A.; Sohani, M.; Traykov, E.; Willmann, L.; Wilschut, H.W.

    2006-01-01

    The TRIμP facility, under construction at KVI, requires the production and separation of short-lived and rare isotopes. Direct reactions, fragmentation and fusion-evaporation reactions in normal and inverse kinematics are foreseen to produce nuclides of interest with a variety of heavy-ion beams from the superconducting cyclotron AGOR. For this purpose, we have designed, constructed and commissioned a versatile magnetic separator that allows efficient injection into an ion catcher, i.e., gas-filled stopper/cooler or thermal ionizer, from which a low energy radioactive beam will be extracted. The separator performance was tested with the production and clean separation of 21 Na ions, where a beam purity of 99.5% could be achieved. For fusion-evaporation products, some of the features of its operation as a gas-filled recoil separator were tested

  19. Alkylation of nitriles with gaseous carbenium ions. The ritter reaction in the dilute gas state

    International Nuclear Information System (INIS)

    Cacace, F.; Ciranni, G.; Giacomello, P.

    1982-01-01

    Radiolytically formed carbenium ions, such as sec-C 3 H 7 + , sec-C 4 H 9 + , and t-C 4 H 9 + , react in the gas phase with model aliphatic and aromatic nitriles yielding the corresponding nitrilium ions. The latter undergo efficient condensation with water that eventually leads to the formation of the corresponding N-alkylamides. The mechanism is analogous to the Ritter reaction in solution. The reactivity and selectivity of the gas-phase electrophilic attack on nitriles has been deduced from competition experiments under conditions that largely exclude the effects of solvation, ion pairing, etc., which complicate the interpretation of solution-chemistry measurements. 1 table

  20. Swift heavy ion induced modification in polycarbonate membrane for gas separation

    International Nuclear Information System (INIS)

    Rajesh Kumar; Prasad, Rajendra; Vijay, Y.K.; Das, D.

    2003-01-01

    Polymeric membranes are extensively used for commercial gas separation applications. Makrofol-KG (polycarbonate) is a glassy polymer. 40 μm thick sheet of Makrofol-KG was irradiated with 40 Ar (14.9 MeV/n) of fluence 10 3 ions/cm 2 and 20 μm thick sheet with 5.3 MeV α-particles of fluence 10 7 ions/cm 2 . The permeability of these polycarbonate membranes for H 2 and CO 2 was measured and also after etching in 6 N NaOH at 60 degC for different periods. Permeability is found to be increased with etching time. At a definite time, critical etching time, the permeability rapidly increases in PC. Positron annihilation lifetimes for unirradiated and irradiated membranes were measured with fast fast coincidence system to study the correlation of free volume hole concentration with gas separation properties. (author)

  1. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy

    International Nuclear Information System (INIS)

    Stockett, Mark H.; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen

    2016-01-01

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

  2. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stockett, Mark H., E-mail: stockett@phys.au.dk; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen [Department of Physics and Astronomy, Aarhus University, Aarhus (Denmark)

    2016-05-15

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

  3. Study on charge transfer reaction of several organic molecules with accelerated rare gas ions

    International Nuclear Information System (INIS)

    Takahasi, Makoto; Okuda, Sachiko; Arai, Eiichi; Ichinose, Akira; Takakubo, Masaaki.

    1984-01-01

    Observing the charge transfer mass spectra of ethylbenzene, cyclobutane and methanol in Ar and Xe ion impacts, we investigated the dependence of the secondary ion peak intensities (normalized to primary ion current and target pressure) on the translational energy of primary ions (0-3500 eV).In the case of ethylbenzene, several maxima of the secondary i on peak intensities were observed in Ar and Xe ion impacts. The correlation between the maxima and the primary ion energy was examined in terms of near adiabatic theory of Massey. Supplementary studies on the energy distribution of primary ion, charge transfer cross section between methanol and Xe ion, and final product analysis in rare gas ion irradiation on cyclobutane were described. (author)

  4. Collision induced dissociation of protonated N-nitrosodimethylamine by ion trap mass spectrometry: Ultimate carcinogens in gas phase

    Science.gov (United States)

    Kulikova, Natalia; Baker, Michael; Gabryelski, Wojciech

    2009-12-01

    Collision induced dissociation of protonated N-nitrosodimethylamine (NDMA) and isotopically labeled N-nitrosodimethyl-d6-amine (NDMA-d6) was investigated by sequential ion trap mass spectrometry to establish mechanisms of gas phase reactions leading to intriguing products of this potent carcinogen. The fragmentation of (NDMA + H+) occurs via two dissociation pathways. In the alkylation pathway, homolytic cleavage of the N-O bond of N-dimethyl, N'-hydroxydiazenium ion generates N-dimethyldiazenium distonic ion which reacts further by a CH3 radical loss to form methanediazonium ion. Both methanediazonium ion and its precursor are involved in ion/molecule reactions. Methanediazonium ion showed to be capable of methylating water and methanol molecules in the gas phase of the ion trap and N-dimethyldiazenium distonic ion showed to abstract a hydrogen atom from a solvent molecule. In the denitrosation pathway, a tautomerization of N-dimethyl, N'-hydroxydiazenium ion to N-nitrosodimethylammonium intermediate ion results in radical cleavage of the N-N bond of the intermediate ion to form N-dimethylaminium radical cation which reacts further through [alpha]-cleavage to generate N-methylmethylenimmonium ion. Although the reactions of NDMA in the gas phase are different to those for enzymatic conversion of NDMA in biological systems, each activation method generates the same products. We will show that collision induced dissociation of N-nitrosodiethylamine (NDEA) and N-nitrosodipropylamine (NDPA) is also a feasible approach to gain information on formation, stability, and reactivity of alkylating agents originating from NDEA and NDPA. Investigating such biologically relevant, but highly reactive intermediates in the condensed phase is hampered by the short life-times of these transient species.

  5. Etching radical controlled gas chopped deep reactive ion etching

    Science.gov (United States)

    Olynick, Deidre; Rangelow, Ivo; Chao, Weilun

    2013-10-01

    A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH.sub.4 and controlling the passivation rate and stoichiometry using a CF.sub.2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.

  6. Effect of gas filling pressure and operation energy on ion and neutron emission in a medium energy plasma focus device

    Science.gov (United States)

    Niranjan, Ram; Rout, R. K.; Srivastava, Rohit; Kaushik, T. C.

    2018-03-01

    The effects of gas filling pressure and operation energy on deuterium ions and neutrons have been studied in a medium energy plasma focus device, MEPF-12. The deuterium gas filling pressure was varied from 1 to 10 mbar at an operation energy of 9.7 kJ. Also, the operation energy was varied from 3.9 to 9.7 kJ at a deuterium gas filling pressure of 4 mbar. Time resolved emission of deuterium ions was measured using a Faraday cup. Simultaneously, time integrated and time resolved emissions of neutrons were measured using a silver activation detector and plastic scintillator detector, respectively. Various characteristics (fluence, peak density, and most probable energy) of deuterium ions were estimated using the Faraday cup signal. The fluence was found to be nearly independent of the gas filling pressure and operation energy, but the peak density and most probable energy of deuterium ions were found to be varying. The neutron yield was observed to be varying with the gas filling pressure and operation energy. The effect of ions on neutrons emission was observed at each operation condition.

  7. Reactions of metal ions and their clusters in the gas phase using laser ionization: ion cyclotron resonance spectroscopy

    International Nuclear Information System (INIS)

    Freiser, B.S.

    1981-04-01

    Two subjects are discussed in this report: advances in proposed studies on metal ion chemistry and expansion of laboratory facilities. The development of a combined pulsed laser source-ion cyclotron resonance spectrometer has proven to be a convenient and powerful method for generating metal ions and for studying their subsequent chemistry in the gas phase. The main emphasis of this research has been on the application of metal ions as a selective chemical ionization reagents and progress in this area are discussed. The goal is to identify trends in reactivity i.e. mechanisms useful in interpreting the chemical ionization spectra of unknown compounds and to test for the functional group selectivity of the various metal ions. The feasibility of these goals have been demonstrated in extensive studies on Cu + with esters and ketones, on Fe + with ethers, ketones, and hydrocarbons, and on Ti + with hydrocarbons. In addition, preliminary results on sulfur containing compounds and on a variety of other metallic ions have been obtained. Laboratory facilities were expanded from one ion cyclotron resonance (ICR) spectrometer to two, plus a third instrument the Fourier Transform Ion Cyclotron Resonance (FTICR) spectrometer

  8. Optimizing C4+ and C5+ beams of the Kei2 electron cyclotron resonance ion source using a special gas-mixing technique

    International Nuclear Information System (INIS)

    Drentje, A.G.; Muramatsu, M.; Kitagawa, A.

    2006-01-01

    With the prototype electron cyclotron resonance ion source for the next carbon therapy facility in Japan a series of measurements has been performed in order (a) to find the best condition for producing high beam currents of C 4+ ions, and (b) to study the effect of 'special' gas mixing by using a chemical compound as a feed gas. The effect would then appear as an increase in high charge state production in this case of C 5+ ions. In 'regular' gas-mixing experiments it is well known that an isotopic phenomenon occurs: a heavier isotope of the mixing gas is increasing the production of high charge states of the beam gas ions. A similar isotopic effect has been found in the present experiment: with deuterated methane (CD 4 gas) the C 5+ beam currents are about 10% higher than with regular methane (CH 4 gas). The 'mixing-gas' ratio D (or H) to C can be decreased by choosing, e.g., butane gas; in this case the isotopic effect for C 5+ production is even stronger (>15%). For production of C 4+ ions the isotopic effect appears to be absent. Clearly this is related to the much easier production. It turns out that the relative amount of carbon is much more important: butane gives about 10% higher C 4+ -ion currents than methane

  9. The nature of the positive ion contribution to a gas discharge

    International Nuclear Information System (INIS)

    Fletcher, J.; Blevin, H.A.

    1980-06-01

    The technique for studying swarms of electrons in a gas discharge by observing the photon flux from the discharge developed in the authors's laboratories has been adapted to investigate the role of the secondary mechanisms in hydrogen and nitrogen. The results show that, contrary to previous indications, ion bombardment of the cathode plays only a negligible, if any, part in the low pressure discharge in hydrogen and nitrogen at low E/N while at high E/N only the contribution of the atomic ion is significant

  10. Pulse radiolysis of alkanes in the gas-phase, ion-molecule reactions and neutralization mechanisms of hydrocarbon ions

    International Nuclear Information System (INIS)

    Ausloos, P.

    1975-01-01

    A discussion is presented of the fate of unreactive hydrocarbon ions in various selected gaseous systems. It is shown that experiments performed with the high radiation dose rates obtained in pulse radiolysis experiments have several advantages over conventional low dose rate experiments for the elucidation of the mechanism of homogeneous neutralization of unreactive hydrocarbon ions. This is so because the charged species has a much shorter lifetime with respect to neutralization under high dose rate (pulse radiolysis) conditions, so that the reaction of the ions with minor impurities or accumulated products is much less probable than in low dose rate experiments. It is further shown through a few examples, that quantitative information about the rate contants of neutralization events and ion-molecule reactions can be obtained when the dose rate is high enough for neutralization and chemical reaction to be in competition. Once reliable rate constants for neutralization and ion-molecule reactions are derived, one can obtain a quantitative evaluation of the products which will by formed in the pulse radiolysis of a hydrocarbon gas mixture from a computer calculation. (author)

  11. Study on characteristics of valves for pulsed gas feed into a cyclotron multicharged ion source

    International Nuclear Information System (INIS)

    Bogomolov, S.L.; Efremov, A.A.; Koval'chuk, I.M.; Kutner, V.B.; Pasyuk, A.S.

    1984-01-01

    Different valves (with rotating drum, piezoelectric and electromagnetic) for pulsed gas feed into cyclotron multicharged ion arc source are described. It is shown that piezoelectric and electromagnetic valves provide a possibility of regulating in a wide range the gas flow pulse parameters

  12. Study of the average charge states of 188Pb and 252,254No ions at the gas-filled separator TASCA

    International Nuclear Information System (INIS)

    Khuyagbaatar, J.; Ackermann, D.; Andersson, L.-L.; Ballof, J.; Brüchle, W.; Düllmann, Ch.E.; Dvorak, J.; Eberhardt, K.; Even, J.; Gorshkov, A.; Graeger, R.; Heßberger, F.-P.; Hild, D.; Hoischen, R.; Jäger, E.; Kindler, B.

    2012-01-01

    The average charge states of 188 Pb and 252,254 No ions in dilute helium gas were measured at the gas-filled recoil separator TASCA. Hydrogen gas was also used as a filling gas for measurements of the average charge state of 254 No. Helium and hydrogen gases at pressures from 0.2 mbar to 2.0 mbar were used. A strong dependence of the average charge state on the pressure of the filling gases was observed for both, helium and hydrogen. The influence of this dependence, classically attributed to the so-called “density effect”, on the performance of TASCA was investigated. The average charge states of 254 No ions were also measured in mixtures of helium and hydrogen gases at low gas pressures around 1.0 mbar. From the experimental results simple expressions for the prediction of average charge states of heavy ions moving in rarefied helium gas, hydrogen gas, and in their mixture were derived.

  13. Improvement of the yield of highly charged ions by a gas-pulsing technique and the current status of the NIRS Penning source

    International Nuclear Information System (INIS)

    Miyata, Tomohiro; Miyoshi, Tomohiro; Sakuma, Tetsuya; Yamamoto, Mitsugu; Kitagawa, Atsushi; Muramatsu, Masayuki; Sato, Yukio

    2004-01-01

    The yields of highly charged ions have been improved by using a gas-pulsing technique in the pulsed Penning-ionized-gauge ion source (PIGIS) in the heavy-ion medical accelerator in Chiba. So far, this pulsed PIGIS has been operated under a low-duty factor (10 -2 -10 -3 ), in which the gas flow is not being pulsed. A solenoid-type gas valve, having a simple structure compared to the piezo-electric type, was attached to the outside of the PIGIS chamber in order to control the gas flow into the PIGIS chimney. Beam tests for Ne with gas pulsing showed that the pressure response time should actually be a few tens ms, and the intensity of Ne 6+ was increased by ten times, from 20 to 200 eμA. The gas pulsing also improved the average vacuum in the low energy beam transport (LEBT) line by a factor of 4. When producing H 2 + , H 3 + , and He 1+ by PIGIS with gas pulsing, the beam loss of highly charged ions from electron cyclotron resonance ion sources in the LEBT was reduced to be negligible; meanwhile, it was around 30% without gas pulsing. This paper describes the gas-pulsing technique and the preliminary results, as well as some recent developments in the NIRS-PIGIS

  14. Longitudinal and transverse dynamics of ions from residual gas in an electron accelerator

    Science.gov (United States)

    Gamelin, A.; Bruni, C.; Radevych, D.

    2018-05-01

    The ion cloud produced from residual gas in an electron accelerator can degrade machine performances and produce instabilities. The ion dynamics in an accelerator is governed by the beam-ion interaction, magnetic fields and eventual mitigation strategies. Due to the fact that the beam has a nonuniform transverse size along its orbit, the ions move longitudinally and accumulate naturally at some points in the accelerator. In order to design effective mitigation strategies it is necessary to understand the ion dynamics not only in the transverse plane but also in the longitudinal direction. After introducing the physics behind the beam-ion interaction, we show how to get accumulation points for a realistic electron storage ring lattice. Simulations of the ion cloud dynamics, including the effect of magnetic fields on the ions, clearing electrodes and clearing gaps are shown. Longitudinal ion trapping due to the magnetic mirror effect in the dipole fringe fields is also detailed. Finally, the effectiveness of clearing electrode using longitudinal clearing fields is discussed and compared to clearing electrodes producing transverse field only.

  15. Calculation of ion storage in electron beams with account of ion-ion interactions

    International Nuclear Information System (INIS)

    Perel'shtejn, Eh.A.; Shirkov, G.D.

    1979-01-01

    Ion storage in relativistic electron beams was calculated taking account of ion-ion charge exchange and ionization. The calculations were made for nitrogen ion storage from residual gas during the compression of electron rings in the adhezator of the JINR heavy ion accelerator. The calculations were made for rings of various parameters and for various pressures of the residual gas. The results are compared with analogous calculations made without account of ion-ion processes. It is shown that at heavy loading of a ring by ions ion-ion collisions play a significant part, and they should be taken into account while calculating ion storage

  16. Characteristics of the positive ion source at reduced gas feed

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S. K., E-mail: sksharma@ipr.res.in; Bharathi, P.; Prahlad, V.; Patel, P. J.; Choksi, B.; Jana, M. R.; Bansal, L. K.; Qureshi, K.; Sumod, C. B.; Vadher, V.; Thakkar, D.; Gupta, L. N.; Rambabu, S.; Parmar, S.; Contractor, N.; Sahu, A. K.; Pandya, B.; Sridhar, B.; Pandya, S.; Baruah, U. K. [Institute for Plasma Research, Bhat, Gandhinagar (India)

    2014-11-15

    The neutral beam injector of steady state superconducting tokamak (SST1-NBI) at IPR is designed for injecting upto 1.7 MW of neutral beam (Hº, 30–55 keV) power to the tokamak plasma for heating and current drive. Operations of the positive ion source (PINI or Plug-In-Neutral-Injector) of SST1-NBI were carried out on the NBI test stand. The PINI was operated at reduced gas feed rate of 2–3 Torr l/s, without using the high speed cryo pumps. Experiments were conducted to achieve a stable beam extraction by optimizing operational parameters namely, the arc current (120–300 A), acceleration voltage (16–40 kV), and a suitable control sequence. The beam divergence, power density profiles, and species fractions (H{sup +}:H{sub 2}{sup +}:H{sub 3}{sup +}) were measured by using the diagnostics such as thermal calorimetry, infrared thermography, and Doppler shift spectroscopy. The maximum extracted beam current was about 18 A. A further increase of beam current was found to be limited by the amount of gas feed rate to the ion source.

  17. Sympathetic cooling of ions in a hybrid atom ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Hoeltkemeier, Bastian

    2016-10-27

    In this thesis the dynamics of a trapped ion immersed in a spatially localized buffer gas is investigated. For a homogeneous buffer gas, the ion's energy distribution reaches a stable equilibrium only if the mass of the buffer gas atoms is below a critical value. This limitation can be overcome by using multipole traps in combination and/or a spatially confined buffer gas. Using a generalized model for elastic collisions of the ion with the buffer gas atoms, the ion's energy distribution is numerically determined for arbitrary buffer gas distributions and trap parameters. Three regimes characterized by the respective analytic form of the ion's equilibrium energy distribution are found. One of these is a novel regime at large atom-to-ion mass ratios where the final ion temperature can tuned by adiabatically decreasing the spatial extension of the buffer gas and the effective ion trap depth (forced sympathetic cooling). The second part of the thesis presents a hybrid atom ion trap designed for sympathetic cooling of hydroxide anions. In this hybrid trap the anions are immersed in a cloud of laser cooled rubidium atoms. The translational and rovibrational temperatures of the anions is probed by photodetachment tomography and spectroscopy which shows the first ever indication of sympathetic cooling of anions by laser cooled atoms.

  18. 50 CFR Table 47a to Part 679 - Percent of the AFA Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used...

    Science.gov (United States)

    2010-10-01

    ... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out Allocation and... Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out... pollock Column E Number of Chinook salmon for the opt-out allocation (8,093) Column F Number of Chinook...

  19. Single-particle and collective properties around closed shells probed by in-source laser spectroscopy

    CERN Document Server

    Cocolios, Thomas Elias; Van Duppen, P

    2010-01-01

    Resonant laser ionisation is a very versatile tool in nuclear physics, used for the production of clean radioactive ion beams as well as for the study of ground-state and isomer properties. In this Ph.D. work, many aspects of resonant laser ionisation are investigated, from improving the performance of laser ion sources at ISOL facilities to the measurement of magnetic dipole moments and charge radii. The LISOL gas catcher ion source relies on resonant laser ionisation for increased efficiency and selectivity. Using a $^{252}$Cf fission source, the element dependence of the non-resonant contribution to the ion beam has been investigated. The efficiency of extraction for a non-laser-ionised element ranges from 0.03% for krypton to 74% for ceasium. A relationship with the ionisation potential is proposed, although a few elements like rubidium and cerium do not verify this relationship. In order to suppress those non-resonantly-ionised elements, two new approaches are proposed. First, the dual-chamber gas catche...

  20. The properties of gas-phase multiply charged ions

    International Nuclear Information System (INIS)

    Newson, K.A.

    1999-01-01

    This thesis presents the results of a series of experiments investigating the reactivity of gas-phase molecular dications with various neutral collision partners, at collision energies between 3 and 13 eV in the laboratory frame, using a crossed-beam apparatus. The experiment involves the measurement of product ion intensities, which are determined by means of time-of-flight mass spectrometry. The experimental apparatus and methodology, together with the areas of theory important to ion chemistry, are described in the thesis. The product ions of greatest interest are those ions formed by bond-forming (chemical) reactivity. The relative intensities of such product ions, and those ions formed as a result of electron-transfer reactions, are, when recorded as a function of the collision energy, a powerful probe of the reaction mechanism. Additionally, where appropriate, the reactions are examined for isotope effects by using the isotopic analogue of the neutral collision partner. The results of the experiments indicate that no intermolecular isotope effects are present in the reactions of CF 2 2+ and CF 3 2+ with H 2 and D 2 neutral targets. In addition, the observed collision energy dependence is symptomatic of the absence of a barrier to reaction. These observations suggest that the reactions proceed via an impulsive direct reaction mechanism. Such a conclusion casts doubt on the applicability of the Landau-Zener model of H - /D - transfer reactivity. Other results presented in this thesis include the first reported observation of a bond-forming reaction between a molecular dication (CF2 2+ ) and a polyatomic neutral species (NH 3 ). Finally, the branching ratio of the products of bond-forming reactions between CF 2 2+ with HD indicates the operation of a strong intramolecular isotope effect, favouring the formation of the deuterated product. This observation points to a reaction mechanism in which the bond-formation is preceded by electron-transfer. (author)

  1. Citizen Science and Event-Based Science Education with the Quake-Catcher Network

    Science.gov (United States)

    DeGroot, R. M.; Sumy, D. F.; Benthien, M. L.

    2017-12-01

    The Quake-Catcher Network (QCN, quakecatcher.net) is a collaborative, citizen-science initiative to develop the world's largest, low-cost strong-motion seismic network through the utilization of sensors in laptops and smartphones or small microelectromechanical systems (MEMS) accelerometers attached to internet-connected computers. The volunteer computers monitor seismic motion and other vibrations and send the "triggers" in real-time to the QCN server hosted at the University of Southern California. The QCN servers sift through these signals and determine which ones represent earthquakes and which ones represent cultural noise. Data collected by the Quake-Catcher Network can contribute to better understanding earthquakes, provide teachable moments for students, and engage the public with authentic science experiences. QCN partners coordinate sensor installations, develop QCN's scientific tools and engagement activities, and create next generation online resources. In recent years, the QCN team has installed sensors in over 225 K-12 schools and free-choice learning institutions (e.g. museums) across the United States and Canada. One of the current goals of the program in the United States is to establish several QCN stations in K-12 schools around a local museum hub as a means to provide coordinated and sustained educational opportunities leading up to the yearly Great ShakeOut Earthquake Drill, to encourage citizen science, and enrich STEM curriculum. Several school districts and museums throughout Southern California have been instrumental in the development of QCN. For educators QCN fulfills a key component of the Next Generation Science Standards where students are provided an opportunity to utilize technology and interface with authentic scientific data and learn about emerging programs such as the ShakeAlert earthquake early warning system. For example, Sunnylands Center in Rancho Mirage, CA leads Coachella Valley Hub, which serves 31 K-12 schools, many of

  2. Effect of noble gas ion pre-irradiation on deuterium retention in tungsten

    NARCIS (Netherlands)

    Cheng, L.; Zhao, Z. H.; De Temmerman, G.; Yuan, Y.; Morgan, T. W.; Guo, L. P.; Wang, B.; Zhang, Y.; Wang, B. Y.; Zhang, P.; Cao, X. Z.; Lu, G. H.

    2016-01-01

    Impurity seeding of noble gases is an effective way of decreasing the heat loads onto the divertor targets in fusion devices. To investigate the effect of noble gases on deuterium retention, tungsten targets have been implanted by different noble gas ions and subsequently exposed to deuterium

  3. Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions

    International Nuclear Information System (INIS)

    Keesee, R.G.; Lee, N.; Castleman, A.W. Jr.

    1980-01-01

    Ion--molecules association reactions of the form A - (B)/sub n1/-+B=A - (B)/sub n/ were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl - , I - , and NO 2 - with n ranging from one to three or four, and onto SO 2 - and SO 3 - with n equal to one; and (2) carbon dioxide onto Cl - , I - , NO 2 - , CO 3 - , and SO 3 - with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions. For any given ion, the relative order of the addition enthalpies among the neutrals was found to be dependent on the polarizabilities of the neutrals and on the covalency in the ion-neutral bond. Dispersion of charge via covalent bonding was found to affect significantly the succeeding clustering steps

  4. Collisions of fast multicharged ions in gas targets: charge transfer and ionization

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1981-05-01

    Measurements of cross sections for charge transfer and ionization of H 2 and rare-gas targets have been made with fast, highly stripped projectiles in charge states as high as 59+. We have found an empirical scaling rule for electron-capture cross section in H 2 valid at energies above 275 keV/amu. Similar scaling might exist for other target gases. Cross sections are generally in good agreement with theory. We have found a scaling rule for electron loss from H in collisions with a fast highly stripped projectile, based on Olson's classical-trajectory Monte-Carlo calculations, and confirmed by measurements in an H 2 target. We have found a similar scaling rule for net ionization of rare-gas targets, based on Olson's CTMC calculations and the independent-electron model. Measurements are essentially consistent with the scaled cross sections. Calculations and measurements of recoil-ion charge-state spectra show large cross sections for the production of highly charged slow recoil ions

  5. Numerical simulations of gas mixing effect in electron cyclotron resonance ion sources

    Directory of Open Access Journals (Sweden)

    V. Mironov

    2017-01-01

    Full Text Available The particle-in-cell Monte Carlo collisions code nam-ecris is used to simulate the electron cyclotron resonance ion source (ECRIS plasma sustained in a mixture of Kr with O_{2}, N_{2}, Ar, Ne, and He. The model assumes that ions are electrostatically confined in the ECR zone by a dip in the plasma potential. A gain in the extracted krypton ion currents is seen for the highest charge states; the gain is maximized when oxygen is used as a mixing gas. The special feature of oxygen is that most of the singly charged oxygen ions are produced after the dissociative ionization of oxygen molecules with a large kinetic energy release of around 5 eV per ion. The increased loss rate of energetic lowly charged ions of the mixing element requires a building up of the retarding potential barrier close to the ECR surface to equilibrate electron and ion losses out of the plasma. In the mixed plasmas, the barrier value is large (∼1  V compared to pure Kr plasma (∼0.01  V, with longer confinement times of krypton ions and with much higher ion temperatures. The temperature of the krypton ions is increased because of extra heating by the energetic oxygen ions and a longer time of ion confinement. In calculations, a drop of the highly charged ion currents of lighter elements is observed when adding small fluxes of krypton into the source. This drop is caused by the accumulation of the krypton ions inside plasma, which decreases the electron and ion confinement times.

  6. GAS-PHASE CHEMISTRY OF THE CYANATE ION, OCN−

    International Nuclear Information System (INIS)

    Cole, Callie A.; Wang, Zhe-Chen; Bierbaum, Veronica M.; Snow, Theodore P.

    2015-01-01

    Cyanate (OCN − ) is the only ion to date whose presence has been confirmed in the icy mantles that coat interstellar dust grains. Understanding the chemical behavior of cyanate at a fundamental level is therefore integral to the advancement of astrochemistry. We seek to unravel the chemistry of this intriguing anion through a combination of gas-phase experiments and theoretical explorations. Our approach is twofold: first, employing a flowing afterglow-selected ion flow tube apparatus, the reactions between OCN − and three of the most abundant atomic species in the interstellar medium, hydrogen, nitrogen, and oxygen, are examined. Hydrogen atoms readily react by associative detachment, but the remarkable stability of OCN − does not give rise to an observable reaction with either nitrogen or oxygen atoms. To explain these results, the potential energy surfaces of several reactions are investigated at the B3LYP/6-311++G(d,p) level of theory. Second, collision induced dissociation experiments involving deprotonated uracil, thymine, and cytosine in an ion trap mass spectrometer reveal an interesting connection between these pyrimidine nucleobase anions and OCN − . Theoretical calculations at the B3LYP/6-311++G(d,p) level of theory are performed to delineate the mechanisms of dissociation and explore the possible role of OCN − as a biomolecule precursor

  7. Mass-spectrometer MASHA - testing results on heavy ion beam

    International Nuclear Information System (INIS)

    Rodin, A.M.; Belozerov, A.V.; Vanin, D.V.; Dmitriev, S.N.; Itkis, M.G.; Kliman, J.; Krupa, L.; Lebedev, A.N.; Oganesyan, Yu.Ts.; Salamatin, V.S.; Sivachek, I.; Chernysheva, E.V.; Yukhimchuk, S.A.

    2011-01-01

    Description of mass-spectrometer MASHA, developed for the mass identification of superheavy elements, is given. The efficiency and operation speed in the off-line mode were measured with four calibrated leakages of noble gases. The total efficiency and operation speed of mass-spectrometer with hot catcher and ECR ion source were determined using the 40 Ar beam. The test experiment was carried out by measuring the alpha decay of Hg and Rn isotopes, produced in fusion reactions 40 Ar+ nat Sm→ nat-xn Hg+xn and 40 Ar+ 166 Er→ 206-xn Rn+xn, in the focal plane of mass-spectrometer. The operation speed of the given technique and relative yields of isotopes in the test reactions were determined

  8. Gas and metal ion sources

    International Nuclear Information System (INIS)

    Oaks, E.; Yushkov, G.

    1996-01-01

    The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of ∼ 10 17 cm -2 in some tens of minutes. So the average ion current density at the surface under treatment should be over 10 -5 A/cm 2 . The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from ∼1 kV (for the ion source used for surface sputtering) to ∼100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation)

  9. Towards radiocarbon dating of single foraminifera with a gas ion source

    Science.gov (United States)

    Wacker, L.; Lippold, J.; Molnár, M.; Schulz, H.

    2013-01-01

    Carbonate shells from foraminifera are often analysed for radiocarbon to determine the age of deep-sea sediments or to assess radiocarbon reservoir ages. However, a single foraminiferal test typically contains only a few micrograms of carbon, while most laboratories require more than 100 μg for radiocarbon dating with an accelerator mass spectrometry (AMS) system. The collection of the required amount of foraminifera for a single analyses is therefore time consuming and not always possible. Here, we present a convenient method to measure the radiocarbon content of foraminifera using an AMS system fitted with a gas ion source. CO2 is liberated from 150 to 1150 μg of carbonate in septum sealed vials by acid decomposition of the carbonate. The CO2 is collected on a zeolite trap and subsequently transferred to a syringe from where it is delivered to the ion source. A sample of 400 μg (50 μg C) typically gives a 12C- ion source current of 10-15 μA over 20 min, yielding a measurement precision of less than 7 per mil for a modern sample. Using this method, we were able to date a single 560 μg Cibicides pseudoungerianus test at 14,030 ± 160 radiocarbon years. Only a minor modification to our existing gas handling system was required and the system is fully automatable to further reduce the effort involved for sample preparation.

  10. Towards radiocarbon dating of single foraminifera with a gas ion source

    International Nuclear Information System (INIS)

    Wacker, L.; Lippold, J.; Molnár, M.; Schulz, H.

    2013-01-01

    Carbonate shells from foraminifera are often analysed for radiocarbon to determine the age of deep-sea sediments or to assess radiocarbon reservoir ages. However, a single foraminiferal test typically contains only a few micrograms of carbon, while most laboratories require more than 100 μg for radiocarbon dating with an accelerator mass spectrometry (AMS) system. The collection of the required amount of foraminifera for a single analyses is therefore time consuming and not always possible. Here, we present a convenient method to measure the radiocarbon content of foraminifera using an AMS system fitted with a gas ion source. CO 2 is liberated from 150 to 1150 μg of carbonate in septum sealed vials by acid decomposition of the carbonate. The CO 2 is collected on a zeolite trap and subsequently transferred to a syringe from where it is delivered to the ion source. A sample of 400 μg (50 μg C) typically gives a 12 C − ion source current of 10–15 μA over 20 min, yielding a measurement precision of less than 7 per mil for a modern sample. Using this method, we were able to date a single 560 μg Cibicides pseudoungerianus test at 14,030 ± 160 radiocarbon years. Only a minor modification to our existing gas handling system was required and the system is fully automatable to further reduce the effort involved for sample preparation.

  11. Towards radiocarbon dating of single foraminifera with a gas ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, L., E-mail: wacker@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Lippold, J. [Heidelberg Academy of Sciences, 69120 Heidelberg (Germany); Molnar, M. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Institute of Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Schulz, H. [Institute for Geosciencies, University of Tuebingen, 72076 Tuebingen (Germany)

    2013-01-15

    Carbonate shells from foraminifera are often analysed for radiocarbon to determine the age of deep-sea sediments or to assess radiocarbon reservoir ages. However, a single foraminiferal test typically contains only a few micrograms of carbon, while most laboratories require more than 100 {mu}g for radiocarbon dating with an accelerator mass spectrometry (AMS) system. The collection of the required amount of foraminifera for a single analyses is therefore time consuming and not always possible. Here, we present a convenient method to measure the radiocarbon content of foraminifera using an AMS system fitted with a gas ion source. CO{sub 2} is liberated from 150 to 1150 {mu}g of carbonate in septum sealed vials by acid decomposition of the carbonate. The CO{sub 2} is collected on a zeolite trap and subsequently transferred to a syringe from where it is delivered to the ion source. A sample of 400 {mu}g (50 {mu}g C) typically gives a {sup 12}C{sup -} ion source current of 10-15 {mu}A over 20 min, yielding a measurement precision of less than 7 per mil for a modern sample. Using this method, we were able to date a single 560 {mu}g Cibicides pseudoungerianus test at 14,030 {+-} 160 radiocarbon years. Only a minor modification to our existing gas handling system was required and the system is fully automatable to further reduce the effort involved for sample preparation.

  12. Ion-surface interaction: simulation of plasma-wall interaction (ITER)

    International Nuclear Information System (INIS)

    Salou, Pierre

    2013-01-01

    The wall materials of magnetic confinement in fusion machines are exposed to an aggressive environment; the reactor blanket is bombarded with a high flux of particles extracted from the plasma, leading to the sputtering of surface material. This sputtering causes wall erosion as well as plasma contamination problems. In order to control fusion reactions in complex reactors, it is thus imperative to well understand the plasma-wall interactions. This work proposes the study of the sputtering of fusion relevant materials. We propose to simulate the charged particles influx by few keV single-charged ion beams. This study is based on the catcher method; to avoid any problem of pollution (especially in the case of carbon) we designed a new setup allowing an in situ Auger electron spectroscopy analysis. The results provide the evolution of the angular distribution of the sputtering yield as a function of the ion mass (from helium to xenon) and its energy (from 3 keV to 9 keV). (author) [fr

  13. Site-specific fragmentation of polystyrene molecule using size-selected Ar gas cluster ion beam

    International Nuclear Information System (INIS)

    Moritani, Kousuke; Mukai, Gen; Hashinokuchi, Michihiro; Mochiji, Kozo

    2009-01-01

    The secondary ion mass spectrum (SIMS) of a polystyrene thin film was investigated using a size-selected Ar gas cluster ion beam (GCIB). The fragmentation in the SIM spectrum varied by kinetic energy per atom (E atom ); the E atom dependence of the secondary ion intensity of the fragment species of polystyrene can be essentially classified into three types based on the relationship between E atom and the dissociation energy of a specific bonding site in the molecule. These results indicate that adjusting E atom of size-selected GCIB may realize site-specific bond breaking within a molecule. (author)

  14. Study on plant concept for gas cooled fast reactor

    International Nuclear Information System (INIS)

    Moribe, Takeshi; Kubo, Shigenobu; Saigusa, Toshiie; Konomura, Mamoru

    2003-05-01

    In 'Feasibility Study on Commercialized Fast Reactor Cycle System', technological options including various coolant (sodium, heavy metal, gas, water, etc.), fuel type (MOX, metal, nitride) and output power are considered and classified, and commercialized FBR that have economical cost equal to LWR are pursued. In conceptual study on gas cooled FBR in FY 2002, to identify the prospect of the technical materialization of the helium cooled FBR using coated particle fuel which is an attractive concept extracted in the year of FY2001, the preliminary conceptual design of the core and entire plant was performed. This report summarizes the results of the plant design study in FY2002. The results of study is as follows. 1) For the passive core shutdown equipment, the curie point magnet type self-actuated device was selected and the device concept was set up. 2) For the reactor block, the concept of the core supporting structure, insulators and liners was set up. For the material of the heat resistant structure, SiC was selected as a candidate. 3) For the seismic design of the plant, it was identified that a design concept with three-dimensional base isolation could be feasible taking the severe seismic condition into account. 4) For the core catcher, an estimation of possible event sequences under severe core damage condition was made. A core catcher concept which may suit the estimation was proposed. 5) The construction cost was roughly estimated based on the amount of materials and its dependency on the plant output power was evaluated. The value for a small sized plant exceeds the target construction cost about 20%. (author)

  15. Beam cooling using a gas-filled RFQ ion guide

    CERN Document Server

    Henry, S; De Saint-Simon, M; Jacotin, M; Képinski, J F; Lunney, M D

    1999-01-01

    A radiofrequency quadrupole mass filter is being developed for use as a high-transmission beam cooler by operating it in buffer gas at high pressure. Such a device will increase the sensitivity of on-line experiments that make use of weakly produced radioactive ion beams. We present simulations and some preliminary measurements for a device designed to cool the beam for the MISTRAL RF mass spectrometer on- line at ISOLDE. The work is carried out partly within the frame of the European Community research network: EXOTRAPS. (9 refs).

  16. Probing peptide fragment ion structures by combining sustained off-resonance collision-induced dissociation and gas-phase H/D exchange (SORI-HDX) in Fourier transform ion-cyclotron resonance (FT-ICR) instruments.

    Science.gov (United States)

    Somogyi, Arpád

    2008-12-01

    The usefulness of gas-phase H/D exchange is demonstrated to probe heterogeneous fragment and parent ion populations. Singly and multiply protonated peptides/proteins were fragmented by using sustained off-resonance irradiation collision-induced dissociation (SORI-CID). The fragments and the surviving precursor ions then all undergo H/D exchange in the gas-phase with either D(2)O or CD(3)OD under the same experimental conditions. Usually, 10 to 60 s of reaction time is adequate to monitor characteristic differences in the H/D exchange kinetic rates. These differences are then correlated to isomeric ion structures. The SORI-HDX method can be used to rapidly test fragment ion structures and provides useful insights into peptide fragmentation mechanisms.

  17. Gas-phase reactions of glycine, alanine, valine and their N-methyl derivatives with the nitrosonium ion, NO+.

    Science.gov (United States)

    Freitas, M A; O'Hair, R A; Schmidt, J A; Tichy, S E; Plashko, B E; Williams, T D

    1996-10-01

    The gas-phase reactions of the nitrosonium ion, NO+ with the amino acids glycine, alanine and valine and their N-methyl derivatives were investigated under chemical ionization mass spectrometric (CIMS) conditions. Two products were observed in all cases: the formation of the iminium ion and the formation of an [M-H]+ ion. The latter product is consistent with a reaction channel involving hydride abstraction by NO+, and was confirmed by (i) examining the Ar+CI mass spectra of the same amino acids under similar source conditions and (ii) examining the unimolecular fragmentation reactions of the [M + H]+ ions of the N-nitroso-N-methyl derivatives of each of the amino acids in a tandem mass spectrometer. Further insights into the reaction of glycine with NO+ were obtained by performing ab initio calculations (at the MP2/6-31G* parallel HF/6-31G* level). These results indicate that four reactions are thermodynamically viable for glycine: (i) hydride abstraction; (ii) iminium ion formation (with concomitant loss of HONO and CO); (iii) diazonium ion formation; and (iv) diazonium ion formation followed by loss of N2. Possible reasons why reactions (iii) and (iv) are not observed are discussed, and comparisons with solution reactivity and the gas-phase reactivity of NO+ are also made.

  18. On the neutralization of noble gas ions in low energy ion scattering

    International Nuclear Information System (INIS)

    Draxler, M.

    2003-04-01

    The set-up ACOLISSA has been set to operation. It was thoroughly tested and found to completely fulfill the requirements for the measurement of charge integrated and of ion TOF-LEIS spectra. Charge integrated scattering spectra in LEIS exhibit a surface peak in many experimental conditions. It was shown that the appearance of this peak is due to a reduced energy width of the contribution from the surface layer and partly due to a reduced energy loss in the surface layer as compared to deeper layers. In the regime of strong multiple scattering, both reasons reflect the fact, that scattering from surface atoms occurs practically exclusively by single binary collisions, while plural and multiple scattering set in in the subsurface layers. As a consequence, only the surface layer and to some extent also the second layer will contribute to the surface peak. Experiment as well as simulation show this behavior, so that other possible reasons for the appearance of a surface peak (e.g. channeling) can safely be ruled out. At high energies, when the multiple scattering half width angle is small, surface effects are mainly caused by electronic stopping and become small, as observed in both, experiment and simulation. In this regime, the energy spectrum is well described by the single scattering spectrum. From the present thesis one can draw the following conclusions concerning the neutralization of noble gas ions at metal surfaces: below the threshold for collision induced processes (CIN, CIR) Ε Εth), P+ is governed by local processes (collision induced neutralization and collision induced reionization) and by a non-local process (Auger neutralization), and thus depends on the energy as well as on vperp. From experiments like the one presented here, where the ion energy as well as the scattering geometry are varied, the process parameters of the neutralization can uniquely be determined for any system. These findings are generally valid and reveal the relevance of different

  19. Brightness measurement of an electron impact gas ion source for proton beam writing applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, N.; Santhana Raman, P. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Xu, X.; Pang, R.; Kan, J. A. van, E-mail: phyjavk@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Khursheed, A. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore)

    2016-02-15

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.

  20. Spatial distribution of ion energy related on electron density in a plasma channel generated in gas clusters by a femtosecond laser

    International Nuclear Information System (INIS)

    Nam, S. M.; Han, J. M.; Cha, Y. H.; Lee, Y. W.; Rhee, Y. J.; Cha, H. K.

    2008-01-01

    Neutron generation through Coulomb explosion of deuterium contained gas clusters is known as one of the very effective methods to produce fusion neutrons using a table top terawatt laser. The energy of ions produced through Coulomb explosions is very important factor to generate neutrons efficiently. Until the ion energy reaches around∼MeV level, the D D fusion reaction probability increases exponentially. The understanding of laser beam propagation and laser energy deposition in clusters is very important to improve neutron yields. As the laser beam propagates through clusters medium, laser energy is absorbed in clusters by ionization of molecules consisting clusters. When the backing pressure of gas increases, the average size of clusters increases and which results in higher energy absorption and earlier termination of laser propagation. We first installed a Michelson interferometer to view laser beam traces in a cluster plume and to measure spatial electron density profiles of a plasma channel which was produced by a laser beam. And then we measured the energy of ions distributed along the plasma channel with a translating slit to select ions from narrow parts of a plasma channel. In our experiments, methane gas was used to produce gas clusters at a room temperature and the energy distribution of proton ions for different gas backing pressure were measured by the time of flight method using dual micro channel plates. By comparing the distribution of ion energies and electron densities, we could understand the condition for effective laser energy delivery to clusters

  1. Spin effects in the screening and Auger neutralization of He+ ions in a spin-polarized electron gas

    International Nuclear Information System (INIS)

    Alducin, M.; Diez Muino, R.; Juaristi, J.I.

    2005-01-01

    The screening of a He + ion embedded in a free electron gas is studied for different spin-polarizations of the medium. Density functional theory and the local spin density approximation are used to calculate the induced electronic density for each spin orientation, i.e. parallel or antiparallel to the spin of the electron bound to the ion. Since both the He + ion and the electron gas are spin-polarized, we analyze in detail the spin state of the screening cloud for the two different possibilities: the spin of the bound electron can be parallel to either the majority spin or the minority spin in the medium. Finally, the spin-dependent Kohn-Sham orbitals are used to calculate the Auger neutralization rate of the He + ion. The polarization of the Auger excited electron is influenced by the spin-polarization of the medium. The results are discussed in terms of the spin-dependent screening and the indistinguishability of electrons with the same spin state

  2. Swift heavy ion irradiated SnO_2 thin film sensor for efficient detection of SO_2 gas

    International Nuclear Information System (INIS)

    Tyagi, Punit; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-01-01

    Highlights: • Response of Ni"7"+ ion irradiated (100 MeV) SnO_2 film have been performed. • Effect of irradiation on the structural and optical properties of SnO_2 film is studied. • A decrease in operating temperature and increased response is seen after irradiation. - Abstract: Gas sensing response studies of the Ni"7"+ ion irradiated (100 MeV) and non-irradiated SnO_2 thin film sensor prepared under same conditions have been performed towards SO_2 gas (500 ppm). The effect of irradiation on the structural, surface morphological, optical and gas sensing properties of SnO_2 thin film based sensor have been studied. A significant decrease in operating temperature (from 220 °C to 60 °C) and increased sensing response (from 1.3 to 5.0) is observed for the sample after irradiation. The enhanced sensing response obtained for the irradiated SnO_2 thin film based sensor is attributed to the desired modification in the surface morphology and material properties of SnO_2 thin film by Ni"7"+ ions.

  3. A compact high resolution ion mobility spectrometer for fast trace gas analysis.

    Science.gov (United States)

    Kirk, Ansgar T; Allers, Maria; Cochems, Philipp; Langejuergen, Jens; Zimmermann, Stefan

    2013-09-21

    Drift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected into the drift region. In this paper, we present a refined theory of IMS operation which employs a combined approach for the analysis of the ion drift and the subsequent amplification to predict both the resolution and the SNR of the measured ion current peak. This theoretical analysis shows that the SNR is not a function of the initial ion packet width, meaning that compact drift tube IMS with both very high resolution and extremely low limits of detection can be designed. Based on these implications, an optimized combination of a compact drift tube with a length of just 10 cm and a transimpedance amplifier has been constructed with a resolution of 183 measured for the positive reactant ion peak (RIP(+)), which is sufficient to e.g. separate the RIP(+) from the protonated acetone monomer, even though their drift times only differ by a factor of 1.007. Furthermore, the limits of detection (LODs) for acetone are 180 pptv within 1 s of averaging time and 580 pptv within only 100 ms.

  4. Making channeling visible: keV noble gas ion trails on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Redinger, A; Standop, S; Michely, T [II Physikalisches Institut, Universitaet zu Koeln, D-50937 Koeln (Germany); Rosandi, Y; Urbassek, H M, E-mail: urbassek@rhrk.uni-kl.de [Fachbereich Physik und Forschungszentrum OPTIMAS, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)

    2011-01-15

    The impact of argon and xenon noble gas ions on Pt(111) in grazing incidence geometry are studied through direct comparison of scanning tunneling microscopy images and molecular dynamics simulations. The energy range investigated is 1-15 keV and the angles of incidence with respect to the surface normal are between 78.5{sup 0} and 88{sup 0}. The focus of the paper is on events where ions gently enter the crystal at steps and are guided in channels between the top most layers of the crystal. The trajectories of the subsurface channeled ions are visible as trails of surface damage. The mechanism of trail formation is analyzed using simulations and analytical theory. Significant differences between Xe{sup +} and Ar{sup +} projectiles in damage, in the onset energy of subsurface channeling as well as in ion energy dependence of trail length and appearance are traced back to the projectile and ion energy dependence of the stopping force. The asymmetry of damage production with respect to the ion trajectory direction is explained through the details of the channel shape and subchannel structure as calculated from the continuum approximation of the channel potential. Measured and simulated channel switching in directions normal and parallel to the surface as well as an increase of ions entering into channels from the perfect surface with increasing angles of incidence are discussed.

  5. Note: Buffer gas temperature inhomogeneities and design of drift-tube ion mobility spectrometers: Warnings for real-world applications by non-specialists

    Science.gov (United States)

    Fernandez-Maestre, R.

    2017-09-01

    Ion mobility spectrometry (IMS) separates gas phase ions moving under an electric field according to their size-to-charge ratio. IMS is the method of choice to detect illegal drugs and explosives in customs and airports making accurate determination of reduced ion mobilities (K0) important for national security. An ion mobility spectrometer with electrospray ionization coupled to a quadrupole mass spectrometer was used to study uncertainties in buffer gas temperatures during mobility experiments. Differences up to 16°C were found in the buffer gas temperatures in different regions of the drift tube and up to 42°C between the buffer gas and the drift tube temperatures. The drift tube temperature is used as an approximation to the buffer gas temperature for the calculation of K0 because the buffer gas temperature is hard to measure. This is leading to uncertainties in the determination of K0 values. Inaccurate determination of K0 values yields false positives that delay the cargo and passengers in customs and airports. Therefore, recommendations are issued for building mobility tubes to assure a homogeneous temperature of the buffer gas. Because the temperature and other instrumental parameters are difficult to measure in IMS, chemical standards should always be used when calculating K0. The difference of 42°C between the drift tube and buffer gas temperatures found in these experiments produces a 10.5% error in the calculation of K0. This large inaccuracy in K0 shows the importance of a correct temperature measurement in IMS.

  6. Auxiliary bearing design considerations for gas cooled reactors

    International Nuclear Information System (INIS)

    Penfield, S.R. Jr.; Rodwell, E.

    2001-01-01

    The need to avoid contamination of the primary system, along with other perceived advantages, has led to the selection of electromagnetic bearings (EMBs) in most ongoing commercial-scale gas cooled reactor (GCR) designs. However, one implication of magnetic bearings is the requirement to provide backup support to mitigate the effects of failures or overload conditions. The demands on these auxiliary or 'catcher' bearings have been substantially escalated by the recent development of direct Brayton cycle GCR concepts. Conversely, there has been only limited directed research in the area of auxiliary bearings, particularly for vertically oriented turbomachines. This paper explores the current state-of-the-art for auxiliary bearings and the implications for current GCR designs. (author)

  7. The influence of noble-gas ion bombardment on the electrical and optical properties of clean silicon surfaces

    International Nuclear Information System (INIS)

    Martens, J.W.D.

    1980-01-01

    A study of the effect of argon and helium ion bombardment on the electrical and optical properties of the clean silicon (211) surface is described. The objective of the study was to determine the effect of noble gas ions on the density of surface states at the clean silicon surface. (Auth.)

  8. Behaviour of tetraalkylammonium ions in high-field asymmetric waveform ion mobility spectrometry.

    Science.gov (United States)

    Aksenov, Alexander A; Kapron, James T

    2010-05-30

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an ion-filtering technique recently adapted for use with liquid chromatography/mass spectrometry (LC/MS) to remove interferences during analysis of complex matrices. This is the first systematic study of a series of singly charged tetraalkylammonium ions by FAIMS-MS. The compensation voltage (CV) is the DC offset of the waveform which permits the ion to emerge from FAIMS and it was determined for each member of the series under various conditions. The electrospray ionization conditions explored included spray voltage, vaporizer temperature, and sheath and auxiliary gas pressure. The FAIMS conditions explored included carrier gas flow rate, electrode temperature and composition of the carrier gas. Optimum desolvation was achieved using sufficient carrier gas (flow rate > or = 2 L/min) to ensure stable response. Low-mass ions (m/z 100-200) are more susceptible to changes in electrode temperature and gas composition than high mass ions (m/z 200-700). As a result of this study, ions are reliably analyzed using standard FAIMS conditions (dispersion voltage -5000 V, carrier gas flow rate 3 L/min, 50% helium/50%nitrogen, inner electrode temperature 70 degrees C and outer electrode temperature 90 degrees C). Variation of FAIMS conditions may be of great use for the separation of very low mass tetraalkylammonium (TAA) ions from other TAA ions. The FAIMS conditions do not appear to have a major effect on higher mass ions. Copyright 2010 John Wiley & Sons, Ltd.

  9. Study of plasma off-gas treatment from spent ion exchange resin pyrolysis.

    Science.gov (United States)

    Castro, Hernán Ariel; Luca, Vittorio; Bianchi, Hugo Luis

    2017-03-23

    Polystyrene divinylbenzene-based ion exchange resins are employed extensively within nuclear power plants (NPPs) and research reactors for purification and chemical control of the cooling water system. To maintain the highest possible water quality, the resins are regularly replaced as they become contaminated with a range of isotopes derived from compromised fuel elements as well as corrosion and activation products including 14 C, 60 Co, 90 Sr, 129 I, and 137 Cs. Such spent resins constitute a major proportion (in volume terms) of the solid radioactive waste generated by the nuclear industry. Several treatment and conditioning techniques have been developed with a view toward reducing the spent resin volume and generating a stable waste product suitable for long-term storage and disposal. Between them, pyrolysis emerges as an attractive option. Previous work of our group suggests that the pyrolysis treatment of the resins at low temperatures between 300 and 350 °C resulted in a stable waste product with a significant volume reduction (>50%) and characteristics suitable for long-term storage and/or disposal. However, another important issue to take into account is the complexity of the off-gas generated during the process and the different technical alternatives for its conditioning. Ongoing work addresses the characterization of the ion exchange resin treatment's off-gas. Additionally, the application of plasma technology for the treatment of the off-gas current was studied as an alternative to more conventional processes utilizing oil- or gas-fired post-combustion chambers operating at temperatures in excess of 1000 °C. A laboratory-scale flow reactor, using inductively coupled plasma, operating under sub-atmospheric conditions was developed. Fundamental experiments using model compounds have been performed, demonstrating a high destruction and removal ratio (>99.99%) for different reaction media, at low reactor temperatures and moderate power consumption

  10. Characterisation of an ion source on the Helix MC Plus noble gas mass spectrometer - pressure dependent mass discrimination

    Science.gov (United States)

    Zhang, X.

    2017-12-01

    Characterisation of an ion source on the Helix MC Plusnoble gas mass spectrometer - pressure dependent mass discrimination Xiaodong Zhang* dong.zhang@anu.edu.au Masahiko Honda Masahiko.honda@anu.edu.au Research School of Earth Sciences, The Australian National University, Canberra, Australia To obtain reliable measurements of noble gas elemental and isotopic abundances in a geological sample it is essential that the mass discrimination (instrument-induced isotope fractionation) of the mass spectrometer remain constant over the working range of noble gas partial pressures. It is known, however, that there are pressure-dependent variations in sensitivity and mass discrimination in conventional noble gas mass spectrometers [1, 2, 3]. In this study, we discuss a practical approach to ensuring that the pressure effect in the Helix MC Plus high resolution, multi-collector noble gas mass spectrometer is minimised. The isotopic composition of atmospheric Ar was measured under a range of operating conditions to test the effects of different parameters on Ar mass discrimination. It was found that the optimised ion source conditions for pressure independent mass discrimination for Ar were different from those for maximised Ar sensitivity. The optimisation can be achieved by mainly adjusting the repeller voltage. It is likely that different ion source settings will be required to minimise pressure-dependent mass discrimination for different noble gases. A recommended procedure for tuning an ion source to reduce pressure dependent mass discrimination will be presented. References: Honda M., et al., Geochim. Cosmochim. Acta, 57, 859 -874, 1993. Burnard P. G., and Farley K. A., Geochemistry Geophysics Geosystems, Volume 1, 2000GC00038, 2000. Mabry J., et al., Journal of Analytical Atomic Spectrometry, 27, 1012 - 1017, 2012.

  11. Spatial profiling of ion and neutral excitation in noble gas electron cyclotron resonance plasmas

    International Nuclear Information System (INIS)

    Rhoades, R.L.; Gorbatkin, S.M.

    1994-01-01

    Optical emission from neutrals and ions of several noble gases has been profiled in an electron cyclotron resonance plasma system. In argon plasmas with a net microwave power of 750 W, the neutral (696.5-nm) and ion (488-nm) emission profiles are slightly center peaked at 0.32 mTorr and gradually shift to a hollow appearance at 2.5 mTorr. Neon profiles show a similar trend from 2.5 to 10.0 mTorr. For the noble gases, transition pressure scales with the ionization potential of the gas, which is consistent with neutral depletion. Studies of noble gas mixtures, however, indicate that neutral depletion is not always dominant in the formation of hollow profiles. For Kr/Ar, Ar/Ne, and Ne/He plasmas, the majority gas tends to set the overall shape of the profile at any given pressure. For the conditions of the current system, plasma density appears to be more dominant than electron temperature in the formation of hollow profiles. The general method described is also a straightforward, inexpensive technique for measuring the spatial distribution of power deposited in plasmas, particularly where absolute scale can be calibrated by some other means

  12. Ion-stimulated gas desorption yields of coated (Au, Ag, Pd) stainless steel vacuum chambers irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Malabaila, M; Taborelli, M

    2005-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy Ion Accelerator (LINAC 3), has been used to measure molecular desorption yields for 4.2 MeV/u lead ions impacting on different accelerator-type vacuum chambers. In order to study the effect of the surface oxide layer on the gas desorption, gold-, silver-, and palladium-coated 316LN stainless steel chambers and similarly prepared samples were tested for desorption at LINAC 3 and analysed for chemical composition by X-ray Photoemission Spectroscopy (XPS). The large effective desorption yield of 2 x 10**4 molecules/ion, previously measured for uncoated, vacuum fired stainless steel, was reduced after noble metal coating by up to 2 orders of magnitude. In addition, the effectiveness of beam scrubbing with heavy ions and the consequence of a subsequent venting on the desorption yields of a beam-scrubbed vacuum chamber are described. Practical consequences for the vacuum system of the future Low Energy Ion Ring (LEIR) are discussed.

  13. Sizing of "Mother Ship and Catcher" Missions for LEO Small Debris and for GEO Large Object Capture

    Science.gov (United States)

    Bacon, John B.

    2009-01-01

    Most LEO debris lies in a limited number of inclination "bands" associated with specific useful orbits. Objects in such narrow inclination bands have all possible Right Ascensions of Ascending Node (RAANs), creating a different orbit plane for nearly every piece of debris. However, a low-orbiting satellite will always phase in RAAN faster than debris objects in higher orbits at the same inclination, potentially solving the problem. Such a low-orbiting base can serve as a "mother ship" that can tend and then send small, disposable common individual catcher/deboost devices--one for each debris object--as the facility drifts into the same RAAN as each higher object. The dV necessary to catch highly-eccentric orbit debris in the center of the band alternatively allows the capture of less-eccentric debris in a wider inclination range around the center. It is demonstrated that most LEO hazardous debris can be removed from orbit in three years, using a single LEO launch of one mother ship--with its onboard magazine of freeflying low-tech catchers--into each of ten identified bands, with second or potentially third launches into only the three highest-inclination bands. The nearly 1000 objects near the geostationary orbit present special challenges in mass, maneuverability, and ultimate disposal options, leading to a dramatically different architecture and technology suite than the LEO solution. It is shown that the entire population of near-GEO derelict objects can be gathered and tethered together within a 3 year period for future scrap-yard operations using achievable technologies and only two earth launches.

  14. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    Science.gov (United States)

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  15. Evaluation of off-gas characteristics in vitrification process of ion-exchange resin

    International Nuclear Information System (INIS)

    Park, S. C.; Kim, H. S.; Yang, K. H.; Yun, C. H.; Hwang, T. W.; Shin, S. W.

    2001-01-01

    The properties of off-gas generated from vitrification process of ion-exchange resin were characterized. Theoretical composition and flow rate of the off-gas were calculated based on chemical composition of resin and it's burning condition inside CCM. The calculated off-gas flow rate was 67.9 Nm 3 /h at the burning rate of 40 kg/h. And the composition of off-gas was evaluated as CO 2 (41.4%), Steam (40.0%), O 2 (13.3%), NO (3.6%), and SO 2 (1.6%) in order. Then, actual flow rate and composition of off-gas were measured during pilot-scale demonstration tests and the results were compared with theoretical values. The actual flow rate of off-gas was about 1.6 times higher than theoretical one. The difference between theoretical and actual flow rates was caused by the in-leakage of air to the system, and the in-leakage rate was evaluated as 36.3 Nm 3 /h. Because of continuous change in the combustion parameters inside CCM, during demonstration tests, the concentration of toxic gases showed wide fluctuation. However, the concentration of CO, a barometer of incompleteness of combustion inside CCM, was stabilized soon. The result showed quasi-equilibrium state was achieved two hours after feeding of resin. (author)

  16. Ion source with plasma cathode

    International Nuclear Information System (INIS)

    Yabe, E.

    1987-01-01

    A long lifetime ion source with plasma cathode has been developed for use in ion implantation. In this ion source, a plasma of a nonreactive working gas serves as a cathode in place of a thermionic tungsten filament used in the Freeman ion source. In an applied magnetic field, the plasma is convergent, i.e., filamentlike; in zero magnetic field, it turns divergent and spraylike. In the latter case, the plasma exhibits a remarkable ability when the working gas has an ionization potential larger than the feed gas. By any combination of a working gas of either argon or neon and a feed gas of AsF 5 or PF 5 , the lifetime of this ion source was found to be more than 90 h with an extraction voltage of 40 kV and the corresponding ion current density 20 mA/cm 2 . Mass spectrometry results show that this ion source has an ability of generating a considerable amount of As + and P + ions from AsF 5 and PF 5 , and hence will be useful for realizing a fully cryopumped ion implanter system. This ion source is also eminently suitable for use in oxygen ion production

  17. The effect of ion irradiation on inert gas bubble mobility

    International Nuclear Information System (INIS)

    Alexander, D.E.; Birtcher, R.C.

    1991-09-01

    The effect of Al ion irradiation on the mobility of Xe gas bubbles in Al thin films was investigated. Transmission electron microscopy was used to determine bubble diffusivities in films irradiated and/or annealed at 673K, 723K and 773K. Irradiation increased bubble diffusivity by a factor of 2--9 over that due to thermal annealing alone. The Arrhenius behavior and dose rate dependence of bubble diffusivity are consistent with a radiation enhanced diffusion phenomenon affecting a volume diffusion mechanism of bubble transport. 9 refs., 3 figs., 2 tabs

  18. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    Science.gov (United States)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  19. Habits and customs of crab catchers in southern Bahia, Brazil.

    Science.gov (United States)

    Firmo, Angélica M S; Tognella, Mônica M P; Tenório, Gabrielle D; Barboza, Raynner R D; Alves, Rômulo R N

    2017-08-23

    Brazilian mangrove forests are widely distributed along the coast and exploited by groups of people with customs and habits as diverse as the biology of the mangrove ecosystems. This study identifies different methods of extracting crabs that inhabit the mangrove belts; some of these activities, such as catching individual crabs by hand, are aimed at maintaining natural stocks of this species in Mucuri (south Bahia), Brazil. In the studied community, illegal hunting activities that violate Brazilian legislation limiting the use of tangle-netting in mangrove ecosystem were observed. According to our observations, fishermen, to catch individual crabs, use the tangle-netting technique seeking to increase income and are from families that have no tradition of extraction. This analysis leads us to conclude that catchers from economically marginalised social groups enter mangroves for purposes of survival rather than for purposes of subsistence, because the catching by tangle-netting is a predatory technique. Tangle-netting  technique increase caught but also increases their mortality rate. We emphasise that traditional catching methods are unique to Brazil and that manual capturing of crab should be preserved through public policies aimed at maintaining the crab population.

  20. Study of rare-gas dimer ions by the variational cellular method

    International Nuclear Information System (INIS)

    Wentzcovitch, R.M.M.

    1982-01-01

    The Variational Cellular Method to study ionized molecules in their ground and excited states with the scope of testing the validity of such method in these cases have been used. The ions studied are Ne +2 , Ar +2 , where the latter is the system with the largest number of electrons tested by VCM so far. The electronic transitions in these systems are important mechanisms of efficiency decay for the noble gas halide lasers ('excimer lasers'). (Author) [pt

  1. The ion-acoustic soliton: A gas-dynamic viewpoint

    Science.gov (United States)

    McKenzie, J. F.

    2002-03-01

    The properties of fully nonlinear ion-acoustic solitons are investigated by interpreting conservation of total momentum as the structure equation for the proton flow in the wave. In most studies momentum conservation is regarded as the first integral of the Poisson equation for the electric potential and is interpreted as being analogous to a particle moving in a pseudo-potential well. By adopting an essentially gas-dynamic viewpoint, which emphasizes momentum conservation and the properties of the Bernoulli-type energy equations, the crucial role played by the proton sonic point becomes apparent. The relationship (implied by energy conservation) between the electron and proton speeds in the transition yields a locus—the hodograph of the system-which shows that, in the first half of the soliton, the electrons initially lag behind the protons until the charge neutral point is reached, after which they run ahead of the protons. The system reaches an equilibrium point (the center of the soliton) before the proton flow goes sonic. It follows that the critical ion-acoustic Mach number, Mc, above which smooth, continuous solitons cannot be constructed, stems from the requirement that the two equilibrium points of the structure equation coalesce at the proton sonic point of the flow. In general the range of the ion-acoustic Mach numbers, Mep, in which solitons exist, is extended beyond the classical range 1ion-acoustic Mach number, can be between 1.3kTe and 10kTe depending upon the values of the adiabatic indices of the electrons and protons and the proton Mach number.

  2. Gas discharge ion source. II. Duopigatron

    International Nuclear Information System (INIS)

    Bacon, F.M.; Bickes, R.W. Jr.; O'Hagan, J.B.

    1978-01-01

    Ion source performance characteristics consisting of total ion current, ion energy distribution, mass distribution, and ion current density distribution have been measured for several models of a duopigatron. Variations on the duopigatron design involved plasma expansion cup material and dimensions, secondary cathode material, and interelectrode spacings. Of the designs tested, the one with a copper and molybdenum secondary cathode, and a mild steel plasma expansion cup proved to give the best results. The ion current density distribution was peaked at the center of the plasma expansion cup and fell off to 80% of the peak value at the cup wall for a cup 15.2 mm deep. A total ion current of 180 mA consisting of 60%-70% atomic ions was produced with an arc current of 20 A and source pressure of 9.3 Pa. More shallow cups produced a larger beam current and a more sharply peaked ion current density distribution. Typical ion energy distributions were bellshaped curves with a peak 10-20 V below anode potential and with ion energies extending 30-40 V on either side of the peak

  3. The ion-acoustic soliton: A gas-dynamic viewpoint

    International Nuclear Information System (INIS)

    McKenzie, J.F.

    2002-01-01

    The properties of fully nonlinear ion-acoustic solitons are investigated by interpreting conservation of total momentum as the structure equation for the proton flow in the wave. In most studies momentum conservation is regarded as the first integral of the Poisson equation for the electric potential and is interpreted as being analogous to a particle moving in a pseudo-potential well. By adopting an essentially gas-dynamic viewpoint, which emphasizes momentum conservation and the properties of the Bernoulli-type energy equations, the crucial role played by the proton sonic point becomes apparent. The relationship (implied by energy conservation) between the electron and proton speeds in the transition yields a locus--the hodograph of the system-which shows that, in the first half of the soliton, the electrons initially lag behind the protons until the charge neutral point is reached, after which they run ahead of the protons. The system reaches an equilibrium point (the center of the soliton) before the proton flow goes sonic. It follows that the critical ion-acoustic Mach number, M c , above which smooth, continuous solitons cannot be constructed, stems from the requirement that the two equilibrium points of the structure equation coalesce at the proton sonic point of the flow. In general the range of the ion-acoustic Mach numbers, M ep , in which solitons exist, is extended beyond the classical range 1 ep 2 shaped pulses characteristic of weakly nonlinear waves and shows that solitons exist only if 1 ep e and 10kT e depending upon the values of the adiabatic indices of the electrons and protons and the proton Mach number

  4. A tetrapositive metal ion in the gas phase: Thorium(IV) coordinated by neutral tridentate ligands

    International Nuclear Information System (INIS)

    Gong, Yu; Tian, Guoxin; Rao, Linfeng; Gibson, John K.; Hu, Han-Shi; Li, Jun

    2013-01-01

    Sheltering thorium ions: A Th 4+ ion supported by three neutral tetramethyl-3-oxaglutaramide ligands (L=TMOGA) is produced in the gas phase by electrospray ionization. The thorium in chiral Th(L) 3 4+ is coordinated by nine oxygen atoms. Quantum chemical studies revealed a decrease in Th-O binding energies and bond orders and an increase in bond lengths, as the number of coordinating ligands increases. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. A tetrapositive metal ion in the gas phase: Thorium(IV) coordinated by neutral tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Tian, Guoxin; Rao, Linfeng; Gibson, John K. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Hu, Han-Shi [Department of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University (China); Li, Jun [Department of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University (China); William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (United States)

    2013-07-01

    Sheltering thorium ions: A Th{sup 4+} ion supported by three neutral tetramethyl-3-oxaglutaramide ligands (L=TMOGA) is produced in the gas phase by electrospray ionization. The thorium in chiral Th(L){sub 3}{sup 4+} is coordinated by nine oxygen atoms. Quantum chemical studies revealed a decrease in Th-O binding energies and bond orders and an increase in bond lengths, as the number of coordinating ligands increases. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Characteristics of the magnetic wall reflection model on ion acceleration in gas-puff z pinch

    International Nuclear Information System (INIS)

    Nishio, M.; Takasugi, K.

    2013-01-01

    The magnetic wall reflection model was examined with the numerical simulation of the trajectory calculation of particles. This model is for the ions accelerated by some current-independent mechanism. The trajectory calculation showed angle dependency of highest velocities of accelerated particles. This characteristics is of the magnetic wall reflection model, not of the other current-independent acceleration mechanism. Thomson parabola measurements of accelerated ions produced in the gas-puff z-pinch experiments were carried out for the verification of the angle dependency. (author)

  7. High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets

    Science.gov (United States)

    Alejo, A.; Krygier, A. G.; Ahmed, H.; Morrison, J. T.; Clarke, R. J.; Fuchs, J.; Green, A.; Green, J. S.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.; Kar, S.

    2017-06-01

    A forwardly-peaked bright neutron source was produced using a laser-driven, deuteron-rich ion beam in a pitcher-catcher scenario. A proton-free ion source was produced via target normal sheath acceleration from Au foils having a thin layer of D2O ice at the rear side, irradiated by sub-petawatt laser pulses (˜200 J, ˜750 fs) at peak intensity ˜ 2× {10}20 {{W}} {{cm}}-2. The neutrons were preferentially produced in a beam of ˜70° FWHM cone along the ion beam forward direction, with maximum energy up to ˜40 MeV and a peak flux along the axis ˜ 2× {10}9 {{n}} {{sr}}-1 for neutron energy above 2.5 MeV. The experimental data is in good agreement with the simulations carried out for the d(d,n)3He reaction using the deuteron beam produced by the ice-layered target.

  8. Gas discharge ion source. I. Duoplasmatron

    International Nuclear Information System (INIS)

    Bacon, F.M.

    1978-01-01

    The effects of the plasma expansion cup on the operation of a duoplasmatron ion source have been investigated by measuring the total ion current and the distributions of the ion energy, mass, and current density. A copper expansion cup did not affect the magnetic field near the anode of the ion source and consequently the ion current density distribution was sharply peaked near the center of the cup. Ion energy distributions were approximately symmetrical about anode potential. The dominant ionic species were D + 3 and D + at low and high arc currents, respectively. Changes in the electrical potential of the copper cup with respect to the anode produced negligible changes in the above data. A mild steel plasma expansion cup caused the magnetic field to diverge and intercept the cup walls, resulting in ion current density distributions that were flatter and more amenable to focusing than the ones with the copper cup. With the steel cup at anode potential, the ion mass distribution was similar to that from the copper cup; however, the ion energy distribution was asymmetrical about the anode potential with a peak about 10-20 V above anode potential. The total ion current from this mode of operation was about one-third the value from the copper cup. If the steel cup assumed floating potential, about 50 V below anode potential, the total current increased to the level observed from the copper cup and the ion energy distribution was similar to that observed with the copper cup but the current density distribution was much flatter than that of the copper cup. The ion mass distribution was 60%-70% atomic ions over the entire arc current range investigated. Based on these data, a modified plasma expansion cup was designed with tapered steel walls lined with a boron nitride insert. The overall performance of the duoplasmatron ion source with this cup was superior to any of the previous three modes of operation

  9. Ion-cyclotron-resonance- and Fourier-transform-ion-cyclotron-resonance spectroscopy: technology and application

    International Nuclear Information System (INIS)

    Luederwald, I.

    1977-01-01

    Instrumentation and technology of Ion-Cyclotron-Resonance and Fourier-Transform-Ion-Cyclotron-Resonance Spectroscopy are described. The method can be applied to studies of ion/molecule reactions in gas phase, to obtain thermodynamic data as gas phase acidity or basicity, proton and electron affinity, and to establish reaction mechanisms and ion structures. (orig.) [de

  10. Reactivity and selectivity of the electrophile aromatic substitution in the gas phase by positive 80Br and 125I decay ions

    International Nuclear Information System (INIS)

    Knust, E.J.

    1975-02-01

    The nuclear isomeric transition sup(80m)Br(IT) 80 Br or the electron capture decay 125 Xe(EC) 125 I in the presence of high concentrations of a noble gas such as Ar or Xe are suitable for the study of the electrophilic substitution of bromium or iodonium ions in the gas phase. By using this nuclear method, which, unlike physical methods, also allows the determination of the isomer distribution, the electrophilic aromatic bromation and iodation of mono-substituted benzene compounds through unsolvated positive bromine or iodine ions could be investigated for the first time using radio-gas chromatographic techniques. (orig./LH) [de

  11. GAS-PHASE CHEMISTRY OF THE CYANATE ION, OCN{sup −}

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Callie A.; Wang, Zhe-Chen; Bierbaum, Veronica M. [Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, CO 80309 (United States); Snow, Theodore P. [Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309 (United States)

    2015-10-10

    Cyanate (OCN{sup −}) is the only ion to date whose presence has been confirmed in the icy mantles that coat interstellar dust grains. Understanding the chemical behavior of cyanate at a fundamental level is therefore integral to the advancement of astrochemistry. We seek to unravel the chemistry of this intriguing anion through a combination of gas-phase experiments and theoretical explorations. Our approach is twofold: first, employing a flowing afterglow-selected ion flow tube apparatus, the reactions between OCN{sup −} and three of the most abundant atomic species in the interstellar medium, hydrogen, nitrogen, and oxygen, are examined. Hydrogen atoms readily react by associative detachment, but the remarkable stability of OCN{sup −} does not give rise to an observable reaction with either nitrogen or oxygen atoms. To explain these results, the potential energy surfaces of several reactions are investigated at the B3LYP/6-311++G(d,p) level of theory. Second, collision induced dissociation experiments involving deprotonated uracil, thymine, and cytosine in an ion trap mass spectrometer reveal an interesting connection between these pyrimidine nucleobase anions and OCN{sup −}. Theoretical calculations at the B3LYP/6-311++G(d,p) level of theory are performed to delineate the mechanisms of dissociation and explore the possible role of OCN{sup −} as a biomolecule precursor.

  12. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.

    Science.gov (United States)

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  13. Development of Functional Surfaces on High-Density Polyethylene (HDPE) via Gas-Assisted Etching (GAE) Using Focused Ion Beams.

    Science.gov (United States)

    Sezen, Meltem; Bakan, Feray

    2015-12-01

    Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.

  14. Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas

    International Nuclear Information System (INIS)

    Gentile, C.A.; Blanchard, W.R.; Kozub, T.; Priniski, C.; Zatz, I.; Obenschain, S.

    2009-01-01

    It has been shown that post detonation energetic helium ions can drastically reduce the useful life of the (dry) first wall of an IFE reactor due to the accumulation of implanted helium. For the purpose of attenuating energetic helium ions from interacting with first wall components in the Fusion Test Facility (FTF) target chamber, several concepts have been advanced. These include magnetic intervention (MI), deployment of a dynamically moving first wall, use of a sacrificial shroud, designing the target chamber large enough to mitigate the damage caused by He ions on the target chamber wall, and the use of a low pressure noble gas resident in the target chamber during pulse power operations. It is proposed that employing a low-pressure (∼ 1 torr equivalent) noble gas in the target chamber will thermalize energetic helium ions prior to interaction with the wall. The principle benefit of this concept is the simplicity of the design and the utilization of (modified) existing technologies for pumping and processing the noble ambient gas. Although the gas load in the system would be increased over other proposed methods, the use of a 'gas shield' may provide a cost effective method of greatly extending the first wall of the target chamber. An engineering study has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the FTF.

  15. Effects of oxygen gas flow rate and ion beam plasma conditions on the opto-electronic properties of indium molybdenum oxide films fabricated by ion beam-assisted evaporation

    International Nuclear Information System (INIS)

    Kuo, C.C.; Liu, C.C.; Lin, C.C.; Liou, Y.Y.; He, J.L.; Chen, F.S.

    2008-01-01

    The purpose of the present work is to experimentally study the effects of the oxygen gas flow rate and ion beam plasma conditions on the properties of indium molybdenum oxide (IMO) films deposited onto the polyethersulfone (PES) substrate. Crystal structure, surface morphology, and optoelectronic properties of IMO films are examined as a function of oxygen gas flow rate and ion beam discharge voltage. Experimental results show that the IMO films consist of a cubic bixbyite B-In 2 O 3 single phase with its crystal preferred orientation alone B(222). Mo 6+ ions are therefore considered to partially substitute In 3+ sites in the deposit. Under-controlled ion bombardment during deposition enhances the reaction among those arriving oxygen and metal ion species to condense into IMO film and facilitates a decreased surface roughness of IMO film. The film with ultimate crystallinity and the lowest surface roughness is obtained when the oxygen flow rate of 3 sccm and the discharge voltage of 110 V are employed. This results in the lowest electrical resistivity due mainly to the increased Hall mobility and irrelevant to carrier concentration. The lowest electrical resistivity of 8.63 x 10 -4 ohm-cm with a 84.63% transmittance at a wavelength of 550 nm can be obtained, which satisfies the requirement of a flexible transparent conductive polymer substrate

  16. Numerical Simulation of Ion Transport in a Nano-Electrospray Ion Source at Atmospheric Pressure

    Science.gov (United States)

    Wang, Wei; Bajic, Steve; John, Benzi; Emerson, David R.

    2018-03-01

    Understanding ion transport properties from the ion source to the mass spectrometer (MS) is essential for optimizing device performance. Numerical simulation helps in understanding of ion transport properties and, furthermore, facilitates instrument design. In contrast to previously reported numerical studies, ion transport simulations in a continuous injection mode whilst considering realistic space-charge effects have been carried out. The flow field was solved using Reynolds-averaged Navier-Stokes (RANS) equations, and a particle-in-cell (PIC) method was applied to solve a time-dependent electric field with local charge density. A series of ion transport simulations were carried out at different cone gas flow rates, ion source currents, and capillary voltages. A force evaluation analysis reveals that the electric force, the drag force, and the Brownian force are the three dominant forces acting on the ions. Both the experimental and simulation results indicate that cone gas flow rates of ≤250 slph (standard liter per hour) are important for high ion transmission efficiency, as higher cone gas flow rates reduce the ion signal significantly. The simulation results also show that the ion transmission efficiency reduces exponentially with an increased ion source current. Additionally, the ion loss due to space-charge effects has been found to be predominant at a higher ion source current, a lower capillary voltage, and a stronger cone gas counterflow. The interaction of the ion driving force, ion opposing force, and ion dispersion is discussed to illustrate ion transport mechanism in the ion source at atmospheric pressure. [Figure not available: see fulltext.

  17. Determination of clebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry.

    Science.gov (United States)

    Robinson, P R; Jones, M D; Maddock, J

    1988-11-18

    A procedure for the analysis of clebopride in plasma using capillary gas chromatography-negative-ion chemical ionization mass spectrometry has been developed. Employing an ethoxy analogue as internal standard, the two compounds were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyryl imidazole produced volatile monoheptafluorobutyryl derivatives whose ammonia negative-ion mass spectra proved ideal for selected-ion monitoring. The recovery of clebopride from plasma at 0.536 nmol/l was found to be 85.5 +/- 0.9% (n = 3) whilst measurement down to 0.268 nmol/l was possible with a coefficient of variation of 7.9%. Plasma levels of the compound are reported in two volunteers following ingestion of 1 mg of clebopride as the malate salt.

  18. The Influence of Drift Gas Composition on the Separation Mechanism in Traveling Wave Ion Mobility Spectrometry: Insight from Electrodynamic Simulations.

    Science.gov (United States)

    May, Jody C; McLean, John A

    2003-06-01

    The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations.

  19. [Determination a variety of acidic gas in air of workplace by Ion Chromatography].

    Science.gov (United States)

    Li, Shiyong

    2014-10-01

    To establish a method for determination of a variety of acid gas in the workplace air by Ion Chromatography. (hydrofluoric acid, hydrogen chloride or hydrochloric acid, sulfur anhydride or sulfuric acid, phosphoric acid, oxalic acid). The sample in workplace air was collected by the porous glass plate absorption tube containing 5 ml leacheate. (Sulfuric acid fog, phosphoric acid aerosol microporous membrane after collection, eluted with 5 ml of eluent.) To separated by AS14+AG14 chromatography column, by carbonate (2.0+1.0) mmol/L (Na(2)CO(3)-NaHCO(3)) as eluent, flow rate of 1 ml/min, then analyzed by electrical conductivity detector. The retain time was used for qualitative and the peak area was used for quantitation. The each ion of a variety of acid gas in the air of workplace were excellent in carbonate eluent separation. The linear range of working curve of 0∼20 mg/L. The correlation coefficient r>0.999; lower detection limit of 3.6∼115 µg/L; quantitative limit of 0.012∼0.53 mg/L; acquisition of 15L air were measured, the minimum detection concentration is 0.004 0∼0.13 mg/m(3). The recovery rate is 99.7%∼101.1%. In the sample without mutual interference ions. Samples stored at room temperature for 7 days. The same analysis method, the detection of various acidic gases in the air of workplace, simple operation, good separation effect, high sensitivity, high detection efficiency, easy popularization and application.

  20. Smoothing of ZnO films by gas cluster ion beam

    International Nuclear Information System (INIS)

    Chen, H.; Liu, S.W.; Wang, X.M.; Iliev, M.N.; Chen, C.L.; Yu, X.K.; Liu, J.R.; Ma, K.; Chu, W.K.

    2005-01-01

    Planarization of wide-band-gap semiconductor ZnO surface is crucial for thin-film device performance. In this study, the rough initial surfaces of ZnO films deposited by r.f. magnetron sputtering on Si substrates were smoothed by gas cluster ion beams. AFM measurements show that the average surface roughness (R a ) of the ZnO films could be reduced considerably from 16.1 nm to 0.9 nm. Raman spectroscopy was used to monitor the structure of both the as-grown and the smoothed ZnO films. Rutherford back-scattering in combination with channeling effect was used to study the damage production induced by the cluster bombardment

  1. Swift heavy ion irradiated SnO{sub 2} thin film sensor for efficient detection of SO{sub 2} gas

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Punit; Sharma, Savita [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Department of Physics, Miranda House, University of Delhi, Delhi 110007 (India); Singh, Fouran [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110067 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2016-07-15

    Highlights: • Response of Ni{sup 7+} ion irradiated (100 MeV) SnO{sub 2} film have been performed. • Effect of irradiation on the structural and optical properties of SnO{sub 2} film is studied. • A decrease in operating temperature and increased response is seen after irradiation. - Abstract: Gas sensing response studies of the Ni{sup 7+} ion irradiated (100 MeV) and non-irradiated SnO{sub 2} thin film sensor prepared under same conditions have been performed towards SO{sub 2} gas (500 ppm). The effect of irradiation on the structural, surface morphological, optical and gas sensing properties of SnO{sub 2} thin film based sensor have been studied. A significant decrease in operating temperature (from 220 °C to 60 °C) and increased sensing response (from 1.3 to 5.0) is observed for the sample after irradiation. The enhanced sensing response obtained for the irradiated SnO{sub 2} thin film based sensor is attributed to the desired modification in the surface morphology and material properties of SnO{sub 2} thin film by Ni{sup 7+} ions.

  2. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yun, E-mail: caoyun@impcas.ac.cn; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2014-02-15

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gas was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  3. Multiline digital radiographic imager study with synchronization to detector gas ion drift

    International Nuclear Information System (INIS)

    Peyret, O.

    1985-01-01

    This direct digital radiographic imager is based on X-ray detection in high pressure rare gas ionization chamber. This linear multidetector, from which scanning radiography is realized, records many lines together. Spatial resolution performance in scanning direction are made sure by scanning synchronization with ion drift in detector. After a physical study and a potential evaluation of its performances on mock-up, a 128 cell prototype has been realized. The first images give validation and limits of such a radiographic process [fr

  4. Direct measurement of the concentration of metastable ions produced from neutral gas particles using laser-induced fluorescence

    Science.gov (United States)

    Chu, Feng; Skiff, Fred; Berumen, Jorge; Mattingly, Sean; Hood, Ryan

    2017-10-01

    Extensive information can be obtained on wave-particle interactions and wave fields by direct measurement of perturbed ion distribution functions using laser-induced fluorescence (LIF). For practical purposes, LIF is frequently performed on metastables that are produced from neutral gas particles and existing ions in other electronic states. We numerically simulate the ion velocity distribution measurement and wave-detection process using a Lagrangian model for the LIF signal. The results show that under circumstances where the metastable ion population is coming directly from the ionization of neutrals (as opposed to the excitation of ground-state ions), the velocity distribution will only faithfully represent processes which act on the ion dynamics in a time shorter than the metastable lifetime. Therefore, it is important to know the ratio of metastable population coming from neutrals to that from existing ions to correct the LIF measurements of plasma ion temperature and electrostatic waves. In this paper, we experimentally investigate the ratio of these two populations by externally launching an ion acoustic wave and comparing the wave amplitudes that are measured with LIF and a Langmuir probe using a lock-in amplifier. DE-FG02-99ER54543.

  5. Relationship of Ambient Atmosphere and Biological Aerosol Responses from a Fielded Pyrolysis-Gas Chromatography-Ion Mobility Spectrometry Bioanalytical Detector

    National Research Council Canada - National Science Library

    Snyder, A

    2003-01-01

    .... A pyrolysis-gas chromatography-ion mobility spectrometry stand-alone bioaerosol system was interfaced to an aerosol concentrator to collect ambient background aerosols and produce bioanalytical...

  6. A new ppb-gas analyzer by means of GC-ion mobility spectrometry (GC-IMS)

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    2003-01-01

    IMS-detectors are using beta-sources like tritium or nickel-63. This detection principle uses fast ion-molecular reactions between air cluster ions, produced by beta ionization and the analyte. The system works at normal pressure, the very high sensitivity and selectivity is used widely in industry, research, medicine and environmental control. In the last few years especially, small tritium sources were reduced to a level of some 50 MBq, which is 20 times less than the exemption levels for these sources. One of the handicaps of that technology is the problem of cross sensitivities. To overcome these problems a special GC-column of 1 m length has been included into the gas inlet and mixtures of compounds get separated by their retention times before entering the drift sensor. By means of that method a new analytical quality of IMS is arrived. The application of these analytical devices got a spin off in the last year. The main applications being discussed are as follows: (1) anti terror systems in buildings and facilities, (2) working place monitoring in chemical industry, (3) microelectronics: HF, HCl, Cl 2 , NMP, NH 3 , NO 2 , SO 2 , (4) environment: NH 3 , HCN, HCl, CH 2 O, organic compounds, SO 2 , NO 2 , (5) gas and petrol: gas-carottage, H 2 S, mercaptans, (6) household, furniture: solvents, clue, organic vapour from furniture, and (7) health care: diagnostics of various diseases. (author)

  7. Multicharged heavy ion production process and ion sources in impulse regime allowing the operation of the process

    International Nuclear Information System (INIS)

    Jacquot, B.

    1985-01-01

    The present invention is concerned with a production process of multicharged ions of elements choosen in the following group carbon, nitrogen, oxygen, neon and argon in a ion source in impulse regime; the process is characterized in that the gas introduced in the ion souce enclosure is a gas mixture in a non-critical proportion (about 50% in partial pressure) of a first gas choosen among helium, nitrogen and oxygen and a second gas choosen in the group comprising carbon, nitrogen, oxygen, neon and argon. This process allows to grow current intensity of heavy ions more than 10 times. The invention is also concerned with a ion source in impulse regime; it is characterized in that it comprises an enclosure related to two gas entrances, provided with a valve controlled by pressure measurement in the enclosure [fr

  8. The neon gas field ion source-a first characterization of neon nanomachining properties

    International Nuclear Information System (INIS)

    Livengood, Richard H.; Tan, Shida; Hallstein, Roy; Notte, John; McVey, Shawn; Faridur Rahman, F.H.M.

    2011-01-01

    At the Charged Particle Optics Conference (CPO7) in 2006, a novel trimer based helium gas field ion source (GFIS) was introduced for use in a new helium ion microscope (HIM), demonstrating the novel source performance attributes and unique imaging applications of the HIM (Hill et al., 2008 ; Livengood et al., 2008 ). Since that time there have been numerous enhancements to the HIM source and platform demonstrating resolution scaling into the sub 0.5 nm regime (Scipioni et al., 2009 ; Pickard et al., 2010 ). At this Charged Particle Optics Conference (CPO8) we will be introducing a neon version of the trimer-GFIS co-developed by Carl Zeiss SMT and Intel Corporation. The neon source was developed as a possible supplement to the gallium liquid metal ion source (LMIS) used today in most focused ion beam (FIB) systems (Abramo et al., 1994 ; Young et al.,1998 ). The neon GFIS source has low energy spread (∼1 eV) and a small virtual source size (sub-nanometer), similar to that of the helium GFIS. However neon does differ from the helium GFIS in two significant ways: neon ions have high sputtering yields (e.g. 1 Si atom per incident ion at 20 keV); and have relatively shallow implant depth (e.g. 46 nm in silicon at 20 keV). Both of these are limiting factors for helium in many nanomachining applications. In this paper we will present both simulation and experimental results of the neon GFIS used for imaging and nanomachining applications.

  9. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    Science.gov (United States)

    Musket, R. G.

    1989-04-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation, and hydrogen embrittlement. In particular, the results of the reviewed studies are (a) uranium hydriding suppressed by implantation of oxygen and carbon, (b) hydrogen gettered in iron and nickel using implantation of titanium, (c) hydriding of titanium catalyzed by implanted palladium, (d) tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and (e) hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals.

  10. Gas lasers applied atomic collision physics, v.3

    CERN Document Server

    McDaniel, E W

    1982-01-01

    Applied Atomic Collision Physics, Volume 3: Gas Lasers describes the applications of atomic collision physics in the development of many types of gas lasers. Topics covered range from negative ion formation in gas lasers to high-pressure ion kinetics and relaxation of molecules exchanging vibrational energy. Ion-ion recombination in high-pressure plasmas is also discussed, along with electron-ion recombination in gas lasers and collision processes in chemical lasers.Comprised of 14 chapters, this volume begins with a historical summary of gas laser developments and an overview of the basic ope

  11. Improving quantitative gas chromatography-electron ionization mass spectrometry results using a modified ion source: demonstration for a pharmaceutical application.

    Science.gov (United States)

    D'Autry, Ward; Wolfs, Kris; Hoogmartens, Jos; Adams, Erwin; Van Schepdael, Ann

    2011-07-01

    Gas chromatography-mass spectrometry is a well established analytical technique. However, mass spectrometers with electron ionization sources may suffer from signal drifts, hereby negatively influencing quantitative performance. To demonstrate this phenomenon for a real application, a static headspace-gas chromatography method in combination with electron ionization-quadrupole mass spectrometry was optimized for the determination of residual dichloromethane in coronary stent coatings. Validating the method, the quantitative performance of an original stainless steel ion source was compared to that of a modified ion source. Ion source modification included the application of a gold coating on the repeller and exit plate. Several validation aspects such as limit of detection, limit of quantification, linearity and precision were evaluated using both ion sources. It was found that, as expected, the stainless steel ion source suffered from signal drift. As a consequence, non-linearity and high RSD values for repeated analyses were obtained. An additional experiment was performed to check whether an internal standard compound would lead to better results. It was found that the signal drift patterns of the analyte and internal standard were different, consequently leading to high RSD values for the response factor. With the modified ion source however, a more stable signal was observed resulting in acceptable linearity and precision. Moreover, it was also found that sensitivity improved compared to the stainless steel ion source. Finally, the optimized method with the modified ion source was applied to determine residual dichloromethane in the coating of coronary stents. The solvent was detected but found to be below the limit of quantification. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Computer experiments on ion beam cooling and guiding in fair-wind gas cell and extraction RF-funnel system

    International Nuclear Information System (INIS)

    Varentsov, Victor; Wada, Michiharu

    2004-01-01

    Here we present results of the further development of two novel ideas in the field of slow RI-beams production. They are a fair-wind gas cell concept for big-size high-pressure buffer gas cells and a new approach to the extraction system. For this purpose, detailed gas dynamic simulations based on the solution of a full system of time-dependent Navier-Stokes equations have been performed for both the fair-wind gas cell of 500 mm length at 1 bar helium buffer gas pressure and the RF-funnel extraction system at low buffer gas pressure. The results of gas dynamic calculations were used for detailed microscopic Monte Carlo ion-beam trajectory simulations under the combined effect of the buffer gas flow and electric fields of the RF-funnels. The obtained results made it apparent that the use of the fair-wind gas cell concept and extraction RF-funnels look very promising for production of high-quality low-energy RI-beams

  13. Nano-Hydroxyapatite Thick Film Gas Sensors

    International Nuclear Information System (INIS)

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P.

    2011-01-01

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  14. Design and preliminary analysis of in-vessel core catcher made of high-temperature ceramics material in PWR

    International Nuclear Information System (INIS)

    Xu Hong; Ma Li; Wang Junrong; Zhou Zhiwei

    2011-01-01

    In order to protect the interior wall of pressure vessel from melting, as an additional way to external reactor vessel cooling (ERVC), a kind of in-vessel core catcher (IVCC) made of high-temperature ceramics material was designed. Through the high-temperature and thermal-resistance characteristic of IVCC, the distributing of heat flux was optimized. The results show that the downward average heat flux from melt in ceramic layer reduces obviously and the interior wall of pressure vessel doesn't melt, keeping its integrity perfectly. Increasing of upward heat flux from metallic layer makes the upper plenum structure's temperature ascend, but the temperature doesn't exceed its melting point. In conclusion, the results indicate the potential feasibility of IVCC made of high-temperature ceramics material. (authors)

  15. Magnetic behavior of Van Vleck ions and an electron gas interacting by exchange

    International Nuclear Information System (INIS)

    Palermo, L.; Silva, X.A. da.

    1980-01-01

    The magnetic behavior of a model in which Van Vleck ions, under the action of a crystal field, interacting by exchange with an electron gas is investigated. The condition of onset of ferromagnetism and the behavior of the critical temperature, band and ionic magnetizations (and susceptibilities) versus temperature, as a function of the band width, exchange interaction and the crystal field splitting energy parameters are obtained within an approximation equivalent to a molecular field formulation. (Author) [pt

  16. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  17. Metal negative ion beam extraction from a radio frequency ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, S.; Yamada, N.; Kasuya, T.; Romero, C. F. P.; Wada, M.

    2015-04-08

    A metal ion source of magnetron magnetic field geometry has been designed and operated with a Cu hollow target. Radio frequency power at 13.56 MHz is directly supplied to the hollow target to maintain plasma discharge and induce self-bias to the target for sputtering. The extraction of positive and negative Cu ion beams have been tested. The ion beam current ratio of Cu{sup +} to Ar{sup +} has reached up to 140% when Ar was used as the discharge support gas. Cu{sup −} ion beam was observed at 50 W RF discharge power and at a higher Ar gas pressure in the ion source. Improvement of poor RF power matching and suppression of electron current is indispensable for a stable Cu{sup −} ion beam production from the source.

  18. Methods of gas purification and effect on the ion composition in an RF atmospheric pressure plasma jet investigated by mass spectrometry

    International Nuclear Information System (INIS)

    Grosse-Kreul, Simon; Huebner, Simon; Schneider, Simon; Keudell, Achim von; Benedikt, Jan

    2016-01-01

    The analysis of the ion chemistry of atmospheric pressure plasmas is essential to evaluate ionic reaction pathways during plasma-surface or plasma-analyte interactions. In this contribution, the ion chemistry of a radio-frequency atmospheric pressure plasma jet (μ-APPJ) operated in helium is investigated by mass spectrometry (MS). It is found, that the ion composition is extremely sensitive to impurities such as N 2 , O 2 and H 2 O. Without gas purification, protonated water cluster ions of the form H + (H 2 O) n are dominating downstream the positive ion mass spectrum. However, even after careful feed gas purification to the sub-ppm level using a molecular sieve trap and a liquid nitrogen trap as well as operation of the plasma in a controlled atmosphere, the positive ion mass spectrum is strongly influenced by residual trace gases. The observations support the idea that species with a low ionization energy serve as a major source of electrons in atmospheric pressure helium plasmas. Similarly, the neutral density of atomic nitrogen measured by MS in a He/N 2 mixture is varying up to a factor 3, demonstrating the significant influence of impurities on the neutral species chemistry as well. (orig.)

  19. Methods of gas purification and effect on the ion composition in an RF atmospheric pressure plasma jet investigated by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grosse-Kreul, Simon; Huebner, Simon; Schneider, Simon; Keudell, Achim von; Benedikt, Jan [Ruhr-Universitaet Bochum, Institute for Experimental Physics II, Bochum (Germany)

    2016-12-15

    The analysis of the ion chemistry of atmospheric pressure plasmas is essential to evaluate ionic reaction pathways during plasma-surface or plasma-analyte interactions. In this contribution, the ion chemistry of a radio-frequency atmospheric pressure plasma jet (μ-APPJ) operated in helium is investigated by mass spectrometry (MS). It is found, that the ion composition is extremely sensitive to impurities such as N{sub 2}, O{sub 2} and H{sub 2}O. Without gas purification, protonated water cluster ions of the form H{sup +}(H{sub 2}O){sub n} are dominating downstream the positive ion mass spectrum. However, even after careful feed gas purification to the sub-ppm level using a molecular sieve trap and a liquid nitrogen trap as well as operation of the plasma in a controlled atmosphere, the positive ion mass spectrum is strongly influenced by residual trace gases. The observations support the idea that species with a low ionization energy serve as a major source of electrons in atmospheric pressure helium plasmas. Similarly, the neutral density of atomic nitrogen measured by MS in a He/N{sub 2} mixture is varying up to a factor 3, demonstrating the significant influence of impurities on the neutral species chemistry as well. (orig.)

  20. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    International Nuclear Information System (INIS)

    Musket, R.G.

    1989-01-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation and hydrogen embrittlement. In particular, the results of the reviewed studies are 1. uranium hydriding suppressed by implantation of oxygen and carbon, 2. hydrogen gettered in iron and nickel using implantation of titanium, 3. hydriding of titanium catalyzed by implanted palladium, 4. tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and 5. hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals. (orig.)

  1. Surface negative ion production in ion sources

    International Nuclear Information System (INIS)

    Belchenko, Y.

    1993-01-01

    Negative ion sources and the mechanisms for negative ion production are reviewed. Several classes of sources with surface origin of negative ions are examined in detail: surface-plasma sources where ion production occurs on the electrode in contact with the plasma, and ''pure surface'' sources where ion production occurs due to conversion or desorption processes. Negative ion production by backscattering, impact desorption, and electron- and photo-stimulated desorption are discussed. The experimental efficiencies of intense surface negative ion production realized on electrodes contacted with hydrogen-cesium or pure hydrogen gas-discharge plasma are compared. Recent modifications of surface-plasma sources developed for accelerator and fusion applications are reviewed in detail

  2. Experimental study of collective acceleration of light and heavy ions from a localized gas cloud

    International Nuclear Information System (INIS)

    Floyd, L.E. IV.

    1984-01-01

    An experimental investigation into the collective acceleration of various gaseous atoms (H, D, He, N, Ne, Ar, Kr, Xe) is presented. A localized gas cloud is formed using a fast rise puff valve immediately downstream of an intense relativistic electron beam diode. The diode consists of a tungsten needle cathode and a stainless steel anode with a hole on axis. The diode is driven by an electron beam generator system consisting of a Marx generator, Blumlein line, and transmission line transformer. It produces a 1.5 MV, 35 kA, 30 ns FWHM electrical pulse measured at the diode. The resulting electron beam has nu/γ approx. 1 and is about six times the vacuum space charge limiting current in the downstream drift chamber. Ions are produced during the impact of the electron beam with the gas cloud and are accelerated to high energy by collective effects associated with the electron beam space charge. Ion energy diagnostics include fast neutron counting, nuclear activation of stacked foils, measurement of time of flight using direct intercept current collector probes, and range/energy analysis of nuclear track plates. The principal result of the experiments was that all ion species were accelerated to a maximum velocity of 0.1c, corresponding to an energy of 4.7 MeV/nucleon. Energy spectra obtained from stacked foil activation for accelerated hydrogen and deuterium were found to be approximately exponential in character

  3. A Stylistic Analysis of Four Translations of J. D. Salinger's The Catcher in the Rye

    Directory of Open Access Journals (Sweden)

    Silva Bratož

    2004-12-01

    Full Text Available The paper looks at stylistic differences between four translations of J. D. Salinger’s Catcher in the Rye – two Slovene translations, a Serbo-Croatian, and an Italian translation. Firstly, stylistic components relevant to the novel in question are identified. In this respect, the translation of teenage speech and idiom appears to be not only the most conspicuous stylistic feature of the original but also the hardest to translate. Secondly, the ways in which the different translations have rendered certain formal and lexical features of style are compared by determining and describing their function. A large number of examples have been submitted to critical scrutiny, of which only a few representative ones are listed and explained in the paper. Finally, this paper points to some particular difficulties of the four translators in their attempts to reproduce the stylistic components of the original.

  4. Experimental study of the dissociation of 100-600 KeV hydrogen cluster ions in an argon gas target

    International Nuclear Information System (INIS)

    Chevallier, M.; Clouvas, A.; Frischkorn, H.J.; Gaillard, M.J.; Poizat, J.C.; Remillieux, J.

    1985-09-01

    We have studied the break-up of accelerated hydrogen cluster ions passing through an argon gas target. The absolute dissociation cross section has been measured for a wide variety of H n + (odd masses only) cluster ions, with n between 5 and 23 and with projectile velocities ranging from 1.5 to 5 x 10 8 cm/s. We discuss the dissociation processes and the dependence of their cross-sections upon the cluster mass and velocity

  5. Liquid-gas phase transition and isospin fractionation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Xing Yongzhong; Liu Jianye; Guo Wenjun

    2004-01-01

    The liquid-gas phase transition in the heavy ion collisions and nuclear matter has been an important topic and got achievements, such as, based on the studies by H.Q. Song et al the critical temperature of liquid-gas phase transition enhances with increasing the mass of system and reduces as the increase of the neutron proton ratio of system. As authors know that both the liquid-gas phase transition and the isospin fractionation occur in the spinodal instability region at the nuclear density below the normal nuclear density. In particular, these two dynamical processes lead to the separation of nuclear matter into the liquid phase and gas phase. In this case to compare their dynamical behaviors is interested. The authors investigate the dependence of isospin fractionation degree on the mass and neutron proton ratio of system by using the isospin dependent quantum molecular dynamics model. The authors found that the degree of isospin fractionation (N/Z) n /(N/Z) imf decreases with increasing the mass of the system. This is just similar to the enhance of the critical temperature of liquid-gas phase transition T c as the increase of system mass. Because the enhance of T c is not favorable for the liquid-gas transition taking place, which reduces the isospin fractionation process and leads to decrease of (N/Z) n /(N/Z) imf . However the degree of isospin fractionation enhances with increasing the neutron proton ratio of the system. It is just corresponding to the reduce of T c of the liquid-gas phase transition as the increase of the isospin fractionation of the system. Because the reduce of T c enhances the liquid-gas phase transition process and also prompts the isospin fractionation process leading the increase of the isospin fractionation degree. To sum up, there are very similar dynamical behaviors for the degree of isospin fractionation and the critical temperature of the liquid-gas phase transition. So dynamical properties of the liquid-gas phase transition can

  6. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    Science.gov (United States)

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  7. Experimental analysis of ex-vessel core catcher cooling system performance for EU-APR1400 during severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Song, K. W.; Park, H. S.; Revankar, S. T. [POSTECH, Pohang (Korea, Republic of); Kim, H. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In the coolant channel which has a unique design and large scale flow paths, natural circulation is passively activated by buoyancy driven force. Since two-phase flow behavior in a large scale channel is different from that in a small scale channel, the two-phase flow affecting the cooling capability is difficult to be predicted in the large channel. Therefore, cooling experiment in the core catcher coolant path is necessary. Cooling Experiment - Passive Ex-vessel corium retaining and Cooling System(CE-PECS) is constructed in full scale(in height and width) slice of half prototype. It actually simulates steam-water flow in the coolant channel for different decay heat condition of the corium. In this study, thermal power considering of total amount of decay heat 190 kW which corresponds to 40MW of thermal power in the prototype is loaded on the top wall of the CE-PECS coolant channel. Natural circulation flow rate and pressure drops at the two-phase region are measured in various power level. Temperatures of heater block and working fluid in various position along the flow path enable to calculate heat fluxes and heat transfer coefficients distribution. These results are used for evaluating heat removal capability of core catcher facility. Two-phase natural circulation experiment is carried out in CE-PECS facility. Based on the prototypic condition, 190 kW of total power is supplied to the top of the coolant path. Uniform distribution of heat load on the downward facing heater bock produces -300 kW/m2 at 100 % power ratio. Although the experiment should consider the heat loss and heat flux uniformity, several noticeable conclusions have been made as followings; 1. Mass flow rate and two-phase pressure drop are measured in various power conditions. 2. Slightly inclined top wall at the downstream of the channel shows better heat exchange performance than horizontal top wall because enhanced convection due to the increase of void fraction improves local cooling. This

  8. Ion Acceleration by Double Layers with Multi-Component Ion Species

    Science.gov (United States)

    Good, Timothy; Aguirre, Evan; Scime, Earl; West Virginia University Team

    2017-10-01

    Current-free double layers (CFDL) models have been proposed to explain observations of magnetic field-aligned ion acceleration in plasmas expanding into divergent magnetic field regions. More recently, experimental studies of the Bohm sheath criterion in multiple ion species plasma reveal an equilibration of Bohm speeds at the sheath-presheath boundary for a grounded plate in a multipole-confined filament discharge. We aim to test this ion velocity effect for CFDL acceleration. We report high resolution ion velocity distribution function (IVDF) measurements using laser induced fluorescence downstream of a CFDL in a helicon plasma. Combinations of argon-helium, argon-krypton, and argon-xenon gases are ionized and measurements of argon or xenon IVDFs are investigated to determine whether ion acceleration is enhanced (or diminished) by the presence of lighter (or heavier) ions in the mix. We find that the predominant effect is a reduction of ion acceleration consistent with increased drag arising from increased gas pressure under all conditions, including constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in these expanding plasmas. Department of Physics, Gettysburg College.

  9. Reduction of gas flow into a hollow cathode ion source for a neutral beam injector

    International Nuclear Information System (INIS)

    Tanaka, S.; Akiba, M.; Arakawa, Y.; Horiike, H.; Sakuraba, J.

    1982-01-01

    Experimental studies have been made on the reduction of the gas flow rate into ion sources which utilize a hollow cathode. The electron emitter of the hollow cathode was a barium oxide impregnated porous tungsten tube. The hollow cathode was mounted to a circular or a rectangular bucket source and the following results were obtained. There was a tendency for the minimum gas flow rate for the stable source operation to decrease with increasing orifice diameter of the hollow cathode up to 10 mm. A molybdenum button with an appropriate diameter set in front of the orifice reduced the minimum gas flow rate to one half of that without button. An external magnetic field applied antiparallel to the field generated by the heater current stabilized the discharges and reduced the minimum gas flow rate to one half of that without field. Combination of the button and the antiparallel field reduced the minimum gas flow rate from the initial value (9.5 Torr 1/s) to 2.4 Torr 1/s. The reason for these effects was discussed on the basis of the theory for arc starvation

  10. Sputtering on cobalt with noble gas ions

    International Nuclear Information System (INIS)

    Sarholt-Kristensen, L.; Johansen, A.; Johnson, E.

    1983-01-01

    Single crystals of cobalt have been bombarded with 80 keV Ar + ions and with 80 keV and 200 keV Xe + ions in the [0001] direction of the hcp phase and the [111] direction of the fcc phase. The sputtering yield has been measured as function of target temperature (20 0 C-500 0 C), showing a reduction in sputtering yield for 80 keV Ar + ions and 200 keV Xe + ions, when the crystal structure changes from hcp to fcc. In contrast to this, bombardment with 80 keV Xe + ions results in an increase in sputtering yield as the phase transition is passed. Sputtering yields for [111] nickel are in agreement with the sputtering yields for fcc cobalt indicating normal behaviour of the fcc cobalt phase. The higher sputtering yield of [0001] cobalt for certain combinations of ion mass and energy may then be ascribed to disorder induced partly by martensitic phase transformation, partly by radiation damage. (orig.)

  11. Hydrofluoroether electrolytes for lithium-ion batteries: Reduced gas decomposition and nonflammable

    Science.gov (United States)

    Nagasubramanian, Ganesan; Orendorff, Christopher J.

    2011-10-01

    The optimum combination of high energy density at the desired power sets lithium-ion battery technology apart from the other well known secondary battery chemistries. However, this is besieged by thermal instability of the electrolyte. This "Achilles heel" still remains a significant safety issue and unless this propensity is improved the promise of widespread adoption of Li-ion batteries for Transportation application may not be realized. With this in mind we launched a systematic study to evaluate fluoro solvents that are known to be nonflammable, for thermal and electrochemical performances. We investigated hydro-fluoro-ethers (HFE) (1) 2-trifluoromethyl-3-methoxyperfluoropentane {TMMP} and (2) 2-trifluoro-2-fluoro-3-difluoropropoxy-3-difluoro-4-fluoro-5-trifluoropentane {TPTP} in Sandia-built cells. Thermal properties under near abuse conditions that exist in thermal runaway environment and the electrochemical characteristics for these electrolytes were measured. In the thermal ramp (TR) measurement, EC:DEC:TPTP-1 M LiBETI (or TFSI or LiPF6) electrolytes exhibited no ignition/fire. Similar behavior was observed for the EC:DEC:TMMP-1 M LiBETI. Further, in ARC studies the HFE electrolytes generated less gas by 50% compared to the EC:EMC-1.2 M LiPF6 {CAR-1} electrolyte. Although in all cases the HFEs generated less gas, the onset of gas generation appears to depend on the salt. For the LiBETI and TFSI containing HFEs the onset is pushed out by ∼80 °C and for the LiPF6 the onset is comparable to that of the CAR-1. The solution ionic conductivity of these HFE electrolytes was lower (4-5 times) than that of the CAR-1 electrolyte however, the electrochemical performance was comparable. For example, full cells in 2032 type coin cells containing LiMN0.33Ni0.33Co0.33O2 cathode and carbon anode showed around 5 mA h capacity and the computed specific capacity was ∼154 mA h for all the electrolytes. In half-cells against lithium the cathode and anode gave specific

  12. Investigation of drift gas selectivity in high resolution ion mobility spectrometry with mass spectrometry detection.

    Science.gov (United States)

    Matz, Laura M; Hill, Herbert H; Beegle, Luther W; Kanik, Isik

    2002-04-01

    Recent studies in electrospray ionization (ESI)/ion mobility spectrometry (IMS) have focussed on employing different drift gases to alter separation efficiency for some molecules. This study investigates four structurally similar classes of molecules (cocaine and metabolites, amphetamines, benzodiazepines, and small peptides) to determine the effect of structure on relative mobility changes in four drift gases (helium, nitrogen, argon, carbon dioxide). Collision cross sections were plotted against drift gas polarizability and a linear relationship was found for the nineteen compounds evaluated in the study. Based on the reduced mobility database, all nineteen compounds could be separated in one of the four drift gases, however, the drift gas that provided optimal separation was specific for the two compounds.

  13. Damage structure in Nimonic PE16 alloy ion bombarded to high doses and gas levels

    International Nuclear Information System (INIS)

    Farrell, K.; Packan, N.H.

    1981-01-01

    The Nimonic PE16 alloy in solution-treated-and-aged condition was bombarded simultaneously with nickel ions and α and deuteron beams at 625 0 C to doses of 80 to 313 dpa at He/dpa = 10 and D/dpa = 25. Microstructural changes consisted of the introduction of dislocations and of cavities, and the redistribuion of γ' precipitates to these defects. Cavitational swelling remained below 1%. Cavities were represented by several distinct size classes, the smaller ones believed to be gas bubbles, and some larger ones associated with preferred growth of precipitate. Formation of bubbles at grain boundaries, and large cavities at incoherent twins intensified the possibility of mechanical separation of interfaces under high-gas irradiation conditions

  14. The use of double-decker catcher bearing with face-to-face installed inner layer bearings

    Science.gov (United States)

    Zhu, Yi-Li; Zheng, Zhong-Qiao

    2017-07-01

    In active magnetic bearing (AMB) system, the catcher bearings (CB) are indispensable to temporarily support the rotor from directly impacting the stators. In most cases, traditional CB cannot bear the ultra-high speed, vibrations and impacts after a rotor drop event. To address the shortcomings, a double-decker ball bearing (DDBB) with inner two face-to-face angular contact ball bearings are proposed to be used as CB in an AMB system, and the dynamic response of the rotor after a rotor drop event is experimentally analyzed. The results indicate that using a DDBB as a CB helps to reduce the following collision forces after a rotor drop. Larger ball initial contact angles and smaller pre-load force on the inner layer bearings, larger radial clearance of the outer layer bearing and choosing AISI 10AISI 1045 steel which has a larger density for the adapter ring can effectively reduce the maximum impact force after a rotor drop event.

  15. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    Energy Technology Data Exchange (ETDEWEB)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A. [High Temperature Gasdynamics Laboratory, Stanford University, Stanford, California 94305 (United States)

    2013-07-15

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  16. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    International Nuclear Information System (INIS)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions

  17. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    Science.gov (United States)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  18. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode.

    Science.gov (United States)

    Rieker, G B; Poehlmann, F R; Cappelli, M A

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  19. Infrared Spectroscopy of Gas-Phase M+(CO2)n (M = Co, Rh, Ir) Ion-Molecule Complexes.

    Science.gov (United States)

    Iskra, Andreas; Gentleman, Alexander S; Kartouzian, Aras; Kent, Michael J; Sharp, Alastair P; Mackenzie, Stuart R

    2017-01-12

    The structures of gas-phase M + (CO 2 ) n (M = Co, Rh, Ir; n = 2-15) ion-molecule complexes have been investigated using a combination of infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy and density functional theory. The results provide insight into fundamental metal ion-CO 2 interactions, highlighting the trends with increasing ligand number and with different group 9 ions. Spectra have been recorded in the region of the CO 2 asymmetric stretch around 2350 cm -1 using the inert messenger technique and their interpretation has been aided by comparison with simulated infrared spectra of calculated low-energy isomeric structures. All vibrational bands in the smaller complexes are blue-shifted relative to the asymmetric stretch in free CO 2 , consistent with direct binding to the metal center dominated by charge-quadrupole interactions. For all three metal ions, a core [M + (CO 2 ) 2 ] structure is identified to which subsequent ligands are less strongly bound. No evidence is observed in this size regime for complete activation or insertion reactions.

  20. Processes to Open the Container and the Sample Catcher of the Hayabusa Returned Capsule in the Planetary Material Sample Curation Facility of JAXA

    Science.gov (United States)

    Fujimura, A.; Abe, M.; Yada, T.; Nakamura, T.; Noguchi, T.; Okazaki, R.; Ishibashi, Y.; Shirai, K.; Okada, T.; Yano, H.; hide

    2011-01-01

    Japanese spacecraft Hayabusa, which returned from near-Earth-asteroid Itokawa, successfully returned its reentry capsule to the Earth, the Woomera Prohibited Area in Australia in Jun 13th, 2010, as detailed in another paper [1]. The capsule introduced into the Planetary Material Sample Curation Facility in the Sagamihara campus of JAXA in the early morning of June 18th. Hereafter, we describe a series of processes for the returned capsule and the container to recover gas and materials in there. A transportation box of the recovered capsule was cleaned up on its outer surface beforehand and introduced into the class 10,000 clean room of the facility. Then, the capsule was extracted from the box and its plastic bag was opened and checked and photographed the outer surface of the capsule. The capsule was composed of the container, a backside ablator, a side ablator, an electronic box and a supporting frame. The container consists of an outer lid, an inner lid, a frame for latches, a container and a sample catcher, which is composed of room A and B and a rotational cylinder. After the first check, the capsule was packed in a plastic bag with N2 again, and transferred to the Chofu campus in JAXA, where the X-ray CT instrument is situated. The first X-ray CT analysis was performed on the whole returned capsule for confirming the conditions of latches and O-ring seal of the container. The analysis showed that the latches of the container should have worked normally, and that the double Orings of the container seemed to be sealed its sample catcher with no problem. After the first X-ray CT, the capsule was sent back to Sagamihara and introduced in the clean room to exclude the electronic box and the side ablator from the container by hand tools. Then the container with the backside ablator was set firmly to special jigs to fix the lid of container tightly to the container and set to a milling machine. The backside ablator was drilled by the machine to expose heads of bolts

  1. Technical report on the design, construction, commissioning and operation of the super-FRS of FAIR

    International Nuclear Information System (INIS)

    Geissel, H.; Winkler, M.; Weick, H.

    2005-04-01

    In this report the construction of the super-FRS is described. Especially described are the ion-optical lay-out, the production targets, the magnets, the beam dumps, the degrader systems and the ion catcher, detectors and data-acquisition systems, as well as the safety aspects. (HSI)

  2. Effects of drift gas on collision cross sections of a protein standard in linear drift tube and traveling wave ion mobility mass spectrometry.

    Science.gov (United States)

    Jurneczko, Ewa; Kalapothakis, Jason; Campuzano, Iain D G; Morris, Michael; Barran, Perdita E

    2012-10-16

    There has been a significant increase in the use of ion mobility mass spectrometry (IM-MS) to investigate conformations of proteins and protein complexes following electrospray ionization. Investigations which employ traveling wave ion mobility mass spectrometry (TW IM-MS) instrumentation rely on the use of calibrants to convert the arrival times of ions to collision cross sections (CCS) providing "hard numbers" of use to structural biology. It is common to use nitrogen as the buffer gas in TW IM-MS instruments and to calibrate by extrapolating from CCS measured in helium via drift tube (DT) IM-MS. In this work, both DT and TW IM-MS instruments are used to investigate the effects of different drift gases (helium, neon, nitrogen, and argon) on the transport of multiply charged ions of the protein myoglobin, frequently used as a standard in TW IM-MS studies. Irrespective of the drift gas used, recorded mass spectra are found to be highly similar. In contrast, the recorded arrival time distributions and the derived CCS differ greatly. At low charge states (7 ≤ z ≤ 11) where the protein is compact, the CCS scale with the polarizability of the gas; this is also the case for higher charge states (12 ≤ z ≤ 22) where the protein is more unfolded for the heavy gases (neon, argon, and nitrogen) but not the case for helium. This is here interpreted as a different conformational landscape being sampled by the lighter gas and potentially attributable to increased field heating by helium. Under nanoelectrospray ionization (nESI) conditions, where myoglobin is sprayed from an aqueous solution buffered to pH 6.8 with 20 mM ammonium acetate, in the DT IM-MS instrument, each buffer gas can yield a different arrival time distribution (ATD) for any given charge state.

  3. Electron cloud effects in intense, ion beam linacs theory and experimental planning for heavy-ion fusion

    International Nuclear Information System (INIS)

    Molvik, A.W.; Cohen, R.H.; Lund, S.M.; Bieniosek, F.M.; Lee, E.P.; Prost, L.R.; Seidl, P.A.; Vay, Jean-Luc

    2002-01-01

    Heavy-ion accelerators for HIF will operate at high aperture-fill factors with high beam current and long pulses. This will lead to beam ions impacting walls: liberating gas molecules and secondary electrons. Without special preparation a large fractional electron population ((ge)1%) is predicted in the High-Current Experiment (HCX), but wall conditioning and other mitigation techniques should result in substantial reduction. Theory and particle-in-cell simulations suggest that electrons, from ionization of residual and desorbed gas and secondary electrons from vacuum walls, will be radially trapped in the ∼4 kV ion beam potential. Trapped electrons can modify the beam space charge, vacuum pressure, ion transport dynamics, and halo generation, and can potentially cause ion-electron instabilities. Within quadrupole (and dipole) magnets, the longitudinal electron flow is limited to drift velocities (E x B and (del)B) and the electron density can vary azimuthally, radially, and longitudinally. These variations can cause centroid misalignment, emittance growth and halo growth. Diagnostics are being developed to measure the energy and flux of electrons and gas evolved from walls, and the net charge and gas density within magnetic quadrupoles, as well as the their effect on the ion beam

  4. Ion source techniques for high-speed processing of material surface by ion beams

    International Nuclear Information System (INIS)

    Ishikawa, Junzo

    1990-01-01

    The present paper discusses some key or candidate techniques for future ion source development and such ion sources developed by the author. Several types of microwave ion sources for producing low charge state ions have been developed in Japan. When a microwave plasma cathode developed by the author is adapted to a Kaufman type ion source, the electron emission currents are found to be 2.5 A for argon gas and 0.5-0.9 A for oxygen gas. An alternative ionization method for metal atoms is strongly required for high-speed processing of material surface by metal-ion beams. Detailed discussion is made of collisional ionization of vaporized atoms, and negative-ion production (secondary negative-ion emission by sputtering). An impregnated electrode type liquid-metal ion source developed by the author, which has a porous tip structure, is described. The negative-ion production efficiency is quite high. The report also presents a neutral and ionized alkaline-metal bombardment type heavy negative-ion source, which consists of a cesium plasma ion source, suppressor, target electrode, negative-ion extraction electrode, and einzel lens. (N.K.)

  5. The current status of the MASHA setup

    Science.gov (United States)

    Vedeneev, V. Yu.; Rodin, A. M.; Krupa, L.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Kamas, D.; Kliman, J.; Komarov, A. B.; Motycak, S.; Novoselov, A. S.; Salamatin, V. S.; Stepantsov, S. V.; Podshibyakin, A. V.; Yukhimchuk, S. A.; Granja, C.; Pospisil, S.

    2017-11-01

    The MASHA setup designed as the mass-separator with the resolving power of about 1700, which allows mass identification of superheavy nuclides is described. The setup uses solid ISOL (Isotope Separation On-Line) method. In the present article the upgrade of some parts of MASHA are described: target box (rotating target + hot catcher), ion source based on electron cyclotron resonance, data acquisition, beam diagnostics and control systems. The upgrade is undertaken in order to increase the total separation efficiency, reduce the separation time, of the installation and working stability and make possible continuous measurements at high beam currents. Ion source efficiency was measured in autonomous regime with using calibrated gas leaks of Kr and Xe injected directly to ion source. Some results of the first experiments for production of radon isotopes using the multi-nucleon transfer reaction 48Ca+242Pu are described in the present article. The using of TIMEPIX detector with MASHA setup for neutron-rich Rn isotopes identification is also described.

  6. The current status of the MASHA setup

    International Nuclear Information System (INIS)

    Vedeneev, V. Yu.; Rodin, A. M.; Krupa, L.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Kamas, D.; Kliman, J.; Komarov, A. B.; Motycak, S.; Novoselov, A. S.; Salamatin, V. S.; Stepantsov, S. V.; Podshibyakin, A. V.; Yukhimchuk, S. A.; Granja, C.; Pospisil, S.

    2017-01-01

    The MASHA setup designed as the mass-separator with the resolving power of about 1700, which allows mass identification of superheavy nuclides is described. The setup uses solid ISOL (Isotope Separation On-Line) method. In the present article the upgrade of some parts of MASHA are described: target box (rotating target + hot catcher), ion source based on electron cyclotron resonance, data acquisition, beam diagnostics and control systems. The upgrade is undertaken in order to increase the total separation efficiency, reduce the separation time, of the installation and working stability and make possible continuous measurements at high beam currents. Ion source efficiency was measured in autonomous regime with using calibrated gas leaks of Kr and Xe injected directly to ion source. Some results of the first experiments for production of radon isotopes using the multi-nucleon transfer reaction "4"8Ca+"2"4"2Pu are described in the present article. The using of TIMEPIX detector with MASHA setup for neutron-rich Rn isotopes identification is also described.

  7. The current status of the MASHA setup

    Energy Technology Data Exchange (ETDEWEB)

    Vedeneev, V. Yu., E-mail: vvedeneyev@gmail.com; Rodin, A. M.; Krupa, L.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Kamas, D. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions (Russian Federation); Kliman, J. [Slovak Academy of Sciences, Institute of Physics (Slovakia); Komarov, A. B.; Motycak, S.; Novoselov, A. S.; Salamatin, V. S.; Stepantsov, S. V.; Podshibyakin, A. V.; Yukhimchuk, S. A. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions (Russian Federation); Granja, C.; Pospisil, S. [Czech Technical University in Prague, Institute of Experimental and Applied Physics (Czech Republic)

    2017-11-15

    The MASHA setup designed as the mass-separator with the resolving power of about 1700, which allows mass identification of superheavy nuclides is described. The setup uses solid ISOL (Isotope Separation On-Line) method. In the present article the upgrade of some parts of MASHA are described: target box (rotating target + hot catcher), ion source based on electron cyclotron resonance, data acquisition, beam diagnostics and control systems. The upgrade is undertaken in order to increase the total separation efficiency, reduce the separation time, of the installation and working stability and make possible continuous measurements at high beam currents. Ion source efficiency was measured in autonomous regime with using calibrated gas leaks of Kr and Xe injected directly to ion source. Some results of the first experiments for production of radon isotopes using the multi-nucleon transfer reaction {sup 48}Ca+{sup 242}Pu are described in the present article. The using of TIMEPIX detector with MASHA setup for neutron-rich Rn isotopes identification is also described.

  8. A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis

    Science.gov (United States)

    Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran

    2016-10-01

    A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.

  9. High resolution studies of the origins of polyatomic ions in inductively coupled plasma-mass spectrometry, Part I. Identification methods and effects of neutral gas density assumptions, extraction voltage, and cone material

    International Nuclear Information System (INIS)

    Ferguson, Jill Wisnewski; Houk, R.S.

    2006-01-01

    Common polyatomic ions (ArO + , NO + , H 2 O + , H 3 O + , Ar 2 + , ArN + , OH + , ArH + , O 2 + ) in inductively coupled plasma-mass spectrometry (ICP-MS) are identified using high mass resolution and studied using kinetic gas temperatures (T gas ) determined from a dissociation reaction approach. Methods for making accurate mass measurements, confirming ion identifications, and correcting for mass bias are discussed. The effects of sampler and skimmer cone composition and extraction voltage on polyatomic ion formation are also explored. Neutral species densities at several locations in the extraction interface are estimated and the corresponding effects of the T gas value are calculated. The results provide information about the origins of background ions and indicate possible locations for their formation or removal

  10. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  11. Energy distributions of an ion in a radio-frequency trap immersed in a buffer gas under the influence of additional external forces

    Science.gov (United States)

    Rouse, I.; Willitsch, S.

    2018-04-01

    An ion held in a radio-frequency trap interacting with a uniform buffer gas of neutral atoms develops a steady-state energy distribution characterized by a power-law tail at high energies instead of the exponential decay characteristic of thermal equilibrium. We have previously shown that the Tsallis statistics frequently used as an empirical model for this distribution is a good approximation when the ion is heated due to a combination of micromotion interruption and exchange of kinetic energy with the buffer gas [Rouse and Willitsch, Phys. Rev. Lett. 118, 143401 (2017), 10.1103/PhysRevLett.118.143401]. Here, we extend our treatment to include the heating due to additional motion of the ion caused by external forces, including the "excess micromotion" induced by uniform electric fields and rf phase offsets. We show that this also leads to a Tsallis distribution with a potentially different power-law exponent from that observed in the absence of this additional forced motion, with the difference increasing as the ratio of the mass of the neutral atoms to that of the ion decreases. Our results indicate that unless the excess micromotion is minimized to a very high degree, then even a system with very light neutrals and a heavy ion does not exhibit a thermal distribution.

  12. Ion mixing and numerical simulation of different ions produced in the ECR ion source

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    This paper is to continue theoretical investigations and numerical simulations in the physics of ECR ion sources within the CERN program on heavy ion acceleration. The gas (ion) mixing effect in ECR sources is considered here. It is shown that the addition of light ions to the ECR plasma has three different mechanisms to improve highly charged ion production: the increase of confinement time and charge state of highly ions as the result of ion cooling; the concentration of highly charged ions in the central region of the source with high energy and density of electrons; the increase of electron production rate and density of plasma. The numerical simulations of lead ion production in the mixture with different light ions and different heavy and intermediate ions in the mixture with oxygen, are carried out to predict the principal ECR source possibilities for LHC applications. 18 refs., 23 refs

  13. Measuring Gas-Phase Basicities of Amino Acids Using an Ion Trap Mass Spectrometer: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Sunderlin, Lee S.; Ryzhov, Victor; Keller, Lanea M. M.; Gaillard, Elizabeth R.

    2005-01-01

    An experiment is performed to measure the relative gas-phase basicities of a series of five amino acids to compare the results to literature values. The experiments use the kinetic method for deriving ion thermochemistry and allow students to perform accurate measurements of thermodynamics in a relatively short time.

  14. Using Gas-Phase Guest-Host Chemistry to Probe the Structures of b Ions of Peptides

    Science.gov (United States)

    Somogyi, Árpád; Harrison, Alex G.; Paizs, Béla

    2012-12-01

    Middle-sized b n ( n ≥ 5) fragments of protonated peptides undergo selective complex formation with ammonia under experimental conditions typically used to probe hydrogen-deuterium exchange in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Other usual peptide fragments like y, a, a*, etc., and small b n ( n ≤ 4) fragments do not form stable ammonia adducts. We propose that complex formation of b n ions with ammonia is characteristic to macrocyclic isomers of these fragments. Experiments on a protonated cyclic peptide and N-terminal acetylated peptides fully support this hypothesis; the protonated cyclic peptide does form ammonia adducts while linear b n ions of acetylated peptides do not undergo complexation. Density functional theory (DFT) calculations on the proton-bound dimers of all-Ala b 4 , b 5 , and b 7 ions and ammonia indicate that the ionizing proton initially located on the peptide fragment transfers to ammonia upon adduct formation. The ammonium ion is then solvated by N+-H…O H-bonds; this stabilization is much stronger for macrocyclic b n isomers due to the stable cage-like structure formed and entropy effects. The present study demonstrates that gas-phase guest-host chemistry can be used to selectively probe structural features (i.e., macrocyclic or linear) of fragments of protonated peptides. Stable ammonia adducts of b 9 , b 9 -A, and b 9 -2A of A8YA, and b 13 of A20YVFL are observed indicating that even these large b-type ions form macrocyclic structures.

  15. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis.

    Science.gov (United States)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H](4+) ions exhibit two major conformer types with collision cross sections of 418 Å(2) and 446 Å(2); the [M + 3H](3+) ions also yield two different conformer types having collision cross sections of 340 Å(2) and 367 Å(2). Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H](3+) ions show faster HDX rate contributions compared with [M + 4H](4+) ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H](4+) ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  16. High current vacuum arc ion source for heavy ion fusion

    International Nuclear Information System (INIS)

    Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.

    1999-01-01

    Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in ∼0.5 A current beams with ∼20 micros pulse widths and ∼10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce ∼0.5 A, ∼60 keV Gd (A∼158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported

  17. Transition Metal Ion Implantation into Diamond-Like Carbon Coatings: Development of a Base Material for Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Andreas Markwitz

    2015-01-01

    Full Text Available Micrometre thick diamond-like carbon (DLC coatings produced by direct ion deposition were implanted with 30 keV Ar+ and transition metal ions in the lower percentage (<10 at.% range. Theoretical calculations showed that the ions are implanted just beneath the surface, which was confirmed with RBS measurements. Atomic force microscope scans revealed that the surface roughness increases when implanted with Ar+ and Cu+ ions, whereas a smoothing of the surface from 5.2 to 2.7 nm and a grain size reduction from 175 to 93 nm are measured for Ag+ implanted coatings with a fluence of 1.24×1016 at. cm−2. Calculated hydrogen and carbon depth profiles showed surprisingly significant changes in concentrations in the near-surface region of the DLC coatings, particularly when implanted with Ag+ ions. Hydrogen accumulates up to 32 at.% and the minimum of the carbon distribution is shifted towards the surface which may be the cause of the surface smoothing effect. The ion implantations caused an increase in electrical conductivity of the DLC coatings, which is important for the development of solid-state gas sensors based on DLC coatings.

  18. Influence of surface mechanical activation of the X40Cr13 steel on roughness after ion and gas nitriding

    International Nuclear Information System (INIS)

    Jasinski, J.; Wojtal, A.; Jeziorski, L.; Radecki, A.; Ucieklak, S.

    2003-01-01

    The article describes the problem of the thermal and mechanical activation of the surface of the X40Cr13 steel on the state of the ion and gas nitriding. in order to determine the nitriding influence and make the analysis of results, the steel was subjected to: soft annealing, hardening with subsequent tempering at T = 550 o C and also mechanical activation of the surface consisting in peripheral grinding with abrasive papers of the grain size 60, 360, 1000 and mechanical polishing. The main aim of this work was to establish the influence of different surface geometrical structure, depending on X40Cr13 steel structure, on the roughness profile after ion and gas nitriding. With regard to the above, the examinations of basic roughness parameters prior to and after thermochemical processes and the analysis of utilitarian usefulness of activations applied were carried out. (author)

  19. Ion mobility spectrometry-mass spectrometry (IMS-MS) for on- and offline analysis of atmospheric gas and aerosol species

    Science.gov (United States)

    Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan; Junninen, Heikki; Massoli, Paola; Lambe, Andrew T.; Kimmel, Joel R.; Cubison, Michael J.; Graf, Stephan; Lin, Ying-Hsuan; Budisulistiorini, Sri H.; Zhang, Haofei; Surratt, Jason D.; Knochenmuss, Richard; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose-Luis; Canagaratna, Manjula R.

    2016-07-01

    Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS-MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS-MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI-IMS-MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambient field campaign in the forested SE US. The ambient IMS-MS signals are consistent with laboratory IMS-MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS-MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS-MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the

  20. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    Science.gov (United States)

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.

  1. Decomposing method for ion exchange resin

    International Nuclear Information System (INIS)

    Sako, Takeshi; Sato, Shinshi; Akai, Yoshie; Moniwa, Shinobu; Yamada, Kazuo

    1998-01-01

    The present invention concerns a method of decomposing ion exchange resins generated in a nuclear power plant to carbon dioxide reliably in a short period of time. (1) The ion exchange resins are mixed with water, and then they are kept for a predetermined period of time in the presence of an inert gas at high temperature and high pressure exceeding the critical point of water to decompose the ion exchange resins. (2) The ion exchange resins is mixed with water, an oxidant is added and they are kept for a predetermined time in the presence of an inert gas at a high temperature and a high pressure exceeding a critical point of water of an inert gas at a high temperature to decompose the ion exchange resins. (3) An alkali or acid is added to ion exchange resins and water to control the hydrogen ion concentration in the solution and the ion exchange resins are decomposed in above-mentioned (1) or (2). Sodium hydroxide is used as the alkali and hydrochloric acid is used as the acid. In addition, oxygen, hydrogen peroxide or ozone is used as an oxidant. (I.S.)

  2. Development of long lifetime-high current plasma cathode ion source

    International Nuclear Information System (INIS)

    Yabe, Eiji; Takayama, Kazuo; Fukui, Ryota.

    1987-01-01

    A long lifetime ion source with plasma cathode has been developed for use in ion implantation. In this ion source, a plasma of a nonreactive working gas serves as a cathode in place of a thermionic tungsten filament used in the Freeman ion source. In an applied magnetic field, the plasma cathode is convergent, i.e. filament-like; in zero magnetic field, it turns divergent and spray-like. In the latter case, the plasma exhibits a remarkable ability when the working gas has an ionization potential larger than the feed gas. By any combination of a working gas of either argon or neon and a feed gas of AsF 5 or PF 5 , the lifetime of this ion source was found to be more than 90 hours with an extraction voltage of 40 kV and the corresponding ion current density 20 mA/cm 2 . Mass spectrometry results show that this ion source has an ability of generating a considerable amount of As + and P + ions from AsF 5 and PF 5 , and hence will be useful for realizing a fully cryopumped ion implanter system. This ion source is eminently suitable for use in oxygen ion production. (author)

  3. Ions and light

    CERN Document Server

    Bowers, Michael T

    2013-01-01

    Gas Phase Ion Chemistry, Volume 3: Ions and Light discusses how ions are formed by electron impact, ion-molecule reactions, or electrical discharge. This book discusses the use of light emitted by excited molecules to characterize either the chemistry that formed the excited ion, the structure of the excited ion, or both.Organized into 10 chapters, this volume begins with an overview of the extension of the classical flowing afterglow technique to include infrared and chemiluminescence and laser-induced fluorescence detection. This text then examines the experiments involving molecules that ar

  4. Angular dependence of secondary ion emission from silicon bombarded with inert gas ions

    International Nuclear Information System (INIS)

    Wittmaack, K.

    1984-01-01

    The emission of positive and negative, atomic and molecular secondary ions sputtered from silicon has been studied under ultrahigh vacuum conditions. The sample was bombarded with 2-12 keV Ar + and Xe + ions at angles of incidence between 0 0 and 60 0 to the surface normal. The angular dependence of the secondary ion intensity as well as the energy spectra of Si + and Si - were found to differ significantly. The effect is attributed mostly do differences in the rate of neutralization. The stability of molecular ions appears to be independent of the charge state. Supporting evidence is provided for the idea that multiply charged secondary ions are due to Auger de-excitation of sputtered atoms in vacuum. (orig.)

  5. Molecular catchers for pharmacologically active substances in wastewaters, a theoretical study

    International Nuclear Information System (INIS)

    Salazar Valencia, P J; Pérez Merchancano, S T; Bolívar Marinez, L E; Paredes, H

    2016-01-01

    A basic and pressing need in the treatment of residual waste waters for urban and rural centers is the removal of pharmacological active residues from them, these resides are originated in a wide array of domestic, agricultural and industrial sources and can't be removed in the residual waters treatment plants by conventional methods, the result is the incorporation of them into the ecosystem altering the physiology and behavior of living organisms. Among the most active pharmacological substances found in very high concentration in residual waters is paracetamol, an analgesic of very wide excessive use due to its ease of access and low cost [1]. No pharmacological substance is entirely absorbed by the human organism and therefore a wide family of molecular residues is excreted by the urinary tract. In this work we have used the AM1 (Austin Model 1), PM3 (Parametric Method 3) and ZINDO/CI semiempirical methods, from the NDO (Neglect Differential Overlap) family [2] to study and observe the structural, electronic and optical characteristics of paracetamol while immersed in different basic and acidic aqueous environments, either alone or interacting with lignosulphonates. We have previously found that lignosulphonates, a lignin derivatives of wide industrial applications, can be engineered as a binding and flocculant agent and acts as molecular catchers therefore showing the potential to be used as a mean to filter and eliminate molecular residues from the residual waters [3]. (paper)

  6. Improvement of the 36Cl-AMS system at MALT using a Monte Carlo ion-trajectory simulation in a gas-filled magnet

    International Nuclear Information System (INIS)

    Aze, Takahiro; Matsuzaki, Hiroyuki; Matsumura, Hiroshi; Nagai, Hisao; Fujimura, Masatsugu; Noguchi, Mayumi; Hongo, Yayoi; Yokoyama, Yusuke

    2007-01-01

    We developed and experimentally confirmed a Monte Carlo simulation code to describe the trajectories of 36 Cl and 36 S ions in a gas-filled magnet (GFM) at the MALT, University of Tokyo. The simulation revealed that the central trajectories of the ions in the GFM are almost spiral and most of the 36 S ions collided with the interior wall of the GFM. Based on this property of the trajectories, we have found a more advantageous condition for suppressing 36 S. As a result, the background level of the 36 Cl/Cl ratio was lowered to 10 -15

  7. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    Science.gov (United States)

    Liu, D. Kwok-Keung; Chang, Shih-Ger

    1987-08-25

    The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

  8. Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the Leuven laser ion source LISOL

    International Nuclear Information System (INIS)

    Ferrer, R.; Sonnenschein, V.T.; Bastin, B.; Franchoo, S.; Huyse, M.; Kudryavtsev, Yu.; Kron, T.; Lecesne, N.; Moore, I.D.; Osmond, B.; Pauwels, D.; Radulov, D.; Raeder, S.; Rens, L.

    2012-01-01

    The laser ionization efficiency of the Leuven gas cell-based laser ion source was investigated under on- and off-line conditions using two distinctly different laser setups: a low-repetition rate dye laser system and a high-repetition rate Ti:sapphire laser system. A systematic study of the ion signal dependence on repetition rate and laser pulse energy was performed in off-line tests using stable cobalt and copper isotopes. These studies also included in-gas-jet laser spectroscopy measurements on the hyperfine structure of 63 Cu. A final run under on-line conditions in which the radioactive isotope 59 Cu (T 1/2 = 81.5 s) was produced, showed a comparable yield of the two laser systems for in-gas-cell ionization. However, a significantly improved time overlap by using the high-repetition rate laser system for in-gas-jet ionization was demonstrated by an increase of the overall duty cycle, and at the same time, pointed to the need for a better shaped atomic jet to reach higher ionization efficiencies.

  9. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    OpenAIRE

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spe...

  10. Dissociative electron attachment negative ion mass spectrometry: a chlorine-specific detector for gas chromatography

    Science.gov (United States)

    Curtis, Jonathan M.; Boyd, Robert K.

    1997-11-01

    This work describes the application of negative ion chemical ionization, optimized for dissociative electron attachment (DEA), to location of unknown trace chlorinated compounds in complex gas chromatograms by selected ion recording (SIR) of m / z 35 and 37. The DEA-SIR technique is compared with other GC detectors, including the electron capture detector, electrolytic conductivity detector, the atomic emission detector and the chemical reaction interface mass spectrometry method, with respect to selectivity for chlorine, sensitivity, linear dynamic range, and general robustness and ease of use. When applied to quantitative analysis of target analytes such as polychlorobiphenyls, the DEA-SIR method has potential problems arising from the possibility of suppression effects due to abundant co-eluting components, and possible alleviating measures are discussed. In addition to these practical investigations, literature information on the fundamental physical and chemical phenomena underlying the DEA process is summarized in order to guide future work on extension to other compound types and on general improvements to the technique.

  11. Process for removing a mixture containing iodine and alkyl iodine compounds from a gas phase or aqueous solution with ion-exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, H; Mizuuchi, A; Yokoyama, F

    1968-10-04

    Iodine and alkyl iodine compounds are removed from a gas phase or aqueous solution containing salts, iodine and iodine compounds, such as the ambient gas in a reactor, if an accident should occur. The process comprises contacting the phase or solution: (a) with a hydrogen type strongly acidic cationic exchange resin, (b) with an anionic exchange resin containing quarternary ammonium and (c) with an anionic exchange resin containing free basic type tertiary amine, in this order or by reversing the order of the two anionic exchange resins. Although no problems arise in the liquid phase reaction, the ion-exchange resins in the gas phase reaction are desired in the moist state in order to stable maintain the migration speed of the materials to be removed regardless of the relative humidity of the amibent gas. In example I, Amberlite IRA-900 of 200 mm thickness as the lowermost bed, Amberlite IRA93 of 200 mm thickness as the middle bed and Amberlite 200 of 200 mm thickness as the uppermost bed were filled respectively, in a methacrylate resin cylinder with an inner diameter of 25 mm. A solution containing 15.9 mg/1 of iodine, 41.2 mg/1 of methyl iodide and 550 mg/1 of sodium carbonate flows at a rate of 15 liter/hr downward through the beds. As a result of testing, no iodine, iodine ions, iodic acid ions and methyl iodine were detected. The amount of water the beds could treat was 60 times the total quantity of the filled resins.

  12. Silicon surface damage caused by reactive ion etching in fluorocarbon gas mixtures containing hydrogen

    International Nuclear Information System (INIS)

    Norstroem, H.; Blom, H.; Ostling, M.; Nylandsted Larsen, A.; Keinonen, J.; Berg, S.

    1991-01-01

    For selective etching of SiO 2 on silicon, gases or gas mixtures containing hydrogen are often used. Hydrogen from the glow discharge promotes the formation of a thin film polymer layer responsible for the selectivity of the etching process. The reactive ion etch (RIE) process is known to create damage in the silicon substrate. The influence of hydrogen on the damage and deactivation of dopants is investigated in the present work. The distribution of hydrogen in silicon, after different etching and annealing conditions have been studied. The influence of the RIE process on the charge carrier concentration in silicon has been investigated. Various analytical techniques like contact resistivity measurements, four point probe measurements, and Hall measurements have been used to determine the influence of the RIE process on the electrical properties of processed silicon wafers. The hydrogen profile in as-etched and post annealed wafers was determined by the 1 H( 15 N,αγ) 12 C nuclear reaction. The depth of the deactivated surface layer is discussed in terms of the impinging hydrogen ion energy, i.e., the possibility of H + ions to pick up an energy equal to the peak-to-peak voltage of the rf signal

  13. Ion mobility spectrometry

    CERN Document Server

    Eiceman, GA

    2005-01-01

    Key Developments for Faster, More Precise Detection Capabilities Driven by the demand for the rapid and advanced detection of explosives, chemical and biological warfare agents, and narcotics, ion mobility spectrometry (IMS) undergone significant refinements in technology, computational capabilities, and understanding of the principles of gas phase ion chemistry and mobility. Beginning with a thorough discussion of the fundamental theories and physics of ion mobility, Ion Mobility Spectrometry, Second Edition describes the recent advances in instrumentation and newly

  14. Kinetic plasma simulation of ion beam extraction from an ECR ion source

    International Nuclear Information System (INIS)

    Elliott, S.M.; White, E.K.; Simkin, J.

    2012-01-01

    Designing optimized ECR (electron cyclotron resonance) ion beam sources can be streamlined by the accurate simulation of beam optical properties in order to predict ion extraction behavior. The complexity of these models, however, can make PIC-based simulations time-consuming. In this paper, we first describe a simple kinetic plasma finite element simulation of extraction of a proton beam from a permanent magnet hexapole ECR ion source. Second, we analyze the influence of secondary electrons generated by ion collisions in the residual gas on the space charge of a proton beam of a dual-solenoid ECR ion source. The finite element method (FEM) offers a fast modeling environment, allowing analysis of ion beam behavior under conditions of varying current density, electrode potential, and gas pressure. The new version of SCALA/TOSCA v14 permits the making of simulations in tens of minutes to a few hours on standard computer platforms without the need of particle-in-cell methods. The paper is followed by the slides of the presentation. (authors)

  15. Stable isotope ratiometer-multiple ion detector (SIRMID) unit for quantitative and qualitative stable isotope studies by gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Klein, P.D.; Haumann, J.R.; Hachey, D.L.

    1975-01-01

    A stable isotope ratiometer-multiple ion detector (SIRMID) unit which can drive existing gas chromatograph-quadrupole or magnetic sector mass spectrometers to monitor up to six ions in turn is described. Each of the three pairs of ions can be selected for quantitation; thus three different or successive components can be analyzed in a single GC run. A background subtraction option permits the ion intensity in the absence of sample to be subtracted automatically during sample measurement. Displays of accumulated counts and isotope ratio are updated twice per second during the measurement and can be printed out at its conclusion. All six ions can be monitored in the analog mode by parallel outputs to a multipen recorder. Experience gained in the construction of this prototype indicates that SIRMID units could be commercially available for $10K, or about 1 / 3 rd to 1 / 6 th of the cost of even an inexpensive computer system. (U.S.)

  16. Electron emission in the Auger neutralization of a spin-polarized He+ ion embedded in a free electron gas

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Alducin, M.; Diez Muino, R.; Roesler, M.

    2005-01-01

    Results are presented for the energy distribution and spin polarization of the electrons excited during the Auger neutralization of a spin polarized He + ion embedded in a paramagnetic free electron gas. The screening of the He + ion is calculated using density functional theory within the local spin density approximation. The Auger rates, the energy distribution and the spin polarization of the excited electrons are obtained using the Fermi golden rule. The transport of the electrons is calculated within the Boltzmann transport equation formalism. The spin-polarization of the initially excited electrons is very high (>70%) and parallel to that of the electron bound to the He + ion. Nevertheless, the emitted electrons show a much lower degree of polarization, mainly in the low energy range, due to the creation of the unpolarized cascade of secondaries in the transport process

  17. An online low energy gaseous ion source

    International Nuclear Information System (INIS)

    Jin Shuoxue; Guo Liping; Peng Guoliang; Zhang Jiaolong; Yang Zheng; Li Ming; Liu Chuansheng; Ju Xin; Liu Shi

    2010-01-01

    The accumulation of helium and/or hydrogen in nuclear materials may cause performance deterioration of the materials. In order to provide a unique tool to investigate the He-and/or H-caused problems, such as interaction of helium with hydrogen and defects, formation of gas bubbles and its evolution, and the related effects, we designed a low energy (≤ 20 keV) cold cathode Penning ion source, which will be interfaced to a 200 kV transmission electron microscope (TEM), for monitoring continuously the evolution of micro-structure during the He + or H + ion implantation. Studies on discharge voltage-current characteristics of the ion source, and extraction and focusing of the ion beam were performed. The ion source works stably with 15-60 mA of the discharge current.Under the gas pressure of 5 x 10 -3 Pa and 1.5 x 10 -2 Pa, the discharge voltage are about 380 V and 320 V, respectively. The extracted ion current under lower gas pressure is greater than that under higher gas pressure, and it increases with the discharge current and extraction voltage. The ion lens consisting of three equal-diameter metal cylinder focus the ion beam effectively, so that the beam density at the 150 cm away from the lens exit increases by a over one order of magnitude. For ion beams of around 10 keV, the measured beam density is about 200 nA · cm -2 , which is applicable for ion implantation and in situ TEM observation for many kinds of nuclear materials. (authors)

  18. The ion circus

    Energy Technology Data Exchange (ETDEWEB)

    Minaya Ramirez, Enrique [GSI Helmholtzzentrum, Darmstadt (Germany); Lunney, David [CSNSM- IN2P3/CNRS, Universite de Paris-Sud, Orsay (France)

    2010-07-01

    The ability to prepare radioactive beams for experiments in nuclear structure has seen important developments in recent years. The use of ion traps and buffer-gas cooling now enables the accumulation and purification of even short-lived nuclides. This is a key point for future installations since higher intensity also brings increased isobaric contamination which can be disastrous for background. Until now, the development of beam cooler/bunchers has relied on linear (radiofrequency quadrupole) Paul traps. In this contribution we describe the progress in developing a novel circular Paul trap. The ion circus, so named for its ability to trap ions at different positions along the ring circumference and to eject them in either perpendicular or tangential direction, has also been designed to cool and mass separate the ions over a longer flight path. The resolving power is increased as the ions orbit in the ring and are cooled with buffer gas at a much lower pressure. The first prototype is now under test in Orsay. We report results of the first tests and the future program.

  19. Precursor Ion Scan Mode-Based Strategy for Fast Screening of Polyether Ionophores by Copper-Induced Gas-Phase Radical Fragmentation Reactions.

    Science.gov (United States)

    Crevelin, Eduardo J; Possato, Bruna; Lopes, João L C; Lopes, Norberto P; Crotti, Antônio E M

    2017-04-04

    The potential of copper(II) to induce gas-phase fragmentation reactions in macrotetrolides, a class of polyether ionophores produced by Streptomyces species, was investigated by accurate-mass electrospray tandem mass spectrometry (ESI-MS/MS). Copper(II)/copper(I) transition directly induced production of diagnostic acylium ions with m/z 199, 185, 181, and 167 from α-cleavages of [macrotetrolides + Cu] 2+ . A UPLC-ESI-MS/MS methodology based on the precursor ion scan of these acylium ions was developed and successfully used to identify isodinactin (1), trinactin (2), and tetranactin (3) in a crude extract of Streptomyces sp. AMC 23 in the precursor ion scan mode. In addition, copper(II) was also used to induce radical fragmentation reactions in the carboxylic acid polyether ionophore nigericin. The resulting product ions with m/z 755 and 585 helped to identify nigericin in a crude extract of Streptomyces sp. Eucal-26 by means of precursor ion scan experiments, demonstrating that copper-induced fragmentation reactions can potentially identify different classes of polyether ionophores rapidly and selectively.

  20. Observation of ZnS nanoparticles sputtered from ZnS films under 2 MeV Au irradiation

    Science.gov (United States)

    Kuiri, P. K.; Joseph, B.; Ghatak, J.; Lenka, H. P.; Sahu, G.; Acharya, B. S.; Mahapatra, D. P.

    2006-07-01

    ZnS nanoparticles have been observed on catcher foils due to 2 MeV Au ion irradiation of ZnS films thermally evaporated on Si(1 0 0) substrates. The structure and size distribution of nanoclusters collected were studied using transmission electron microscopy for irradiation fluences in the range of 1 × 10 11-1 × 10 15 ions cm -2. The nanoclusters were found to have a hexagonal wurtzite structure. Optical absorption measurements on similarly deposited ZnS on silica glass indicate the film to be also composed of hexagonal wurtzite ZnS. Based on this and available data we argue that the observed nanoparticles on the catcher foils are the results of shock waves induced emission of material chunks with the same atomic coordination as in the target.

  1. Optimization of phase analysis of refractory alloys in the gas-ion-reaction chamber

    International Nuclear Information System (INIS)

    Blumenkamp, H.J.; Hoven, H.; Koizlik, K.; Nickel, H.

    1980-04-01

    Reactor components outside the core which are under high thermal and mechanical stresses are made from refractory alloys. For basic research and for quality control, these materials are investigated by metallography, which is an independent group of characterization procedures as well as basis for many other methods. An important way of increasing the information about a material yielded by metallography is the expansions of phase contrast, in particular the phase contrasting in the gas-ion-reaction chamber. In this paper, the experimental procedure is described and the process of optimizing the procedure with respect to the Ni- and Fe-based refractory alloys examined in the IRW is discussed. (orig.) [de

  2. Metal-free reduction of the greenhouse gas sulfur hexafluoride, formation of SF5 containing ion pairs and the application in fluorinations

    KAUST Repository

    Rueping, Magnus; Nikolaienko, Pavlo; Lebedev, Yury; Adams, Alina

    2017-01-01

    A protocol for the fast and selective two-electron reduction of the potent greenhouse gas sulfur hexafluoride (SF6) by organic electron donors at ambient temperature has been developed. The reaction yields solid ion pairs consisting of donor

  3. Low-energy irradiation effects of gas cluster ion beams

    International Nuclear Information System (INIS)

    Houzumi, Shingo; Takeshima, Keigo; Mochiji, Kozo; Toyoda, Noriaki; Yamada, Isao

    2007-01-01

    A cluster-ion irradiation system with cluster-size selection has been developed to study the effects of the cluster size for surface processes using cluster ions. A permanent magnet with a magnetic field of 1.2 T is installed for size separation of large cluster ions. Trace formations at HOPG surface by the irradiation with size-selected Ar-cluster ions under acceleration energy of 30 keV were investigated by a scanning tunneling microscopy. Generation behavior of the crater-like traces is strongly affected by the number of constituent atoms (cluster size) of the irradiating cluster ion. When the incident cluster ion is composed of 100-3000 atoms, crater-like traces are observed on the irradiated surfaces. In contrast, such traces are not observed at all with the irradiation of the cluster-ions composed of over 5000 atoms. Such the behavior is discussed on the basis of the kinetic energy per constituent atom of the cluster ion. To study GCIB irradiation effects against macromolecule, GCIB was irradiated on DNA molecules absorbed on graphite surface. By the GCIB irradiation, much more DNA molecules was sputtered away as compared with the monomer-ion irradiation. (author)

  4. ION GUN

    Science.gov (United States)

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  5. Gas-phase ion/molecule isotope-exchange reactions: methodology for counting hydrogen atoms in specific organic structural environments by chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Hunt, D.F.; Sethi, S.K.

    1980-01-01

    Ion/molecule reactions are described which facilitate exchange of hydrogens for deuteriums in a variety of different chemical environments. Aromatic hydrogens in alkylbenzenes, oxygenated benzenes, m-toluidine, m-phenylenediamine, thiophene, and several polycyclic aromatic hydrocarbons and metallocenes are exchanged under positive ion CI conditions by using either D 2 O, EtOD, or ND 3 as the reagent gas. Aromatic hydrogens, benzylic hydrogens, and hydrogens on carbon adjacent to carbonyl groups suffer exchange under negative ion CI conditions in ND 3 , D 2 O, and EtOD, respectively. A possible mechanism for the exchange process is discussed. 1 figure, 2 tables

  6. Photodissociative Cross-Linking of Non-covalent Peptide-Peptide Ion Complexes in the Gas Phase

    Science.gov (United States)

    Nguyen, Huong T. H.; Andrikopoulos, Prokopis C.; Rulíšek, Lubomír; Shaffer, Christopher J.; Tureček, František

    2018-05-01

    We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. [Figure not available: see fulltext.

  7. Gas-Phase Enrichment of Multiply Charged Peptide Ions by Differential Ion Mobility Extend the Comprehensiveness of SUMO Proteome Analyses

    Science.gov (United States)

    Pfammatter, Sibylle; Bonneil, Eric; McManus, Francis P.; Thibault, Pierre

    2018-04-01

    The small ubiquitin-like modifier (SUMO) is a member of the family of ubiquitin-like modifiers (UBLs) and is involved in important cellular processes, including DNA damage response, meiosis and cellular trafficking. The large-scale identification of SUMO peptides in a site-specific manner is challenging not only because of the low abundance and dynamic nature of this modification, but also due to the branched structure of the corresponding peptides that further complicate their identification using conventional search engines. Here, we exploited the unusual structure of SUMO peptides to facilitate their separation by high-field asymmetric waveform ion mobility spectrometry (FAIMS) and increase the coverage of SUMO proteome analysis. Upon trypsin digestion, branched peptides contain a SUMO remnant side chain and predominantly form triply protonated ions that facilitate their gas-phase separation using FAIMS. We evaluated the mobility characteristics of synthetic SUMO peptides and further demonstrated the application of FAIMS to profile the changes in protein SUMOylation of HEK293 cells following heat shock, a condition known to affect this modification. FAIMS typically provided a 10-fold improvement of detection limit of SUMO peptides, and enabled a 36% increase in SUMO proteome coverage compared to the same LC-MS/MS analyses performed without FAIMS. [Figure not available: see fulltext.

  8. Ion-Ion Plasmas Produced by Electron Beams

    Science.gov (United States)

    Fernsler, R. F.; Leonhardt, D.; Walton, S. G.; Meger, R. A.

    2001-10-01

    The ability of plasmas to etch deep, small-scale features in materials is limited by localized charging of the features. The features charge because of the difference in electron and ion anisotropy, and thus one solution now being explored is to use ion-ion plasmas in place of electron-ion plasmas. Ion-ion plasmas are effectively electron-free and consist mainly of positive and negative ions. Since the two ion species behave similarly, localized charging is largely eliminated. However, the only way to produce ion-ion plasmas at low gas pressure is to convert electrons into negative ions through two-body attachment to neutrals. While the electron attachment rate is large at low electron temperatures (Te < 1 eV) in many of the halogen gases used for processing, these temperatures occur in most reactors only during the afterglow when the heating fields are turned off and the plasma is decaying. By contrast, Te is low nearly all the time in plasmas produced by electron beams, and therefore electron beams can potentially produce ion-ion plasmas continuously. The theory of ion-ion plasmas formed by pulsed electron beams is examined in this talk and compared with experimental results presented elsewhere [1]. Some general limitations of ion-ion plasmas, including relatively low flux levels, are discussed as well. [1] See the presentation by D. Leonhardt et al. at this conference.

  9. Metallic vapor supplying by the electron bombardment for a metallic ion production with an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, Atsushi; Sasaki, Makoto; Muramatsu, Masayuki [National Inst. of Radiological Sciences, Chiba (Japan); Jincho, Kaoru; Sasaki, Noriyuki; Sakuma, Tetsuya; Takasugi, Wataru; Yamamoto, Mitsugu [Accelerator Engineering Corporation, Chiba (Japan)

    2001-11-19

    To produce the metallic ion beam for the injection into the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS), a new gas supply method has been developed for an 18 GHz ECR ion source (NIRS-HEC). A metallic target rod at a high positive potential is melted by the electron bombardment technique. The evaporated gas with a maximum flow rate of 50A/sec is supplied into the ECR plasma in case of Fe metal. (author)

  10. Metallic vapor supplying by the electron bombardment for a metallic ion production with an ECR ion source

    International Nuclear Information System (INIS)

    Kitagawa, Atsushi; Sasaki, Makoto; Muramatsu, Masayuki; Jincho, Kaoru; Sasaki, Noriyuki; Sakuma, Tetsuya; Takasugi, Wataru; Yamamoto, Mitsugu

    2001-01-01

    To produce the metallic ion beam for the injection into the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS), a new gas supply method has been developed for an 18 GHz ECR ion source (NIRS-HEC). A metallic target rod at a high positive potential is melted by the electron bombardment technique. The evaporated gas with a maximum flow rate of 50A/sec is supplied into the ECR plasma in case of Fe metal. (author)

  11. Dependence of anti W on the charge of heavy ions

    International Nuclear Information System (INIS)

    Varma, M.N.; Baum, J.J.

    1977-10-01

    Anti W values (average energy required to form an ion pair) were determined for 35 Cl ions in nitrogen and tissue-equivalent gas. These values were compared to previously reported anti W values for oxygen ions and alpha particles in the same media. This comparison was made at two specific values of energy per atomic mass unit of the incident ions. At an energy of 2.57 MeV/amu, the comparison shows anti W is 12% and 10% higher for oxygen ions in tissue-equivalent and nitrogen gas, respectively, relative to alpha particle anti W. At an energy of 0.77 MeV/amu, a similar comparison shows anti W is 20% higher for 35 Cl ions and 12% higher for 16 O ions in tissue-equivalent gas; and 13% and 10% higher, respectively, in nitrogen gas, relative to alpha particle anti W. These results indicate that anti W values depend not only on the energy per atomic mass unit of heavy ions but also on their charge

  12. Gas-breakdown effects associated with the self-pinched transport of intense light-ion beams

    International Nuclear Information System (INIS)

    Ottinger, P.F.; Olson, C.L.; Welch, D.R.; Oliver, B.V.

    1997-01-01

    Self-pinched transport (SPT) of intense light-ion beams is being considered for delivering energy to a high-gain, high-yield inertial confinement fusion target. Proton beam SPT experiments are underway on the Gamble II generators at the Naval Research Laboratory. The physics of SPT in low-pressure gas is being analyzed with analytic theory and numerical simulations. A 1-D theory estimates the net current fraction necessary for stable transport as a function of gas density for a given beam profile. SPT simulations using the 3-D hybrid particle-in-cell (PIC) code IPROP determine the beam profile. Important to both theory and simulations is the inclusion of gas-breakdown physics. A comparison between the theory and the self-consistent simulations using IPROP is made. Additional SPT simulations have been carried out using the 2-D hybrid PIC code SOLENZ which assumes a pre-ionized plasma. This simulation model enables the investigation of long time scale beam propagation issues. A comparison between IPROP and SOLENZ will be presented. SOLENZ simulations with the Gamble I beam parameters demonstrate SPT but point to the need to study the injection conditions to improve beam confinement. Simulations examining beam-to-wall distance and injection conditions will be presented

  13. Dopant-assisted negative photoionization Ion mobility spectrometry coupled with on-line cooling inlet for real-time monitoring H2S concentration in sewer gas.

    Science.gov (United States)

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Hua, Lei; Li, Haiyang

    2016-06-01

    Malodorous hydrogen sulfide (H2S) gas often exists in the sewer system and associates with the problems of releasing the dangerous odor to the atmosphere and causing sewer pipe to be corroded. A simple method is in demand for real-time measuring H2S level in the sewer gas. In this paper, an innovated method based on dopant-assisted negative photoionization ion mobility spectrometry (DANP-IMS) with on-line semiconductor cooling inlet was put forward and successfully applied for the real-time measurement of H2S in sewer gas. The influence of moisture was effectively reduced via an on-line cooling method and a non-equilibrium dilution with drift gas. The limits of quantitation for the H2S in ≥60% relative humidity air could be obtained at ≤79.0ng L(-1) with linear ranges of 129-2064ng L(-1). The H2S concentration in a sewer manhole was successfully determined while its product ions were identified by an ion-mobility time-of-fight mass spectrometry. Finally, the correlation between sewer H2S concentration and the daily routines and habits of residents was investigated through hourly or real-time monitoring the variation of sewer H2S in manholes, indicating the power of this DANP-IMS method in assessing the H2S concentration in sewer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Gas utilization in the Tokamak Fusion Test Reactor neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.; Jones, T.T.C.

    1989-01-01

    Measurements of gas utilization were performed using hydrogen and deuterium beams in the Tokamak Fusion Test Reactor (TFTR) neutral beam test beamline to study the feasibility of operating tritium beams with existing ion sources under conditions of minimal tritium consumption. (i) It was found that the fraction of gas molecules introduced into the TFTR long-pulse ion sources that are converted to extracted ions (i.e., the ion source gas efficiency) was higher than with previous short-pulse sources. Gas efficiencies were studied over the range 33%--55%, and its effect on neutralization of the extracted ions was studied. At the high end of the gas efficiency range, the neutral fraction of the beam fell below that predicted from room-temperature molecular gas flow (similar to observations at the Joint European Torus). (ii) Beam isotope change studies were performed. No extracted hydrogen ions were observed in the first deuterium beam following a working gas change from H 2 to D 2 . There was no arc conditioning or gas injection preceding the first beam extraction attempt. (iii) Experiments were also performed to determine the reliability of ion source operation during the long waiting periods between pulses that are anticipated during tritium operation. It was found that an ion source conditioned to 120 kV could produce a clean beam pulse after a waiting period of 14 h by preceding the beam extraction with several acceleration voltage/filament warm-up pulses. It can be concluded that the operation of up to six ion sources on tritium gas should be compatible with on-site inventory restrictions established for D--T, Q = 1 experiments on TFTR

  15. Improvement of helium characteristics using argon in cylindrical ion source

    International Nuclear Information System (INIS)

    Abdel salam, F.W.; El-Khabeary, H.; Abdel reheem, A.M.; Kassem, N.E.; Ahmed, M.M.

    2004-01-01

    the discharge characteristics of pure helium gas were measured at different pressures in the range of 10 -4 torr. in order o improve its characteristics, argon gas was added . different percentages of argon gas ,1%,2%,3%,4%,5%,10% and 20% were used at constant values of pressures . Measurements of the efficiency of the cylindrical ion source in case of adding different percentages of argon gas to pure helium gas were made . an optimum value of the output ion beam current was obtained when 2% argon gas was added to pure helium gas . an output ion beam current of 105 μA was obtained at a pressure of 7X10 -4 torr inside the vacuum chamber and discharge current of 0.6 m A

  16. Ion-beam plasma and propagation of intense compensated ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gabovich, M D [AN Ukrainskoj SSR, Kiev. Inst. Fiziki

    1977-02-01

    Discussed are the results of investigation of plasma properties received by neutralization of intense ion beam space charge. Considered is the process of ion beam compensation by charges, formed as a result of gas ionization by this beam or by externally introduced ones. Emphasis is placed on collective phenomena in ion-beam plasma, in particular on non-linear effects limiting amplitude of oscillations. It is shown that not only dynamic decompensation but the Coulomb collisions of ions with electrons as well as other collective oscillations significantly affects the propagation of compensated ion beams. All the processes are to be taken into account in solving the problem of obtaining ''superdense'' compensated beams.

  17. Ion-beam plasma and propagation of intense compensated ion beams

    International Nuclear Information System (INIS)

    Gabovich, M.D.

    1977-01-01

    Discussed are the results of investigation of plasma properties recieved by neutralization of intensive ion beam space charge. Considered is the process of ion beam compensation by charges, formed as a result of gas ionization by this beam or by externally introduced ones. Emphasis is placed on collective phenomena in ion-beam plasma, in particular on non-linear effects limiting amplitude of oscillations. It is shown, that not only dinamic decompensation but the Coulomb collisions of ions with electrons as well as other collective oscillations significantly affects the propagation of compensated ion beams. All the processes are to be taken into account at solving the problem of obtaining ''superdense'' compensated beams

  18. Polyatomic ions in inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Ferguson, Jill Wisnewski; Dudley, Timothy J.; Sears, Kyle C.; McIntyre, Sally M.; Gordon, Mark S.; Houk, R.S.

    2009-01-01

    Several polyatomic ions in inductively coupled plasma-mass spectrometry are studied experimentally and by computational methods. Novel calculations based on spin-restricted open shell second order perturbation theory (ZAPT2) and coupled cluster (CCSD(T)) theory are performed to determine the energies, structures and partition functions of the ions. These values are combined with experimental data to evaluate a dissociation constant and gas kinetic temperature (T gas ) value. In our opinion, the resulting T gas value can sometimes be interpreted to deduce the location where the polyatomic ion of interest is generated. The dissociation of N 2 H + to N 2 + leads to a calculated T gas of 4550 to 4900 K, depending on the computational data used. The COH + to CO + system yields a similar temperature, which is not surprising considering the similar energies and structures of COH + and N 2 H + . The dissociation of H 2 CO + to HCO + leads to a much lower T gas ( 2 COH + to HCOH + generates a T gas value between those from the other H x CO + ions studied here. All of these measured T gas values correspond to formation of extra polyatomic ion in the interface or extraction region. The computations reveal the existence of isomers such as HCO + and COH + , and H 2 CO + and HCOH + , which have virtually the same m/z values and need to be considered in the interpretation of results.

  19. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    Science.gov (United States)

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  20. Study of Target Fragmentation in the Interaction of 86 MeV/A $^{12}$Carbon with Tantalum, Bismuth and Uranium

    CERN Multimedia

    2002-01-01

    Using radiochemical techniques we will ; a)~~measure the target fragment mass and charge distributions from the interaction of 86~MeV/A |1|2C with Ta, Bi and U; ; b)~~measure the target fragment forward momentum and average kinetic energy using the thick target-thick catcher technique for the above reactions; and ; c)~~measure the target fragment angular and differential energy distributions using thin target-thin catcher techniques for the reactions with Ta and U. \\\\ \\\\ These measurements should allow us to better characterize the transition between low energy and realistic heavy ion reaction mechanisms.

  1. Study of Si wafer surfaces irradiated by gas cluster ion beams

    International Nuclear Information System (INIS)

    Isogai, H.; Toyoda, E.; Senda, T.; Izunome, K.; Kashima, K.; Toyoda, N.; Yamada, I.

    2007-01-01

    The surface structures of Si (1 0 0) wafers subjected to gas cluster ion beam (GCIB) irradiation have been analyzed by cross-sectional transmission electron microscopy (XTEM) and atomic force microscopy (AFM). GCIB irradiation is a promising technique for both precise surface etching and planarization of Si wafers. However, it is very important to understand the crystalline structure of Si wafers after GCIB irradiation. An Ar-GCIB used for the physically sputtering of Si atoms and a SF 6 -GCIB used for the chemical etching of the Si surface are also analyzed. The GCIB irradiation increases the surface roughness of the wafers, and amorphous Si layers are formed on the wafer surface. However, when the Si wafers are annealed in hydrogen at a high temperature after the GCIB irradiation, the surface roughness decreases to the same level as that before the irradiation. Moreover, the amorphous Si layers disappear completely

  2. Spectroscopy of multi-charged ions: a short review

    International Nuclear Information System (INIS)

    Berry, H.G.

    1983-01-01

    Recent and future applications of multiply charged ions to spectroscopy and atomic structure are discussed. The experimental techniques use either very fast ions produced in heavy ion accelerators, or slow ions produced directly both in electron beam ion sources and from collisions of fast accelerated ions. For the accelerated fast ions, spectroscopic measurements on using gas target excitation, solid foil excitation and laser excitation. In gas target excitation, both X-ray and electron spectroscopy have been applied to analyse atomic structures and secondary collision effects. Highlycharged secondary ions have also been trapped electro-magnetically for further similar studies in controlled conditions. Spectroscopic detection following solid foil interaction has led to atomic lifetime measurements, principally of metastable level, analysis of complex highly-ionized heavy ion spectra, and investigations of relativistic and QED effects in few electron ions

  3. In vivo effects of Aphanizomenon flos-aquae DC-1 aphantoxins on gas exchange and ion equilibrium in the zebrafish gill

    International Nuclear Information System (INIS)

    Zhang, Delu; Liu, Siyi; Zhang, Jing; Zhang, Jian Kong; Hu, Chunxiang; Liu, Yongding

    2016-01-01

    Highlights: • Aphantoxins induce respiratory dysfunction in zebrafish gills. • Changes in LDH and cellular ultrastructure indicate gill damage. • Decreased NKA and CA reflect abnormal ion transport and gas exchange. • Increased ROS and decreased T-AOC suggest oxidative stress in the gills. - Abstract: Aphantoxins, neurotoxins or paralytic shellfish poisons (PSPs) generated by Aphanizomenon flos-aquae, are a threat to environmental safety and human health in eutrophic waters worldwide. The molecular mechanisms of neurotoxin function have been studied; however, the effects of these neurotoxins on oxidative stress, ion transport, gas exchange, and branchial ultrastructure in fish gills are not fully understood. Aphantoxins extracted from A. flos-aquae DC-1 were detected by high-performance liquid chromatography. The major ingredients were gonyautoxins 1 and 5 and neosaxitoxin, which comprised 34.04%, 21.28%, and 12.77% of the total, respectively. Zebrafish (Danio rerio) were administered A. flos-aquae DC-1 aphantoxins at 5.3 or 7.61 μg saxitoxin equivalents (eq)/kg (low and high doses, respectively) by intraperitoneal injection. The activities of Na"+-K"+-ATPase (NKA), carbonic anhydrase (CA), and lactate dehydrogenase (LDH), ultrastructural alterations in chloride and epithelial cells, and reactive oxygen species (ROS) and total antioxidative capacity (T-AOC) were investigated in the gills during the first 24 h after exposure. Aphantoxins significantly increased the level of ROS and decreased the T-AOC in zebrafish gills from 3 to 12 h post-exposure, suggesting an induction of oxidative stress and inhibition of antioxidant capacity. Reduced activities of NKA and CA demonstrated abnormal ion transport and gas exchange in the gills of aphantoxin-treated fish. Toxin administration also resulted in increased LDH activity and ultrastructural alterations in chloride and epithelial cells, suggesting a disruption of function and structure in zebrafish gills. The

  4. In vivo effects of Aphanizomenon flos-aquae DC-1 aphantoxins on gas exchange and ion equilibrium in the zebrafish gill

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Delu, E-mail: deluzh@163.com [Department of Lifescience and Biotechnology, College of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070 (China); Liu, Siyi [Department of Lifescience and Biotechnology, College of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070 (China); Zhang, Jing [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Zhang, Jian Kong [Department of Lifescience and Biotechnology, College of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070 (China); Hu, Chunxiang, E-mail: deluzh@ihb.ac.cn [Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China); Liu, Yongding [Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China)

    2016-08-15

    Highlights: • Aphantoxins induce respiratory dysfunction in zebrafish gills. • Changes in LDH and cellular ultrastructure indicate gill damage. • Decreased NKA and CA reflect abnormal ion transport and gas exchange. • Increased ROS and decreased T-AOC suggest oxidative stress in the gills. - Abstract: Aphantoxins, neurotoxins or paralytic shellfish poisons (PSPs) generated by Aphanizomenon flos-aquae, are a threat to environmental safety and human health in eutrophic waters worldwide. The molecular mechanisms of neurotoxin function have been studied; however, the effects of these neurotoxins on oxidative stress, ion transport, gas exchange, and branchial ultrastructure in fish gills are not fully understood. Aphantoxins extracted from A. flos-aquae DC-1 were detected by high-performance liquid chromatography. The major ingredients were gonyautoxins 1 and 5 and neosaxitoxin, which comprised 34.04%, 21.28%, and 12.77% of the total, respectively. Zebrafish (Danio rerio) were administered A. flos-aquae DC-1 aphantoxins at 5.3 or 7.61 μg saxitoxin equivalents (eq)/kg (low and high doses, respectively) by intraperitoneal injection. The activities of Na{sup +}-K{sup +}-ATPase (NKA), carbonic anhydrase (CA), and lactate dehydrogenase (LDH), ultrastructural alterations in chloride and epithelial cells, and reactive oxygen species (ROS) and total antioxidative capacity (T-AOC) were investigated in the gills during the first 24 h after exposure. Aphantoxins significantly increased the level of ROS and decreased the T-AOC in zebrafish gills from 3 to 12 h post-exposure, suggesting an induction of oxidative stress and inhibition of antioxidant capacity. Reduced activities of NKA and CA demonstrated abnormal ion transport and gas exchange in the gills of aphantoxin-treated fish. Toxin administration also resulted in increased LDH activity and ultrastructural alterations in chloride and epithelial cells, suggesting a disruption of function and structure in zebrafish

  5. Sustainable eye-catcher. Greenhouse complex Anthura in Bleiswijk, Netherlands; Duurzame blikvanger. Kassencomplex Anthura in Bleiswijk

    Energy Technology Data Exchange (ETDEWEB)

    Overeijnder, F. [Overeijnder Van den Dool, Capelle aan den IJssel (Netherlands); Snellens, N.C. [Priva, De Lier (Netherlands)

    2011-06-15

    The architecture is impressive and a true eye catcher. Anthura's greenhouse building complex seems futuristic, but also stems from the design of the impressive greenhouses of the Royal Botanic Gardens of Kew, in London and the distinguished orangeries of castles and palaces. At the same time, the complex is a beautiful and modern example of sustainable and innovative entrepreneurship in glasshouse horticulture. The new 'Hortus Anthura' offers a pleasant and healthy climate for both crops and employees, is a great addition to the surrounding area, saves the environment and the climate and provides higher quality products. [Dutch] De indrukwekkende architectuur is een regegrechte blikvanger. Het kassencomplex van Anthura in Bleiswijk doet futuristisch aan, maar grijpt ook terug op de vormgeving van indrukwekkende greenhouses in de Royal Botanic Gardens van Kew in Londen en de deftige oranjerieen van kastelen en paleizen. Tegelijk is het complex een fraai en actueel voorbeeld van duurzaam en innovatief ondernemen in de glastuinbouw. De nieuwe 'Hortus Anthura' biedt zowel de planten als de medewerkers een goed leefklimaat, is een aanwinst voor de omgeving, spaart milieu en klimaat en levert een kwalitatief beter product.

  6. Intense pulsed heavy ion beam technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi; Ito, Hiroaki

    2010-01-01

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm 2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm 2 was obtained. The beam consists of aluminum ions (Al (1-3)+ ) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89%. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were successively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm 2 was observed in the cathode, which suggests the bipolar pulse acceleration. (author)

  7. Influence of aging on the heat and gas emissions from commercial lithium ion cells in case of thermal failure

    Directory of Open Access Journals (Sweden)

    Michael Lammer

    2018-03-01

    Full Text Available A method for thermal ramp experiments on cylindrical 18650 Li-ion cells has been established. The method was applied on pristine cells as well as on devices aged by cyclisation or by storage at elevated temperature respectively. The tested cells comprise three types of LiNi0.8Co0.15Al0.05O2 cells for either high power or high energy applications. The heat flux to and from the cell was investigated. Degradation and exothermic breakdown released large amounts of heat and gas. The total gas and heat emission from cycled cells was significantly larger than emission from cells aged by storage. After aging, the low energy cell ICR18650HE4 did not transgress into thermal runaway. Gas composition changed mainly in the early stage of the experiment. The composition of the initial gas release changed from predominantly CO2 towards hydrocarbons. The thermal runaway emitted for all tests a comparable mixture of H2, CO and CO2.

  8. Space-charge effects in Penning ion traps

    Science.gov (United States)

    Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.

    2015-06-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  9. An accurate cost effective DFT approach to study the sensing behaviour of polypyrrole towards nitrate ions in gas and aqueous phases.

    Science.gov (United States)

    Wasim, Fatima; Mahmood, Tariq; Ayub, Khurshid

    2016-07-28

    Density functional theory (DFT) calculations have been performed to study the response of polypyrrole towards nitrate ions in gas and aqueous phases. First, an accurate estimate of interaction energies is obtained by methods calibrated against the gold standard CCSD(T) method. Then, a number of low cost DFT methods are also evaluated for their ability to accurately estimate the binding energies of polymer-nitrate complexes. The low cost methods evaluated here include dispersion corrected potential (DCP), Grimme's D3 correction, counterpoise correction of the B3LYP method, and Minnesota functionals (M05-2X). The interaction energies calculated using the counterpoise (CP) correction and DCP methods at the B3LYP level are in better agreement with the interaction energies calculated using the calibrated methods. The interaction energies of an infinite polymer (polypyrrole) with nitrate ions are calculated by a variety of low cost methods in order to find the associated errors. The electronic and spectroscopic properties of polypyrrole oligomers nPy (where n = 1-9) and nPy-NO3(-) complexes are calculated, and then extrapolated for an infinite polymer through a second degree polynomial fit. Charge analysis, frontier molecular orbital (FMO) analysis and density of state studies also reveal the sensing ability of polypyrrole towards nitrate ions. Interaction energies, charge analysis and density of states analyses illustrate that the response of polypyrrole towards nitrate ions is considerably reduced in the aqueous medium (compared to the gas phase).

  10. Precise atomic-scale investigations of material sputtering process by light gas ions in pre-threshold energy region

    CERN Document Server

    Suvorov, A L

    2002-01-01

    Foundation and prospects of the new original technique of the sputtering yield determination of electro-conducting materials and sub-atomic layers on their surface by light gas ions the pre-threshold energy region (from 10 to 500 eV) are considered. The technique allows to identify individual surface vacancies, i.e., to count individual sputtered atoms directly. A short review of the original results obtained by using the developed techniques is given. Data are presented and analyzed concerning energy thresholds of the sputtering onset and energy dependences of sputtering yield in the threshold energy region for beryllium, tungsten, tungsten oxide, alternating tungsten-carbon layers, three carbon materials as well as for sub-atomic carbon layers on surface of certain metals at their bombardment by hydrogen, deuterium and/or helium ions

  11. Development of a compact powdery sample negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Motoi [Doshisha Univ., Tanabe, Kyoto (Japan). Faculty of Engineering; Sasao, Mamiko; Kawano, Hiroyuki

    1997-02-01

    A gas-feed-free compact negative ion source can be realized by utilizing the process of electron stimulated desorption from powdery sample. A negative ion source of this type is designed to be attached to a standard 1.33 inch copper-gasket-flange. The ion source is operated stable with LiH powder for more than 10 hours with the mass-separated negative hydrogen ion current of 1 nA. The source causes minute gas emission, and particularly suitable for ion beam applications in which a good vacuum is required. The present status of the compact ion source development is briefly described. (author)

  12. Determination of the extraction efficiency for {sup 233}U source α-recoil ions from the MLL buffer-gas stopping cell

    Energy Technology Data Exchange (ETDEWEB)

    Wense, Lars v.d.; Seiferle, Benedict; Thirolf, Peter G. [Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Laatiaoui, Mustapha [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Helmholtz Institut Mainz, Mainz (Germany)

    2015-03-01

    Following the α decay of {sup 233}U, {sup 229}Th recoil ions are shown to be extracted in a significant amount from the MLL buffer-gas stopping cell. The produced recoil ions and subsequent daughter nuclei are mass purified with the help of a customized quadrupole mass spectrometer. The combined extraction and mass purification efficiency for {sup 229}Th{sup 3+} is determined via MCP-based measurements and via the direct detection of the {sup 229}Th α decay. A large value of (10±2)% for the combined extraction and mass purification efficiency of {sup 229}Th{sup 3+} is obtained at a mass resolution of about 1u/e. In addition to {sup 229}Th, also other α-recoil ions of the {sup 233,} {sup 232}U decay chains are addressed. (orig.)

  13. A high charge state heavy ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.

    1996-01-01

    A high current, low emittance, high charge state heavy ion beam source is being developed. This is designed to deliver a heavy ion fusion (HIF) driver accelerator scale beam. Using a high charge state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system, which consists of a gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 3D beam simulations and experimental feasibility study results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector. (orig.)

  14. Ion beam source construction and applications

    International Nuclear Information System (INIS)

    Torab, S.I.R.

    2011-01-01

    The aim of this thesis is to improve the performance of a new shape cold cathode Penning ion source to be suitable for some applications. In this work, many trials have been made to reach the optimum dimensions of the new shape of cold Molybdenum cathode Penning ion source with radial extraction. The high output ion beam can be extracted in a direction transverse to the discharge region. The new shape cold cathode Penning ion source consists of Copper cylindrical hollow anode of 40 mm length, 12 mm diameter and has two similar cone ends of 15 mm length, 22 mm upper cone diameter and 12 mm bottom cone diameter. The two movable Molybdenum cathodes are fixed in Perspex insulator and placed symmetrically at two ends of the anode. The Copper emission disc of 2 mm thickness and has central aperture of different diameters is placed at the middle of the anode for ion beam exit. The inner surface of the emission disc is isolated from the anode by Perspex insulator except an area of diameter 5 mm to confine the electrical discharge in this area. A movable Faraday cup is placed at different distances from the emission electrode aperture and used to collect the output ion beam from the ion source. The working gases are admitted to the ion source through a hole in the anode via a needle valve which placed between the gas cylinder and the ion source. The optimum anode- cathode distance, the uncovered area diameter of the emission disc, the central aperture diameter of the emission electrode, the distance between emission electrode and Faraday cup have been determined using Argon gas. The optimum distances of the ion source were found to be equal to 6 mm, 5 mm, 2.5 mm, and 3 cm respectively where stable discharge current and maximum output ion beam current at low discharge current can be obtained. The discharge characteristics, ion beam characteristics, and the efficiency of the ion source have been measured at different operating conditions and different gas pressures using

  15. Inverted magnetron ion source

    International Nuclear Information System (INIS)

    Singh, B.; Boyarsky, D.

    1985-01-01

    The present invention provides, in a preferred embodiment, a cylindrical stainless steel cathode with end pieces thereon to form a cathode chamber within. In addition, in a preferred embodiment, there is a stainless steel rod which passes axially through the cathode chamber and which is electrically insulated therefrom at the end pieces. The stainless steel cathode has first and second apertures formed therein with the first to be connected to a source of ionizable gas and the second to act as the opening through which there passes a stream of ions to an ion beam target. A magnetic flux source is coupled to the cathode chamber to pass magnetic flux therethrough and a voltage source is connected between the anode and the cathode to provide an electrostatic field therebetween whereby when ionizable gas is fed into the cathode chamber, it is ionized and a stream of ions emanates from the second aperture. In a preferred embodiment there is further provided an electrostatic ion focusing means to focus the ion stream emanating from the second aperture

  16. Numerical model of electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    V. Mironov

    2015-12-01

    Full Text Available Important features of the electron cyclotron resonance ion source (ECRIS operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model the dynamics of ions in ECRIS plasma. It is shown that a gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for a few sources. Changes in the simulated extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.

  17. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    International Nuclear Information System (INIS)

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.

    2013-01-01

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy

  18. A fast beam-ion instability

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, G V [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    The ionization of residual gas by an electron beam in an accelerator generates ions that can resonantly couple to the beam through a wave propagating in the beam-ion system. Results of the study of a beam-ion instability are presented for a multi-bunch train taking into account the decoherence of ion oscillations due to the ion frequency spread and spatial variation of the ion frequency. It is shown that the combination of both effects can substantially reduce the growth rate of the instability. (author)

  19. Synthesis of aluminum nitride films by plasma immersion ion implantation-deposition using hybrid gas-metal cathodic arc gun

    International Nuclear Information System (INIS)

    Shen Liru; Fu, Ricky K.Y.; Chu, Paul K.

    2004-01-01

    Aluminum nitride (AlN) is of interest in the industry because of its excellent electronic, optical, acoustic, thermal, and mechanical properties. In this work, aluminum nitride films are deposited on silicon wafers (100) by metal plasma immersion ion implantation and deposition (PIIID) using a modified hybrid gas-metal cathodic arc plasma source and with no intentional heating to the substrate. The mixed metal and gaseous plasma is generated by feeding the gas into the arc discharge region. The deposition rate is found to mainly depend on the Al ion flux from the cathodic arc source and is only slightly affected by the N 2 flow rate. The AlN films fabricated by this method exhibit a cubic crystalline microstructure with stable and low internal stress. The surface of the AlN films is quite smooth with the surface roughness on the order of 1/2 nm as determined by atomic force microscopy, homogeneous, and continuous, and the dense granular microstructures give rise to good adhesion with the substrate. The N to Al ratio increases with the bias voltage applied to the substrates. A fairly large amount of O originating from the residual vacuum is found in the samples with low N:Al ratios, but a high bias reduces the oxygen concentration. The compositions, microstructures and crystal states of the deposited films are quite stable and remain unchanged after annealing at 800 deg. C for 1 h. Our hybrid gas-metal source cathodic arc source delivers better AlN thin films than conventional PIIID employing dual plasmas

  20. Experimental study of single-electron loss by Ar+ ions in rare-gas atoms

    Science.gov (United States)

    Reyes, P. G.; Castillo, F.; Martínez, H.

    2001-04-01

    Absolute differential and total cross sections for single-electron loss were measured for Ar+ ions on rare-gas atoms in the laboratory energy range of 1.5 to 5.0 keV. The electron loss cross sections for all the targets studied are found to be in the order of magnitude between 10-19 and 10-22 cm2, and show a monotonically increasing behaviour as a function of the incident energy. The behaviour of the total single-electron loss cross sections with the atomic target number, Zt, shows different dependences as the collision energy increases. In all cases the present results display experimental evidence of saturation in the single-electron loss cross section as the atomic number of the target increases.

  1. Electron induced formation and stability of molecular and cluster ions in gas phase and superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Aleem, M. A.

    2010-01-01

    The present PhD thesis represents a broad range study of electron induced formation and stability of positive and negative ions in gas phase and superfluid helium nanodroplets. The molecules studied are of industrial, environmental, plasma and biological relevance. The knowledge obtained from the study provides new insight for the proper understanding and control on energetics and dynamics of the reactions involved in the formation and fragmentation processes of the studied molecules and clusters. The experiments are accomplished and investigated using mass spectrometric techniques for the formation of molecular and cluster ions using different mass spectrometers available in our laboratory. One part of the work is focused on electron-induced reactions of the molecules in gas phase. Especially focus is laid to electron attachment to the isomers of mononitrotolouene used as an additive to explosives. The fragile nature and high internal energy of these molecules has lead to extensive fragmentation following the ionisation process. Dissociative electron attachment to the three different isomers has shown different resonances and therefore this process can be utilized to explicitly distinguish these isomers. Anion efficiency curves of the isomers have been studied using effusive molecular beam source in combination with a hemispherical electron monochromator as well as a Nier-type ion source attached to a sector field mass spectrometer. The outcome of the experiment is a reliable and effective detection method highly desirable for environmental and security reasons. Secondly, dissociative electron ionization of acetylene and propene is studied and their data is directly related to the plasma modelling for plasma fusion and processing reactors. Temperature effects for dissociative electron attachment to halo-hydrocarbons are also measured using a trochoidal electron monochromator. The second part of the work is concerned with the investigation of electron

  2. Conceptional design of a novel next-generation cryogenic stopping cell for the Low-Energy Branch of the Super-FRS

    Energy Technology Data Exchange (ETDEWEB)

    Dickel, T., E-mail: t.dickel@gsi.de [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Plaß, W.R.; Geissel, H. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Heiße, F. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden (Germany); Miskun, I. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany); Purushothman, S. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Reiter, M.P.; Rink, A.-K. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany); Scheidenberger, C. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany)

    2016-06-01

    The conceptual design of a next-generation cryogenic stopping cell (CSC) for the Low-Energy Branch (LEB) of the Super-FRS has been developed. It builds on advanced techniques implemented in the prototype version of the CSC, which has recently been commissioned as part of the FRS Ion Catcher with {sup 238}U projectile and fission fragments produced at 1000 MeV/u. These techniques include cryogenic operation to ensure a high purity of the stopping gas and high-density operation enabled using an RF carpet with a small electrode structure size. The next generation CSC implements several novel concepts (e.g. perpendicular extraction) which lead to enhanced performance compared to the prototype CSC: (i) extremely short extraction times, (ii) higher rate capability, (iii) increased areal density without deteriorating extraction times, efficiencies or rate capability, (iv) minimized RF power, (v) precise range measurement of the ions and (vii) improved cleanliness of the CSC.

  3. Maximizing Ion Transmission in Differential Mobility Spectrometry

    Science.gov (United States)

    Schneider, Bradley B.; Londry, Frank; Nazarov, Erkinjon G.; Kang, Yang; Covey, Thomas R.

    2017-10-01

    We provide modeling and experimental data describing the dominant ion-loss mechanisms for differential mobility spectrometry (DMS). Ion motion is considered from the inlet region of the mobility analyzer to the DMS exit, and losses resulting from diffusion to electrode surfaces, insufficient effective gap, ion fragmentation, and fringing field effects are considered for a commercial DMS system with 1-mm gap height. It is shown that losses due to diffusion and radial oscillations can be minimized with careful consideration of residence time, electrode spacing, gas flow rate, and waveform frequency. Fragmentation effects can be minimized by limitation of the separation field. When these parameters were optimized, fringing field effects at the DMS inlet contributed the most to signal reduction. We also describe a new DMS cell configuration that improves the gas dynamics at the mobility cell inlet. The new cell provides a gas jet that decreases the residence time for ions within the fringing field region, resulting in at least twofold increase in ion signal as determined by experimental data and simulations. [Figure not available: see fulltext.

  4. Elementary processes in plasma-surface interactions with emphasis on ions

    International Nuclear Information System (INIS)

    Zalm, P.C.

    1985-01-01

    Elementary processes occurring at solid surfaces immersed in low pressure plasmas are reviewed. In particular mechanisms leading to anisotropic or directional etching are discussed. The crucial role of ion bombardment is emphasized. First a brief summary of the interaction of (excited) neutrals, ions and electrons with targets is given. Next various aspects of sputter-etching with noble gas and reactive ions are surveyed. Finally it will be argued that synergistic effects, invoked by ion bombardment of a surface under simultaneous exposure to a reactive gas flux, are foremost important in explaining anisotropic plasma etching. It is shown that the role of the ions is not merely to stimulate the chemical reaction path but rather that the active gas flow chemically enhances the sputtering. (author)

  5. Structural and composition investigations at delayered locations of low k integrated circuit device by gas-assisted focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dandan, E-mail: dandan.wang@globalfoundries.com; Kee Tan, Pik; Yamin Huang, Maggie; Lam, Jeffrey; Mai, Zhihong [Technology Development Department, GLOBALFOUNDRIES Singapore Pte. Ltd., 60 Woodlands Industrial Park D, Street 2, Singapore 738406 (Singapore)

    2014-05-15

    The authors report a new delayering technique – gas-assisted focused ion beam (FIB) method and its effects on the top layer materials of integrated circuit (IC) device. It demonstrates a highly efficient failure analysis with investigations on the precise location. After removing the dielectric layers under the bombardment of an ion beam, the chemical composition of the top layer was altered with the reduced oxygen content. Further energy-dispersive x-ray spectroscopy and Fourier transform infrared analysis revealed that the oxygen reduction lead to appreciable silicon suboxide formation. Our findings with structural and composition alteration of dielectric layer after FIB delayering open up a new insight avenue for the failure analysis in IC devices.

  6. Application of selected ion monitoring to the analysis of triacylglycerols in olive oil by high temperature-gas chromatography/mass spectrometry.

    Science.gov (United States)

    Ruiz-Samblás, C; González-Casado, A; Cuadros-Rodríguez, L; García, F P Rodríguez

    2010-06-30

    The analysis of the triacylglycerol (TAG) composition of oils is a very challenging task, since the TAGs have very similar physico-chemical properties. In this work, a high temperature-gas chromatographic method coupled to electron ionization-mass spectrometry (HT-GC/EI-MS), in the Selected Ion Monitoring (SIM) mode, method was developed for the analysis of TAGs in the olive oil; this is a method suitable for routine analysis. This method was developed using commercially available standard TAGs. The TAGs studied were separated according to their equivalent carbon number and degree of unsaturation. The peak assignment was carried out by locating the characteristic fragment ions having the same retention time on the SIM profile such as [RCO+74](+) and [RCO+128](+) ions, due to the fatty acyl residues on sn-1, sn-2 and sn-3 positions of the TAG molecule and the [M-OCOR](+) ions corresponding to the acyl ions. The developed method was very useful to eliminate the interferences that appeared in the mass spectrum since electron ionization can prevent satisfactory interpretation of spectra. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Magnetic discharge accelerating diode for the gas-filled pulsed neutron generators based on inertial confinement of ions

    International Nuclear Information System (INIS)

    Kozlovskij, K I; Shikanov, A E; Vovchenko, E D; Shatokhin, V L; Isaev, A A; Martynenko, A S

    2016-01-01

    The paper deals with magnetic discharge diode module with inertial electrostatic ions confinement for the gas-filled pulsed neutron generators. The basis of the design is geometry with the central hollow cathode surrounded by the outer cylindrical anode and electrodes made of permanent magnets. The induction magnitude about 0.1-0.4 T in the central region of the discharge volume ensures the confinement of electrons in the space of hollow (virtual) cathode and leads to space charge compensation of accelerated ions in the centre. The research results of different excitation modes in pulsed high-voltage discharge are presented. The stable form of the volume discharge preserveing the shape and amplitude of the pulse current in the pressure range of 10 -3 -10 -1 Torr and at the accelerating voltage up to 200 kV was observed. (paper)

  8. Gas Transport and Density Control in the HYLIFE Heavy-Ion Beam Lines

    International Nuclear Information System (INIS)

    Debonnel, Christophe S.; Welch, Dale R.; Rose, David V.; Lawrence, Simon S.Yu; Peterson, Per F.

    2003-01-01

    The effective propagation and focusing of heavy-ion beams in the final-focus magnet region of inertial fusion target chambers require controlling the background gas density and pressure in the beam tubes. Liquid vortexes will coat the inside of the tubes next to the beam ports and will help eliminate the need for mechanical shutters to mitigate the venting of target chamber background gas into the final-focus magnet region. Before the neutralizing region, the beam space charge is high, and ablation and target debris deposition in the final-focus magnet region may cause voltage breakdown. Previous studies focused on evaluating the amount of target chamber debris reaching the entrance of the beam ports. The TSUNAMI code has now been used to assess the density, temperature, and velocity of the vortex debris transported ∼3 m up the beam tubes and reaching the final-focus magnet region, assuming that the liquid vortexes are perfectly absorbing surfaces. To further mitigate debris deposition in the final-focus magnet region, and prevent voltage breakdown, a 'magnetic shutter' has been envisaged to divert the debris out of the final-focus region. This shutter will prevent the hot ablation debris from reaching the magnet region and, coupled to some ionizing scheme, will conveniently suppress early ingression of debris into the final-focus magnet region

  9. Collisions of highly stripped ions at MeV energies in gas targets: charge transfer and ionization

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1980-01-01

    Cross sections have been measured for charge transfer and ionization in H 2 and rare-gas targets by fast, highly ionized carbon, iron, niobium, and lead ions in charge states +3 to +59, with energies in the range 0.1 to 4.8 MeV/amu. Experimental results are compared with classical-trajectory calculations; agreement is generally good. For a given target, the cross sections for net ionization reduce to a common curve when plotted as cross section divided by charge state versus energy per nucleon divided by charge state

  10. Metal-free reduction of the greenhouse gas sulfur hexafluoride, formation of SF5 containing ion pairs and the application in fluorinations

    KAUST Repository

    Rueping, Magnus

    2017-05-04

    A protocol for the fast and selective two-electron reduction of the potent greenhouse gas sulfur hexafluoride (SF6) by organic electron donors at ambient temperature has been developed. The reaction yields solid ion pairs consisting of donor dications and SF5-anions which can be effectively used in fluorination reactions.

  11. Comparison of Gas Chromatography-Mass Spectrometry and Gas Chromatography-Tandem Mass Spectrometry with Electron Ionization and Negative-Ion Chemical Ionization for Analyses of Pesticides at Trace Levels in Atmospheric Samples

    Directory of Open Access Journals (Sweden)

    Renata Raina

    2008-01-01

    Full Text Available A comparison of detection limits of gas chromatography-mass spectrometry (GC-MS in selected ion monitoring (SIM with gas chromatography-tandem mass spectrometry (GC-MS/MS in selected reaction monitoring (SRM mode with both electron ionization (EI and negative-ion chemical ionization (NCI are presented for over 50 pesticides ranging from organochlorines (OCs, organophosphorus pesticides (OPs and pre-emergent herbicides used in the Canadian prairies (triallate, trifluralin, ethalfluralin. The developed GC-EI/SIM, GC-NCI/SIM, and GC-NCI/SRM are suitable for the determination of pesticides in air sample extracts at concentrations <100 pg µL -1 (< 100 pg m -3 in air. No one method could be used to analyze the range of pre-emergent herbicides, OPs, and OCs investigated. In general GC-NCI/SIM provided the lowest method detection limits (MDLs commonly 2.5-10 pg µL -1 along with best confirmation (<25% RSD of ion ratio, while GC-NCI/SRM is recommended for use where added selectivity or confirmation is required (such as parathion-ethyl, tokuthion, carbofenothion. GC-EI/SRM at concentration < 100 pg µL -1 was not suitable for most pesticides. GC-EI/SIM was more prone to interference issues than NCI methods, but gave good sensitivity (MDLs 1-10 pg µL -1 for pesticides with poor NCI response (OPs: sulfotep, phorate, aspon, ethion, and OCs: alachlor, aldrin, perthane, and DDE, DDD, DDT.

  12. ICRF heating of passing ions in TMX-U

    International Nuclear Information System (INIS)

    Molvik, A.W.; Dimonte, G.; Barter, J.; Campbell, R.; Cummins, W.F.; Falabella, S.; Ferguson, S.W.; Poulsen, P.

    1986-04-01

    By placing ion-cyclotron resonant frequency (ICRF) antennas on both sides of a midplane gas-feed system in the central cell of the Tandem Mirror Experiment-Upgrade (TMX-U), our results have improved in the following areas: (a) The end losses out both ends show a factor of 3 to 4 increase in passing-ion temperatures and a factor of 2 to 3 decrease in passing-ion densities. (b) The passing-ion heating is consistent with Monte Carlo predictions. (c) The plasma density can be sustained by ICRF plus gas fueling as observed on other experiments

  13. Ion feedback effect in the multi GEM structure

    International Nuclear Information System (INIS)

    Park, Se Hwan; Kim, Yong Kyun; Han, Sang Hyo; Ha, Jang Ho; Moon, Byung Soo; Chung, Chong Eun

    2003-01-01

    The feedback of positive ions in a gas electron multiplier (GEM) has to be suppressed to reduce the photocathode degradation in GEM photomultipliers and to prevent the field distortion in a time projection chamber (TPC). The ion feedback dependency on the drift electric field, the transfer field, the asymmetry in the voltages across the GEM, and the effective gain was carefully measured in various gases. The ion feedback is sensitive to the drift field and the effective gain. A model prediction of the ion feedback in a double GEM structure was compared with the measurement. Our systematic study of the ion feedback effect can lead to progress in gas detectors with GEMs.

  14. Kinetic theory for electron dynamics near a positive ion

    International Nuclear Information System (INIS)

    Wrighton, Jeffrey M; Dufty, James W

    2008-01-01

    A theoretical description of time correlation functions for electron properties in the presence of a positive ion of charge number Z is given. The simplest case of an electron gas distorted by a single ion is considered. A semi-classical representation with a regularized electron–ion potential is used to obtain a linear kinetic theory that is asymptotically exact at short times. This Markovian approximation includes all initial (equilibrium) electron–electron and electron–ion correlations through renormalized pair potentials. The kinetic theory is solved in terms of single-particle trajectories of the electron–ion potential and a dielectric function for the inhomogeneous electron gas. The results are illustrated by a calculation of the autocorrelation function for the electron field at the ion. The dependence on charge number Z is shown to be dominated by the bound states of the effective electron–ion potential. On this basis, a very simple practical representation of the trajectories is proposed and shown to be accurate over a wide range including strong electron–ion coupling. This simple representation is then used for a brief analysis of the dielectric function for the inhomogeneous electron gas

  15. Nonlinear theory of ion-acoustic waves in an ideal plasma with degenerate electrons

    International Nuclear Information System (INIS)

    Dubinov, A. E.; Dubinova, A. A.

    2007-01-01

    A nonlinear theory is constructed that describes steady-state ion-acoustic waves in an ideal plasma in which the electron component is a degenerate Fermi gas and the ion component is a classical gas. The parameter ranges in which such a plasma can exist are determined, and dispersion relations for ion-acoustic waves are obtained that make it possible to find the linear ion-acoustic velocity. Analytic gas-dynamic models of ion sound are developed for a plasma with the ion component as a cold, an isothermal, or an adiabatic gas, and moreover, the solutions to the equations of all the models are brought to a quadrature form. Profiles of a subsonic periodic and a supersonic solitary wave are calculated, and the upper critical Mach numbers of a solitary wave are determined. For a plasma with cold ions, the critical Mach number is expressed by an explicit exact formula

  16. Range of plasma ions in cold cluster gases near the critical point

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G. [Cyclotron Institute, Texas A& M University, 77843 College Station, TX (United States); Quevedo, H.J. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States); Bonasera, A., E-mail: abonasera@comp.tamu.edu [Cyclotron Institute, Texas A& M University, 77843 College Station, TX (United States); Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Donovan, M.; Dyer, G.; Gaul, E. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States); Guardo, G.L. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Gulino, M. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Libera Universita' Kore, 94100 Enna (Italy); La Cognata, M.; Lattuada, D. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Palmerini, S. [Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Pizzone, R.G.; Romano, S. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Smith, H. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States); Trippella, O. [Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Anzalone, A.; Spitaleri, C. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Ditmire, T. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States)

    2017-05-18

    We measure the range of plasma ions in cold cluster gases by using the Petawatt laser at the University of Texas-Austin. The produced plasma propagated in all directions some hitting the cold cluster gas not illuminated by the laser. From the ratio of the measured ion distributions at different angles we can estimate the range of the ions in the cold cluster gas. It is much smaller than estimated using popular models, which take only into account the slowing down of charged particles in uniform matter. We discuss the ion range in systems prepared near a liquid–gas phase transition. - Highlights: • We present experimental results obtained at the UT Petawatt laser facility, Austin, TX. • The ion range is strongly modified for cluster gases as compared to its value in a homogeneous system. • Large fluctuations are found if the cluster gas is prepared near the liquid–gas phase transition region.

  17. Range of plasma ions in cold cluster gases near the critical point

    International Nuclear Information System (INIS)

    Zhang, G.; Quevedo, H.J.; Bonasera, A.; Donovan, M.; Dyer, G.; Gaul, E.; Guardo, G.L.; Gulino, M.; La Cognata, M.; Lattuada, D.; Palmerini, S.; Pizzone, R.G.; Romano, S.; Smith, H.; Trippella, O.; Anzalone, A.; Spitaleri, C.; Ditmire, T.

    2017-01-01

    We measure the range of plasma ions in cold cluster gases by using the Petawatt laser at the University of Texas-Austin. The produced plasma propagated in all directions some hitting the cold cluster gas not illuminated by the laser. From the ratio of the measured ion distributions at different angles we can estimate the range of the ions in the cold cluster gas. It is much smaller than estimated using popular models, which take only into account the slowing down of charged particles in uniform matter. We discuss the ion range in systems prepared near a liquid–gas phase transition. - Highlights: • We present experimental results obtained at the UT Petawatt laser facility, Austin, TX. • The ion range is strongly modified for cluster gases as compared to its value in a homogeneous system. • Large fluctuations are found if the cluster gas is prepared near the liquid–gas phase transition region.

  18. METI/NEDO Projects on Cluster Ion Beam Process Technology

    International Nuclear Information System (INIS)

    Yamada, Isao; Matsuo, Jiro; Toyoda, Noriaki

    2003-01-01

    Since the initial study of gas cluster ion beams (GCIB) was started in the Ion Beam Engineering Experimental Laboratory of Kyoto University, more than 15 years have passed. Some of the results of that study have already been applied for industrial use. Unique characteristics of gas cluster ion bombardment have been found to offer potential for various other industrial applications. The impact of an accelerated cluster ion upon a target surface imparts very high energy densities into the impact area and produces non-linear effects that are not associated with the impacts of atomic ions. Among prospective applications for these effects are included shallow ion implantation, high rate sputtering, surface cleaning and smoothing, and low temperature thin film formation

  19. Implantation of D+ ions in niobium and deuterium gas reemission

    International Nuclear Information System (INIS)

    Pisarev, A.A.; Tel'kovskij, V.G.

    1975-01-01

    This is a study of the implanting and reflex gasoisolation of D ions in niobium. It has been discovered that deutrium scope and gasoisolation are defined by several processes. An assumption is made that in ion bombarding conditions the implanting solutions are possible to exist and that deutrium can be replaced on the basis of niobium and hydrid compounds NbxDy. The portion of the particles entrained in the metal in one or another way depends on the ion energy. The dependence of the scope coefficient of n D + ions from the target temperature in the range of 290-1500 K was registered. An increase of the scope coefficient of the ions at high temperature with an increase of the ion energy was discovered

  20. Ion energy recovery experiment based on magnetic electro suppression

    International Nuclear Information System (INIS)

    Kim, J.; Stirling, W.L.; Dagenhart, W.K.; Barber, G.C.; Ponte, N.S.

    1980-05-01

    A proof-of-principle experiment on direct recovery of residual hydrogen ions based on a magnetic electron suppression scheme is described. Ions extracted from a source plasma a few kilovolts above the ground potential (approx. 20 A) are accelerated to 40 keV by a negative potential maintained on a neutralizer gas cell. As the residual ions exit the gas cell, they are deflected from the neutral beam by a magnetic field that also suppresses gas cell electrons and then recovered on a ground-potential surface. Under optimum conditions, a recovery efficiency (the ratio of the net recovered current to the available full-energy ion current) of 80% +- 20% has been obtained. Magnetic suppression of the beam plasma electrons was rather easily achieved; however, handling the fractional-energy ions originating from molecular species (H 2 + and H 3 + ) proved to be extremely important to recovery efficiency

  1. Development of a 'wet' variant of electron beam gas treatment technology adapted to economic and technological conditions of developing countries to remove NOx, SO2 and particulates from flue gas and produce fertilizers

    International Nuclear Information System (INIS)

    Fainchtein, O.L.; Piotrovskiy, V.V.; Savenkov, A.S.; Smirnov, I.K.; Salimov, R.A.

    1998-01-01

    The Institute Energostal with its co-authors has carried out real gas tests of the EB flue gas treatment technology at a 1000 m 3 /h experimental installation at Lipetsk Metallurgical Plant (Lipetsk, Russia), including agricultural tests to utilize the by-product. On the basis of the results obtained, a ''wet'' variant of the EB technology has been developed. A conceptual, basic and working design was engineered for a 100,000 m 3 /h EB demonstration unit at Slavyanskaya Power Plant (Donbass, Ukraine). In a ''wet'' variant of the technology, the following problems are believed to be harmoniously solved: reduction of power consumption for irradiation due to heterogenous reactions based on the so-called droplet mechanism, efficiency and reliability of collecting ammonia salts by wet dust catchers, wet granulation of the by-product using traditional equipment. A ''wet'' variant of the EB technology has a low capital cost and requires less floor area. Therefore, despite all its disadvantages typical for any wet method of gas purification, the ''wet'' EB technology can find its application in developing countries with low levels of economy. In many countries of this type, in particular, in the countries of the former Soviet Union, wet methods of gas treatment and fertilizer granulation are still widely used. As a matter of fact, it is a conventionally ''wet'' method (hence the inverted commas), since no waste water is discharged into the environment

  2. Heavy-ion induced desorption yields of cryogenic surfaces bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Evans, L; Kollmus, H; Küchler, D; Scrivens, R; Severin, D; Wengenroth, M; CERN. Geneva. ATS Department

    2011-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy-Ion Accelerator LINAC 3, has been used to study the dynamic outgassing of cryogenic surfaces. Two different targets, bare and goldcoated copper, were bombarded under perpendicular impact with 4.2 MeV/u Pb54+ ions. Partial pressure rises of H2, CH4, CO, and CO2 and effective desorption yields were measured at 300, 77, and 6.3 K using single shot and continuous ion bombardment techniques. We find that the heavy-ion-induced desorption yield is temperature dependent and investigate the influence of CO gas cryosorbed at 6.3 K. The gain in desorption yield reduction at cryogenic temperature vanishes after several monolayers of CO are cryosorbed on both targets. In this paper we describe the new cryogenic target assembly, the temperature-dependent pressure rise, desorption yield, and gas adsorption measurements.

  3. Detailed evaluation of two phase natural circulation flow in the cooling channel of the ex-vessel core catcher for EU-APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae-Joon, E-mail: rjpark@kaeri.re.kr; Ha, Kwang-Soon; Rhee, Bo-Wook; Kim, Hwan Yeol

    2016-03-15

    Highlights: • Ex-vessel core catcher of PECS is installed in EU-APR1400. • CE-PECS has been conducted to test a cooling capability of the PECS. • Two phase flow in CE-PECS and PECS was analyzed using RELAP5/MOD3. • RELAP5 results are very similar to the CE-PECS data. • The super-step design is suitable for steam injection into the downcomer in PECS. - Abstract: The ex-vessel core catcher of the PECS (Passive Ex-vessel corium retaining and Cooling System) is installed to retain and cool down the corium in the reactor cavity of the EU (European Union)-APR (Advanced Power Reactor) 1400. A verification experiment on the cooling capability of the PECS has been conducted in the CE (Cooling Experiment)-PECS. Simulations of a two-phase natural circulation flow using the RELAP5/MOD3 computer code in the CE-PECS and PECS have been conducted to predict the two-phase flow characteristics, to determine the natural circulation mass flow rate in the cooling channel, and to evaluate the scaling in the experimental design of the CE-PECS. Particularly from a comparative study of the prototype PECS and the scaled test facility of the CE-PECS, the orifice loss coefficient in the CE-PECS was found to be 6 to maintain the coolant circulation mass flux, which is approximately 273.1 kg/m{sup 2} s. The RELAP5 results on the coolant circulation mass flow rate are very similar to the CE-PECS experimental results. An increase in the coolant injection temperature and the heat flux lead to an increase in the coolant circulation mass flow rate. In the base case simulation, a lot of vapor was injected into the downcomer, which leads to an instability of the two-phase natural circulation flow. A super-step design at a downcomer inlet is suitable to prevent vapor injection into the downcomer piping.

  4. Detailed evaluation of two phase natural circulation flow in the cooling channel of the ex-vessel core catcher for EU-APR1400

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Rhee, Bo-Wook; Kim, Hwan Yeol

    2016-01-01

    Highlights: • Ex-vessel core catcher of PECS is installed in EU-APR1400. • CE-PECS has been conducted to test a cooling capability of the PECS. • Two phase flow in CE-PECS and PECS was analyzed using RELAP5/MOD3. • RELAP5 results are very similar to the CE-PECS data. • The super-step design is suitable for steam injection into the downcomer in PECS. - Abstract: The ex-vessel core catcher of the PECS (Passive Ex-vessel corium retaining and Cooling System) is installed to retain and cool down the corium in the reactor cavity of the EU (European Union)-APR (Advanced Power Reactor) 1400. A verification experiment on the cooling capability of the PECS has been conducted in the CE (Cooling Experiment)-PECS. Simulations of a two-phase natural circulation flow using the RELAP5/MOD3 computer code in the CE-PECS and PECS have been conducted to predict the two-phase flow characteristics, to determine the natural circulation mass flow rate in the cooling channel, and to evaluate the scaling in the experimental design of the CE-PECS. Particularly from a comparative study of the prototype PECS and the scaled test facility of the CE-PECS, the orifice loss coefficient in the CE-PECS was found to be 6 to maintain the coolant circulation mass flux, which is approximately 273.1 kg/m"2 s. The RELAP5 results on the coolant circulation mass flow rate are very similar to the CE-PECS experimental results. An increase in the coolant injection temperature and the heat flux lead to an increase in the coolant circulation mass flow rate. In the base case simulation, a lot of vapor was injected into the downcomer, which leads to an instability of the two-phase natural circulation flow. A super-step design at a downcomer inlet is suitable to prevent vapor injection into the downcomer piping.

  5. Bio-mechanical assessment toward throwing and lifting process of i-LOCA (Innovative Lobster Catcher)

    Science.gov (United States)

    Sudiarno, A.; Dewi, D. S.; Putri, M. A.

    2018-04-01

    Indonesia is the country rich in marine resource, one of which is lobster. East java, one of Indonesian province, especially in Region of Gresik and Lamogan, has very huge potential of lobster. Current condition shown that lobster catch by the fisherman mostly depend on lucky factor, which the lobster unintentionally trapped in fisherman’s fish net. By using this mechanism, the number of lobster catch cannot be optimum. Previous researches have produced two versions of i-LOCA, Innovative Lobster Catcher, a special tool for catching the lobster. Although produce more lobster catch, second version of i-LOCA still needs to be scrutinized, one of that is bio-mechanical assessment. The second version of i-LOCA still has no tool to ease throwing and lifting it into the sea. This condition cause Musculoskeletal Disorder (MSD) toward the fisherman. This research perform bio-mechanical assessment toward throwing and lifting process in order to suggest improvement for i-LOCA as the third version. Based on body moment calculation, we found that throwing and lifting process of third version of i-LOCA, each was 3 times and 2 times better than second version of i-LOCA. Meanwhile, Rapid Entire Body Assessment (REBA) score of throwing and lifting process for third version of i-LOCA can be reduced by 5 points compared to second version of i-LOCA.

  6. Product ion diffusion in flowing afterglows

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M J; Stock, H M.P. [University Coll. of Wales, Aberystwyth (UK). Dept. of Physics

    1975-11-11

    An analysis of the variation of product ion signals in flowing after-glow experiments is presented. It is shown that under certain conditions the relative variation of a single product ion yields not only the total reaction rate coefficients but also the ambipolar diffusion coefficient of the product ion in the buffer gas. Theory is compared with experiment for a number of ion-molecule and Penning reactions.

  7. Simulant melt experiments on performance of the in-vessel core catcher

    International Nuclear Information System (INIS)

    Kang, Kyoung-Ho; Park, Rae-Joon; Kim, Sang-Baik; Suh, K.Y.; Cheung, F.B.; Rempe, J.L.

    2007-01-01

    In order to enhance the feasibility of in-vessel retention (IVR) of molten core material during a severe accident for high-power reactors, an in-vessel core catcher (IVCC) was designed and evaluated as part of a joint United States-Korean International Nuclear Energy Research Initiative (INERI). The proposed IVCC is expected to increase the thermal margin for success of IVR by providing an 'engineered gap' for heat transfer from materials that relocate during a severe accident and potentially serving as a sacrificial material under a severe accident. In this study, LAVA-GAP experiments were performed to investigate the thermal and mechanical performance of the IVCC using the alumina melt as simulant. The LAVA-GAP experiments aim to examine the feasibility and sustainability of the IVCC under the various test conditions using 1/8th scale hemispherical test sections. As a feasibility test of the proposed IVCC in this INERI project, the effects of IVCC base steel materials, internal coating materials, and gap size between the IVCC and the vessel lower head were examined. The test results indicated that the internally coated IVCC has high thermal performance compared with the uncoated IVCC. In terms of integrity of the base steel, carbon steel is superior to stainless steel and the effect of bond coat is found to be trivial for the tests performed in this study. The thermal load is mitigated via boiling heat removal in the gap between the IVCC and the vessel lower head. The current test results imply that gaps less than 10 mm are not enough to guarantee effective cooling induced by water ingression and steam venting there through. Selection of endurable material and pertinent gap size is needed to implement the proposed IVCC concept into advanced reactor designs

  8. Dioxin analysis by gas chromatography-Fourier transform ion cyclotron resonance mass spectrometry (GC-FTICRMS).

    Science.gov (United States)

    Taguchi, Vince Y; Nieckarz, Robert J; Clement, Ray E; Krolik, Stefan; Williams, Robert

    2010-11-01

    The feasibility of utilizing a gas chromatograph-tandem quadrupole-Fourier transform ion cyclotron resonance mass spectrometer (GC-MS/MS-FTICRMS) to analyze chlorinated-dioxins/furans (CDDs/CDFs) and mixed halogenated dioxins/furans (HDDs/HDFs) was investigated by operating the system in the GC-FTICRMS mode. CDDs/CDFs and mixed HDDs/HDFs could be analyzed at 50,000 to 100,000 resolving power (RP) on the capillary gas chromatographic time scale. Initial experiments demonstrated that 1 pg of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 5 pg of 2-bromo-3,7,8-trichlorodibenzo-p-dioxin (BTrCDD) could be detected. The feasibility of utilizing an FTICRMS for screening of CDDs/CDFs, HDDs/HDFs and related compounds was also investigated by analyzing an extract from vegetation exposed to fall-out from an industrial fire. CDDs/CDFs, chlorinated pyrenes and chlorinated tetracenes could be detected from a Kendrick plot analysis of the ultrahigh resolution mass spectra. Mass accuracies were of the order of 0.5 ppm on standards with external mass calibration and 1 ppm on a sample with internal mass calibration. Copyright © 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  9. Scalable design of an IMS cross-flow micro-generator/ion detector

    International Nuclear Information System (INIS)

    Ortiz, Juan J; Nigri, Christian; Lasorsa, Carlos; Ortiz, Guillermo P

    2013-01-01

    Ion-mobility spectrometry (IMS) is an analytical technique used to separate and identify ionized gas molecules based on their mobility in a carrier buffer gas. Such methods come in a large variety of versions that currently allow ion identification at and above the millimeter scale. Here, we present a design for a cross-flow IMS method able to generate and detect ions at the sub-millimeter scale. We propose a novel ion focusing strategy and test it in a prototype device using nitrogen as a sample gas, and also with simulations using four different sample gases. By introducing an original lobular ion generation localized to a few ten of microns and substantially simplifying the design, our device is able to keep constant laminar flow conditions for high flow rates. In this way, it avoids the turbulences in the gas flow, which would occur in other ion-focusing cross-flow methods limiting their performance at the sub-millimeter scale. Scalability of the proposed design can contribute to improve the resolving power and resolution of currently available cross-flow methods. (paper)

  10. Development of a Time Projection Chamber using CF4 gas for relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Isobe, T.; Hamagaki, H.; Ozawa, K.; Inuzuka, M.; Sakaguchi, T.; Matsumoto, T.; Kametani, S.; Kajihara, F.; Gunji, T.; Kurihara, N.; Oda, S.X.; Yamaguchi, Y.L.

    2006-01-01

    A prototype Time Projection Chamber (TPC) using pure CF 4 gas was developed for possible use in heavy ion experiments. Basic characteristics such as gain, drift velocity, longitudinal diffusion and attenuation length of produced electrons were measured with the TPC. At an electric field of 900V/cm, the drift velocity and longitudinal diffusion for 1cm drift were obtained as 10cm/μs and 60μm, respectively. The relatively large gain fluctuation is explained to be due to the electron attachment process in CF 4 . These characteristics are encouraging for the measurement of the charged particle trajectories under high multiplicity conditions at RHIC

  11. Modification on surface oxide layer structure and surface morphology of niobium by gas cluster ion beam treatments

    International Nuclear Information System (INIS)

    Wu, A.T.; Swenson, D.R.; Insepov, Z.

    2010-01-01

    Recently, it was demonstrated that significant reductions in field emission on Nb surfaces could be achieved by means of a new surface treatment technique called gas cluster ion beam (GCIB). Further study as shown in this paper revealed that GCIB treatments could modify surface irregularities and remove surface asperities leading to a smoother surface finish as demonstrated through measurements using a 3D profilometer, an atomic force microscope, and a scanning electron microscope. These experimental observations were supported by computer simulation via atomistic molecular dynamics and a phenomenological surface dynamics. Measurements employing a secondary ion mass spectrometry found that GCIB could also alter Nb surface oxide layer structure. Possible implications of the experimental results on the performance of Nb superconducting radio frequency cavities treated by GCIB will be discussed. First experimental results on Nb single cell superconducting radio frequency cavities treated by GCIB will be reported.

  12. Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications

    KAUST Repository

    Alias, Mohd Sharizal; Yang, Yang; Ng, Tien Khee; Dursun, Ibrahim; Shi, Dong; Saidaminov, Makhsud I.; Priante, Davide; Bakr, Osman; Ooi, Boon S.

    2015-01-01

    is challenging, particularly for patterning. Here, we report the direct patterning of perovskites using chemically gas-assisted focused-ion beam (GAFIB) etching with XeF2 and I2 precursors. We demonstrate etching enhancement in addition to controllability

  13. Background gas density and beam losses in NIO1 beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Veltri, P.; Serianni, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Cavenago, M. [INFN-LNL, v.le dell’Università 2, I-35020 Legnaro (PD) (Italy)

    2016-02-15

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  14. Mass spectrum of secondary ions knocked-out from copper surface by argon ion beam

    International Nuclear Information System (INIS)

    Koval', A.G.; Bobkov, V.V.; Klimovskij, Yu.A.; Fogel', Ya.M.

    1976-01-01

    The mass-spectrum of secondary ions was studied within a mass range of 1-400. The ions were knocked-out by the beam of ions Ar + from the copper surface with different content of oxygen and sulphur solved in the volume. The studies were conducted at three temperatures of the target. The atomic and molecular ions of the metal matrix, volumetric impurities of metal and ions of chemical compounds molecules of the metal under study with gas particles adsorbed on its surface and atoms of the metal volumetric admixtures may be observed in the mass spectrum. Detection of secondary ions of the copper multi-atomic complexes and ions of these complexes compounds with the adsorbed molecules is of interest

  15. Electric force on plasma ions and the momentum of the ion-neutrals flow

    Science.gov (United States)

    Makrinich, G.; Fruchtman, A.; Zoler, D.; Boxman, R. L.

    2018-05-01

    The electric force on ions in plasma and the momentum flux carried by the mixed ion-neutral flow were measured and found to be equal. The experiment was performed in a direct-current gas discharge of cylindrical geometry with applied radial electric field and axial magnetic field. The unmagnetized plasma ions, neutralized by magnetized electrons, were accelerated radially outward transferring part of the gained momentum to neutrals. Measurements were taken for various argon gas flow rates between 13 and 100 Standard Cubic Centimeter per Minute, for a discharge current of 1.9 A and a magnetic field intensity of 136 G. The plasma density, electron temperature, and plasma potential were measured at various locations along the flow. These measurements were used to determine the local electric force on the ions. The total electric force on the plasma ions was then determined by integrating radially the local electric force. In parallel, the momentum flux of the mixed ion-neutral flow was determined by measuring the force exerted by the flow on a balance force meter (BFM). The maximal plasma density was between 6 × 1010 cm-3 and 5 × 1011 cm-3, the maximal electron temperature was between 8 eV and 25 eV, and the deduced maximal electric field was between 2200 V/m and 5800 V/m. The force exerted by the mixed ion-neutral flow on the BFM agreed with the total electric force on the plasma ions. This agreement showed that it is the electric force on the plasma ions that is the source of the momentum acquired by the mixed ion-neutral flow.

  16. Ion trapping in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Hinterberger, Frank [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik

    2011-10-15

    The problem of ion trapping in the high-energy storage ring HESR is studied in the present report. Positive ions are trapped in the negative potential well of the antiproton beam. The ions are produced by the interaction between the antiproton beam and the residual gas. The adverse effects of ion trapping like tune shifts, tune spreads and coherent instabilities are reviewed. The ion production rate by ionization of the residual gas molecules is estimated. The negative potential well and the corresponding electric fields of the antiproton beam are evaluated in order to study the transverse and longitudinal motion of the ions and the accumulation in trapping pockets. The removal of ions can be achieved using clearing electrodes and under certain conditions resonant transverse beam shaking. Diagnostic tools and measurements of trapped ion effects are sketched. (orig.)

  17. Indium tin oxide surface smoothing by gas cluster ion beam

    CERN Document Server

    Song, J H; Choi, W K

    2002-01-01

    CO sub 2 cluster ions are irradiated at the acceleration voltage of 25 kV to remove hillocks on indium tin oxide (ITO) surfaces and thus to attain highly smooth surfaces. CO sub 2 monomer ions are also bombarded on the ITO surfaces at the same acceleration voltage to compare sputtering phenomena. From the atomic force microscope results, the irradiation of monomer ions makes the hillocks sharper and the surfaces rougher from 1.31 to 1.6 nm in roughness. On the other hand, the irradiation of CO sub 2 cluster ions reduces the height of hillocks and planarize the ITO surfaces as smooth as 0.92 nm in roughness. This discrepancy could be explained by large lateral sputtering yield of the cluster ions and re-deposition of sputtered particles by the impact of the cluster ions on surfaces.

  18. Simultaneous determination of clebopride and a major metabolite N-desbenzylclebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry.

    Science.gov (United States)

    Robinson, P R; Jones, M D; Maddock, J; Rees, L W

    1991-03-08

    A procedure for the simultaneous assay of clebopride and its major metabolite N-desbenzylclebopride in plasma has been developed. The method utilizes capillary gas chromatography-negative-ion chemical ionization mass spectrometry with selected-ion monitoring of characteristic ions. Employing 2-ethoxy analogues as internal standards, the benzamides were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyric anhydride produced volatile mono- and diheptafluorobutyryl derivatives of clebopride and N-desbenzylclebopride, respectively. The methane negative-ion mass spectra of these derivatives exhibited intense high-mass ions ideal for specific quantitation of low levels in biological fluids. Using this procedure the recovery of the drug and metabolite from human plasma was found to be 84.4 +/- 1.5% (n = 3) and 77.4 +/- 4.7% (n = 3), respectively, at 0.5 ng/ml. Measurement of both compounds down to 0.10 ng/ml with a coefficient of variation of less than 10.5% is described. Plasma levels are reported in four volunteers up to 24 h following oral administration of 1 mg of clebopride malate salt.

  19. Plasma Immersion Ion Implantation in Radio Frequency Plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Wyndham, E.

    2013-01-01

    Plasma immersion ion implantation (PIII) has attracted wide interests since it emulates conventional ion-beam ion implantation (IBII) in niche applications. For instance, the technique has very high throughput, the implantation time is independent of the sample size, and samples with an irregular shape can be implanted without complex beam scanning or sample manipulation. For uniform ion implantation and deposition on to different substrates, like silicon, stainless steel etc., a capacitive coupled Radio frequency (RF), 13.6 MHz, plasma is used. During the PIII process, the physical parameters which are expected to play crucial rule in the deposition process like RF power, Negative pulse voltage and pulse duration, gas type and gas mixture, gas flow rates and the implantation dose are studied. The ion dose is calculated by dynamic sheath model and the plasma parameters are calculated from the V-I characteristic and power balance equation by homogeneous model of rf plasma discharge considering Ohmic as well as Stochastic heating. The correlations between the yield of the implantation process and the physical parameters as well as plasma parameters are discussed. (author)

  20. Direct Analysis of Organic Compounds in Liquid Using a Miniature Photoionization Ion Trap Mass Spectrometer with Pulsed Carrier-Gas Capillary Inlet.

    Science.gov (United States)

    Lu, Xinqiong; Yu, Quan; Zhang, Qian; Ni, Kai; Qian, Xiang; Tang, Fei; Wang, Xiaohao

    2017-08-01

    A miniature ion trap mass spectrometer with capillary direct sampling and vacuum ultraviolet photoionization source was developed to conduct trace analysis of organic compounds in liquids. Self-aspiration sampling is available where the samples are drawn into the vacuum chamber through a capillary with an extremely low flow rate (less than 1 μL/min), which minimizes sample consumption in each analysis to tens of micrograms. A pulsed gas-assisted inlet was designed and optimized to promote sample transmission in the tube and facilitate the cooling of ions, thereby improving instrument sensitivity. A limit of detection of 2 ppb could be achieved for 2,4-dimethylaniline in a methanol solution. The sampling system described in the present study is specifically suitable for a miniature photoionization ion trap mass spectrometer that can perform rapid and online analysis for liquid samples. Graphical Abstract ᅟ.

  1. An automated method for the analysis of phenolic acids in plasma based on ion-pairing micro-extraction coupled on-line to gas chromatography/mass spectrometry with in-liner derivatisation

    NARCIS (Netherlands)

    Peters, S.; Kaal, E.; Horsting, I.; Janssen, H.-G.

    2012-01-01

    A new method is presented for the analysis of phenolic acids in plasma based on ion-pairing ‘Micro-extraction in packed sorbent’ (MEPS) coupled on-line to in-liner derivatisation-gas chromatography-mass spectrometry (GC-MS). The ion-pairing reagent served a dual purpose. It was used both to improve

  2. Gas storage and processing device

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro.

    1988-01-01

    Purpose: To improve the gas solidification processing performance in a gas storing and processing device for solidifying treatment of radioactive gaseous wastes (krypton 85) by ion injection method. Constitution: The device according to the present invention is constituted by disposing a coil connected with a magnetic field power source to the outer circumference of an outer cathode vessel, so that axial magnetic fields are formed to the inside of the outer cathode vessel. With such a device, thermoelectrons released from the thermocathode downwardly collide against gaseous radioactive wastes at high probability while moving spirally by the magnetic fields. The thus formed gas ions are solidified by sputtering in the cathode in the vessel. (Horiuchi, T.)

  3. Heavy ion beam propagation through a gas-filled chamber for inertial confinement fusion

    International Nuclear Information System (INIS)

    Barboza, N.O.

    1996-10-01

    The work presented here evaluates the dynamics of a beam of heavy ions propagating through a chamber filled with gas. The motivation for this research stems from the possibility of using heavy ion beams as a driver in inertial confinement fusion reactors for the purpose of generating electricity. Such a study is important in determining the constraints on the beam which limit its focus to the small radius necessary for the ignition of thermonuclear microexplosions which are the source of fusion energy. Nuclear fusion is the process of combining light nuclei to form heavier ones. One possible fusion reaction combines two isotopes of hydrogen, deuterium and tritium, to form an alpha particle and a neutron, with an accompanying release of ∼17.6 MeV of energy. Generating electricity from fusion requires that we create such reactions in an efficient and controlled fashion, and harness the resulting energy. In the inertial confinement fusion (ICF) approach to energy production, a small spherical target, a few millimeters in radius, of deuterium and tritium fuel is compressed so that the density and temperature of the fuel are high enough, ∼200 g/cm 3 and ∼20 keV, that a substantial number of fusion reactions occur; the pellet microexplosion typically releases ∼350 MJ of energy in optimized power plant scenarios

  4. Ion beam diagnosis

    International Nuclear Information System (INIS)

    Strehl, P.

    1994-04-01

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  5. Development of a He/CdI$_2$ gas-jet system coupled to a surface-ionization type ion-source in JAEA-ISOL: towards determination of the first ionization potential of Lr (Z = 103)

    CERN Document Server

    Sato, T K; Sato, N; Tsukada, K; Toyoshima, A; Ooe, K; Miyashita, S; Kaneya, Y; Osa, A; Schädel, M; Nagame, Y; Ichikawa, S; Stora, T; Kratz, J V

    2015-01-01

    We report on development of a gas-jet transport system coupled to a surface ionization ion-source in the JAEA-ISOL (Isotope Separator On-Line) system. As a new aerosol material for the gas-jet system, CdI2, which has a low boiling point of 713 °C, is exploited to prevent deposition of the aerosol material on the surface of the ion-source. An additional filament is newly installed in the previous ion-source to provide uniform heating of an ionizer. The present system is applied to the measurement of absolute efficiencies of various short-lived lanthanide isotopes produced in nuclear reactions.

  6. Hydrolysis and ion exchange of titania nanoparticles towards large-scale titania and titanate nanobelts for gas sensing applications

    International Nuclear Information System (INIS)

    Bela, Somaiah; Ho, Ghim Wei; Wong, Andrew See Weng

    2010-01-01

    One-dimensional titanate and titania nanostructures are prepared by hydrothermal method from titania nanoparticles precursor via hydrolysis and ion exchange processes. The formation mechanism and the reaction process of the nanobelts are elucidated. The effects of the NaOH concentration, HCl leaching duration and the calcination temperature on the morphology and chemical composition of the produced nanobelts are investigated. Na + ions of the titanate nanobelts can be effectively removed by longer acid leaching and neutralization process and transformed into metastable hydrogen titanate compound. A hybrid hydrogen titanate and anatase titania nanobelts can be obtained under dehydration process of 500 0 C. The nanobelts are produced in gram quantities and easily made into nanostructure paper for the bulk study on their electrical and sensing properties. The sensing properties of the nanobelts sheet are tested and exhibited response to H 2 gas.

  7. Dose dependence of nano-hardness of 6H-SiC crystal under irradiation with inert gas ions

    Science.gov (United States)

    Yang, Yitao; Zhang, Chonghong; Su, Changhao; Ding, Zhaonan; Song, Yin

    2018-05-01

    Single crystal 6H-SiC was irradiated by inert gas ions (He, Ne, Kr and Xe ions) to various damage levels at room temperature. Nano-indentation test was performed to investigate the hardness change behavior with damage. The depth profile of nano-hardness for 6H-SiC decreased with increasing depth for both the pristine and irradiated samples, which was known as indentation size effect (ISE). Nix-Gao model was proposed to determine an asymptotic value of nano-hardness by taking account of ISE for both the pristine and irradiated samples. In this study, nano-hardness of the irradiated samples showed a strong dependence on damage level and showed a weak dependence on ions species. From the dependence of hardness on damage, it was found that the change of hardness demonstrated three distinguishable stages with damage: (I) The hardness increased with damage from 0 to 0.2 dpa and achieved a maximum of hardening fraction ∼20% at 0.2 dpa. The increase of hardness in this damage range was contributed to defects produced by ion irradiation, which can be described well by Taylor relation. (II) The hardness reduced rapidly with large decrement in the damage range from 0.2 to 0.5 dpa, which was considered to be from the covalent bond breaking. (III) The hardness reduced with small decrement in the damage range from 0.5 to 2.2 dpa, which was induced by extension of the amorphous layer around damage peak.

  8. Heavy Ion Irradiation Effects in Zirconium Nitride

    International Nuclear Information System (INIS)

    Egeland, G.W.; Bond, G.M.; Valdez, J.A.; Swadener, J.G.; McClellan, K.J.; Maloy, S.A.; Sickafus, K.E.; Oliver, B.

    2004-01-01

    Polycrystalline zirconium nitride (ZrN) samples were irradiated with He + , Kr ++ , and Xe ++ ions to high (>1.10 16 ions/cm 2 ) fluences at ∼100 K. Following ion irradiation, transmission electron microscopy (TEM) and grazing incidence X-ray diffraction (GIXRD) were used to analyze the microstructure and crystal structure of the post-irradiated material. For ion doses equivalent to approximately 200 displacements per atom (dpa), ZrN was found to resist any amorphization transformation, based on TEM observations. At very high displacement damage doses, GIXRD measurements revealed tetragonal splitting of some of the diffraction maxima (maxima which are associated with cubic ZrN prior to irradiation). In addition to TEM and GIXRD, mechanical property changes were characterized using nano-indentation. Nano-indentation revealed no change in elastic modulus of ZrN with increasing ion dose, while the hardness of the irradiated ZrN was found to increase significantly with ion dose. Finally, He + ion implanted ZrN samples were annealed to examine He gas retention properties of ZrN as a function of annealing temperature. He gas release was measured using a residual gas analysis (RGA) spectrometer. RGA measurements were performed on He-implanted ZrN samples and on ZrN samples that had also been irradiated with Xe ++ ions, in order to introduce high levels of displacive radiation damage into the matrix. He evolution studies revealed that ZrN samples with high levels of displacement damage due to Xe implantation, show a lower temperature threshold for He release than do pristine ZrN samples. (authors)

  9. Contribution to the understanding of ion-gas reactions in ICP-MS collision reaction cells: application to the resolution of isobaric and polyatomic interferences

    International Nuclear Information System (INIS)

    Quemet, A.

    2012-01-01

    Inductively Coupled Plasma Mass Spectrometry (ICP-MS) emerged as the most essential technique in inorganic analytical chemistry thanks to its numerous assets, particularly its flexibility, its sensitivity and its reproducibility. As part of the elementary and isotopic analysis of irradiated fuel and transmutation target, the analyst is faced with a complex mass spectrum, due to the presence of many radionuclides. ICP-MS can not differentiate ions with the same mass, which induces isobaric and polyatomic interferences when the ions at the same mass are different chemical species. Last generations of ICP-MS have introduced collision reaction cells. It can in situ reduce these isobaric or polyatomic interferences. The cell is a multipole (quadrupole, hexapole or octupole) device filled with a collision and/or reaction gas. The gas molecules collide or possibly react with the ion beam, which eliminates or reduces interferences. Such resolution of interferences is based on the difference of chemical behaviours between the analyte and the interfering species: the choice of the gas is crucial. A better understanding of the 'ion - gas' reaction should help choosing the reacting gases. Three ICP-MS, with the different cell geometries, were used for this study: Perkin Elmer Elan DRC e (quadrupole), Thermo Fischer X serie II (hexapole) and Agilent Technologies 7700x (octupole). The effects of the cell geometry on different experimental parameters and on the resolution of the 56 Fe + / 40 Ar 16 O + polyatomic interferences were examined to measure iron at trace or ultra-trace level. This preliminary study was applied to measure iron as impurities in uranium oxide, the method was then validated with a Certified Reference Material. The reactivities of transition metals (Zr, Ru, Pd, Ag, Cd, Sn), lanthanides (La, Ce, Nd, Sm, Eu, Gd, Dy, Er and Yb) and actinides (U, Np, Pu, Am and Cm), elements of interest in the nuclear field, are studied with numerous gases (O 2 , CO, CO 2 , N 2

  10. Electron and ion kinetics in three-dimensional confined microwave-induced microplasmas at low gas pressures

    International Nuclear Information System (INIS)

    Tang, Jiali; Yu, Xinhai; Tu, Shan-Tung; Wang, Zhengdong; Wang, Zhenyu

    2016-01-01

    The effects of the gas pressure (p_g), microcavity height (t), Au vapor addition, and microwave frequency on the properties of three-dimensional confined microwave-induced microplasmas were discussed in light of simulation results of a glow microdischarge in a three-dimensional microcavity (diameter d_h = 1000 μm) driven at constant voltage loading on the drive electrode (V_r_f) of 180 V. The simulation was performed using the PIC/MCC method, whose results were experimentally verified. In all the cases we investigated in this study, the microplasmas were in the γ-mode. When p_g increased, the maximum electron (n_e) or ion density (n_A_r_+) distributions turned narrow and close to the discharge gap due to the decrease in the mean free path of the secondary electron emission (SEE) electrons (λ_S_E_E_-_e). The peak n_e and n_A_r_+ were not a monotonic function of p_g, resulting from the two conflicting effects of p_g on n_e and n_A_r_+. The impact of ions on the electrode was enhanced when p_g increased. This was determined after comparing the results of ion energy distribution function (IEDFs) at various p_g. The effects of t on the peaks and distributions of n_e and n_A_r_+ were negligible in the range of t from 1.0 to 3.0 mm. The minimum t of 0.6 mm for a steady glow discharge was predicted for p_g of 800 Pa and V_r_f of 180 V. The Au vapor addition increased the peaks of n_e and n_A_r_+, due to the lower ionization voltage of Au atom. The acceleration of ions in the sheaths was intensified with the addition of Au vapor because of the increased potential difference in the sheath at the drive electrode.

  11. In vivo effects of Aphanizomenon flos-aquae DC-1 aphantoxins on gas exchange and ion equilibrium in the zebrafish gill.

    Science.gov (United States)

    Zhang, Delu; Liu, Siyi; Zhang, Jing; Zhang, Jian Kong; Hu, Chunxiang; Liu, Yongding

    2016-08-01

    Aphantoxins, neurotoxins or paralytic shellfish poisons (PSPs) generated by Aphanizomenon flos-aquae, are a threat to environmental safety and human health in eutrophic waters worldwide. The molecular mechanisms of neurotoxin function have been studied; however, the effects of these neurotoxins on oxidative stress, ion transport, gas exchange, and branchial ultrastructure in fish gills are not fully understood. Aphantoxins extracted from A. flos-aquae DC-1 were detected by high-performance liquid chromatography. The major ingredients were gonyautoxins 1 and 5 and neosaxitoxin, which comprised 34.04%, 21.28%, and 12.77% of the total, respectively. Zebrafish (Danio rerio) were administered A. flos-aquae DC-1 aphantoxins at 5.3 or 7.61μg saxitoxin equivalents (eq)/kg (low and high doses, respectively) by intraperitoneal injection. The activities of Na(+)-K(+)-ATPase (NKA), carbonic anhydrase (CA), and lactate dehydrogenase (LDH), ultrastructural alterations in chloride and epithelial cells, and reactive oxygen species (ROS) and total antioxidative capacity (T-AOC) were investigated in the gills during the first 24h after exposure. Aphantoxins significantly increased the level of ROS and decreased the T-AOC in zebrafish gills from 3 to 12h post-exposure, suggesting an induction of oxidative stress and inhibition of antioxidant capacity. Reduced activities of NKA and CA demonstrated abnormal ion transport and gas exchange in the gills of aphantoxin-treated fish. Toxin administration also resulted in increased LDH activity and ultrastructural alterations in chloride and epithelial cells, suggesting a disruption of function and structure in zebrafish gills. The observed abnormalities in zebrafish gills occurred in a time- and dose-dependent manner. These findings demonstrate that aphantoxins or PSPs may inhibit ion transport and gas exchange, increase LDH activity, and result in ultrastructural damage to the gills through elevations in oxidative stress and reduced

  12. DETERMINATION OF A BOUND MUSK XYLENE METABOLITE IN CARP HEMOGLOBIN AS A BIOMARKER OF EXPOSURE BY GAS CHROMATOGRAPHY MASS SPECTROMETRY USING SELECTED ION MONITORING

    Science.gov (United States)

    Musk xylene (MX) is widely used as a fragrance ingredient in commercial toiletries. Identification and quantification of a bound 4-amino-MX (AMX) metabolite was carried out by gas chromatography-mass spectrometry (GC/MS), with selected ion monitoring (SIM). Detection of AMX occur...

  13. Charge transfer processes during ion scattering and stimulated desorption of secondary ions from gas-condensed dielectric surfaces

    CERN Document Server

    Souda, R

    2002-01-01

    The ion emission mechanism from weakly-interacting solid surfaces has been investigated. The H sup + ion captures a valence electron via transient chemisorption, so that the ion neutralization probability is related to the nature of bonding of adsorbates. The H sup + ion is scattered from physisorbed Ar at any coverage whereas the H sup + yield from solid H sub 2 O decays considerably due to covalency in the hydrogen bond. In electron- and ion-stimulated desorption, the ion ejection probability is correlated intimately with the physisorption/chemisorption of parent atoms or molecules. The emission of F sup + ions is rather exceptional because they arise from the screened F 2s core-hole state followed by the ionization via the intra-atomic Auger decay after bond breakage. In electron-stimulated desorption of H sub 2 O, hydrated protons are emitted effectively from nanoclusters formed on a solid Ar substrate due to Coulomb repulsion between confined valence holes.

  14. Paleotempestological chronology developed from gas ion source AMS analysis of carbonates determined through real-time Bayesian statistical approach

    Science.gov (United States)

    Wallace, D. J.; Rosenheim, B. E.; Roberts, M. L.; Burton, J. R.; Donnelly, J. P.; Woodruff, J. D.

    2014-12-01

    Is a small quantity of high-precision ages more robust than a higher quantity of lower-precision ages for sediment core chronologies? AMS Radiocarbon ages have been available to researchers for several decades now, and precision of the technique has continued to improve. Analysis and time cost is high, though, and projects are often limited in terms of the number of dates that can be used to develop a chronology. The Gas Ion Source at the National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS), while providing lower-precision (uncertainty of order 100 14C y for a sample), is significantly less expensive and far less time consuming than conventional age dating and offers the unique opportunity for large amounts of ages. Here we couple two approaches, one analytical and one statistical, to investigate the utility of an age model comprised of these lower-precision ages for paleotempestology. We use a gas ion source interfaced to a gas-bench type device to generate radiocarbon dates approximately every 5 minutes while determining the order of sample analysis using the published Bayesian accumulation histories for deposits (Bacon). During two day-long sessions, several dates were obtained from carbonate shells in living position in a sediment core comprised of sapropel gel from Mangrove Lake, Bermuda. Samples were prepared where large shells were available, and the order of analysis was determined by the depth with the highest uncertainty according to Bacon. We present the results of these analyses as well as a prognosis for a future where such age models can be constructed from many dates that are quickly obtained relative to conventional radiocarbon dates. This technique currently is limited to carbonates, but development of a system for organic material dating is underway. We will demonstrate the extent to which sacrificing some analytical precision in favor of more dates improves age models.

  15. Gas-phase fragmentation of coordination compounds: loss of CO(2) from inorganic carbonato complexes to give metal oxide ions

    Science.gov (United States)

    Dalgaard; McKenzie

    1999-10-01

    Using electrospray ionization mass spectrometry, novel transition metal oxide coordination complex ions are proposed as the products of the collision-induced dissociation (CID) of some carbonato complex ions through the loss of a mass equivalent to CO(2). CID spectra of [(tpa)CoCO(3)](+) (tpa = tris(2-pyridylmethyl)methylamine), [(bispicMe(2)en)Fe(&mgr;-O)(&mgr;-CO(3))Fe(bispicMe(2)en)]2+ (bispicMe(2)en = N,N'-dimethyl-N,N'-bis(2-pyridylmethy)eth- ane-1, 2-diamine) and [(bpbp)Cu(2)CO(3)](+) (bpbp(-) = bis[(bis-(2-pyridylmethyl)amino)methyl]-4-tertbutylpheno-lato(1-)), show peaks assigned to the mono- and dinuclear oxide cations, [(tpa)CoO](+), [(bispicMe(2)en)(2)Fe(2)(O)(2)]2+ and [(bpbp)Cu(2)O](+), as the dominant species. These results can be likened to the reverse of typical synthetic reactions in which metal hydroxide compounds react with CO(2) to give metal carbonato compounds. Because of the lack of available protons in the gas phase, novel oxide species rather than the more common hydroxide ions are generated. These oxide ions are relevant to the highly oxidizing species proposed in oxygenation reactions catalysed by metal oxides and metalloenzymes. Copyright 1999 John Wiley & Sons, Ltd.

  16. Towards polarization measurements of laser-accelerated helium-3 ions

    Energy Technology Data Exchange (ETDEWEB)

    Engin, Ilhan

    2015-08-28

    In the framework of this thesis, preparatory investigations for the spin-polarization measurement of {sup 3}He ions from laser-induced plasmas have been performed. Therefore, experiments aiming at an efficient laser-induced ion acceleration out of a {sup 4}He gas target were carried out at two high-intensity laser facilities: the Arcturus laser at Heinrich-Heine-Universitaet Duesseldorf as well as PHELIX at GSI Darmstadt. The scientific goal of both experiments was to investigate the ion-acceleration process in underdense plasmas by measuring the ion energy spectra and the angular distribution of the ion signal around the gas-jet target. Laser-accelerated MeV-He-ions could successfully be detected. The main acceleration direction at large angles with regard to the laser propagation direction was determined. In a second step, unpolarized {sup 3}He gas was attached in order to cross-check the experimental results with those of {sup 4}He. With the help of the achieved ion yield data, the expected rates of the fusion reaction D({sup 3}He,p){sup 4}He in the polarized case have been estimated: the information regarding the fusion proton yield from this nuclear reaction allows an experimentally based estimation for future experiments with pre-polarized {sup 3}He gas as plasma target. The experimental data is in line with supporting Particle-in-Cell (PIC) simulations performed on the Juelich supercomputers. For this purpose, the simulated target was defined as a neutral gas. The use of pre-polarized {sup 3}He gas demands a special preparation of a polarized {sup 3}He target for laser-acceleration experiments. This layout includes an (external) homogeneous magnetic holding field (field strength of ∝1.4 mT) for storing the pre-polarized gas for long time durations inside the PHELIX target chamber. For this purpose, a precise Halbach array consisting of horizontally arranged rings with built-in permanent magnets had to be designed, optimized, and constructed to deliver high

  17. Anomalous electron heating and energy balance in an ion beam generated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Guethlein, G.

    1987-04-01

    The plasma described in this report is generated by a 15 to 34 kV ion beam, consisting primarily of protons, passing through an H/sub 2/ gas cell neutralizer. Plasma ions (or ion-electron pairs) are produced by electron capture from (or ionization of) gas molecules by beam ions and atoms. An explanation is provided for the observed anomalous behavior of the electron temperature (T/sub e/): a step-lite, nearly two-fold jump in T/sub e/ as the beam current approaches that which minimizes beam angular divergence; insensitivity of T/sub e/ to gas pressure; and the linear relation of T/sub e/ to beam energy.

  18. Removal of Cobalt Ions by Precipitate Foam Flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Lee, Jung Won [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-09-30

    Simulated waste liquid containing 50 ppm cobalt ion was tested by precipitate flotation using a sodium lauryl sulfate as a collector. The effects of initial cobalt ion concentration, pH, surfactant concentration, flotation time, gas flow rate and foreign ions on removal efficiency of cobalt ion were studied. Pretreatment of the waste liquid with 35% H{sub 2}O{sub 2} prior to precipitate flotation made shift of optimal flotation pH from the strong alkalinity to weak alkaline range and made a favorable flotation of cobalt ion in wide range of pH. For the result of this experiment, 99.8% removal efficiency was obtained on the conditions of initial cobalt ion concentration 50 ppm, pH 9.5, gas flow rate 70 ml/min, flotation time 30 min. The simulate ion was formed to be the most harmful ion against removal of cobalt by precipitate flotation of the species which were tested. The presence of 0.1 M of SO{sub 4}{sup 2-} ion decreased removal efficiency of cobalt to 90% while the cobalt were almost entirely removed in the absence of sulfate ion. (author). 11 refs., 8 figs.

  19. Data acquisition for the HILI [Heavy Ion Light Ion] detector

    International Nuclear Information System (INIS)

    Teh, K.M.; Shapira, D.; McConnell, J.W.; Kim, H.; Novotny, R.

    1987-01-01

    A large acceptance, multi-segmented detector system capable of the simultaneous detection of heavy and light ions has been constructed. The heavy ions are detected with a segmented gas ionization chamber and a multiwire proportional counter while the light ions are detected with a 192 element plastic phoswich hodoscope. Processing the large number of signals is accomplished through a combination of CAMAC and FASTBUS modules and preprocessors, and a Host minicomputer. Details of the data acquisition system and the reasons for adopting a dual standards system are discussed. In addition, a technique for processing signals from an individual hodoscope detector is presented. 4 refs., 3 figs

  20. Simple setup for gas-phase h/d exchange mass spectrometry coupled to electron transfer dissociation and ion mobility for analysis of polypeptide structure on a liquid chromatographic time scale

    DEFF Research Database (Denmark)

    Mistarz, Ulrik Hvid; Brown, Jeffery M; Haselmann, Kim F

    2014-01-01

    gas immediately upstream or downstream of the primary skimmer cone. The approach was implemented on three commercially available mass spectrometers and required no or minor fully reversible reconfiguration of gas-inlets of the ion source. Results from gas-phase HDX-MS of peptides using the aqueous ND3....../D2O as HDX reagent indicate that labeling is facilitated exclusively through gaseous ND3, yielding similar results to the infusion of purified ND3-gas, while circumventing the complications associated with the use of hazardous purified gases. Comparison of the solution-phase- and gas-phase deuterium...

  1. Research with stored ions produced using synchrotron radiation

    International Nuclear Information System (INIS)

    Church, D.A.; Kravis, S.D.; Meron, M.; Johnson, B.M.; Jones, K.W.; Sellin, I.A.; O, C.S.; Levin, J.C.; Short, R.T.

    1987-01-01

    A distribution of argon ion charge states has been produced by inner shell photoionization of argon atoms using x-ray synchrotron radiation. These ions were stored in a Penning ion trap at moderate to very low well depths, and analog-detected yielding narrow charge-to-mass spectrum linewidths. Estimates of ion densities indicated that ion-ion collisional energy transfer should be rapid, leading to thermalization. Measurements using variants of this novel stored, multi-charged ion gas are considered

  2. Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams.

    Science.gov (United States)

    Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol

    2016-06-09

    The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration.

  3. Experimental simulation of fragmentation and stratification of core debris on the core catcher of a fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Dipin S.; Vignesh, R. [Indian Institute of Technology, Chennai, Tamil Nadu (India); Sudha, A. Jasmin, E-mail: jasmin@igcar.gov.in [Safety Engineering Division, Reactor Design Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Pushpavanam, S.; Sundararajan, T. [Indian Institute of Technology, Chennai, Tamil Nadu (India); Nashine, B.K.; Selvaraj, P. [Safety Engineering Division, Reactor Design Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2016-05-15

    Highlights: • Fragmentation of two simultaneous metals jets in a bulk coolant analysed. • Particle size from experiments compared with theoretical analysis. • Jet breakup modes explained using dimensionless numbers. • Settling aspects of aluminium and lead debris on collector plate studied. • Results analysed in light of core debris settling on core catcher in a FBR. - Abstract: The complex and coupled phenomena of two simultaneous molten metal jets fragmenting inside a quiescent liquid pool and settling on a collector plate are experimentally analysed in the context of safety analysis of a fast breeder reactor (FBR) in the post accident heat removal phase. Following a hypothetical core melt down accident in a FBR, a major portion of molten nuclear fuel and clad/structural material which are collectively termed as ‘corium’ undergoes fragmentation in the bulk coolant sodium in the lower plenum of the reactor main vessel and settles on the core catcher plate. The coolability of this decay heat generating debris bed is dependent on the particle size distribution and its layering i.e., stratification. Experiments have been conducted with two immiscible molten metals of different densities poured inside a coolant medium to understand their fragmentation behaviour and to assess the possibility of formation of a stratified debris bed. Molten aluminium and lead have been used as simulants in place of molten stainless steel and nuclear fuel to facilitate easy handling. This paper summarizes the major findings from these experiments. The fragmentation of the two molten metals are explained in the light of relevant dimensionless numbers such as Reynolds number and Weber Number. The mass median diameter of the fragmented debris is predicted from nonlinear stability analysis of slender jets for lead jet and using Rayleigh's classical theory of jet breakup for aluminium jet. The agreement of the predicted values with the experimental results is good. These

  4. Lattice doped Zn–SnO{sub 2} nanospheres: A systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Baraneedharan, P. [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India); Alternative Energy and Nanotechnology Laboratory, Indian Institute of Technology Madras, Chennai 600036 (India); Imran Hussain, S. [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India); Department of Applied Science and Technology, Anna University, Chennai 600 025 (India); Dinesh, V.P. [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Siva, C. [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India); Department of Physics and Nanotechnology, SRM University, Kattankulathur 603 203 (India); Biji, P. [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Sivakumar, M., E-mail: muthusiva@gmail.com [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India)

    2015-12-01

    Graphical abstract: - Highlights: • A simple, novel and surfactant free hydrothermal route to prepare SnO{sub 2} nanospheres. • A systematic investigation of growth mechanism with the assist of time dependent HR-TEM images. • Incorporation of Zn ions into SnO{sub 2} lattices clearly elucidated with XRD and XPS spectrums. • Three fold time increased response in Zn–SnO{sub 2} nanospheres when compared to undoped SnO{sub 2}. - Abstract: A surfactant-free one step hydrothermal method is reported to synthesize zinc (Zn{sup 2+}) doped SnO{sub 2} nanospheres. The structural analysis of X-ray diffraction confirms the tetragonal crystal system of the material with superior crystalline nature. The shift in diffraction peak, variation in lattice constant and disparity in particle size confirm the incorporation of Zn{sup 2+} ions to the Sn host lattices. The lattice doped structure, the disparity in morphology, size and shape by the addition of Zn{sup 2+} ions are evident from X-ray photoelectron spectroscopic and electron microscopic analysis. Significant changes in the absorption edge and the band gap with increased doping concentration were observed in UV–vis absorption spectral analysis. The formation of acceptor energy levels with the incorporation of Zn{sup 2+} ions has a significant effect on the electrical conductivity of SnO{sub 2} nanospheres. Comparative tests for gas sensors based on Zn doped SnO{sub 2} nanospheres and SnO{sub 2} nanospheres clearly show that the former exhibited excellent NO{sub 2} sensing performance. The responses of Zn{sup 2+} ions incorporated SnO{sub 2} nanospheres sensor were increased 3 fold at trace level NO{sub 2} gas concentrations ranging from 1 to 5 ppm. The excellent sensitivity, selectivity and fast response make the Zn{sup 2+} doped SnO{sub 2} nanospheres ideal for NO{sub 2} sensing.

  5. Studies of electron cyclotron resonance ion source plasma physics

    International Nuclear Information System (INIS)

    Tarvainen, O.

    2005-01-01

    This thesis consists of an introduction to the plasma physics of electron cyclotron resonance ion sources (ECRIS) and a review of the results obtained by the author and co-workers including discussion of related work by others. The thesis begins with a theoretical discussion dealing with plasma physics relevant for the production of highly charged ions in ECR ion source plasmas. This is followed by an overview of different techniques, such as gas mixing and double frequency heating, that can be used to improve the performance of this type of ion source. The experimental part of the work consists of studies related to ECRIS plasma physics. The effect of the gas mixing technique on the production efficiency of different ion beams was studied with both gaseous and solid materials. It was observed that gas mixing improves the confinement of the heavier element while the confinement of the lighter element is reduced. When the effect of gas mixing on MIVOC-plasmas was studied with several mixing gases it was observed that applying this technique can reduce the inevitable carbon contamination by a significant factor. In order to understand the different plasma processes taking place in ECRIS plasmas, a series of plasma potential and emittance measurements was carried out. An instrument, which can be used to measure the plasma potential in a single measurement without disturbing the plasma, was developed for this work. Studying the plasma potential of ECR ion sources is important not only because it helps to understand different plasma processes, but also because the information can be used as an input parameter for beam transport simulations and ion source extraction design. The experiments performed have revealed clear dependencies of the plasma potential on certain source parameters such as the amount of carbon contamination accumulated on the walls of the plasma chamber during a MIVOC-run. It was also observed that gas mixing affects not only the production efficiency

  6. CrossRef Space-charge effects in Penning ion traps

    CERN Document Server

    Porobić, T; Breitenfeldt, M; Couratin, C; Finlay, P; Knecht, A; Fabian, X; Friedag, P; Fléchard, X; Liénard, E; Ban, G; Zákoucký, D; Soti, G; Van Gorp, S; Weinheimer, Ch; Wursten, E; Severijns, N

    2015-01-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with View the MathML source using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  7. Ion-stimulated Gas Desorption Yields of Electropolished, Chemically Etched, and Coated (Au, Ag, Pd, TiZrV) Stainless Steel Vacuum Chambers and St707 Getter Strips Irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Malabaila, M; Taborelli, M

    2005-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy Ion Accelerator LINAC 3, has been used to measure molecular desorption yields for 4.2 MeV/u lead ions impacting under grazing incidence on different accelerator-type vacuum chambers. Desorption yields for H2, CH4, CO, and CO2, which are of fundamental interest for future accelerator applications, are reported for different stainless steel surface treatments. In order to study the effect of the surface oxide layer on the gas desorption, gold-, silver-, palladium-, and getter-coated 316 LN stainless steel chambers and similarly prepared samples were tested for desorption at LINAC 3 and analysed for chemical composition by X-ray Photoemission Spectroscopy (XPS). The large effective desorption yield of 2 x 104 molecules/Pb53+ ion, previously measured for uncoated, vacuum fired stainless steel, was reduced after noble-metal coating by up to 2 orders of magnitude. In addition, pressure rise measurements, the effectiveness of beam scrubbing with le...

  8. Feed gas contaminant removal in ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis [Allentown, PA; Miller, Christopher Francis [Macungie, PA

    2008-09-16

    Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

  9. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  10. Trapping radioactive ions

    International Nuclear Information System (INIS)

    Kluge, H.-J.; Blaum, K.

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning

  11. Ion source of discharge type

    Energy Technology Data Exchange (ETDEWEB)

    Enchevich, I.B. [TRIUMF, Cyclotron Div., Vancouver, British Columbia (Canada); Korenev, S.A. [JINR, Hihg Energy Physics Lab., Dubna, Moscow (Russian Federation)

    1992-07-01

    A new scheme of ion source based on a dielectric surface sliding discharge is described. The conditions to form this type of discharge are analyzed and experimental results are shown. The main parameters of this ion source are: accelerating voltage U = 1/20kV; continuous extracted ion beam; current density j = 0.01/0.5 A/cm{sup 2}; ions of Cl, F, C, H; residual gas pressure P = 10{sup -6} Torr. A magnetic system is used to separate the different types of ions. The dielectric material in the discharge circuit (anode plasma emitter) defines the type of ions. The emission characteristics of plasma emitter and the discharge parameters are presented. The ion current yield satisfies the Child-Langmuir law. (author)

  12. Ion source of discharge type

    International Nuclear Information System (INIS)

    Enchevich, I.B.; Korenev, S.A.

    1992-07-01

    A new scheme of ion source based on a dielectric surface sliding discharge is described. The conditions to form this type of discharge are analyzed and experimental results are shown. The main parameters of this ion source are: accelerating voltage U = 1/20kV; continuous extracted ion beam; current density j = 0.01/0.5 A/cm 2 ; ions of Cl, F, C, H; residual gas pressure P = 10 -6 Torr. A magnetic system is used to separate the different types of ions. The dielectric material in the discharge circuit (anode plasma emitter) defines the type of ions. The emission characteristics of plasma emitter and the discharge parameters are presented. The ion current yield satisfies the Child-Langmuir law. (author)

  13. Selective capillary diffusion of equimolar H2/D2 gas mixtures through etched ion track membranes prepared from polyethylene terephthalate and polyimide

    International Nuclear Information System (INIS)

    Schmidt, K.; Angert, N.; Trautmann, C.

    1996-01-01

    The selective capillary diffusion of equimolar H 2 /D 2 gas mixtures through ion track membranes prepared from polyethylene terephthalate and polyimide was investigated at a temperature of 293 K, a primary pressure of 0.15 MPa and a secondary pressure of 10 -4 MPa. Different values of the separation factor Z(H 2 /D 2 ) between experiment and computer simulation exists in the case of polyethylene terephthalate ion track membranes because of multiple pores. Membranes for which multiple pores were reduced by varying the irradiation angle showed an increased separation factor. The separation factor is a function of the pore diameter. This is shown for polyimide ion track membranes with a pore size in the range of 0.17 and 0.5 μm. After grafting with styrene the separation factor increased, indicating grafting within the pores. (orig.)

  14. A general method for the calculation of absolute trace gas concentrations in air and breath from selected ion flow tube mass spectrometry data

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Dryahina, Kseniya; Smith, D.

    249-250, - (2006), s. 230-239 ISSN 1387-3806 R&D Projects: GA ČR GA202/03/0827 Institutional research plan: CEZ:AV0Z40400503 Keywords : selected ion flow tube * mass spectrometry * SIFT-MS * trace gas analysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.337, year: 2006

  15. Observation of the ion resonance instability

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Notte, J.; Fajans, J.

    1993-01-01

    Observation of the ion resonance instability in a pure electron plasma trap contaminated with a small population of ions is reported. The ion population is maintained by ionization of the background gas. The instability causes the plasma to move steadily off-center while undergoing l=1 diocotron oscillations. The observed scaling of the maximum growth point is presented, and the growth rate and its dependence on ion density are discussed. Several aspects of the observed behavior are not in agreement with previous theory but derive from the transitory nature of the ion population

  16. Ion energy/momentum effects during ion assisted growth of niobium nitride films

    Science.gov (United States)

    Klingenberg, Melissa L.

    The research described herein was performed to better understand and discern ion energy vs. ion momentum effects during ion beam assisted (IBAD) film growth and their effects on residual stress, crystalline structure, morphology, and composition, which influence film tribological properties. NbxN y was chosen for this research because it is a refractory material that can possess a large number of crystalline structures, and it has been found to have good tribological properties. To separate the effects of momentum transfer per arriving atom (p/a), which considers bombarding species mass, energy, and ion-to-atom transport ratio, from those of energy deposition per arriving atom (E/a), a mass independent parameter, different inert ion beams (krypton, argon, and neon) were used to create a matrix of coatings formed using similar energy deposition, but different momentum transfer and vice versa. Deposition was conducted in a research-scale IBAD system using electron beam evaporation, a radio frequency ion source, and a neutral nitrogen gas backfill. Films were characterized using x-ray diffraction, atomic force microscopy, Rutherford backscattering spectrometry, and residual stress analysis. Direct and quantifiable effects of bombardment were observed; however, energy deposition and momentum transfer effects could not be completely separated, confirming that thin film processes are complex. Complexities arose from ion-specific interactions (ion size, recoil energy, per cent reflected neutrals, Penning ionization, etc.) and chemistry effects that are not considered by the simple models. Overall, it can be stated that bombardment promoted nitride formation, nanocrystallinity, and compressive stress formation; influenced morphology (which influenced post-deposition oxygen uptake) and stress evolution; increased lattice parameter; modified crystalline phase and texture; and led to inert gas incorporation. High stress levels correlated strongly with material disorder and

  17. Frequency-scanning MALDI linear ion trap mass spectrometer for large biomolecular ion detection.

    Science.gov (United States)

    Lu, I-Chung; Lin, Jung Lee; Lai, Szu-Hsueh; Chen, Chung-Hsuan

    2011-11-01

    This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.

  18. Experimental study of single-electron loss by Ar{sup +} ions in rare-gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, P.G. [Facultad de Ciencias, UNAM, Coyoacan (Mexico); Castillo, F. [Instituto de Ciencias Nucleares, UNAM, Coyoacan (Mexico); Martinez, H. [Centro de Ciencias Fisicas, UNAM, Cuernavaca, Morelos (Mexico)]. E-mail: hm@fis.unam.mx

    2001-04-28

    Absolute differential and total cross sections for single-electron loss were measured for Ar{sup +} ions on rare-gas atoms in the laboratory energy range of 1.5 to 5.0 keV. The electron loss cross sections for all the targets studied are found to be in the order of magnitude between 10{sup -19} and 10{sup -22} cm{sup 2}, and show a monotonically increasing behaviour as a function of the incident energy. The behaviour of the total single-electron loss cross sections with the atomic target number, Z{sub t}, shows different dependences as the collision energy increases. In all cases the present results display experimental evidence of saturation in the single-electron loss cross section as the atomic number of the target increases. (author)

  19. Numerical and graphical description on the ion motions in a Penning trap for mass measurements

    International Nuclear Information System (INIS)

    Sun, Y.L.; Tian, Y.L.; Huang, W.X.; Wang, J.Y.; Wang, Y.S.; Zhao, J.M.; Wang, Y.

    2013-01-01

    The ion motions in a Penning trap have been studied in detail in the presence of azimuthal dipolar and quadrupolar radio-frequency excitations and buffer gas cooling. The numerical solutions by using the Runge–Kutta method and thus the pictures of the ion trajectories in the trap have been obtained for different cases and summarized in graphical form. For the recentering of the ion of interest and to perform the purification of the ion species, one has to set a reasonable buffer gas pressure in the trap and apply azimuthal quadrupolar excitation at frequency ω rf =ω c . -- Highlights: • Azimuthal dipolar and quadrupolar rf excitations and buffer gas cooling. • Runge–Kutta method. • Pictures of the ion trajectories obtained and summarized in graphical form. • A reasonable buffer gas pressure should be set for recentering ions

  20. Fundamentals of gas counters

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1994-01-01

    The operation of gas counters used for detecting radiation is explained in terms of the four fundamental physical processes which govern their operation. These are 1) conversion of neutral radiation into charged particles, 2) ionization of the host gas by a fast charge particle 3) transport of the gas ions to the electrodes and 4) amplification of the electrons in a region of enhanced electric field. Practical implications of these are illustrated. (UK)

  1. Use of ion conductors in the pyrochemical reduction of oxides

    International Nuclear Information System (INIS)

    Miller, W.E.; Tomczuk, Z.

    1994-01-01

    An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO 2 oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a β-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca o used for reducing UO 2 and PuO 2 to U and Pu. 2 figures

  2. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  3. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  4. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions (1)could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion-ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component--positive ions, negative ions, and electrons--can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed

  5. Trapping of slow recoil ions: past results and speculations on the future

    International Nuclear Information System (INIS)

    Prior, M.H.

    1983-01-01

    A simple electrostatic ion trap has been utilized to capture low energy recoil ions made by fast heavy ion impact upon a neon gas target. The heavy ion beams have been provided by the LBL SuperHILAC and the work has so far concentrated upon studies of the decay of the trapped ion population in time following creation by the pulsed HILAC beam (3.3 msec pulse length, 36Hz repetition rate). The various charge states decay predominantly via electron capture collisions with the ambient gas in the ion trap. By varying the gas composition and density, one can determine the electron capture rate constants from which an effective (velocity averaged) capture cross-section can be obtained. The uniqueness of this work lies in the high charge states, up to Ne 10 + (fully stripped), and the low mean collision energies available (in the range 1.0 to 70.0 eV)

  6. Negative ion beam processes

    International Nuclear Information System (INIS)

    Hayward, T.D.; Lawrence, G.P.; Bentley, R.F.; Malanify, J.J.; Jackson, J.A.

    1975-06-01

    Los Alamos Scientific Laboratory fiscal year 1975 work on production of intense, very bright, negative hydrogen (H - ), ion beams and conversion of a high-energy (a few hundred MeV) negative beam into a neutral beam are described. The ion source work has used a cesium charge exchange source that has produced H - ion beams greater than or equal to 10 mA (about a factor of 10 greater than those available 1 yr ago) with a brightness of 1.4 x 10 9 A/m 2 -rad 2 (about 18 times brighter than before). The high-energy, neutral beam production investigations have included measurements of the 800-MeV H - -stripping cross section in hydrogen gas (sigma/sub -10/, tentatively 4 x 10 -19 cm 2 ), 3- to 6-MeV H - -stripping cross sections in a hydrogen plasma (sigma/sub -10/, tentatively 2 to 4 x 10 -16 cm 2 ), and the small-angle scattering that results from stripping an 800-MeV H - ion beam to a neutral (H 0 ) beam in hydrogen gas. These last measurements were interrupted by the Los Alamos Meson Physics Facility shutdown in December 1974, but should be completed early in fiscal year 1976 when the accelerator resumes operation. Small-angle scattering calculations have included hydrogen gas-stripping, plasma-stripping, and photodetachment. Calculations indicate that the root mean square angular spread of a 390-MeV negative triton (T - ) beam stripped in a plasma stripper may be as low as 0.7 μrad

  7. Shunting arc plasma source for pure carbon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y. [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  8. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  9. Enhanced ion acoustic fluctuations and ion outflows

    Directory of Open Access Journals (Sweden)

    F. R. E. Forme

    1999-02-01

    Full Text Available A number of observations showing enhanced ion acoustic echoes observed by means of incoherent scatter radars have been reported in the literature. The received power is extremely enhanced by up to 1 or 2 orders of magnitude above usual values, and it is mostly contained in one of the two ion acoustic lines. This spectral asymmetry and the intensity of the received signal cannot be resolved by the standard analysis procedure and often causes its failure. As a result, and in spite of a very clear spectral signature, the analysis is unable to fit the plasma parameters inside the regions of ion acoustic turbulence. We present European Incoherent Scatter radar (EISCAT observations of large ion outflows associated with the simultaneous occurrence of enhanced ion acoustic echoes. The ion fluxes can reach 1014 m-2 s-1 at 800 km altitude. From the very clear spectral signatures of these echoes, a method is presented to extract estimates of the electron temperature and the ion drift within the turbulent regions. It is shown that the electron gas is strongly heated up to 11 000 K. Also electron temperature gradients of about 0.02 K/m exist. Finally, the estimates of the electron temperature and of the ion drift are used to study the possible implications for the plasma transport inside turbulent regions. It is shown that strong electron temperature gradients cause enhancement of the ambipolar electric field and can account for the observed ion outflows.Key words. Ionosphere (auroral ionosphere; ionosphere · magnetosphere interactions; plasma waves and instabilities.

  10. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    Science.gov (United States)

    Hupp, Joseph T [Northfield, IL; Mulfort, Karen L [Chicago, IL; Snurr, Randall Q [Evanston, IL; Bae, Youn-Sang [Evanston, IL

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  11. Scaling laws for simple heavy ion targets

    International Nuclear Information System (INIS)

    Gula, W.P.; Magelssen, G.R.

    1981-01-01

    We have examined the behavior of single shell DT gas filled spherical targets irradiated by a constant power heavy ion beam pulse. For targets in which the ion range is less than the shell thickness, our computational results suggest that the target can be divided into three regions: (1) the absorber (100 to 400 eV for the energies we have considered), (2) the cold pusher (a few eV), and (3) the DT gas fuel. We have examined the pusher collapse time, velocity, and maximum kinetic energy variations as functions of the various target parameters and ion beam energy. The results are expressed in analytic terms and verified by computer simulation

  12. A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams

    International Nuclear Information System (INIS)

    Herfurth, F.; Dilling, J.; Kellerbauer, A.

    2000-05-01

    An ion beam cooler and buncher has been developed for the manipulation of radioactive ion beams. The gas-filled linear radiofrequency ion trap system is installed at the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. Its purpose is to accumulate the 60-keV continuous ISOLDE ion beam with high efficiency and to convert it into low-energy low-emittance ion pulses. The efficiency was found to exceed 10% in agreement with simulations. A more than 10-fold reduction of the ISOLDE beam emittance can be achieved. The system has been used successfully for first on-line experiments. Its principle, setup and performance will be discussed. (orig.)

  13. Development of a compact ECR ion source for various ion production

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, M., E-mail: m-mura@nirs.go.jp; Hojo, S.; Iwata, Y.; Katagiri, K.; Sakamoto, Y.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Takahashi, N. [Sumitomo Heavy Industries, Ltd., 19 Natsushima, Yokosuka, Kanagawa 237-8555 (Japan); Sasaki, N.; Fukushima, K.; Takahashi, K.; Suzuki, T.; Sasano, T. [Accelerator Engineering Corporation, 3-8-5 Konakadai, Inage, Chiba 263-0043 (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Hagino, S.; Nishiokada, T.; Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

    2016-02-15

    There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected that could provide: (1) carbon-ion production for medical use, (2) various ions with a charge-to-mass ratio of 1/3 for the existing Linac injector, and (3) low cost for modification. A prototype compact electron cyclotron resonance (ECR) ion source, named Kei3, based on the Kei series has been developed to correspond to the Kei2 type and to produce these various ions at the National Institute of Radiological Sciences (NIRS). The Kei3 has an outer diameter of 280 mm and a length of 1120 mm. The magnetic field is formed by the same permanent magnet as Kei2. The movable extraction electrode has been installed in order to optimize the beam extraction with various current densities. The gas-injection side of the vacuum chamber has enough space for an oven system. We measured dependence of microwave frequency, extraction voltage, and puller position. Charge state distributions of helium, carbon, nitrogen, oxygen, and neon were also measured.

  14. Transition flow ion transport via integral Boltzmann equation

    International Nuclear Information System (INIS)

    Darcie, T.E.

    1983-10-01

    A new approach is developed to solve the Integral Boltzmann Equation for the evolving velocity distribution of a source of ions, undergoing electrostatic acceleration through a neutral gas target. The theory is applicable to arbitrarily strong electric fields, any ion/neutral mass ratio greater than unity, and is not limited to spatially isotropic gas targets. A hard sphere collision model is used, with a provision for inelasticity. Both axial and radial velocity distributions are calculated for applications where precollision radial velocities are negligible, as is the case for ion beam extractions from high pressure sources. Theoretical predictions are tested through an experiment in which an atmospheric pressure ion source is coupled to a high vacuum energy analyser. Excellent agreement results for configurations in which the radial velocity remains small. Velocity distributions are applied to predicting the efficiency of coupling an atmospheric pressure ion source to a quadrupole mass spectrometer and results clearly indicate the most desirable extracting configuration. A method is devised to calculate ion-molecule hard sphere collision cross sections for easily fragmented organic ions

  15. Modification of bamboo surface by irradiation of ion beams

    International Nuclear Information System (INIS)

    Wada, M.; Nishigaito, S.; Flauta, R.; Kasuya, T.

    2003-01-01

    When beams of hydrogen ions, He + and Ar + were irradiated onto bamboo surface, gas release of hydrogen, water, carbon monoxide and carbon dioxide were enhanced. Time evolution of the gas emission showed two peaks corresponding to release of adsorbed gas from the surface by sputtering, and thermal desorption caused by the beam heating. The difference in etched depths between parenchyma lignin and vascular bundles was measured by bombarding bamboo surface with the ion beams in the direction parallel to the vascular bundles. For He + and Ar + , parenchyma lignin was etched more rapidly than vascular bundles, but the difference in etched depth decreased at a larger dose. In the case of hydrogen ion bombardment, vascular bundles were etched faster than parenchyma lignin and the difference in etched depth increased almost in proportion to the dose. The wettability of outer surface of bamboo was improved most effectively by irradiation of a hydrogen ion beam

  16. Workshop on transport for a common ion driver

    International Nuclear Information System (INIS)

    Olson, C.C.; Lee, E.; Langdon, B.

    1994-01-01

    This report contains research in the following areas related to beam transport for a common ion driver: multi-gap acceleration; neutralization with electrons; gas neutralization; self-pinched transport; HIF and LIF transport, and relevance to common ion driver; LIF and HIF reactor concepts and relevance to common ion driver; atomic physics for common ion driver; code capabilities and needed improvement

  17. XPS investigation of monatomic and cluster argon ion sputtering of tantalum pentoxide

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Robin, E-mail: r.simpson@surrey.ac.uk [The Surface Analysis Laboratory, Department of Mechanical Engineering Sciences, University of Surrey (United Kingdom); Thermo Scientific, East Grinstead (United Kingdom); White, Richard G. [Thermo Scientific, East Grinstead (United Kingdom); Watts, John F.; Baker, Mark A. [The Surface Analysis Laboratory, Department of Mechanical Engineering Sciences, University of Surrey (United Kingdom)

    2017-05-31

    Highlights: • Ion beam induced oxide reduction from monatomic and gas cluster ion beam exposure are compared. • Lower relative level of preferential sputtering is shown in gas cluster ion beam depth profiling. • A lack of “steady state” is observed in gas cluster ion beam depth profiles of tantalum pentoxide. • Possible mechanisms behind the observed results, including temperature effects are proposed. - Abstract: In recent years, gas cluster ion beams (GCIB) have become the cutting edge of ion beam technology to sputter etch organic materials in surface analysis. However, little is currently known on the ability of argon cluster ions (Ar{sub n}{sup +}) to etch metal oxides and other technologically important inorganic compounds and no depth profiles have previously been reported. In this work, XPS depth profiles through a certified (European standard BCR-261T) 30 nm thick Ta{sub 2}O{sub 5} layer grown on Ta foil using monatomic Ar{sup +} and Ar{sub 1000}{sup +} cluster ions have been performed at different incident energies. The preferential sputtering of oxygen induced using 6 keV Ar{sub 1000}{sup +} ions is lower relative to 3 keV and 500 eV Ar{sup +} ions. Ar{sup +} ions exhibit a steady state O/Ta ratio through the bulk oxide but Ar{sub 1000}{sup +} ions show a gradual decrease in the O/Ta ratio as a function of depth. The depth resolution and etch rate is substantially better for the monatomic beam compared to the cluster beam. Higher O concentrations are observed when the underlying Ta bulk metal is sputtered for the Ar{sub 1000}{sup +} profiles compared to the Ar{sup +} profiles.

  18. Radioactive gas solidification treatment device

    International Nuclear Information System (INIS)

    Igarashi, Ryokichi; Watanabe, Yu; Seki, Eiji.

    1992-01-01

    In a radioactive gas solidification treatment device by using sputtering, spiral pipelines are disposed with a gap therebetween for cooling an ion injection electrode by passing cooling water during operation of the solidification treatment. During the operation of the solidification treatment, cooling water is passed in the pipelines to cool the ion injection electrode. During storage, a solidification vessel is cooled by natural heat dissipation from an exposed portion at the surface of the solidification vessel. Accordingly, after-heat of radioactive gas solidified in a metal accumulation layer can be removed efficiently, safely and economically to improve the reliability. (N.H.)

  19. The influence of target properties on nuclear spectroscopy measurements

    International Nuclear Information System (INIS)

    Dionisio, J.S.; Vieu, C.; Lagrange, J.M.; Pautrat, M.; Vanhorenbeeck, J.; Passoja, A.

    1988-01-01

    A broad review of different kinds of in-beam nuclear spectroscopy measurements particularly influenced by the target properties is outlined. To illustrate such an influence a few typical examples of in-beam electron and gamma-ray spectroscopy measurements, performed at the Orsay MP Tandem accelerator, are reported. In particular several applications of the recoil ion catcher method in the study of short-lived nuclear isomers (with half-lives between ten and few hundred nanoseconds) are briefly described. This method is operated mostly with a pulsed heavy ion beam, bombarding a thin self-supported target but avoiding hitting the catcher foil. Moreover, the time of flight filtering properties of this experimental device is improved by a fast detection of compound nucleus deexcitation (performed with an array of several BaF 2 crystals). This kind of measurement shows clearly the importance of the target qualities as well as the need of good focusing properties and time structure for the accelerated particle beam. Finally, the required characteristics of the targets and recoil stopper foils needed for these measurements (and similar ones performed with the recoil ion shadow method) are analyzed in detail for a few typical experimental arrangements. (author). Abstract only

  20. Optimum extracted H- and D- current densities from gas-pressure-limited high-power hydrogen/deuterium tandem ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1993-01-01

    The tandem hydrogen/deuterium ion source is modelled for the purpose of identifying the maximum current densities that can be extracted subject to the gas-pressure constraints proposed for contemporary beam-line systems. Optimum useful extracted current densities are found to be in the range of approximately 7 to 10 mA cm -2 . The sensitivity of these current densities is examined subject to uncertainties in the underlying atomic/molecular rate processes; A principal uncertainty remains the quantification of the molecular vibrational distribution following H 3 + wall collisions

  1. High-ion temperature experiments with negative-ion-based NBI in LHD

    International Nuclear Information System (INIS)

    Takeiri, Y.; Morita, S.; Tsumori, K.; Ikeda, K.; Oka, Y.; Osakabe, M.; Nagaoka, K.; Goto, M.; Miyazawa, J.; Masuzaki, S.; Ashikawa, N.; Yokoyama, M.; Narihara, K.; Yamada, I.; Kubo, S.; Shimozuma, T.; Inagaki, S.; Tanaka, K.; Peterson, B.J.; Ida, K.; Kaneko, O.; Komori, A.; Murakami, S.

    2005-01-01

    High-Z plasmas have been produced with Ar- and/or Ne-gas fuelling to increase the ion temperature in the LHD plasmas heated with the high-energy negative-ion-based NBI. Although the electron heating is dominant in the high-energy NBI heating, the direct ion heating power is much enhanced effectively in low-density plasmas due to both an increase in the beam absorption (ionisation) power and a reduction of the ion density in the high-Z plasmas. Intensive Ne- and/or Ar-glow discharge cleaning works well to suppress dilution of the high-Z plasmas with the wall-absorbed hydrogen. As a result, the ion temperature increases with an increase in the ion heating power normalized by the ion density, and reaches 10 keV. An increase in the ion temperature is also observed with an addition of the centrally focused ECRH to the low-density and high-Z NBI plasma, suggesting improvement of the ion transport. The results obtained in the high-Z plasma experiments with the high-energy NBI heating indicate that an increase in the direct ion heating power and improvement of the ion transport are essential to the ion temperature rise, and that a high-ion temperature would be obtained as well in hydrogen plasmas with low-energy positive-NBI heating which is planed in near future in LHD. (author)

  2. IXM gas sampling procedure

    International Nuclear Information System (INIS)

    Pingel, L.A.

    1995-01-01

    Ion Exchange Modules (IXMs) are used at the 105-KE and -KW Fuel Storage Basins to control radionuclide concentrations in the water. A potential safety concern relates to production of hydrogen gas by radiolysis of the water trapped in the ion exchange media of spent IXMs. This document provides a procedure for sampling the gases in the head space of the IXM

  3. Laboratory Studies of Stabilities of Heterocyclic Aromatic Molecules: Suggested Gas Phase Ion-Molecule Routes to Production in Interstellar Gas Clouds

    Science.gov (United States)

    Adams, Nigel G.; Fondren, L. Dalila; McLain, Jason L.; Jackson, Doug M.

    2006-01-01

    Several ring compounds have been detected in interstellar gas clouds, ISC, including the aromatic, benzene. Polycyclic aromatic hydrocarbons, PAHs, have been implicated as carriers of diffuse interstellar bands (DIBs) and unidentified infrared (UIR) bands. Heterocyclic aromatic rings of intermediate size containing nitrogen, possibly PreLife molecules, were included in early searches but were not detected and a recent search for Pyrimidine was unsuccessful. Our laboratory investigations of routes to such molecules could establish their existence in ISC and suggest conditions under which their concentrations would be maximized thus aiding the searches. The stability of such ring compounds (C5H5N, C4H4N2, C5H11N and C4H8O2) has been tested in the laboratory using charge transfer excitation in ion-molecule reactions. The fragmentation paths, including production of C4H4(+), C3H3N(+) and HCN, suggest reverse routes to the parent molecules, which are presently under laboratory investigation as production sources.

  4. A four dimensional separation method based on continuous heart-cutting gas chromatography with ion mobility and high resolution mass spectrometry.

    Science.gov (United States)

    Lipok, Christian; Hippler, Jörg; Schmitz, Oliver J

    2018-02-09

    A two-dimensional GC (2D-GC) method was developed and coupled to an ion mobility-high resolution mass spectrometer, which enables the separation of complex samples in four dimensions (2D-GC, ion mobilility spectrometry and mass spectrometry). This approach works as a continuous multiheart-cutting GC-system (GC+GC), using a long modulation time of 20s, which allows the complete transfer of most of the first dimension peaks to the second dimension column without fractionation, in comparison to comprehensive two-dimensional gas chromatography (GCxGC). Hence, each compound delivers only one peak in the second dimension, which simplifies the data handling even when ion mobility spectrometry as a third and mass spectrometry as a fourth dimension are introduced. The analysis of a plant extract from Calendula officinales shows the separation power of this four dimensional separation method. The introduction of ion mobility spectrometry provides an additional separation dimension and allows to determine collision cross sections (CCS) of the analytes as a further physicochemical constant supporting the identification. A CCS database with more than 800 standard substances including drug-like compounds and pesticides was used for CCS data base search in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Studies on ion scattering and sputtering processes relevant to ion beam sputter deposition of multicomponent thin films

    International Nuclear Information System (INIS)

    Auciello, O.; Ameen, M.S.; Kingon, A.I.

    1989-01-01

    Results from computer simulation and experiments on ion scattering and sputtering processes in ion beam sputter deposition of high Tc superconducting and ferroelectric thin films are presented. It is demonstrated that scattering of neutralized ions from the targets can result in undesirable erosion of, and inert gas incorporation in, the growing films, depending on the ion/target atom ass ratio and ion beam angle of incidence/target/substrate geometry. The studies indicate that sputtering Kr + or Xe + ions is preferable to the most commonly used Ar + ions, since the undesirable phenomena mentioned above are minimized for the first two ions. These results are used to determine optimum sputter deposition geometry and ion beam parameters for growing multicomponent oxide thin films by ion beam sputter-deposition. 10 refs., 5 figs

  6. Development of a low-energy radioactive ion beam facility for the MARA separator

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, Philippos, E-mail: philippos.papadakis@jyu.fi; Moore, Iain; Pohjalainen, Ilkka; Sarén, Jan; Uusitalo, Juha [University of Jyväskylä, Department of Physics (Finland)

    2016-12-15

    A low-energy radioactive ion beam facility for the production and study of nuclei produced close to the proton drip line is under development at the Accelerator Laboratory of the University of Jyväskylä, Finland. The facility will take advantage of the mass selectivity of the recently commissioned MARA vacuum-mode mass separator. The ions selected by MARA will be stopped and thermalised in a small-volume gas cell prior to extraction and further mass separation. The gas cell design allows for resonance laser ionisation/spectroscopy both in-gas-cell and in-gas-jet. The facility will include experimental setups allowing ion counting, mass measurement and decay spectroscopy.

  7. Development of a gas-phase field ionization ion source

    International Nuclear Information System (INIS)

    Allan, G.L.; Legge, G.J.F.

    1983-01-01

    A field ionization ion source has been developed to investigate the suitability of using such a source with the Melbourne Proton Microprobe. Operating parameters have been measured, and the source has been found to be brighter than the radiofrequency ion source presently used in the Melbourne 5U Pelletron Accelerator. Improvements to the source geometry to increase the current output are planned

  8. A selective and sensitive method for quantitation of lysergic acid diethylamide (LSD) in whole blood by gas chromatography-ion trap tandem mass spectrometry.

    Science.gov (United States)

    Libong, Danielle; Bouchonnet, Stéphane; Ricordel, Ivan

    2003-01-01

    A gas chromatography-ion trap tandem mass spectrometry (GC-ion trap MS-MS) method for detection and quantitation of LSD in whole blood is presented. The sample preparation process, including a solid-phase extraction step with Bond Elut cartridges, was performed with 2 mL of whole blood. Eight microliters of the purified extract was injected with a cold on-column injection method. Positive chemical ionization was performed using acetonitrile as reagent gas; LSD was detected in the MS-MS mode. The chromatograms obtained from blood extracts showed the great selectivity of the method. GC-MS quantitation was performed using lysergic acid methylpropylamide as the internal standard. The response of the MS was linear for concentrations ranging from 0.02 ng/mL (detection threshold) to 10.0 ng/mL. Several parameters such as the choice of the capillary column, the choice of the internal standard and that of the ionization mode (positive CI vs. EI) were rationalized. Decomposition pathways under both ionization modes were studied. Within-day and between-day stability were evaluated.

  9. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    Science.gov (United States)

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time.

  10. Study on evolution of gases from fluoropolymer films bombarded with heavy ions

    International Nuclear Information System (INIS)

    Minamisawa, Renato Amaral; Zimmerman, Robert Lee; Budak, Satilmis; Ila, Daryush

    2008-01-01

    Ion beam bombardment provides a unique way of material modification by inducing a high degree of localized electronic excitation. The ion track, or affected volume along the ion path through the material is related to the total damage and possible structural changes. Here we study the evolution of gases emitted by poly(tetrafluorethylene-co-perfluoro-(propyl vinyl ether)) (PFA) fluoropolymer bombarded with MeV gold ions. The gas was monitored by a residual gas analyzer (RGA), as a function of the ion fluence. Micro-Raman, atomic force microscopy and optical absorption were used to analyze the chemical structure changes and sputtering yield

  11. The formation of urea in space. I. Ion-molecule, neutral-neutral, and radical gas-phase reactions

    Science.gov (United States)

    Brigiano, Flavio Siro; Jeanvoine, Yannick; Largo, Antonio; Spezia, Riccardo

    2018-02-01

    Context. Many organic molecules have been observed in the interstellar medium thanks to advances in radioastronomy, and very recently the presence of urea was also suggested. While those molecules were observed, it is not clear what the mechanisms responsible to their formation are. In fact, if gas-phase reactions are responsible, they should occur through barrierless mechanisms (or with very low barriers). In the past, mechanisms for the formation of different organic molecules were studied, providing only in a few cases energetic conditions favorable to a synthesis at very low temperature. A particularly intriguing class of such molecules are those containing one N-C-O peptide bond, which could be a building block for the formation of biological molecules. Urea is a particular case because two nitrogen atoms are linked to the C-O moiety. Thus, motivated also by the recent tentative observation of urea, we have considered the synthetic pathways responsible to its formation. Aims: We have studied the possibility of forming urea in the gas phase via different kinds of bi-molecular reactions: ion-molecule, neutral, and radical. In particular we have focused on the activation energy of these reactions in order to find possible reactants that could be responsible for to barrierless (or very low energy) pathways. Methods: We have used very accurate, highly correlated quantum chemistry calculations to locate and characterize the reaction pathways in terms of minima and transition states connecting reactants to products. Results: Most of the reactions considered have an activation energy that is too high; but the ion-molecule reaction between NH2OHNH2OH2+ and formamide is not too high. These reactants could be responsible not only for the formation of urea but also of isocyanic acid, which is an organic molecule also observed in the interstellar medium.

  12. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials

    International Nuclear Information System (INIS)

    Bender, Markus

    2008-01-01

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  13. Electron and ion kinetics in three-dimensional confined microwave-induced microplasmas at low gas pressures

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jiali; Yu, Xinhai, E-mail: yxhh@ecust.edu.cn; Tu, Shan-Tung; Wang, Zhengdong [Key Laboratory of Pressure Systems and Safety, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai (China); Wang, Zhenyu [Integrated Micro & Nano System Engineering Center, School of Software and Microelectronics at Wuxi, Peking University (China)

    2016-04-15

    The effects of the gas pressure (p{sub g}), microcavity height (t), Au vapor addition, and microwave frequency on the properties of three-dimensional confined microwave-induced microplasmas were discussed in light of simulation results of a glow microdischarge in a three-dimensional microcavity (diameter d{sub h} = 1000 μm) driven at constant voltage loading on the drive electrode (V{sub rf}) of 180 V. The simulation was performed using the PIC/MCC method, whose results were experimentally verified. In all the cases we investigated in this study, the microplasmas were in the γ-mode. When p{sub g} increased, the maximum electron (n{sub e}) or ion density (n{sub Ar+}) distributions turned narrow and close to the discharge gap due to the decrease in the mean free path of the secondary electron emission (SEE) electrons (λ{sub SEE-e}). The peak n{sub e} and n{sub Ar+} were not a monotonic function of p{sub g}, resulting from the two conflicting effects of p{sub g} on n{sub e} and n{sub Ar+}. The impact of ions on the electrode was enhanced when p{sub g} increased. This was determined after comparing the results of ion energy distribution function (IEDFs) at various p{sub g}. The effects of t on the peaks and distributions of n{sub e} and n{sub Ar+} were negligible in the range of t from 1.0 to 3.0 mm. The minimum t of 0.6 mm for a steady glow discharge was predicted for p{sub g} of 800 Pa and V{sub rf} of 180 V. The Au vapor addition increased the peaks of n{sub e} and n{sub Ar+}, due to the lower ionization voltage of Au atom. The acceleration of ions in the sheaths was intensified with the addition of Au vapor because of the increased potential difference in the sheath at the drive electrode.

  14. Noble-gas ionization in the ion source with Penning effect

    International Nuclear Information System (INIS)

    Monchka, D.; Lyatushinskij, A.; Vasyak, A.

    1982-01-01

    By additional use of that the ion source efficiency can be increased the Penning ionization. The results of estimates of certain coefficients for the processes taking place in the plasma ion sources are presented

  15. Ion source developments for RNB production at Spiral / GANIL

    International Nuclear Information System (INIS)

    Villari, A.C.C.; Barue, C.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Kandri-Rody, S.; Landre-Pellemoine, F.; Lecesne, N.; Leroy, R.; Lewitowicz, M.; Marry, C.; Maunoury, L.; Pacquet, J.Y.; Rataud, J.P.; Saint-Laurent, M.G.; Stodel, C.; Lichtenthaeler, R.; Angelique, J.C.; Orr, N.A.

    2000-01-01

    The first on-line production system for SPIRAL/GANIL (Radioactive Ion Production System with Acceleration on-Line) phase-I has been commissioned on the SIRa (Radioactive Ion Separator) test bench. Exotic multicharged noble gas ion beams have been obtained during several days. In parallel, a new ECRIS (Electron Cyclotron Resonance Ion Source) for mono-charged ions has also been developed. Preliminary, off-line results are presented. (authors)

  16. Experiments on Ion-Ion Plasmas From Discharges

    Science.gov (United States)

    Leonhardt, Darrin; Walton, Scott; Blackwell, David; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Use of both positive and negative ions in plasma processing of materials has been shown to be advantageous[1] in terms of better feature evolution and control. In this presentation, experimental results are given to complement recent theoretical work[2] at NRL on the formation and decay of pulsed ion-ion plasmas in electron beam generated discharges. Temporally resolved Langmuir probe and mass spectrometry are used to investigate electron beam generated discharges during the beam on (active) and off (afterglow) phases in a variety of gas mixtures. Because electron-beam generated discharges inherently[3] have low electron temperatures (<0.5eV in molecular gases), negative ion characteristics are seen in the active as well as afterglow phases since electron detachment increases with low electron temperatures. Analysis of temporally resolved plasma characteristics deduced from these measurements will be presented for pure O_2, N2 and Ar and their mixtures with SF_6. Oxygen discharges show no noticeable negative ion contribution during the active or afterglow phase, presumably due to the higher energy electron attachment threshold, which is well above any electron temperature. In contrast, SF6 discharges demonstrate ion-ion plasma characteristics in the active glow and are completely ion-ion in the afterglow. Comparison between these discharges with published cross sections and production mechanisms will also be presented. [1] T.H. Ahn, K. Nakamura & H. Sugai, Plasma Sources Sci. Technol., 5, 139 (1996); T. Shibyama, H. Shindo & Y. Horiike, Plasma Sources Sci. Technol., 5, 254 (1996). [2] See presentation by R. F. Fernsler, at this conference. [3] D. Leonhardt, et al., 53rd Annual GEC, Houston, TX.

  17. A model for negative ion extraction and comparison of negative ion optics calculations to experimental results

    International Nuclear Information System (INIS)

    Pamela, J.

    1990-10-01

    Negative ion extraction is described by a model which includes electron diffusion across transverse magnetic fields in the sheath. This model allows a 2-Dimensional approximation of the problem. It is used to introduce electron space charge effects in a 2-D particle trajectory code, designed for negative ion optics calculations. Another physical effect, the stripping of negative ions on neutral gas atoms, has also been included in our model; it is found to play an important role in negative ion optics. The comparison with three sets of experimental data from very different negative ion accelerators, show that our model is able of accurate predictions

  18. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    DEFF Research Database (Denmark)

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla

    1968-01-01

    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  19. Ion thruster performance model

    International Nuclear Information System (INIS)

    Brophy, J.R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr, and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature

  20. Experimental Cross Sections for Reactions of Heavy Ions and 208Pb, 209Bi, 238U, and 248Cm Targets

    International Nuclear Information System (INIS)

    Patin, Joshua B.

    2002-01-01

    The study of the reactions between heavy ions and 208 Pb, 209 Bi, 238 U, and 248 Cm targets was performed to look at the differences between the cross sections of hot and cold fusion reactions. Experimental cross sections were compared with predictions from statistical computer codes to evaluate the effectiveness of the computer code in predicting production cross sections. Hot fusion reactions were studied with the MG system, catcher foil techniques and the Berkeley Gas-filled Separator (BGS). 3n- and 4n-exit channel production cross sections were obtained for the 238 U( 18 O,xn) 256-x Fm, 238 U( 22 Ne,xn) 260-x No, and 248 Cm( 15 N,xn) 263-x Lr reactions and are similar to previous experimental results. The experimental cross sections were accurately modeled by the predictions of the HIVAP code using the Reisdorf and Schaedel parameters and are consistent with the existing systematics of 4n exit channel reaction products. Cold fusion reactions were examined using the BGS. The 208 Pb( 48 Ca,xn) 256-x No, 208 Pb( 50 Ti,xn) 258-x Rf, 208 Pb( 51 V,xn) 259-x Db, 209 Bi( 50 Ti,xn) 259-x Db, and 209 Bi( 51 V,xn) 260-x Sg reactions were studied. The experimental production cross sections are in agreement with the results observed in previous experiments. It was necessary to slightly alter the Reisdorf and Schaedel parameters for use in the HIVAP code in order to more accurately model the experimental data. The cold fusion experimental results are in agreement with current 1n- and 2n-exit channel systematics