WorldWideScience

Sample records for gas hydrate handling

  1. Overview on Hydrate Coring, Handling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  2. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    Fuels in India’s Energy Future. Workshop on “Alternate Fuels in India’s Energy Future”, held at Hotel International, New Delhi,19 Sept 2006 , Jointly organised by CII,ERM and British High Commission Bangs, N.L., D.S. Sawyer, X. Golovchenko... hydrates: relevance to world margin stability and climatic change, Tutorial book: Gent, Belgium, pp. 1-37. Sloan, E. D., 1998, Clathrate hydrates of natural gases. 2 nd edition: Marcel Dekker, Inc., New York, pp705. Stakes...

  3. Gas hydrate and humans

    Science.gov (United States)

    Kvenvolden, K.A.

    2000-01-01

    The potential effects of naturally occurring gas hydrate on humans are not understood with certainty, but enough information has been acquired over the past 30 years to make preliminary assessments possible. Three major issues are gas hydrate as (1) a potential energy resource, (2) a factor in global climate change, and (3) a submarine geohazard. The methane content is estimated to be between 1015 to 1017 m3 at STP and the worldwide distribution in outer continental margins of oceans and in polar regions are significant features of gas hydrate. However, its immediate development as an energy resource is not likely because there are various geological constraints and difficult technological problems that must be solved before economic recovery of methane from hydrate can be achieved. The role of gas hydrate in global climate change is uncertain. For hydrate methane to be an effective greenhouse gas, it must reach the atmosphere. Yet there are many obstacles to the transfer of methane from hydrate to the atmosphere. Rates of gas hydrate dissociation and the integrated rates of release and destruction of the methane in the geo/hydro/atmosphere are not adequately understood. Gas hydrate as a submarine geohazard, however, is of immediate and increasing importance to humans as our industrial society moves to exploit seabed resources at ever-greater depths in the waters of our coastal oceans. Human activities and installations in regions of gas-hydrate occurrence must take into account the presence of gas hydrate and deal with the consequences of its presence.

  4. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  5. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  6. Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, Timothy J.; Lu, Hailong; Winters, William; Boswell, Ray; Hunter, Robert; Collett, Timothy S.

    2009-09-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  7. FY 1998 annual report on the preliminary research and development of techniques for developing resources from gas-hydrate. Studies on gas-hydrate exploration, excavation techniques, methods for assessing environmental impacts, and gas hydrate handling systems; 1998 nendo gas hydrate shigenka gijutsu sendoken kaihatsu seika hokokusho. Tansanado ni kansuru kenkyu kaihatsu, kussaku gijutsu nado ni kansuru kenkyu kaihatsu, kankyo eikyo hyokaho no kenkyu kaihatsu, riyo system ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This R and D project is for the preliminary studies on development of the following 4 types of techniques for developing resources from gas-hydrates (GH): (1) gas-hydrate exploration, (2) excavation techniques, (3) methods for assessing environmental impacts, and (4) gas hydrate handling systems. The FY 1988 R and D results are described. For gas-hydrate exploration, the methods for analyzing inorganic ions and trace quantities of elements, which are necessary for accurately estimating the offshore GH around Japan, are established; and case studies are conducted for methods of predicting GH deposit forming mechanisms, and stability fields of GH, based on terrestrial heat flow and seismic data. For excavation techniques, GH decomposition rate is analyzed using a laboratory system which reproduces conditions of excavation of GH layers. For methods for assessing environmental impacts, a geo-hazard predicting model is established, to study ground displacement and gas leakage sensing systems and data transmission systems to cope with the hazards. For gas hydrate handling systems, an overall system is studied, and storage and transportation systems are outlined. (NEDO)

  8. Rapid gas hydrate formation process

    Science.gov (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  9. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  10. Energy resource potential of natural gas hydrates

    Science.gov (United States)

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  11. Modeling Hydrates and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Weihua Wang

    2007-06-01

    Full Text Available Natural gas hydrates, as an important potential fuels, flow assurance hazards, and possible factors initiating the submarine geo-hazard and global climate change, have attracted the interest of scientists all over the world. After two centuries of hydrate research, a great amount of scientific data on gas hydrates has been accumulated. Therefore the means to manage, share, and exchange these data have become an urgent task. At present, metadata (Markup Language is recognized as one of the most efficient ways to facilitate data management, storage, integration, exchange, discovery and retrieval. Therefore the CODATA Gas Hydrate Data Task Group proposed and specified Gas Hydrate Markup Language (GHML as an extensible conceptual metadata model to characterize the features of data on gas hydrate. This article introduces the details of modeling portion of GHML.

  12. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  13. Is the Surface of Gas Hydrates Dry?

    Directory of Open Access Journals (Sweden)

    Nobuo Maeda

    2015-06-01

    Full Text Available Adhesion (cohesion and agglomeration properties of gas hydrate particles have been a key to hydrate management in flow assurance in natural gas pipelines. Despite its importance, the relevant data in the area, such as the surface energy and the interfacial energy of gas hydrates with gas and/or water, are scarce; presumably due to the experimental difficulties involved in the measurements. Here we review what is known about the surface energy and the interfacial energy of gas hydrates to date. In particular, we ask a question as to whether pre-melting can occur on the surface of gas hydrates. Surface thermodynamic analyses show that pre-melting is favoured to occur on the surface of gas hydrates, however, not sufficient data are available to assess its thickness. The effects of the existence of pre-melting layers on the cohesion and friction forces between gas hydrate particles are also discussed.

  14. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goa...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  15. Fundamentals and applications of gas hydrates.

    Science.gov (United States)

    Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T

    2011-01-01

    Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties.

  16. Study of Formation Mechanisms of Gas Hydrate

    Science.gov (United States)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation

  17. Natural gas hydrate occurrence and issues

    Science.gov (United States)

    Kvenvolden, K.A.

    1994-01-01

    Naturally occurring gas hydrate is found in sediment of two regions: (1) continental, including continental shelves, at high latitudes where surface temperatures are very cold, and (2) submarine outer continental margins where pressures are very high and bottom-water temperatures are near 0??C. Continental gas hydrate is found in association with onshore and offshore permafrost. Submarine gas hydrate is found in sediment of continental slopes and rises. The amount of methane present in gas hydrate is thought to be very large, but the estimates that have been made are more speculative than real. Nevertheless, at the present time there has been a convergence of ideas regarding the amount of methane in gas hydrate deposits worldwide at about 2 x 1016 m3 or 7 x 1017 ft3 = 7 x 105 Tcf [Tcf = trillion (1012) ft3]. The potentially large amount of methane in gas hydrate and the shallow depth of gas hydrate deposits are two of the principal factors driving research concerning this substance. Such a large amount of methane, if it could be commercially produced, provides a potential energy resource for the future. Because gas hydrate is metastable, changes of surface pressure and temperature affect its stability. Destabilized gas hydrate beneath the sea floor leads to geologic hazards such as submarine mass movements. Examples of submarine slope failures attributed to gas hydrate are found worldwide. The metastability of gas hydrate may also have an effect on climate. The release of methane, a 'greenhouse' gas, from destabilized gas hydrate may contribute to global warming and be a factor in global climate change.

  18. Apparatus investigates geological aspects of gas hydrates

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Dillon, William P.

    1999-01-01

    The US Geological Survey (USGS), in response to potential geohazards, energy resource potential, and climate issues associated with marine gas hydrates, has developed a laboratory research system that permits hydrate genesis and dissociation under deep-sea conditions, employing user-selected sediment types and pore fluids.The apparatus, GHASTI (gas hydrate and sediment test laboratory instrument), provides a means to link field studies and theory and serves as a tool to improve gas hydrate recognition and assessment, using remote sensing techniques.GHASTLI's use was proven in an exploration well project led by the Geological Survey of Canada and the Japanese National Oil Corp., collaborating with Japan Petroleum Exploration Co. and the USGS. The site was in the Mackenzie Delta region of the Northwest Territories (Mallik 2L-38 drillsite).From tests on natural methane hydrate-bearing sand recovered at about 1,000 m subsurface, the in situ quantity of hydrate was estimated from acoustic properties, and a substantial increase in shear strength due to the presence of the hydrate was measured.1 2GHASTI can mimic a wide range of geologic settings and processes. Initial goals involve improved recognition and mapping of gas hydrate-bearing sediments, understanding factors that control the occurrence and concentration of gas hydrates, knowledge of hydrate's significance to slope failure and foundation problems, and analysis of gas hydrate's potential use as an energy resource.

  19. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  20. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  1. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  2. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  3. Prospecting for marine gas hydrate resources

    Science.gov (United States)

    Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.

    2016-01-01

    As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.

  4. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  5. Sherbet natural gas resources. ; Gas hydrate. Sherbet jo no tennen gas shigen. ; Gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Y. (Geological Survey of Japan, Tsukuba (Japan))

    1993-04-01

    The present of methane hydrate exploration is reviewed. Methane hydrate contains more than 95% methane in cages composed of water molecules, and it was probably formed from saturated methane in water and excess methane under specific temperature and pressure by biofermentation or pyrolysis of petroleum. It is found only under the sea bottom around continents or permanent frozen soil districts, and nearly 40 expected sites have been found at 500-5,000 m in depth of water, while 8 ones in Siberia, Canada and Alaska. In Japan, the Nankai trough, Kurile trench and Okushiri ridge are expected sites. Control of hydrate decomposition rates is essential for exploitation, while promotion of hydrate decomposition for methane gas production. The estimated amount of methane hydrate is larger in sea area than land area, and it is estimated to be 2.5-5 [times] 10[sup 14] m[sup 3] in the whole sea area of the globe, while 6 [times] 10[sup 12] m[sup 3] in the sea area around Japan. 17 refs., 6 figs., 4 tabs.

  6. Exploitation of subsea gas hydrate reservoirs

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  7. ConocoPhillips Gas Hydrate Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoderbek, David [ConocoPhillips Co., Houston, TX (United States); Farrell, Helen [ConocoPhillips Co., Houston, TX (United States); Howard, James [ConocoPhillips Co., Houston, TX (United States); Raterman, Kevin [ConocoPhillips Co., Houston, TX (United States); Silpngarmlert, Suntichai [ConocoPhillips Co., Houston, TX (United States); Martin, Kenneth [ConocoPhillips Co., Houston, TX (United States); Smith, Bruce [ConocoPhillips Co., Houston, TX (United States); Klein, Perry [ConocoPhillips Co., Houston, TX (United States)

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  8. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has a charact......For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...

  9. Spectroscopic methods in gas hydrate research.

    Science.gov (United States)

    Rauh, Florian; Mizaikoff, Boris

    2012-01-01

    Gas hydrates are crystalline structures comprising a guest molecule surrounded by a water cage, and are particularly relevant due to their natural occurrence in the deep sea and in permafrost areas. Low molecular weight molecules such as methane and carbon dioxide can be sequestered into that cage at suitable temperatures and pressures, facilitating the transition to the solid phase. While the composition and structure of gas hydrates appear to be well understood, their formation and dissociation mechanisms, along with the dynamics and kinetics associated with those processes, remain ambiguous. In order to take advantage of gas hydrates as an energy resource (e.g., methane hydrate), as a sequestration matrix in (for example) CO(2) storage, or for chemical energy conservation/storage, a more detailed molecular level understanding of their formation and dissociation processes, as well as the chemical, physical, and biological parameters that affect these processes, is required. Spectroscopic techniques appear to be most suitable for analyzing the structures of gas hydrates (sometimes in situ), thus providing access to such information across the electromagnetic spectrum. A variety of spectroscopic methods are currently used in gas hydrate research to determine the composition, structure, cage occupancy, guest molecule position, and binding/formation/dissociation mechanisms of the hydrate. To date, the most commonly applied techniques are Raman spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy. Diffraction methods such as neutron and X-ray diffraction are used to determine gas hydrate structures, and to study lattice expansions. Furthermore, UV-vis spectroscopic techniques and scanning electron microscopy (SEM) have assisted in structural studies of gas hydrates. Most recently, waveguide-coupled mid-infrared spectroscopy in the 3-20 μm spectral range has demonstrated its value for in situ studies on the formation and dissociation of gas

  10. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  11. Hydrate Technology For Transporting Natural Gas

    OpenAIRE

    Dawe, R. A.

    2003-01-01

    Natural gas hydrate (NGH) is a viable alternative to LNG (Liquefied Natural Gas) or pipelines for the transportation of natural gas from source to demand. It involves three stages: production, transportation and re-gasification. The production of the hydrate occurs at pressures >50 bar at temperatures ~10oC in the presence of water and natural gas (particularly methane, ethane, propane). Transportation is by insulated bulk carrier at around –5 oC and atmospheric pressure or 0 oC at 10 bar, an...

  12. What are gas hydrates?: Chapter 1

    Science.gov (United States)

    Beaudoin, Y.C.; Waite, W.; Boswell, R.; Dallimore, Scott

    2014-01-01

    The English chemistry pioneer Sir Humphry Davy first combined gas and water to produce a solid substance in his lab in 1810. For more than a century after that landmark moment, a small number of scientists catalogued various solid “hydrates” formed by combining water with an assortment of gases and liquids. Sloan and Koh (2007) review this early research, which was aimed at discerning the chemical structures of gas hydrates (Fig. 1.1), as well as the pressures and temperatures at which they are stable. Because no practical applications were found for these synthetic gas hydrates, they remained an academic curiosity.

  13. Gas hydrate resource quantification in Uruguay

    International Nuclear Information System (INIS)

    Tomasini, J.; De Santa Ana, H.; Veroslavsky, G.

    2012-01-01

    The gas hydrates are crystalline solids formed by natural gas (mostly methane) and water, which are stable in thermobaric conditions given under high pressures and low temperatures. These conditions are given in permafrost zones and continental margin basins offshore in the nature

  14. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  15. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Dan

    2018-02-25

    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydrates and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.

  16. Simulation of subsea gas hydrate exploitation

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2014-05-01

    The recovery of methane from gas hydrate layers that have been detected in several subsea sediments and permafrost regions around the world is a promising perspective to overcome future shortages in natural gas supply. Being aware that conventional natural gas resources are limited, research is going on to develop technologies for the production of natural gas from such new sources. Thus various research programs have started since the early 1990s in Japan, USA, Canada, India, and Germany to investigate hydrate deposits and develop required technologies. In recent years, intensive research has focussed on the capture and storage of CO2 from combustion processes to reduce climate impact. While different natural or man-made reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid CO2, the storage of CO2 as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in the form of hydrates. Regarding technological implementation many problems have to be overcome. Especially mixing, heat and mass transfer in the reservoir are limiting factors causing very long process times. Within the scope of the German research project »SUGAR« different technological approaches for the optimized exploitation of gas hydrate deposits are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical processes are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs. Simulations based on geological field data have been carried out. The studies focus on the potential of gas production from turbidites and their fitness for CO2 storage. The effects occurring during gas production and CO2 storage within

  17. Geomechanical property of gas hydrate sediment in the Nankai trough

    Energy Technology Data Exchange (ETDEWEB)

    Hato, M. [Earth Remote Sensing Data Analysis Center, Tokyo (Japan); Matsuoka, T.; Ikeda, H. [Kyoto Univ., Kyoto (Japan). Dept. of Civil and Earth Resources Engineering; Inamori, T.; Saeki, T. [Japan Oil, Gas and Metals National Corp., Chiba (Japan). Technology Research Center

    2008-07-01

    Well logging data and core samples from the Nankai trough area were used to investigate the geomechanical properties and geological history of gas hydrate-bearing sediments. The Coulomb-Mohr failure criterion was used to calculate the mechanical strength of the hydrate sediments. The dynamic Young's modulus was calculated using theoretical and experimental data. The study showed that sediments below the gas hydrate later are mechanically weaker than sediments within the gas hydrate layer. The mechanical strength of the core samples was then measured both before and after dissociation. The study showed that saturated gas hydrates are 4 times stronger than gas hydrate-dissociated cores. It was concluded that hydrate-bearing sediments are mechanically stronger than non-hydrate-bearing sediments. Results of the study will be used to develop methods of predicting risk factors for sea floor deformations and well-bore collapse during gas hydrate extraction processes in hydrate reservoirs. 6 refs., 5 figs.

  18. Structure and composition analysis of natural gas hydrates: 13C NMR spectroscopic and gas uptake measurements of mixed gas hydrates.

    Science.gov (United States)

    Seo, Yutaek; Kang, Seong-Pil; Jang, Wonho

    2009-09-03

    Gas hydrates are becoming an attractive way of storing and transporting large quantities of natural gas, although there has been little effort to understand the preferential occupation of heavy hydrocarbon molecules in hydrate cages. In this work, we present the formation kinetics of mixed hydrate based on a gas uptake measurement during hydrate formation, and how the compositions of the hydrate phase are varied under corresponding formation conditions. We also examine the effect of silica gel pores on the physical properties of mixed hydrate, including thermodynamic equilibrium, formation kinetics, and hydrate compositions. It is expected that the enclathration of ethane and propane is faster than that of methane early stage hydrate formation, and later methane becomes the dominant component to be enclathrated due to depletion of heavy hydrocarbons in the vapor phase. The composition of the hydrate phase seems to be affected by the consumed amount of natural gas, which results in a variation of heating value of retrieved gas from mixed hydrates as a function of formation temperature. 13C NMR experiments were used to measure the distribution of hydrocarbon molecules over the cages of hydrate structure when it forms either from bulk water or water in silica gel pores. We confirm that 70% of large cages of mixed hydrate are occupied by methane molecules when it forms from bulk water; however, only 19% of large cages of mixed hydrate are occupied by methane molecules when it forms from water in silica gel pores. This result indicates that the fractionation of the hydrate phase with heavy hydrocarbon molecules is enhanced in silica gel pores. In addition when heavy hydrocarbon molecules are depleted in the vapor phase during the formation of mixed hydrate, structure I methane hydrate forms instead of structure II mixed hydrate and both structures coexist together, which is also confirmed by 13C NMR spectroscopic analysis.

  19. Indian National Gas Hydrate Program Expedition 01 report

    Science.gov (United States)

    Collett, Timothy S.; Riedel, M.; Boswell, R.; Presley, J.; Kumar, P.; Sathe, A.; Sethi, A.; Lall, M.V.; ,

    2015-01-01

    Gas hydrate is a naturally occurring “ice-like” combination of natural gas and water that has the potential to serve as an immense resource of natural gas from the world’s oceans and polar regions. However, gas-hydrate recovery is both a scientific and a technical challenge and much remains to be learned about the geologic, engineering, and economic factors controlling the ultimate energy resource potential of gas hydrate. The amount of natural gas contained in the world’s gas-hydrate accumulations is enormous, but these estimates are speculative and range over three orders of magnitude from about 2,800 to 8,000,000 trillion cubic meters of gas. By comparison, conventional natural gas accumulations (reserves and undiscovered, technically recoverable resources) for the world are estimated at approximately 440 trillion cubic meters. Gas recovery from gas hydrate is hindered because the gas is in a solid form and because gas hydrate commonly occurs in remote Arctic and deep marine environments. Proposed methods of gas recovery from gas hydrate generally deal with disassociating or “melting” in situ gas hydrate by heating the reservoir beyond the temperature of gas-hydrate formation, or decreasing the reservoir pressure below hydrate equilibrium. The pace of energy-related gas hydrate assessment projects has accelerated over the past several years.

  20. Marine Gas Hydrates - An Untapped Non-conventional Energy ...

    Indian Academy of Sciences (India)

    Table of contents. Marine Gas Hydrates - An Untapped Non-conventional Energy Resource · Slide 2 · Slide 3 · Slide 4 · Gas Hydrate Stability Zone · Slide 6 · Slide 7 · Exploration of gas hydrates (seismic) · Characteristics of BSR · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Distribution of Gas Hydrates in KG ...

  1. Gas Hydrate Growth Kinetics: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Remi-Erempagamo Tariyemienyo Meindinyo

    2016-12-01

    Full Text Available Gas hydrate growth kinetics was studied at a pressure of 90 bars to investigate the effect of temperature, initial water content, stirring rate, and reactor size in stirred semi-batch autoclave reactors. The mixing energy during hydrate growth was estimated by logging the power consumed. The theoretical model by Garcia-Ochoa and Gomez for estimation of the mass transfer parameters in stirred tanks has been used to evaluate the dispersion parameters of the system. The mean bubble size, impeller power input per unit volume, and impeller Reynold’s number/tip velocity were used for analyzing observed trends from the gas hydrate growth data. The growth behavior was analyzed based on the gas consumption and the growth rate per unit initial water content. The results showed that the growth rate strongly depended on the flow pattern in the cell, the gas-liquid mass transfer characteristics, and the mixing efficiency from stirring. Scale-up effects indicate that maintaining the growth rate per unit volume of reactants upon scale-up with geometric similarity does not depend only on gas dispersion in the liquid phase but may rather be a function of the specific thermal conductance, and heat and mass transfer limitations created by the limit to the degree of the liquid phase dispersion is batched and semi-batched stirred tank reactors.

  2. Experimental Study of Gas Hydrate Dynamics

    Science.gov (United States)

    Fandino, O.; Ruffine, L.

    2011-12-01

    Important quantities of methane and other gases are trapped below the seafloor and in the permafrost by an ice-like solid, called gas hydrates or clathrate hydrates. The latter is formed when water is mixing with different gases at high pressures and low temperatures. Due to a their possible use as a source of energy [1] or the problematic related to flow assurance failure in pipelines [2] the understanding of their processes of formation/destabilisation of these structures becomes a goal for many laboratories research as well as industries. In this work we present an experimental study on the stochastic behaviour of hydrate formation from a bulk phase. The method used here for the experiments was to repeat several time the same hydrate formation procedure and to notice the different from one experiment to another. A variable-volume type high-pressure apparatus with two sapphire windows was used. This device, already presented by Ruffine et al.[3], allows us to perform both kinetics and phase equilibrium measurements. Three initial pressure conditions were considered here, 5.0 MPa, 7.5 MPa and 10.0 MPa. Hydrates have been formed, then allowed to dissociate by stepwise heating. The memory effect has also been investigated after complete dissociation. It turned out that, although the thermodynamics conditions of formation and/or destabilization were reproducible. An attempt to determine the influence of pressure on the nucleation induction time will be discussed. References 1. Sum, A. K.; Koh, C. A.; Sloan, E. D., Clathrate Hydrates: From Laboratory Science to Engineering Practice. Industrial & Engineering Chemistry Research 2009, 48, 7457-7465. 2. Sloan, E. D., A changing hydrate paradigm-from apprehension to avoidance to risk management. Fluid Phase Equilibria 2005, 228, 67-74. 3. Ruffine, L.; Donval, J. P.; Charlou, J. L.; Cremière, A.; Zehnder, B. H., Experimental study of gas hydrate formation and destabilisation using a novel high-pressure apparatus. Marine

  3. Gas hydrates in gas storage caverns; Gashydrate bei der Gaskavernenspeicherung

    Energy Technology Data Exchange (ETDEWEB)

    Groenefeld, P. [Kavernen Bau- und Betriebs-GmbH, Hannover (Germany)

    1997-12-31

    Given appropriate pressure and temperature conditions the storage of natural gas in salt caverns can lead to the formation of gas hydrates in the producing well or aboveground operating facilities. This is attributable to the stored gas becoming more or less saturated with water vapour. The present contribution describes the humidity, pressure, and temperature conditions conducive to gas hydrate formation. It also deals with the reduction of the gas removal capacity resulting from gas hydrate formation, and possible measures for preventing hydrate formation such as injection of glycol, the reduction of water vapour absorption from the cavern sump, and dewatering of the cavern sump. (MSK) [Deutsch] Bei der Speicherung von Erdgas in Salzkavernen kann es unter entsprechenden Druck- und Temperaturverhaeltnissen zur Gashydratbildung in den Foerdersonden oder obertaegigen Betriebseinrichtungen kommen, weil sich das eingelagerte Gas mehr oder weniger mit Wasserdampf aufsaettigt. Im Folgenden werden die Feuchtigkeits-, Druck- und Temperaturbedingungen, die zur Hydratbildung fuehren erlaeutert. Ebenso werden die Verringerung der Auslagerungskapazitaet durch die Hydratbildung, Massnahmen zur Verhinderung der Hydratbildung wie die Injektion von Glykol, die Verringerung der Wasserdampfaufnahme aus dem Kavernensumpf und die Entwaesserung der Kavernensumpfs selbst beschrieben.

  4. Ground movements associated with gas hydrate production

    International Nuclear Information System (INIS)

    Siriwardane, H.J.; Kutuk, B.

    1992-03-01

    This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The present study is expected to provide a ''lower bound'' solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir

  5. Application of various water soluble polymers in gas hydrate inhibition

    DEFF Research Database (Denmark)

    Kamal, Muhammad Shahzad; Hussein, Ibnelwaleed A.; Sultan, Abdullah S.

    2016-01-01

    Formation of hydrates in gas transmission lines due to high pressures and low temperatures is a serious problem in the oil and gas industry with potential hazards and/or economic losses. Kinetic hydrate inhibitors are water soluble polymeric compounds that prevent or delay hydrate formation. This...

  6. A method of harvesting gas hydrates from marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Q.; Brill, J.P.; Sarica, C. [Tulsa Univ., Tulsa, OK (United States). Dept. of Petroleum Engineering

    2008-07-01

    Methane is known to exist in gas hydrates, but low productivity is expected for gas production from gas hydrates in marine sediments because of the shallow depths, low hydrate concentration, low permeability of the gas hydrate stability zone, lack of driving pressure and the slow melting process. This paper presented a newly developed methane harvesting method which aims to overcome technical barriers, maintain cost and energy efficiencies and minimize safety and environmental concerns. The method is based on the concept of capturing the gas released from hydrate dissociation in the sediments. The captured gases can reform hydrates inside and overhead receiver, which once full, can be lifted to shallow warm water for gas collection. This simple and open production system does not require high pressure and does not involve any flow assurance issues. As such, technical difficulties, safety issues and environmental concerns are minimized. The proposed gas harvesting method makes the best use of the nature of hydrates and the subsea pressure and temperature profiles. It combines many new concepts, including electrically adding heat inside the hydrate rich sediments to release gas, using an overhead receiver to capture the gas, allowing the gas to reform hydrates again in the overhead receiver, and lifting produced hydrates to warm water where it can be released and collected. It was concluded that this newly proposed production system enables the development of massive hydrate production fields on the sea bed with high production rates that are economically viable. 4 refs., 7 figs.

  7. Arctic Gas hydrate, Environment and Climate

    Science.gov (United States)

    Mienert, Jurgen; Andreassen, Karin; Bünz, Stefan; Carroll, JoLynn; Ferre, Benedicte; Knies, Jochen; Panieri, Giuliana; Rasmussen, Tine; Myhre, Cathrine Lund

    2015-04-01

    Arctic methane hydrate exists on land beneath permafrost regions and offshore in shelf and continental margins sediments. Methane or gas hydrate, an ice-like substrate, consists mainly of light hydrocarbons (mostly methane from biogenic sources but also ethane and propane from thermogenic sources) entrapped by a rigid cage of water molecules. The pressure created by the overlying water and sediments offshore stabilizes the CH4 in continental margins at a temperature range well above freezing point; consequently CH4 exists as methane ice beneath the seabed. Though the accurate volume of Arctic methane hydrate and thus the methane stored in hydrates throughout the Quaternary is still unknown it must be enormous if one considers the vast regions of Arctic continental shelves and margins as well as permafrost areas offshore and on land. Today's subseabed methane hydrate reservoirs are the remnants from the last ice age and remain elusive targets for both unconventional energy and as a natural methane emitter influencing ocean environments and ecosystems. It is still contentious at what rate Arctic warming may govern hydrate melting, and whether the methane ascending from the ocean floor through the hydrosphere reaches the atmosphere. As indicated by Greenland ice core records, the atmospheric methane concentration rose rapidly from ca. 500 ppb to ca. 750 ppb over a short time period of just 150 years at the termination of the younger Dryas period ca. 11600 years ago, but the dissociation of large quantities of methane hydrates on the ocean floor have not been documented yet (Brook et al., 2014 and references within). But with the major projected warming and sea ice melting trend (Knies et al., 2014) one may ask, for how long will CH4 stay trapped in methane hydrates if surface and deep-ocean water masses will warm and permafrost continuous to melt (Portnov et al. 2014). How much of the Arctic methane will be consumed by the micro- and macrofauna, how much will

  8. Geologic implications of gas hydrates in the offshore of India: results of the National Gas Hydrate Program Expedition 01

    Science.gov (United States)

    Collett, Timothy S.; Boswell, Ray; Cochran, J.R.; Kumar, Pushpendra; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna

    2014-01-01

    The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin, with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna-Godavari and Mahanadi Basins, and the Andaman Sea. The expedition discovered in the Krishna-Godavari Basin one of the thickest gas hydrate accumulations ever documented, in the Andaman Sea one of the thickest and deepest gas hydrate stability zones in the world, and established the existence of a fully developed gas hydrate petroleum system in all three basins.

  9. Methane hydrates as potential energy resource: Part 2 - Methane production processes from gas hydrates

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2010-01-01

    Three processes have been proposed for dissociation of methane hydrates: thermal stimulation, depressurization, and inhibitor injection. The obvious production approaches involve depressurization, heating and their combinations. The depressurization method is lowering the pressure inside the well and encouraging the methane hydrate to dissociate. Its objective is to lower the pressure in the free-gas zone immediately beneath the hydrate stability zone, causing the hydrate at the base of the hydrate stability zone to decompose. The thermal stimulation method is applied to the hydrate stability zone to raise its temperature, causing the hydrate to decompose. In this method, a source of heat provided directly in the form of injected steam or hot water or another heated liquid, or indirectly via electric or sonic means. This causes methane hydrate to decompose and generates methane gas. The methane gas mixes with the hot water and returns to the surface, where the gas and hot water are separated. The chemical inhibition method seeks to displace the natural-gas hydrate equilibrium condition beyond the hydrate stability zone's thermo-dynamic conditions through injection of a liquid inhibitor chemical adjacent to the hydrate. In this method, inhibitor such as methanol is injected from surface down to methane hydrate-bearing layers. The thermal stimulation method is quite expensive. The chemical inhibitor injection method is also expensive. The depressurization method may prove useful to apply more than one production.

  10. Critical pressure and multiphase flow in Blake Ridge gas hydrates

    Science.gov (United States)

    Flemings, P.B.; Liu, Xiuying; Winters, W.J.

    2003-01-01

    We use core porosity, consolidation experiments, pressure core sampler data, and capillary pressure measurements to predict water pressures that are 70% of the lithostatic stress, and gas pressures that equal the lithostatic stress beneath the methane hydrate layer at Ocean Drilling Program Site 997, Blake Ridge, offshore North Carolina. A 29-m-thick interconnected free-gas column is trapped beneath the low-permeability hydrate layer. We propose that lithostatic gas pressure is dilating fractures and gas is migrating through the methane hydrate layer. Overpressured gas and water within methane hydrate reservoirs limit the amount of free gas trapped and may rapidly export methane to the seafloor.

  11. The Role of Bottom Simulating Reflectors in Gas Hydrate Assessment

    Science.gov (United States)

    Majumdar, U.; Shedd, W. W.; Cook, A.; Frye, M.

    2015-12-01

    In this research we test the viability of using a bottom simulating reflector (BSR) to detect gas hydrate. Bottom simulating reflectors (BSRs) occur at many gas hydrate sites near the thermodynamic base of the gas hydrate stability zone (GHSZ), and are frequently used to identify possible presence of gas hydrate on a regional scale. To find if drilling a BSR actually increases the chances of finding gas hydrate, we combine an updated dataset of BSR distribution from the Bureau of Ocean Energy Management with a comprehensive dataset of natural gas hydrate distribution as appraised from well logs, covering an area of around 200,000 square kilometers in the northern Gulf of Mexico. The BSR dataset compiles industry 3-D seismic data, and includes mostly good-quality and high-confidence traditional and non-traditional BSRs. Resistivity well logs were used to identify the presence of gas hydrate from over 700 existing industry wells and we have found over 110 wells with likely gas hydrate occurrences. By integrating the two datasets, our results show that the chances of encountering gas hydrate when drilling through a BSR is ~ 42%, while that when drilling outside the BSR is ~15%. Our preliminary analysis indicates that a positive relationship exists between BSRs and gas hydrate accumulations, and the chances of encountering gas hydrate increases almost three-fold when drilling through a BSR. One interesting observation is that ~ 58% of the wells intersecting a BSR show no apparent evidence of gas hydrate. In this case, a BSR may occur at sites with no gas hydrate accumulations due to the presence of very low concentration of free gas that is not detected on resistivity logs. On the other hand, in a few wells, accumulations of gas hydrate were observed where no BSR is present. For example in a well in Atwater Valley Block 92, two intervals of gas hydrate accumulation in fractures have been identified on resistivity logs, of which, the deeper interval has 230 feet thick

  12. Environmental Impact of Natural Gas Hydrate Production

    Science.gov (United States)

    Max, M. D.; Johnson, A. H.

    2017-12-01

    Unmet conventional energy demand is encouraging a number of deep energy importing nations closer to production of their potentially very large Natural Gas Hydrate (NGH) resources. As methane and other natural gases are potent greenhouse gases, concerns exist about the possible environmental risks associated NGH development. Accidental of natural gas would have environmental consequences. However, the special characteristics of NGH and production models indicate a very low environmental risk from the reservoir to the deepwater wellhead that is much lower than for conventional deepwater gas. NGH is naturally stable in its solid form in the reservoir and shutting in the gas can be achieved by stopping NGH conversion and gas production in the reservoir. Rapid shut down results in re-crystallization of gas and stabilization of the reservoir through NGH reformation. In addition, new options for innovative technologies have the potential to allow safe development of NGH at a fraction of the current estimated cost. Gas produced from NGH is about the same as processed conventional gas, although almost certainly more pure. Leakage of gas during transport is not a production issue. Gas transport leakage is a matter for best practices regulation that is rigorously enforced.

  13. Methods of gas hydrate concentration estimation with field examples

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, D.; Dash, R.; Dewangan, P.

    accuracy, sensitivity and cost issue. Seismic methods are the most common but the estimated gas hydrate concentration can be less accurate than coring method. Although coring method has certain difficulty such as the core sampling, preserving samples... general. The gas saturation is ignored for simplification, but in the case of free gas and gas hydrate coexisting both can be simultaneously estimated. The steps for hydrate saturation estimation in method 1 are: 1) first create a table of modeled seismic...

  14. Development of hydrate risk quantification in oil and gas production

    Science.gov (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  15. The effect of hydrate promoters on gas uptake.

    Science.gov (United States)

    Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen

    2017-08-16

    Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH 4 storage and CO 2 capture from CO 2 /H 2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

  16. Focus on the Development of Natural Gas Hydrate in China

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2016-05-01

    Full Text Available Natural gas hydrate, also known as combustible ice, and mainly composed of methane, is identified as a potential clean energy for the 21st century. Due to its large reserves, gas hydrate can ease problems caused by energy resource shortage and has gained attention around the world. In this paper, we focus on the exploration and development of gas hydrate as well as discussing its status and future development trend in China and abroad. We then analyze its opportunities and challenges in China from four aspects, resource, technology, economy and policy, with five forces model and Politics Economics Society Technology method. The results show China has abundance gas hydrate resource; however, backward technologies and inadequate investment have seriously hindered the future development of gas hydrate; thus, China should establish relevant cooperation framework and intuitional arrangement to attract more investment as well as breaking through technical difficulties to commercialization gas hydrate as soon as possible.

  17. Excess pore pressure and slope failures resulting from gas-hydrates dissociation and dissolution

    OpenAIRE

    Sultan, Nabil

    2007-01-01

    Parameters affecting gas hydrate formation include temperature, pore pressure, gas chemistry, and pore-water salinity. Any change in the equilibrium of these parameters may result in dissociation (gas-hydrate turns into free gas/water mixture) and/or dissolution (gas-hydrate becomes mixture of water and dissolved gas) of the gas hydrate. While, gas-hydrate dissociation at the base of the Gas Hydrate Occurrence Zone (GHOZ) is often considered as a major cause of sediment deformation and submar...

  18. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  19. Putting the Deep Biosphere and Gas Hydrates on the Map

    Science.gov (United States)

    Sikorski, Janelle J.; Briggs, Brandon R.

    2016-01-01

    Microbial processes in the deep biosphere affect marine sediments, such as the formation of gas hydrate deposits. Gas hydrate deposits offer a large source of natural gas with the potential to augment energy reserves and affect climate and seafloor stability. Despite the significant interdependence between life and geology in the ocean, coverage…

  20. Exploitation of marine gas hydrates: Benefits and risks (Invited)

    Science.gov (United States)

    Wallmann, K. J.

    2013-12-01

    Vast amounts of natural gas are stored in marine gas hydrates deposited at continental margins. The global inventory of carbon bound as methane in gas hydrates is currently estimated as 1000 × 500 Gt. Large-scale national research projects located mostly in South-East Asia but also in North America and Europe are aiming to exploit these ice-like solids as new unconventional resource of natural gas. Japan, South Korea and other Asian countries are taking the lead because their national waters harbor exploitable gas hydrate deposits which could be developed to reduce the dependency of these nations on costly LGN imports. In 2013, the first successful production test was performed off Japan at water depths of ca. 1000 m demonstrating that natural gas can be released and produced from marine hydrates by lowering the pressure in the sub-seabed hydrate reservoirs. In an alternative approach, CO2 from coal power plans and other industrial sources is used to release natural gas (methane) from hydrates while CO2 is bound and stored in the sub-surface as solid hydrate. These new approaches and technologies are still in an early pre-commercial phase; the costs of field development and gas production exceed the value of natural gas being produced from the slowly dissociating hydrates. However, new technologies are currently under development in the German SUGAR project and elsewhere to reduce costs and enhance gas production rates such that gas hydrates may become commercially exploitable over the coming decade(s). The exploitation of marine gas hydrates may help to reduce CO2 emissions from the fossil fuel sector if the produced natural gas is used to replace coal and/or LNG. Hydrate development could also provide important incentives for carbon capture technologies since CO2 can be used to produce natural gas from hydrates. However, leakage of gas may occur during the production process while slope failure may be induced by the accompanying dissociation/conversion of gas

  1. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  2. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204

    Science.gov (United States)

    Trehu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; Bangs, N.L.; Barr, S.R.; Borowski, W.S.; Claypool, G.E.; Delwiche, M.E.; Dickens, G.R.; Gracia, E.; Guerin, G.; Holland, M.; Johnson, J.E.; Lee, Y.-J.; Liu, C.-S.; Su, X.; Teichert, B.; Tomaru, H.; Vanneste, M.; Watanabe, M. E.; Weinberger, J.L.

    2004-01-01

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space or 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally change. ?? 2004 Published by Elsevier B.V.

  3. Methane hydrates and the future of natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2011-01-01

    For decades, gas hydrates have been discussed as a potential resource, particularly for countries with limited access to conventional hydrocarbons or a strategic interest in establishing alternative, unconventional gas reserves. Methane has never been produced from gas hydrates at a commercial scale and, barring major changes in the economics of natural gas supply and demand, commercial production at a large scale is considered unlikely to commence within the next 15 years. Given the overall uncertainty still associated with gas hydrates as a potential resource, they have not been included in the EPPA model in MITEI’s Future of Natural Gas report. Still, gas hydrates remain a potentially large methane resource and must necessarily be included in any consideration of the natural gas supply beyond two decades from now.

  4. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  5. Entrapment of Hydrate-coated Gas Bubbles into Oil and Separation of Gas and Hydrate-film; Seafloor Experiments with ROV

    Science.gov (United States)

    Hiruta, A.; Matsumoto, R.

    2015-12-01

    We trapped gas bubbles emitted from the seafloor into oil-containing collector and observed an unique phenomena. Gas hydrate formation needs water for the crystal lattice; however, gas hydrates in some areas are associated with hydrophobic crude oil or asphalt. In order to understand gas hydrate growth in oil-bearing sediments, an experiment with cooking oil was made at gas hydrate stability condition. We collected venting gas bubbles into a collector with canola oil during ROV survey at a gas hydrate area in the eastern margin of the Sea of Japan. When the gas bubbles were trapped into collector with oil, gas phase appeared above the oil and gas hydrates, between oil and gas phase. At this study area within gas hydrate stability condition, control experiment with oil-free collector suggested that gas bubbles emitted from the seafloor were quickly covered with gas hydrate film. Therefore it is improbable that gas bubbles entered into the oil phase before hydrate skin formation. After the gas phase formation in oil-containing collector, the ROV floated outside of hydrate stability condition for gas hydrate dissociation and re-dived to the venting site. During the re-dive within hydrate stability condition, gas hydrate was not formed. The result suggests that moisture in the oil is not enough for hydrate formation. Therefore gas hydrates that appeared at the oil/gas phase boundary were already formed before bubbles enter into the oil. Hydrate film is the only possible origin. This observation suggests that hydrate film coating gas hydrate was broken at the sea water/oil boundary or inside oil. Further experiments may contribute for revealing kinetics of hydrate film and formation. This work was a part of METI (Ministry of Economy, Trade and Industry)'s project entitled "FY2014 Promoting research and development of methane hydrate". We also appreciate support of AIST (National Institute of Advanced Industrial Science and Technology).

  6. Formation of hydrate plug within rectangular natural gas passage

    Energy Technology Data Exchange (ETDEWEB)

    Seong, K.; Song, M.H.; Ahn, J.H.; Yoo, K.S. [Dong Guk Univ., Joong-ku, Seoul (Korea, Republic of)

    2008-07-01

    Oil and gas reservoirs in off-shore shallow areas are being depleted. At the same time, the industry is expanding its production sites into deeper waters resulting in higher pressure and lower temperature and more isolated locations. In response, connecting pipelines have been extended, but because of these pressure, temperature and distance changes in pipelines, a more favorable condition for hydrate formation is created, making the problem of flow assurance more critical for safe and economic operations at deep off-shore oil and gas production sites. Another challenge in flow assurance lies in hydrate formation and potential blockage due to hydrate plugs in gas pipelines, where no free water phase is present. This paper presented an experimental study that examined the formation and the growth of hydrates from a gas mixture of methane and propane with different moisture concentrations. The hydrates were formed in a rectangular passage cooled to temperatures below equilibrium hydrate formation temperature. The paper described the experimental procedure and apparatus that was designed and fabricated for the study. A schematic layout of the hydrate formation and plug test experimental apparatus was illustrated. The paper also described the results of two sets of experiments that were conducted. It was concluded that with enough moisture content, hydrates formed without a fresh water phase under equilibrium conditions. It was also concluded that the results of the study could be used in verifying numerical models developed to predict hydrate plugging of natural gas pipelines. 4 refs., 6 figs.

  7. Surfactant process for promoting gas hydrate formation and application of the same

    Science.gov (United States)

    Rogers, Rudy E.; Zhong, Yu

    2002-01-01

    This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.

  8. Geologic implications of gas hydrates in the offshore of India: Results of the National Gas Hydrate Program Expedition 01

    Digital Repository Service at National Institute of Oceanography (India)

    Collett, T.S.; Boswell, R.; Cochran, J.R.; Kumar, P.; Lall, M.; Mazumdar, A.; Ramana, M.V.; Ramprasad, T.; Riedel, M.; Sain, K.; Sathe, A.V.; Vishwanath, K.; NGHP Expedition 01 Scientific Party

    on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna–Godavari and Mahanadi Basins, and the Andaman Sea. The expedition...

  9. Energy from gas hydrates - assessing the opportunities and challenges for Canada: report of the expert panel on gas hydrates

    International Nuclear Information System (INIS)

    2008-09-01

    Gas hydrates form when water and natural gas combine at low temperatures and high pressures in regions of permafrost and in marine subseafloor sediments. Estimates suggest that the total amount of natural gas bound in hydrate form may exceed all conventional gas resources, or even the amount of all combined hydrocarbon energy. Gas from gas hydrate could provide a potentially vast new source of energy to offset declining supplies of conventional natural gas in North America and to provide greater energy security for countries such as Japan and India that have limited domestic sources. However, complex issues would need to be addressed if gas hydrate were to become a large part of the energy future of Canada. Natural Resources Canada asked the Council of Canadian Academies to assemble a panel of experts to examine the challenges for an acceptable operational extraction of gas hydrates in Canada. This report presented an overview of relevant contextual background, including some basic science; the medium-term outlook for supply and demand in markets for natural gas; broad environmental issues related to gas hydrate in its natural state and as a fuel; and an overview of Canada's contribution to knowledge about gas hydrate in the context of ongoing international research activity. The report also presented current information on the subject and what would be required to delineate and quantify the resource. Techniques for extracting gas from gas hydrate were also outlined. The report also addressed safety issues related to gas hydrate dissociation during drilling operations or release into the atmosphere; the environmental issues associated with potential leakage of methane into the atmosphere and with the large volumes of water produced during gas hydrate dissociation; and jurisdictional and local community issues that would need to be resolved in order to proceed with the commercial exploitation of gas hydrate. It was concluded that there does not appear to be

  10. Handbook of gas hydrate properties and occurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  11. Gas hydrate inhibition by perturbation of liquid water structure.

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-17

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  12. National Gas Hydrate Program Expedition 01 offshore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry

    Science.gov (United States)

    Lorenson, Thomas; Collett, Timothy S.

    2018-01-01

    The National Gas Hydrate Program Expedition 01 (NGHP-01) targeted gas hydrate accumulations offshore of the Indian Peninsula and along the Andaman convergent margin. The primary objectives of coring were to understand the geologic and geochemical controls on the accumulation of methane hydrate and their linkages to underlying petroleum systems. Four areas were investigated: 1) the Kerala-Konkan Basin in the eastern Arabian Sea, 2) the Mahanadi and 3) Krishna-Godavari Basins in the western Bay of Bengal, and 4) the Andaman forearc Basin in the Andaman Sea.Upward flux of methane at three of the four of the sites cored during NGHP-01 is apparent from the presence of seafloor mounds, seismic evidence for upward gas migration, shallow sub-seafloor geochemical evidence of methane oxidation, and near-seafloor gas composition that resembles gas from depth.The Kerala-Konkan Basin well contained only CO2 with no detectable hydrocarbons suggesting there is no gas hydrate system here. Gas and gas hydrate from the Krishna-Godavari Basin is mainly microbial methane with δ13C values ranging from −58.9 to −78.9‰, with small contributions from microbial ethane (−52.1‰) and CO2. Gas from the Mahanadi Basin was mainly methane with lower concentrations of C2-C5 hydrocarbons (C1/C2 ratios typically >1000) and CO2. Carbon isotopic compositions that ranged from −70.7 to −86.6‰ for methane and −62.9 to −63.7‰ for ethane are consistent with a microbial gas source; however deeper cores contained higher molecular weight hydrocarbon gases suggesting a small contribution from a thermogenic gas source. Gas composition in the Andaman Basin was mainly methane with lower concentrations of ethane to isopentane and CO2, C1/C2 ratios were mainly >1000 although deeper samples were exploration and occurs in a forearc basin. Each of these hydrate-bearing systems overlies and is likely supported by the presence and possible migration of gas from deeper gas-prone petroleum

  13. Fundamental challenges to methane recovery from gas hydrates

    Science.gov (United States)

    Servio, P.; Eaton, M.W.; Mahajan, D.; Winters, W.J.

    2005-01-01

    The fundamental challenges, the location, magnitude, and feasibility of recovery, which must be addressed to recover methane from dispersed hydrate sources, are presented. To induce dissociation of gas hydrate prior to methane recovery, two potential methods are typically considered. Because thermal stimulation requires a large energy input, it is less economically feasible than depressurization. The new data will allow the study of the effect of pressure, temperature, diffusion, porosity, tortuosity, composition of gas and water, and porous media on gas-hydrate production. These data also will allow one to improve existing models related to the stability and dissociation of sea floor hydrates. The reproducible kinetic data from the planned runs together with sediment properties will aid in developing a process to economically recover methane from a potential untapped hydrate source. The availability of plentiful methane will allow economical and large-scale production of methane-derived clean fuels to help avert future energy crises.

  14. Gas hydrate saturations estimated from pore-and fracture-filling gas hydrate reservoirs in the Qilian Mountain permafrost, China.

    Science.gov (United States)

    Xiao, Kun; Zou, Changchun; Lu, Zhenquan; Deng, Juzhi

    2017-11-24

    Accurate calculation of gas hydrate saturation is an important aspect of gas hydrate resource evaluation. The effective medium theory (EMT model), the velocity model based on two-phase medium theory (TPT model), and the two component laminated media model (TCLM model), are adopted to investigate the characteristics of acoustic velocity and gas hydrate saturation of pore- and fracture-filling reservoirs in the Qilian Mountain permafrost, China. The compressional wave (P-wave) velocity simulated by the EMT model is more consistent with actual log data than the TPT model in the pore-filling reservoir. The range of the gas hydrate saturation of the typical pore-filling reservoir in hole DKXX-13 is 13.0~85.0%, and the average value of the gas hydrate saturation is 61.9%, which is in accordance with the results by the standard Archie equation and actual core test. The P-wave phase velocity simulated by the TCLM model can be transformed directly into the P-wave transverse velocity in a fracture-filling reservoir. The range of the gas hydrate saturation of the typical fracture-filling reservoir in hole DKXX-19 is 14.1~89.9%, and the average value of the gas hydrate saturation is 69.4%, which is in accordance with actual core test results.

  15. Gas hydrates of the Black sea sediment section

    International Nuclear Information System (INIS)

    Byakov, Y.A.; Kruglyakova, R.P.; Kruglyakova, M.V.

    2002-01-01

    Full text : This article shows how gas formation and its genesis in the Black sea sediments forms two types of gas hydrates. The first is diagenetic, formed from biochemical methane. The second type is thermogenic, formed from the thermogenic gases and represented not only by methane, but also by its light homologues, like ethane and propane. The most favourable area for formation of the gas hydrates of the first type in the Black sea is the foot of the continental slope and areas of underwater cones of paleorivers drift-over. Gas hydrates of the second type are accumulated in the areas of underwater mud volcanoes. In accordance with the results of seismic and seismoacoustic studies in deposited thickness of the Black sea the specific anomalies of the BSR and VAMP's types are revealed that associate with the foot of gas hydrate deposits. Two gas hydrates are distinguished according to sources of gas supply and genesis : type 1 - diagenetic, type 2 - thermogenic. When some critique is reached the gas hydrate trap breaks and volcanic eruption occurs. Thus, occurrence of underwater volcanism may testify the presence of deposits.

  16. Spectroscopic determination of gas-water interactions in clathrate hydrates

    International Nuclear Information System (INIS)

    Richardson, H.H. Jr.

    1985-01-01

    The technique of forming clathrate hydrates by first forming the amorphous deposits of gas-water mixture and, secondly, annealing this deposit was used to form the clathrate hydrates of ethylene oxide, hydrogen sulfide and sulfur dioxide. Once the clathrate hydrate formed as a thin film on the CsI substrate, the infrared spectrum of these hydrates could be obtained. The clathrate hydrates could be irradiated with 1.7 MeV electrons to promote high proton concentrations in the clathrate hydrate lattice at low temperatures (approx.30K) where the Bjerrum defects in the lattice are not mobile. The ring breathing model of ethylene oxide in the clathrate hydrate can be assigned. It was possible to incorporate D 2 O into the hydrogen bonded lattice of the ethylene oxide clathrate hydrate by growing the clathrate hydrate epitaxially on a thin film of clathrate hydrate at 100 K. The half-life of the D 2 O molecules in the ethylene oxide clathrate hydrate was only 9 minutes at 120 K. The activation energy determined from the hopping rate constant in ethylene oxide clathrate hydrate was 4.5 +/- 1.8 Kcal/mole. Irradiation of the ethylene oxide clathrate hydrate with 1.7 MeV electrons transformed some of the ethylene oxide molecules in the cages to (a) CH 2 = CH 2 , (b) CH 2 = C = O, (c) CH 3 -CH 2 -OH, (d) CO 2 , and (e) CO. A steady state concentration of coupled HOD was maintained in irradiated samples of ethylene oxide clathrate hydrates at a temperature around 80 K. The enclathrated H 2 S molecule in the small cages had a different infrared spectrum (broad band complex centered at 2600 cm -1 ) from the H 2 S molecules which had been enclathrated in the large cages (broad band complex centered at 2550 cm -1 )

  17. Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration

    International Nuclear Information System (INIS)

    Yang, Jinhai; Okwananke, Anthony; Tohidi, Bahman; Chuvilin, Evgeny; Maerle, Kirill; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey

    2017-01-01

    Highlights: • Flue gas was injected for both methane recovery and carbon dioxide sequestration. • Kinetics of methane recovery and carbon dioxide sequestration was investigated. • Methane-rich gas mixtures can be produced inside methane hydrate stability zones. • Up to 70 mol% of carbon dioxide in the flue gas was sequestered as hydrates. - Abstract: Flue gas injection into methane hydrate-bearing sediments was experimentally investigated to explore the potential both for methane recovery from gas hydrate reservoirs and for direct capture and sequestration of carbon dioxide from flue gas as carbon dioxide hydrate. A simulated flue gas from coal-fired power plants composed of 14.6 mol% carbon dioxide and 85.4 mol% nitrogen was injected into a silica sand pack containing different saturations of methane hydrate. The experiments were conducted at typical gas hydrate reservoir conditions from 273.3 to 284.2 K and from 4.2 to 13.8 MPa. Results of the experiments show that injection of the flue gas leads to significant dissociation of the methane hydrate by shifting the methane hydrate stability zone, resulting in around 50 mol% methane in the vapour phase at the experimental conditions. Further depressurisation of the system to pressures well above the methane hydrate dissociation pressure generated methane-rich gas mixtures with up to 80 mol% methane. Meanwhile, carbon dioxide hydrate and carbon dioxide-mixed hydrates were formed while the methane hydrate was dissociating. Up to 70% of the carbon dioxide in the flue gas was converted into hydrates and retained in the silica sand pack.

  18. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

    Science.gov (United States)

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.

    1999-01-01

    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable

  19. Geo-scientific investigations of gas-hydrates in India

    Digital Repository Service at National Institute of Oceanography (India)

    Sain, K.; Gupta, H.; Mazumdar, A.; Bhaumik, A.K.; Bhowmick, P.K.

    . We have evaluated the resouce potential of gas-hydrates to boost the development of viable production technology. Approximately, 1900 trillion cubic meter of methane has been prognosticated within the vast exclusive economic zone (EEZ) of India...

  20. Gas hydrates in Krishna-Godavari offshore basin

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.; Mazumdar, A.; Dewangan, P.

     geography and you T Ramprasad, A Mazumdar and P Dewangan Gas hydrates in Krishna- Godavari offshore basin Earth science technologies geography and you  july - august 2013  45 Methane from gas hydrate deposits could be a viable energy alternative... areas get buried deep under few kilometres of thick ocean sediments and is degraded by the bacterial activity for eons under very high temperatures. The methane molecules thus generated find their way into the overlying sediments through...

  1. Cryopegs as destabilization factor of intra-permafrost gas hydrates

    Science.gov (United States)

    Chuvilin, Evgeny; Bukhanov, Boris; Istomin, Vladimir

    2016-04-01

    A characteristic feature of permafrost soils in the Arctic is widespread intra-permafrost unfrozen brine lenses - cryopegs. They are often found in permafrost horizons in the north part of Western Siberia, in particular, on the Yamal Peninsula. Cryopegs depths in permafrost zone can be tens and hundreds of meters from the top of frozen strata. The chemical composition of natural cryopegs is close to sea waters, but is characterized by high mineralization. They have a sodium-chloride primary composition with a minor amount of sulphate. Mineralization of cryopegs brine is often hundreds of grams per liter, and the temperature is around -6…-8 °C. The formation of cryopegs in permafrost is associated with processes of long-term freezing of sediments and cryogenic concentration of salts and salt solutions in local areas. The cryopegs' formation can take place in the course of permafrost evolution at the sea transgressions and regressions during freezing of saline sea sediments. Very important feature of cryopegs in permafrost is their transformation in the process of changing temperature and pressure conditions. As a result, the salinity and chemical composition are changed and in addition the cryopegs' location can be changed during their migration. The cryopegs migration violates the thermodynamic conditions of existence intra-permafrost gas hydrate formations, especially the relic gas hydrates deposits, which are situated in the shallow permafrost up to 100 meters depth in a metastable state [1]. The interaction cryopegs with gas hydrates accumulations can cause decomposition of intra-permafrost hydrates. Moreover, the increasing of salt and unfrozen water content in sedimentary rocks sharply reduce the efficiency of gas hydrates self-preservation in frozen soils. It is confirmed by experimental investigations of interaction of frozen gas hydrate bearing sediments with salt solutions [2]. So, horizons with elevated pressure can appear, as a result of gas hydrate

  2. Natural gas hydrates and the mystery of the Bermuda Triangle

    Energy Technology Data Exchange (ETDEWEB)

    Gruy, H.J.

    1998-03-01

    Natural gas hydrates occur on the ocean floor in such great volumes that they contain twice as much carbon as all known coal, oil and conventional natural gas deposits. Releases of this gas caused by sediment slides and other natural causes have resulted in huge slugs of gas saturated water with density too low to float a ship, and enough localized atmospheric contamination to choke air aspirated aircraft engines. The unexplained disappearances of ships and aircraft along with their crews and passengers in the Bermuda Triangle may be tied to the natural venting of gas hydrates. The paper describes what gas hydrates are, their formation and release, and their possible link to the mystery of the Bermuda Triangle.

  3. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean

    DEFF Research Database (Denmark)

    Treude, T.; Boetius, A.; Knittel, K.

    2003-01-01

    At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate-reducing bac......At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate...... oxidation was extremely low (2.1 mmol m(-2) d(-1)) and was probably due to aerobic oxidation of methane. SR was fueled largely by methane at flow-impacted sites, but exceeded AOM in some cases, most likely due to sediment heterogeneity. At the Acharax field, SR was decoupled from methane oxidation...

  4. Simulation of Methane Recovery from Gas Hydrates Combined with Storing Carbon Dioxide as Hydrates

    Directory of Open Access Journals (Sweden)

    Georg Janicki

    2011-01-01

    Full Text Available In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2 from fossil fuel consumption. This idea is supported by the thermodynamics of CO2 and methane (CH4 hydrates and the fact that CO2 hydrates are more stable than CH4 hydrates in a certain P-T range. The potential of producing methane by depressurization and/or by injecting CO2 is numerically studied in the frame of the SUGAR project. Simulations are performed with the commercial code STARS from CMG and the newly developed code HyReS (hydrate reservoir simulator especially designed for hydrate processing in the subsea sediment. HyReS is a nonisothermal multiphase Darcy flow model combined with thermodynamics and rate kinetics suitable for gas hydrate calculations. Two scenarios are considered: the depressurization of an area 1,000 m in diameter and a one/two-well scenario with CO2 injection. Realistic rates for injection and production are estimated, and limitations of these processes are discussed.

  5. Detecting gas hydrate behavior in crude oil using NMR.

    Science.gov (United States)

    Gao, Shuqiang; House, Waylon; Chapman, Walter G

    2006-04-06

    Because of the associated experimental difficulties, natural gas hydrate behavior in black oil is poorly understood despite its grave importance in deep-water flow assurance. Since the hydrate cannot be visually observed in black oil, traditional methods often rely on gas pressure changes to monitor hydrate formation and dissociation. Because gases have to diffuse through the liquid phase for hydrate behavior to create pressure responses, the complication of gas mass transfer is involved and hydrate behavior is only indirectly observed. This pressure monitoring technique encounters difficulties when the oil phase is too viscous, the amount of water is too small, or the gas phase is absent. In this work we employ proton nuclear magnetic resonance (NMR) spectroscopy to observe directly the liquid-to-solid conversion of the water component in black oil emulsions. The technique relies on two facts. The first, well-known, is that water becomes essentially invisible to liquid state NMR as it becomes immobile, as in hydrate or ice formation. The second, our recent finding, is that in high magnetic fields of sufficient homogeneity, it is possible to distinguish water from black oil spectrally by their chemical shifts. By following changes in the area of the water peak, the process of hydrate conversion can be measured, and, at lower temperatures, the formation of ice. Taking only seconds to accomplish, this measurement is nearly direct in contrast to conventional techniques that measure the pressure changes of the whole system and assume these changes represent formation or dissociation of hydrates - rather than simply changes in solubility. This new technique clearly can provide accurate hydrate thermodynamic data in black oils. Because the technique measures the total mobile water with rapidity, extensions should prove valuable in studying the dynamics of phase transitions in emulsions.

  6. Gas Hydrate Research Site Selection and Operational Research Plans

    Science.gov (United States)

    Collett, T. S.; Boswell, R. M.

    2009-12-01

    In recent years it has become generally accepted that gas hydrates represent a potential important future energy resource, a significant drilling and production hazard, a potential contributor to global climate change, and a controlling factor in seafloor stability and landslides. Research drilling and coring programs carried out by the Ocean Drilling Program (ODP), the Integrated Ocean Drilling Program (IODP), government agencies, and several consortia have contributed greatly to our understanding of the geologic controls on the occurrence of gas hydrates in marine and permafrost environments. For the most part, each of these field projects were built on the lessons learned from the projects that have gone before them. One of the most important factors contributing to the success of some of the more notable gas hydrate field projects has been the close alignment of project goals with the processes used to select the drill sites and to develop the project’s operational research plans. For example, IODP Expedition 311 used a transect approach to successfully constrain the overall occurrence of gas hydrate within the range of geologic environments within a marine accretionary complex. Earlier gas hydrate research drilling, including IODP Leg 164, were designed primarily to assess the occurrence and nature of marine gas hydrate systems, and relied largely on the presence of anomalous seismic features, including bottom-simulating reflectors and “blanking zones”. While these projects were extremely successful, expeditions today are being increasingly mounted with the primary goal of prospecting for potential gas hydrate production targets, and site selection processes designed to specifically seek out anomalously high-concentrations of gas hydrate are needed. This approach was best demonstrated in a recently completed energy resource focused project, the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II), which featured the collection of a

  7. A prediction method of natural gas hydrate formation in deepwater gas well and its application

    Directory of Open Access Journals (Sweden)

    Yanli Guo

    2016-09-01

    Full Text Available To prevent the deposition of natural gas hydrate in deepwater gas well, the hydrate formation area in wellbore must be predicted. Herein, by comparing four prediction methods of temperature in pipe with field data and comparing five prediction methods of hydrate formation with experiment data, a method based on OLGA & PVTsim for predicting the hydrate formation area in wellbore was proposed. Meanwhile, The hydrate formation under the conditions of steady production, throttling and shut-in was predicted by using this method based on a well data in the South China Sea. The results indicate that the hydrate formation area decreases with the increase of gas production, inhibitor concentrations and the thickness of insulation materials and increases with the increase of thermal conductivity of insulation materials and shutdown time. Throttling effect causes a plunge in temperature and pressure in wellbore, thus leading to an increase of hydrate formation area.

  8. Antifreeze proteins: Adsorption to ice, silica and gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Huang; Brown, Alan; Wathen, Brent; Ripmeester, John A.; Walker, VIrginia K.

    2005-07-01

    Certain organisms survive under freezing conditions that could otherwise prove fatal by the synthesis of antifreeze proteins (AFPs). AFPs adsorb to the surface of microscopic ice crystals and prevent further ice growth, resulting in a noncolligative freezing point depression. Type I AFP from the winter flounder (wfAFP) is an alfa-helical, alanine-rich serum protein that helps protect against innoculative freezing from ice-laden seas. The AFP of a moth from the boreal forest, Choristoneura fumiferana (Cf), is a beta-helical threonine-rich protein that helps prevent freezing at the overwintering, caterpillar stage. In contrast, the beta-roll AFP from the grass, Lolium perenne (Lp), confers little freezing point depression and the plants readily freeze. Remarkably, AFPs also adsorb to tetrahyrofuran (THF) hydrate, changing the hydrate's octahedral morphology and, as well, inhibiting the growth of THF and gas hydrates. The hyperactive CfAFP, with 30-100 times the activity of wfAFP toward ice, showed far greater nucleation inhibition for THF hydrate than did a commercial hydrate inhibitor, poly(N-vinylpyrrolidone) (PVP). Active AFPs were also judged to be superior to PVP in that they inhibited the memory effect, a phenomenon whereby hydrate reforms at a faster rate soon after melting. An inactive mutant wfAFP, with an amino acid substitution at the ice-binding site, also reduced the growth of THF hydrate but was ineffective at suppressing hydrate reformation. These results suggest that the molecular properties important for ice adsorption and inhibition of hydrate reformation may be similar, and are distinct from those required for hydrate growth inhibition. The different AFPs also show markedly different aggregations on a third hydrophilic substrate, silica. Together these studies suggest that AFP adsorption to ice, hydrates and silica depends on the overall structure, specific residues and protein-protein interactions. (Author)

  9. Maximum Recoverable Gas from Hydrate Bearing Sediments by Depressurization

    KAUST Repository

    Terzariol, Marco

    2017-11-13

    The estimation of gas production rates from hydrate bearing sediments requires complex numerical simulations. This manuscript presents a set of simple and robust analytical solutions to estimate the maximum depressurization-driven recoverable gas. These limiting-equilibrium solutions are established when the dissociation front reaches steady state conditions and ceases to expand further. Analytical solutions show the relevance of (1) relative permeabilities between the hydrate free sediment, the hydrate bearing sediment, and the aquitard layers, and (2) the extent of depressurization in terms of the fluid pressures at the well, at the phase boundary, and in the far field. Close form solutions for the size of the produced zone allow for expeditious financial analyses; results highlight the need for innovative production strategies in order to make hydrate accumulations an economically-viable energy resource. Horizontal directional drilling and multi-wellpoint seafloor dewatering installations may lead to advantageous production strategies in shallow seafloor reservoirs.

  10. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data

    Science.gov (United States)

    Collett, T.S.; Ladd, J.

    2000-01-01

    Let 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Site 994, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m3 of gas.

  11. Synergistic kinetic inhibition of natural gas hydrate formation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Malmos, Christine; von Solms, Nicolas

    2013-01-01

    Rocking cells were used to investigate the natural gas hydrate formation and decomposition in the presence of kinetic inhibitor, Luvicap. In addition, the influence of poly ethylene oxide (PEO) and NaCl on the performance of Luvicap was investigated using temperature ramping and isothermal...... to decompose completely. One should consider this complex inhibitor-mediated hydrate formation and decomposition kinetics when screening and designing kinetic inhibitors for field applications....

  12. Faulting of Gas-Hydrate-Bearing Marine Sediments - Contribution to Permeability

    National Research Council Canada - National Science Library

    Dillon, William P

    1997-01-01

    .... We infer that the faulting resulted from excess pore pressure in gas trapped beneath the gas hydrate-bearing layer and/or weakening and mobilization of sediments in the region just below the gas-hydrate stability zone...

  13. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  14. THE EFFECT OF GAS HYDRATES DISSOCIATION AND DRILLING FLUIDS INVASION UPON BOREHOLE STABILITY IN OCEANIC GAS HYDRATES-BEARING SEDIMENT

    Science.gov (United States)

    Ning, F.; Wu, N.; Jiang, G.; Zhang, L.

    2009-12-01

    Under the condition of over-pressure drilling, the solid-phase and liquid-phase in drilling fluids immediately penetrate into the oceanic gas hydrates-bearing sediment, which causes the water content surrounding the borehole to increase largely. At the same time, the hydrates surrounding borehole maybe quickly decompose into water and gas because of the rapid change of temperature and pressure. The drilling practices prove that this two factors may change the rock characteristics of wellbore, such as rock strength, pore pressure, resistivity, etc., and then affect the logging response and evaluation, wellbore stability and well safty. The invasion of filtrate can lower the angle of friction and weaken the cohesion of hydrates-bearing sediment,which is same to the effect of invading into conventional oil and gas formation on borehole mechnical properties. The difference is that temperature isn’t considered in the invasion process of conventional formations while in hydrates-bearing sediments, it is a factor that can not be ignored. Temperature changes can result in hydrates dissociating, which has a great effect on mechanical properties of borehole. With the application of numerical simulation method, we studied the changes of pore pressure and variation of water content in the gas hydrates-bearing sediment caused by drilling fluid invasion under pressure differential and gas hydrate dissociation under temperature differential and analyzed their influence on borehole stability.The result of simulation indicated that the temperature near borehole increased quickly and changed hardly any after 6 min later. About 1m away from the borehole, the temperature of formation wasn’t affected by the temperature change of borehole. At the place near borehole, as gas hydrate dissociated dramatically and drilling fluid invaded quickly, the pore pressure increased promptly. The degree of increase depends on the permeability and speed of temperature rise of formation around

  15. Characteristics of SF{sub 6} gas hydrate formation mechanisms (kinetics) and surfactants effects on hydrate formation rate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.; Lee, H.; Kim, Y.D. [Pusan National Univ., Busan (Korea, Republic of). School of Materials Science and Engineering; Kim, Y.S.; Lee, J.D. [Korea Inst. of Industrial Technology, Busan (Korea, Republic of). Advanced Energy Resource Development Team

    2008-07-01

    Sulfur hexafluoride (SF{sub 6}) is used as an insulating gas in a variety of industrial applications, and is a potent greenhouse gas (GHG). Gas hydrates are stable crystalline compounds formed by water and natural gas molecules that have relatively large cavities that can be occupied by guest molecules. SF{sub 6} gas is able to form hydrates at relatively mild conditions. This study investigated the hydrate formation mechanisms of SF{sub 6} gas, and presented a potential hydration treatment for the gas. The effects of surface active agents on SF{sub 6} gas hydrate formation were examined experimentally using Tween 20, sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS). The surfactants showed promoter behaviour for SF{sub 6} gas hydrate formation. Formation rates occurred in 2 stages, with rates rapidly increasing during the second phase. The inflection point occurred approximately 30 minutes after the hydrate nucleation point. Results indicated the existence of a critical concentration of surfactants. It was concluded that SF{sub 6} gas hydrate formation rates were increased by the addition of surfactants. Further studies are needed to investigate 2-stage hydrate formation rates. 18 refs., 4 figs.

  16. Gas hydrate accumulation at the Hakon Mosby Mud Volcano

    Science.gov (United States)

    Ginsburg, G.D.; Milkov, A.V.; Soloviev, V.A.; Egorov, A.V.; Cherkashev, G.A.; Vogt, P.R.; Crane, K.; Lorenson, T.D.; Khutorskoy, M.D.

    1999-01-01

    Gas hydrate (GH) accumulation is characterized and modeled for the Hakon Mosby mud volcano, ca. 1.5 km across, located on the Norway-Barents-Svalbard margin. Pore water chemical and isotopic results based on shallow sediment cores as well as geothermal and geomorphological data suggest that the GH accumulation is of a concentric pattern controlled by and formed essentially from the ascending mud volcano fluid. The gas hydrate content of sediment peaks at 25% by volume, averaging about 1.2% throughout the accumulation. The amount of hydrate methane is estimated at ca. 108 m3 STP, which could account for about 1-10% of the gas that has escaped from the volcano since its origin.

  17. Behavior of gas seep bubbles below the hydrate stability zone

    Science.gov (United States)

    Wang, B.; Jun, I.; Hutschenreuter, K.; Socolofsky, S. A.; Kessler, J. D.; Lavery, A.; Breier, J. A., Jr.; Seewald, J.

    2016-02-01

    Two research cruises (GISR G07 and G08) have been carried out during 2014-2015 to study the behavior of natural gas seep plumes escaping on the seafloor below the hydrate stability zone at MC 118 and GC 600 in the Gulf of Mexico. Quantitative image measurements suggest both temporal and spatial variation of the bubble size and gas flow rate. Hydrate formation on the natural gas seep bubbles was a very fast process in the deep sea environment (890 and 1200 m depth), where the measured methane concentration in water close to the source was also saturated. The measured rise velocities of the bubbles differed significantly from the predicted terminal velocities using empirical equations in Clift et al. (1978). The measured bubble characteristics (size distribution and flow rate) were provided as input to a bubble dissolution model, which accounts for the effect of hydrate on the mass transfer coefficient. The model shows results consistent with the measurements.

  18. Formation of natural gas hydrates in marine sediments. Gas hydrate growth and stability conditioned by host sediment properties

    Science.gov (United States)

    Clennell, M.B.; Henry, P.; Hovland, M.; Booth, J.S.; Winters, W.J.; Thomas, M.

    2000-01-01

    The stability conditions of submarine gas hydrates (methane clathrates) are largely dictated by pressure, temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of the host sediments also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our model presumes that gas hydrate behaves in a way analogous to ice in the pores of a freezing soil, where capillary forces influence the energy balance. Hydrate growth is inhibited within fine-grained sediments because of the excess internal phase pressure of small crystals with high surface curvature that coexist with liquid water in small pores. Therefore, the base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature, and so nearer to the seabed than would be calculated from bulk thermodynamic equilibrium. The growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, sheets, and lenses in muds; cements in sand and ash layers) can be explained by a requirement to minimize the excess of mechanical and surface energy in the system.

  19. Gas Hydrate Research Database and Web Dissemination Channel

    Energy Technology Data Exchange (ETDEWEB)

    Micheal Frenkel; Kenneth Kroenlein; V Diky; R.D. Chirico; A. Kazakow; C.D. Muzny; M. Frenkel

    2009-09-30

    To facilitate advances in application of technologies pertaining to gas hydrates, a United States database containing experimentally-derived information about those materials was developed. The Clathrate Hydrate Physical Property Database (NIST Standard Reference Database {number_sign} 156) was developed by the TRC Group at NIST in Boulder, Colorado paralleling a highly-successful database of thermodynamic properties of molecular pure compounds and their mixtures and in association with an international effort on the part of CODATA to aid in international data sharing. Development and population of this database relied on the development of three components of information-processing infrastructure: (1) guided data capture (GDC) software designed to convert data and metadata into a well-organized, electronic format, (2) a relational data storage facility to accommodate all types of numerical and metadata within the scope of the project, and (3) a gas hydrate markup language (GHML) developed to standardize data communications between 'data producers' and 'data users'. Having developed the appropriate data storage and communication technologies, a web-based interface for both the new Clathrate Hydrate Physical Property Database, as well as Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program was developed and deployed at http://gashydrates.nist.gov.

  20. Last 20 years of gas hydrates in the oil industry : challenges and achievements in predicting pipeline blockage

    Energy Technology Data Exchange (ETDEWEB)

    Estanga, D.A.; Creek, J.; Subramanian, S.; Kini, R.A. [Chevron Energy Technology Co., Houston, TX (United States)

    2008-07-01

    This paper reviewed how the successes of the past 20 years have shaped the new hydrate focus. It also outlined innovative tools for hydrate plugging prediction. Tools such as CSMHyK-OLGA were developed to address the design and operational challenges associated with offshore production regarding flow assurance in the area of gas hydrates. The effort to understand the complex behavior of gas hydrates in multiphase flow has resulted in new hydrate blockage models. Although the hydrate community continues to debate the impact of kinetics, agglomeration, and oil chemistry effects on hydrate blockage formation in pipelines and wellbores, the petroleum industry still relies on thermodynamic strategies that completely prevent hydrates in production systems. However, these complex strategies such as thermal insulation, electric heating, dead oil displacement, and methanol injection are costly, particularly for marginal fields. As such, research continues in developing a comprehensive multiphase flow simulator capable of handling the transient aspects of production operations, notably shut-in, restart, blowdown and blockage prediction. Model predictions are leading to new operating strategies based on risk management approach. This paper discussed the challenges and opportunities that have shifted the focus from prevention of hydrates to prevention of blockage. Some initial successes in the development of a first generation empirical tool for the prediction of hydrate blockages in flow lines were also presented along with new experimental data that explained how hydrate blockages can manifest in the field. It was concluded that additional research is needed to solve the problem of hydrate plugging mechanism. 12 refs., 6 figs.

  1. Kinetics of gas hydrate formation in a water-oil-gas system

    Energy Technology Data Exchange (ETDEWEB)

    Talatori, S.; Barth, T. [Bergen Univ., Bergen (Norway). Dept. of Chemistry; Fotland, P. [StatoilHydro Research and Development Centre, Sandsli (Norway)

    2008-07-01

    Gas hydrates are crystalline compounds consisting of polyhedral water cavities which enclathrate small gas molecules. They are formed at certain pressure-temperature conditions where gas and water are present. Gas hydrate formation is of significant importance for flow assurance in oil pipelines at high pressures and/or low temperatures. It is therefore necessary to understand the kinetics of gas hydrate formation for the kinetic inhibition of the hydrates. This paper presented a kinetic model for the growth of gas hydrates and tested it against experimental hydrate kinetic data. The model was based on the Kolmogorov Johnson Mehl Avrami (KJMA) formula employed for a polynuclear mechanism and was found to fit the experimental data. A method was developed in which the mass of formed hydrates was calculated at different stirring rates from the experimental pressure and temperature recorded during the hydrate formation. The gas compositions predicted by the method were verified by comparison with the real compositions as obtained by analysis using a Hewlett Packard HP 6890 Series GC Plus. The paper described the experimental materials, procedures, and methods. It was concluded that linearization of the model specified the type of the nucleation and growth for all the kinetic data at each stirring rate. The effect of stirring rate on the kinetics of hydrate formation for the three stirring rates in the system showed acceleration of the hydrate formation when increasing the stirring rate from 300 to 600 rpm. More hydrates nucleated as stirring rates increased. It was recommended that in order to reach more definite conclusions, it would be necessary to repeat the measurements as well as conduct testing of other oils. 11 refs., 11 figs.

  2. Finite difference modelling of scattered hydrates and its implications in gas-hydrate exploration

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Ramprasad, T.; Ramana, M.V.

    having larger Fresnel zone show continuous BSR from the scat- tered hydrates 6 . Moreover, BSRs appear weak in high- frequency seismic data in contrast to strong reflection observed in the low-frequency seismics. This frequency dependence of BSR... distribution of the hydrates was modelled using one-sided Gaussian membership function with maximum concentra- tion at BHSZ and reducing to zero at a distance of 15 m from the BHSZ. In a similar fashion, the free gas below the BHSZ was modelled. The Gaussian...

  3. Origin Of Methane Gas And Migration Through The Gas Hydrate Stability Zone Beneath The Permafrost Zone

    Science.gov (United States)

    Uchida, T.; Waseda, A.; Namikawa, T.

    2005-12-01

    In 1998 and 2002 Mallik wells were drilled at Mackenzie Delta in the Canadian Arctic that clarified the characteristics of gas hydrate-dominant sandy layers at depths from 890 to 1110 m beneath the permafrost zone. Continuous downhole well log data as well as visible gas hydrates have confirmed pore-space hydrate as intergranular pore filling within sandy layers whose saturations are up to 80% in pore volume, but muddy sediments scarcely contain. Plenty of gas hydrate-bearing sand core samples have been obtained from the Mallik wells. According to grain size distributions pore-space hydrate is dominant in medium- to very fine-grained sandy strata. Methane gas accumulation and original pore space large enough to occur within host sediments may be required for forming highly saturated gas hydrate in pore system. The distribution of a porous and coarser-grained host rock should be one of the important factors to control the occurrence of gas hydrate, as well as physicochemical conditions. Subsequent analyses in sedimentology and geochemistry performed on gas hydrate-bearing sandy core samples also revealed important geologic and sedimentological controls on the formation and concentration of natural gas hydrate. This appears to be a similar mode for conventional oil and gas accumulations. It is necessary for investigating subsurface fluid flow behaviors to evaluate both porosity and permeability of gas hydrate-bearing sandy sediments, and the measurements of water permeability for them indicate that highly saturated sands may have permeability of a few millidarcies. The isotopic data of methane show that hydrocarbon gas contained in gas hydrate is generated by thermogenic decomposition of kerogen in deep mature sediments. Based on geochemical and geological data, methane is inferred to migrate upward closely associated with pore water hundreds of meters into and through the hydrate stability zone partly up to the permafrost zone and the surface along faults and

  4. The U.S. Geological Survey’s Gas Hydrates Project

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    The Gas Hydrates Project at the U.S. Geological Survey (USGS) focuses on the study of methane hydrates in natural environments. The project is a collaboration between the USGS Energy Resources and the USGS Coastal and Marine Geology Programs and works closely with other U.S. Federal agencies, some State governments, outside research organizations, and international partners. The USGS studies the formation and distribution of gas hydrates in nature, the potential of hydrates as an energy resource, and the interaction between methane hydrates and the environment. The USGS Gas Hydrates Project carries out field programs and participates in drilling expeditions to study marine and terrestrial gas hydrates. USGS scientists also acquire new geophysical data and sample sediments, the water column, and the atmosphere in areas where gas hydrates occur. In addition, project personnel analyze datasets provided by partners and manage unique laboratories that supply state-of-the-art analytical capabilities to advance national and international priorities related to gas hydrates.

  5. Preliminary report on the commercial viability of gas production from natural gas hydrates

    Science.gov (United States)

    Walsh, M.R.; Hancock, S.H.; Wilson, S.J.; Patil, S.L.; Moridis, G.J.; Boswell, R.; Collett, T.S.; Koh, C.A.; Sloan, E.D.

    2009-01-01

    Economic studies on simulated gas hydrate reservoirs have been compiled to estimate the price of natural gas that may lead to economically viable production from the most promising gas hydrate accumulations. As a first estimate, $CDN2005 12/Mscf is the lowest gas price that would allow economically viable production from gas hydrates in the absence of associated free gas, while an underlying gas deposit will reduce the viability price estimate to $CDN2005 7.50/Mscf. Results from a recent analysis of the simulated production of natural gas from marine hydrate deposits are also considered in this report; on an IROR basis, it is $US2008 3.50-4.00/Mscf more expensive to produce marine hydrates than conventional marine gas assuming the existence of sufficiently large marine hydrate accumulations. While these prices represent the best available estimates, the economic evaluation of a specific project is highly dependent on the producibility of the target zone, the amount of gas in place, the associated geologic and depositional environment, existing pipeline infrastructure, and local tariffs and taxes. ?? 2009 Elsevier B.V.

  6. Reservoir controls on the occurrence and production of gas hydrates in nature

    Science.gov (United States)

    Collett, Timothy Scott

    2014-01-01

    Gas hydrates in both arctic permafrost regions and deep marine settings can occur at high concentrations in sand-dominated reservoirs, which have been the focus of gas hydrate exploration and production studies in

  7. Gas-hydrates in Krishna-Godavari and Mahanadi basins: New data

    Digital Repository Service at National Institute of Oceanography (India)

    Sain, K.; Ojha, M.; Satyavani, N.; Ramadass, G.A.; Ramprasad, T.; Das, S.K.; Gupta, H.

    . The CDP interval is 12.5 m. References BOSWELL, R. and SAEKI, T. (2010) Motivations for the geophysical investigation of gas hydrates. In: M. Riedel, E. Willoughby, and S. Chopra (Eds.), Geophysical Characterization of Gas Hydrates. Society of Exploration...

  8. Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Collett, T.S. (USGS); Riedel, M. (McGill Univ., Montreal, Quebec, Canada); Cochran, J.R. (Columbia Univ., Palisades, NY); Boswell, R.M.; Kumar, Pushpendra (Oil and Natural Gas Corporation Ltd., Navi Mumbai, India); Sathe, A.V. (Oil and Natural Gas Corporation Ltd., Uttaranchal, INDIA)

    2008-07-01

    Studies of geologic and geophysical data from the offshore of India have revealed two geologically distinct areas with inferred gas hydrate occurrences: the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The Indian National Gas Hydrate Program (NGHP) Expedition 01 was designed to study the occurrence of gas hydrate off the Indian Peninsula and along the Andaman convergent margin with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. NGHP Expedition 01 established the presence of gas hydrates in Krishna- Godavari, Mahanadi and Andaman basins. The expedition discovered one of the richest gas hydrate accumulations yet documented (Site 10 in the Krishna-Godavari Basin), documented the thickest and deepest gas hydrate stability zone yet known (Site 17 in Andaman Sea), and established the existence of a fully-developed gas hydrate system in the Mahanadi Basin (Site 19).

  9. Gas hydrate dissociation prolongs acidification of the Anthropocene oceans

    NARCIS (Netherlands)

    Boudreau, B.P.; Luo, Y.; Meysman, F.J.R.; Middelburg, J

    2015-01-01

    Anthropogenic warming of the oceans can release methane (CH4) currently stored in sediments as gas hydrates. This CH4 will be oxidized to CO2, thus increasing the acidification of the oceans. We employ a biogeochemical model of the multimillennial carbon cycle to determine the evolution of the

  10. Gas hydrate contribution to Late Permian global warming

    Czech Academy of Sciences Publication Activity Database

    Majorowicz, J.; Grasby, S. E.; Šafanda, Jan; Beauchamp, B.

    2014-01-01

    Roč. 393, May (2014), s. 243-253 ISSN 0012-821X Institutional support: RVO:67985530 Keywords : Latest Permian extinction * gas hydrates * carbon isotope shift Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 4.734, year: 2014

  11. Vacuum/gas handling systems for ZTH

    International Nuclear Information System (INIS)

    Downing, J.N.

    1987-01-01

    The proposed ZTH vacuum system consists of three (potentially four or more) high-vacuum-pumping-stations (HVPSs), a gas handling system, a roughing system, and a vacuum control system. Each high vacuum line consists of a turbomolecular pump (TMP) pumping stack connected to the torus through a right-angle valve, a duct, and a 2 kV insulating break/bellows combination. The HVPSs are designed to be bakeable to at least 150 C. The gate seals on the high-vacuum valves are vision O-rings. Throughout the vacuum liner and high-vacuum pumping system, metal sealed joints are used where possible. Any O-ring seals, other than the gate seals, are a double-pumped configuration where a roughing vacuum is maintained between the O-rings. The insulating break eliminates ground loop currents, and the bellows mechanically decouples the pumping from the vacuum liner. This bellows section will accommodate the dimensional changes caused by heating the liner and/or the high-vacuum system

  12. Preliminary assessment of hydrocarbon gas sources from the Mt. Elbert no. 1 gas hydrate test well, Milne Pt., Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Lorenson, T.D. [United States Geological Survey, Menlo Park, CA (United States); Collett, T.S. [United States Geological Survey, Denver, CO (United States); Hunter, R.B. [ASRC Energy Services, Anchorage, AK (United States)

    2008-07-01

    This paper presented details of an extensive data collection and analysis program conducted at the Mount Elbert gas hydrate stratigraphic test well located in the Milne Point area on the Alaska North Slope. The aim of the program was to characterize and assess gas hydrate resources in the area and identify issues that will help the development of gas hydrates as an energy resources. Gases were collected from sample cores and cuttings taken from deposits overlying the Prudhoe Bay, Milne Point, and Kuparuk River oil fields. The hydrates occurred in an upper zone containing 14 meters of gas hydrate-bearing sediments; and a lower zone containing 16 meters of sediments with gas hydrate saturations of between 60 to 75 per cent. Hydrocarbon gases obtained from the samples contained methane with an isotopic composition ranging from -50.1 to -47.2 per cent. The study showed that the gas hydrates contained a mixture of deep source thermogenic gas as well as shallow, microbial gas. The hydrate petroleum system showed evidence of oil migration, and oil biodegradation. Evidence also suggested that permafrost and gas hydrate layers acted as gas traps. It was concluded that the shallow microbial gas had a biodegraded oil gas source contribution that directly converted to gas hydrate, or concentrated as a free gas in conventional traps and converted to gas hydrates in response to changes in surface conditions. 7 refs., 7 figs.

  13. Field Data and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Ralf Löwner

    2007-06-01

    Full Text Available Data and information exchange are crucial for any kind of scientific research activities and are becoming more and more important. The comparison between different data sets and different disciplines creates new data, adds value, and finally accumulates knowledge. Also the distribution and accessibility of research results is an important factor for international work. The gas hydrate research community is dispersed across the globe and therefore, a common technical communication language or format is strongly demanded. The CODATA Gas Hydrate Data Task Group is creating the Gas Hydrate Markup Language (GHML, a standard based on the Extensible Markup Language (XML to enable the transport, modeling, and storage of all manner of objects related to gas hydrate research. GHML initially offers an easily deducible content because of the text-based encoding of information, which does not use binary data. The result of these investigations is a custom-designed application schema, which describes the features, elements, and their properties, defining all aspects of Gas Hydrates. One of the components of GHML is the "Field Data" module, which is used for all data and information coming from the field. It considers international standards, particularly the standards defined by the W3C (World Wide Web Consortium and the OGC (Open Geospatial Consortium. Various related standards were analyzed and compared with our requirements (in particular the Geographic Markup Language (ISO19136, GML and the whole ISO19000 series. However, the requirements demanded a quick solution and an XML application schema readable for any scientist without a background in information technology. Therefore, ideas, concepts and definitions have been used to build up the modules of GHML without importing any of these Markup languages. This enables a comprehensive schema and simple use.

  14. Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Pachitsas, Stylianos; von Solms, Nicolas

    2015-01-01

    Gas hydrate formation in multi phase mixtures containing an aqueous phase (with dissolved salts), reservoir fluid (crude oil) and natural gas phase was investigated by using a standard rocking cell (RC-5) apparatus. The hydrate formation temperature was reduced in the presence of crude oils...... of the biodegradable commercial kinetic inhibitor (Luvicap-Bio) on natural gas hydrate formation with and without crude oil (30%) was investigated. The strength of kinetic inhibitor was not affected by salts, but decreased significantly in the presence of crude oil. Data for hydrate formation at practical conditions...... inhibition mechanisms and potentially a competition among inhibition-promotion mechanisms. Moreover, the hydrate formation time has been determined at different water cuts in each crude oil and it was found that the inhibition capability increases with an increase in the oil content. The effect...

  15. Structure-driven CO2 selectivity and gas capacity of ionic clathrate hydrates.

    Science.gov (United States)

    Hashimoto, Hidenori; Yamaguchi, Tsutomu; Ozeki, Hiroyuki; Muromachi, Sanehiro

    2017-12-08

    Ionic clathrate hydrates can selectively capture small gas molecules such as CO 2 , N 2 , CH 4 and H 2 . We investigated CO 2  + N 2 mixed gas separation properties of ionic clathrate hydrates formed with tetra-n-butylammonium bromide (TBAB), tetra-n-butylammonium chloride (TBAC), tetra-n-butylphosphonium bromide (TBPB) and tetra-n-butylphosphonium chloride (TBPC). The results showed that CO 2 selectivity of TBAC hydrates was remarkably higher than those of the other hydrates despite less gas capacity of TBAC hydrates. The TBAB hydrates also showed irregularly high CO 2 selectivity at a low pressure. X-ray diffraction and Raman spectroscopic analyses clarified that TBAC stably formed the tetragonal hydrate structure, and TBPB and TBPC formed the orthorhombic hydrate structure. The TBAB hydrates showed polymorphic phases which may consist of the both orthorhombic and tetragonal hydrate structures. These results showed that the tetragonal hydrate captured CO 2 more efficiently than the orthorhombic hydrate, while the orthorhombic hydrate has the largest gas capacity among the basic four structures of ionic clathrate hydrates. The present study suggests new potential for improving gas capacity and selectivity of ionic clathrate hydrates by choosing suitable ionic guest substances for guest gas components.

  16. Influences of additives on the gas hydrate cool storage process in a new gas hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi Yuehong; Guo Tingwei; Zhu Tingying; Zhang Liang; Chen Lingen

    2006-01-01

    Experimental research on the crystallization process of the gas hydrate HCFC141b is performed for this paper. The influences of different proportions of calcium hypochlorite or benzenesulfonic acid sodium salt on the crystallization process are studied. The results show that the degree of subcooling of formation is obviously decreased, and the formation rate of the gas hydrate is greatly accelerated by adding reasonable proportions of the additives. The degree of subcooling of formation decreases 0.78 deg. C by adding benzenesulfonic acid sodium salt of 0.03%, and the formation rate of the gas hydrate increases 0.2 g/s by adding calcium hypochlorite of 0.08%. In the cool storage system, clathrate hydrates can be formed effectively, and thermal energy can be stored efficiently. When adding benzenesulfonic acid sodium salt of 0.03%, the cold energy stored is 4.74 MJ, and the cool storage density is 206.07 MJ/m 3 . The performance of this cool storage system can meet the needs of practical air conditioning engineering

  17. Three types of gas hydrate reservoirs in the Gulf of Mexico identified in LWD data

    Science.gov (United States)

    Lee, Myung Woong; Collett, Timothy S.

    2011-01-01

    High quality logging-while-drilling (LWD) well logs were acquired in seven wells drilled during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II in the spring of 2009. These data help to identify three distinct types of gas hydrate reservoirs: isotropic reservoirs in sands, vertical fractured reservoirs in shale, and horizontally layered reservoirs in silty shale. In general, most gas hydratebearing sand reservoirs exhibit isotropic elastic velocities and formation resistivities, and gas hydrate saturations estimated from the P-wave velocity agree well with those from the resistivity. However, in highly gas hydrate-saturated sands, resistivity-derived gas hydrate-saturation estimates appear to be systematically higher by about 5% over those estimated by P-wave velocity, possibly because of the uncertainty associated with the consolidation state of gas hydrate-bearing sands. Small quantities of gas hydrate were observed in vertical fractures in shale. These occurrences are characterized by high formation resistivities with P-wave velocities close to those of water-saturated sediment. Because the formation factor varies significantly with respect to the gas hydrate saturation for vertical fractures at low saturations, an isotropic analysis of formation factor highly overestimates the gas hydrate saturation. Small quantities of gas hydrate in horizontal layers in shale are characterized by moderate increase in P-wave velocities and formation resistivities and either measurement can be used to estimate gas hydrate saturations.

  18. Increasing Gas Hydrate Formation Temperature for Desalination of High Salinity Produced Water with Secondary Guests

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jong-Ho; Seol, Yongkoo

    2013-10-07

    We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

  19. Well testing in gas hydrate reservoirs

    OpenAIRE

    Kome, Melvin Njumbe

    2015-01-01

    Reservoir testing and analysis are fundamental tools in understanding reservoir hydraulics and hence forecasting reservoir responses. The quality of the analysis is very dependent on the conceptual model used in investigating the responses under different flowing conditions. The use of reservoir testing in the characterization and derivation of reservoir parameters is widely established, especially in conventional oil and gas reservoirs. However, with depleting conventional reserves, the ...

  20. Gas hydrate characterization and grain-scale imaging of recovered cores from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Stern, Laura A.; Lorenson, T.D.; Pinkston, John C.

    2011-01-01

    Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA–DOE–USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5 m to 760.1 m depth, and sections investigated here were retrieved from 619.9 m and 661.0 m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70–75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20–120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas.

  1. Controls on evolution of gas-hydrate system in the Krishna-Godavari basin, offshore India

    Digital Repository Service at National Institute of Oceanography (India)

    Badesab, F.K.; Dewangan, P.; Usapkar, A.; Kocherla, M.; Peketi, A.; Mohite, K.; Sangode, S.J.; Deenadayalan, K.

    to constrain the evolution of gas hydrate system in marine environments.  2    1. Introduction Methane hydrate is the most common and natural form of gas hydrates, and is distributed worldwide along the oceanic and permafrost environments [Kvenvolden, 1993...

  2. Geophysical approach to gas hydrates studies in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, A.; Mizukoshi, I. [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1997-10-22

    Studies are under way to estimate by geophysical approaches the saturation of gasses and gas hydrates in the sedimentary rock. Gasses and gas hydrates under stable strata are deemed to be fossil fuel resources. If the characteristics of sonic or elastic waves are related to the amount of gasses or gas hydrates, it will be possible to assess quantitatively the said resources by geophysical approaches. This is the reason why studies have been started for the acquisition of data of a wider frequency range by seismic exploration and about stratum models concerned. In relation to the mean elastic moduli of mixed materials, studies have been made about the applicability of several theories to data from wire-line test boring, to data from seismic exploration, and to pits in zones of perpetual frost. The effort to acquire data of a wider frequency range by seismic exploration aims at filling up the gap between the now-available seismic exploration data and laboratory data. It is believed that these will enable a quantitative assessment of the said resources. 6 refs., 3 figs.

  3. An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments

    Science.gov (United States)

    Chand, S.; Minshull, T.A.; Priest, J.A.; Best, A.I.; Clayton, C.R.I.; Waite, W.F.

    2006-01-01

    The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L–38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.

  4. The Potential Socio-economic Impacts of Gas Hydrate Exploitation

    Science.gov (United States)

    Riley, David; Schaafsma, Marije; Marin-Moreno, Héctor; Minshull, Tim A.

    2017-04-01

    Gas hydrate has garnered significant interest as a possible clean fossil fuel resource, especially in countries with limited energy supplies. Whilst the sector is still in its infancy, there has been escalating development towards commercial production. To the best of our knowledge it appears that, despite its potential, existing analyses of the social and economic impacts of hydrate exploitation have been very limited. Before any viable commercial production commences, the potential impacts across society must be considered. It is likely that such impact assessments will become a legislative requirement for hydrate exploitation, similar to their requirement in conventional oil and gas projects. Social impact analysis should guide hydrate development to have the highest possible net benefits to the human and natural environment. Without active commercial hydrate operations, potential socio-economic impacts can only be inferred from other fossil fuel resource focused communities, including those directly or indirectly affected by the oil and gas industry either in the vicinity of the well or further afield. This review attempts to highlight potential impacts by synthesising current literature, focusing on social impacts at the extraction stage of operation, over time. Using a DPSIR (Driving forces; Pressures; States; Impacts; Responses) framework, we focus on impacts upon: health and wellbeing, land use and access, services and infrastructure, population, employment opportunities, income and lifestyles. Human populations directly or indirectly related with fossil fuel extraction activities often show boom and bust dynamics, and so any impacts may be finite or change temporally. Therefore potential impacts have to be reassessed throughout the lifetime of the exploitation. Our review shows there are a wide range of possible positive and negative socio-economic impacts from hydrate development. Exploitation can bring jobs and infrastructure to remote areas, although

  5. Gas Hydrate Formation Amid Submarine Canyon Incision: Investigations From New Zealand's Hikurangi Subduction Margin

    Science.gov (United States)

    Crutchley, G. J.; Kroeger, K. F.; Pecher, I. A.; Mountjoy, J. J.; Gorman, A. R.

    2017-12-01

    We investigate gas hydrate system dynamics beneath a submarine canyon on New Zealand's Hikurangi subduction margin using seismic reflection data and petroleum systems modeling. High seismic velocities just above the base of gas hydrate stability (BGHS) indicate that concentrated gas hydrates exist beneath the canyon. Two-dimensional gas hydrate formation modeling shows how the process of canyon incision at this location alters the distribution and concentration of gas hydrate. The key modeling result is that free gas is trapped beneath the gas hydrate layer and then "captured" into a concentrated gas hydrate deposit as a result of a downward-shift in the BGHS driven by canyon incision. Our study thus provides new insight into the functioning of this process. From our data, we also conceptualize two other models to describe how canyons could significantly change gas hydrate distribution and concentration. One scenario is related to deflection of fluid flow pathways from over-pressured regions at the BGHS toward the canyon, and the other is based on relationships between simultaneous seafloor uplift and canyon incision. The relationships and processes described are of global relevance because of considerations of gas hydrate as an energy resource and the influence of both submarine canyons and gas hydrate systems on seafloor biodiversity.

  6. Permafrost-associated gas hydrates of Northern Alaska: A possible source of atmospheric methane

    International Nuclear Information System (INIS)

    Collett, T.S.

    1991-01-01

    Numerous researchers have suggested that destabilized gas hydrates may be contributing to this buildup in atmospheric methane. Little is known about the geologic or geochemical nature of gas hydrates, even though they are known to occur in numerous arctic sedimentary basins. Because of the abundance of available geologic data, the author's research has focused on assessing the distribution of gas hydrates within the onshore regions of northern Alaska; currently, onshore permafrost-associated gas hydrates are believed to be insulated from most atmospheric temperature changes and are not at this time an important source of atmospheric methane. Their onshore gas hydrate studies, however, can be used to develop geologic analogs for potential gas hydrate occurrences within unexplored areas, such as the thermally unstable nearshore continental shelf. On the North Slope, gas hydrates have been identified in 36 industry wells by using well-log responses calibrated to the response of an interval in one well where gas hydrates were recovered in a core by an oil company. Most gas hydrates they identified occur in six laterally continuous Upper Cretaceous and lower Tertiary sandstone and conglomerate units; all these hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River Oil Field and the western part of the Prudhoe Bay Oil Field. Stable carbon isotope geochemical analysis of well cuttings suggests that the identified hydrates originated from a mixture of deep-source thermogenic gas and shallow microbial gas that was either directly converted to gas hydrate or first concentrated in existing traps and later converted to gas hydrate. They postulate that the thermogenic gas migrated from deeper reservoirs along the faults thought to be migration pathways for the large volumes of shallow, heavy oil found in the same area

  7. Dongsha Area Gas-hydrate Petroleum System in northern Slope of the South China Sea

    Science.gov (United States)

    Pibo, Su; Zhibin, Sha

    2015-04-01

    In recent years, significant progress has been made in addressing key issues on the formation, occurrence,and stability of gas hydrate in nature. The concept of a gas-hydrate petroleum system, similar to the system that guides current conventional oil and gas exploration,is gaining acceptance.A gas-hydrate petroleum systems model is a digital data model of a gas-hydrate petroleum system in which the interrelated processes and their results can be simulated by numerical modeling.A new module of gas-hydrate petroleum system simulating can predict the thickness of the gas hydrate stability field, the generation and migration of biogenic and thermogenic methane gas,and its accumulation as gas hydrates in gas hydrate stability field. Dongsha area is located to eastern part of the Pearl River Mouth basin, and is one of the key hydrate-exploration areas in China. However, the gas hydrate petroleum system and basin modeling in Dongsha area haven't been paid enough attention. In the paper,geological conditions for gas hydrate formation have been naturally prepared on the Dong sha area.The paper first analyzed the geological-tectonic conditions of gas hydrate formation in Dongsha area,and selected the typical sections in Dong sha uplift area and southwest taiwan basin.The geological models of gas hydrate reservoir in the two study area were constructed through the typical seismic image.The typical seismic lines are obtained from the two study area by Guangzhou Marine Geological Survey.In combination with physical,thermal and geochemical data,the match condition of gas hydrate formation was studied.by sedimentary basin simulation technique.The research results is as followed:1.In southwest taiwan basin Basin, thermal developing history is low in deep department stratum,Source of gas of hydrate come from shallower biogenic gas;2.In Dongsha uplift areas,the thickness of Cenozoic is thin and the Sediment is limited,so biogenic gas was scarce,Source of gas of hydrate come from a

  8. Synchrotron X-ray computed microtomography study on gas hydrate decomposition in a sedimentary matrix

    Science.gov (United States)

    Yang, Lei; Falenty, Andrzej; Chaouachi, Marwen; Haberthür, David; Kuhs, Werner F.

    2016-09-01

    In-situ synchrotron X-ray computed microtomography with sub-micrometer voxel size was used to study the decomposition of gas hydrates in a sedimentary matrix. Xenon-hydrate was used instead of methane hydrate to enhance the absorption contrast. The microstructural features of the decomposition process were elucidated indicating that the decomposition starts at the hydrate-gas interface; it does not proceed at the contacts with quartz grains. Melt water accumulates at retreating hydrate surface. The decomposition is not homogeneous and the decomposition rates depend on the distance of the hydrate surface to the gas phase indicating a diffusion-limitation of the gas transport through the water phase. Gas is found to be metastably enriched in the water phase with a concentration decreasing away from the hydrate-water interface. The initial decomposition process facilitates redistribution of fluid phases in the pore space and local reformation of gas hydrates. The observations allow also rationalizing earlier conjectures from experiments with low spatial resolutions and suggest that the hydrate-sediment assemblies remain intact until the hydrate spacers between sediment grains finally collapse; possible effects on mechanical stability and permeability are discussed. The resulting time resolved characteristics of gas hydrate decomposition and the influence of melt water on the reaction rate are of importance for a suggested gas recovery from marine sediments by depressurization.

  9. Introduction to the Gas Hydrate Master Project of Energy National Science and Technology Program of Taiwan

    Science.gov (United States)

    Yang, T. F.; Research Team of Gas Hydrate Project of CGS of Taiwan

    2011-12-01

    Bottom Simulating Reflectors (BSRs), which have been considered as one of major indicators of the gas hydrate in sub-seafloor, have been detected and widely distributed in offshore SW Taiwan. The Central Geological Survey of Taiwan launched a 4-year multidisciplinary gas hydrate investigation program in 2004 to explore the potential of gas hydrate resources in the area. The results indicate that enormous amounts of gas hydrate should occur beneath the seafloor, although none of solid gas hydrate samples have been found. Therefore, a second stage of another 4-year program started in 2008 to extend the studies/investigation. In the ongoing projects, some specific areas will be studied in detail to assess the components of gas hydrate petroleum system and provide a better assessment of the energy resource potential of gas hydrate in the target area. In addition to the field investigations, phase equilibrium of gas hydrate via experiment, theoretical modeling, and molecular simulations has also been studied. The results can provide insights into gas hydrate production technology. Considering the high potential energy resources, the committee of the energy national science and technology program suggests initiating a master project to plan the strategy and timeline for the gas hydrate exploration, exploitation and production in Taiwan. The plan will be introduced in this presentation.

  10. Geochemical and geologic factors effecting the formulation of gas hydrate: Task No. 5, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kvenvolden, K.A.; Claypool, G.E.

    1988-01-01

    The main objective of our work has been to determine the primary geochemical and geological factors controlling gas hydrate information and occurrence and particularly in the factors responsible for the generation and accumulation of methane in oceanic gas hydrates. In order to understand the interrelation of geochemical/geological factors controlling gas hydrate occurrence, we have undertaken a multicomponent program which has included (1) comparison of available information at sites where gas hydrates have been observed through drilling by the Deep Sea Drilling Project (DSDP) on the Blake Outer Ridge and Middle America Trench; (2) regional synthesis of information related to gas hydrate occurrences of the Middle America Trench; (3) development of a model for the occurrence of a massive gas hydrate as DSDP Site 570; (4) a global synthesis of gas hydrate occurrences; and (5) development of a predictive model for gas hydrate occurrence in oceanic sediment. The first three components of this program were treated as part of a 1985 Department of Energy Peer Review. The present report considers the last two components and presents information on the worldwide occurrence of gas hydrates with particular emphasis on the Circum-Pacific and Arctic basins. A model is developed to account for the occurrence of oceanic gas hydrates in which the source of the methane is from microbial processes. 101 refs., 17 figs., 6 tabs.

  11. Fundamental principles and applications of natural gas hydrates

    Science.gov (United States)

    Sloan, E. Dendy

    2003-11-01

    Natural gas hydrates are solid, non-stoichiometric compounds of small gas molecules and water. They form when the constituents come into contact at low temperature and high pressure. The physical properties of these compounds, most notably that they are non-flowing crystalline solids that are denser than typical fluid hydrocarbons and that the gas molecules they contain are effectively compressed, give rise to numerous applications in the broad areas of energy and climate effects. In particular, they have an important bearing on flow assurance and safety issues in oil and gas pipelines, they offer a largely unexploited means of energy recovery and transportation, and they could play a significant role in past and future climate change.

  12. Alaska North Slope regional gas hydrate production modeling forecasts

    Science.gov (United States)

    Wilson, S.J.; Hunter, R.B.; Collett, T.S.; Hancock, S.; Boswell, R.; Anderson, B.J.

    2011-01-01

    A series of gas hydrate development scenarios were created to assess the range of outcomes predicted for the possible development of the "Eileen" gas hydrate accumulation, North Slope, Alaska. Production forecasts for the "reference case" were built using the 2002 Mallik production tests, mechanistic simulation, and geologic studies conducted by the US Geological Survey. Three additional scenarios were considered: A "downside-scenario" which fails to identify viable production, an "upside-scenario" describes results that are better than expected. To capture the full range of possible outcomes and balance the downside case, an "extreme upside scenario" assumes each well is exceptionally productive.Starting with a representative type-well simulation forecasts, field development timing is applied and the sum of individual well forecasts creating the field-wide production forecast. This technique is commonly used to schedule large-scale resource plays where drilling schedules are complex and production forecasts must account for many changing parameters. The complementary forecasts of rig count, capital investment, and cash flow can be used in a pre-appraisal assessment of potential commercial viability.Since no significant gas sales are currently possible on the North Slope of Alaska, typical parameters were used to create downside, reference, and upside case forecasts that predict from 0 to 71??BM3 (2.5??tcf) of gas may be produced in 20 years and nearly 283??BM3 (10??tcf) ultimate recovery after 100 years.Outlining a range of possible outcomes enables decision makers to visualize the pace and milestones that will be required to evaluate gas hydrate resource development in the Eileen accumulation. Critical values of peak production rate, time to meaningful production volumes, and investments required to rule out a downside case are provided. Upside cases identify potential if both depressurization and thermal stimulation yield positive results. An "extreme upside

  13. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  14. Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems

    Science.gov (United States)

    Winters, William J.; Wilcox-Cline, R.W.; Long, P.; Dewri, S.K.; Kumar, P.; Stern, Laura A.; Kerr, Laura A.

    2014-01-01

    The sediment characteristics of hydrate-bearing reservoirs profoundly affect the formation, distribution, and morphology of gas hydrate. The presence and type of gas, porewater chemistry, fluid migration, and subbottom temperature may govern the hydrate formation process, but it is the host sediment that commonly dictates final hydrate habit, and whether hydrate may be economically developed.In this paper, the physical properties of hydrate-bearing regions offshore eastern India (Krishna-Godavari and Mahanadi Basins) and the Andaman Islands, determined from Expedition NGHP-01 cores, are compared to each other, well logs, and published results of other hydrate reservoirs. Properties from the hydrate-free Kerala-Konkan basin off the west coast of India are also presented. Coarser-grained reservoirs (permafrost-related and marine) may contain high gas-hydrate-pore saturations, while finer-grained reservoirs may contain low-saturation disseminated or more complex gas-hydrates, including nodules, layers, and high-angle planar and rotational veins. However, even in these fine-grained sediments, gas hydrate preferentially forms in coarser sediment or fractures, when present. The presence of hydrate in conjunction with other geologic processes may be responsible for sediment porosity being nearly uniform for almost 500 m off the Andaman Islands.Properties of individual NGHP-01 wells and regional trends are discussed in detail. However, comparison of marine and permafrost-related Arctic reservoirs provides insight into the inter-relationships and common traits between physical properties and the morphology of gas-hydrate reservoirs regardless of location. Extrapolation of properties from one location to another also enhances our understanding of gas-hydrate reservoir systems. Grain size and porosity effects on permeability are critical, both locally to trap gas and regionally to provide fluid flow to hydrate reservoirs. Index properties corroborate more advanced

  15. The formation of gas hydrates and the effect of inhibitiors on their ...

    African Journals Online (AJOL)

    Natural gas hydrate is a solid crystalline compound produced by combining water and gas and it is considered as the clathrates. Guest gas molecules are stuck insider the pores of water networks produced by hydrogen bonds between molecules of water. There are different ways to analyze the hydrate formation operating ...

  16. CO2 Capture by Injection of Flue Gas or CO2-N2 Mixtures into Hydrate Reservoirs: Dependence of CO2 Capture Efficiency on Gas Hydrate Reservoir Conditions.

    Science.gov (United States)

    Hassanpouryouzband, Aliakbar; Yang, Jinhai; Tohidi, Bahman; Chuvilin, Evgeny; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey

    2018-04-03

    Injection of flue gas or CO 2 -N 2 mixtures into gas hydrate reservoirs has been considered as a promising option for geological storage of CO 2 . However, the thermodynamic process in which the CO 2 present in flue gas or a CO 2 -N 2 mixture is captured as hydrate has not been well understood. In this work, a series of experiments were conducted to investigate the dependence of CO 2 capture efficiency on reservoir conditions. The CO 2 capture efficiency was investigated at different injection pressures from 2.6 to 23.8 MPa and hydrate reservoir temperatures from 273.2 to 283.2 K in the presence of two different saturations of methane hydrate. The results showed that more than 60% of the CO 2 in the flue gas was captured and stored as CO 2 hydrate or CO 2 -mixed hydrates, while methane-rich gas was produced. The efficiency of CO 2 capture depends on the reservoir conditions including temperature, pressure, and hydrate saturation. For a certain reservoir temperature, there is an optimum reservoir pressure at which the maximum amount of CO 2 can be captured from the injected flue gas or CO 2 -N 2 mixtures. This finding suggests that it is essential to control the injection pressure to enhance CO 2 capture efficiency by flue gas or CO 2 -N 2 mixtures injection.

  17. Geochemical constraints on the distribution of gas hydrates in the Gulf of Mexico

    Science.gov (United States)

    Paull, C.K.; Ussler, W.; Lorenson, T.; Winters, W.; Dougherty, J.

    2005-01-01

    Gas hydrates are common within near-seafloor sediments immediately surrounding fluid and gas venting sites on the continental slope of the northern Gulf of Mexico. However, the distribution of gas hydrates within sediments away from the vents is poorly documented, yet critical for gas hydrate assessments. Porewater chloride and sulfate concentrations, hydrocarbon gas compositions, and geothermal gradients obtained during a porewater geochemical survey of the northern Gulf of Mexico suggest that the lack of bottom simulating reflectors in gas-rich areas of the gulf may be the consequence of elevated porewater salinity, geothermal gradients, and microbial gas compositions in sediments away from fault conduits. 

  18. Site selection for DOE/JIP gas hydrates drilling in the northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.R.; Ruppel, C. [United States Geological Survey, Woods Hole, MA (United States); Shelander, D.; Dai, J. [Schlumberger, Houston, TX (United States); McConnell, D. [AOA Geophysics Inc., Houston, TX (United States); Shedd, W. [Minerals Management Service, New Orleans, LA (United States); Frye, M. [Minerals Management Service, Herndon, VA (United States); Boswell, R.; Rose, K. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Jones, E.; Latham, T. [Chevron Energy Technology Corp., Houston, TX (United States); Collett, T. [United States Geological Survey, Denver, CO (United States); Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Science; Wood, W. [United States Naval Research Lab, Stennis Space Center, MS (United States)

    2008-07-01

    As drilling operations in the Gulf of Mexico shift from shallow water to deeper water targets, operators are encountering sediments with pressure-temperature regimes for gas hydrate stability. The Chevron-led Joint Industry Project (JIP) on methane hydrates was formed in 2001 to study the hazards associated with drilling these types of hydrate-bearing sediments and to assess the capacity of geological and geophysical tools to predict gas hydrate distributions and concentrations. Selected reservoirs units with high concentrations of gas hydrate were sampled to obtain physical data on hydrate bearing sediments. The JIP work validates methods devised to estimate gas hydrate distribution and concentrations in order to analyze the resource potential of these hydrate-bearing sediments. This paper described the geologic and geophysical setting of 3 sites in the northern Gulf of Mexico that contain hydrate-bearing reservoir sands. The three sites that will undergo exploratory drilling and a logging campaign in late spring 2008 include the Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system characterized with seafloor fluid expulsion features, structural closure associated with uplifted salt, and seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets sheet sands and associated channel deposits within a small basin. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. 39 refs., 1 tab., 4 figs.

  19. Permafrost-associated gas hydrate: is it really approximately 1% of the global system?

    Science.gov (United States)

    Ruppel, Carolyn

    2015-01-01

    Permafrost-associated gas hydrates are often assumed to contain ∼1 % of the global gas-in-place in gas hydrates based on a study26 published over three decades ago. As knowledge of permafrost-associated gas hydrates has grown, it has become clear that many permafrost-associated gas hydrates are inextricably linked to an associated conventional petroleum system, and that their formation history (trapping of migrated gas in situ during Pleistocene cooling) is consistent with having been sourced at least partially in nearby thermogenic gas deposits. Using modern data sets that constrain the distribution of continuous permafrost onshore5 and subsea permafrost on circum-Arctic Ocean continental shelves offshore and that estimate undiscovered conventional gas within arctic assessment units,16 the done here reveals where permafrost-associated gas hydrates are most likely to occur, concluding that Arctic Alaska and the West Siberian Basin are the best prospects. A conservative estimate is that 20 Gt C (2.7·1013 kg CH4) may be sequestered in permafrost-associated gas hydrates if methane were the only hydrate-former. This value is slightly more than 1 % of modern estimates (corresponding to 1600 Gt C to 1800 Gt C2,22) for global gas-in-place in methane hydrates and about double the absolute estimate (11.2 Gt C) made in 1981.26

  20. Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling

    Science.gov (United States)

    Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting

    2018-02-01

    Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep

  1. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Lee, Bo Ram; Park, Da-Hye; Han, Kunwoo; Lee, Kun-Hong

    2013-08-01

    As the foundation of energy industry moves towards gas, flow assurance technology preventing pipelines from hydrate blockages becomes increasingly significant. However, the principle of hydrate inhibition is still poorly understood. Here, we examined natural hydrophobic amino acids as novel kinetic hydrate inhibitors (KHIs), and investigated hydrate inhibition phenomena by using them as a model system. Amino acids with lower hydrophobicity were found to be better KHIs to delay nucleation and retard growth, working by disrupting the water hydrogen bond network, while those with higher hydrophobicity strengthened the local water structure. It was found that perturbation of the water structure around KHIs plays a critical role in hydrate inhibition. This suggestion of a new class of KHIs will aid development of KHIs with enhanced biodegradability, and the present findings will accelerate the improved control of hydrate formation for natural gas exploitation and the utilization of hydrates as next-generation gas capture media.

  2. Relict gas hydrates as possible reason of gas emission from shallow permafrost at the northern part of West Siberia

    Science.gov (United States)

    Chuvilin, Evgeny; Bukhanov, Boris; Tumskoy, Vladimir; Istomin, Vladimir; Tipenko, Gennady

    2017-04-01

    Intra-permafrost gas (mostly methane) is represent a serious geological hazards during exploration and development of oil and gas fields. Special danger is posed by large methane accumulations which usually confined to sandy and silty sand horizons and overlying in the frozen strata on the depth up to 200 meters. Such methane accumulations are widely spread in a number of gas fields in the northern part of Western Siberia. According to indirect indicators this accumulations can be relic gas hydrates, that formed earlier during favorable conditions for hydrate accumulation (1, 2). Until now, they could be preserved in the frozen sediments due to geological manifestation of the self-preservation effect of gas hydrates at temperatures below zero. These gas hydrate formations, which are lying above the gas hydrate stability zone today, are in a metastable state and are very sensitive to various anthropogenic impacts. During drilling and operation of production wells in the areas where the relic of gas hydrates can occur, there are active gas emission and gas explosion, that can lead to various technical complications up to the accident. Mathematical and experimental simulations were were conducted to evaluate the possibility of existence of relic gas hydrates in the northern part of West Siberia. The results of math simulations revealed stages of geological history when the gas hydrate stability zone began virtually from the ground surface and saturated in shallow permafrost horizons. Later permafrost is not completely thaw. Experimental simulations of porous gas hydrate dissociation in frozen soils and evaluation of self-preservation manifestation of gas hydrates at negative temperatures were carried out for identification conditions for relic gas hydrates existence in permafrost of northern part of West Siberia. Sandy and silty sand sediments were used in experimental investigations. These sediments are typical of most gas-seeping (above the gas hydrate stability

  3. Comparing the sensitivity of permafrost and marine gas hydrate to climate warming

    International Nuclear Information System (INIS)

    Taylor, A.E.; Dallimore, S.R.; Hyndman, R.D.; Wright, F.

    2005-01-01

    The sensitivity of Arctic subpermafrost gas hydrate at the Mallik borehole was compared to temperate marine gas hydrate located offshore southwestern Canada. In particular, a finite element geothermal model was used to determine the sensitivity to the end of the ice age, and contemporary climate warming of a 30 m thick methane hydrate layer lying at the base of a gas hydrate stability zone prior to 13.5 kiloannum (ka) before present (BP). It was suggested that the 30 m gas-hydrate-bearing layer would have disappeared by now, according to the thermal signal alone. However, the same gas-hydrate-bearing layer underlying permafrost would persist until at least 4 ka after present, even with contemporary climate warming. The longer time for subpermafrost gas hydrate comes from the thawing pore ice at the base of permafrost, at the expense of dissociation of the deeper gas hydrate. The dissociation of underlying gas hydrate from climate surface warming is buffered by the overlying permafrost

  4. Production Characteristics of Oceanic Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Max, M. D.; Johnson, A. H.

    2014-12-01

    Oceanic natural gas hydrate (NGH) accumulations form when natural gas is trapped thermodynamically within the gas hydrate stability zone (GHSZ), which extends downward from the seafloor in open ocean depths greater than about 500 metres. As water depths increase, the thickness of the GHSZ thickens, but economic NGH deposits probably occur no deeper than 1 km below the seafloor. Natural gas (mostly methane) appears to emanate mostly from deeper sources and migrates into the GHSZ. The natural gas crystallizes as NGH when the pressure - temperature conditions within the GHSZ are reached and when the chemical condition of dissolved gas concentration in pore water is high enough to favor crystallization. Although NGH can form in both primary and secondary porosity, the principal economic target appears to be turbidite sands on deep continental margins. Because these are very similar to the hosts of more deeply buried conventional gas and oil deposits, industry knows how to explore for them. Recent improvements in a seismic geotechnical approach to NGH identification and valuation have been confirmed by drilling in the northern Gulf of Mexico and allow for widespread exploration for NGH deposits to begin. NGH concentrations occur in the same semi-consolidated sediments in GHSZs worldwide. This provides for a narrow exploration window with low acoustic attenuation. These sediments present the same range of relatively easy drilling conditions and formation pressures that are only slightly greater than at the seafloor and are essentially equalized by water in wellbores. Expensive conventional drilling equipment is not required. NGH is the only hydrocarbon that is stable at its formation pressures and incapable of converting to gas without artificial stimulation. We suggest that specialized, NGH-specific drilling capability will offer opportunities for much less expensive drilling, more complex wellbore layouts that improve reservoir connectivity and in which gas

  5. Development of natural gas ocean transportation chain by means of natural gas hydrate (NGH)

    International Nuclear Information System (INIS)

    Nogami, T.; Oya, N.; Ishida, H.; Matsumoto, H.

    2008-01-01

    Recent studies in Japan have suggested that natural gas hydrate (NGH) transportation of natural gas is more economical than liquefied natural gas (LNG) transportation systems for small, medium and remote gas fields. Researchers in Japan have built a 600 kg per day NGH production and pelletizing plant and regasification facility. This paper discussed feasibility studies conducted in southeast Asia to determine the unit's commercialization potential with large natural gas-related businesses including shipping companies and electric power utilities. The total supply chain was compared with the corresponding liquefied natural gas (LNG) and compressed natural gas (CNG) supply chains. The study also examined natural gas reserves, energy policies, the positioning of natural gas supplies, and future forecasts of natural gas demand. A conceptual design for an NGH supply chain in Indonesia was presented. Results of the study have demonstrated that the NGH chain is an appropriate and economically feasible transportation method for many areas in southeast Asia. 8 refs., 10 figs

  6. CO2 + N2O mixture gas hydrate formation kinetics and effect of soil minerals on mixture-gas hydrate formation process

    Science.gov (United States)

    Enkh-Amgalan, T.; Kyung, D.; Lee, W.

    2012-12-01

    CO2 mitigation is one of the most pressing global scientific topics in last 30 years. Nitrous oxide (N2O) is one of the main greenhouse gases (GHGs) defined by the Kyoto Protocol and its global warming potential (GWP) of one metric ton is equivalent to 310 metric tons of CO2. They have similar physical and chemical properties and therefore, mixture-gas (50% CO2 + 50% N2O) hydrate formation process was studied experimentally and computationally. There were no significant research to reduce N20 gas and we tried to make hydrate to mitigate N20 and CO2 in same time. Mixture gas hydrate formation periods were approximately two times faster than pure N2O hydrate formation kinetic in general. The fastest induction time of mixture-gas hydrate formation observed in Illite and Quartz among various soil mineral suspensions. It was also observed that hydrate formation kinetic was faster with clay mineral suspensions such as Nontronite, Sphalerite and Montmorillonite. Temperature and pressure change were not significant on hydrate formation kinetic; however, induction time can be significantly affected by various chemical species forming under the different suspension pHs. The distribution of chemical species in each mineral suspension was estimated by a chemical equilibrium model, PHREEQC, and used for the identification of hydrate formation characteristics in the suspensions. With the experimental limitations, a study on the molecular scale modeling has a great importance for the prediction of phase behavior of the gas hydrates. We have also performed molecular dynamics computer simulations on N2O and CO2 hydrate structures to estimate the residual free energy of two-phase (hydrate cage and guest molecule) at three different temperature ranges of 260K, 273K, and 280K. The calculation result implies that N2O hydrates are thermodynamically stable at real-world gas hydrate existing condition within given temperature and pressure. This phenomenon proves that mixture-gas could be

  7. Petrophysical Characterization and Reservoir Simulator for Methane Gas Production from Gulf of Mexico Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kishore Mohanty; Bill Cook; Mustafa Hakimuddin; Ramanan Pitchumani; Damiola Ogunlana; Jon Burger; John Shillinglaw

    2006-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Estimates of the amounts of methane sequestered in gas hydrates worldwide are speculative and range from about 100,000 to 270,000,000 trillion cubic feet (modified from Kvenvolden, 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In this project novel techniques were developed to form and dissociate methane hydrates in porous media, to measure acoustic properties and CT properties during hydrate dissociation in the presence of a porous medium. Hydrate depressurization experiments in cores were simulated with the use of TOUGHFx/HYDRATE simulator. Input/output software was developed to simulate variable pressure boundary condition and improve the ease of use of the simulator. A series of simulations needed to be run to mimic the variable pressure condition at the production well. The experiments can be matched qualitatively by the hydrate simulator. The temperature of the core falls during hydrate dissociation; the temperature drop is higher if the fluid withdrawal rate is higher. The pressure and temperature gradients are small within the core. The sodium iodide concentration affects the dissociation pressure and rate. This procedure and data will be useful in designing future hydrate studies.

  8. Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface

    Science.gov (United States)

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2018-04-01

    We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface—controlled by a crossover in how methane is supplied from the gas and liquid phases—which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.

  9. Scenario of gas-charged sediments and gas hydrates in the western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.; SubbaRaju, L.V.

    -charged sediments and pockmarks in the shelf and gas hydrate horizons along the slope and rise. The presence of the zones of incoherent reflections accompanied by lack of acoustic penetration and the presence of discontinuous high-intensity reflections in the form...

  10. Study of Agglomeration Characteristics of Hydrate Particles in Oil/Gas Pipelines

    Directory of Open Access Journals (Sweden)

    Wuchang Wang

    2015-01-01

    Full Text Available The force acting on hydrate particles is the critical factor to hydrate slurry stability which serves as fundamental basis for slurry flow assurance. A comprehensive analysis of forces acting on the hydrate particles was executed to determine the major agglomeration forces and separation forces, and comparison of forces reveals that the main agglomeration force is capillary force and the main separation force is shear force. Furthermore, four main influencing factors deciding the hydrate particle agglomeration were also analyzed and calculated, which shows contacting angle of capillary bridge is the most important factor for hydrate particles agglomeration, while interface tension of oil and water is the least important one. Some methods must be adopted to change the surface of hydrate agglomerates from hydrophile to lipophilicity so as to control the agglomeration of hydrate particle, which is the significant guarantee for safe flow of oil and gas transporting pipeline with hydrate particles.

  11. Molecular analysis of petroleum derived compounds that adsorb onto gas hydrate surfaces

    International Nuclear Information System (INIS)

    Borgund, Anna E.; Hoiland, Sylvi; Barth, Tanja; Fotland, Per; Askvik, Kjell M.

    2009-01-01

    Field observations have shown that some streams of water, gas and crude oil do not form gas hydrate plugs during petroleum production even when operating within thermodynamic conditions for hydrate formation. Also, when studied under controlled laboratory conditions, some oils are found to form hydrate dispersed systems whereas others form plugs. Oils with low tendency to form hydrate plugs are believed to contain natural hydrate plug inhibiting components (NICs) that adsorb onto the hydrate surface, making them less water-wet and preventing the particles from agglomerating into large hydrate clusters. The molecular structure of the NICs is currently unknown. In this work, hydrate adsorbing components were extracted from crude oils using freon hydrates as an extraction phase. The fractions were found to be enriched in polar material, and more polar material is associated with hydrates generated in biodegraded crude oils than in non-biodegraded oils. Various fractionation schemes and analytical techniques have been applied in the search for molecular characterisation. The average molecular weights were found to be approximately 500 g/mole. GC-MS chromatograms show a large UCM (Unresolved Complex Mixture). Thus, GC-MS has a limited potential for identification of compounds. A commercial biosurfactant was used as a model compound in the search for similar structures in the extracts. The results from analysis of the hydrate adsorbing components suggest that the type and structure are more important for hydrate morphology than the amount of material adsorbed.

  12. Investigating the influence of lithologic heterogeneity on gas hydrate formation and methane recycling at the base of the gas hydrate stability zone in channelized systems

    Energy Technology Data Exchange (ETDEWEB)

    Daigle, Hugh; Nole, Michael; Cook, Ann; Malinverno, Alberto

    2017-12-14

    In marine environments, gas hydrate preferentially accumulates in coarse-grained sediments. At the meso- to micro-scale, however, hydrate distribution in these coarse-grained units is often heterogeneous. We employ a methane hydrate reservoir simulator coupling heat and mass transfer as well as capillary effects to investigate how capillary controls on methane solubility affect gas and hydrate accumulations in reservoirs characterized by graded bedding and alternating sequences of coarse-grained sands and fine-grained silt and clay. Simulations bury a channelized reservoir unit encased in homogeneous, fine-grained material characterized by small pores (150 nm) and low permeability (~1 md in the absence of hydrate). Pore sizes within each reservoir bed between vary between coarse sand and fine silt. Sands have a median pore size of 35 microns and a lognormal pore size distribution. We also investigate how the amount of labile organic carbon (LOC) affects hydrate growth due to microbial methanogenesis within the sediments. In a diffusion-dominated system, methane movies into reservoir layers along spatial gradients in dissolved methane concentration. Hydrate grows in such a way as to minimize these concentration gradients by accumulating slower in finer-grained reservoir layers and faster in coarser-grained layers. Channelized, fining-upwards sediment bodies accumulate hydrate first along their outer surfaces and thence inward from top to bottom. If LOC is present in thin beds within the channel, higher saturations of hydrate will be distributed more homogeneously throughout the unit. When buried beneath the GHSZ, gas recycling can occur only if enough hydrate is present to form a connected gas phase upon dissociation. Simulations indicate that this is difficult to achieve for diffusion-dominated systems, especially those with thick GHSZs and/or small amounts of LOC. However, capillary-driven fracturing behavior may be more prevalent in settings with thick GHSZs.

  13. Occurrences of intrapermafrost gas hydrates and shallow gas in the Mackenzie Delta area, N.W.T., Canada

    International Nuclear Information System (INIS)

    Wright, J.F.; Dallimore, S.R.; Nixon, F.M.

    2007-01-01

    The thickness of permafrost in the Mackenzie Delta area has been influenced by ground surface temperature history during the past several million years. Important considerations include periods of glacial ice cover, duration of post-glacial terrestrial exposure, and periods of marine incursions. Permafrost conditions vary considerably in the region. Some areas with less than 50 m of permafrost lie in close proximity to terrain characterized by more than 700 m of permafrost. Assuming normal geopressure conditions, stable Structure 1 methane hydrate can exist in locations where permafrost is greater than 250 m in thickness. As such, conditions supporting the occurrence of intrapermafrost gas hydrate are widespread throughout much of the coastal and offshore areas of the Beaufort Sea. Current research issues include the sensitivity of intrapermafrost gas hydrates to climate warming, and their potential as a geohazard for exploration drilling and hydrocarbon production. This presentation reviewed the geologic factors that influence the occurrence and stability of intrapermafrost and sub-permafrost gas hydrates. The presence of shallow free gas within the gas hydrate pressure-temperature stability field was also discussed. Core samples from a research well at the Taglu Field has shown evidence for the occurrence of intrapermafrost gas hydrate. Data from constrained laboratory experiments have also documented the unique behavior of gas hydrate within sediment-gas hydrate-liquid water/ice systems

  14. Development of Alaskan gas hydrate resources: Annual report, October 1986--September 1987

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.D.; Kamath, V.A.; Godbole, S.P.; Patil, S.L.; Paranjpe, S.G.; Mutalik, P.N.; Nadem, N.

    1987-10-01

    Solid ice-like mixtures of natural gas and water in the form of natural gas hydrated have been found immobilized in the rocks beneath the permafrost in Arctic basins and in muds under the deep water along the American continental margins, in the North Sea and several other locations around the world. It is estimated that the arctic areas of the United States may contain as much as 500 trillion SCF of natural gas in the form of gas hydrates (Lewin and Associates, 1983). While the US Arctic gas hydrate resources may have enormous potential and represent long term future source of natural gas, the recovery of this resource from reservoir frozen with gas hydrates has not been commercialized yet. Continuing study and research is essential to develop technologies which will enable a detailed characterization and assessment of this alternative natural gas resource, so that development of cost effective extraction technology.

  15. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-07-15

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  16. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    Science.gov (United States)

    Boswell, R.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-01-01

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 #1 ("Tigershark") well shows a total gas hydrate occurrence 13??m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8??km2 and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  17. Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.R. (USGS); Shelander, D. (Schlumberger, Houston, TX); Dai, J. (Schlumberger, Hoston, TX); McConnell, D. (AOA Geophysics, Inc., Houston, TX); Shedd, W. (Minerals Management Service); Frye, M. (Minerals Management Service); Ruppel, C. (USGS); Boswell, R.; Jones, E. (Chevron Energy Technology Corp., Houston, TX); Collett, T.S. (USGS); Rose, K.; Dugan, B. (Rice Univ., Houston, TX); Wood, W. (U.S. Naval Research Laboratory); Latham, T. (Chevron Energy Technology Corp., Houston, TX)

    2008-07-01

    In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other

  18. Gas Hydrate Characterization from a 3D Seismic Dataset in the Eastern Deepwater Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Dan

    2017-10-26

    The presence of a gas hydrate petroleum system and seismic attributes derived from 3D seismic data are used for the identification and characterization of gas hydrate deposits in the deepwater eastern Gulf of Mexico. In the central deepwater Gulf of Mexico (GoM), logging while drilling (LWD) data provided insight to the amplitude response of gas hydrate saturation in sands, which could be used to characterize complex gas hydrate deposits in other sandy deposits. In this study, a large 3D seismic data set from equivalent and distal Plio-Pleistocene sandy channel deposits in the deepwater eastern Gulf of Mexico is screened for direct hydrocarbon indicators for gas hydrate saturated sands.

  19. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming.

    Science.gov (United States)

    Wallmann, Klaus; Riedel, M; Hong, W L; Patton, H; Hubbard, A; Pape, T; Hsu, C W; Schmidt, C; Johnson, J E; Torres, M E; Andreassen, K; Berndt, C; Bohrmann, G

    2018-01-08

    Methane seepage from the upper continental slopes of Western Svalbard has previously been attributed to gas hydrate dissociation induced by anthropogenic warming of ambient bottom waters. Here we show that sediment cores drilled off Prins Karls Foreland contain freshwater from dissociating hydrates. However, our modeling indicates that the observed pore water freshening began around 8 ka BP when the rate of isostatic uplift outpaced eustatic sea-level rise. The resultant local shallowing and lowering of hydrostatic pressure forced gas hydrate dissociation and dissolved chloride depletions consistent with our geochemical analysis. Hence, we propose that hydrate dissociation was triggered by postglacial isostatic rebound rather than anthropogenic warming. Furthermore, we show that methane fluxes from dissociating hydrates were considerably smaller than present methane seepage rates implying that gas hydrates were not a major source of methane to the oceans, but rather acted as a dynamic seal, regulating methane release from deep geological reservoirs.

  20. A scheme for reducing experimental heat capacity data of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Avlonitis, D. (Aero-engines Factory, Elefsis (Greece). Division of Chemistry)

    1994-12-01

    Experimental heat capacity data of simple gas hydrates on xenon, methane, ethane, and propane are reduced by application of classical thermodynamics and the ideal solid solution theory. It is shown that calculated heat capacities of the empty hydrate lattices of the structure 1 and 2 hydrates can be higher or lower than the heat capacity of ice. Similarly, the calculated partial molar heat capacity of the enclathrated gases are higher or lower than the corresponding experimental ideal gas heat capacity. These differences depend on the size of the guest relative to the cavity, the hydrate number, and the temperature. For estimation of the thermodynamic properties of the empty hydrate lattice, further experimental work is recommended. Within the present limitations, a consistent methodology is applied for the prediction of the heat capacity of a natural gas hydrate.

  1. Analysis and interpretation of the thermal test of gas hydrate dissociation in the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J. [California Univ., Berkeley, CA (United States). Lawrence Berkeley National Laboratory; Collett, T.S. [United States Geological Survey, Denver, CO (United States); Dallimore, S.R. [Geological Survey of Canada, Pacific Geoscience Centre, Sidney, BC (Canada); Inoue, T. [Japan National Oil Corp., Chiba (Japan); Mroz, T. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab.

    2005-07-01

    Field data acquired during a thermal stimulation test in the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well was analyzed to determine the thermally induced dissociation of gas hydrate. In particular, an understanding of the field behaviour of natural gas hydrate during dissociation under controlled conditions led to the determination and quantification of the corresponding processes and thermodynamic parameters that affect gas production and dissociation from gas hydrate. The field data was used to validate and calibrate a numerical model. Long-term production involving different dissociation methods were predicted along with alternative production-system configurations. Geological and geophysical data was used to determine the primary conditions and properties of the gas hydrate deposit. The boundary conditions were determined through direct measurement. The numerical model was calibrated against the cumulative volumes of produced gas, which increased the credibility of the model. Two possible scenarios of thermal dissociation were proposed to interpret the field-test results. Inverse modelling was used to estimate the parameters of the dominant physical processes. Results were in good agreement with previously published data. Estimates of long-term production were made along with alternative well production-system configurations to significantly improve gas recovery.

  2. Study on gas hydrate as a new energy resource in the 21th century

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Byeong-Jae; Kwak Young-Hoon; Kim, Won-Sik [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Natural gas hydrate, a special type of clathrate hydrates, is a metastable solid compound which mainly consists of methane and water, and generally called as gas hydrate. It is stable in the specific low-temperature/high-pressure conditions. Gas hydrates play an important role as major reservoir of methane on the earth. On the other hand, the formation and dissociation of gas hydrates could cause the plugging in pipeline, gas kick during production, atmospheric pollution and geohazard. To understand the formation and dissociation of the gas hydrate, the experimental equilibrium conditions of methane hydrate were measured in pure water, 3 wt.% NaCl and MgCl{sub 2} solutions. The equilibrium conditions of propane hydrates were also measured in pure water. The relationship between methane hydrate formation time and overpressure was also analyzed through the laboratory work. The geophysical surveys using air-gun system and multibeam echo sounder were implemented to develop exploration techniques and to evaluate the gas hydrate potential in the East Sea, Korea. General indicators of submarine gas hydrates on seismic data is commonly inferred from the BSR developed parallel to the see floor, amplitude blanking at the upper part of the BSR, and phase reversal and decrease of the interval velocity at BSR. The field data were processed using Geobit 2.9.5 developed by KIGAM to detect the gas hydrate indicators. The accurate velocity analysis was performed by XVA (X-window based Velocity Analysis). Processing results show that the strong reflector occurred parallel to the sea floor were shown at about 1800 ms two way travel time. The interval velocity decrease at this strong reflector and at the reflection phase reversal corresponding to the reflection at the sea floor. Gas hydrate stability field in the study area was determined using the data of measured hydrate equilibrium condition, hydrothermal gradient and geothermal gradient. The depth of BSR detected in the seismic

  3. NATURAL GAS HYDRATES STORAGE PROJECT PHASE II. CONCEPTUAL DESIGN AND ECONOMIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Rogers

    1999-09-27

    DOE Contract DE-AC26-97FT33203 studied feasibility of utilizing the natural-gas storage property of gas hydrates, so abundantly demonstrated in nature, as an economical industrial process to allow expanded use of the clean-burning fuel in power plants. The laboratory work achieved breakthroughs: (1) Gas hydrates were found to form orders of magnitude faster in an unstirred system with surfactant-water micellar solutions. (2) Hydrate particles were found to self-pack by adsorption on cold metal surfaces from the micellar solutions. (3) Interstitial micellar-water of the packed particles were found to continue forming hydrates. (4) Aluminum surfaces were found to most actively collect the hydrate particles. These laboratory developments were the bases of a conceptual design for a large-scale process where simplification enhances economy. In the design, hydrates form, store, and decompose in the same tank in which gas is pressurized to 550 psi above unstirred micellar solution, chilled by a brine circulating through a bank of aluminum tubing in the tank employing gas-fired refrigeration. Hydrates form on aluminum plates suspended in the chilled micellar solution. A low-grade heat source, such as 110 F water of a power plant, circulates through the tubing bank to release stored gas. The design allows a formation/storage/decomposition cycle in a 24-hour period of 2,254,000 scf of natural gas; the capability of multiple cycles is an advantage of the process. The development costs and the user costs of storing natural gas in a scaled hydrate process were estimated to be competitive with conventional storage means if multiple cycles of hydrate storage were used. If more than 54 cycles/year were used, hydrate development costs per Mscf would be better than development costs of depleted reservoir storage; above 125 cycles/year, hydrate user costs would be lower than user costs of depleted reservoir storage.

  4. High pressure rheology of gas hydrate formed from multiphase systems using modified Couette rheometer

    Science.gov (United States)

    Pandey, Gaurav; Linga, Praveen; Sangwai, Jitendra S.

    2017-02-01

    Conventional rheometers with concentric cylinder geometries do not enhance mixing in situ and thus are not suitable for rheological studies of multiphase systems under high pressure such as gas hydrates. In this study, we demonstrate the use of modified Couette concentric cylinder geometries for high pressure rheological studies during the formation and dissociation of methane hydrate formed from pure water and water-decane systems. Conventional concentric cylinder Couette geometry did not produce any hydrates in situ and thus failed to measure rheological properties during hydrate formation. The modified Couette geometries proposed in this work observed to provide enhanced mixing in situ, thus forming gas hydrate from the gas-water-decane system. This study also nullifies the use of separate external high pressure cell for such measurements. The modified geometry was observed to measure gas hydrate viscosity from an initial condition of 0.001 Pa s to about 25 Pa s. The proposed geometries also possess the capability to measure dynamic viscoelastic properties of hydrate slurries at the end of experiments. The modified geometries could also capture and mimic the viscosity profile during the hydrate dissociation as reported in the literature. The present study acts as a precursor for enhancing our understanding on the rheology of gas hydrate formed from various systems containing promoters and inhibitors in the context of flow assurance.

  5. Electrical Conductive Mechanism of Gas Hydrate-Bearing Reservoirs in the Permafrost Region of Qilian Mountain

    Science.gov (United States)

    Peng, C.; Zou, C.; Tang, Y.; Liu, A.; Hu, X.

    2017-12-01

    In the Qilian Mountain, gas hydrates not only occur in pore spaces of sandstones, but also fill in fractures of mudstones. This leads to the difficulty in identification and evaluation of gas hydrate reservoir from resistivity and velocity logs. Understanding electrical conductive mechanism is the basis for log interpretation. However, the research is insufficient in this area. We have collected well logs from 30 wells in this area. Well logs and rock samples from DK-9, DK-11 and DK-12 wells were used in this study. The experiments including SEM, thin section, NMR, XRD, synthesis of gas hydrate in consolidated rock cores under low temperature and measurement of their resistivity and others were performed for understanding the effects of pore structure, rock composition, temperature and gas hydrate on conductivity. The results show that the porosity of reservoir of pore filling type is less than 10% and its clay mineral content is high. As good conductive passages, fractures can reduce resistivity of water-saturated rock. If fractures in the mudstone are filled by calcite, resistivity increases significantly. The resistivity of water-saturated rock at 2°C is twice of that at 18°C. The gas hydrate formation process in the sandstone was studied by resistivity recorded in real time. In the early stage of gas hydrate formation, the increase of residual water salinity may lead to the decrease of resistivity. In the late stage of gas hydrate formation, the continuity decrease of water leads to continuity increase of resistivity. In summary, fractures, rock composition, temperature and gas hydrate are important factors influencing resistivity of formation. This study is helpful for more accurate evaluation of gas hydrate from resistivity log. Acknowledgment: We acknowledge the financial support of the National Special Program for Gas Hydrate Exploration and Test-production (GZH201400302).

  6. Effects of gas Hydrates on Archaeal Community Structure and Carbon Cycle in the Gulf of Mexico

    Science.gov (United States)

    Pi, Y.; Li, S.; Pearson, A.; Noakes, J.; Culp, R.; Zhang, C.

    2006-12-01

    The Gulf of Mexico is a unique place to study biological carbon cycle because dynamic microbial communities exist in association with the huge amounts of gas hydrates in the marine sediments. The abundance of Archaea is significantly enhanced in the hydrate environment and these organisms may play an important role in the oceanic carbon cycle. We examined the Archaeal lipids from the Gulf of Mexico using the high performance liquid chromatography- mass spectrometry (HPLC-MS). The lipid profiles showed distinct patterns between gas hydrates and non-hydrate samples, suggesting variation in Archaeal communities with changing environments. In particular, a previously unknown biomarker was found in a gas hydrate sample, which may represent a novel group of Archaea. The relative abundance of this unidentified lipid varied significantly among non-gas hydrate and gas hydrate samples and may serve as a proxy for the presence of gas hydrate-related archaeal populations. The TEX86 index showed that the average paleo sea-surface temperature in the hydrate samples was higher (by 3°C) than the non-hydrate samples. The current annual sea-surface temperature is about 20~24°C in the winter and around 29°C in the summer, which is consistent with the results we got from the non-hydrate samples. Our results reveal that the archaeal community was significantly affected by the presence of hydrate, which contribute to oceanic carbon cycle and may also affect the utilization of TEX86 for paleo-climate studies.

  7. Assessing the conditions favorable for the occurrence of gas hydrate in the Tuonamu area Qiangtang basin, Qinghai–Tibetan, China

    International Nuclear Information System (INIS)

    He Jianglin; Wang Jian; Fu Xiugen; Zheng Chenggang; Chen Yanting

    2012-01-01

    Highlights: ► This is a pioneer research on the exploration of gas hydrate in Qiangtang basin. ► The factors influencing the stable of gas hydrate in Tuonamu area were studied. ► Simulation shows that gas hydrate stable zone is about 300 m thick in target area. ► Source condition is the key factor for the formation of gas hydrate in this area. ► The areas around the deeper faults are favorable targets for gas hydrate. - Abstract: Qiangtang basin, which is located in the largest continuous permafrost area in Qinghai–Tibetan Plateau, is expected to be a strategic area of gas hydrate exploitation in China. However, relatively little work has been done on the exploration of gas hydrate in this area. In this work, we evaluated the factors controlling the formation of gas hydrate in the Tuonamu area and provided a preliminary insight into gas hydrate distribution in it on the basis of the core samples, seismic data and laboratory analysis. It can be concluded that the source rock in the deeper formation would be dominant thermogenic source for the formation of gas hydrate in Tuonamu area. The thickness of gas hydrate stable zone in this area is about 300 m. The gas hydrate in the area most probably is in the form of gas-hydrate-water. The source condition is the key factor for the formation of gas hydrate and the gas hydrate layer would be mainly present in the form of interlayer in this area. The areas around the deeper faults are the favorable targets for the exploration of gas hydrate in the Tuonamu area.

  8. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  9. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms

    KAUST Repository

    Sánchez, Marcelo

    2016-11-30

    Gas hydrate bearing sediments (HBS) are natural soils formed in permafrost and sub-marine settings where the temperature and pressure conditions are such that gas hydrates are stable. If these conditions shift from the hydrate stability zone, hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical behavior of HBS is very complex and its modeling poses great challenges. This paper presents a new geomechanical model for hydrate bearing sediments. The model incorporates the concept of partition stress, plus a number of inelastic mechanisms proposed to capture the complex behavior of this type of soil. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. The model was applied and validated against experimental data from triaxial and oedometric tests conducted on manufactured and natural specimens involving different hydrate saturation, hydrate morphology, and confinement conditions. Particular attention was paid to model the HBS behavior during hydrate dissociation under loading. The model performance was highly satisfactory in all the cases studied. It managed to properly capture the main features of HBS mechanical behavior and it also assisted to interpret the behavior of this type of sediment under different loading and hydrate conditions.

  10. Geologic implications of gas hydrates in the offshore of India: Krishna-Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala-Konkan Basin

    Science.gov (United States)

    Kumar, Pushpendra; Collett, Timothy S.; Boswell, Ray; Cochran, James R.; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna; Yadav, U.S.

    2014-01-01

    Gas hydrate resource assessments that indicate enormous global volumes of gas present within hydrate accumulations have been one of the primary driving forces behind the growing interest in gas hydrates. Gas hydrate volumetric estimates in recent years have focused on documenting the geologic parameters in the “gas hydrate petroleum system” that control the occurrence of gas hydrates in nature. The primary goals of this report are to review our present understanding of the geologic controls on the occurrence of gas hydrate in the offshore of India and to document the application of the petroleum system approach to the study of gas hydrates.

  11. Numerical Simulations for Enhanced Methane Recovery from Gas Hydrate Accumulations by Utilizing CO2 Sequestration

    Science.gov (United States)

    Sridhara, Prathyusha

    In 2013, the International Energy Outlook (EIA, 2013) projected that global energy demand will grow by 56% between 2010 and 2040. Despite strong growth in renewable energy supplies, much of this growth is expected to be met by fossil fuels. Concerns ranging from greenhouse gas emissions and energy security are spawning new interests for other sources of energy including renewable and unconventional fossil fuel such as shale gas and oil as well as gas hydrates. The production methods as well as long-term reservoir behavior of gas hydrate deposits have been under extensive investigation. Reservoir simulators can be used to predict the production potentials of hydrate formations and to determine which technique results in enhanced gas recovery. In this work, a new simulation tool, Mix3HydrateResSim (Mix3HRS), which accounts for complex thermodynamics of multi-component hydrate phase comprised of varying hydrate solid crystal structure, is used to perform the CO2-assisted production technique simulations from CH4 hydrate accumulations. The simulator is one among very few reservoir simulators which can simulate the process of CH4 substitution by CO2 (and N2 ) in the hydrate lattice. Natural gas hydrate deposits around the globe are categorized into three different classes based on the characteristics of the geological sediments present in contact with the hydrate bearing deposits. Amongst these, the Class 2 hydrate accumulations predominantly confirmed in the permafrost and along seashore, are characterized by a mobile aqueous phase underneath a hydrate bearing sediment. The exploitation of such gas hydrate deposits results in release of large amounts of water due to the presence of permeable water-saturated sediments encompassing the hydrate deposits, thus lowering the produced gas rates. In this study, a suite of numerical simulation scenarios with varied complexity are considered which aimed at understanding the underlying changes in physical, thermodynamic and

  12. Catalysis of gas hydrates by biosurfactants in seawater-saturated sand/clay

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R. E.; Kothapalli, C.; Lee, M.S. [Mississippi State University, Swalm School of Chemical Engineering, MS (United States); Woolsey, J. R. [University of Mississippi, Centre of Marine Resources and Environmental Technology, MS (United States)

    2003-10-01

    Large gas hydrate mounds have been photographed in the seabed of the Gulf of Mexico and elsewhere. According to industry experts, the carbon trapped within gas hydrates is two or three times greater than all known crude oil, natural gas and coal reserves in the world. Gas hydrates, which are ice-like solids formed from the hydrogen bonding of water as water temperature is lowered under pressure to entrap a suitable molecular-size gas in cavities of the developing crystal structure, are found below the ocean floor to depths exhibiting temperature and pressure combinations within the appropriate limits. The experiments described in this study attempt to ascertain whether biosurfactant byproducts of microbial activity in seabeds could catalyze gas hydrate formation. Samples of five possible biosurfactants classifications were used in the experiments. Results showed that biosurfactants enhanced hydrate formation rate between 96 per cent and 288 percent, and reduced hydrate induction time 20 per cent to 71 per cent relative to the control. The critical micellar concentration of rhamnolipid/seawater solution was found to be 13 ppm at hydrate-forming conditions. On the basis of these results it was concluded that minimal microbial activity in sea floor sands could achieve the threshold concentration of biosurfactant that would greatly promote hydrate formation. 28 refs., 2 tabs., 4 figs.

  13. Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E. (Chevron); Latham, T. (Chevron); McConnell, D. (AOA Geophysics); Frye, M. (Minerals Management Service); Hunt, J. (Minerals Management Service); Shedd, W. (Minerals Management Service); Shelander, D. (Schlumberger); Boswell, R.M. (NETL); Rose, K.K. (NETL); Ruppel, C. (USGS); Hutchinson, D. (USGS); Collett, T. (USGS); Dugan, B. (Rice University); Wood, W. (Naval Research Laboratory)

    2008-05-01

    The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand

  14. Sedimentological Properties of Natural Gas Hydrates-Bearing Sands in the Nankai Trough and Mallik Areas

    Science.gov (United States)

    Uchida, T.; Tsuji, T.; Waseda, A.

    2009-12-01

    The Nankai Trough parallels the Japanese Island, where extensive BSRs have been interpreted from seismic reflection records. High resolution seismic surveys have definitely indicated gas hydrate distributions, and drilling the MITI Nankai Trough wells in 2000 and the METI Tokai-oki to Kumano-nada wells in 2004 have revealed subsurface gas hydrate in the eastern part of Nankai Trough. In 1998 and 2002 Mallik wells were drilled at Mackenzie Delta in the Canadian Arctic that also clarified the characteristics of gas hydrate-dominant sandy layers at depths from 890 to 1110 m beneath the permafrost zone. During the field operations, the LWD and wire-line well log data were continuously obtained and plenty of gas hydrate-bearing sand cores were recovered. Subsequence sedimentological and geochemical analyses performed on those core samples revealed the crucial geologic controls on the formation and preservation of natural gas hydrate in sediments. Pore-space gas hydrates reside in sandy sediments mostly filling intergranular porosity. Pore waters chloride anomalies, core temperature depression and core observations on visible gas hydrates confirm the presence of pore-space gas hydrates within moderate to thick sandy layers, typically 10 cm to a meter thick. Sediment porosities and pore-size distributions were obtained by mercury porosimetry, which indicate that porosities of gas hydrate-bearing sandy strata are approximately 45 %. According to grain size distribution curves, gas hydrate is dominant in fine- to very fine-grained sandy strata. Gas hydrate saturations are typically up to 80 % in pore volume throughout most of the hydrate-dominant sandy layers, which are estimated by well log analyses as well as pore water chloride anomalies. It is necessary for investigating subsurface fluid flow behaviors to evaluate both porosity and permeability of gas hydrate-bearing sandy sediments, and the measurements of water permeability for them indicated that highly saturated

  15. Hydrate Formation/Dissociation in (Natural Gas + Water + Diesel Oil Emulsion Systems

    Directory of Open Access Journals (Sweden)

    Chang-Yu Sun

    2013-02-01

    Full Text Available Hydrate formation/dissociation of natural gas in (diesel oil + water emulsion systems containing 3 wt% anti-agglomerant were performed for five water cuts: 5, 10, 15, 20, and 25 vol%. The natural gas solubilities in the emulsion systems were also examined. The experimental results showed that the solubility of natural gas in emulsion systems increases almost linearly with the increase of pressure, and decreases with the increase of water cut. There exists an initial slow hydrate formation stage for systems with lower water cut, while rapid hydrate formation takes place and the process of the gas-liquid dissolution equilibrium at higher water cut does not appear in the pressure curve. The gas consumption amount due to hydrate formation at high water cut is significantly higher than that at low water cut. Fractional distillation for natural gas components also exists during the hydrate formation process. The experiments on hydrate dissociation showed that the dissociation rate and the amount of dissociated gas increase with the increase of water cut. The variations of temperature in the process of natural gas hydrate formation and dissociation in emulsion systems were also examined.

  16. Visual observation of gas hydrates nucleation and growth at a water - organic liquid interface

    Science.gov (United States)

    Stoporev, Andrey S.; Semenov, Anton P.; Medvedev, Vladimir I.; Sizikov, Artem A.; Gushchin, Pavel A.; Vinokurov, Vladimir A.; Manakov, Andrey Yu.

    2018-03-01

    Visual observation of nucleation sites of methane and methane-ethane-propane hydrates and their further growth in water - organic liquid - gas systems with/without surfactants was carried out. Sapphire Rocking Cell RCS6 with transparent sapphire cells was used. The experiments were conducted at the supercooling ΔTsub = 20.2 °C. Decane, toluene and crude oils were used as organics. Gas hydrate nucleation occurred on water - metal - gas and water - sapphire - organic liquid three-phase contact lines. At the initial stage of growth hydrate crystals rapidly covered the water - gas or water - organics interfaces (depending on the nucleation site). Further hydrate phase accrete on cell walls (sapphire surface) and into the organics volume. At this stage, growth was accompanied by water «drawing out» from under initial hydrate film formed at water - organic interface. Apparently, it takes place due to water capillary inflow in the reaction zone. It was shown that the hydrate crystal morphology depends on the organic phase composition. In the case of water-in-decane emulsion relay hydrate crystallization was observed in the whole sample, originating most likely due to the hydrate crystal intergrowth through decane. Contacts of such crystals with adjacent water droplets result in rapid hydrate crystallization on this droplet.

  17. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models

    Science.gov (United States)

    Warzinski, Robert P.; Lynn, Ronald; Haljasmaa, Igor; Leifer, Ira; Shaffer, Frank; Anderson, Brian J.; Levine, Jonathan S.

    2014-10-01

    Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high-definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep-sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep-sea eruptions.

  18. In Situ Raman Detection of Gas Hydrates Exposed on the Seafloor of the South China Sea

    Science.gov (United States)

    Zhang, Xin; Du, Zengfeng; Luan, Zhendong; Wang, Xiujuan; Xi, Shichuan; Wang, Bing; Li, Lianfu; Lian, Chao; Yan, Jun

    2017-10-01

    Gas hydrates are usually buried in sediments. Here we report the first discovery of gas hydrates exposed on the seafloor of the South China Sea. The in situ chemical compositions and cage structures of these hydrates were measured at the depth of 1,130 m below sea level using a Raman insertion probe (RiP-Gh) that was carried and controlled by a remotely operated vehicle (ROV) Faxian. This in situ analytical technique can avoid the physical and chemical changes associated with the transport of samples from the deep sea to the surface. Natural gas hydrate samples were analyzed at two sites. The in situ spectra suggest that the newly formed hydrate was Structure I but contains a small amount of C3H8 and H2S. Pure gas spectra of CH4, C3H8, and H2S were also observed at the SCS-SGH02 site. These data represent the first in situ proof that free gas can be trapped within the hydrate fabric during rapid hydrate formation. We provide the first in situ confirmation of the hydrate growth model for the early stages of formation of crystalline hydrates in a methane-rich seafloor environment. Our work demonstrates that natural hydrate deposits, particularly those in the early stages of formation, are not monolithic single structures but instead exhibit significant small-scale heterogeneities due to inclusions of free gas and the surrounding seawater, there inclusions also serve as indicators of the likely hydrate formation mechanism. These data also reinforce the importance of correlating visual and in situ measurements when characterizing a sampling site.

  19. Thermodynamic and Process Modelling of Gas Hydrate Systems in CO2 Capture Processes

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen

    in this work compares well with other data available in the literature for similar systems. It is shown experimentally that the addition of tetrahydrofuran to the ternary system of water-cyclopentane-carbon dioxide provides an enhanced thermodynamic promotion of the gas hydrate phase. Hydrate equilibrium...... and tetrahydrofuran as the two most efficient pressure reducing additives in classical hydrate forming systems. The thermodynamic promoting effects reported in the literature for the two classical sII hydrate formers, tetrahydrofuran and cyclopentane are experimentally confirmed in the present work. Data presented...... pressures are reduced by approximately 20 percent compared to the cyclopentane promoted system. The mixed promoter system thereby represents a new state-ofthe-art within thermodynamic promotion of gas hydrates in the framework of the classical hydrate structures. A thermodynamic model based on the Cubic...

  20. Delineation, Characterization and Assessment of Gas-hydrates: Examples from Indian Offshore

    Science.gov (United States)

    Sain, K.

    2017-12-01

    Successful test productions in McKenzie delta, Alaska, Nankai Trough and more recently in South China Sea have provided great hopes for production of gas-hydrates in near future, and boosted national programs of many countries including India. It has been imperative to map the prospective zones of gas-hydrates and evaluate their resource potential. Hence, we have adopted a systematic strategy for the delineation, characterization and quantification of gas-hydrates based on seismic traveltime tomography, full-waveform inversion, impedance inversion, attributes computation and rock-physical modeling. The bathymetry, seafloor temperature, total organic carbon content, sediment-thickness, rate of sedimentation, geothermal gradient imply that shallow sediments of Indian deep water are good hosts for occurrences of gas-hydrates. From the analysis of multi-channel seismic (MCS) data, we have identified the Krishna-Godavari (KG), Mahanadi and Andaman basins as prospective for gas-hydrates, and their presence has been validated by drilling and coring of Indian Expeditions-01 and -02. The MCS data also shows BSR-like features in the Cauvery, Kerala-Konkan and Saurashtra basins indicating that gas-hydrates cannot be ruled out from these basins also. We shall present several approaches that have been applied to field seismic and well-log data for the detection, characterization and quantification of gas-hydrates along the Indian margin.

  1. Phase field theory modeling of methane fluxes from exposed natural gas hydrate reservoirs

    Science.gov (United States)

    Kivelä, Pilvi-Helinä; Baig, Khuram; Qasim, Muhammad; Kvamme, Bjørn

    2012-12-01

    Fluxes of methane from offshore natural gas hydrate into the oceans vary in intensity from massive bubble columns of natural gas all the way down to fluxes which are not visible within human eye resolution. The driving force for these fluxes is that methane hydrate is not stable towards nether minerals nor towards under saturated water. As such fluxes of methane from deep below hydrates zones may diffuse through fluid channels separating the hydrates from minerals surfaces and reach the seafloor. Additional hydrate fluxes from hydrates dissociating towards under saturated water will have different characteristics depending on the level of dynamics in the actual reservoirs. If the kinetic rate of hydrate dissociation is smaller than the mass transport rate of distributing released gas into the surrounding water through diffusion then hydrodynamics of bubble formation is not an issue and Phase Field Theory (PFT) simulations without hydrodynamics is expected to be adequate [1, 2]. In this work we present simulated results corresponding to thermodynamic conditions from a hydrate field offshore Norway and discuss these results with in situ observations. Observed fluxes are lower than what can be expected from hydrate dissociating and molecularly diffusing into the surrounding water. The PFT model was modified to account for the hydrodynamics. The modified model gave higher fluxes, but still lower than the observed in situ fluxes.

  2. Kinetic studies of methane-ethane mixed gas hydrates by neutron diffraction and Raman spectroscopy.

    Science.gov (United States)

    Murshed, M Mangir; Kuhs, Werner F

    2009-04-16

    In situ formations of CH(4)-C(2)H(6) mixed gas hydrates were made using high flux neutron diffraction at 270 K and 5 MPa. For this purpose, a feed gas composition of CH(4) and C(2)H(6) (95 mol% CH(4)) was employed. The rates of transformation of spherical grains of deuterated ice Ih into hydrates were measured by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. Phase fractions of the crystalline constituents were obtained from Rietveld refinements. A concomitant formation of structure type I (sI) and structure type II (sII) hydrates were observed soon after the gas pressure was applied. The initial fast formation of sII hydrate reached its maximum volume and started declining very slowly. The formation of sI hydrate followed a sigmoid growth kinetics that slowed down due to diffusion limitation. This observation has been interpreted in terms of a kinetically favored nucleation of the sII hydrate along with a slow transformation into sI. Both powder diffraction and Raman spectroscopic results suggest that a C(2)H(6)-rich sII hydrate was formed at the early part of the clathration, which slowly decreased to approximately 3% after a reaction of 158 days as confirmed by synchrotron XRD. The final persistence of a small portion of sII hydrate points to a miscibility gap between CH(4)-rich sI and C(2)H(6)-rich sII hydrates.

  3. Hydration of gas-phase ytterbium ion complexes studied by experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, Philip X; Michelini, Maria C.; Bray, Travis H.; Russo, Nino; Marcalo, Joaquim; Gibson, John K.

    2011-02-11

    Hydration of ytterbium (III) halide/hydroxide ions produced by electrospray ionization was studied in a quadrupole ion trap mass spectrometer and by density functional theory (DFT). Gas-phase YbX{sub 2}{sup +} and YbX(OH){sup +} (X = OH, Cl, Br, or I) were found to coordinate from one to four water molecules, depending on the ion residence time in the trap. From the time dependence of the hydration steps, relative reaction rates were obtained. It was determined that the second hydration was faster than both the first and third hydrations, and the fourth hydration was the slowest; this ordering reflects a combination of insufficient degrees of freedom for cooling the hot monohydrate ion and decreasing binding energies with increasing hydration number. Hydration energetics and hydrate structures were computed using two approaches of DFT. The relativistic scalar ZORA approach was used with the PBE functional and all-electron TZ2P basis sets; the B3LYP functional was used with the Stuttgart relativistic small-core ANO/ECP basis sets. The parallel experimental and computational results illuminate fundamental aspects of hydration of f-element ion complexes. The experimental observations - kinetics and extent of hydration - are discussed in relationship to the computed structures and energetics of the hydrates. The absence of pentahydrates is in accord with the DFT results, which indicate that the lowest energy structures have the fifth water molecule in the second shell.

  4. Simulating the effect of hydrate dissociation on wellhead stability during oil and gas development in deepwater

    Science.gov (United States)

    Li, Qingchao; Cheng, Yuanfang; Zhang, Huaiwen; Yan, Chuanliang; Liu, Yuwen

    2018-02-01

    It is well known that methane hydrate has been identified as an alternative resource due to its massive reserves and clean property. However, hydrate dissociation during oil and gas development (OGD) process in deep water can affect the stability of subsea equipment and formation. Currently, there is a serious lack of studies over quantitative assessment on the effects of hydrate dissociation on wellhead stability. In order to solve this problem, ABAQUS finite element software was used to develop a model and to evaluate the behavior of wellhead caused by hydrate dissociation. The factors that affect the wellhead stability include dissociation range, depth of hydrate formation and mechanical properties of dissociated hydrate region. Based on these, series of simulations were carried out to determine the wellhead displacement. The results revealed that, continuous dissociation of hydrate in homogeneous and isotropic formations can causes the non-linear increment in vertical displacement of wellhead. The displacement of wellhead showed good agreement with the settlement of overlying formations under the same conditions. In addition, the shallower and thicker hydrate formation can aggravate the influence of hydrate dissociation on the wellhead stability. Further, it was observed that with the declining elastic modulus and Poisson's ratio, the wellhead displacement increases. Hence, these findings not only confirm the effect of hydrate dissociation on the wellhead stability, but also lend support to the actions, such as cooling the drilling fluid, which can reduce the hydrate dissociation range and further make deepwater operations safer and more efficient.

  5. Ultradeep Large Scale Pockmarks off Congo - Examples for Massive Occurrence of Gas Hydrate, Fluid and Gas Seepage

    Science.gov (United States)

    Spiess, V.; Kasten, S.; Schneider, R.; Zuehlsdorff, L.; Pfeiffer, K.; Bohrmann, G.; Sahling, H.; Breitzke, M.; Bialas, J.; Ivanov, M.; M56 Shipboard Scientific Party, .

    2003-12-01

    Deep sea pockmarks belong to the large scale features on the sea floor, where major fluxes of fluids and gases can be observed. They are also among the rare places, where gas hydrates are found near the sea floor in the reach of sampling. The southwest African continental margin off Gabon and Congo has revealed numerous such structures during recent surveys using high resolution seismic and acoustic systems, and 3 pockmark structures had been subsequently selected to be studied within the framework of the German geotechnologien gas hydrate initiative. Main objectives were the occurrence, evolution and properties of gas hydrate, fluid and gas seepage and its physical appearance within the hemipelagic sediment cover. Deep Tow Side Scan Sonar and sea floor video observations confirmed the widespread distribution of shallow carbonate precipitates and gas hydrates, contributing to high backscatter as well as very high reflection amplitudes in sediment echosounder data. Only parts of these a few to 30 meters deep sea floor depressions are affected by fluid escape on sub-circular areas of a few hundred meters diameter. Numerous samples of gas hydrates had been recovered from the vicinity of all 3 surveyed pockmarks, indicating a close relationship between fluid pathways, chemosynthetic communities as clam fields or tube worms, gas hydrate growth and carbonate precipitation. 3D seismic data collected at high to very high resolution, using seismic sources up to 1 kHz source frequency, reveal a complex nature of the fluid upflow zone and their relationship to deeper shallow gas pockets. It is assumed that they allow the spatial reconstruction of gas hydrate occurrence, gas distribution and the sediment volume, contributing to the overall fluid flow, as well as the quantification of gas hydrates stored in the vicinity of the pockmarks in the upper 200 meters of the sediment column.

  6. Acoustic Investigations of Gas and Gas Hydrate Formations, Offshore Southwestern Black Sea*

    Science.gov (United States)

    Kucuk, H. M.; Dondurur, D.; Ozel, O.; Atgin, O.; Sinayuc, C.; Merey, S.; Parlaktuna, M.; Cifci, G.

    2015-12-01

    The Black Sea is a large intercontinental back-arc basin with relatively high sedimentation rate. The basin was formed as two different sub-basins divided by Mid-Black Sea Ridge. The ridge is completely buried today and the Black Sea became a single basin in the early Miocene that is currently anoxic. Recent acoustic investigations in the Black Sea indicate potential for gas hydrate formation and gas venting. A total of 2500 km multichannel seismic, Chirp sub-bottom profiler and multibeam bathymetry data were collected during three different expeditions in 2010 and 2012 along the southwestern margin of the Black Sea. Box core sediment samples were collected for gas cromatography analysis. Wide spread BSRs and multiple BSRs are observed in the seismic profiles and may be categorized into two different types: cross-cutting BSRs (transecting sedimentary strata) and amplitude BSRs (enhanced reflections). Both types mimic the seabed reflection with polarity reversal. Some undulations of the BSR are observed along seismic profiles probably caused by local pressure and/or temperature changes. Shallow gas sources and chimney vents are clearly indicated by bright reflection anomalies in the seismic data. Gas cromatography results indicate the presence of methane and various components of heavy hydrocarbons, including Hexane. These observations suggest that the gas forming hydrate in the southwestern Black Sea may originate from deeper thermogenic hydrocarbon sources. * This study is supported by 2214-A programme of The Scientific and Technological Research Council of Turkey (TÜBITAK).

  7. Chemical and physical properties of gas hydrates; Chemische und physikalische Eigenschaften von Gashydraten

    Energy Technology Data Exchange (ETDEWEB)

    Meyn, V. [Inst. fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany)

    1997-12-31

    Numerous properties of gas hydrates can be inferred directly from their phase behaviour. The present contribution gives a short overview of the properties of gas hydrates using pressure-temperature curves to depict their phase behaviour. It also describes the growth kinetics and inhibition of gas hydrates. (MSK) [Deutsch] Eine Vielzahl der Eigenschaften von Gashydraten lassen sich direkt aus ihrem Phasenverhalten herleiten. In kurzer Form wird ein Ueberblick ueber die Eigenschaften der Gashydrate gegeben. Druck-Temperatur-Diagramme erlaeutern des Phasenverhalten. Ebenso wird die Wachstumskinetik und die Inhibierung der Gashydrate beschrieben.

  8. Oil and gas pipelines with hydrophobic surfaces better equipped to deal with gas hydrate flow assurance issues

    DEFF Research Database (Denmark)

    Perfeldt, Christine Malmos; Sharifi, Hassan; von Solms, Nicolas

    2015-01-01

    Gas hydrate deposition can cause plugging in oil and gas pipelines with resultant flow assurance challenges. Presently, the energy industry uses chemical additives in order to manage hydrate formation, however these chemicals are expensive and may be associated with safety and environmental...... crystallizer. This indicates that 10 to 14 times less KHI is needed in the presence of a hydrophobically coated surface. These experimental studies suggest that the use of hydrophobic surfaces or pipelines could serve as an alternative or additional flow assurance approach for gas hydration mitigation...... and management....

  9. Geochemical Monitoring Of The Gas Hydrate Production By CO2/CH4 Exchange In The Ignik Sikumi Gas Hydrate Production Test Well, Alaska North Slope

    Science.gov (United States)

    Lorenson, T. D.; Collett, T. S.; Ignik Sikumi, S.

    2012-12-01

    Hydrocarbon gases, nitrogen, carbon dioxide and water were collected from production streams at the Ignik Sikumi gas hydrate production test well (TD, 791.6 m), drilled on the Alaska North Slope. The well was drilled to test the feasibility of producing methane by carbon dioxide injection that replaces methane in the solid gas hydrate. The Ignik Sikumi well penetrated a stratigraphically-bounded prospect within the Eileen gas hydrate accumulation. Regionally, the Eileen gas hydrate accumulation overlies the more deeply buried Prudhoe Bay, Milne Point, and Kuparuk River oil fields and is restricted to the up-dip portion of a series of nearshore deltaic sandstone reservoirs in the Sagavanirktok Formation. Hydrate-bearing sandstones penetrated by Ignik Sikumi well occur in three primary horizons; an upper zone, ("E" sand, 579.7 - 597.4 m) containing 17.7 meters of gas hydrate-bearing sands, a middle zone ("D" sand, 628.2 - 648.6 m) with 20.4 m of gas hydrate-bearing sands and a lower zone ("C" sand, 678.8 - 710.8 m), containing 32 m of gas hydrate-bearing sands with neutron porosity log-interpreted average gas hydrate saturations of 58, 76 and 81% respectively. A known volume mixture of 77% nitrogen and 23% carbon dioxide was injected into an isolated section of the upper part of the "C" sand to start the test. Production flow-back part of the test occurred in three stages each followed by a period of shut-in: (1) unassisted flowback; (2) pumping above native methane gas hydrate stability conditions; and (3) pumping below the native methane gas hydrate stability conditions. Methane production occurred immediately after commencing unassisted flowback. Methane concentration increased from 0 to 40% while nitrogen and carbon dioxide concentrations decreased to 48 and 12% respectively. Pumping above the hydrate stability phase boundary produced gas with a methane concentration climbing above 80% while the carbon dioxide and nitrogen concentrations fell to 2 and 18

  10. Oil & Natural Gas Technology A new approach to understanding the occurrence and volume of natural gas hydrate in the northern Gulf of Mexico using petroleum industry well logs

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Ann [The Ohio State Univ., Columbus, OH (United States); Majumdar, Urmi [The Ohio State Univ., Columbus, OH (United States)

    2016-03-31

    The northern Gulf of Mexico has been the target for the petroleum industry for exploration of conventional energy resource for decades. We have used the rich existing petroleum industry well logs to find the occurrences of natural gas hydrate in the northern Gulf of Mexico. We have identified 798 wells with well log data within the gas hydrate stability zone. Out of those 798 wells, we have found evidence of gas hydrate in well logs in 124 wells (15% of wells). We have built a dataset of gas hydrate providing information such as location, interval of hydrate occurrence (if any) and the overall quality of probable gas hydrate. Our dataset provides a wide, new perspective on the overall distribution of gas hydrate in the northern Gulf of Mexico and will be the key to future gas hydrate research and prospecting in the area.

  11. Calculation of the eroei coefficient for natural gas hydrates in laboratory conditions

    Science.gov (United States)

    Siažik, Ján; Malcho, Milan; Čaja, Alexander

    2017-09-01

    In the 1960s, scientists discovered that methane hydrate existed in the gas field in Siberia. Gas hydrates are known to be stable under conditions of high pressure and low temperature that have been recognized in polar regions and in the uppermost part of deep -water sediments below the sea floor. The article deals with the determination of the EROEI coefficient to generate the natural gas hydrate in the device under specific temperature and pressure conditions. Energy returned on energy invested expresses ratio of the amount of usable energy delivered from a particular energy resource to the amount of exergy used to obtain that energy resource. Gas hydrates have been also discussed before decades like potential source mainly for regions with restricted access to conventional hydrocarbons also tactic interest in establishing alternative gas reserves.

  12. Seismic detection and quantification of gas hydrates in Alaminos Canyon, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Jianchun, D.; Banik, N.; Shelander, D.; Bunge, G.; Dutta, N. [Schlumberger Data Consulting Services, Houston, TX (United States). Reservoir Seismic Services

    2008-07-01

    Due to the potential of gas hydrates as an alternative energy resource, and as possible sources of shallow hazards for drilling and production of oil and gas, and as an agent of long-term, global climate change, naturally occurring gas hydrates have drawn significant attention from the scientific community and industry around the world. Gas hydrates exist in shallow sediments in Arctic permafrost regions and in the world's deepwater oceans. A large portion of naturally occurring hydrates offer potential for an energy resource. Because the world demand for fossil fuel is ever-increasing and the supply is dwindling, it is crucial to have a methodology for reliable assessment of gas hydrates accumulation in worldwide deepwater basins. Three-dimensional seismic reflection is a possible technology for such efforts. This paper presented the results of a study on the quantitative estimation of gas hydrates in Alaminos Canyon block 818, Gulf of Mexico. A five-step workflow was used for the study, which included high resolution seismic re-processing; prestack full waveform inversion (PSWI) at selected locations; three-dimensional simultaneous inversion; rock physics modeling; and hydrate quantification. The final estimation of gas hydrates saturation was done using both a direct deterministic regression-based transformation method and using Bayesian statistical inversion. Based on these inversion results, a series of prospects were generated within the study area. The study identified a large area, approximately 1 square kilometre in the middle east of the AC818, containing high concentration gas hydrates bearing sediments. 8 refs., 9 figs.

  13. The Characteristics of Fluid Potential in Mud Diapirs Associated with Gas Hydrates in the Okinawa Trough

    Directory of Open Access Journals (Sweden)

    Ning Xu

    2006-01-01

    Full Text Available Many mud diapirs have been identified in the southern Okinawa Trough from a seismic survey using R/V KEXUE I in 2001. The movement and accumulation of free gas related to mud diapirs are discussed in detail by an analysis of fluid potential which is based upon velocity data. It can be found that free gas moves from the higher fluid potential strata to the lower ones and the gas hydrate comes into being during free gas movement meeting the proper criteria of temperature and pressure. In fact, gas hydrates have been found in the upper layers above the mud diapirs and in host rocks exhibiting other geophysical characteristics. As the result of the formation of the gas hydrate, the free gas bearing strata are enclosed by the gas hydrate bearing strata. Due to the high pressure anomalies of the free gas bearing strata the fluid potential increases noticeably. It can then be concluded that the high fluid potential anomaly on the low fluid potential background may be caused by the presence of the free gas below the gas hydrate bearing strata.

  14. Grain-scale imaging and compositional characterization of cryo-preserved India NGHP 01 gas-hydrate-bearing cores

    Science.gov (United States)

    Stern, Laura A.; Lorenson, T.D.

    2014-01-01

    We report on grain-scale characteristics and gas analyses of gas-hydrate-bearing samples retrieved by NGHP Expedition 01 as part of a large-scale effort to study gas hydrate occurrences off the eastern-Indian Peninsula and along the Andaman convergent margin. Using cryogenic scanning electron microscopy, X-ray spectroscopy, and gas chromatography, we investigated gas hydrate grain morphology and distribution within sediments, gas hydrate composition, and methane isotopic composition of samples from Krishna–Godavari (KG) basin and Andaman back-arc basin borehole sites from depths ranging 26 to 525 mbsf. Gas hydrate in KG-basin samples commonly occurs as nodules or coarse veins with typical hydrate grain size of 30–80 μm, as small pods or thin veins 50 to several hundred microns in width, or disseminated in sediment. Nodules contain abundant and commonly isolated macropores, in some places suggesting the original presence of a free gas phase. Gas hydrate also occurs as faceted crystals lining the interiors of cavities. While these vug-like structures constitute a relatively minor mode of gas hydrate occurrence, they were observed in near-seafloor KG-basin samples as well as in those of deeper origin (>100 mbsf) and may be original formation features. Other samples exhibit gas hydrate grains rimmed by NaCl-bearing material, presumably produced by salt exclusion during original hydrate formation. Well-preserved microfossil and other biogenic detritus are also found within several samples, most abundantly in Andaman core material where gas hydrate fills microfossil crevices. The range of gas hydrate modes of occurrence observed in the full suite of samples suggests a range of formation processes were involved, as influenced by local in situconditions. The hydrate-forming gas is predominantly methane with trace quantities of higher molecular weight hydrocarbons of primarily microbial origin. The composition indicates the gas hydrate is Structure I.

  15. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-08-15

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  16. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Directory of Open Access Journals (Sweden)

    Thomas M. Vlasic

    2016-08-01

    Full Text Available This work uses density functional theory (DFT to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane, at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  17. Modelling of tetrahydrofuran promoted gas hydrate systems for carbon dioxide capture processes

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens

    2014-01-01

    hydrate process, operates isothermally at a temperature of 280. K. Applying three consecutive hydrate formation/dissociation stages (three-stage capture process), a carbon dioxide-rich product (97. mol%) is finally delivered at a temperature of 280. K and a pressure of 3.65. MPa. The minimum pressure...... to produce a 96. mol% carbon dioxide-rich product stream. This stream is delivered at 280. K and a pressure of 0.17. MPa. The present modelling study suggests several drawbacks of using tetrahydrofuran as a thermodynamic hydrate promoter, when applied in low-pressure, hydrate-based gas separation processes...... of water, tetrahydrofuran, carbon dioxide and nitrogen. The applied model incorporates the Cubic-Plus-Association (CPA) equation of state for the fluid phase description and the van der Waals-Platteeuw hydrate model for the solid (hydrate) phase. Six binary pairs are studied for their fluid phase behaviour...

  18. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea

    Science.gov (United States)

    Wang, Xiujuan; Hutchinson, Deborah R.; Wu, Shiguo; Yang, Shengxiong; Guo, Yiqun

    2011-01-01

    Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190–221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone.

  19. Gas hydrates stability zone thickness map of Indian deep offshore areas - A GIS based approach

    Digital Repository Service at National Institute of Oceanography (India)

    Rastogi, A.; Deka, B.; Bhattacharya, G.C.; Ramprasad, T.; KameshRaju, K.A.; Srinivas, K.; Murty, G.P.S.; Chaubey, A.K.; Ramana, M.V.; Subrahmanyam, V.; Sarma, K.V.L.N.S.; Desa, M.; Paropkari, A.L.; Menezes, A.A.A.; Murty, V.S.N.; Antony, M.K.; SubbaRaju, L.V.; Desa, E.; Veerayya, M.

    of gas hydrates. The required data (bathymetry, seabed temperature and geothermal gradient etc.) were obtained from published literatrue, digital data bases and unpublished source. These data were supplemented with predicted values, in areas having...

  20. Coupled numerical modeling of gas hydrates bearing sediments from laboratory to field-scale conditions

    Science.gov (United States)

    Sanchez, M. J.; Santamarina, C.; Gai, X., Sr.; Teymouri, M., Sr.

    2017-12-01

    Stability and behavior of Hydrate Bearing Sediments (HBS) are characterized by the metastable character of the gas hydrate structure which strongly depends on thermo-hydro-chemo-mechanical (THCM) actions. Hydrate formation, dissociation and methane production from hydrate bearing sediments are coupled THCM processes that involve, amongst other, exothermic formation and endothermic dissociation of hydrate and ice phases, mixed fluid flow and large changes in fluid pressure. The analysis of available data from past field and laboratory experiments, and the optimization of future field production studies require a formal and robust numerical framework able to capture the very complex behavior of this type of soil. A comprehensive fully coupled THCM formulation has been developed and implemented into a finite element code to tackle problems involving gas hydrates sediments. Special attention is paid to the geomechanical behavior of HBS, and particularly to their response upon hydrate dissociation under loading. The numerical framework has been validated against recent experiments conducted under controlled conditions in the laboratory that challenge the proposed approach and highlight the complex interaction among THCM processes in HBS. The performance of the models in these case studies is highly satisfactory. Finally, the numerical code is applied to analyze the behavior of gas hydrate soils under field-scale conditions exploring different features of material behavior under possible reservoir conditions.

  1. The Comparison Study of gas source between two hydrate expeditions in ShenHu area, SCS

    Science.gov (United States)

    Cong, X. R.

    2016-12-01

    Two gas hydrate expeditions (GMGS 01&03) were conducted in the Pearl River Mouth Basin, SCS, which were organized by Guangzhou Marine Geological Survey in 2007 and 2015, respectively. Compared with the drilling results of "mixed bio-thermogenic gas and generally dominated by biogenic gas" in 2007, hydrocarbon component measurements revealed a higher content of ethane and propane in 2015 drilling, providing direct evidence that deep thermogenic gas was the source for shallow hydrate formation. According to the geochemical analyses of the results obtained from the industrial boreholes in Baiyun sag, the deep hydrocarbon gas obviously leaked from the reservoir as escape caused by Dongsha movement in the late Miocene, as a result thermogenic gas from Wenchang, Enping and Zhuhai hydrocarbon source rocks migrated to late Miocene shallow strata through faults, diapirs and gas chimney vertically migration. In this paper we report the differences in fluid migration channel types and discuss their effect in fluid vertical migration efficiency in the two Shenhu hydrate drilling areas. For the drilling area in 2007,when the limited deep thermogenic gas experienced long distance migration process from bottom to up along inefficient energy channel, the gas composition might have changed and the carbon isotope fractionation might have happened, which were reflected in the results of higher C1/C2 ratios and lighter carbon isotope in gas hydrate bearing sediments. As a result the gas is with more "biogenic gas" features. It means thermogenic gases in the deep to contributed the formation of shallow gas hydrate indirectly in 2007 Shenhu drill area. On another hand, the gases were transported to the shallow sediment layers efficiently, where gas hydrate formed, through faults and fractures from deep hydrocarbon reservoirs, and as the result they experienced less changes in both components and isotopes in 2015 drilling site.

  2. Report: Fourth International Conference on Gas Hydrates, held at Yokohama, Japan, 19-23 May 2002

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.

    hydrates, wherein the process of estimating in situ sediment gas concentration in ODP holes by continuously monitoring temperature during core recovery was lucidly presented. A session was devoted to topics on fundamentals... an integrated and interdisciplinary approach. It was decided to hold the next International Conference on Gas Hydrates in 2005 at Trondheim, Norway. Geological Ocenography Division S.M. KARISIDDAIAH National Institute of Oceanography Dona Paula - 403 004, Goa...

  3. Ecological and climatic consequences of phase instability of gas hydrates on the ocean bed

    Science.gov (United States)

    Balanyuk, I.; Dmitrievsky, A.; Akivis, T.; Chaikina, O.

    2009-04-01

    Nowadays, an intensive development of shelf zone in relation with hydrocarbons production and underwater pipelining is in process. The order of the day is execution of engineering works in non-consolidated sediment and investigation of underwater slopes instability. The problem of reliable operational behavior of underwater constructions poses completely new tasks for engineers and developers. Wide spread of has hydrates in bottom sediments is not only the possibility of hydrocarbon reserves increase but, in the same time, is a serious industrial and ecological problem. One of the most complicated engineering problems under the condition of instability of has hydrate deposits on the sea bed is operation of the sea fields, oil platforms construction and pipelining. The constructors faced the similar problem while designing the "Russia-Turkey" gas pipeline. Because of instability and specificity of gas hydrates bedding their production is very problematic and is related mostly to the future technologies. Nevertheless, they attract more and more attention due to limited hydrocarbon reserves all over the world. On a quarter of the land and on nine tenth of the World Ocean thermodynamic conditions are favourable to accumulation and deposition of natural gas hydrates. Sufficiently high pressure and low temperature necessary for gas hydrates formation are observed usually on the sea bed at depths more than 1000 m. Mean water temperature in the World Ocean at depths 1 km don't exceeds 5°С, and at depths 2 km and more - 2°С. In sub-polar zones the mean water temperature is close to 0°С for the whole year. In the tropic regions gas hydrates are able to form and accumulate from the depth of 300 m and in the polar regions - from the depth of only 100 m. Being warmed up, gas hydrate melts and dissociated into free gas and water. Drilling of the gas hydrate deposits is very dangerous because the heat produced by the bore can melt gas hydrate and release huge amount of

  4. Major factors influencing the generation of natural gas hydrate in porous media

    Directory of Open Access Journals (Sweden)

    V.N. Khlebnikov

    2017-11-01

    Full Text Available Current researches related to natural gas hydrate mainly focus on its physical and chemical properties, as well as the approaches to the production (decomposition of hydrate. Physical modeling of the flow process in hydrate deposits is critical to the study on the exploitation or decomposition of hydrate. However, investigation of the dynamic hydrate process by virtue of porous media like sand-packed tubes which are widely used in petroleum production research is rarely reported in literature. In this paper, physical simulation of methane hydrate generation process was conducted using river sand-packed tubes in the core displacement apparatus. During the simulation, the influences of parameters such as reservoir temperature, methane pressure and reservoir model properties on the process of hydrate generation were investigated. The following results are revealed. First, the use of ice-melted water as the immobile water in the reservoir model can significantly enhance the rate of methane hydrate generation. Second, the process driving force in porous media (i.e., extents to which the experimental pressure or temperature deviating those corresponding to the hydrate phase equilibrium plays a key role in the generation of methane hydrate. Third, the induction period of methane hydrate generation almost does not change with temperature or pressure when the methane pressure is above 1.4 folds of the hydrate phase equilibrium pressure or the laboratory temperature is lower than the phase equilibrium temperature by 3 °C or more. Fourth, the parameters such as permeability, water saturation and wettability don't have much influence on the generation of methane hydrate.

  5. Thermodynamic simulations of hydrate formation from gas mixtures in batch operations

    International Nuclear Information System (INIS)

    Kobayashi, Takehito; Mori, Yasuhiko H.

    2007-01-01

    This paper deals with the hydrate formation from mixed hydrate-forming gases such as natural gas to be converted to hydrates for the purpose of its storage and biogases from which carbon dioxide is to be separated by hydrate formation. When a batch operation is selected for processing such a gas mixture in a closed reactor, we need to predict the evolution of the thermodynamic and compositional states inside the reactor during the operation. We have contrived a simulation scheme that allows us to estimate the simultaneous changes in the composition of the residual gas, the structure of the hydrate formed and the guest composition in the hydrate, in addition to the change in the system pressure, with the progress of hydrate formation during each operation. This scheme assumes the transient hydrate forming process in a reactor during each operation to be a series of numerous equilibrium states, each slightly deviating from the preceding state. That is, a thermodynamic system composed of the contents of the reactor is assumed to be subjected to a quasi-static, irreversible change in state, instantaneously keeping itself in thermodynamic equilibrium. The paper demonstrates a simulation of a process of hydrate formation from a methane + propane mixture and compares its results to relevant experimental results reported by Uchida et al. [Uchida T, Morikawa M, Takeya S, Ikeda IY, Ohmura R, Nagao J, et al. Two-step formation of methane-propane mixed gas hydrates in a batch-type reactor. AIChE J 2004;50(2):518-23

  6. Controls on methane expulsion during melting of natural gas hydrate systems. Topic area 2

    Energy Technology Data Exchange (ETDEWEB)

    Flemings, Peter [Univ. of Texas, Austin, TX (United States)

    2016-01-14

    1.1. Project Goal The project goal is to predict, given characteristic climate-induced temperature change scenarios, the conditions under which gas will be expelled from existing accumulations of gas hydrate into the shallow ocean or directly to the atmosphere. When those conditions are met, the fraction of the gas accumulation that escapes and the rate of escape shall be quantified. The predictions shall be applicable in Arctic regions and in gas hydrate systems at the up dip limit of the stability zone on continental margins. The behavior shall be explored in response to two warming scenarios: longer term change due to sea level rise (e.g. 20 thousand years) and shorter term due to atmospheric warming by anthropogenic forcing (decadal time scale). 1.2. Project Objectives During the first budget period, the objectives are to review and categorize the stability state of existing well-studied hydrate reservoirs, develop conceptual and numerical models of the melting process, and to design and conduct laboratory experiments that dissociate methane hydrate in a model sediment column by systematically controlling the temperature profile along the column. The final objective of the first budget period shall be to validate the models against the experiments. In the second budget period, the objectives are to develop a model of gas flow into sediment in which hydrate is thermodynamically stable, and conduct laboratory experiments of this process to validate the model. The developed models shall be used to quantify the rate and volume of gas that escapes from dissociating hydrate accumulations. In addition, specific scaled simulations characteristic of Arctic regions and regions near the stability limit at continental margins shall be performed. 1.3. Project Background and Rationale The central hypothesis proposed is that hydrate melting (dissociation) due to climate change generates free gas that can, under certain conditions, propagate through the gas hydrate stability

  7. Sensitivity Analysis of Gas Production from Class 2 and Class 3 Hydrate Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, Matthew; Moridis, George; Zhang, Keni

    2008-05-01

    Gas hydrates are solid crystalline compounds in which gas molecules are lodged within the lattices of an ice-like crystalline solid. The vast quantities of hydrocarbon gases trapped in hydrate formations in the permafrost and in deep ocean sediments may constitute a new and promising energy source. Class 2 hydrate deposits are characterized by a Hydrate-Bearing Layer (HBL) that is underlain by a saturated zone of mobile water. Class 3 hydrate deposits are characterized by an isolated Hydrate-Bearing Layer (HBL) that is not in contact with any hydrate-free zone of mobile fluids. Both classes of deposits have been shown to be good candidates for exploitation in earlier studies of gas production via vertical well designs - in this study we extend the analysis to include systems with varying porosity, anisotropy, well spacing, and the presence of permeable boundaries. For Class 2 deposits, the results show that production rate and efficiency depend strongly on formation porosity, have a mild dependence on formation anisotropy, and that tighter well spacing produces gas at higher rates over shorter time periods. For Class 3 deposits, production rates and efficiency also depend significantly on formation porosity, are impacted negatively by anisotropy, and production rates may be larger, over longer times, for well configurations that use a greater well spacing. Finally, we performed preliminary calculations to assess a worst-case scenario for permeable system boundaries, and found that the efficiency of depressurization-based production strategies are compromised by migration of fluids from outside the system.

  8. 3-D basin-scale reconstruction of natural gas hydrate system of the Green Canyon, Gulf of Mexico

    Science.gov (United States)

    Burwicz, Ewa; Reichel, Thomas; Wallmann, Klaus; Rottke, Wolf; Haeckel, Matthias; Hensen, Christian

    2017-05-01

    Our study presents a basin-scale 3-D modeling solution, quantifying and exploring gas hydrate accumulations in the marine environment around the Green Canyon (GC955) area, Gulf of Mexico. It is the first modeling study that considers the full complexity of gas hydrate formation in a natural geological system. Overall, it comprises a comprehensive basin reconstruction, accounting for depositional and transient thermal history of the basin, source rock maturation, petroleum components generation, expulsion and migration, salt tectonics, and associated multistage fault development. The resulting 3-D gas hydrate distribution in the Green Canyon area is consistent with independent borehole observations. An important mechanism identified in this study and leading to high gas hydrate saturation (>80 vol %) at the base of the gas hydrate stability zone (GHSZ) is the recycling of gas hydrate and free gas enhanced by high Neogene sedimentation rates in the region. Our model predicts the rapid development of secondary intrasalt minibasins situated on top of the allochthonous salt deposits which leads to significant sediment subsidence and an ensuing dislocation of the lower GHSZ boundary. Consequently, large amounts of gas hydrates located in the deepest parts of the basin dissociate and the released free methane gas migrates upward to recharge the GHSZ. In total, we have predicted the gas hydrate budget for the Green Canyon area that amounts to ˜3256 Mt of gas hydrate, which is equivalent to ˜340 Mt of carbon (˜7 × 1011 m3 of CH4 at STP conditions), and consists mostly of biogenic hydrates.

  9. Seafloor geomorphic manifestations of gas venting and shallow subbottom gas hydrate occurrences

    Science.gov (United States)

    Paull, C K; Caress, D W; Thomas, Hans; Lundsten, Eve M.; Anderson, Kayce; Gwiazda, Roberto; Riedel, M; McGann, Mary; Herguera, J C

    2015-01-01

    High-resolution multibeam bathymetry data collected with an autonomous underwater vehicle (AUV) complemented by compressed high-intensity radar pulse (Chirp) profiles and remotely operated vehicle (ROV) observations and sediment sampling reveal a distinctive rough topography associated with seafloor gas venting and/or near-subsurface gas hydrate accumulations. The surveys provide 1 m bathymetric grids of deep-water gas venting sites along the best-known gas venting areas along the Pacific margin of North America, which is an unprecedented level of resolution. Patches of conspicuously rough seafloor that are tens of meters to hundreds of meters across and occur on larger seafloor topographic highs characterize seepage areas. Some patches are composed of multiple depressions that range from 1 to 100 m in diameter and are commonly up to 10 m deeper than the adjacent seafloor. Elevated mounds with relief of >10 m and fractured surfaces suggest that seafloor expansion also occurs. Ground truth observations show that these areas contain broken pavements of methane-derived authigenic carbonates with intervening topographic lows. Patterns seen in Chirp profiles, ROV observations, and core data suggest that the rough topography is produced by a combination of diagenetic alteration, focused erosion, and inflation of the seafloor. This characteristic texture allows previously unknown gas venting areas to be identified within these surveys. A conceptual model for the evolution of these features suggests that these morphologies develop slowly over protracted periods of slow seepage and shows the impact of gas venting and gas hydrate development on the seafloor morphology.

  10. Evaluation and analysis method for natural gas hydrate storage and transportation processes

    International Nuclear Information System (INIS)

    Hao Wenfeng; Wang Jinqu; Fan Shuanshi; Hao Wenbin

    2008-01-01

    An evaluation and analysis method is presented to investigate an approach to scale-up a hydration reactor and to solve some economic problems by looking at the natural gas hydrate storage and transportation process as a whole. Experiments with the methane hydration process are used to evaluate the whole natural gas hydrate storage and transportation process. The specific contents and conclusions are as follows: first, batch stirring effects and load coefficients are studied in a semi-continuous stirred-tank reactor. Results indicate that batch stirring and appropriate load coefficients are effective in improving hydrate storage capacity. In the experiments, appropriate values for stirring velocity, stirring time and load coefficient were found to be 320 rpm, 30 min and 0.289, respectively. Second, throughput and energy consumption of the reactor for producing methane hydrates are calculated by mass and energy balance. Results show that throughput of this is 1.06 kg/d, with a product containing 12.4% methane gas. Energy consumption is 0.19 kJ, while methane hydrates containing 1 kJ heat are produced. Third, an energy consumption evaluation parameter is introduced to provide a single energy consumption evaluation rule for different hydration reactors. Parameter analyses indicate that process simplicity or process integration can decrease energy consumption. If experimental gas comes from a small-scale natural gas field and the energy consumption is 0.02 kJ when methane hydrates containing 1 kJ heat are produced, then the decrease is 87.9%. Moreover, the energy consumption evaluation parameter used as an economic criterion is converted into a process evaluation parameter. Analyses indicate that the process evaluation parameter is relevant to technology level and resource consumption for a system, which can make it applicable to economic analysis and venture forecasting for optimal capital utilization

  11. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.J.; Liu, T.J. H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-06-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  12. Drilling gas hydrates with the sea floor drill rig MARUM-MeBo

    Science.gov (United States)

    Freudenthal, Tim; Bohrmann, Gerhard; Wefer, Gerold

    2015-04-01

    Large amounts of methane are bound in marine gas hydrate deposits. Local conditions like pressure, temperature, gas and pore water compositions define the boundaries of gas hydrate stability within the ocean sediments. Depending on those conditions gas hydrates can occur within marine sediments at depth down to several hundreds of meters up to sea floor. These oceanic methane deposits are widespread along continental margins. By forming cement in otherwise soft sediments gas hydrates are stabilizing the seafloor on continental slopes. Drilling operations are required for understanding the distribution of gas hydrates as well as for sampling them to study the composition, microstructure and its geomechanical and geophysical properties. The sea floor drill rig MARUM-MeBo200 has the capability to drill down to 200 m below sea floor well within the depth of major gas hydrate occurrences at continental margins. This drill rig is a transportable sea floor drill rig that can be deployed from a variety of multi-purpose research vessels. It is deployed on the sea bed and controlled from the vessel. It is the second generation MeBo (Freudenthal and Wefer, 2013) and was developed from 2011 to 2014 by MARUM in cooperation with BAUER Maschinen GmbH. Long term experiences with the first generation MeBo70 that was operated since 2005 on 15 research expeditions largely contributed to the development of MeBo200. It was first tested in October 2014 from the research vessel RV SONNE in the North Sea. In this presentation the suitability of MARUM-MeBo for drilling marine gas hydrates is discussed. We report on experiences drilling gas hydrates on two research expeditions with MeBo70. A research expedition for sampling gas hydrates in the Danube Paleodelta with MeBo200 as well as technical developments for improving the suitability of MeBo for gas hydrate exploration works are planned within the project SUGAR3 funded by the Federal Government for Economy and Energy (BMWi). Freudenthal

  13. Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates.

    Science.gov (United States)

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2015-09-23

    The adsorption of guest and kinetic inhibitor molecules on the surface of methane hydrate is investigated by using molecular dynamics simulations. We calculate the free energy profile for transferring a solute molecule from bulk water to the hydrate surface for various molecules. Spherical solutes with a diameter of ∼0.5 nm are significantly stabilized at the hydrate surface, whereas smaller and larger solutes exhibit lower adsorption affinity than the solutes of intermediate size. The range of the attractive force is subnanoscale, implying that this force has no effect on the macroscopic mass transfer of guest molecules in crystal growth processes of gas hydrates. We also examine the adsorption mechanism of a kinetic hydrate inhibitor. It is found that a monomer of the kinetic hydrate inhibitor is strongly adsorbed on the hydrate surface. However, the hydrogen bonding between the amide group of the inhibitor and water molecules on the hydrate surface, which was believed to be the driving force for the adsorption, makes no contribution to the adsorption affinity. The preferential adsorption of both the kinetic inhibitor and the spherical molecules to the surface is mainly due to the entropic stabilization arising from the presence of cavities at the hydrate surface. The dependence of surface affinity on the size of adsorbed molecules is also explained by this mechanism.

  14. Study On Seismic Identification And Distribution Characters Of Marine Gas Hydrate In Okinawa Trough

    Science.gov (United States)

    Fang, Y.; Jin, X.; Li, M.; Tang, Y.

    2003-04-01

    The paper studies the formation processes and distribution of marine gas hydrate, through systematically and thoroughly analyzing the geological setting, gas sources and distribution features of the most marine gas hydrate deposits around the world. Based on study of the geologic features in Okinawa Trough and adjacent area, it is showed that there exist favorable geological conditions for the formation of gas hydrate, and the seismic indicator -BSR has also been identified from multi-channel digit seismic data by re-processing and analyzing. This shows that Okinawa Trough and adjacent sea area may distribute a mass of gas hydrate sedimentary deposit. Then the paper discusses the prospect of the gas hydrate resource in Okinawa Trough and adjacent sea area, based on the calculating of the hydrate stability zone thickness. Main conclusions of the paper can be summed up as follows: Based on the systematically comparative analysis of the marine gas hydrate deposits in different marine gas hydrate accumulate belts, the paper summarizes the different geologic formation processes and characters of the gas hydrate. And the importance of the continuous supplementation of the gas source, the transporting and accumulating of the gaseous fluid during the formation processes of the gas hydrate, and the preservation conditions of the gas hydrate deposit are discussed. It is thought that the Okinawa Trough (especially the west slope of the Trough) has the favorable conditions for gas hydrate through the analysis of its geologic features. The geologic features of Okinawa Trough, such as water depth, low temperature of bottom water, very thick sediments with high organic matter content, a large amount of gas from deep parts induced by the upward of the high temperature mantle flow under the Trough, very developed fracture system, and lots of pore space in the under-compacted sediment induced by the rapid sedimentation-are beneficial to form gas hydrate. This provided the advantaged

  15. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Overview of scientific and technical program

    Science.gov (United States)

    Hunter, R.B.; Collett, T.S.; Boswell, R.; Anderson, B.J.; Digert, S.A.; Pospisil, G.; Baker, R.; Weeks, M.

    2011-01-01

    The Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled within the Alaska North Slope (ANS) Milne Point Unit (MPU) from February 3 to 19, 2007. The well was conducted as part of a Cooperative Research Agreement (CRA) project co-sponsored since 2001 by BP Exploration (Alaska), Inc. (BPXA) and the U.S. Department of Energy (DOE) in collaboration with the U.S. Geological Survey (USGS) to help determine whether ANS gas hydrate can become a technically and commercially viable gas resource. Early in the effort, regional reservoir characterization and reservoir simulation modeling studies indicated that up to 0.34 trillion cubic meters (tcm; 12 trillion cubic feet, tcf) gas may be technically recoverable from 0.92 tcm (33 tcf) gas-in-place within the Eileen gas hydrate accumulation near industry infrastructure within ANS MPU, Prudhoe Bay Unit (PBU), and Kuparuk River Unit (KRU) areas. To further constrain these estimates and to enable the selection of a test site for further data acquisition, the USGS reprocessed and interpreted MPU 3D seismic data provided by BPXA to delineate 14 prospects containing significant highly-saturated gas hydrate-bearing sand reservoirs. The "Mount Elbert" site was selected to drill a stratigraphic test well to acquire a full suite of wireline log, core, and formation pressure test data. Drilling results and data interpretation confirmed pre-drill predictions and thus increased confidence in both the prospect interpretation methods and in the wider ANS gas hydrate resource estimates. The interpreted data from the Mount Elbert well provide insight into and reduce uncertainty of key gas hydrate-bearing reservoir properties, enable further refinement and validation of the numerical simulation of the production potential of both MPU and broader ANS gas hydrate resources, and help determine viability of potential field sites for future extended term production testing. Drilling and data acquisition operations demonstrated that gas hydrate

  16. Sensitivity Analysis of Parameters Governing the Recovery of Methane from Natural Gas Hydrate Reservoirs

    Directory of Open Access Journals (Sweden)

    Carlos Giraldo

    2014-04-01

    Full Text Available Naturally occurring gas hydrates are regarded as an important future source of energy and considerable efforts are currently being invested to develop methods for an economically viable recovery of this resource. The recovery of natural gas from gas hydrate deposits has been studied by a number of researchers. Depressurization of the reservoir is seen as a favorable method because of its relatively low energy requirements. While lowering the pressure in the production well seems to be a straight forward approach to destabilize methane hydrates, the intrinsic kinetics of CH4-hydrate decomposition and fluid flow lead to complex processes of mass and heat transfer within the deposit. In order to develop a better understanding of the processes and conditions governing the production of methane from methane hydrates it is necessary to study the sensitivity of gas production to the effects of factors such as pressure, temperature, thermal conductivity, permeability, porosity on methane recovery from naturally occurring gas hydrates. A simplified model is the base for an ensemble of reservoir simulations to study which parameters govern productivity and how these factors might interact.

  17. Archie’s saturation exponent for natural gas hydrate in coarse-grained reservoirs

    Science.gov (United States)

    Cook, Ann E.; Waite, William F.

    2018-01-01

    Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice‐bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate‐bearing sands. In this work, we calibrate n for hydrate‐bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L‐38, by establishing an independent downhole Sh profile based on compressional‐wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L‐38 well, we also apply this method to two marine, coarse‐grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313‐H and Green Canyon 955‐H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse‐grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.

  18. Experiments and Phase-field Modeling of Hydrate Growth at the Interface of Migrating Gas Fingers

    Science.gov (United States)

    Fu, X.; Jimenez-Martinez, J.; Porter, M. L.; Cueto-Felgueroso, L.; Juanes, R.

    2016-12-01

    The fate of methane bubbles escaping from seafloor seeps remains an important research question, as it directly concerns our understanding of the impact of seafloor methane leakage on ocean biogeochemistry. While the physics of rising bubbles in a water column has been studied extensively, the process is poorly understood when the gas bubbles form a hydrate ``crust" during their ascent. Understanding bubble rise, expansion and dissolution under these conditions is essential to determine the fate of bubble plumes of hydrate-forming gases such as methane and carbon dioxide from natural and man-made accidental releases. Here, we first present experimental observations of the dynamics of a bubble of Xenon in a water-filled and pressurized Hele-Shaw cell. The evolution is controlled by two processes: (1) the formation of a hydrate "crust" around the bubble, and (2) viscous fingering from bubble expansion (Figure 1). To reproduce the experimental observations, we propose a phase-field model that describes the nucleation and thickening of a porous solid shell on a moving gas-liquid interface. We design the free energy of the three-phase system (gas-liquid-hydrate) to rigorously account for interfacial effects, mutual solubility, and phase transformations (hydrate formation and disappearance). We introduce a pseudo-plasticity model with large viscosity variations to describe the plate-like rheology of the hydrate shell. We present high-resolution numerical simulations of the model, which illustrate the emergence of complex "crustal fingering" patterns as a result of gas fingering dynamics modulated by hydrate growth at the interface. Figure caption: Snapshot of the Hele-Shaw cell experiment. As the bubble expands from depressurization of the cell, gas fingers move through the liquid and Xe-hydrate readily forms at the gas-liquid interface, giving rise to complex "crustal fingering" patterns.

  19. Is the extent of glaciation limited by marine gas-hydrates?

    Science.gov (United States)

    Paull, Charles K.; Ussler, William; Dillon, William P.

    1991-01-01

    Methane may have been released to the atmosphere during the Quaternary from Arctic shelf gas-hydrates as a result of thermal decomposition caused by climatic warming and rising sea-level; this release of methane (a greenhouse gas) may represent a positive feedback on global warming [Revelle, 1983; Kvenvolden, 1988a; Nisbet, 1990]. We consider the response to sea-level changes by the immense amount of gas-hydrate that exists in continental rise sediments, and suggest that the reverse situation may apply—that release of methane trapped in the deep-sea sediments as gas-hydrates may provide a negative feedback to advancing glaciation. Methane is likely to be released from deep-sea gas-hydrates as sea-level falls because methane gas-hydrates decompose with pressure decrease. Methane would be released to sediment pore space at shallow sub-bottom depths (100's of meters beneath the seafloor, commonly at water depths of 500 to 4,000 m) producing zones of markedly decreased sediment strength, leading to slumping [Carpenter, 1981; Kayen, 1988] and abrupt release of the gas. Methane is likely to be released to the atmosphere in spikes that become larger and more frequent as glaciation progresses. Because addition of methane to the atmosphere warms the planet, this process provides a negative feedback to glaciation, and could trigger deglaciation.

  20. Constraining gas hydrate occurrence in the northern Gulf of Mexico continental slope : fine scale analysis of grain-size in hydrate-bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hangsterfer, A.; Driscoll, N.; Kastner, M. [Scripps Inst. of Oceanography, La Jolla, CA (United States). Geosciences Research Division

    2008-07-01

    Methane hydrates can form within the gas hydrate stability zone (GHSZ) in sea beds. The Gulf of Mexico (GOM) contains an underlying petroleum system and deeply buried, yet dynamic salt deposits. Salt tectonics and fluid expulsion upward through the sediment column result in the formation of fractures, through which high salinity brines migrate into the GHSZ, destabilizing gas hydrates. Thermogenic and biogenic hydrocarbons also migrate to the seafloor along the GOMs northern slope, originating from the thermal and biogenic degradation of organic matter. Gas hydrate occurrence can be controlled by either primary permeability, forming in coarse-grained sediment layers, or by secondary permeability, forming in areas where hydrofracture and faulting generate conduits through which hydrocarbon-saturated fluids flow. This paper presented a study that attempted to determine the relationship between grain-size, permeability, and gas hydrate distribution. Grain-size analyses were performed on cores taken from Keathley Canyon and Atwater Valley in the GOM, on sections of cores that both contained and lacked gas hydrate. Using thermal anomalies as proxies for the occurrence of methane hydrate within the cores, samples of sediment were taken and the grain-size distributions were measured to see if there was a correlation between gas hydrate distribution and grain-size. The paper described the methods, including determination of hydrate occurrence and core analysis. It was concluded that gas hydrate occurrence in Keathley Canyon and Atwater Valley was constrained by secondary permeability and was structurally controlled by hydrofractures and faulting that acted as conduits through which methane-rich fluids flowed. 11 refs., 2 tabs., 5 figs.

  1. Scenario of Methane and Gas Hydrate occurrences in different geological settings in the eastern Mediterranean Sea

    Science.gov (United States)

    Karisiddaiah, S. M.

    2003-04-01

    An attempt is made here to unravel the various types of methane occurrences in the eastern Mediterranean Sea. First part devotes on the occurrence of methane in anoxic brines, in sea water and in the underlying sediments, while the next half concentrates on the significance of methane in the natural gas hydrates with in the sediments under special P-T conditions from mud volcanoes of Anaximander Mountain Ranges and Mediterranean Ridges as reported by various researchers. Very high methane concentrations (128-2692 mM) occur in the hypersaline anoxic brine pools of Bannock and Urania, within the Eastern Mediterranean Sea, compared to its concentrations (17 to 80 m M) in the sediment cores below the anoxic brines. Besides, in the underlying sediments bit higher range in methane (10-158 nM) values occur, compared to low methane (1.47-7.14 nM) concentrations in the overlying water column and the basins surrounding Crete Island. The methane enrichment in the brines might be due to the long residence time of brine in the basin, and to its high stability toward mixing with overlying seawater. Possible sources for this methane enrichment could be a deep source of hydrothermal activities, prevalence of gas hydrate horizons and occurrence of sapropels. Gas hydrate research had reached an astounding position in the earth sciences. The present day situation of natural gases for the entire world caused an alarming strategy to search for new clean fuel energy, such as the one sequestered in the gas hydrates. In this context an attempt is made here to review the significance of gas hydrate occurrences in the eastern Mediterraneans mainly from Anaximander Mountain Range mud volcanoes (which are characterized by a concentric zonal distribution of gas hydrates) and mud volcanoes in Mediterranean Ridges which might be the future sites for gas hydrate exploration.

  2. GAS METHANE HYDRATES-RESEARCH STATUS, ANNOTATED BIBLIOGRAPHY, AND ENERGY IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    James Sorensen; Jaroslav Solc; Bethany Bolles

    2000-07-01

    The objective of this task as originally conceived was to compile an assessment of methane hydrate deposits in Alaska from available sources and to make a very preliminary evaluation of the technical and economic feasibility of producing methane from these deposits for remote power generation. Gas hydrates have recently become a target of increased scientific investigation both from the standpoint of their resource potential to the natural gas and oil industries and of their positive and negative implications for the global environment After we performed an extensive literature review and consulted with representatives of the U.S. Geological Survey (USGS), Canadian Geological Survey, and several oil companies, it became evident that, at the current stage of gas hydrate research, the available information on methane hydrates in Alaska does not provide sufficient grounds for reaching conclusions concerning their use for energy production. Hence, the original goals of this task could not be met, and the focus was changed to the compilation and review of published documents to serve as a baseline for possible future research at the Energy & Environmental Research Center (EERC). An extensive annotated bibliography of gas hydrate publications has been completed. The EERC will reassess its future research opportunities on methane hydrates to determine where significant initial contributions could be made within the scope of limited available resources.

  3. Integrating Natural Gas Hydrates in the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    David Archer; Bruce Buffett

    2011-12-31

    We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

  4. Proceedings of the 6. international conference on gas hydrates : ICGH 2008

    International Nuclear Information System (INIS)

    Englezos, P.; Ripmeester, J.; Dallimore, S.R.; Collett, T.S.; Mehta, A.; Paull, C.K.; Sloan, E.D.Jr.; Uchida, T.

    2008-01-01

    This international conference provided a forum to highlight gas hydrate research that is underway at academic institutions as well as government and industrial laboratories around the world. The gas or clathrate hydrate research community includes chemical, petroleum and mechanical engineers, geologists, geophysicists, marine biologists, chemists and physicists. The conference was attended by more than 500 delegates who presented their professional knowledge in all areas of the gas hydrates field, emphasizing new aspects. The topics of discussion included resource delineation, reservoir simulation modeling and production technology. Environmental considerations involving natural gas hydrates and global climate change were also highlighted along with carbon dioxide disposal in aquifers and deep oceans. Issues facing oil and gas operations were also discussed, with reference to flow assurance in pipelines, safety issues, permafrost and marine geohazards. Novel technologies involving hydrogen storage, carbon dioxide capture and sequestration were also highlighted along with basic science and engineering aspects of gas hydrate systems. All 417 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs

  5. Proceedings of the 6. international conference on gas hydrates : ICGH 2008

    Energy Technology Data Exchange (ETDEWEB)

    Englezos, P. (ed.) [British Columbia Univ., Vancouver, BC (Canada); Ripmeester, J. (ed.) [National Research Council of Canada, Ottawa, ON (Canada); Dallimore, S.R. [Natural Resources Canada, Ottawa, ON (Canada). Geological Survey of Canada; Servio, P. [McGill Univ., Montreal, PQ (Canada). Dept. of Chemical Engineering; Austvik, T. [Statoil, Trondheim (Norway); Collett, T.S. [United States Geological Survey, Denver, CO (United States); Mehta, A. [Shell E and P Asia Pacific, Sarawak (Malaysia); Paull, C.K. [Monterey Bay Aquarium Research Inst., CA (United States); Sloan, E.D.Jr. [Colorado School of Mines, Golden, CO (United States); Uchida, T. [Hokkaido Univ., Sapporo (Japan)] (comps.)

    2008-07-01

    This international conference provided a forum to highlight gas hydrate research that is underway at academic institutions as well as government and industrial laboratories around the world. The gas or clathrate hydrate research community includes chemical, petroleum and mechanical engineers, geologists, geophysicists, marine biologists, chemists and physicists. The conference was attended by more than 500 delegates who presented their professional knowledge in all areas of the gas hydrates field, emphasizing new aspects. The topics of discussion included resource delineation, reservoir simulation modeling and production technology. Environmental considerations involving natural gas hydrates and global climate change were also highlighted along with carbon dioxide disposal in aquifers and deep oceans. Issues facing oil and gas operations were also discussed, with reference to flow assurance in pipelines, safety issues, permafrost and marine geohazards. Novel technologies involving hydrogen storage, carbon dioxide capture and sequestration were also highlighted along with basic science and engineering aspects of gas hydrate systems. All 417 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  6. Preface to the special issue on gas hydrate drilling in the Eastern Nankai Trough

    Science.gov (United States)

    Yamamoto, Koji; Ruppel, Carolyn D.

    2015-01-01

    Methane hydrate traps enormous amounts of methane in frozen deposits in continental margin sediments, and these deposits have long been targeted for studies investigating their potential as an energy resource. As a concentrated form of methane that occurs at shallower depths than conventional and most unconventional gas reservoirs, methane hydrates could be a readily accessible source of hydrocarbons for countries hosting deposits within their Exclusive Economic Zones. Japan is one such country, and since 2001 the Research Consortium for Methane Hydrate Resources in Japan (referred to as MH21) has conducted laboratory, modeling, and field-based programs to study methane hydrates as an energy resource. The MH21 consortium is funded by the Japanese Ministry of Trade and Industry (METI) and led by the Japan Oil, Gas and Metals National Oil Corporation (JOGMEC) and the National Institute of Advanced Industrial Science and Technology (AIST).

  7. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 2 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate

  8. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 1 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate

  9. Observed correlation between the depth to base and top of gas hydrate occurrence from review of global drilling data

    Science.gov (United States)

    Riedel, M.; Collett, T. S.

    2017-07-01

    A global inventory of data from gas hydrate drilling expeditions is used to develop relationships between the base of structure I gas hydrate stability, top of gas hydrate occurrence, sulfate-methane transition depth, pressure (water depth), and geothermal gradients. The motivation of this study is to provide first-order estimates of the top of gas hydrate occurrence and associated thickness of the gas hydrate occurrence zone for climate-change scenarios, global carbon budget analyses, or gas hydrate resource assessments. Results from publically available drilling campaigns (21 expeditions and 52 drill sites) off Cascadia, Blake Ridge, India, Korea, South China Sea, Japan, Chile, Peru, Costa Rica, Gulf of Mexico, and Borneo reveal a first-order linear relationship between the depth to the top and base of gas hydrate occurrence. The reason for these nearly linear relationships is believed to be the strong pressure and temperature dependence of methane solubility in the absence of large difference in thermal gradients between the various sites assessed. In addition, a statistically robust relationship was defined between the thickness of the gas hydrate occurrence zone and the base of gas hydrate stability (in meters below seafloor). The relationship developed is able to predict the depth of the top of gas hydrate occurrence zone using observed depths of the base of gas hydrate stability within less than 50 m at most locations examined in this study. No clear correlation of the depth to the top and base of gas hydrate occurrences with geothermal gradient and sulfate-methane transition depth was identified.

  10. Observed correlation between the depth to base and top of gas hydrate occurrence from review of global drilling data

    Science.gov (United States)

    Riedel, Michael; Collett, Timothy S.

    2017-01-01

    A global inventory of data from gas hydrate drilling expeditions is used to develop relationships between the base of structure I gas hydrate stability, top of gas hydrate occurrence, sulfate-methane transition depth, pressure (water depth), and geothermal gradients. The motivation of this study is to provide first-order estimates of the top of gas hydrate occurrence and associated thickness of the gas hydrate occurrence zone for climate-change scenarios, global carbon budget analyses, or gas hydrate resource assessments. Results from publically available drilling campaigns (21 expeditions and 52 drill sites) off Cascadia, Blake Ridge, India, Korea, South China Sea, Japan, Chile, Peru, Costa Rica, Gulf of Mexico, and Borneo reveal a first-order linear relationship between the depth to the top and base of gas hydrate occurrence. The reason for these nearly linear relationships is believed to be the strong pressure and temperature dependence of methane solubility in the absence of large difference in thermal gradients between the various sites assessed. In addition, a statistically robust relationship was defined between the thickness of the gas hydrate occurrence zone and the base of gas hydrate stability (in meters below seafloor). The relationship developed is able to predict the depth of the top of gas hydrate occurrence zone using observed depths of the base of gas hydrate stability within less than 50 m at most locations examined in this study. No clear correlation of the depth to the top and base of gas hydrate occurrences with geothermal gradient and sulfate-methane transition depth was identified.

  11. Prediction of Gas Hydrate Formation Conditions in Aqueous Solutions of Single and Mixed Electrolytes

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1997-01-01

    In this paper, the extended Patel-Teja equation of state was modified to describe non-ideality of the liquid phase containing water and electrolytes accurately. The modified Patel-Teja equation of state (MPT EOS) was utilized to develop a predictive method for gas hydrate equilibria. The new method...... employs the Barkan and Sheinin hydrate model for the description of the hydrate phase, the original Patel-Teja equation of state for the vapor phase fugacities, and the MPT EOS (instead of the activity coefficient model) for the activity of water in the aqueous phase. The new method has succesfully...

  12. GH-3PAD - a new numerical solver for multiphase transport in porous media - new insights on gas hydrate and free gas co-existence

    Science.gov (United States)

    Burwicz, E.; Rupke, L.; Wallmann, K.

    2013-12-01

    Gas Hydrate-3 Phase Advanced Dynamics (GH-3PAD) code has been developed to study the geophysical and biochemical processes associated with gas hydrate as well as free methane gas formation and dissolution in marine sediments. Biochemical processes influencing in-situ organic carbon decay and, therefore, gas hydrate formation, such as Anaerobic Oxidation of Methane (AOM), sulfate reduction, and methanogenesis have been considered. The new model assumes a Lagrangian reference frame that is attached to the deposited sedimentary layers, which compact according to their individual lithological properties. Differential motion of the pore fluids and free gas is modeled as Darcy flow. Gas hydrate and free gas formation is either controlled by 1) instant gas hydrate crystallization assuming local thermodynamical equilibrium or by a 2) kinetically controlled rate of gas hydrate growth. The thermal evolution is computed from an energy equation that includes contributions from all phases present in the model (sediment grains, saline pore fluids, gas hydrate, and free gas). A first application of the GH-3PAD model has been the Blake Ridge Site, offshore South Carolina. Here seismic and well data points to the out-of-equilibrium co-existence of gas hydrate and free gas. It has been reported that these two distinct phases appear within sediment column with a gaseous phase tending to migrate upwards throughout the Gas Hydrate Stability Zone (GHSZ) until it reaches the seafloor despite relatively low gas hydrate content (4 - 7 vol. % after Paull et al., 1996). With the GH-3PAD model we quantify the complex transport- reaction processes that control three phase (gas hydrate, free gas, and dissolved CH4) out-of-equilibrium state. References: Paull C. K., Matsumoto R., Wallace P. J., 1996. 9. Site 997, Shipboard Scientific Party. Proceeding of the Ocean Drilling Program, Initial Reports, Vol. 164.

  13. CO2 capture by gas hydrate crystallization: Application on the CO2-N2 mixture

    International Nuclear Information System (INIS)

    Bouchemoua, A.

    2012-01-01

    CO 2 capture and sequestration represent a major industrial and scientific challenge of this century. There are different methods of CO 2 separation and capture, such as solid adsorption, amines adsorption and cryogenic fractionation. Although these processes are well developed at industrial level, they are energy intensive. Hydrate formation method is a less energy intensive and has an interesting potential to separate carbon dioxide. Gas hydrates are Document crystalline compounds that consist of hydrogen bonded network of water molecules trapping a gas molecule. Gas hydrate formation is favored by high pressure and low temperature. This study was conducted as a part of the SECOHYA ANR Project. The objective is to study the thermodynamic and kinetic conditions of the process to capture CO 2 by gas hydrate crystallization. Firstly, we developed an experimental apparatus to carry out experiments to determine the thermodynamic and kinetic formation conditions of CO 2 -N 2 gas hydrate mixture in water as liquid phase. We showed that the operative pressure may be very important and the temperature very low. For the feasibility of the project, we used TBAB (Tetrabutylammonium Bromide) as thermodynamic additive in the liquid phase. The use of TBAB may reduce considerably the operative pressure. In the second part of this study, we presented a thermodynamic model, based on the van der Waals and Platteeuw model. This model allows the estimation of thermodynamic equilibrium conditions. Experimental equilibrium data of CO 2 -CH 4 and CO 2 -N 2 mixtures are presented and compared to theoretical results. (author)

  14. The combined effect of thermodynamic promoters tetrahydrofuran and cyclopentane on the kinetics of flue gas hydrate formation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; von Solms, Nicolas

    2015-01-01

    ) hydrate formation using a rocking cell apparatus. Hydrate formation and decomposition kinetics were investigated by constant cooling (hydrate nucleation temperature) and isothermal (hydrate nucleation time) methods. Improved (synergistic) hydrate formation kinetics (hydrate nucleation and growth) were......Carbon dioxide (CO2) capture through hydrate crystallization is a promising method among the new approaches for mitigating carbon emissions into the atmosphere. In this work, we investigate a combination of tetrahydrofuran (THF) and cyclopentane (CP) on the kinetics of flue gas (CO2:20 mol %/N2...... observed when THF and CP were present together compared to the individual THF and CP systems. Moreover, the complete hydrate decomposition temperature of CO2/N2/CP/THF hydrate was found to be slightly higher compared to the individual promoter (CO2/N2/CP and CO2/N2/THF) systems. The combined use...

  15. Non-equilibrium simulation of CH4 production through the depressurization method from gas hydrate reservoirs

    Science.gov (United States)

    Qorbani, Khadijeh; Kvamme, Bjørn

    2016-04-01

    Natural gas hydrates (NGHs) in nature are formed from various hydrate formers (i.e. aqueous, gas, and adsorbed phases). As a result, due to Gibbs phase rule and the combined first and second laws of thermodynamics CH4-hydrate cannot reach thermodynamic equilibrium in real reservoir conditions. CH4 is the dominant component in NGH reservoirs. It is formed as a result of biogenic degradation of biological material in the upper few hundred meters of subsurface. It has been estimated that the amount of fuel-gas reserve in NGHs exceed the total amount of fossil fuel explored until today. Thus, these reservoirs have the potential to satisfy the energy requirements of the future. However, released CH4 from dissociated NGHs could find its way to the atmosphere and it is a far more aggressive greenhouse gas than CO2, even though its life-time is shorter. Lack of reliable field data makes it difficult to predict the production potential, as well as safety of CH4 production from NGHs. Computer simulations can be used as a tool to investigate CH4 production through different scenarios. Most hydrate simulators within academia and industry treat hydrate phase transitions as an equilibrium process and those which employ the kinetic approach utilize simple laboratory data in their models. Furthermore, it is typical to utilize a limited thermodynamic description where only temperature and pressure projections are considered. Another widely used simplification is to assume only a single route for the hydrate phase transitions. The non-equilibrium nature of hydrate indicates a need for proper kinetic models to describe hydrate dissociation and reformation in the reservoir with respect to thermodynamics variables, CH4 mole-fraction, pressure and temperature. The RetrasoCodeBright (RCB) hydrate simulator has previously been extended to model CH4-hydrate dissociation towards CH4 gas and water. CH4-hydrate is added to the RCB data-base as a pseudo mineral. Phase transitions are treated

  16. Approaching hydrate and free gas distribution at the SUGAR-Site location in the Danube Delta

    Science.gov (United States)

    Bialas, Joerg; Dannowski, Anke; Zander, Timo; Klaeschen, Dirk; Klaucke, Ingo

    2017-04-01

    Gas hydrates did receive a lot of attention over the last decades when investigating their potential to serve as a possible source for Methane production. Among other world-wide programs the German SUGAR project sets out to investigate the entire chain from exploitation to production in Europe. Therefore research in the scope of the SUGAR project sets out to investigate a site in European EEZ for the detailed studies of hydrate and gas distribution in a permeable sediment matrix. Among others one aim of the project is to provide in situ samples of natural methane hydrate for further investigations by MEBO drilling. The Danube paleo-delta with its ancient canyon and levee systems was chosen as a possible candidate for hydrate formation within the available drilling range of 200 m below seafloor. In order to decide on the best drilling location cruise MSM34 (Bialas et al., 2014) of the German RV MARIA S MERIAN set out to acquire geophysical, geological and geochemical datasets for assessment of the hydrate content within the Danube paleo-delta, Black Sea. The Black Sea is well known for a significant gas content in the sedimentary column. Reports on observations of bottom simulating reflectors (BSR) by Popescu et al. (2007) and others indicate that free gas and hydrate occurrence can be expected within the ancient passive channel levee systems. A variety of inverted reflection events within the gas hydrate stability zone (GHSZ) were observed within the drilling range of MEBO and chosen for further investigation. Here we report on combined seismic investigations of high-resolution 2D & 3D multichannel seismic (MCS) acquisition accompanied by four component Ocean-Bottom-Seismometer (OBS) observations. P- and converted S-wave arrivals within the OBS datasets were analysed to provide overall velocity depth models. Due to the limited length of profiles the majority of OBS events are caused by near vertical reflections. While P-wave events have a significant lateral

  17. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    Science.gov (United States)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  18. Numerical simulation of gas hydrate exploitation from subsea reservoirs in the Black Sea

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2017-04-01

    Natural gas (methane) is the most environmental friendly source of fossil energy. When coal is replace by natural gas in power production the emission of carbon dioxide is reduced by 50 %. The vast amount of methane assumed in gas hydrate deposits can help to overcome a shortage of fossil energy resources in the future. To increase their potential for energy applications new technological approaches are being discussed and developed worldwide. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e. g. depressurization and/or carbon dioxide injection) is numerically studied in the frame of the German research project »SUGAR - Submarine Gas Hydrate Reservoirs«. In order to simulate the exploitation of hydrate-bearing sediments in the subsea, an in-house simulation model HyReS which is implemented in the general-purpose software COMSOL Multiphysics is used. This tool turned out to be especially suited for the flexible implementation of non-standard correlations concerning heat transfer, fluid flow, hydrate kinetics, and other relevant model data. Partially based on the simulation results, the development of a technical concept and its evaluation are the subject of ongoing investigations, whereby geological and ecological criteria are to be considered. The results illustrate the processes and effects occurring during the gas production from a subsea gas hydrate deposit by depressurization. The simulation results from a case study for a deposit located in the Black Sea reveal that the production of natural gas by simple depressurization is possible but with quite low rates. It can be shown that the hydrate decomposition and thus the gas production strongly depend on the geophysical properties of the reservoir, the mass and heat transport within the reservoir, and

  19. Gas Hydrate Formation Probability Distributions: The Effect of Shear and Comparisons with Nucleation Theory.

    Science.gov (United States)

    May, Eric F; Lim, Vincent W; Metaxas, Peter J; Du, Jianwei; Stanwix, Paul L; Rowland, Darren; Johns, Michael L; Haandrikman, Gert; Crosby, Daniel; Aman, Zachary M

    2018-03-13

    Gas hydrate formation is a stochastic phenomenon of considerable significance for any risk-based approach to flow assurance in the oil and gas industry. In principle, well-established results from nucleation theory offer the prospect of predictive models for hydrate formation probability in industrial production systems. In practice, however, heuristics are relied on when estimating formation risk for a given flowline subcooling or when quantifying kinetic hydrate inhibitor (KHI) performance. Here, we present statistically significant measurements of formation probability distributions for natural gas hydrate systems under shear, which are quantitatively compared with theoretical predictions. Distributions with over 100 points were generated using low-mass, Peltier-cooled pressure cells, cycled in temperature between 40 and -5 °C at up to 2 K·min -1 and analyzed with robust algorithms that automatically identify hydrate formation and initial growth rates from dynamic pressure data. The application of shear had a significant influence on the measured distributions: at 700 rpm mass-transfer limitations were minimal, as demonstrated by the kinetic growth rates observed. The formation probability distributions measured at this shear rate had mean subcoolings consistent with theoretical predictions and steel-hydrate-water contact angles of 14-26°. However, the experimental distributions were substantially wider than predicted, suggesting that phenomena acting on macroscopic length scales are responsible for much of the observed stochastic formation. Performance tests of a KHI provided new insights into how such chemicals can reduce the risk of hydrate blockage in flowlines. Our data demonstrate that the KHI not only reduces the probability of formation (by both shifting and sharpening the distribution) but also reduces hydrate growth rates by a factor of 2.

  20. Investigation of gas hydrate-bearing sandstone reservoirs at the Mount Elbert stratigraphic test well, Milne Point, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Hunter, R. [ASRC Energy Services, Anchorage, AK (United States); Collett, T. [United States Geological Survey, Denver, CO (United States); Digert, S.; Weeks, M. [BP Exploration Alaska Inc., Anchorage, AK (United States); Hancock, S. [RPS Energy Canada, Calgary, AB (Canada)

    2008-07-01

    Gas hydrates occur within the shallow sand reservoirs on the Alaska North Slope (ANS). The mean estimate for gas hydrate in-place resources on the ANS is 16.7 trillion cubic metres. In the past, they were viewed primarily as a drilling hazard to be managed during the development of deeper oil resources. In 2002, a cooperative research program was launched to help determine the potential for environmentally-sound and economically-viable production of methane from gas hydrates. Additional objectives were to refine ANS gas hydrate resource potential, improve the geologic and geophysical methods used to locate and asses gas hydrate resources, and develop numerical modeling capabilities that are essential in both planning and evaluating gas hydrate field programs. This paper reviewed the results of the an extensive data collection effort conducted at the Mount Elbert number 1 gas hydrates stratigraphic test well on the ANS. The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. The logging program confirmed the existence of approximately 30 m of gas hydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60 to 75 per cent. Continuous wire-line coring operations achieved 85 per cent recovery. The Mount Elbert field program also involved gas and water sample collection. It demonstrated the ability to safely and efficiently conduct a research-level open-hole data acquisition program in shallow, sub-permafrost sediments and increased confidence in gas hydrate resource assessment methodologies for the ANS. 10 refs., 9 figs.

  1. Fractionation of oxygen and hydrogen isotopes at the hydrate gas forming in the sea sediments

    International Nuclear Information System (INIS)

    Pashkina, V.I.; Esikov, A.D.

    1990-01-01

    The paper gives data on isotope composition of interstitial and near-bottom waters sampled in a region of gas-hydrate formation in the Sea of Okhotsk. The studies show that heavy isotopes of oxygen and hydrogen is used in gas-hydrate formation, with the result that isotope composition of its constitution water constitutes δ 18 O=+1.99per mille, δD=+23per mille relatively to SMOW. Formation of autogenic carbonates leads to isotope exchange with interstitial water wich, in turn, changes its primary isotope composition in the direction of increasing of O-18 content. The near-bottom waters are isotope-light relatively to the SMOW standard and to the mean isotope composition of interstitial water in the studied region of gas-hydrate spreading. (orig.) [de

  2. Evaluation of the geological relationships to gas hydrate formation and stability

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Although there are many publications pertaining to gas hydrates, their formation and stability in various geological conditions are poorly known. Therefore, for the same reasons and because of the very broad scope of our research, limited amount and extremely dispersed information, the study regions are very large. Moreover, almost without exception the geological environments controlling gas hydrates formation and stability of the studied regions are very complex. The regions studied (completed and partially completed - total 17 locations) during the reporting period, particularly the Gulf of Mexico and the Middle America Trench, are the most important in this entire research project. In the past, both of these regions have been extensively studied, the presence of gas hydrates confirmed and samples recovered. In our investigation it was necessary not only to review all previous data and interpretations, but to do a thorough analysis of the basins, and a critical evaluation of an previously reported and publicly available but not published information.

  3. First-Order Estimation of In-Place Gas Resources at the Nyegga Gas Hydrate Prospect, Norwegian Sea

    Directory of Open Access Journals (Sweden)

    Stefan Bünz

    2010-12-01

    Full Text Available Gas hydrates have lately received increased attention as a potential future energy source, which is not surprising given their global and widespread occurrence. This article presents an integrated study of the Nyegga site offshore mid-Norway, where a gas hydrate prospect is defined on the basis of a multitude of geophysical models and one shallow geotechnical borehole. This prospect appears to hold around 625GSm3 (GSm3 = 109 standard cubic metres of gas. The uncertainty related to the input parameters is dealt with through a stochastic calculation, giving a spread of in-place volumes of 183GSm3 (P90 to 1431GSm3 (P10. The resource density for Nyegga is found to be comparable to published resource assessments of other global hydrate provinces.

  4. Retrofit design of a boil-off gas handling process in liquefied natural gas receiving terminals

    International Nuclear Information System (INIS)

    Park, Chansaem; Song, Kiwook; Lee, Sangho; Lim, Youngsub; Han, Chonghun

    2012-01-01

    Generation of Boil-off gas (BOG) in liquefied natural gas (LNG) receiving terminals considerably affects operating costs and the safety of the facility. For the above reasons, a proper BOG handling process is a major determinant in the design of a LNG receiving terminal. This study proposes the concept of a retrofit design for a BOG the handling process using a fundamental analysis. A base design was determined for a minimum send-out case in which the BOG handling becomes the most difficult. In the proposed design, the cryogenic energy of the LNG stream is used to cool other streams inside the process. It leads to a reduction in the operating costs of the compressors in the BOG handling process. Design variables of the retrofit design were optimized with non-linear programming to maximize profitability. Optimization results were compared with the base design to show the effect of the proposed design. The proposed design provides a 22.7% energy saving ratio and a 0.176 year payback period. -- Highlights: ► A retrofit design of the BOG handling process was proposed to maximize energy savings. ► The superstructure of the proposed design was developed based on a thermodynamic analysis. ► In the proposed design, the cryogenic energy of the LNG stream was utilized to directly cool down the BOG streams. ► The payback period of the proposed design is sufficiently short for investment in industry.

  5. Evaluation of gas production potential from gas hydrate deposits in National Petroleum Reserve Alaska using numerical simulations

    Science.gov (United States)

    Nandanwar, Manish S.; Anderson, Brian J.; Ajayi, Taiwo; Collett, Timothy S.; Zyrianova, Margarita V.

    2016-01-01

    An evaluation of the gas production potential of Sunlight Peak gas hydrate accumulation in the eastern portion of the National Petroleum Reserve Alaska (NPRA) of Alaska North Slope (ANS) is conducted using numerical simulations, as part of the U.S. Geological Survey (USGS) gas hydrate Life Cycle Assessment program. A field scale reservoir model for Sunlight Peak is developed using Advanced Processes & Thermal Reservoir Simulator (STARS) that approximates the production design and response of this gas hydrate field. The reservoir characterization is based on available structural maps and the seismic-derived hydrate saturation map of the study region. A 3D reservoir model, with heterogeneous distribution of the reservoir properties (such as porosity, permeability and vertical hydrate saturation), is developed by correlating the data from the Mount Elbert well logs. Production simulations showed that the Sunlight Peak prospect has the potential of producing 1.53 × 109 ST m3 of gas in 30 years by depressurization with a peak production rate of around 19.4 × 104 ST m3/day through a single horizontal well. To determine the effect of uncertainty in reservoir properties on the gas production, an uncertainty analysis is carried out. It is observed that for the range of data considered, the overall cumulative production from the Sunlight Peak will always be within the range of ±4.6% error from the overall mean value of 1.43 × 109 ST m3. A sensitivity analysis study showed that the proximity of the reservoir from the base of permafrost and the base of hydrate stability zone (BHSZ) has significant effect on gas production rates. The gas production rates decrease with the increase in the depth of the permafrost and the depth of BHSZ. From the overall analysis of the results it is concluded that Sunlight Peak gas hydrate accumulation behaves differently than other Class III reservoirs (Class III reservoirs are composed of a single layer of hydrate with no

  6. Gas Hydrate Characterization in the GoM using Marine EM Methods

    Energy Technology Data Exchange (ETDEWEB)

    Constable, Steven [Univ. Of California, San Diego, CA (United States)

    2012-03-31

    In spite of the importance of gas hydrate as a low-carbon fuel, a possible contributor to rapid climate change, and a significant natural hazard, our current understanding about the amount and distribution of submarine gas hydrate is somewhat poor; estimates of total volume vary by at least an order of magnitude, and commercially useful concentrations of hydrate have remained an elusive target. This is largely because conventional geophysical tools have intrinsic limitations in their ability to quantitatively image hydrate. It has long been known from well logs that gas hydrate is resistive compared to the host sediments, and electrical and electromagnetic methods have been proposed and occasionally used to image hydrates. This project seeks to expand our capabilities to use electromagnetic methods to explore for gas hydrate in the marine environment. An important basic science aspect of our work was to quantify the resistivity of pure gas hydrate as a function of temperature at seafloor pressures. We designed, constructed, and tested a highpressure cell in which hydrate could be synthesized and then subjected to electrical conductivity measurements. Impedance spectroscopy at frequencies between 20 Hz and 2 MHz was used to separate the effect of the blocking electrodes from the intrinsic conductivity of the hydrate. We obtained very reproducible results that showed that pure methane hydrate was several times more resistive than the water ice that seeded the synthesis, 20,000 {Ohm}m at 0{degrees} C, and that the activation energy is 30.6 kJ/mol over the temperature range of -15 to 15{degrees} C. Adding silica sand to the hydrate, however, showed that the addition of the extra phase caused the conductivity of the assemblage to increase in a counterintuitive way. The fact that the increased conductivity collapsed after a percolation threshold was reached, and that the addition of glass beads does not produce a similar increase in conductivity, together suggest that

  7. Microbial community in the potential gas hydrate area Kaoping Canyon bearing sediment at offshore SW Taiwan

    Science.gov (United States)

    Wu, S. Y.; Hung, C. C.; Lai, S. J.; Ding, J. Y.; Lai, M. C.

    2015-12-01

    The deep sub-seafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass plays a potentially important role in long-term controls of global biogeochemical cycles. The research team from Taiwan, supported by the Central Geological Survey (CGS), has been demonstrated at SW offshore Taiwan that indicated this area is potential gas hydrate region. Therefore, the Gas Hydrate Master Program (GHMP) was brought in the National Energy Program-Phase II (NEP-II) to continue research and development. In this study, the microbial community structure of potential gas hydrate bearing sediments of giant piston core MD-178-10-3291 (KP12N) from the Kaoping Canyon offshore SW of Taiwan were investigated. This core was found many empty spaces and filling huge methane gas (>99.9 %) that might dissociate from solid gas hydrate. 16S rRNA gene clone libraries and phylogenetic analysis showed that the dominant members of Archaea were ANME (13 %), SAGMEG (31 %) and DSAG (20 %), and those of Bacteria were Chloroflexi (13 %), Candidate division JS1 (40 %) and Planctomycetes (15 %). Among them, ANME-3 is only distributed at the sulfate-methane interface (SMI) of 750 cmbsf, and sharing similarity with the Hydrate Ridge clone HydBeg92. ANME-1 and SAGMEG distributed below 750 cmbsf. In addition, DSAG and Candidate division JS1 are most dominant and distributed vertically at all tested depths from 150-3600 cmbsf. Combine the geochemical data and microbial phylotype distribution suggests the potential of gas hydrate bearing sediments at core MD-178-10-3291 (KP12N) from the Kaoping Canyon offshore SW of Taiwan.

  8. Seismic evidence of gas hydrates, multiple BSRs and fluid flow offshore Tumbes Basin, Peru

    Science.gov (United States)

    Auguy, Constance; Calvès, Gérôme; Calderon, Ysabel; Brusset, Stéphane

    2017-12-01

    Identification of a previously undocumented hydrate system in the Tumbes Basin, localized off the north Peruvian margin at latitude of 3°20'—4°10'S, allows us to better understand gas hydrates of convergent margins, and complement the 36 hydrate sites already identified around the Pacific Ocean. Using a combined 2D-3D seismic dataset, we present a detailed analysis of seismic amplitude anomalies related to the presence of gas hydrates and/or free gas in sediments. Our observations identify the occurrence of a widespread bottom simulating reflector (BSR), under which we observed, at several sites, the succession of one or two BSR-type reflections of variable amplitude, and vertical acoustic discontinuities associated with fluid flow and gas chimneys. We conclude that the uppermost BSR marks the current base of the hydrate stability field, for a gas composition comprised between 96% methane and 4% of ethane, propane and pure methane. Three hypotheses are developed to explain the nature of the multiple BSRs. They may refer to the base of hydrates of different gas composition, a remnant of an older BSR in the process of dispersion/dissociation or a diagenetically induced permeability barrier formed when the active BSR existed stably at that level for an extended period. The multiple BSRs have been interpreted as three events of steady state in the pressure and temperature conditions. They might be produced by climatic episodes since the last glaciation associated with tectonic activity, essentially tectonic subsidence, one of the main parameters that control the evolution of the Tumbes Basin.

  9. The Use of Horizontal Wells in Gas Production from Hydrate Accumulations

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, Matthew; Moridis, George J.; Reagan, Matthew T.; Zhang, Keni

    2008-04-15

    The amounts of hydrocarbon gases trapped in natural hydrate accumulations are enormous, leading to a recent interest in the evaluation of their potential as an energy source. Earlier studies have demonstrated that large volumes of gas can be readily produced at high rates for long times from gas hydrate accumulations by means of depressurization-induced dissociation, using conventional technology and vertical wells. The results of this numerical study indicate that the use of horizontal wells does not confer any practical advantages to gas production from Class 1 deposits. This is because of the large disparity in permeabilities between the hydrate layer (HL) and the underlying free gas zone, leading to a hydrate dissociation that proceeds in a horizontally dominant direction and is uniform along the length of the reservoir. When horizontal wells are placed near the base of the HL in Class 2 deposits, the delay in the evolution of a significant gas production rate outweighs their advantages, which include higher rates and the prevention of flow obstruction problems that often hamper the performance of vertical wells. Conversely, placement of a horizontal well near to top of the HL can lead to dramatic increases in gas production from Class 2 and Class 3 deposits over the corresponding production from vertical wells.

  10. Gas hydrate decomposition recorded by authigenic barite at pockmark sites of the northern Congo Fan

    Science.gov (United States)

    Kasten, Sabine; Nöthen, Kerstin; Hensen, Christian; Spieß, Volkhard; Blumenberg, Martin; Schneider, Ralph R.

    2012-12-01

    The geochemical cycling of barium was investigated in sediments of pockmarks of the northern Congo Fan, characterized by surface and subsurface gas hydrates, chemosynthetic fauna, and authigenic carbonates. Two gravity cores retrieved from the so-called Hydrate Hole and Worm Hole pockmarks were examined using high-resolution pore-water and solid-phase analyses. The results indicate that, although gas hydrates in the study area are stable with respect to pressure and temperature, they are and have been subject to dissolution due to methane-undersaturated pore waters. The process significantly driving dissolution is the anaerobic oxidation of methane (AOM) above the shallowest hydrate-bearing sediment layer. It is suggested that episodic seep events temporarily increase the upward flux of methane, and induce hydrate formation close to the sediment surface. AOM establishes at a sediment depth where the upward flux of methane from the uppermost hydrate layer counterbalances the downward flux of seawater sulfate. After seepage ceases, AOM continues to consume methane at the sulfate/methane transition (SMT) above the hydrates, thereby driving the progressive dissolution of the hydrates "from above". As a result the SMT migrates downward, leaving behind enrichments of authigenic barite and carbonates that typically precipitate at this biogeochemical reaction front. Calculation of the time needed to produce the observed solid-phase barium enrichments above the present-day depths of the SMT served to track the net downward migration of the SMT and to estimate the total time of hydrate dissolution in the recovered sediments. Methane fluxes were higher, and the SMT was located closer to the sediment surface in the past at both sites. Active seepage and hydrate formation are inferred to have occurred only a few thousands of years ago at the Hydrate Hole site. By contrast, AOM-driven hydrate dissolution as a consequence of an overall net decrease in upward methane flux seems to

  11. Gas hydrates in shallow deposits of the Amsterdam mud volcano, Anaximander Mountains, Northeastern Mediterranean Sea

    Science.gov (United States)

    Pape, Thomas; Kasten, Sabine; Zabel, Matthias; Bahr, André; Abegg, Friedrich; Hohnberg, Hans-Jürgen; Bohrmann, Gerhard

    2010-06-01

    We investigated gas hydrate in situ inventories as well as the composition and principal transport mechanisms of fluids expelled at the Amsterdam mud volcano (AMV; 2,025 m water depth) in the Eastern Mediterranean Sea. Pressure coring (the only technique preventing hydrates from decomposition during recovery) was used for the quantification of light hydrocarbons in near-surface deposits. The cores (up to 2.5 m in length) were retrieved with an autoclave piston corer, and served for analyses of gas quantities and compositions, and pore-water chemistry. For comparison, gravity cores from sites at the summit and beyond the AMV were analyzed. A prevalence of thermogenic light hydrocarbons was inferred from average C1/C2+ ratios <35 and δ13C-CH4 values of -50.6‰. Gas venting from the seafloor indicated methane oversaturation, and volumetric gas-sediment ratios of up to 17.0 in pressure cores taken from the center demonstrated hydrate presence at the time of sampling. Relative enrichments in ethane, propane, and iso-butane in gas released from pressure cores, and from an intact hydrate piece compared to venting gas suggest incipient crystallization of hydrate structure II (sII). Nonetheless, the co-existence of sI hydrate can not be excluded from our dataset. Hydrates fill up to 16.7% of pore volume within the sediment interval between the base of the sulfate zone and the maximum sampling depth at the summit. The concave-down shapes of pore-water concentration profiles recorded in the center indicate the influence of upward-directed advection of low-salinity fluids/fluidized mud. Furthermore, the SO{4/2-} and Ba2+ pore-water profiles in the central part of the AMV demonstrate that sulfate reduction driven by the anaerobic oxidation of methane is complete at depths between 30 cm and 70 cm below seafloor. Our results indicate that methane oversaturation, high hydrostatic pressure, and elevated pore-water activity caused by low salinity promote fixing of considerable

  12. Mathematical model of the methane replacement by carbon dioxide in the gas hydrate reservoir taking into account the diffusion kinetics

    Science.gov (United States)

    Musakaev, N. G.; Khasanov, M. K.; Rafikova, G. R.

    2018-03-01

    The problem of the replacement of methane in its hydrate by carbon dioxide in a porous medium is considered. The gas-exchange kinetics scheme is proposed in which the intensity of the process is limited by the diffusion of CO2 through the hydrate layer formed between the gas mixture flow and the CH4 hydrate. Dynamics of the main parameters of the process is numerically investigated. The main characteristic stages of the process are determined.

  13. Characterization of a stratigraphically constrained gas hydrate system along the western continental margin of Svalbard from ocean bottom seismometer data

    OpenAIRE

    Chabert, Anne; Minshull, Tim A.; Westbrook, Graham K.; Berndt, Christian; Thatcher, Kate E.; Sarkar, Sudipta

    2011-01-01

    The ongoing warming of bottom water in the Arctic region is anticipated to destabilize some of the gas hydrate present in shallow seafloor sediment, potentially causing the release of methane from dissociating hydrate into the ocean and the atmosphere. Ocean-bottom seismometer (OBS) experiments were conducted along the continental margin of western Svalbard to quantify the amount of methane present as hydrate or gas beneath the seabed. P- and S-wave velocities were modeled for five sites alon...

  14. Operational analysis of a small-capacity cogeneration system with a gas hydrate battery

    International Nuclear Information System (INIS)

    Obara, Shin'ya; Kikuchi, Yoshinobu; Ishikawa, Kyosuke; Kawai, Masahito; Kashiwaya, Yoshiaki

    2014-01-01

    In a cold region during winter, energy demand for residential heating is high and energy saving, the discharge of greenhouse gases, and air pollution are all of significant concern. We investigated the fundamental characteristics of an energy storage system with a GHB (gas hydrate battery) in which heat cycle by a unique change in state of gas hydrate operates using the low-temperature ambient air of a cold region. The proposed system with the GHB can respond to a high heat to power ratio caused by a small-scale CGS (cogeneration system) that is powered by a gas engine, a polymer electrolyte fuel cell, or a solid oxide fuel cell. In this paper, we explain how the relation between fossil fuel consumption and heat to power ratio of the different types of systems differ. We investigated the proposed system by laboratory experiments and analysis of the characteristics of power load and heat load of such a system in operation in Kitami, a cold district in Japan. If a hydrate formation space of 2 m 3 is introduced into the proposed system, 48%–52% (namely, power rate by green energy) of total electric power consumption is supplied by the GHB. - Highlights: • Heat cycle by unique change in state of gas hydrate was developed. • Characteristics of energy storage equipment using CO 2 hydrate were investigated. • Hybrid system of small-scale cogeneration and gas hydrate heat cycle was examined. • Proposed system can reduce fuel consumption during winter in a cold region

  15. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea

    Science.gov (United States)

    Wang, Xiujuan; Qiang, Jin; Collett, Timothy S.; Shi, Hesheng; Yang, Shengxiong; Yan, Chengzhi; Li, Yuanping; Wang, Zhenzhen; Chen, Duanxin

    2016-01-01

    A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.

  16. The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production

    Science.gov (United States)

    Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven

    2013-04-01

    Simulating natural scenarios on lab scale is a common technique to gain insight into geological processes with moderate effort and expenses. Due to the remote occurrence of gas hydrates, their behavior in sedimentary deposits is largely investigated on experimental set ups in the laboratory. In the framework of the submarine gas hydrate research project (SUGAR) a large reservoir simulator (LARS) with an internal volume of 425 liter has been designed, built and tested. To our knowledge this is presently a word-wide unique set up. Because of its large volume it is suitable for pilot plant scale tests on hydrate behavior in sediments. That includes not only the option of systematic tests on gas hydrate formation in various sedimentary settings but also the possibility to mimic scenarios for the hydrate decomposition and subsequent natural gas extraction. Based on these experimental results various numerical simulations can be realized. Here, we present the design and the experimental set up of LARS. The prerequisites for the simulation of a natural gas hydrate reservoir are porous sediments, methane, water, low temperature and high pressure. The reservoir is supplied by methane-saturated and pre-cooled water. For its preparation an external gas-water mixing stage is available. The methane-loaded water is continuously flushed into LARS as finely dispersed fluid via bottom-and-top-located sparger. The LARS is equipped with a mantle cooling system and can be kept at a chosen set temperature. The temperature distribution is monitored at 14 reasonable locations throughout the reservoir by Pt100 sensors. Pressure needs are realized using syringe pump stands. A tomographic system, consisting of a 375-electrode-configuration is attached to the mantle for the monitoring of hydrate distribution throughout the entire reservoir volume. Two sets of tubular polydimethylsiloxan-membranes are applied to determine gas-water ratio within the reservoir using the effect of permeability

  17. Production-test planning for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, T. [Japan Petroleum Exploration Co. Ltd., Tokyo (Japan); Dallimore, S. [Geological Survey of Canada, Sidney, BC (Canada); Collett, T. [United States Geological Survey, Denver, CO (United States); Inoue, T. [Japan National Oil Corp., Chiba (Japan); Hancock, S.H.; Weatherill, B. [APA Petroleum Engineering Ltd., Calgary, AB (Canada); Moridis, G.J. [California Univ., Berkeley, CA (United States). Lawrence Berkeley National Laboratory

    2005-07-01

    The development of the gas hydrate production-test experiments for the JAPEX/JNOC/GSC et al. Mallik 5L-38 well was reviewed. The research well was drilled to confirm the feasibility of natural gas production from gas hydrate deposits by depressurization and thermal stimulation, and to collect enough data to determine relevant gas hydrate formation properties. The production of the free-gas interval at the base of the gas hydrate stability zone was examined along with other tests for gas hydrate accumulation at the Mallik well. This perforated the hydrate interval to allow for both small and large-scale pressure drawdown tests directly in a gas hydrate zone. Other gas hydrate accumulation tests included inhibitor stimulations; horizontal wells; complex multiple-well experiments; and thermal stimulations. Modern pressure transient analysis techniques were also used to analyze the bottomhole data.

  18. Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, Matthew; Reagan, Matthew T.; Moridis, George J.

    2008-04-15

    Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor and assessed the potential for methane release into the ocean. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and for the first time, estimated the effect of benthic biogeochemical activity. The results show that shallow deposits--such as those found in arctic regions or in the Gulf of Mexico--can undergo rapid dissociation and produce significant methane fluxes of 2 to 13 mol/yr/m{sup 2} over a period of decades, and release up to 1,100 mol of methane per m{sup 2} of seafloor in a century. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane) to consume the released methane or sequester the carbon. These results will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

  19. Lithological control on gas hydrate saturation as revealed by signal classification of NMR logging data

    Science.gov (United States)

    Bauer, Klaus; Kulenkampff, Johannes; Henninges, Jan; Spangenberg, Erik

    2015-09-01

    In this paper, nuclear magnetic resonance (NMR) downhole logging data are analyzed with a new strategy to study gas hydrate-bearing sediments in the Mackenzie Delta (NW Canada). In NMR logging, transverse relaxation time (T2) distribution curves are usually used to determine single-valued parameters such as apparent total porosity or hydrocarbon saturation. Our approach analyzes the entire T2 distribution curves as quasi-continuous signals to characterize the rock formation. We apply self-organizing maps, a neural network clustering technique, to subdivide the data set of NMR curves into classes with a similar and distinctive signal shape. The method includes (1) preparation of data vectors, (2) unsupervised learning, (3) cluster definition, and (4) classification and depth mapping of all NMR signals. Each signal class thus represents a specific pore size distribution which can be interpreted in terms of distinct lithologies and reservoir types. A key step in the interpretation strategy is to reconcile the NMR classes with other log data not considered in the clustering analysis, such as gamma ray, hydrate saturation, and other logs. Our results defined six main lithologies within the target zone. Gas hydrate layers were recognized by their low signal amplitudes for all relaxation times. Most importantly, two subtypes of hydrate-bearing shaly sands were identified. They show distinct NMR signals and differ in hydrate saturation and gamma ray values. An inverse linear relationship between hydrate saturation and clay content was concluded. Finally, we infer that the gas hydrate is not grain coating, but rather, pore filling with matrix support is the preferred growth habit model for the studied formation.

  20. Gas Hydrates of Coal Layers as a Methane Source in the Atmosphere and Mine Working

    Science.gov (United States)

    Dyrdin, Valery; Shepeleva, Sofya; Kim, Tatiana

    2017-11-01

    Living conditions of gas hydrates of a methane in a coal matrix as one of possible forms of finding of molecules of a methane in coal layers are considered. However, gas hydrates are formed not in all mineral coals even under the thermobaric conditions corresponding to their equilibrium state as the minimum humidity and the corresponding pore width are necessary for each brand of coal for formation of gas hydrate. It is shown that it depends on electric electrical dipole moment of a macromolecule of coal. Coals of brands K, D, Zh were considered. The electric field created by the surface of coal does not allow molecules of water to carry out threedimensional driving, and they keep on an internal surface of a time. By means of theoretical model operation a dipole - dipole interaction of molecules of water with the steam surface of coal values of energy of fiber interaction for various functional groups located in coal "fringe" which size for the first and second layers does not allow molecules of water to participate in formation of gas hydrates are received. For coals of brands K, Zh, D, considering distribution of a time on radiuses, the percent of moisture, which cannot share in education solid coal of gas solutions, is calculated.

  1. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    International Nuclear Information System (INIS)

    Moridis, George J.; Sloan, E. Dendy

    2007-01-01

    In this paper, we evaluate the gas production potential of disperse, low-saturation (S H H hydrate-bearing sediments subject to depressurization-induced dissociation over a 10-year production period. We investigate the sensitivity of items (a)-(c) to the following hydraulic properties, reservoir conditions, and operational parameters: intrinsic permeability, porosity, pressure, temperature, hydrate saturation, and constant pressure at which the production well is kept. The results of this study indicate that, despite wide variations in the aforementioned parameters (covering the entire spectrum of such deposits), gas production is very limited, never exceeding a few thousand cubic meters of gas during the 10-year production period. Such low production volumes are orders of magnitude below commonly accepted standards of economic viability, and are further burdened with very unfavorable gas-to-water ratios. The unequivocal conclusion from this study is that disperse, low-S H hydrate accumulations in oceanic sediments are not promising targets for gas production by means of depressurization-induced dissociation, and resources for early hydrate exploitation should be focused elsewhere

  2. Gas Hydrates Accumulations on the South Shetland Continental Margin: New Detection Possibilities

    Directory of Open Access Journals (Sweden)

    V. D. Solovyov

    2011-01-01

    Full Text Available The results of investigations in 2006–2010 for hydrocarbon and gas hydrates on the Antarctic Peninsula continental margin are given. In 2004 and 2006, the marine geoelectric researches by methods of forming a short-pulsed electromagnetic field (FSPEF and vertical electric-resonance sounding (VERS had been conducted in this region. The “deposit” type anomaly was mapped by FSPEF survey, and anomalous polarized layers of “hydrocarbon deposit” type were chosen by VERS sounding within this anomaly on Antarctic margin in the region of UAS “Academician Vernadsky.” Anomalous zones of “gas hydrate deposit” type were detected on the South Shetland margin due to the special technology of satellite data processing and interpretation using. These results confirm the high gas hydrates potential of the West Antarctica region. Some practical results of the experimental approbation of these original technologies for the “direct” prospecting and exploration of hydrocarbon (HC and gas hydrates accumulations in different oil-and-gas bearing basins of Russia and Gulf of Mexico are proposed. The integration of satellite data processing and materials of FSPEF-VERS methods enable improving their efficiency for different geological and geophysical problems solving.

  3. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  4. Maintenance of the JET active gas handling system

    International Nuclear Information System (INIS)

    Brennan, P.D.; Bell, A.C.; Brown, K.; Cole, C.; Cooper, B.; Gibbons, C.; Harris, M.; Jones, G.; Knipe, S.; Lewis, J.; Manning, C.; Miller, A.; Perevezentsev, A.; Skinner, N.; Stagg, R.; Stead, M.; Thomas, R.; Yorkshades, J.

    2003-01-01

    The JET active gas handling system (AGHS) has been in operation in conjunction with the JET machine since Spring 1997. The tritium levels within the vessel have remained sufficiently high, 6.2 g at the end of the DTE1 experiment and currently 1.5 g, such that the AGHS has been required to operate continuously to detritiate gases liberated during D-D operations and to maintain discharges to the environment to ALARP. Maintaining the system to ensure continued operation has been a key factor in guaranteeing the continued availability of the essential sub-systems. The operational history of the JET AGHS has been previously documented in a number of papers [R. Laesser, et al. Proc. of the 19th SOFT Conf. 1 (1996) 227; R. Laesser, et al., Fusion Eng. Des. 46 (1999) 307; P.D. Brennan, et al., 18th Symp. on Fusion Eng., 1999]. Operational downtime is minimised through well-engineered sub-systems that use high integrity components. Outage, contamination and operator dosage are minimised through pre-planned and prepared maintenance operations. The reliability of sub-system critical condition fault detection is demonstrated through routine testing of hard-wired alarms and interlocks

  5. Maintenance of the JET active gas handling system

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, P.D. E-mail: damian.brennan@jet.uk; Bell, A.C.; Brown, K.; Cole, C.; Cooper, B.; Gibbons, C.; Harris, M.; Jones, G.; Knipe, S.; Lewis, J.; Manning, C.; Miller, A.; Perevezentsev, A.; Skinner, N.; Stagg, R.; Stead, M.; Thomas, R.; Yorkshades, J

    2003-09-01

    The JET active gas handling system (AGHS) has been in operation in conjunction with the JET machine since Spring 1997. The tritium levels within the vessel have remained sufficiently high, 6.2 g at the end of the DTE1 experiment and currently 1.5 g, such that the AGHS has been required to operate continuously to detritiate gases liberated during D-D operations and to maintain discharges to the environment to ALARP. Maintaining the system to ensure continued operation has been a key factor in guaranteeing the continued availability of the essential sub-systems. The operational history of the JET AGHS has been previously documented in a number of papers [R. Laesser, et al. Proc. of the 19th SOFT Conf. 1 (1996) 227; R. Laesser, et al., Fusion Eng. Des. 46 (1999) 307; P.D. Brennan, et al., 18th Symp. on Fusion Eng., 1999]. Operational downtime is minimised through well-engineered sub-systems that use high integrity components. Outage, contamination and operator dosage are minimised through pre-planned and prepared maintenance operations. The reliability of sub-system critical condition fault detection is demonstrated through routine testing of hard-wired alarms and interlocks.

  6. Acoustic Velocity Log Numerical Simulation and Saturation Estimation of Gas Hydrate Reservoir in Shenhu Area, South China Sea

    Directory of Open Access Journals (Sweden)

    Kun Xiao

    2013-01-01

    Full Text Available Gas hydrate model and free gas model are established, and two-phase theory (TPT for numerical simulation of elastic wave velocity is adopted to investigate the unconsolidated deep-water sedimentary strata in Shenhu area, South China Sea. The relationships between compression wave (P wave velocity and gas hydrate saturation, free gas saturation, and sediment porosity at site SH2 are studied, respectively, and gas hydrate saturation of research area is estimated by gas hydrate model. In depth of 50 to 245 m below seafloor (mbsf, as sediment porosity decreases, P wave velocity increases gradually; as gas hydrate saturation increases, P wave velocity increases gradually; as free gas saturation increases, P wave velocity decreases. This rule is almost consistent with the previous research result. In depth of 195 to 220 mbsf, the actual measurement of P wave velocity increases significantly relative to the P wave velocity of saturated water modeling, and this layer is determined to be rich in gas hydrate. The average value of gas hydrate saturation estimated from the TPT model is 23.2%, and the maximum saturation is 31.5%, which is basically in accordance with simplified three-phase equation (STPE, effective medium theory (EMT, resistivity log (Rt, and chloride anomaly method.

  7. The method of predicting the process of condensation of moisture and hydrate formation in the gas pipeline

    OpenAIRE

    Хвостова, Олена Вікторівна

    2014-01-01

    The problem of ensuring the required value of one of the natural gas quality indicators during its transportation to the consumer - moisture content is considered in the paper. The method for predicting possible moisture condensation and hydrate formation processes in gas pipelines considering mixing gas flows with different moisture content was developed.Predicting the moisture condensation and hydrate formation in gas pipelines is an actual task since a timely prevention of these processes ...

  8. Formation of Sclerotic Hydrate Deposits in a Pipe for Extraction of a Gas from a Dome Separator

    Science.gov (United States)

    Urazov, R. R.; Chiglinstev, I. A.; Nasyrov, A. A.

    2017-09-01

    The theory of formation of hydrate deposits on the walls of a pipe for extraction of a gas from a dome separator designed for the accident-related collection of hydrocarbons on the ocean floor is considered. A mathematical model has been constructed for definition of a steady movement of a gas in such a pipe with gas-hydrate deposition under the conditions of changes in the velocity, temperature, pressure, and moisture content of the gas flow.

  9. 3D pore-type digital rock modeling of natural gas hydrate for permafrost and numerical simulation of electrical properties

    Science.gov (United States)

    Dong, Huaimin; Sun, Jianmeng; Lin, Zhenzhou; Fang, Hui; Li, Yafen; Cui, Likai; Yan, Weichao

    2018-02-01

    Natural gas hydrate is being considered as an alternative energy source for sustainable development and has become a focus of research throughout the world. In this paper, based on CT scanning images of hydrate reservoir rocks, combined with the microscopic distribution of hydrate, a diffusion limited aggregation (DLA) model was used to construct 3D hydrate digital rocks of different distribution types, and the finite-element method was used to simulate their electrical characteristics in order to study the influence of different hydrate distribution types, hydrate saturation and formation of water salinity on electrical properties. The results show that the hydrate digital rocks constructed using the DLA model can be used to characterize the microscopic distribution of different types of hydrates. Under the same conditions, the resistivity of the adhesive hydrate digital rock is higher than the cemented and scattered type digital rocks, and the resistivity of the scattered hydrate digital rock is the smallest among the three types. Besides, the difference in the resistivity of the different types of hydrate digital rocks increases with an increase in hydrate saturation, especially when the saturation is larger than 55%, and the rate of increase of each of the hydrate types is quite different. Similarly, the resistivity of the three hydrate types decreases with an increase in the formation of water salinity. The single distribution hydrate digital rock constructed, combined with the law of microscopic distribution and influence of saturation on the electrical properties, can effectively improve the accuracy of logging identification of hydrate reservoirs and is of great significance for the estimation of hydrate reserves.

  10. Experimental investigation of gas hydrate formation, plugging and transportability in partially dispersed and water continuous systems

    Science.gov (United States)

    Vijayamohan, Prithvi

    As oil/gas subsea fields mature, the amount of water produced increases significantly due to the production methods employed to enhance the recovery of oil. This is true especially in the case of oil reservoirs. This increase in the water hold up increases the risk of hydrate plug formation in the pipelines, thereby resulting in higher inhibition cost strategies. A major industry concern is to reduce the severe safety risks associated with hydrate plug formation, and significantly extending subsea tieback distances by providing a cost effective flow assurance management/safety tool for mature fields. Developing fundamental understanding of the key mechanistic steps towards hydrate plug formation for different multiphase flow conditions is a key challenge to the flow assurance community. Such understanding can ultimately provide new insight and hydrate management guidelines to diminish the safety risks due to hydrate formation and accumulation in deepwater flowlines and facilities. The transportability of hydrates in pipelines is a function of the operating parameters, such as temperature, pressure, fluid mixture velocity, liquid loading, and fluid system characteristics. Specifically, the hydrate formation rate and plugging onset characteristics can be significantly different for water continuous, oil continuous, and partially dispersed systems. The latter is defined as a system containing oil/gas/water, where the water is present both as a free phase and partially dispersed in the oil phase (i.e., entrained water in the oil). Since hydrate formation from oil dispersed in water systems and partially dispersed water systems is an area which is poorly understood, this thesis aims to address some key questions in these systems. Selected experiments have been performed at the University of Tulsa flowloop to study the hydrate formation and plugging characteristics for the partially dispersed water/oil/gas systems as well as systems where the oil is completely dispersed

  11. Onset and stability of gas hydrates under permafrost in an environment of surface climatic change : past and future

    International Nuclear Information System (INIS)

    Majorowicz, J.A.; Osadetz, K.; Safanda, J.

    2008-01-01

    This paper presented a model designed to simulate permafrost and gas hydrate formation in a changing surface temperature environment in the Beaufort-Mackenzie Basin (BMB). The numerical model simulated surface forcing due to general cooling trends that began in the late Miocene era. This study modelled the onset of permafrost formation and subsequent gas hydrate formation in the changing surface temperature environment for the BMB. Paleoclimatic data were used. The 1-D model was constrained by deep heat flow from well bottom hole temperatures; conductivity; permafrost thickness; and the thickness of the gas hydrates. The model used latent heat effects for the ice-bearing permafrost and hydrate intervals. Surface temperatures for glacial and interglacial histories for the last 14 million years were considered. The model also used a detailed Holocene temperature history as well as a scenario in which atmospheric carbon dioxide (CO 2 ) levels were twice as high as current levels. Two scenarios were considered: (1) the formation of gas hydrates from gas entrapped under geological seals; and (2) the formation of gas hydrates from gas located in free pore spaces simultaneously with permafrost formation. Results of the study showed that gas hydrates may have formed at a depth of 0.9 km only 1 million years ago. Results of the other modelling scenarios suggested that the hydrates formed 6 million years ago, when temperature changes caused the gas hydrate layer to expand both downward and upward. Detailed models of more recent glacial and interglacial histories showed that the gas hydrate zones will persist under the thick body of the BMB permafrost through current interglacial warming as well as in scenarios where atmospheric CO 2 is doubled. 28 refs., 13 figs

  12. Incident at university research facility - pressure testing of gas hydrate cell

    DEFF Research Database (Denmark)

    Jensen, Niels; Jørgensen, Sten Bay

    2014-01-01

    A master student designed a cell for observing the development of gas hydrates as conditions in the cell were changed. The supervisor asked for a pressure test of the cell before the experiments started. The student chose-to perform the pressure test using compressed air and this resulted in one...

  13. Mud volcanoes and gas hydrates in the Anaximander mountains (Eastern Mediterranean Sea)

    NARCIS (Netherlands)

    Lykousis, V.; Alexandri, S.; Woodside, J.M.; de Lange, G.; Dahlmann, A.; Perissoratis, C.; Heeschen, K.; Ioakim, Chr.; Sakellariou, D.; Nomikou, P.; Rousakis, G.; Casas, D.; Ballas, D.; Ercilla, G.

    2009-01-01

    Detailed multibeam, sedimentological, and geophysical surveys provide ample new data to confirm that the Anaximander Mountains (Eastern Mediterranean) are an important area for active mud volcanism and gas hydrate formation. More than 3000 km of multibeam track length was acquired during two recent

  14. Models of talik, permafrost and gas hydrate histories - Beaufort Mackenzie Basin, Canada

    Czech Academy of Sciences Publication Activity Database

    Majorowicz, J.; Osadetz, K.; Šafanda, Jan

    2015-01-01

    Roč. 8, č. 7 (2015), s. 6738-6764 ISSN 1996-1073 Institutional support: RVO:67985530 Keywords : gas hydrates * permafrost * Beaufort-Mackenzie Basin * taliks Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.077, year: 2015

  15. Detection of gas-charged sediments and gas hydrate horizons along the western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Veerayya, M.; Karisiddaiah, S.M.; Vora, K.H.; Wagle, B.G.; Almeida, F.

    , and it is the seepage which may demonstrate the existence of source rocks. Seismic profiles also revealed the presence of bottom simulating reflectors (BSRs) in the mid-lower slope-rise regions, presumably suggesting the presence of gas hydrates. The BSRs occur...

  16. The gas cushion technique as a handling means for the remote removal of tokamak segments

    International Nuclear Information System (INIS)

    Removille, J.; Stephano, R.

    1983-01-01

    The gas cushion technique has been studied as offering a compact, flexible and safe way of handling massive objects. The evolution of the gas-cushion handling philosophy is discussed and examples presented related to the displacements of different loads in the torus and in the reactor hall. A short technical comparison with the C-frame handling concept is made in the conclusion. (author)

  17. Gas hydrates and permafrost in continental northern West Siberia; Gashydrate und Permafrost im kontinentalen noerdlichen Westsibirien

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, B. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Braun, A.; Poelchau, H.S. [Forschungszentrum Juelich (Germany). Inst. fuer Erdoel und Organische Geochemie; Littke, R. [RWTH Aachen (Germany). Lehrstuhl fuer Geologie, Geochemie und Lagerstaetten des Erdoels und der Kohle

    1997-12-31

    The largest natural gas pool in the world is located in northern part of the West Siberian Basin. During the Quaternary this reservoir became overlaid with several hundreds of metres of permafrost. The pressure and temperature conditions prevailing under this permafrost zone have led to the development of gas hydrates. As far as is known today there is no genetic relationship between the formation of the gas pool and the development of gas hydrates. The present contribution deals with these questions in detail. (MSK) [Deutsch] Im Nordteil des westsibirischen Beckens liegt die groesste Erdgaslagerstaette der Erde. Darueber hat sich im Quartaer ein mehrere hundert Meter maechtiger Permafrost gebildet. Die unter der Premafrostzone herrschenden Druck-und Temperaturbedingungen ermoeglichten die Bildung von Gashydraten. Nach heutigen Erkenntnisse besteht kein genetischer Zusammenhang zwischen Lagerstaettenbildung und Gashydraten. Im Folgenden werden Einzelheiten geschildert.

  18. Gas-phase hydration of glyoxylic acid: Kinetics and atmospheric implications.

    Science.gov (United States)

    Liu, Ling; Zhang, Xiuhui; Li, Zesheng; Zhang, Yunhong; Ge, Maofa

    2017-11-01

    Oxocarboxylic acids are one of the most important organic species found in secondary organic aerosols and can be detected in diverse environments. But the hydration of oxocarboxylic acids in the atmosphere has still not been fully understood. Neglecting the hydration of oxocarboxylic acids in atmospheric models may be one of the most important reasons for the significant discrepancies between field measurements and abundance predictions of atmospheric models for oxocarboxylic acids. In the present paper, glyoxylic acid, as the most abundant oxocarboxylic acids in the atmosphere, has been selected as an example to study whether the hydration process can occur in the atmosphere and what the kinetic process of hydration is. The gas-phase hydration of glyoxylic acid to form the corresponding geminal diol and those catalyzed by atmospheric common substances (water, sulfuric acid and ammonia) have been investigated at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311++G(3df,3pd) level of theory. The contour map of electron density difference of transition states have been further analyzed. It is indicated that these atmospheric common substances can all catalyze on the hydration to some extent and sulfuric acid is the most effective reducing the Gibbs free energy of activation to 9.48 kcal/mol. The effective rate constants combining the overall rate constants and concentrations of the corresponding catalysts have shown that water and sulfuric acid are both important catalysts and the catalysis of sulfuric acid is the most effective for the gas-phase hydration of glyoxylic acid. This catalyzed processes are potentially effective in coastal regions and polluted regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Quantitative degassing of gas hydrate-bearing pressure cores from Green Canyon 955, Gulf of Mexico

    Science.gov (United States)

    Phillips, S. C.; Holland, M. E.; Flemings, P. B.; Schultheiss, P. J.; Waite, W. F.; Petrou, E. G.; Jang, J.; Polito, P. J.; O'Connell, J.; Dong, T.; Meazell, K.

    2017-12-01

    We present results from 20 quantitative degassing experiments of pressure-core sections collected during Expedition UT-GOM2-1 from Green Canyon 955 in the northern Gulf of Mexico. These experiments highlight an average pore-space methane hydrate saturation, Sh, of 59% (min: 12%; max 87%) in sediments between 413 and 440 mbsf in 2032 m water depth. There is a strong lithofacies control of hydrate saturation within the reservoir, with a high saturation sandy silt facies (Sh of 65 to 87%) interbedded with a low saturation clayey silt facies (Sh of 12 to 30%). Bedding occurs on the scale of tens of centimeters. Outside of the main hydrate reservoir, methane hydrate occurs in low saturations (Sh of 0.8 to 3%). Hydrate saturations exhibit a strong correlation (R2=0.89) with the average P-wave velocity measured through the degassed sections. These preliminary hydrate saturations were calculated assuming a porosity of 40% with core filling the full internal diameter of the core liner. Gas recovered during these experiments is composed of almost entirely methane, with an average of 94 ppm ethane and detectable, but not quantifiable, propane. Degassed pressure cores were depressurized through a manifold by the stepwise release of fluid, and the volumes of produced gas and water were monitored. The core's hydrostatic pressure was measured and recorded continuously at the manifold. Pressure and temperature were also measured by data storage tags within the sample chambers. Two slow, multi-day degassing experiments were performed to estimate the in situ salinity within core sections. Based on temperature and pressure observations at the point of the initial pressure rebound due to hydrate dissociation, we estimate the salinity within these samples to be between 33 and 42 g kg-1.

  20. Modelling of oceanic gas hydrate instability and methane release in response to climate change

    International Nuclear Information System (INIS)

    Reagan, M.T.; Moridis, G.J.

    2008-01-01

    Methane releases from oceanic hydrates are thought to have played a significant role in climatic changes that have occurred in the past. In this study, gas hydrate accumulations subjected to temperature changes were modelled in order to assess their potential for future methane releases into the ocean. Recent ocean and atmospheric chemistry studies were used to model 2 climate scenarios. Two types of hydrate accumulations were used to represent dispersed, low-saturation deposits. The 1-D multiphase thermodynamic-hydrological model considered the properties of benthic sediments; ocean depth; sea floor temperature; the saturation and distribution of the hydrates; and the effect of benthic biogeochemical activity. Results of the simulations showed that shallow deposits undergo rapid dissociation and are capable of producing methane fluxes of 2 to 13 mol m 3 per year over a period of decades. The fluxes exceed the ability of the anaerobic sea floor environment to sequester or consume the methane. A large proportion of the methane released in the scenarios emerged in the gas phase. Arctic hydrates may pose a threat to regional and global ecological systems. It was concluded that results of the study will be coupled with global climate models in order to assess the impact of the methane releases in relation to global climatic change. 39 refs., 5 figs

  1. How Sodium Chloride Salt Inhibits the Formation of CO2 Gas Hydrates.

    Science.gov (United States)

    Holzammer, Christine; Finckenstein, Agnes; Will, Stefan; Braeuer, Andreas S

    2016-03-10

    We present an experimental Raman study on how the addition of sodium chloride to CO2-hydrate-forming systems inhibits the hydrate formation thermodynamically. For this purpose, the molar enthalpy of reaction and the molar entropy of reaction for the reaction of weakly hydrogen-bonded water molecules to strongly hydrogen bonded water molecules are determined for different salinities from the Raman spectrum of the water-stretching vibration. Simultaneously, the influence of the salinity on the solubility of CO2 in the liquid water-rich phase right before the start of hydrate formation is analyzed. The results demonstrate that various mechanisms contribute to the inhibition of gas hydrate formation. For the highest salt concentration of 20 wt % investigated, the temperature of gas hydrate formation is lowered by 12 K. For this concentration the molar enthalpy and entropy of reaction become smaller by 50 and 20%, respectively. Concurrently, the solubility of carbon dioxide is reduced by 70%. These results are compared with data in literature for systems of sodium chloride in water (without carbon dioxide).

  2. GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

    2004-11-01

    The gas hydrates research Consortium (HRC), established and administered at the University if Mississippi's Center for Marine Research and Environmental Technology (CMRET) has been active on many fronts in FY 03. Extension of the original contract through March 2004, has allowed completion of many projects that were incomplete at the end of the original project period due, primarily, to severe weather and difficulties in rescheduling test cruises. The primary objective of the Consortium, to design and emplace a remote sea floor station for the monitoring of gas hydrates in the Gulf of Mexico by the year 2005 remains intact. However, the possibility of levering HRC research off of the Joint Industries Program (JIP) became a possibility that has demanded reevaluation of some of the fundamental assumptions of the station format. These provisions are discussed in Appendix A. Landmark achievements of FY03 include: (1) Continuation of Consortium development with new researchers and additional areas of research contribution being incorporated into the project. During this period, NOAA's National Undersea Research Program's (NURP) National Institute for Undersea Science and Technology (NIUST) became a Consortium funding partner, joining DOE and Minerals Management Service (MMS); (2) Very successful annual and semiannual meetings in Oxford Mississippi in February and September, 2003; (3) Collection of piston cores from MC798 in support of the effort to evaluate the site for possible monitoring station installation; (4) Completion of the site evaluation effort including reports of all localities in the northern Gulf of Mexico where hydrates have been documented or are strongly suspected to exist on the sea floor or in the shallow subsurface; (5) Collection and preliminary evaluation of vent gases and core samples of hydrate from sites in Green Canyon and Mississippi Canyon, northern Gulf of Mexico; (6) Monitoring of gas activity on the sea floor, acoustically

  3. Protocol for Measuring the Thermal Properties of a Supercooled Synthetic Sand-water-gas-methane Hydrate Sample.

    Science.gov (United States)

    Muraoka, Michihiro; Susuki, Naoko; Yamaguchi, Hiroko; Tsuji, Tomoya; Yamamoto, Yoshitaka

    2016-03-21

    Methane hydrates (MHs) are present in large amounts in the ocean floor and permafrost regions. Methane and hydrogen hydrates are being studied as future energy resources and energy storage media. To develop a method for gas production from natural MH-bearing sediments and hydrate-based technologies, it is imperative to understand the thermal properties of gas hydrates. The thermal properties' measurements of samples comprising sand, water, methane, and MH are difficult because the melting heat of MH may affect the measurements. To solve this problem, we performed thermal properties' measurements at supercooled conditions during MH formation. The measurement protocol, calculation method of the saturation change, and tips for thermal constants' analysis of the sample using transient plane source techniques are described here. The effect of the formation heat of MH on measurement is very small because the gas hydrate formation rate is very slow. This measurement method can be applied to the thermal properties of the gas hydrate-water-guest gas system, which contains hydrogen, CO2, and ozone hydrates, because the characteristic low formation rate of gas hydrate is not unique to MH. The key point of this method is the low rate of phase transition of the target material. Hence, this method may be applied to other materials having low phase-transition rates.

  4. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-08-01

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.

  5. Fundamentals of Natural Gas and Species Flows from Hydrate Dissociation - Applications to Safety and Sea Floor Instability

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Goodarz

    2006-09-30

    Semi-analytical computational models for natural gas flow in hydrate reservoirs were developed and the effects of variations in porosity and permeability on pressure and temperature profiles and the movement of a dissociation front were studied. Experimental data for variations of gas pressure and temperature during propane hydrate formation and dissociation for crushed ice and mixture of crushed ice and glass beads under laboratory environment were obtained. A thermodynamically consistent model for multiphase liquid-gas flows trough porous media was developed. Numerical models for hydrate dissociation process in one dimensional and axisymmetric reservoir were performed. The computational model solved the general governing equations without the need for linearization. A detail module for multidimensional analysis of hydrate dissociation which make use of the FLUENT code was developed. The new model accounts for gas and liquid water flow and uses the Kim-Boshnoi model for hydrate dissociation.

  6. Well-test analysis for gas hydrate reservoirs : examination of parameters suggested by conventional analysis for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, M.; Funatsu, K. [Japan Oil Engineering Co., Tokyo (Japan); Kusaka, K.; Yasuda, M. [Japan National Oil Corp., Chiba (Japan); Dallimore, S.R. [Geological Survey of Canada, Pacific Geoscience Centre, Sidney, BC (Canada); Collett, T.S. [United States Geological Survey, Denver, CO (United States); Hancock, S.H. [APA Petroleum Engineering Ltd., Calgary, AB (Canada)

    2005-07-01

    Formation tests were conducted with a Modular Formation Dynamics Tester (MDT) tool during the Mallik 2002 Gas Hydrate Production Research Well Program. Conventional pressure-transient test analysis methods were used to analyze the test results. However, it was noted that the reliability of the reservoir-parameter estimates is uncertain due to the abrupt change in gas hydrate saturation associated with gas hydrate dissociation during the tests. In order to examine the appropriateness of these methods, the bottom-hole pressure responses during MDT tests in the hypothetical and actual gas hydrate zones were predicted using a numerical simulator. They were then analyzed by conventional test-analysis methods. It was determined that the conventional methods may indicate the average effective permeability over the area of the gas hydrate dissociation. However, the study also revealed that conventional methods might accurately indicate the radius of gas hydrate dissociation only when applying appropriate multiphase-fluid properties and production rates to the cases with high gas hydrate saturation.

  7. Evidence of Gas Hydrates in Block 26—Offshore Trinidad

    Directory of Open Access Journals (Sweden)

    Jill Marcelle-De Silva

    2012-05-01

    Full Text Available Natural gas hydrates are increasingly viewed as a potential economic resource as energy demands rise. In this study, three-dimensional seismic data for Block 26 in the Atlantic Continental Margin offshore Trinidad were evaluated to determine if there is the potential for oceanic hydrate-bearing sediments. The seismic dataset covered an area of approximately 1210 km2 of the continental slope. A bottom simulating reflector which generally ran parallel to the sea floor and cut the dominant stratigraphy was observed and mapped over approximately 43% of the study area.

  8. Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.

    Science.gov (United States)

    Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo

    2010-09-09

    Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.

  9. Palynology, age, correlation and paleoclimatology from JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well and the significance for gas hydrates : a new approach

    Energy Technology Data Exchange (ETDEWEB)

    White, J.M. [Natural Resources Canada, Calgary, AB (Canada). Geological Survey of Canada

    2006-07-01

    Mallik L-38 exploration well was drilled in 1972 in the Mackenzie Delta in Canada's Arctic. Geophysical surveys were used to examine the geological, geochemical and geophysical properties associated with gas hydrate deposits. In 1998, just 150 metres from the original well, the Mallik 2L-38 well was drilled to a depth of 1150 metres in order to study the palynostratigraphy and paleoclimatology of the Beaufort-Mackenzie Basin. The Mallik 2L-38 well revealed that an estimated 187,178 x 10{sup 6} m{sup 3} of gas is trapped as hydrates in 4 fields within a square kilometre of the site. Core and high quality cuttings from Mallik 2L-38 were examined to determine the age and depositional environment of the rocks. A detailed, quantitative palynological analysis was presented in this report along with percentage diagrams for 125 taxa. In order to determine age, a criterion was proposed to evaluate recycling of palymorphs from Cretaceous and Paleogene strata. The palynomorphs provided a biostratigraphic record suitable for the determination of age and depositional environment of the rocks. The interval between 1150 m and an unconformity at 926.5 m has been correlated to the Late Eocene. The interval between that unconformity and the top of the cuttings at 670 m have been correlated to the Oligocene and possibly Miocene. The significance of the foraminiferal top of the Haplophragmoides richardsensis zone in Mallik L-38 was discussed along with the implications of seismic sequence interpretations in determining age. Experimental substitutes for paleoclimatic temperature were provided by four ratios of pollen taxa in order to improve age determinations. Two ratios implied that a cold climatic episode coincided with the deposition of sediment at the top of the cored interval near 886 m in Mallik 2L-38, suggesting a relationship between this climatic event and the top of the gas hydrate hosting interval. 128 refs., 3 tabs., 18 figs.

  10. Environmental impact studies for gas hydrate production test in the Ulleung Basin, East Sea of Korea

    Science.gov (United States)

    Ryu, Byong-Jae

    2017-04-01

    To develop potential future energy resources, the Korean National Gas Hydrate Program has been carried out since 2005. The program has been supported by the Ministry of Trade, Industry and Energy (MOTIE), and carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM), the Korea Gas Corporation (KOGAS) and the Korea National Oil Corporation (KNOC) under the management of Gas Hydrate R&D Organization (GHDO). As a part of this national program, geophysical surveys, geological studies on gas hydrates and two deep drilling expeditions were performed. Gas hydrate-bearing sand layers suitable for production using current technologies were found during the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) in 2010. Environmental impact studies (EIS) also have been carried out since 2012 by KIGAM in cooperation with domestic and foreign universities and research organizations to ensure safe production test that will be performed in near future. The schedule of production test is being planned. The EIS includes assessment of environmental risks, examination on domestic environmental laws related with production test, collection of basic oceanographic information, and baseline and monitoring surveys. Oceanographic information and domestic environmental laws are already collected and analyzed. Baseline survey has been performed using the in-house developed system, KIGAM Seafloor Observation System (KISOS) since 2013. It will also be performed. R/V TAMHAE II of KIGAM used for KISOS operation. As a part of this EIS, pseudo-3D Chirp survey also was carried out in 2014 to determine the development of fault near the potential testing site. Using KIGAM Seafloor Monitoring System (KIMOS), monitoring survey is planned to be performed from three month before production test to three months after production test. The geophysical survey for determining the change of gas hydrate reservoirs and production-efficiency around the production well would also be

  11. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization

    Science.gov (United States)

    Phrampus, B. J.; Hornbach, M. J.

    2012-12-01

    The Gulf Stream is an ocean current that modulates climate in the northern hemisphere by transporting warm waters from the Gulf of Mexico into the North Atlantic and Arctic Oceans (Lynch-Stieglitz et al., 1999, 2011). A changing Gulf Stream has the potential to thaw and convert hundreds of gigatons of frozen methane hydrate trapped below the seafloor into methane gas, increasing the risk of slope failure and methane release (Dickens, 2001; Kennett et al., 2003; Flemings et al., 2003; Archer et al., 2004). How the Gulf Stream changes with time and what effect these changes have on methane hydrate stability is unclear. Here, using seismic data combined with heat-flow models, we show that recent changes in intermediate ocean temperatures associated with the Gulf Stream are rapidly destabilizing methane hydrate along a broad swath of the North American Margin. The area of active hydrate destabilization covers as much as ~10,000 km^2 of the United States Eastern margin and occurs in a region prone to kilometer-scale slope failures. Previous hypothetical studies (Hornbach et al., 2004; Winguth et al., 2010) postulate that a 5 degC increase in intermediate ocean temperatures could release enough methane hydrate to explain extreme global warming events like the Late Palaeocene Thermal Maximum (LPTM) and trigger widespread ocean acidification (Biastock et al., 2011). Our analysis suggests that changes in Gulf Stream flow or temperature within the last ~5,000 years are warming the western North Atlantic Margin by as much as 8 degC and triggering contemporary methane hydrate destabilization along hundreds of kilometers that may continue for centuries. Other recent studies hypothesize similar ocean temperature changes may occur in the Arctic Ocean (Westbrook et al., 2009; Rajan et al., 2012). Thus, our estimate of 2.5 gigatons of destabilizing methane—or ~1% of that necessary to explain the LPTM— may represent only a fraction of the methane hydrate currently destabilizing

  12. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization.

    Science.gov (United States)

    Phrampus, Benjamin J; Hornbach, Matthew J

    2012-10-25

    The Gulf Stream is an ocean current that modulates climate in the Northern Hemisphere by transporting warm waters from the Gulf of Mexico into the North Atlantic and Arctic oceans. A changing Gulf Stream has the potential to thaw and convert hundreds of gigatonnes of frozen methane hydrate trapped below the sea floor into methane gas, increasing the risk of slope failure and methane release. How the Gulf Stream changes with time and what effect these changes have on methane hydrate stability is unclear. Here, using seismic data combined with thermal models, we show that recent changes in intermediate-depth ocean temperature associated with the Gulf Stream are rapidly destabilizing methane hydrate along a broad swathe of the North American margin. The area of active hydrate destabilization covers at least 10,000 square kilometres of the United States eastern margin, and occurs in a region prone to kilometre-scale slope failures. Previous hypothetical studies postulated that an increase of five degrees Celsius in intermediate-depth ocean temperatures could release enough methane to explain extreme global warming events like the Palaeocene-Eocene thermal maximum (PETM) and trigger widespread ocean acidification. Our analysis suggests that changes in Gulf Stream flow or temperature within the past 5,000 years or so are warming the western North Atlantic margin by up to eight degrees Celsius and are now triggering the destabilization of 2.5 gigatonnes of methane hydrate (about 0.2 per cent of that required to cause the PETM). This destabilization extends along hundreds of kilometres of the margin and may continue for centuries. It is unlikely that the western North Atlantic margin is the only area experiencing changing ocean currents; our estimate of 2.5 gigatonnes of destabilizing methane hydrate may therefore represent only a fraction of the methane hydrate currently destabilizing globally. The transport from ocean to atmosphere of any methane released--and thus its

  13. Influence of a synergist on the dissociation of gas hydrates formed in the presence of the kinetic inhibitor polyvinyl caprolactam

    Energy Technology Data Exchange (ETDEWEB)

    Gulbrandsen, A.C. [StatoilHydro, Stavanger (Norway); Svartaas, T.M. [Stavanger Univ., Stavanger (Norway). Dept. of Petroleum Engineering

    2008-07-01

    Conventional chemical methods used to prevent natural gas hydrate plugs in oil and gas production lines are costly and can lead to pipeline corrosion. Polymer-based kinetic inhibitors are now being used to prevent hydrate nucleation and growth, and recent research has shown that the addition of small amounts of glycol ethers substantially improve the performance of the polymers. In this study, gas hydrates were formed from solutions containing Poly Vinyl Caprolactam (PVCap), or INHIBEX, a liquid mixture containing 50 wt per cent PVCAP 2k and 50 wt per cent butyl glycol. Laboratory experiments were conducted using a stirred cell. Hydrate formation was induced by magnetic stirring. Hydrates were then dissociated by increasing the cell temperature. Doses of 1500 ppm and 3000 ppm of the INHIBEX concentration were tested in the cell. Dissociation temperatures were then compared for hydrates formed in the presence of PVCap and INHIBEX. The influence of the INHIBEX concentration on dissociation temperature was also investigated. Results of the study showed that hydrates containing INHIBEX dissociated at lower temperatures than hydrate systems using PVCap. INHIBEX mixtures formed using 3000 ppm of INHIBEX had higher dissociation temperatures than mixtures with INHIBEX at 1500 ppm. It was concluded that the hydrophobicity of the alkoxy group within the glycol ethers caused the molecules to associate with the dissolved polymers. The presence of butyl glycol decreased the hydrate dissociation temperature observed for PVCap systems. 4 refs., 2 tabs., 6 figs.

  14. Gas hydrate quantification from ocean-bottom seismometer data along the continental margin of Western Svalbard.

    Science.gov (United States)

    Chabert, A.; Minshull, T. A.; Westbrook, G. K.; Berndt, C.

    2009-04-01

    The stability of shallow gas hydrate in the Arctic region is expected to be affected by the warming of the bottom-water in the next decades. It is, therefore, important to evaluate how the gas hydrate systems will react to future increases in bottom-water temperature and the impact on climate of the spatial and temporal variability of the release of methane from these reservoirs. As part of the International Polar Year initiative, a multidisciplinary marine expedition was carried out in September 2008 along the continental margin west of Svalbard in the Arctic. One of the objectives was to investigate the extent of the gas hydrate stability zone (GHSZ) along and across the continental slope and to estimate the quantity of methane present using the geophysical properties of methane hydrate- and gas-bearing sediments, which occur in and beneath the GHSZ. Three seismic experiments employing ocean-bottom seismometers (OBS) were carried out across and along the continental margin as part of the project. Seismic data from 13 OBS in closely spaced arrays were acquired from 5 representative sites off west Svalbard, above and below the upper limit of the GHSZ. Two to four OBSs were deployed at each site, with a spacing of 200 m. The high frequency airguns were fired at 5-s intervals, concurrently with the acquisition of multi-channel seismic reflection profiles. The OBSs were equipped with a 3-component 4.5 Hz geophone package and a broadband hydrophone; the data-loggers were operated at 1 kHz sample rate. The OBS experiments were designed to recover P- and S-wave velocities to depths of a few hundreds metres below the seabed in order to estimate the amount of hydrate in the region, hydrate increasing both the P- and S-wave velocities of the sediments in which it is present. The data show clearly recorded P reflections at short offsets, as well as refracted arrivals at larger offsets, from depths of 1 to 2 kilometres below the seabed. S waves, generated by P-S conversion on

  15. Tangaroa TAN0607 cruise report : gas hydrate exploration on the East Coast, North Island, New Zealand

    International Nuclear Information System (INIS)

    Pecher, I.A.; Coffin, R.; Henrys, S.A.

    2007-01-01

    R/V Tangaroa's voyage TAN0607, 20 June to 2 July 2006, Wellington/Wellington, was the first-ever research campaign dedicated to studying gas hydrates on the Hikurangi margin. The cruise was a collaboration between GNS Science, the US Naval Research Laboratory, the National Institute of Water and Atmospheric Research, the Universities of Otago, Hawaii, and Rochester (New York), as well as individual scientists from the University of Auckland and the GeoForschungsZentrum Potsdam. We collected high-resolution seismic data, EM 300 swath bathymetry, 3.5 kHz sub-bottom, as well as 12, 38 and 120 kHz water column echosounder data. Piston cores were recovered for pore water chemistry, microbiology, core description, and paleoceanographic analyses. We acquired heatflow data using a violin-bow type probe rented from the Geological Survey of Canada. We also retrieved three dredge samples from the seafloor. Finally, Niskin bottles attached to CTDs were used to collect seawater for water-column chemistry. The cruise focused on two study areas, the Porangahau Ridge offshore of the Wairarapa and the Rock Garden off Hawke's Bay. Seismic data from 2005 showed an amplitude anomaly beneath the Porangahau Ridge that appears to be caused by gas within the regional gas hydrate stability zone and may indicate the presence of highly concentrated gas hydrates in the vicinity. We acquired nine seismic lines across the ridge to constrain the lateral extent of this anomaly. The anomaly seems to develop with folding and may be linked to enhanced fluid flow through the gas hydrate stability field, which in turn may lead to elevated gas hydrate concentration. Pore water chemistry shows a shoaling of the base of the sulfate reduction zone across this feature, indicative of elevated methane flux through the hydrate stability field. There is a distinct thermal anomaly across the Porangahau Ridge, albeit with a complex signature. On the other hand, there are no indications of methane expulsion into

  16. Significance and occurrence of gas hydrates in offshore areas; Bedeutung und Vorkommen von Gashydraten im Offshore-Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, H.; Faber, E. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany)

    1997-12-31

    The present contribution describes the boundary and stability conditions under which gas hydrates are able to exist. It also discusses the occurrence and genesis of gas hydrates and their role as an energy raw material of the future. Furthermore, it deals with the possibility of gas hydrates being the cause of submarine slumps and with their influence on the climate. (MSK) [Deutsch] Die Rand-und Stabilitaetsbedingungen unter denen die Gashydrate existent sein koennen werden beschrieben. Ebenso wird das Vorkommen von Gashydraten, ihre Genese und ihre Rolle als Energierohstoff der Zukunft diskutiert. Darueberhinaus werden die Gashydrate als moegliche Ursache fuer untermeerische Rutschungen und ihr Einfluss auf Klimaaenderungen erlaeutert.

  17. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  18. Operation of the JET active gas handling system during and after DTE1

    Energy Technology Data Exchange (ETDEWEB)

    Laesser, R.; Bell, A.C.; Bainbridge, N.; Brennan, D.; Grieveson, B.; Hemmerich, J.L.; Jones, G.; Kennedy, D.; Knipe, S.; Lupo, J.; Mart, J.; Perevezentsev, A.; Skinner, N.; Stagg, R.; Yorkshades, J.; Atkins, G.V. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Doerr, L. [FZ Karlsruhe, Postfach 3640, D-76021, Karlsruhe (Germany); Green, N.; Stead, M.; Wilson, K. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1999-11-01

    During and after the deuterium-tritium experiment (DTE1) the JET active gas handling system fulfilled all expectations and requirements: it pumped, processed and purified the gases from the torus and connected systems, isotopically separated hydrogen and supplied 100 g tritium to the machine with only 20 g on JET site which means that the tritium was recycled five times. In addition, it supplied ventilation air detritiation services during interventions inside and outside the active gas handling building. This demonstrated for the first time that high tritium quantities can be recycled safely in connection with a large fusion facility. The paper describes the operation of the active gas handling system. (orig.)

  19. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

    2008-02-12

    Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

  20. Production test planning for the Japex/JNOC/GSC Mallik 5L-38 gas hydrate research well

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, T. [Japan Petroleum Exploration Co. Ltd., Tokyo (Japan); Dallimore, S. [Geological Survey of Canada, Sidney, BC (Canada); Collett, T. [United States Geological Survey, Denver, CO (United States); Inoue, T. [Japan National Oil Corp., Chiba (Japan); Hancock, S.; Weatherill, B. [APA Petroleum Engineering Ltd., Calgary, AB (Canada); Moridis, G. [California Univ., Berkeley, CA (United States). Lawrence Berkeley National Laboratory

    2004-07-01

    Accumulations of natural gas hydrate occur at shallow depths throughout the Mackenzie Delta region of northern Canada. This has been confirmed by the large hydrate concentrations found in Mallik L-38 and Ivik J-26, 2 exploratory wells drilled in 1972 by Imperial Oil Limited. During the exploration program, several cased hole closed chamber drill stem tests were performed in the hydrate and associated free gas intervals. Although some gas was initially produced from the hydrates, production during the extended flow period was too small to measure. Modern pressure transient analysis techniques were recently used to analyze the bottom hole data. Results reveal that gas continued to evolve into the wellbore throughout the shut-in periods, suggesting that hydrate dissociation may have occurred in response to the pressure drawdown created by the closed chamber test. These results contributed to the decision to use modern pressure drawdown tests for the Mallik 5L-38 well, using Schlumberger's Modular Dynamic Tester (MDT) cased hole wireline tool. The MDT strategy involved obtaining pressure transient data and fluid samples from the free gas, free water, and hydrate intervals, including hydrate layers with different lithologies and saturations. The hydrate accumulation in the Mallik 5L-38 well was also tested by producing the free gas interval and perforating the entire hydrate interval for a large scale pressure drawdown test. Other tests involved horizontal wells, complex multiple well experiments and thermal stimulations. The primary scientific goal of the Mallik 5L-38 test program was to determine the in-situ kinetic and thermodynamic properties of naturally occurring hydrates. A combination of MDT tests and a separate thermal stimulation flow test was selected as the best method to achieve this goal. 1 fig.

  1. Highlights and Opportunities from Continuous Access to Gas Hydrates Sites at Ocean Networks Canada's NEPTUNE Observatory

    Science.gov (United States)

    Scherwath, M.; Heesemann, M.; Riedel, M.; Thomsen, L.; Roemer, M.; Chatzievangelou, D.; Purser, A.

    2017-12-01

    Since 2009 Ocean Networks Canada provides permanent access and continuous data in near real-time from two prominent gas hydrates research sites at the Northern Cascadia Margin, Barkley Canyon and Clayoquot Slope off Vancouver Island, through power and communication cables directly from shore. We show data highlights from the seafloor crawler Wally, the world's first internet operated vehicle, in a field of hydrate mounds and outcropping gas hydrates, and its co-located sonars and state-of-the-ocean sensors and Barkley Canyon. For example, spectacular views from the benthic communities and their changes over time are captured by video. At Clayoquot Slope highly active gas seep fields are monitored with a rotating multibeam sonar and various other environmental sensors. In addition, newly installed geodetic sensors as well as an instrumented borehole in that area are now online and provide additional data on subduction-related deformation and potential links to gas discharge. These show-case examples highlight the benefits of co-located experiments that enable interdisciplinary research and also the ability for high-power and -bandwidth long-term monitoring at remote seafloor locations, that over time will provide baselines for environmental monitoring together with natural variability and potential long-term trends.

  2. Assessing Hydrate Formation in Natural Gas Pipelines Under Transient Operation / Ocena zjawiska tworzenia się hydratów w warunkach nieustalonego przepływu gazu w gazociągach

    Science.gov (United States)

    Osiadacz, Andrzej

    2013-03-01

    This work presents a transient, non-isothermal compressible gas flow model that is combined with a hydrate phase equilibrium model. It enables, to determine whether hydrates could form under existing operating conditions in natural gas pipelines. In particular, to determine the time and location at which the natural gas enters the hydrate formation region. The gas flow is described by a set of partial differential equations resulting from the conservation of mass, momentum, and energy. Real gas effects are determined by the predictive Soave-Redlich-Kwong group contribution method. By means of statistical mechanics, the hydrate model is formulated combined with classical thermodynamics of phase equilibria for systems that contain water and both hydrate forming and non-hydrate forming gases as function of pressure, temperature, and gas composition. To demonstrate the applicability a case study is conducted.

  3. Tracking Dissolved Methane Concentrations near Active Seeps and Gas Hydrates: Sea of Japan.

    Science.gov (United States)

    Snyder, G. T.; Aoki, S.; Matsumoto, R.; Tomaru, H.; Owari, S.; Nakajima, R.; Doolittle, D. F.; Brant, B.

    2015-12-01

    A number of regions in the Sea of Japan are known for active gas venting and for gas hydrate exposures on the sea floor. In this investigation we employed several gas sensors mounted on a ROV in order to determine the concentrations of dissolved methane in the water near these sites. Methane concentrations were determined during two-second intervals throughout each ROV deployment during the cruise. The methane sensor deployments were coupled with seawater sampling using Niskin bottles. Dissolved gas concentrations were later measured using gas chromatography in order to compare with the sensor results taken at the same time. The observed maximum dissolved methane concentrations were much lower than saturation values, even when the ROV manipulators were in contact with gas hydrate. Nonetheless, dissolved concentrations did reach several thousands of nmol/L near gas hydrate exposures and gas bubbles, more than two orders of magnitude over the instrumental detection limits. Most of the sensors tested were able to detect dissolved methane concentrations as low as 10 nmol/L which permitted detection when the ROV approached methane plume sites, even from several tens of meters above the sea floor. Despite the low detection limits, the methane sensors showed variable response times when returning to low-background seawater (~5nM). For some of the sensors, the response time necessary to return to background values occurred in a matter of minutes, while for others it took several hours. Response time, as well as detection limit, should be an important consideration when selecting methane sensors for ROV or AUV investigations. This research was made possible, in part, through funding provided by the Japanese Ministry of Economy, Trade and Industry (METI).

  4. Global Assessment of Methane Gas Hydrates: Outreach for the public and policy makers

    Science.gov (United States)

    Beaudoin, Yannick

    2010-05-01

    The United Nations Environment Programme (UNEP), via its official collaborating center in Norway, GRID-Arendal, is in the process of implementing a Global Assessment of Methane Gas Hydrates. Global reservoirs of methane gas have long been the topic of scientific discussion both in the realm of environmental issues such as natural forces of climate change and as a potential energy resource for economic development. Of particular interest are the volumes of methane locked away in frozen molecules known as clathrates or hydrates. Our rapidly evolving scientific knowledge and technological development related to methane hydrates makes these formations increasingly prospective to economic development. In addition, global demand for energy continues, and will continue to outpace supply for the foreseeable future, resulting in pressure to expand development activities, with associated concerns about environmental and social impacts. Understanding the intricate links between methane hydrates and 1) natural and anthropogenic contributions to climate change, 2) their role in the carbon cycle (e.g. ocean chemistry) and 3) the environmental and socio-economic impacts of extraction, are key factors in making good decisions that promote sustainable development. As policy makers, environmental organizations and private sector interests seek to forward their respective agendas which tend to be weighted towards applied research, there is a clear and imminent need for a an authoritative source of accessible information on various topics related to methane gas hydrates. The 2008 United Nations Environment Programme Annual Report highlighted methane from the Arctic as an emerging challenge with respect to climate change and other environmental issues. Building upon this foundation, UNEP/GRID-Arendal, in conjunction with experts from national hydrates research groups from Canada, the US, Japan, Germany, Norway, India and Korea, aims to provide a multi-thematic overview of the key

  5. Evolution of a gas bubble in porous matrix filled by methane hydrate

    Science.gov (United States)

    Tsiberkin, Kirill; Lyubimov, Dmitry; Lyubimova, Tatyana; Zikanov, Oleg

    2013-04-01

    Behavior of a small isolated hydrate-free inclusion (a bubble) within hydrate-bearing porous matrix is studied analytically and numerically. An infinite porous matrix of uniform properties with pores filled by methane hydrates and either water (excessive water situation) or methane gas (excessive gas situation) is considered. A small spherical hydrate-free bubble of radius R0 exists at initial moment within the matrix due to overheating relative to the surrounding medium. There is no continuing heat supply within the bubble, so new hydrate forms on its boundary, and its radius decreases with time. The process is analysed in the framework of the model that takes into account the phase transition and accompanying heat and mass transport processes and assumes spherical symmetry. It is shown that in the case of small (~ 10-2-10-1 m) bubbles, convective fluxes are negligible and the process is fully described by heat conduction and phase change equations. A spherically symmetric Stefan problem for purely conduction-controlled evolution is solved analytically for the case of equilibrium initial temperature and pressure within the bubble. The self-similar solution is verified, with good results, in numerical simulations based on the full filtration and heat transfer model and using the isotherm migration method. Numerical simulations are also conducted for a wide range of cases not amenable to analytical solution. It is found that, except for initial development of an overheated bubble, its radius evolves with time following the self-similar formula: R(t) ( t)1-2 R0-= 1 - tm- , (1) where tm is the life-time of bubble (time of its complete freezing). The analytical solution shows that tm follows 2 tm ~ (R0-?) , (2) where ? is a constant determined by the temperature difference ΔT between the bubble's interior and far field. We consider implications for natural hydrate deposits. As an example, for a bubble with R0 = 4 cm and ΔT = 0.001 K, we find tm ~ 5.7 ? 106 s (2

  6. Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand

    Science.gov (United States)

    Schwalenberg, Katrin; Rippe, Dennis; Koch, Stephanie; Scholl, Carsten

    2017-05-01

    Marine controlled source electromagnetic (CSEM) data have been collected to investigate methane seep sites and associated gas hydrate deposits at Opouawe Bank on the southern tip of the Hikurangi Margin, New Zealand. The bank is located in about 1000 m water depth within the gas hydrate stability field. The seep sites are characterized by active venting and typical methane seep fauna accompanied with patchy carbonate outcrops at the seafloor. Below the seeps, gas migration pathways reach from below the bottom-simulating reflector (at around 380 m sediment depth) toward the seafloor, indicating free gas transport into the shallow hydrate stability field. The CSEM data have been acquired with a seafloor-towed, electric multi-dipole system measuring the inline component of the electric field. CSEM data from three profiles have been analyzed by using 1-D and 2-D inversion techniques. High-resolution 2-D and 3-D multichannel seismic data have been collected in the same area. The electrical resistivity models show several zones of highly anomalous resistivities (>50 Ωm) which correlate with high amplitude reflections located on top of narrow vertical gas conduits, indicating the coexistence of free gas and gas hydrates within the hydrate stability zone. Away from the seeps the CSEM models show normal background resistivities between 1 and 2 Ωm. Archie's law has been applied to estimate gas/gas hydrate saturations below the seeps. At intermediate depths between 50 and 200 m below seafloor, saturations are between 40 and 80% and gas hydrate may be the dominating pore filling constituent. At shallow depths from 10 m to the seafloor, free gas dominates as seismic data and gas plumes suggest.

  7. Authigenic rhodochrosite from a gas hydrate-bearing structure in Lake Baikal

    Science.gov (United States)

    Krylov, Alexey A.; Hachikubo, Akihiro; Minami, Hirotsugu; Pogodaeva, Tatyana V.; Zemskaya, Tamara I.; Krzhizhanovskaya, Mariya G.; Poort, Jeffrey; Khlystov, Oleg M.

    2018-02-01

    Early diagenetic carbonates are rare in Lake Baikal. Siderite (Fe carbonate) concretions in the sediments were discovered only recently. Here, we discuss the first finding of rhodochrosite concretions (Mn carbonate) discovered in the near-bottom sediments of the gas hydrate-bearing seepage structure St. Petersburg-2 in the deep water environment of the Central Baikal Basin. The crystal lattice of rhodochrosite contains iron and calcium substituting to manganese. Based on pore water geochemistry and of δ 13C values of rhodochrosite (- 23.3 and - 29.4‰), carbon dioxide (+ 3.8 to - 16.1‰) and methane (- 63.2 to - 67.8‰), we show that carbonate crystallization most likely occurred during microbial anaerobic oxidation of organic matter, and that part of the oxygen making up the rhodochrosite seems to be derived from the 18O-rich water released from dissociating gas hydrates.

  8. Different Mechanism Effect between Gas-Solid and Liquid-Solid Interface on the Three-Phase Coexistence Hydrate System Dissociation in Seawater: A Molecular Dynamics Simulation Study

    Directory of Open Access Journals (Sweden)

    Zhixue Sun

    2017-12-01

    Full Text Available Almost 98% of methane hydrate is stored in the seawater environment, the study of microscopic mechanism for methane hydrate dissociation on the sea floor is of great significance to the development of hydrate production, involving a three-phase coexistence system of seawater (3.5% NaCl + hydrate + methane gas. The molecular dynamics method is used to simulate the hydrate dissociation process. The dissociation of hydrate system depends on diffusion of methane molecules from partially open cages and a layer by layer breakdown of the closed cages. The presence of liquid or gas phases adjacent to the hydrate has an effect on the rate of hydrate dissociation. At the beginning of dissociation process, hydrate layers that are in contact with liquid phase dissociated faster than layers adjacent to the gas phase. As the dissociation continues, the thickness of water film near the hydrate-liquid interface became larger than the hydrate-gas interface giving more resistance to the hydrate dissociation. Dissociation rate of hydrate layers adjacent to gas phase gradually exceeds the dissociation rate of layers adjacent to the liquid phase. The difficulty of methane diffusion in the hydrate-liquid side also brings about change in dissociation rate.

  9. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, J.; Moridis, G.J.; Grover, T.; Collett, T.

    2009-02-01

    In this simulation study, we analyzed the geomechanical response during depressurization production from two known hydrate-bearing permafrost deposits: the Mallik (Northwest Territories, Canada) deposit and Mount Elbert (Alaska, USA) deposit. Gas was produced from these deposits at constant pressure using horizontal wells placed at the top of a hydrate layer (HL), located at a depth of about 900 m at the Mallik and 600 m at the Mount Elbert. The simulation results show that general thermodynamic and geomechanical responses are similar for the two sites, but with substantially higher production and more intensive geomechanical responses at the deeper Mallik deposit. The depressurization-induced dissociation begins at the well bore and then spreads laterally, mainly along the top of the HL. The depressurization results in an increased shear stress within the body of the receding hydrate and causes a vertical compaction of the reservoir. However, its effects are partially mitigated by the relatively stiff permafrost overburden, and compaction of the HL is limited to less than 0.4%. The increased shear stress may lead to shear failure in the hydrate-free zone bounded by the HL overburden and the downward-receding upper dissociation interface. This zone undergoes complete hydrate dissociation, and the cohesive strength of the sediment is low. We determined that the likelihood of shear failure depends on the initial stress state as well as on the geomechanical properties of the reservoir. The Poisson's ratio of the hydrate-bearing formation is a particularly important parameter that determines whether the evolution of the reservoir stresses will increase or decrease the likelihood of shear failure.

  10. Low temperature X-ray diffraction studies of natural gas hydrate samples from the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rawn, C.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Materials Science and Technology Div.; Sassen, R. [Texas A and M Univ., College Station, TX (United States). Geochemical and Environmental Research Group; Ulrich, S.M.; Phelps, T.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Biosciences Div.; Chakoumakos, B.C. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Neutron Scattering Science Div.; Payzant, E.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Center for Nanophase Materials Science

    2008-07-01

    Quantitative studies of natural clathrate hydrates are hampered by the difficulties associated with obtaining pristine samples for the sea floor without comprising their integrity. This paper discussed X-ray power diffraction studies conducted to measure natural gas hydrate samples obtained from the Green Canyon in the Gulf of Mexico. Data on the hydrate deposits were initially collected in 2002. The X-ray diffraction data were collected in order to examine the structure 2 (s2) gas hydrates as functions of temperature and time. A diffractometer with a theta-theta goniometer modified with a helium closed cycle refrigerator and temperature controller was used. Aragonite, quartz and halite phases were determined in the decomposed sample. Refined phase fractions for both the ice and the s2 hydrate were obtained as a function of temperature. Results of the study demonstrated that the amount of hydrates decreased with increasing temperatures and amounts of time. Large pieces of the hydrate showed heterogenous ice content. Dissociation rates were higher at lower temperatures. It was concluded that unusual trends observed for the smaller lattice parameter of the hydrates resulted from the formation of ice layers that acted as barriers to the released gases and caused increased isostatic pressures around the hydrate core. 9 refs., 6 figs.

  11. Assessing fluid-gas expulsion geology and gas hydrate deposits across the Gulf of Mexico with multicomponent and multifrequency seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, B.A.; Sava, D.C.; Murray, P.E.; DeAngelo, M.V.; Backus, M.M.; Graebner, R.J. [Texas Univ., Austin, TX (United States). Bureau of Economic Geology; Roberts, H.H. [Louisiana State Univ., Baton Rouge, LA (United States). Coastal Studies Inst.

    2008-07-01

    This paper reported on a study of 2 fluid-gas expulsion sites across a portion of the Green Canyon area of the Gulf of Mexico, where deep-water fields and oil and gas seeps are numerous. Hydrates are pervasive across the 2 expulsion sites studied at Typhoon and Genesis Fields. The 2 sites GD 237 and GC 204 are positioned on the flank of an intraslope basin containing a thick sedimentary sequence. Major fluid-gas migration pathways occur near the edges of shallow subsurface salt masses. The two-fluid gas expulsion sites were investigated with 4-component ocean-bottom-cable (4C OBC) seismic data and chirp-sonar data acquired by an autonomous underwater vehicle (AUV). The study examined the near-seafloor geology of the deep-water, fluid-gas expulsion features to estimate hydrate concentrations in strata spanned by the hydrate stability zone local to these expulsion sites. In some units, hydrate concentrations were more than 30 per cent of the available pore space of the host sediment. A free-gas layer was discovered immediately under the base of the hydrate stability zone across each expulsion site area. It was revealed by a reduction in V{sub p} velocity. Although the amount of free-gas in this zone has not been estimated, it is expected that the zone has a gas saturation of only a few percentage points. This free-gas zone was not obviously different from hydrate-bearing zones when examining resistivity logs. It was concluded that interpreting the thickness of a hydrate stability zone from resistivity logs alone could result in an overestimation of the thickness of the hydrate stability zone and the amount of hydrate that exists near deep-water expulsion features. 10 refs., 13 figs.

  12. Phase equilibrium modeling of gas hydrate systems for CO2 capture

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens

    2012-01-01

    Two thermodynamic models capable of describing dissociation pressures of mixed gas clathrate hydrates formed from ternary mixtures of CO2, N2 and liquid water, are presented. Both of the models utilize the Cubic-Plus-Association (CPA) equation of state (EOS) for the thermodynamic description...... literature data for this system, it was not possible to determine unequivocally, which of the two models perform better....

  13. Musculoskeletal disorders caused by gas cylinder handling tasks: A case study report.

    Science.gov (United States)

    Chen, Yi-Lang; Yu, Chiao-Ying; Lin, Da-Yung

    2017-01-01

    This case study used the Nordic Musculoskeletal Questionnaire (NMQ) to explore work that involves handling gas cylinders and to determine risk factors that may cause related injuries. The NMQ survey was distributed to 100 gas cylinder handlers in Taiwan, and their handling tasks were analyzed. The results showed that the overall prevalence of musculoskeletal disorders was 91% within 1 year. More than half of the respondents (62%) experienced shoulder discomfort, followed by lower back/waist (57%) and neck (47%) discomfort. Daily work hours (>10 h) were primary factors influencing the development of discomfort when handling gas cylinders, whereas the daily delivery frequency (>30 deliveries) was relevant to the prevalence of lower limb discomfort. Individual factors also substantially influenced upper body, lower back/waist, and knee discomfort (i.e., age, job tenure, and exercise). The findings of this study can serve as references in the prevention of work-related musculoskeletal disorders caused by performing gas cylinder handling tasks.

  14. Hot gas handling device and motorized vehicle comprising the device

    NARCIS (Netherlands)

    Klein Geltink, J.; Beukers, A.; Van Tooren, M.J.L.; Koussios, S.

    2012-01-01

    The invention relates to a device for handling hot exhaust gasses discharged from an internal combustion engine. The device comprises a housing (2), enclosing a space (3) for transporting the exhaust gasses. The housing (2) is provided with an entrance - opening (4) for the exhaust gasses discharged

  15. DOE THREE-DIMENSIONAL STRUCTURE AND PHYSICAL PROPERTIES OF A METHANE HYDRATE DEPOSIT AND GAS RESERVOIR, BLAKE RIDGE

    Energy Technology Data Exchange (ETDEWEB)

    W. Steven Holbrook

    2004-11-11

    This report contains a summary of work conducted and results produced under the auspices of award DE-FC26-00NT40921, ''DOE Three-Dimensional Structure and Physical Properties of a Methane Hydrate Deposit and Gas Reservoir, Blake Ridge.'' This award supported acquisition, processing, and interpretation of two- and three-dimensional seismic reflection data over a large methane hydrate reservoir on the Blake Ridge, offshore South Carolina. The work supported by this project has led to important new conclusions regarding (1) the use of seismic reflection data to directly detect methane hydrate, (2) the migration and possible escape of free gas through the hydrate stability zone, and (3) the mechanical controls on the maximum thickness of the free gas zone and gas escape.

  16. Gas hydrate formation and dissipation histories in the northern margin of Canada: Beaufort-Mackenzie and the Sverdrup Basins

    Czech Academy of Sciences Publication Activity Database

    Majorowicz, J.; Osadetz, K.; Šafanda, Jan

    2012-01-01

    Roč. 2012, č. 1 (2012), 879393/1-879393/17 ISSN 1687-8833 Institutional research plan: CEZ:AV0Z30120515 Keywords : gas hydrates * Canadian Arctic continental margin * permafrost Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  17. An analysis of palynostratigraphy, paleoclimatology and organic matter recycling in the Mallik gas hydrate research wells

    Energy Technology Data Exchange (ETDEWEB)

    White, J.M. [Natural Resources Canada, Calgary, AB (Canada). Geological Survey of Canada

    2006-07-01

    Geophysical surveys were used to examine the geological, geochemical and geophysical properties associated with gas hydrate deposits of the Mallik 2L to 5L-38 gas hydrate research wells. Core and cuttings to a depth of 1150 m, comprising the best subsurface material, were used to study the upper Cenozoic palynostratigraphy and paleoclimatology in the Mackenzie Delta. Quantitative palynological analysis of the kerogen fraction was used to refine age determinations based on indicator taxa. The palynomorphs provided a biostratigraphic record suitable for the determination of age and depositional environment of the rocks. The stratigraphic integrity of the palynology was evaluated by concentration estimates, by comparing percentage patterns of known recycled taxa with other taxa, and by statistical evaluation of the distribution of rare taxa. According to indicator taxa, the interval between 1150 m and an unconformity at 926.5 m has been correlated to the Late Eocene. The interval between that unconformity and the top of the cuttings have been correlated to the Oligocene and possibly Miocene. The difference in 2 climate proxy ratios implied that a cold climatic episode coincided with the deposition of sediment at the top of the cored interval, suggesting a relationship between this climatic event and the top of the gas hydrate hosting interval.

  18. Effect of hydration on the organo-noble gas molecule HKrCCH: role of krypton in the stabilization of hydrated HKrCCH complexes.

    Science.gov (United States)

    Biswas, Biswajit; Singh, Prashant Chandra

    2015-11-11

    The effect of hydration on the fluorine free organo-noble gas compound HKrCCH and the role of krypton in the stabilization of the hydrated HKrCCH complexes have been investigated using the quantum chemical calculations on the HKrCCH-(H2O)n=1-6 clusters. Structure and energetics calculations show that water stabilizes HKrCCH through the π hydrogen bond in which the OH group of water interacts with the C[triple bond, length as m-dash]C group of HKrCCH. A maximum of four water molecules can directly interact with the C[triple bond, length as m-dash]C of HKrCCH and after that only inter-hydrogen bonding takes place between the water molecules indicating that the primary hydration shell contains four water molecules. Atom in molecule analysis depicts that π hydrogen bonded complexes of the hydrated HKrCCH are cyclic structures in which the OKr interaction cooperates in the formation of strong O-HC[triple bond, length as m-dash]C interaction. Structure, energetics and charge analysis clearly established that krypton plays an important role in the stabilization as well as the formation of the primary hydration shell of hydrated HKrCCH complexes.

  19. Geochemical Study on Hydrocarbon Gases in Seafloor Sediments, Southwestern Offshore Taiwan - Implications in the Potential Occurrence of Gas Hydrates

    Directory of Open Access Journals (Sweden)

    Jung-Nan Oung

    2006-01-01

    Full Text Available Seafloor sediment samples collected from southwestern offshore Taiwan have been analyzed for hydrocarbon gases resident in samples by using the technique of headspace gas analysis. The results reveal that the gas content is in tens to thousands ppm (vol. in wet sediments. Both microbial gas (usually called biogenic gas dominated with methane and thermogenic gas containing C2+ hydrocarbons were detected, inferring that the gases involved in the potential gas hydrate occurrence in the study area may have multiple origins. The microbial gas generated by methanogenic archaea in immature sediments is more widely distributed than thermogenic gas generated in sediments of the catagenesis stage. The presence of thermogenic gas infers an effective petroleum system, which may favor the formation of gas hydrate as well as for oil and gas exploration.

  20. Gas phase hydration of halogenated benzene cations. Is it hydrogen or halogen bonding?

    Science.gov (United States)

    Mason, Kyle A; Pearcy, Adam C; Attah, Isaac K; Platt, Sean P; Aziz, Saadullah G; El-Shall, M Samy

    2017-07-19

    Halogen bonding (XB) non-covalent interactions can be observed in compounds containing chlorine, bromine, or iodine which can form directed close contacts of the type R1-XY-R2, where the halogen X acts as a Lewis acid and Y can be any electron donor moiety including electron lone pairs on hetero atoms such as O and N, or π electrons in olefin double bonds and aromatic conjugated systems. In this work, we present the first evidence for the formation of ionic halogen bonds (IXBs) in the hydration of bromobenzene and iodobenzene radical cations in the gas phase. We present a combined thermochemical investigation using the mass-selected ion mobility (MSIM) technique and density functional theory (DFT) calculations of the stepwise hydration of the fluoro, chloro, bromo, and iodobenzene radical cations. The binding energy associated with the formation of an IXB in the hydration of the iodobenzene cation (11.2 kcal mol -1 ) is about 20% higher than the typical unconventional ionic hydrogen bond (IHB) of the CH δ+ OH 2 interaction. The formation of an IXB in the hydration of the iodobenzene cation involves a significant entropy loss (29 cal mol -1 K -1 ) resulting from the formation of a more ordered structure and a highly directional interaction between the oxygen lone pair of electrons of water and the electropositive region around the iodine atom of the iodobenzene cation. In comparison, the hydration of the fluorobenzene and chlorobenzene cations where IHBs are formed, -ΔS° = 18-21 cal mol -1 K -1 consistent with the formation of less ordered structures and loose interactions. The electrostatic potentials on the lowest energy structures of the hydrated halogenated benzene radical cations show clearly that the formation of an IXB is driven by a positively charged σ-hole on the external side of the halogen atom X along the C-X bond axis. The size of the σ-hole increases significantly in bromobenzene and iodobenzene radical cations which results in strong

  1. From Black Hole to Hydrate Hole: Gas hydrates, authigenic carbonates and vent biota as indicators of fluid migration at pockmark sites of the Northern Congo Fan

    Science.gov (United States)

    Kasten, S.; Schneider, R.; Spiess, V.; Cruise Participants Of M56b

    2003-04-01

    A recent high-resolution seismic, echosounder and video survey combined with detailed geological and geochemical sampling of pockmark sites on the Northern Congo Fan was carried out with RV Meteor in November/December 2002 in the frame of the project "CONGO" (BMBF/BEO "Geotechnologien"). These investigations revealed the extensive occurrence of surface and sub-surface gas hydrates as well as characteristic features of fluid venting such as clams (Calyptogena), tube worms (Pogonophera) and huge amounts of authigenic carbonates. In a first approach the patchyness in the occurrence of these features was mapped in relation to pockmark structure and seismic reflectors. Detailed sampling of three pockmarks by gravity corer showed that gas hydrates are present at and close to the sediment surface and often occur as several distinct layers and/or veins intercalated with hemipelagic muds. The depth of the upper boundary of these hydrate-bearing sediments increases from the center towards the edge of the pockmark structures. Pore water concentration profiles of sulfate and methane document the process of anaerobic methane oxidation above the hydrate-bearing layers. For those cores which contained several gas hydrate layers preliminary pore water profiles suggest the occurrence of more than one zone of anaerobic methane oxidation. Authigenic carbonates are found in high abundance, irregularly distributed within the pockmarks close to the sediment surface. These carbonates occur in a wide variety with respect to size, shape, structure and mineralogy. Their formation is associated with high amounts of bicarbonate released by the process of anaerobic methane oxidation. In the gravity cores authigenic carbonates are always present above hydrate-bearing sections. However, the quantities and characteristics of these authigenic minerals in relation to venting and microbial activity as well as to gas hydrate dissociation are not clear yet. Unraveling this relationship will be a major

  2. Analytical theory relating the depth of the sulfate-methane transition to gas hydrate distribution and saturation

    Science.gov (United States)

    Bhatnagar, Gaurav; Chatterjee, Sayantan; Chapman, Walter G.; Dugan, Brandon; Dickens, Gerald R.; Hirasaki, George J.

    2011-03-01

    We develop a theory that relates gas hydrate saturation in marine sediments to the depth of the sulfate-methane transition (SMT) zone below the seafloor using steady state, analytical expressions. These expressions are valid for systems in which all methane transported into the gas hydrate stability zone (GHSZ) comes from deeper external sources (i.e., advective systems). This advective constraint causes anaerobic oxidation of methane to be the only sulfate sink, allowing us to link SMT depth to net methane flux. We also develop analytical expressions that define the gas hydrate saturation profile based on SMT depth and site-specific parameters such as sedimentation rate, methane solubility, and porosity. We evaluate our analytical model at four drill sites along the Cascadia Margin where methane sources from depth dominate. With our model, we calculate average gas hydrate saturations across GHSZ and the top occurrence of gas hydrate at these sites as 0.4% and 120 mbsf (Site 889), 1.9% and 70 mbsf (Site U1325), 4.7% and 40 mbsf (Site U1326), and 0% (Site U1329), mbsf being meters below seafloor. These values compare favorably with average saturations and top occurrences computed from resistivity log and chloride data. The analytical expressions thus provide a fast and convenient method to calculate gas hydrate saturation and first-order occurrence at a given geologic setting where vertically upward advection dominates the methane flux.

  3. Geologic framework of the 2005 Keathley Canyon gas hydrate research well, northern Gulf of Mexico

    Science.gov (United States)

    Hutchinson, D.R.; Hart, P.E.; Collett, T.S.; Edwards, K.M.; Twichell, D.C.; Snyder, F.

    2008-01-01

    The Keathley Canyon sites drilled in 2005 by the Chevron Joint Industry Project are located along the southeastern edge of an intraslope minibasin (Casey basin) in the northern Gulf of Mexico at 1335 m water depth. Around the drill sites, a grid of 2D high-resolution multichannel seismic data designed to image depths down to at least 1000 m sub-bottom reveals 7 unconformities and disconformities that, with the seafloor, bound 7 identifiable seismic stratigraphic units. A major disconformity in the middle of the units stands out for its angular baselapping geometry. From these data, three episodes of sedimentary deposition and deformation are inferred. The oldest episode consists of fine-grained muds deposited during a period of relative stability in the basin (units e, f, and g). Both the BSR and inferred gas hydrate occur within these older units. The gas hydrate occurs in near-vertical fractures. A second episode (units c and d) involved large vertical displacements associated with infilling and ponding of sediment. This second interval corresponds to deposition of intercalated fine and coarse-grained material that was recovered in the drill hole that penetrated the thin edges of the regionally much thicker units. The final episode of deposition (units a and b) occurred during more subdued vertical motions. Hemipelagic drape (unit a) characterizes the modern seafloor. The present-day Casey basin is mostly filled. Its sill is part of a subsiding graben structure that is only 10-20 m shallower than the deepest point in the basin, indicating that gravity-driven transport would mostly bypass the basin. Contemporary faulting along the basin margins has selectively reactivated an older group of faults. The intercalated sand and mud deposits of units c and d are tentatively correlated with Late Pleistocene deposition derived from the western shelf-edge delta/depocenter of the Mississippi River, which was probably most active from 320 ka to 70 ka [Winker, C.D., Booth, J

  4. Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates

    Science.gov (United States)

    Paull, C.K.; Ussler, W.; Dallimore, S.R.; Blasco, S.M.; Lorenson, T.D.; Melling, H.; Medioli, B.E.; Nixon, F.M.; McLaughlin, F.A.

    2007-01-01

    The Arctic shelf is currently undergoing dramatic thermal changes caused by the continued warming associated with Holocene sea level rise. During this transgression, comparatively warm waters have flooded over cold permafrost areas of the Arctic Shelf. A thermal pulse of more than 10??C is still propagating down into the submerged sediment and may be decomposing gas hydrate as well as permafrost. A search for gas venting on the Arctic seafloor focused on pingo-like-features (PLFs) on the Beaufort Sea Shelf because they may be a direct consequence of gas hydrate decomposition at depth. Vibracores collected from eight PLFs had systematically elevated methane concentrations. ROV observations revealed streams of methane-rich gas bubbles coming from the crests of PLFs. We offer a scenario of how PLFs may be growing offshore as a result of gas pressure associated with gas hydrate decomposition. Copyright 2007 by the American Geophysical Union.

  5. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    Energy Technology Data Exchange (ETDEWEB)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work

  6. Time-resolved in situ neutron diffraction studies of gas hydrate: transformation of structure II (sII) to structure I (sI).

    Science.gov (United States)

    Halpern, Y; Thieu, V; Henning, R W; Wang, X; Schultz, A J

    2001-12-26

    We report the in situ observation from diffraction data of the conversion of a gas hydrate with the structure II (sII) lattice to one with the structure I (sI) lattice. Initially, the in situ formation, dissociation, and reactivity of argon gas clathrate hydrate was investigated by time-of-flight neutron powder diffraction at temperatures ranging from 230 to 263 K and pressures up to 5000 psi (34.5 MPa). These samples were prepared from deuterated ice crystals and transformed to hydrate by pressurizing the system with argon gas. Complete transformation from D(2)O ice to sII Ar hydrate was observed as the sample temperature was slowly increased through the D(2)O ice melting point. The transformation of sII argon hydrate to sI hydrate was achieved by removing excess Ar gas and exposing the hydrate to liquid CO(2) by pressurizing the Ar hydrate with CO(2). Results suggest the sI hydrate formed from CO(2) exchange in argon sII hydrate is a mixed Ar/CO(2) hydrate. The proposed exchange mechanism is consistent with clathrate hydrate being an equilibrium system in which guest molecules are exchanging between encapsulated molecules in the solid hydrate and free molecules in the surrounding gas or liquid phase.

  7. Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea

    Science.gov (United States)

    Bahk, J.-J.; Kim, G.-Y.; Chun, J.-H.; Kim, J.-H.; Lee, J.Y.; Ryu, B.-J.; Lee, J.-H.; Son, B.-K.; Collett, Timothy S.

    2013-01-01

    Examinations of core and well-log data from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) drill sites suggest that Sites UBGH2-2_2 and UBGH2-6 have relatively good gas hydrate reservoir quality in terms of individual and total cumulative thicknesses of gas-hydrate-bearing sand (HYBS) beds. In both of the sites, core sediments are generally dominated by hemipelagic muds which are intercalated with turbidite sands. The turbidite sands are usually thin-to-medium bedded and mainly consist of well sorted coarse silt to fine sand. Anomalies in infrared core temperatures and porewater chlorinity data and pressure core measurements indicate that “gas hydrate occurrence zones” (GHOZ) are present about 68–155 mbsf at Site UBGH2-2_2 and 110–155 mbsf at Site UBGH2-6. In both the GHOZ, gas hydrates are preferentially associated with many of the turbidite sands as “pore-filling” type hydrates. The HYBS identified in the cores from Site UBGH2-6 are medium-to-thick bedded particularly in the lower part of the GHOZ and well coincident with significant high excursions in all of the resistivity, density, and velocity logs. Gas-hydrate saturations in the HYBS range from 12% to 79% with an average of 52% based on pore-water chlorinity. In contrast, the HYBS from Site UBGH2-2_2 are usually thin-bedded and show poor correlations with both of the resistivity and velocity logs owing to volume averaging effects of the logging tools on the thin HYBS beds. Gas-hydrate saturations in the HYBS range from 15% to 65% with an average of 37% based on pore-water chlorinity. In both of the sites, large fluctuations in biogenic opal contents have significant effects on the sediment physical properties, resulting in limited usage of gamma ray and density logs in discriminating sand reservoirs.

  8. Seismic velocity structure at a gas hydrate reflector, offshore western Colombia, from full waveform inversion

    Science.gov (United States)

    Minshull, T. A.; Singh, S. C.; Westbrook, G. K.

    1994-03-01

    Seismic reflection profiles across many continental margins have imaged bottom simulating reflectors (BSRs), which have been interpreted as being formed at the base of a methane hydrate stability field. Such reflectors might arise either from an impedance contrast between high-velocity, partially hydrated sediments and water-saturated sediments or from a contrast with partially gas-saturated sediments. These alternatives may be hard to distinguish by conventional amplitude-versus-offset or waveform modeling approaches. Here, we investigate the origin of a high amplitude BSR in the accretionary wedge offshore of western Colombia by seismic waveform inversion. The inversion procedure consists of three steps: firstly, determination of root-mean-square velocities and hence estimates of the interval velocities between major reflectors by a global grid search for maximum normalized energy along elliptical trajectories in the intercept time-slowness domain; secondly, determination of accurate interval velocities between these reflectors by a Monte Carlo search for maximum energy; and thirdly, a waveform fit in the frequency-slowness domain, using differential reflectivity seismograms and a conjugate-gradient optimization algorithm to minimize the sample-by-sample waveform misfit between data and synthetic. At two locations, near a structural high, we find an approximately 30-m thick low-velocity zone beneath the BSR, with the properties of a partially gas-saturated zone, while at a third location, where the BSR amplitude is lower, we find no evidence for anomalously low velocities. The preferential development of the BSR in structures that would tend to intercept fluid flow or migrating gas and the presence of free gas beneath the BSR indicate a mechanism of BSR formation in which free methane gas migrates upward into the hydrate stability field or is carried there in advecting pore water.

  9. Combining Novel Simulation Methods and Nucleation Theory to Uncover the Secrets of Gas Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, Thomas [Boston Univ., MA (United States). Dept. of Chemistry

    2016-04-14

    Conventional computer simulation methods fail for some of the most important problems. With the design and application of innovative algorithms, this project achieved a breakthrough for the case of systems undergoing first-order phase transitions. We gave a complete simulation protocol based upon a well optimized version of our "generalized replica exchange method". The transition of primary interest was gas hydrate formation, a process of significance for climate science and natural gas retrieval. Since hydrates consist of guest molecules in the cages of a water matrix, β ice, the freezing and melting of water was also studied. New information was uncovered about the transition pathways and thermodynamics. Some highlights are 1. the finding that in a very dilute solution without deep supercooling, representative of real-world conditions and very challenging to conventional algorithms, methane can act as a catalyst to drive the formation of large amounts of β ice with empty cages as metastable intermediates, which might be filled by additional methane in a mechanism for hydrate formation, and 2. illumination of the role of metastable cubic ice in water freezing, with determination of the surface tensions of the cubic, hexagonal, and β ices, and the free energy difference of cubic vs hexagonal ice. Work was begun on lipid systems, bilayers and nanoreactors promising for energy-related photoreductions, and targets for future research. Our methods yielded what is arguably the most complete description of the composite lipid/water phases and the transition pathways among them.

  10. The impact of fluid advection on gas hydrate stability: Investigations at sites of methane seepage offshore Costa Rica

    Science.gov (United States)

    Crutchley, G. J.; Klaeschen, D.; Planert, L.; Bialas, J.; Berndt, C.; Papenberg, C.; Hensen, C.; Hornbach, M. J.; Krastel, S.; Brueckmann, W.

    2014-09-01

    Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to ∼60 mW m and ∼70 mW m beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.

  11. Experimental validation of kinetic inhibitor strength on natural gas hydrate nucleation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Pachitsas, Stylianos; von Solms, Nicolas

    2015-01-01

    The kinetics of natural gas hydrate formation in the presence of dissolved salts (NaCl) and crude oil ( a middle east crude with density 851.5 kg/m3 were investigated by using a standard rocking cell (RC-5) apparatus. The hydrate nucleation temperature was reduced in the presence of NaCl and oil...... in comparison with that in pure distilled water. The kinetic inhibition strength of various inhibitors (Luvicap Bio; Inhibex 505; Inhibex 501; Luvicap 55w; BIO inhibex-800; and Inhibex 301) was experimentally evaluated at complex conditions (in the presence of salts and crude oil) using the constant cooling...... temperature approach. These polymer-based chemicals were ranked based on the inhibition strength as follows: Luvicap Bio salts and liquid hydrocarbon phase. The KHIs' inhibition strength...

  12. Pore- and fracture-filling gas hydrate reservoirs in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Green Canyon 955 H well

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2012-01-01

    High-quality logging-while-drilling (LWD) downhole logs were acquired in seven wells drilled during the Gulf of MexicoGasHydrateJointIndustryProjectLegII in the spring of 2009. Well logs obtained in one of the wells, the GreenCanyon Block 955Hwell (GC955-H), indicate that a 27.4-m thick zone at the depth of 428 m below sea floor (mbsf; 1404 feet below sea floor (fbsf)) contains gashydrate within sand with average gashydrate saturations estimated at 60% from the compressional-wave (P-wave) velocity and 65% (locally more than 80%) from resistivity logs if the gashydrate is assumed to be uniformly distributed in this mostly sand-rich section. Similar analysis, however, of log data from a shallow clay-rich interval between 183 and 366 mbsf (600 and 1200 fbsf) yielded average gashydrate saturations of about 20% from the resistivity log (locally 50-60%) and negligible amounts of gashydrate from the P-wave velocity logs. Differences in saturations estimated between resistivity and P-wave velocities within the upper clay-rich interval are caused by the nature of the gashydrate occurrences. In the case of the shallow clay-rich interval, gashydrate fills vertical (or high angle) fractures in rather than fillingpore space in sands. In this study, isotropic and anisotropic resistivity and velocity models are used to analyze the occurrence of gashydrate within both the clay-rich and sand dominated gas-hydrate-bearing reservoirs in the GC955-Hwell.

  13. CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Steve Holditch; Emrys Jones

    2003-01-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During April-September 2002, the JIP concentrated on: Reviewing the tasks and subtasks on the basis of the information generated during the three workshops held in March and May 2002; Writing Requests for Proposals (RFPs) and Cost, Time and Resource (CTRs) estimates to accomplish the tasks and subtasks; Reviewing proposals sent in by prospective contractors; Selecting four contractors; Selecting six sites for detailed review; and Talking to drill ship owners and operators about potential work with the JIP.

  14. CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Steve Holditch; Emrys Jones

    2003-01-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

  15. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  16. X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.J.; Rees, E.V.L.

    2010-03-01

    When maintained under hydrate-stable conditions, methane hydrate in laboratory samples is often considered a stable and immobile solid material. Currently, there do not appear to be any studies in which the long-term redistribution of hydrates in sediments has been investigated in the laboratory. These observations are important because if the location of hydrate in a sample were to change over time (e.g. by dissociating at one location and reforming at another), the properties of the sample that depend on hydrate saturation and pore space occupancy would also change. Observations of hydrate redistribution under stable conditions are also important in understanding natural hydrate deposits, as these may also change over time. The processes by which solid hydrate can move include dissociation, hydrate-former and water migration in the gas and liquid phases, and hydrate formation. Chemical potential gradients induced by temperature, pressure, and pore water or host sediment chemistry can drive these processes. A series of tests were performed on a formerly natural methane-hydrate-bearing core sample from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, in order to observe hydrate formation and morphology within this natural sediment, and changes over time using X-ray computed tomography (CT). Long-term observations (over several weeks) of methane hydrate in natural sediments were made to investigate spatial changes in hydrate saturation in the core. During the test sequence, mild buffered thermal and pressure oscillations occurred within the sample in response to laboratory temperature changes. These oscillations were small in magnitude, and conditions were maintained well within the hydrate stability zone.

  17. Gas hydrate occurrences in the Danube Delta, Western Black Sea: Results from 2D and 3D controlled source electromagnetics

    Science.gov (United States)

    Schwalenberg, Katrin; Hölz, Sebastian; Gehrmann, Romina; Rippe, Dennis; Dannowski, Anke; Zander, Timo; Duan, Shuangmin; Jegen, Marion; Bialas, Jörg

    2017-04-01

    Marine controlled source electromagnetic (CSEM) data have been collected over gas hydrate targets in the Danube Delta off the coasts of Bulgaria and Romania in early 2014 during voyage MSM35 on R/V Maria S. MERIAN. The cruise was part of the German SUGAR Project, a joint venture project with the goal to study submarine gas hydrates as a source of methane. Within European waters the Black Sea is one of the most prospective hydrocarbon areas. Thick sedimentary basins, the existence of an extended gas hydrate stability zone and the observation of multiple bottom simulating reflectors (BSR) in the western part indicate a huge gas hydrate potential in sandy sediments. Low pore-water salinities between 1 and 4 ppt have been observed in borehole data at depths below 30 mbsf, and are attributed to sea level low stands in the past. 2D and 3D CSEM data sets have been collected over one of the channel levee systems of the Danube Delta fan. High-resolution 2D and 3D seismic, and OBS data are available in the same target area providing structural information and porosity profiles from seismic velocity data. Analysis of subsets of the 3D CSEM data reveal pore-water salinities around 4 ppt for the shallow sediment section, thus are not as low as suggested by the borehole data. The inversion of both 2D and 3D CSEM data sets reveal highly anomalous resistivities within the gas hydrate stability field. We believe that high gas hydrate saturations are the likely cause, as low pore-water salinities are not sufficient to explain the high resistivities, seismic data indicate no clear gas migration pathways through the stability field, nor do hydro-acoustic data show areas of gas seepage which are confined to the landward edge of the stability field. Estimates of the gas hydrate saturation are commonly derived from Archie's Law, and strongly depend on the proper choice of input parameters. We apply porosities from seismic velocity profiles, pore-water resistivities derived from salinity

  18. Utilizing Non-Equilibrium Thermodynamics and Reactive Transport to Model CH4 Production from the Nankai Trough Gas Hydrate Reservoir

    Directory of Open Access Journals (Sweden)

    Khadijeh Qorbani

    2017-07-01

    Full Text Available The ongoing search for new sources of energy has brought natural gas hydrate (NGH reservoirs to the forefront of attention in both academia and the industry. The amount of gas reserves trapped within these reservoirs surpasses all of the conventional fossil fuel sources explored so far, which makes it of utmost importance to predict their production potential and safety. One of the challenges facing those attempting to analyse their behaviour is that the large number of involved phases make NGHs unable to ever reach equilibrium in nature. Field-scale experiments are expensive and time consuming. However, computer simulations have now become capable of modelling different gas production scenarios, as well as production optimization analyses. In addition to temperature and pressure, independent thermodynamic parameters for hydrate stabilization include the hydrate composition and concentrations for all co-existing phases. It is therefore necessary to develop and implement realistic kinetic models accounting for all significant routes for dissociation and reformation. The reactive transport simulator makes it easy to deploy nonequilibrium thermodynamics for the study of CH4 production from hydrate-bearing sediments by considering each hydrate-related transition as a separate pseudo reaction. In this work, we have used the expanded version of the RetrasoCodeBright (RCB reactive transport simulator to model exploitation of the methane hydrate (MH reservoir located in the Nankai Trough, Japan. Our results showed that higher permeabilities in the horizontal direction dominated the pressure drop propagation throughout the hydrate layers and affected their hydrate dissociation rates. Additionally, the comparison of the vertical well versus the horizontal well pattern indicated that hydrate dissociation was slightly higher in the vertical well scenario compared to the horizontal.

  19. The phase equilibria of multicomponent gas hydrate in methanol/ethylene glycol solution based formation water

    International Nuclear Information System (INIS)

    Xu, Shurui; Fan, Shuanshi; Yao, Haiyuan; Wang, Yanhong; Lang, Xuemei; Lv, Pingping; Fang, Songtian

    2017-01-01

    Highlights: • The equilibrium data in THI solution based formation water is first investigated. • The 0.55 mass fraction concentration of EG 0.55 mass fraction fills the vacancy of this area. • The testing pressure range from 4.22 MPa to 34.72 MPa was rare in published data. - Abstract: In this paper, the three-phase coexistence points are generated for multicomponent gas hydrate in methanol (MeOH) solution for (0.05, 0.10, 0.15, and 0.35) mass fraction and ethylene glycol (EG) solution for (0.05, 0.10, 0.15, 0.35, 0.40 and 0.55) mass fraction. The phase equilibrium curves of different system were obtained by an isochoric pressure-search method on high pressure apparatus. The phase equilibrium regions of multicomponent gas hydrate were measured using the same composition of natural gas distributed in the South China Sea. And the different concentration solutions were prepared based formation water. The experimental data were measured in a wide range temperature from 267.74 to 298.53 K and a wide range pressure from 4.22 MPa to 34.72 MPa. The results showed that the hydrate phase equilibrium curves shifted to the inhibition region in accordance with the increased inhibitor concentration. In addition, the equilibrium temperature would decrease about 2.7 K when the concentration of MeOH increased 0.05 mass fraction. Besides, the suppression temperature was 1.25 K with the 0.05 mass fraction increase of EG concentration in the range of 0.05 mass fraction to 0.15 mass fraction. While in high EG concentration region, the suppression temperature was 3.3 K with the same increase of EG concentration (0.05 mass fraction).

  20. Structural features of a potential gas hydrate area in the Pointer Ridge off southwest Taiwan

    Science.gov (United States)

    Wang, Hsueh-Fen; Hsu, Shu-Kun; Tsai, Ching-Hui; Chen, Song-Chuen; Liu, Char-Shine; Lin, Hsiao-Shan

    2015-04-01

    The offshore area of the southwest Taiwan is located in the oblique convergence zone between the northern continental margin of South China Sea and the Manila accretionary wedge. To the west of the deformation front offshore southwestern Taiwan, the Pointer Ridge is located in the passive South China Sea continental margin. The continental margin is compose of extensional horst-and-graben structures. There are numerous submarine channels and linear ridge, formed due to the submarine erosion across the continental slope region. According to geophysical research off SW Taiwan, abundant gas hydrate may exist. In this study, our purpose is to understand the relationship between the near-seafloor structures of the Pointer Ridge and the gas hydrate formation off SW Taiwan. The data we used include multi-beam echo sounder (MBES), side-scan sonar (SSS), sub-bottom profiler (SBP) and the multi-channel reflection seismic (MCS) data. Our results show the pockmark and gas seepage structures mainly appear in the place where the gradient of the BSR thickness is maximum. Those sites contain authigenic carbonate signature shown in the sub-bottom profiler. We also observe several folds and faults structures in this extensional background; however, these compressional features need further studies.

  1. Micromechanical investigation of sand migration in gas hydrate-bearing sediments

    Science.gov (United States)

    Uchida, S.; Klar, A.; Cohen, E.

    2017-12-01

    Past field gas production tests from hydrate bearing sediments have indicated that sand migration is an important phenomenon that needs to be considered for successful long-term gas production. The authors previously developed the continuum based analytical thermo-hydro-mechanical sand migration model that can be applied to predict wellbore responses during gas production. However, the model parameters involved in the model still needs to be calibrated and studied thoroughly and it still remains a challenge to conduct well-defined laboratory experiments of sand migration, especially in hydrate-bearing sediments. Taking the advantage of capability of micromechanical modelling approach through discrete element method (DEM), this work presents a first step towards quantifying one of the model parameters that governs stresses reduction due to grain detachment. Grains represented by DEM particles are randomly removed from an isotropically loaded DEM specimen and statistical analyses reveal that linear proportionality exists between the normalized volume of detached solids and normalized reduced stresses. The DEM specimen with different porosities (different packing densities) are also considered and statistical analyses show that there is a clear transition between loose sand behavior and dense sand behavior, characterized by the relative density.

  2. Seismic Data Processing and the Characterization of a Gas Hydrate Bearing Zone Offshore of Southwestern Taiwan

    Directory of Open Access Journals (Sweden)

    Hui Deng

    2006-01-01

    Full Text Available Various seismic attributes of gas hydrate bearing sediments were analyzed in the accretionary prism offshore of southwestern Taiwan utilizing seismic imaging, velocity analysis, AVO analysis, and AVO inversion of large offset seismic data. A bottom-simulating reflector (BSR is clearly observed on the seismic section with a reversed polarity compared to that of the seabed reflection. Instantaneous amplitude sectioning clearly shows lateral variations of the BSR. The zero-phase waveform of the BSR is distinct and the weak reflectors above the BSR can be observed on the instantaneous phase section. AVO analysis shows the absolute value of the negative BSR amplitude increasing with offset. A low P-wave interval velocity layer was found below the strong BSR by detailed velocity analysis. Both the P (normal incident P-wave reflection coefficient and G (AVO gradient values are highly negative for the strong BSR on the P and G sections, and they lie in the third quadrant of the P and G cross-plot section. The P+G (reflectivity of Poisson¡¦s ratio value is also negative on the P+G section and the P-G (normal incident S-wave reflection coefficient value is approximately zero on the P-G section along the same strong BSR. All the seismic characters described above suggest that a gas hydrate layer exists together with a free gas layer below it along strong BSRs in the area offshore southwestern Taiwan.

  3. Experimental Investigation of Gas Hydrate Production at Injection of Liquid Nitrogen into Water with Bubbles of Freon 134A

    Directory of Open Access Journals (Sweden)

    Meleshkin Anton V.

    2016-01-01

    Full Text Available The hydrodynamic processes during the injection of the cryogenic liquid into the volume of water with bubbles of gas freon 134a are studding experimentally. A processes during the explosive boiling of liquid nitrogen in the volume of water are registered. Video recording of identified gas hydrate flakes formed during this process is carried out by high speed camera. These results may be useful for the study of the new method of producing gas hydrates, based on the shock-wave method.

  4. Mineralogy of Gas Hydrate Bearing Sediment in Green Canyon Block 955 Northern Gulf of Mexico

    Science.gov (United States)

    Heber, R.; Kinash, N.; Cook, A.; Sawyer, D.; Sheets, J.; Johnson, J. E.

    2017-12-01

    Natural gas hydrates are of interest as a future hydrocarbon source, however, the formation and physical properties of such systems are not fully understood. In May 2017, the University of Texas drilled two holes in Green Canyon Block 955, northern Gulf of Mexico to collect pressurized core from a thick, 100 m accumulation of gas hydrate in a silt dominated submarine canyon levee system. The expedition, known as UT-GOM2-01, collected 21, 10-m pressure cores from Holes H002 and H005. Approximately half of the cores successfully pressurized and were fully recovered. Unsuccessful cores that did not pressurize generally had low core recovery. By analyzing the sediment composition in known gas hydrate reservoirs, we can construct a more detailed picture of how and why gas hydrates accumulate, as mineralogy can affect physical properties such as porosity and permeability as well as geophysical measurements such as resistivity. Using X-ray diffraction (XRD) on bulk sediment powders, we determined the bulk mineralogy of the samples. Moreover, we investigated drilling mud contamination using XRD and light optical analysis. In some cores, contamination was easily recognized visually as dense sludge between the core barrel and the recovered sediment core, however drilling mud is best observed both along the liner and interbedded within the sediment on X-ray computed tomography scans. To fully identify the presence and influence of drilling mud, we use XRD to analyze samples on cores collected both while drilling mud was used in hole and when only seawater was used in hole and consider the density anomalies observed on the XCT scans. The preliminary XRD light optical microscopy results show that the silt-dominated reservoir is primarily composed of quartz, with minor alkali feldspar, amphibole, muscovite, dolomite, and calcite. Samples from intervals with suspected drilling mud contamination show a similar composition, but with the addition of barite, a common component in

  5. Heat flow pattern in the gas hydrate drilling areas of northern south china sea and the implication for further study

    Science.gov (United States)

    Wang, Lifeng; Sha, Zhibin

    2015-04-01

    Numerous seismic reflection profiles have been acquired by China Geological Survey (CGS) in the Northern Slope of South China Sea (SCS), clearly indicating widespread occurrence of free gases and/or gas hydrates in the sediments. In the year 2007 and 2013 respectively the gas hydrate samples are successfully recovered during two offshore drilling exploratory programs. Results of geothermal data during previous field studies along the north continental margin, however, show that the gas hydrate sites are associated with high geothermal background in contrast to the other offshore ones where the gas hydrates are more likely to be found in the low geothermal regional backgrounds. There is a common interesting heat flow pattern during the two drilling expeditions that the gas hydrate occurrences coincide with the presences of comparatively low geothermal anomalies against the high thermal background which is mainly caused by concentrated fluid upward movements into the stability zone (GHSZ) detected by the surface heat flow measurements over the studied fields. The key point for understanding the coupling between the presences of the gas hydrates and heat flow pattern at regional scale is to know the cause of high heat flows and the origin of forming gases at depth. We propose that these high heat flows are attributed to elevated shallow fault-fissure system due to the tectonic activities. A remarkable series of vertical faults and fissures are common on the upper continental slope and the forming gases are thought to have migrated with hot advective fluid flows towards seafloor mainly via fault-fissure system from underlying source rocks which are deeper levels than those of the GHSZ. The present study is based on an extensive dataset on hydrate distribution and associated temperature field measurements collected in the vicinity of studied areas during a series of field expeditions organized within the framework of national widely collaborative projects. Those

  6. A predictive numerical model for potential mapping of the gas hydrate stability zone in the Gulf of Cadiz

    Science.gov (United States)

    Leon, R.; Somoza, L.

    2009-04-01

    This comunication presents a computational model for mapping the regional 3D distribution in which seafloor gas hydrates would be stable, that is carried out in a Geographical Information System (GIS) environment. The construction of the model is comprised of three primary steps, namely (1) the construction of surfaces for the various variables based on available 3D data (seafloor temperature, geothermal gradient and depth-pressure); (2) the calculation of the gas function equilibrium functions for the various hydrocarbon compositions reported from hydrate and sediment samples; and (3) the calculation of the thickness of the hydrate stability zone. The solution is based on a transcendental function, which is solved iteratively in a GIS environment. The model has been applied in the northernmost continental slope of the Gulf of Cadiz, an area where an abundant supply for hydrate formation, such as extensive hydrocarbon seeps, diapirs and fault structures, is combined with deep undercurrents and a complex seafloor morphology. In the Gulf of Cadiz, model depicts the distribution of the base of the gas hydrate stability zone for both biogenic and thermogenic gas compositions, and explains the geometry and distribution of geological structures derived from gas venting in the Tasyo Field (Gulf of Cadiz) and the generation of BSR levels on the upper continental slope.

  7. Thessaloniki Mud Volcano, the Shallowest Gas Hydrate-Bearing Mud Volcano in the Anaximander Mountains, Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    C. Perissoratis

    2011-01-01

    Full Text Available A detailed multibeam survey and the subsequent gravity coring carried out in the Anaximander Mountains, Eastern Mediterranean, detected a new active gas hydrate-bearing mud volcano (MV that was named Thessaloniki. It is outlined by the 1315 m bathymetric contour, is 1.67 km2 in area, and has a summit depth of 1260 m. The sea bottom water temperature is 13.7∘C. The gas hydrate crystals generally have the form of flakes or rice, some larger aggregates of them are up to 2 cm across. A pressure core taken at the site contained 3.1 lt. of hydrocarbon gases composed of methane, nearly devoid of propane and butane. The sediment had a gas hydrate occupancy of 0.7% of the core volume. These characteristics place the gas hydrate field at Thessaloniki MV at the upper boundary of the gas hydrate stability zone, prone to dissociation with the slightest increase in sea water temperature, decrease in hydrostatic pressure, or change in the temperature of the advecting fluids.

  8. Multicomponent seismic methods for characterizing gas hydrate occurrences and systems in deep-water Gulf of Mexico

    Science.gov (United States)

    Haines, Seth S.; Lee, Myung W.; Collett, Timothy S.; Hardage, Bob A.

    2011-01-01

    In-situ characterization and quantification of natural gas hydrate occurrences remain critical research directions, whether for energy resource, drilling hazard, or climate-related studies. Marine multicomponent seismic data provide the full seismic wavefield including partial redundancy, and provide a promising set of approaches for gas hydrate characterization. Numerous authors have demonstrated the possibilities of multicomponent data at study sites around the world. We expand on this work by investigating the utility of very densely spaced (10’s of meters) multicomponent receivers (ocean-bottom cables, OBC, or ocean-bottom seismometers, OBS) for gas hydrate studies in the Gulf of Mexico and elsewhere. Advanced processing techniques provide high-resolution compressional-wave (PP) and converted shearwave (PS) reflection images of shallow stratigraphy, as well as P-wave and S-wave velocity estimates at each receiver position. Reflection impedance estimates can help constrain velocity and density, and thus gas hydrate saturation. Further constraint on velocity can be determined through identification of the critical angle and associated phase reversal in both PP and PS wideangle data. We demonstrate these concepts with examples from OBC data from the northeast Green Canyon area and numerically simulated OBS data that are based on properties of known gas hydrate occurrences in the southeast (deeper water) Green Canyon area. These multicomponent data capabilities can provide a wealth of characterization and quantification information that is difficult to obtain with other geophysical methods.

  9. In-situ inventory of gas and gas hydrates in deposits of the Hâkon Mosby mud volcano, SW Barents Sea

    Science.gov (United States)

    Pape, T.; Feseker, T.; Kasten, S.; Fischer, D.; Abegg, F.; Hohnberg, H.-J.; Bohrmann, G.

    2009-04-01

    Submarine mud volcanoes are an important source and reservoir of methane and other low-molecular weight hydrocarbons (LMWHC). Consequently, mud volcanoes located within the gas hydrate stability zone (GHSZ) are known to host shallow buried gas hydrates in high density. However, gas hydrate inventories in shallow mud volcano deposits are strongly affected by changes in local physico-chemical conditions due to episodic volcanic activity and response by fixation or release of abundant portions of LMWHC. We determined the in situ gas inventories in shallow deposits of the Håkon Mosby mud volcano (HMMV, SW Barents Sea) in approx. 1,250 m water depth by quantitative degassing of pressure cores recovered with our Dynamic Autoclave Piston Corer. As recognized during previous studies of the HMMV, a concentric arrangement of geochemical parameters and topographic features allow for the distinction of three geomorphological units (I, II, III). During our cruise in summer 2008 we recovered pressure cores (up to 2.65 m below seafloor, b.s.f.) from all the three units and volumetric gas-sediment (wet) ratios ranged between 2.6 in a core taken at the northwestern outer rim (Unit III), and 25.2 obtained for a core in the northeastern section (Unit II). Gas sub-samples collected during degassing of pressure cores belonging to the three units showed C1/C2+ ratios >1,000 suggestive of a predominantly microbial LMWHC origin. Hydrate stability calculations based on LMWHC distributions, pore water salinities and bottom water temperatures suggest that structure I hydrates are the most stable crystallographic hydrate structure at the HMMV. Pore water chloride and sulfate profiles combined with in situ temperature data were used to delineate local boundaries of hydrate accumulations in each of the three geomorphologic units. Subsequently, gas volumes in pressure cores were referred to core segments comprising gas hydrates, and hydrate concentrations were calculated. Low gas hydrate

  10. Determination of Priority Study Areas for Coupling CO2 Storage and CH4 Gas Hydrates Recovery in the Portuguese Offshore Area

    Directory of Open Access Journals (Sweden)

    Luís Bernardes

    2015-09-01

    Full Text Available Gas hydrates in sub-seabed sediments is an unexploited source of energy with estimated reserves larger than those of conventional oil. One of the methods for recovering methane from gas hydrates involves injection of Carbon Dioxide (CO2, causing the dissociation of methane and storing CO2. The occurrence of gas hydrates offshore Portugal is well known associated to mud volcanoes in the Gulf of Cadiz. This article presents a determination of the areas with conditions for the formation of biogenic gas hydrates in Portugal’s mainland geological continental margin and assesses their overlap with CO2 hydrates stability zones defined in previous studies. The gas hydrates stability areas are defined using a transfer function recently published by other authors and takes into account the sedimentation rate, the particulate organic carbon content and the thickness of the gas hydrate stability zone. An equilibrium equation for gas hydrates, function of temperature and pressure, was adjusted using non-linear regression and the maximum stability zone thickness was found to be 798 m. The gas hydrates inventory was conducted in a Geographic Information System (GIS environment and a full compaction scenario was adopted, with localized vertical flow assumed in the accrecionary wedge where mud volcanoes occur. Four areas where temperature and pressure conditions may exist for formation of gas hydrates were defined at an average of 60 km from Portugal’s mainland coastline. Two of those areas coincide with CO2 hydrates stability areas previously defined and should be the subject of further research to evaluate the occurrence of gas hydrate and the possibility of its recovery coupled with CO2 storage in sub-seabed sediments.

  11. Determining gas hydrate distribution in sands using integrated analysis of well log and seismic data in the Terrebonne Basin, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hillman, Jess; Cook, Ann; Daigle, Hugh; Nole, Michael; Malinverno, Alberto

    2016-09-30

    The Terrebonne Basin is a salt bounded mini-basin in the northeast section of the Walker Ridge protraction area in the Gulf of Mexico, and the main site for an upcoming gas-hydrate focused International Ocean Discovery Program (IODP) cruise. The basin is infilled by an increasingly mud rich sedimentary sequence with several 5-15 meter gas-hydrate filled sand units of Miocene to Pliocene age overlying the up-domed salt. These gas-hydrate filled sand units can be identified in logging while drilling data from two existing wells in the Terrebonne Basin, drilled in 2009 by the Gas Hydrate Joint Industry Project (JIP) Leg 2. The sand units are cross cut by a distinct bottom-simulating reflector (BSR), and are clearly characterized by a polarity reversal in the sand units. The polarity reversal is caused by a positive gas-hydrate filled sand within the stability zone changing to negative gas-bearing sand. Using well data and calculated synthetic seismogram well ties we are able to identify several additional 1-4 meter gas-hydrate and water-saturated sand units associated with thick (100-200 m-thick), fine grained, hydrate bearing fractured units in the upper sedimentary sequence on the seismic data. Following on previous work, we propose that microbial generation of methane occurring within the fine-grained, fractured units acts as a source for gas hydrate formation in the thin sands. In contrast, it has been proposed that the gas hydrate in the 5-15 m-thick sands first discovered by the JIP was originates from a deeper thermogenic source. Through correlating hydrate occurrence in sands from well data, to amplitudes derived from the seismic data, we can estimate possible distribution of hydrate across the basin. Overall, we find the Terrebonne basin to be a complex gas hydrate system with multiple mechanisms of methane generation and migration.

  12. Environmental risks of the gas hydrate field development in the Eastern Nankai Trough

    Science.gov (United States)

    Yamamoto, K.; Nagakubo, S.

    2009-12-01

    To establish any kinds of new energy resources, environmental impacts of the technology should be well understood before full industrial implementation. Methane hydrate (MH), a relatively clean fossil energy with low CO2 and no SOx emission, is not an exception. Because methane gas itself has strong greenhouse gas effect, and methane hydrate is not stable under the atmospheric pressure and room temperature, public image of MH field development is very risky game and potentially disastrous to the global climate. However, the real physics of the MH bearing sediments is far different from such images. MH21 Research Consortium in Japan has studied about the resource assessment and production techniques to develop MH since 2001. As the results, we found several gas hydrate concentrated zones with pore filling type hydrate in sandy layers of turbidite sediment in the Eastern Nankai Trough area off coasts of the Central Japan. The depressurization technique, in the other word, in-situ MH dissociation by water production and natural heat supply from surrounding formation, will be used as the basic method to produce methane gas from MH. Under the conditions, we have evaluated realistic environmental risk of the MH production. Because the most MH found in the Eastern Nankai Trough are composed of biogenic and almost pure methane, there is no concern of sea water contamination by oil releases that is the most common environmental disaster caused by misconducts of the oil industry. Also MH reservoirs there are not pressurized, and blowout of wells during drilling is very unlikely. Endothermic MH dissociation process decreases formation temperature with depressurization, and give negative feedback, then, there is no chance of chain reaction. Heat supply from surrounding formations is necessary for continuous dissociation, but heat transfer in the formations is relatively slow, and the dissociation rate is limited. Once the operation to pump water in boreholes for

  13. Thick massive gas hydrate deposits were revealed by LWD in Off-Joetsu area, eastern margin of Japan Sea.

    Science.gov (United States)

    Tanahashi, M.; Morita, S.; Matsumoto, R.

    2016-12-01

    GR14 and HR15 survey cruises, which were dedicated to the LWD (Logging While Drilling), were carried out in summers of 2014 and 2015, respectively, by Meiji University and Geological Survey of Japan, AIST to explore the "gas chimney" structures in eastern margin of Japan Sea. Shallow (33 to 172m-bsf, average 136m-bsf) 33 LWD drilling were performed in Oki Trough, Off-Joetsu, and Mogami Trough areas along eastern margin of Japan Sea during two cruises. Schlumberger LWD tools, GeoVISION (resistivity), TeleScope, ProVISION (NMR) and SonicVISION were used during GR14. NeoScope (neutron) was added and SonicScope was replaced for SonicVISION during HR14. The data quality was generally good. "Gas chimney" structures with acoustic blanking columns on the high frequency seismic sections with mound and pockmark morphologic features on the sea bottom, are well developed within survey areas. Every LWD records taken from gas chimney structures during the cruises show high resistivity and acoustic velocity anomalies which suggest the development of gas hydrate. Characteristic development of massive gas hydrate was interpreted at the Umitaka CW mound structure, Off-Joetsu. The mound lies at 890-910m in water depth and has very rough bottom surface, regional high resistivity, regional high heat flow, several natural seep sites, 200m x 300m area, and 10-20m height. 8 LWD holes, J18L to J21L and J23L to J26L, were drilled on and around the mound. There are highly anomalous intervals which suggest the development of massive gas hydrate at J24L, with high resistivity, high Vp and Vs, high neutron porosity, low natural gamma ray intensity, low neutron gamma density, low NMR porosity, low NMR permeability, low formation sigma, from 10 to 110m-bsf with intercalating some thin less hydrate layers. It is interpreted that there is several tens of meter thick massive gas hydrate in the gas chimney mound. It is partly confirmed by the later nearby coring result which showed the repetition of

  14. Numerical simulations of depressurization-induced gas production from gas hydrate reservoirs at the Walker Ridge 312 site, northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Myshakin, Evgeniy M.; Gaddipati, Manohar; Rose, Kelly; Anderson, Brian J.

    2012-06-01

    In 2009, the Gulf of Mexico (GOM) Gas Hydrates Joint-Industry-Project (JIP) Leg II drilling program confirmed that gas hydrate occurs at high saturations within reservoir-quality sands in the GOM. A comprehensive logging-while-drilling dataset was collected from seven wells at three sites, including two wells at the Walker Ridge 313 site. By constraining the saturations and thicknesses of hydrate-bearing sands using logging-while-drilling data, two-dimensional (2D), cylindrical, r-z and three-dimensional (3D) reservoir models were simulated. The gas hydrate occurrences inferred from seismic analysis are used to delineate the areal extent of the 3D reservoir models. Numerical simulations of gas production from the Walker Ridge reservoirs were conducted using the depressurization method at a constant bottomhole pressure. Results of these simulations indicate that these hydrate deposits are readily produced, owing to high intrinsic reservoir-quality and their proximity to the base of hydrate stability. The elevated in situ reservoir temperatures contribute to high (5–40 MMscf/day) predicted production rates. The production rates obtained from the 2D and 3D models are in close agreement. To evaluate the effect of spatial dimensions, the 2D reservoir domains were simulated at two outer radii. The results showed increased potential for formation of secondary hydrate and appearance of lag time for production rates as reservoir size increases. Similar phenomena were observed in the 3D reservoir models. The results also suggest that interbedded gas hydrate accumulations might be preferable targets for gas production in comparison with massive deposits. Hydrate in such accumulations can be readily dissociated due to heat supply from surrounding hydrate-free zones. Special cases were considered to evaluate the effect of overburden and underburden permeability on production. The obtained data show that production can be significantly degraded in comparison with a case using

  15. Geomechanical, Hydraulic and Thermal Characteristics of Deep Oceanic Sandy Sediments Recovered during the Second Ulleung Basin Gas Hydrate Expedition

    Directory of Open Access Journals (Sweden)

    Yohan Cha

    2016-09-01

    Full Text Available This study investigates the geomechanical, hydraulic and thermal characteristics of natural sandy sediments collected during the Ulleung Basin gas hydrate expedition 2, East Sea, offshore Korea. The studied sediment formation is considered as a potential target reservoir for natural gas production. The sediments contained silt, clay and sand fractions of 21%, 1.3% and 77.7%, respectively, as well as diatomaceous minerals with internal pores. The peak friction angle and critical state (or residual state friction angle under drained conditions were ~26° and ~22°, respectively. There was minimal or no apparent cohesion intercept. Stress- and strain-dependent elastic moduli, such as tangential modulus and secant modulus, were identified. The sediment stiffness increased with increasing confining stress, but degraded with increasing strain regime. Variations in water permeability with water saturation were obtained by fitting experimental matric suction-water saturation data to the Maulem-van Genuchen model. A significant reduction in thermal conductivity (from ~1.4–1.6 to ~0.5–0.7 W·m−1·K−1 was observed when water saturation decreased from 100% to ~10%–20%. In addition, the electrical resistance increased quasi-linearly with decreasing water saturation. The geomechanical, hydraulic and thermal properties of the hydrate-free sediments reported herein can be used as the baseline when predicting properties and behavior of the sediments containing hydrates, and when the hydrates dissociate during gas production. The variations in thermal and hydraulic properties with changing water and gas saturation can be used to assess gas production rates from hydrate-bearing deposits. In addition, while depressurization of hydrate-bearing sediments inevitably causes deformation of sediments under drained conditions, the obtained strength and stiffness properties and stress-strain responses of the sedimentary formation under drained loading conditions

  16. Estimation of viscoelastic attenuation of real seismic data by use of ray tracing software: Application to the detection of gas hydrates and free gas

    Czech Academy of Sciences Publication Activity Database

    Bouchaala, Fateh; Guennou, C.

    2012-01-01

    Roč. 344, č. 2 (2012), s. 57-66 ISSN 1631-0713 Institutional research plan: CEZ:AV0Z30120515 Keywords : viscoelastic attenuation * gas hydrates * free gas * ray tracing Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.401, year: 2012

  17. Application of 'Hydration Model' to evaluate gas phase transfer of ruthenium and technetium from reprocessing solutions

    International Nuclear Information System (INIS)

    Sasahira, Akira; Hoshikawa, Tadahiro; Kamoshida, Mamoru; Kawamura, Fumio

    1994-01-01

    In order to evaluate the amounts of gas phase transferred ruthenium (Ru), and technetium (Tc), simulations were made for the continuous evaporator used in a reprocessing plant to concentrate high level liquid waste. The concentrations and activities of nitric acid and water, which controlled the reaction rate and gas-liquid equilibrium in the evaporator solution, were evaluated using the previously developed 'Hydration Model'. When the feed solution contained 2.7 M (=mol/dm 3 ) of nitric acid, the nitric acid concentration in the evaporator solution reached its maximum at the concentration factor (CF) of 6 (CF: concentration ratio of FPs in evaporator and feed solutions). The activities of nitric acid and water were saturated at values of 0.01 and 0.43, respectively, after the CF reached 6. The simulation predicted decontamination factors DFs of 2x10 5 and 8x10 3 for Ru and Tc, respectively, for a typical evaporation conditions with an operational pressure of 6,700 Pa, and FPs of 0.02 to 1.4 M. The simulation results agreed with the verification experiment within a factor of 2 for the amount of gas-phase transferred Ru during evaporation. The factor for the amount of gas-phase transferred Tc was estimated as 5 from the measurement error in the gas-liquid equilibrium constant. (author)

  18. LOW TEMPERATURE X-RAY DIFFRACTION STUDIES OF NATURAL GAS HYDRATE SAMPLES FROM THE GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Rawn, Claudia J [ORNL; Sassen, Roger [Texas A& M University; Ulrich, Shannon M [ORNL; Phelps, Tommy Joe [ORNL; Chakoumakos, Bryan C [ORNL; Payzant, E Andrew [ORNL

    2008-01-01

    Clathrate hydrates of methane and other small alkanes occur widespread terrestrially in marine sediments of the continental margins and in permafrost sediments of the arctic. Quantitative study of natural clathrate hydrates is hampered by the difficulty in obtaining pristine samples, particularly from submarine environments. Bringing samples of clathrate hydrate from the seafloor at depths without compromising their integrity is not trivial. Most physical property measurements are based on studies of laboratory-synthesized samples. Here we report X-ray powder diffraction measurements of a natural gas hydrate sample from the Green Canyon, Gulf of Mexico. The first data were collected in 2002 and revealed ice and structure II gas hydrate. In the subsequent time the sample has been stored in liquid nitrogen. More recent X-ray powder diffraction data have been collected as functions of temperature and time. This new data indicates that the larger sample is heterogeneous in ice content and shows that the amount of sII hydrate decreases with increasing temperature and time as expected. However, the dissociation rate is higher at lower temperatures and earlier in the experiment.

  19. Constraints of gas venting activity for the interstitial water geochemistry at the shallow gas hydrate site, eastern margin of the Japan Sea; results from high resolution time-series fluid sampling by OsmoSampler

    Science.gov (United States)

    Owari, S.; Tomaru, H.; Matsumoto, R.

    2016-12-01

    We have conducted ROV researches in the eastern margin of the Japan Sea where active gas venting and outcropping of gas hydrates were observed near the seafloor and have found the strength and location of venting had changed within a few days. These observations indicate the seafloor environments with the shallow gas hydrate system could have changed for short period compared to a geological time scale. We have applied a long-term osmotic fluid sampling system "OsmoSampler" on the active gas hydrate system for one year in order to document how the gas venting and gas hydrate activity have changed the geochemical environments near the seafloor. All the major ion concentrations in the interstitial water show synchronous increase and decrease repeatedly in three to five days, reflecting the incorporation and release of fresh water in gas hydrates in response to the gas concentration change near the sampling site. Dissolved methane concentration increases rapidly and excessively (over several mM) in the first 40 days corresponding to the active gas venting. The increases of methane concentration are often associated with high ion concentration during high water pressure period, indicating excess gas release from shallow gas pockets. Contrarily, enhanced gas hydrate growth may plug the fluid-gas paths in shallow sediment, reducing gas hydrate formation due to the decrease of methane flux. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).

  20. Comparison of intelligent systems, artificial neural networks and neural fuzzy model for prediction of gas hydrate formation rate

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Jalalnezhad

    2014-05-01

    Full Text Available The main objective of this study was to present a novel approach for predication of gas hydrate formation rate based on the Intelligent Systems. Using a data set including about 470 data obtained from flow tests in a mini-loop apparatus, different predictive models were developed. From the results predicted by these models, it can be pointed out that the developed models can be used as powerful tools for prediction of gas hydrate formation rate with total errors of less than 4%.

  1. Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 10, Basin analysis, formation and stability of gas hydrates of the Aleutian Trench and the Bering Sea

    Energy Technology Data Exchange (ETDEWEB)

    Krason, J.; Ciesnik, M.

    1987-01-01

    Four major areas with inferred gas hydrates are the subject of this study. Two of these areas, the Navarin and the Norton Basins, are located within the Bering Sea shelf, whereas the remaining areas of the Atka Basin in the central Aleutian Trench system and the eastern Aleutian Trench represent a huge region of the Aleutian Trench-Arc system. All four areas are geologically diverse and complex. Particularly the structural features of the accretionary wedge north of the Aleutian Trench still remain the subjects of scientific debates. Prior to this study, suggested presence of the gas hydrates in the four areas was based on seismic evidence, i.e., presence of bottom simulating reflectors (BSRs). Although the disclosure of the BSRs is often difficult, particularly under the structural conditions of the Navarin and Norton basins, it can be concluded that the identified BSRs are mostly represented by relatively weak and discontinuous reflectors. Under thermal and pressure conditions favorable for gas hydrate formation, the relative scarcity of the BSRs can be attributed to insufficient gas supply to the potential gas hydrate zone. Hydrocarbon gas in sediment may have biogenic, thermogenic or mixed origin. In the four studied areas, basin analysis revealed limited biogenic hydrocarbon generation. The migration of the thermogenically derived gases is probably diminished considerably due to the widespread diagenetic processes in diatomaceous strata. The latter processes resulted in the formation of the diagenetic horizons. The identified gas hydrate-related BSRs seem to be located in the areas of increased biogenic methanogenesis and faults acting as the pathways for thermogenic hydrocarbons.

  2. Prediction of gas hydrate saturation throughout the seismic section in Krishna Godavari basin using multivariate linear regression and multi-layer feed forward neural network approach

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, Y.; Nair, R.R.; Singh, H.; Datta, P.; Jaiswal, P.; Dewangan, P.; Ramprasad, T.

    , the present study used well log-derived data on P-wave velocity, porosity, resistivity, and gas hydrate saturation. Gas hydrate saturation used for this study is estimated by Lee and Collett (2009) for anisotropic reservoir (Fig. 1). Gas hydrates can be pore... filling, fracture filling, or a com- bination of both. In sand reservoirs, the pore filling morpholo- gy dominates while in the case of clay/silt reservoir, the hydrate can be fracture filling or combination of these. The NGHP-01 expedition first...

  3. Sensitivity analysis of P-waves and S-waves to gas hydrate in the Shenhu area using OBS

    Science.gov (United States)

    Xing, Lei; Liu, Xueqin; Zhang, Jin; Liu, Huaishan; Zhang, Jing; Li, Zizheng; Wang, Jianhua

    2018-02-01

    Compared to towed streamers, ocean-bottom seismometers (OBS) obtain both S-wave data and richer wavefield information. In this paper, the induced polarization method is used to conduct wavefield separation on OBS data obtained from the Shenhu area in the South China Sea. A comparison of the changes in P- and S-waves, and a comprehensive analysis of geological factors within the area, enable analysis and description of the occurrence of natural gas hydrate in the study area. Results show an increase in P-wave velocity when natural gas hydrate exists in the formation, whereas the S-wave velocity remains almost constant, as S-waves can only propagate through the rock skeleton. Therefore, the bottom-simulating reflection (BSR) response of the P-wave is better than that of the S-wave in the frequency analysis profile. In a wide-angle section, the refractive wave of the hydrate layer is evident when using P-wave components but identification is difficult with S-wave components. This velocity model illustrates the sensitivity of P- and S-wave components to gas hydrate. The use of this polarization method and results of analysis provide technical and theoretical support for research on hydrate deposits and other geological features in the Shenhu area.

  4. Experimental study and thermodynamic modeling of CO2 gas hydrate formation in presence of zinc oxide nanoparticles

    International Nuclear Information System (INIS)

    Mohammadi, Mohsen; Haghtalab, Ali; Fakhroueian, Zahra

    2016-01-01

    Highlights: • Nanofluids enhance heat and mass transfer and affect on kinetic and thermodynamics. • The ZnO nanoparticles in liquid affect on kinetics and P-T curve of CO 2 hydrate. • ZnO nanoparticles enhance the growth rate and gas storage in CO 2 hydrate. • A thermodynamic modeling of CO 2 hydrate proposed in the presence of nanoparticles. • Water activity in ZnO + nanofluid was affected by enhancement of the CO 2 solubility. - Abstract: The effect of synthesized zinc oxide (ZnO) nanoparticles was investigated on the kinetic and thermodynamic equilibrium conditions of CO 2 hydrate formation. The amount of the gas consumption was measured and compared for the four sample fluids: pure water, aqueous solution of sodium dodecyl sulfate (SDS), water-based ZnO-nanofluid and water-based ZnO-nanofluid in the presence of SDS (0.001 mass fraction). The time of hydrate growth decreased and the amount of the storage gas enhanced in the presence of nanoparticles. Moreover, the nanoparticles size effect besides the CO 2 solubility enhancement in ZnO-nanofluid led to the reduction of water activity, so that the equilibrium curve of hydrate formation was shifted to higher pressures. A new correlation for Henry’s law constant was obtained using CO 2 -solubility data in ZnO-nanofluid. Finally using this correlation, the water activity was calculated through the Chen–Guo approach to propose a thermodynamic method for prediction of the equilibrium hydrate formation conditions in the presence of the nanoparticles.

  5. Initiation of gas-hydrate pockmark in deep-water Nigeria: Geo-mechanical analysis and modelling

    Science.gov (United States)

    Riboulot, V.; Sultan, N.; Imbert, P.; Ker, S.

    2016-01-01

    A review of recent literature shows that two geomorphologically different types of pockmarks, contribute to gas seepage at the seafloor. Type-1 pockmarks are defined as seafloor craters associated to fluid seepage and are the most classical type referred to as ;pockmarks; in the literature. In contrast, Type-2 pockmarks reveal a complex seafloor morphology that may result from the formation/decomposition of gas hydrates in underlying sedimentary layers. Interpretation of very-high-resolution seismic data, sedimentological analyses and geotechnical measurements acquired from the Eastern Niger Submarine Delta reveal that Type-2 pockmarks are associated to the presence at depth of a conical body of massive gas hydrates. Based on acquired data, theoretical analysis and numerical modelling, it was possible to propose a novel geo-mechanical mechanism controlling the irregular seafloor deformations associated to Type-2 pockmark and to show that pockmark shapes and sizes are directly linked to the initial growth and distribution of sub-seafloor gas hydrates. The study illustrates the role of gas hydrates formation in the fracturation, deformation of the subsurface sediment and the formation of Type-2 pockmarks.

  6. The piston-cylinder apparatus for in-situ structural investigations of high-pressure phases of gas hydrates with the use of synchrotron radiation

    CERN Document Server

    Mirinski, D S; Larionova, E G; Kurnosov, A V; Ancharov, A I; Dyadin, Y A; Tolochko, B P; Sheromov, M A

    2001-01-01

    The piston-cylinder apparatus for the investigation of high-pressure gas hydrate phases by the powder diffraction method is presented. The first results concerning the nature of the high-pressure gas hydrate phase in the sulfur hexafluoride-water system are reported.

  7. Investigation of gas hydrate-bearing sandstone reservoirs at the "Mount Elbert" stratigraphic test well, Milne Point, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R.M.; Hunter, R. (ASRC Energy Services, Anchorage, AK); Collett, T. (USGS, Denver, CO); Digert, S. (BP Exploration (Alaska) Inc., Anchorage, AK); Hancock, S. (RPS Energy Canada, Calgary, Alberta, Canada); Weeks, M. (BP Exploration (Alaska) Inc., Anchorage, AK); Mt. Elbert Science Team

    2008-01-01

    In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), Inc., and the U.S. Geological Survey conducted an extensive data collection effort at the "Mount Elbert #1" gas hydrates stratigraphic test well on the Alaska North Slope (ANS). The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a full suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. Hole conditions, and therefore log data quality, were excellent due largely to the use of chilled oil-based drilling fluids. The logging program confirmed the existence of approximately 30 m of gashydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60% to 75% largely as a function of reservoir quality. Continuous wire-line coring operations (the first conducted on the ANS) achieved 85% recovery through 153 meters of section, providing more than 250 subsamples for analysis. The "Mount Elbert" data collection program culminated with open-hole tests of reservoir flow and pressure responses, as well as gas and water sample collection, using Schlumberger's Modular Formation Dynamics Tester (MDT) wireline tool. Four such tests, ranging from six to twelve hours duration, were conducted. This field program demonstrated the ability to safely and efficiently conduct a research-level openhole data acquisition program in shallow, sub-permafrost sediments. The program also demonstrated the soundness of the program's pre-drill gas hydrate characterization methods and increased confidence in gas hydrate resource assessment methodologies for the ANS.

  8. Seismic characterization of a gas hydrate system in the Gulf of Mexico using wide-aperture data

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, P.; Zelt, C.A. [Rice Univ., Houston, TX (United States). Dept. of Earth Science; Pecher, I.A. [Institute of Geological and Nuclear Sciences, Lower Hutt (New Zealand)

    2006-04-15

    Gas hydrates were discovered in a mud mound in the lease block Mississippi Canyon 798, Gulf of Mexico, through piston coring. Subsequently, a seismic experiment was carried out to investigate the dynamics behind the hydrate formation. During the experiment, high-resolution multichannel seismic reflection data using a 24-channel, 240 m long streamer and wide-aperture data using six ocean bottom seismometers were collected along five lines. High-reflectivity zones (HRZs) are present in the reflection data along all lines. To better constrain the interpretation of the reflection data, the traveltimes from the multichannel and wide-aperture data sets were jointly inverted to estimate a 2-D P-wave layered velocity model for each line. A minimum-parameter/minimum-structure modelling approach yielded simple models and a comparison of the models at their intersection points shows they are consistent to within {+-}10 m s{sup -1} in velocity and {+-}20 m in depth. In the final P-wave velocity models, the HRZs are associated with a lowering of velocity. In the reflection data, the top of the HRZs show a polarity reversal with respect to the seafloor. Presence of free gas in the HRZs best explains the velocity lowering and polarity reversal. It is speculated that the gas has deeper sources and migrates upwards through conduits formed by salt movement in the vicinity. The upward migrating gas accumulates in the axis of a channel complex and manifests itself as HRZs in the reflection data. The fluids circulating along the conduits push the base of the hydrate stability zone close to the seafloor. From the channel axis, the free gas migrates further upwards and close to the seafloor, and as it comes within the gas hydrate stability zone, it forms hydrates. (author)

  9. Data Requirements and Modeling for Gas Hydrate-Related Mixtures and a Comparison of Two Association Models

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Aloupis, Georgios; Kontogeorgis, Georgios M.

    2017-01-01

    used association models in the chemical and petroleum industries. The CPA model is extensively used in flow assurance, in which the gas hydrate formation is one of the central topics. Experimental data play a vital role in validating models and obtaining model parameters. In this work, we will compare...

  10. Statistical Study of the Memory Effect in Model Natural Gas Hydrate Systems.

    Science.gov (United States)

    Sowa, Barbara; Maeda, Nobuo

    2015-11-05

    A high pressure automated lag time apparatus (HP-ALTA) was used for the investigation of the controversial memory effect in methane-propane mixed gas hydrates. The instrument can apply a large number of linear cooling ramps to a small volume of sample water under an isobaric condition of up to 15 MPa and record the maximum achievable subcooling for each cooling ramp. Over a hundred nucleation events were recorded for each of the several superheating temperatures used for the dissociation of the gas hydrate in a sample. In total, four different sample cells were used, and the effect of heating time was also studied for two of the four sample cells. A difference between two stochastic nucleation probability distributions was systematically and unambiguously quantified in terms of the most probable difference in the maximum achievable subcoolings. The protocol offers by far the most statistically robust method of quantification of the magnitude of the memory effect in each sample. From the analysis of several thousands of nucleation events, the following conclusions were made: (1) Even though the nucleation phenomena were intrinsically stochastic, a clear bias was observed which supported the existence of the memory effect. In particular, a reduction in the most probable subcooling of at least 4 K was required for positive identification of the memory effect for one of the sample cells. (2) The reduction increased as the superheating temperature was lowered. (3) The magnitude of the memory effect varied substantially among the sample cells used. (4) No significant effect of the heating time was observed in the range studied.

  11. Design and safety evaluation of radioactive gas handling and storage in the FFTF

    International Nuclear Information System (INIS)

    Armstrong, G.R.; Hale, J.P.; Halverson, T.G.

    1976-01-01

    During the operation of the Fast Flux Test Facility (FFTF), radioactive gases, primarily xenon and krypton, will be produced which will require processing and storing. Two systems have been installed in the FFTF for handling these gases: (1) one to handle, primarily, the reactor cover gas system, and (2) a second to handle the cells and cover gas systems, other than the reactor, whose atmosphere may become contaminated. The system that processes the reactor cover gas, which is argon, is called the Radioactive Argon Processing System (RAPS). The effluent argon from RAPS will normally be sufficiently decontaminated to allow its reuse as the reactor cover gas. If the radioactive level in the RAPS becomes too high, the exhaust stream will be diverted to the Cell Atmosphere Processing System (CAPS), a system which can function as a backup to RAPS. The design and operation of the RAPS and CAPS systems are described and certain safety aspects of the systems are discussed. It is shown that these systems adequately provide the cleanup services required and that they provide the safety margins necessary to assure adequate safety to the public

  12. Beaufort Sea deep-water gas hydrate recovery from a seafloor mound in a region of widespread BSR occurrence

    Science.gov (United States)

    Hart, Patrick E.; Pohlman, John W.; Lorenson, T.D.; Edwards, Brian D.

    2011-01-01

    Gas hydrate was recovered from the Alaskan Beaufort Sea slope north of Camden Bay in August 2010 during a U.S. Coast Guard Cutter Healy expedition (USCG cruise ID HLY1002) under the direction of the U.S. Geological Survey (USGS). Interpretation of multichannel seismic (MCS) reflection data collected in 1977 by the USGS across the Beaufort Sea continental margin identified a regional bottom simulating reflection (BSR), indicating that a large segment of the Beaufort Sea slope is underlain by gas hydrate. During HLY1002, gas hydrate was sampled by serendipity with a piston core targeting a steep-sided bathymetric high originally thought to be an outcrop of older, exposed strata. The feature cored is an approximately 1100m diameter, 130 m high conical mound, referred to here as the Canning Seafloor Mound (CSM), which overlies the crest of a buried anticline in a region of sub-parallel compressional folds beneath the eastern Beaufort outer slope. An MCS profile shows a prominent BSR upslope and downslope from the mound. The absence of a BSR beneath the CSM and occurrence of gas hydrate near the summit indicates that free gas has migrated via deep-rooted thrust faults or by structural focusing up the flanks of the anticline to the seafloor. Gas hydrate recovered from near the CSM summit at a subbottom depth of about 5.7 meters in a water depth of 2538 m was of nodular and vein-filling morphology. Although the hydrate was not preserved, residual gas from the core liner contained >95% methane by volume when corrected for atmospheric contamination. The presence of trace C4+hydrocarbons (extrusion contributing to the development of the mound. Blister-like inflation of the seafloor caused by formation and accumulation of shallow hydrate lenses is also a likely factor in CSM growth. Pore water analysis shows the sulfate-methane transition to be very shallow (0-1 mbsf), also supporting an active high-flux interpretation. Pore water with chloride concentrations as low as 160 m

  13. A temperature and photographic time-series from a seafloor gas hydrate deposit on the Gulf of Mexico Slope

    Science.gov (United States)

    MacDonald, I. R.; Vararo, M.; Bender, L.

    2003-04-01

    Under laboratory conditions, gas hydrates are highly sensitive to changes in water temperature. MacDonald et al. (1994) and Roberts et al. (1999) have monitored in-situ deposits and recorded rapid changes in gas flux from vents partially plugged with gas hydrate; the changes appear to correlate with fluctuation in bottom temperature over ranges of worms, and a number of mobile species. The temperature probes comprised two autonomous Antares thermistors, one at each end of a 50-cm PVC wand, which recorded temperatures with precision of better than 0.1 C at 30-min intervals over 327 d. One probe was implanted with a tight seal into a drill hole about 7 cm deep in the top of the gas hydrate mound. The second was inserted about 50 cm deep into the adjacent sediments. For each probe, the top thermistor recorded the ambient water temperature while the bottom thermistor recorded the internal temperature of the hydrate or sediment. Photographic results show no dramatic changes in the size, shape, or gas venting from the mound during the 96 day time-series. There were subtle increases in the amount of hydrate exposed to the water between the end of the photographic time series and the recovery of the monitoring array. Mean temperatures (SDEV) and temperature range recorded by the probes were as follows: In-water: 7.87 ( 0.44) and 6.64-9.73 C In-hydrate: 7.81 ( 0.34) and 6.87-9.18 C In-sediment: 7.81 ( 0.16) and 7.79-9.18 C Spectra of the temperature records showed significant high-frequency peaks for in-water data corresponding to K1, M2 and M3 lunar tides. Of these peaks, only the K1 (23.9 h) was evident for in-hydrate records and none of the tidal peaks were evident for in-sediment records. All three records showed significant low-frequency periodicity at about 288 h. In-hydrate temperatures lagged the in-water temperatures by 6 h with high correlation. In-sediment temperatures lagged in-water temperatures by 288 h with weak correlation. These results constrain the

  14. Detection of Occupancy Differences in Methane Gas Hydrates by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    of reservoir fluids due to plugging. Methods to prevent hydrate formation are in use, e.g. by injection of inhibitors. From environmental and security points of view an easy way to detect hydrate formation is of interest. We have tried to detect methane hydrate formation by use of Raman spectroscopy....

  15. BSRs Elevated by Fluid Upwelling on the Upper Amazon Fan : Bottom-up Controls on Gas Hydrate Stability

    Science.gov (United States)

    Praeg, D.; Silva, C. G.; dos Reis, A. T.; Ketzer, J. M.; Unnithan, V.; Perovano Da Silva, R. J.; Cruz, A. M.; Gorini, C.

    2017-12-01

    The stability of natural gas hydrate accumulations on continental margins has mainly been considered in terms of changes in seawater pressures and temperatures driven from above by climate. We present evidence from the Amazon deep-sea fan for stability zone changes driven from below by fluid upwelling. A grid of 2D and 3D multichannel seismic data show the upper Amazon fan in water depths of 1200-2000 m to contain a discontinuous bottom-simulating seismic reflection (BSR) that forms `patches' 10-50 km wide and up to 140 km long, over a total area of at least 5000 km2. The elongate BSR patches coincide with anticlinal thrust-folds that record on-going gravitational collapse of the fan above décollements at depths of up to 10 km. The BSR lies within 100-300 m of seafloor, in places rising beneath features that seafloor imagery show to be pockmarks and mud volcanoes, some venting gas to the water column. The BSR patches are up to 500 m shallower than predicted for methane hydrate based on geothermal gradients as low as 17˚C/km measured within the upper fan, and inversion of the BSR to obtain temperatures at the phase boundary indicates gradients 2-5 times background levels. We interpret the strongly elevated BSR patches to record upwelling of warm gas-rich fluids through thrust-fault zones 101 km wide. We infer this process to favour gas hydrate occurrences that are concentrated in proportion to flux and locally pierced by vents, and that will be sensitive to temporal variations in the upward flux of heat and gas. Thus episodes of increased flux, e.g. during thrusting, could dissociate gas hydrates to trigger slope failures and/or enhanced gas venting to the ocean. Structurally-driven fluid flow episodes could account for evidence of recurrent large-scale failures from the compressive belt on the upper fan during its Neogene collapse, and provide a long-term alternative to sea level triggering. The proposed mechanism of upward flux links the distribution and

  16. An Analysis on Stability and Deposition Zones of Natural Gas Hydrate in Dongsha Region, North of South China Sea

    Directory of Open Access Journals (Sweden)

    Zuan Chen

    2010-01-01

    Full Text Available We propose several physical/chemical causes to support the seismic results which find presence of Bottom Simulating Reflector (BSR at site 1144 and site 1148 in Dongsha Region, North of South China Sea. At site 1144, according to geothermal gradient, the bottom of stability zone of conduction mode is in agreement with BSR. At site 1148, however, the stability zone of conduction mode is smaller than the natural gas presence zone predicted by the BSR. We propose three causes, that is, mixed convection and conduction thermal flow mode, multiple composition of natural gas and overpressure in deep sediment to explain the BSR presence or gas hydrate presence. Further, our numerical simulation results suggest yet another reason for the presence of BSR at site 1144 and site 1148. Because the temperatures in deep sediment calculated from the mixed convection and conduction thermal flow mode are lower than that from the single conduction mode, the bottom of gas hydrate stability zone (GHSZ is deeper than the bottom of gas hydrate deposition zone (GHDZ or BSR. The result indicates that occurrence zone of natural is decided by the condition that natural gas concentrate in the zone is greater than its solubility.

  17. Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies.

    Science.gov (United States)

    Dunn, Kevin H; Tsai, Candace Su-Jung; Woskie, Susan R; Bennett, James S; Garcia, Alberto; Ellenbecker, Michael J

    2014-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  18. Modelling the response of the Cased Hole Formation Resistivity tool in order to determine the depth of gas hydrate dissociation during the thermal test in the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B. [Schlumberger-Doll Research, Ridgefield, CT (United States); Dubourg, I. [Etudes et Productions Schlumberger, Clamart (France); Collett, T.S. [United States Geological Survey, Denver, CO (United States); Lewis, R.E. [Schlumberger Oilfield Services, Oklahoma City, OK (United States)

    2005-07-01

    The physical response of a gas hydrate deposit to various advanced production methods was field tested at the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well. The annular radius of gas hydrate dissociation that occurred around the wellbore during the thermal test in the Mallik 5L-38 well was determined using iterative forward modelling of Cased Hole Formation Resistivity (CHFR) well logs. According to modeling results, the radius of gas hydrate dissociation had large local variations and was far from uniform. A comparison of CHFR modeling results and measured gas volumes at the surface suggest that most of the gas produced during the thermal test in the Mallik 5L-38 well was accurately measured at the surface. It was concluded that the CHFR modelling method is a promising method to evaluate future gas hydrate dissociation in single-wells.

  19. Experimental Study on Hydrate Induction Time of Gas-Saturated Water-in-Oil Emulsion using a High-Pressure Flow Loop

    Directory of Open Access Journals (Sweden)

    Lv X.F.

    2015-11-01

    Full Text Available Hydrate is one of the critical precipitates which have to be controlled for subsea flow assurance. The induction time of hydrate is therefore a significant parameter. However, there have been few studies on the induction time of the natural gas hydrate formation in a flow loop system. Consequently, a series of experiments were firstly performed, including water, natural gas and Diesel oil, on the hydrate induction time under various conditions such as the supercooling and supersaturation degree, water cut, anti-agglomerant dosage, etc. The experiments were conducted in a high-pressure hydrate flow loop newly constructed in the China University of Petroleum (Beijing, and dedicated to flow assurance studies. Then, based on previous research, this study puts forward a method for induction time, which is characterized by clear definition, convenient measurement and good generality. Furthermore, we investigated the influences of the experimental parameters and analyzed the experimental phenomena for the hydrate induction time in a flowing system.

  20. Characterization and Prediction of the Gas Hydrate Reservoir at the Second Offshore Gas Production Test Site in the Eastern Nankai Trough, Japan

    Directory of Open Access Journals (Sweden)

    Machiko Tamaki

    2017-10-01

    Full Text Available Following the world’s first offshore production test that was conducted from a gas hydrate reservoir by a depressurization technique in 2013, the second offshore production test has been planned in the eastern Nankai Trough. In 2016, the drilling survey was performed ahead of the production test, and logging data that covers the reservoir interval were newly obtained from three wells around the test site: one well for geological survey, and two wells for monitoring surveys, during the production test. The formation evaluation using the well log data suggested that our target reservoir has a more significant heterogeneity in the gas hydrate saturation distribution than we expected, although lateral continuity of sand layers is relatively good. To evaluate the spatial distribution of gas hydrate, the integration analysis using well and seismic data was performed. The seismic amplitude analysis supports the lateral reservoir heterogeneity that has a significant positive correlation with the resistivity log data at the well locations. The spatial distribution of the apparent low-resistivity interval within the reservoir observed from log data was investigated by the P-velocity volume derived from seismic inversion. The integrated results were utilized for the pre-drill prediction of the reservoir quality at the producing wells. These approaches will reduce the risk of future commercial production from the gas hydrate reservoir.

  1. 900-m high gas plumes rising from marine sediments containing structure II hydrates at Vestnesa Ridge, offshore W-Svalbard

    Science.gov (United States)

    Smith, Andrew J.; Mienert, Jürgen; Bünz, Stefan; Greinert, Jens; Rasmussen, Tine L.

    2013-04-01

    We study an arctic sediment drift in ~1200 m water depth at Vestnesa Ridge, offshore western Svalbard. The ridge is spotted with pockmarks that range in size from a few meters to hundreds of meters in diameter and centimeters to tens of meters in height (e.g. Vogt et al., 1994). There is a strong negative-polarity seismic reflection below the ridge that is interpreted to record a negative impedance contrast marking the boundary between gas hydrate and water above and free gas and water below: it is the bottom-simulating reflector (BSR). Seismically transparent zones, interpreted as gas chimneys, extend from pockmarks at the seafloor to depths below the BSR (180-220 meters below the seafloor) (Bünz et al., 2012). Gas flares, gas hydrate, and methane-seep-specific biological communities (pogonphora and begiatoa bacterial mats) have been observed adjacent to pockmarks at the ridge (Bünz et al., 2012). We present new single-beam echosounding data that were acquired during 2010 and 2012 cruises on the R/V Helmer Hanssen at Vestnesa Ridge using a Simrad EK60 system that operates at frequencies of 18 and 38 kHz. During both cruises which lasted 3-5 days, we detected continuous bubble release from 4 separate pockmarks in 2010 and 6 separate pockmarks in 2012. There were no noticeable, short-term (hourly or daily) variations in the bubble release from the pockmarks, indicating that the venting from the pockmarks does not undergo rapid changes. Plumes from the pockmarks rise between 875 to 925m above the seafloor to a final water depth of 325 to 275m, respectively. This depth is in excellent agreement with the top of the hydrate stability zone (275 meters below sea level) for the gas composition of hydrate sampled at the ridge (96.31% C1; 3.36% C2; 0.21% C3; 0.11% IC4; 0.01% NC4). This suggests that hydrate skins are forming around the gas bubbles, inhibiting the dissolution of gas, and allowing the bubbles to rise to such great heights in the water column. Our results

  2. Methodology to Collect Natural Gas from Methane Hydrate Deposits Using Sunlight: Design of Direct Sunlight Exposure System

    Science.gov (United States)

    Shimada, M.; Shimada, J.; Tsunashima, K.; Aoyama, C.

    2017-12-01

    Methane hydrate is anticipated to be the unconventional natural gas energy resource. Two types of methane hydrates are known to exist, based on the settings: "shallow" type and "sand layer" type. In comparison, shallow type is considered an advantage due to its high purity and the more simple exploration. However, not much development methods have been made in the area of extraction techniques. Currently, heating and depressurization are used as methods to collect sand layer methane hydrate, but these methods are still under examination and not yet to be implemented. This is probably because fossil fuel is used for the extraction process instead of natural energy. It is necessary to utilize natural energy instead of relying on fossil fuel. This is why sunlight is believed to be the most significant alternative. Solar power generation is commonly used to extract sunlight, but it is said that this process causes extreme energy loss since solar energy converted to electricity requires conversion to heat energy. A new method is contrived to accelerate the decomposition of methane hydrate with direct sunlight utilizing optical fibers. Authors will present details of this new method to collect methane hydrate with direct sunlight exposure.

  3. Predicting Juno Evidence for a Solid Methane Gas Hydrate Jupiter J. Ackerman Abstract

    Science.gov (United States)

    Ackerman, J. A., Jr.

    2016-12-01

    Predicting Juno Evidence for a Solid Methane Gas Hydrate Jupiter J. Ackerman AbstractDeuterium enhancements of 1010 observed in LDNs and heavy elements detected by the Galileo probe (C, O, S, Ar, Kr and Xe) suggest the giant planets accreted slow and cold from snowflakes and dust at their current orbits, forming frozen, highly deuterated Methane Gas Hydrate (d=0.9) bodies, together comprising > 300 earth masses of water. Jupiter also incorporated most of the heavy elements in the nascent solar system as dust grains (d=1.33). A recent (6,000 years BP) high energy impact on heavily deuterated Jupiter triggered a massive nuclear fusion explosion which ejected the Galilean moons, initiating a flaming plasma plume originally extending 2 x106 km, beyond Callisto. The rapidly rotating plume produced the physical differences observed on the Galilean moons and the remainder condensed ejecting millions of asteroids similar to 67P as it slowly diminished over 5000 years. The fusion reaction has diminished to d + p > 3He+ + γ, but is still producing Jupiter's atmospheric temperature excess, >5x1017 watts, and driving the multiple zonal wind vortices constrained below by Jupiter's solid surface. The mass being ejected by the plume measurably slowed the rotation of the giant Jupiter up until 1937. The highly energetic 3He+ ions from the fusion reaction that exit Jupiter through the Great Red Spot were sensed by Ulysses, Cassini and Galileo at distances greater than 11 Jupiter radii, with the period of Jupiter's rotation. The Juno JEDI particle detector will measure the speed and density of the 3He+ 'blizzard' exiting the GRS, for which there is no other explanation. The Micro Wave Radiometer (MWR) system will confirm the hot vortex extending below the cloud tops from the fusion reaction on the surface westward to the Great Red Spot at 22o S latitude, due to its estimated 115 degree longitudinal extent. The high intensity of the 3He+ particulate radiation at 4000 km directly

  4. Relict thermokarst carbon source kept stable within gas hydrate stability zone of the South Kara Sea

    Science.gov (United States)

    Portnov, A.; Mienert, J.; Winsborrow, M.; Vadakkepuliyambatta, S.; Semenov, P.

    2017-12-01

    Substantial shallow sources of carbon can exist in the South Kara Sea shelf, extending offshore from the permafrost areas of Yamal Peninsula and the Polar Ural coast. Our study presents new evidence for >250 buried relict thermokarst units. These amalgamated thawing wedges formed in the uppermost permafrost of the past and are still recognizable in today's non-permafrost areas. Part of these potential carbon reservoirs are kept stable within the South Kara Sea gas hydrate stability zone (GHSZ). We utilize an extensive 2D high-resolution seismic dataset, collected in the South Kara Sea in 2005-2006 by Marine Arctic Geological Expedition (MAGE), to map distinctive U-shaped units that are acoustically transparent. These units appear all over the study area in water depths 50-250 m. Created by thermal erosion into Cretaceous-Paleogene bedrock, they are buried under the younger glacio-marine deposits and reach hundreds of meters wide and up to 100 meters thick. They show the characteristics of relict thermokarst, generated during ancient episode(s) of sea level regression of the South Kara Sea. These thermokarst units are generally limited by the Upper Regional Unconformity, which is an erosional horizon created by several glaciation events during the Pleistocene. On land, permafrost is known to sequester large volumes of carbon, half of which is concentrated within thermokarst structures. Based on modern thermokarst analogues we demonstrate with our study that a significant amount of organic carbon can be stored under the Kara Sea. To assess the stability of these shallow carbon reservoirs we carried out GHSZ modeling, constrained by geochemical analyses, temperature measurements and precise bathymetry. This revealed a significant potential for a GHSZ in water depths >225 m. The relict thermokast carbon storage system is stable under today's extremely low bottom water temperatures ( -1.7 °C) that allows for buried GHSZ, located tens of meters below the seabed

  5. Gas Hydrate Stability and Sampling: The Future as Related to the Phase Diagram

    Directory of Open Access Journals (Sweden)

    E. Dendy Sloan

    2010-12-01

    Full Text Available The phase diagram for methane + water is explained, in relation to hydrate applications, such as in flow assurance and in nature. For natural applications, the phase diagram determines the regions for hydrate formation for two- and three-phase conditions. Impacts are presented for sample preparation and recovery. We discuss an international study for “Round Robin” hydrate sample preparation protocols and testing.

  6. Gas hydrate stability and sampling: the future as related to the phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, E. D.; Koh, C. A.; Sum, A. K. [Center for Hydrate Research, Chemical Engineering Department, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)

    2010-12-15

    The phase diagram for methane plus water is explained, in relation to hydrate applications, such as in flow assurance and in nature. For natural applications, the phase diagram determines the regions for hydrate formation for two- and three-phase conditions. Impacts are presented for sample preparation and recovery. We discuss an international study for 'Round Robin' hydrate sample preparation protocols and testing. (authors)

  7. Isotropic, anisotropic, and borehole washout analyses in Gulf of Mexico Gas Hydrate Joint Industry Project Leg II, Alaminos Canyon well 21-A

    Science.gov (United States)

    Lee, Myung W.

    2012-01-01

    Through the use of three-dimensional seismic amplitude mapping, several gas hydrate prospects were identified in the Alaminos Canyon area of the Gulf of Mexico. Two of the prospects were drilled as part of the Gulf of Mexico Gas Hydrate Joint Industry Program Leg II in May 2009, and a suite of logging-while-drilling logs was acquired at each well site. Logging-while-drilling logs at the Alaminos Canyon 21–A site indicate that resistivities of approximately 2 ohm-meter and P-wave velocities of approximately 1.9 kilometers per second were measured in a possible gas-hydrate-bearing target sand interval between 540 and 632 feet below the sea floor. These values are slightly elevated relative to those measured in the hydrate-free sediment surrounding the sands. The initial well log analysis is inconclusive in determining the presence of gas hydrate in the logged sand interval, mainly because large washouts in the target interval degraded well log measurements. To assess gas-hydrate saturations, a method of compensating for the effect of washouts on the resistivity and acoustic velocities is required. To meet this need, a method is presented that models the washed-out portion of the borehole as a vertical layer filled with seawater (drilling fluid). Owing to the anisotropic nature of this geometry, the apparent anisotropic resistivities and velocities caused by the vertical layer are used to correct measured log values. By incorporating the conventional marine seismic data into the well log analysis of the washout-corrected well logs, the gas-hydrate saturation at well site AC21–A was estimated to be in the range of 13 percent. Because gas hydrates in the vertical fractures were observed, anisotropic rock physics models were also applied to estimate gas-hydrate saturations.

  8. Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, John

    2012-12-31

    Electrical methods offer a geophysical approach for determining the sub-bottom distribution of hydrate in deep marine environments. Methane hydrate is essentially non-conductive. Hence, sediments containing hydrate are more resistive than sediments without hydrates. To date, the controlled source electromagnetic (CSEM) method has been used in marine hydrates studies. This project evaluated an alternative electrical method, direct current resistivity (DCR), for detecting marine hydrates. DCR involves the injection of direct current between two source electrodes and the simultaneous measurement of the electric potential (voltage) between multiple receiver electrodes. The DCR method provides subsurface information comparable to that produced by the CSEM method, but with less sophisticated instrumentation. Because the receivers are simple electrodes, large numbers can be deployed to achieve higher spatial resolution. In this project a prototype seafloor DCR system was developed and used to conduct a reconnaissance survey at a site of known hydrate occurrence in Mississippi Canyon Block 118. The resulting images of sub-bottom resistivities indicate that high-concentration hydrates at the site occur only in the upper 50 m, where deep-seated faults intersect the seafloor. Overall, there was evidence for much less hydrate at the site than previously thought based on available seismic and CSEM data alone.

  9. Effects of Fluid Saturation on Gas Recovery from Class-3 Hydrate Accumulations Using Depressurization: Case Study of Yuan-An Ridge Site in Southwestern Offshore Taiwan

    Science.gov (United States)

    Huang, Yi-Jyun; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2016-04-01

    Gas hydrates are crystalline compounds in which guest gas molecules are trapped in host lattices of ice crystals. In Taiwan, the significant efforts have recently begun to evaluate the reserves of hydrate because the vast accumulations of gas hydrates had been recognized in southwestern offshore Taiwan. Class-3 type hydrate accumulations are referred to an isolated hydrate layer without an underlying zone of mobile fluids, and the entire hydrate layer may be well within the hydrate stability zone. The depressurization method is a useful dissociation method for gas production from Class-3 hydrate accumulations. The dissociation efficiency is controlled by the responses of hydrate to the propagating pressure disturbance, and the pressure propagation is relating to the amount (or saturation) of the mobile fluid in pore space of the hydrate layer. The purpose of this study is to study the effects of fluid saturation on the gas recovery from a class-3 hydrate accumulation using depressurization method. The case of a class-3 hydrate deposit of Yuan-An Ridge in southwestern offshore Taiwan is studied. The numerical method was used in this study. The reservoir simulator we used to study the dissociation of hydrate and the production of gas was the STARS simulator developed by CMG, which coupled heat transfer, geo-chemical, geo-mechanical, and multiphase fluid flow mechanisms. The study case of Yuan-An Ridge is located in southwestern offshore Taiwan. The hydrate deposit was found by the bottom simulating reflectors (BSRs). The geological structure of the studied hydrate deposit was digitized to build the geological model (grids) of the case. The formation parameters, phase behavior data, rock and fluid properties, and formation's initial conditions were assigned sequentially to grid blocks, and the completion and operation conditions were designed to wellbore blocks to finish the numerical model. The changes of reservoir pressure, temperature, saturation due to the hydrate

  10. A Theoretical Study of the Hydration of Methane, from the Aqueous Solution to the sI Hydrate-Liquid Water-Gas Coexistence

    Directory of Open Access Journals (Sweden)

    Daniel Porfirio Luis

    2016-05-01

    Full Text Available Monte Carlo and molecular dynamics simulations were done with three recent water models TIP4P/2005 (Transferable Intermolecular Potential with 4 Points/2005, TIP4P/Ice (Transferable Intermolecular Potential with 4 Points/ Ice and TIP4Q (Transferable Intermolecular Potential with 4 charges combined with two models for methane: an all-atom one OPLS-AA (Optimal Parametrization for the Liquid State and a united-atom one (UA; a correction for the C–O interaction was applied to the latter and used in a third set of simulations. The models were validated by comparison to experimental values of the free energy of hydration at 280, 300, 330 and 370 K, all under a pressure of 1 bar, and to the experimental radial distribution functions at 277, 283 and 291 K, under a pressure of 145 bar. Regardless of the combination rules used for σC,O, good agreement was found, except when the correction to the UA model was applied. Thus, further simulations of the sI hydrate were performed with the united-atom model to compare the thermal expansivity to the experiment. A final set of simulations was done with the UA methane model and the three water models, to study the sI hydrate-liquid water-gas coexistence at 80, 230 and 400 bar. The melting temperatures were compared to the experimental values. The results show the need to perform simulations with various different models to attain a reliable and robust molecular image of the systems of interest.

  11. A Theoretical Study of the Hydration of Methane, from the Aqueous Solution to the sI Hydrate-Liquid Water-Gas Coexistence

    Science.gov (United States)

    Luis, Daniel Porfirio; García-González, Alcione; Saint-Martin, Humberto

    2016-01-01

    Monte Carlo and molecular dynamics simulations were done with three recent water models TIP4P/2005 (Transferable Intermolecular Potential with 4 Points/2005), TIP4P/Ice (Transferable Intermolecular Potential with 4 Points/ Ice) and TIP4Q (Transferable Intermolecular Potential with 4 charges) combined with two models for methane: an all-atom one OPLS-AA (Optimal Parametrization for the Liquid State) and a united-atom one (UA); a correction for the C–O interaction was applied to the latter and used in a third set of simulations. The models were validated by comparison to experimental values of the free energy of hydration at 280, 300, 330 and 370 K, all under a pressure of 1 bar, and to the experimental radial distribution functions at 277, 283 and 291 K, under a pressure of 145 bar. Regardless of the combination rules used for σC,O, good agreement was found, except when the correction to the UA model was applied. Thus, further simulations of the sI hydrate were performed with the united-atom model to compare the thermal expansivity to the experiment. A final set of simulations was done with the UA methane model and the three water models, to study the sI hydrate-liquid water-gas coexistence at 80, 230 and 400 bar. The melting temperatures were compared to the experimental values. The results show the need to perform simulations with various different models to attain a reliable and robust molecular image of the systems of interest. PMID:27240339

  12. Cruise report for a seismic investigation of gas hydrates in the Mississippi Canyon region, northern Gulf of Mexico; cruise M1-98-GM

    Science.gov (United States)

    Cooper, Alan K.; Hart, Patrick E.; Pecher, Ingo

    1998-01-01

    During June 1998, the U.S. Geological Survey (USGS) and the University of Mississippi Marine Minerals Technology Center (MMTC) conducted a 12-day cruise in the Mississippi Canyon region of the Gulf of Mexico (Fig. 1). The R/V Tommy Munro, owned by the Marine Research Institute of the University of Southern Mississippi, was chartered for the cruise. The general objective was to acquire very high resolution seismic-reflection data across of the upper and middle continental slope (200-1200-m water depths) to study the acoustic character, distribution and potential effects of gas hydrates within the shallow subsurface, extending from the sea floor down to the base of the gas-hydrate stability zone. The Gulf of Mexico is well known for hydrocarbon resources that include petroleum and related gases. Areas of the Gulf that lie in waters deeper than about 250 m potentially have conditions (e.g., pressure, temperature, near-surface gas content, etc.) that are right for the shallow-subsurface formation of the ice-like substance (gas and water) known as gas hydrate (Kvenvolden, 1993). Gas hydrates have previously been sampled in sea-floor cores and observed as massive mounds in several parts of the northern Gulf, including the Mississippi Canyon region (e.g., Anderson et al., 1992). Extensive seismic data have been recorded in the Gulf, in support of commercial drilling efforts, but few very high resolution data exist in the public domain to aid in gas-hydrate studies. Studies of long-term interest include those on the resource potential of gas hydrates, the geologic hazards associated with dissociation and formation of hydrates, and the impact, if any, of gas-hydrate dissociation on atmospheric warming (i.e., via release of methane, a "greenhouse" gas). Several very high resolution seismic systems (surface-towed, deep-towed, and sea-floor) were used during the cruise to test the feasibility of using such data for detailed structural (geometric) and stratigraphic (physical

  13. Lithostratigraphic analysis of sand and silt facies from NGHP 01 gas hydrate accumulations in the Krishna-Godavari Basin

    Science.gov (United States)

    Rose, K. K.; Boswell, R. M.; Johnson, J.; Nghp 01, S.

    2008-12-01

    In 2006, an international effort led by the Indian National Gas Hydrate Program (NGHP) and the U.S. Geological Survey conducted the first large-scale exploration of gas hydrate accumulations. Seven sites were drilled within the Krishna-Godavari (KG) basin, a large syn-tectonic rift basin off the eastern shore of India, with the deepest hole penetrating ~300 mbsf. The sedimentary section in the KG basin includes up to 7 kilometers of Late Carboniferous to Holocene sediments from which commercial oil and natural gas production has been established. Detailed lithologic descriptions and physical properties measurements obtained from cores were combined with electrical log data to characterize the sedimentology and stratigraphy at each site. Our analyses indicate that sediments within the Gas Hydrate stability zone (GHSZ) in the KG basin record a Quaternary (sand beds and lamina (1-5 cm thick) were also observed as well as visible terrestrial organic material. The most pervasive mode of gas hydrate occurrence observed during NGHP-01 in the KG basin sites were disseminated hydrates in low-permeability silt-clay facies. Secondary gas hydrate accumulations were recovered in fracture fill, nodular and lens-like occurrences, or as pore-filling cement in the more permeable sand-silt beds and lamina. Thin sand beds and lamina were recovered at 6 of the 7 sites in the KG basin. ~330 sand beds were reported for all 6 sites with a typical bed thickness of ~3 cm. Net sand to gross sediment ratios ranged from 0.026 to 0.405. No major sand beds (>1 m thick) were recovered at any of the sites. Underlying the GHSZ in the KG basin are Pliocene and Pleistocene age sediments deposited during low-stand conditions. However, rising sea-level from the late Pleistocene to the present resulted in a gradual decrease in the volume of coarse grained material transported across the shelf, and slope related deposition during the Holocene has largely been controlled by episodic failure of shelf

  14. Hydro-mechanical properties of pressure core sediments recovered from the Krishna-Godavari Basin during India's National Gas Hydrate Program Expedition NGHP-02

    Science.gov (United States)

    Yoneda, J.; Oshima, M.; Kida, M.; Kato, A.; Konno, Y.; Jin, Y.; Waite, W. F.; Jang, J.; Kumar, P.; Tenma, N.

    2017-12-01

    Pressure coring and analysis technology allows for gas hydrate to be recovered from the deep seabed, transferred to the laboratory and characterized while continuously maintaining gas hydrate stability. For this study, dozens of hydrate-bearing pressure core sediment subsections recovered from the Krishna-Godavari Basin during India's National Gas Hydrate Program Expedition NGHP-02 were tested with Pressure Core Non-destructive Analysis Tools (PNATs) through a collaboration between Japan and India. PNATs, originally developed by AIST as a part of the Japanese National hydrate research program (MH21, funded by METI) conducted permeability, compression and consolidation tests under various effective stress conditions, including the in situ stress state estimated from downhole bulk density measurements. At the in situ effective stress, gas hydrate-bearing sediments had an effective permeability range of 0.01-10mD even at pore-space hydrate saturations above 60%. Permeability increased by 10 to 100 times after hydrate dissociation at the same effective stress, but these post-dissociation gains were erased when effective stress was increased from in situ values ( 1 MPa) to 10MPa in a simulation of the depressurization method for methane extraction from hydrate. Vertical-to-horizontal permeability anisotropy was also investigated. First-ever multi-stage loading tests and strain-rate alternation compression tests were successfully conducted for evaluating sediment strengthening dependence on the rate and magnitude of effective confining stress changes. In addition, oedometer tests were performed up to 40MPa of consolidation stress to simulate the depressurization method in ultra-deep sea environments. Consolidation curves measured with and without gas hydrate were investigated over a wide range of effective confining stresses. Compression curves for gas hydrate-bearing sediments were convex downward due to high hydrate saturations. Consolidation tests show that

  15. Geochemical Characterization of Concentrated Gas Hydrate Deposits on the Hikurangi Margin, New Zealand: Preliminary Geochemical Cruise Report

    Science.gov (United States)

    2008-02-29

    Concentrations - Methane concentrations were determined from 3-ml sediment plugs using headspace techniques and were quantified against 13 certified gas...seeps and mud volcanoes associated with methane seeps and hydrates. The heatflow instrument used was a 3.5-meter-long “ violin bow” or “Lister-type...B. Operations The thermometry data were acquired with a violin -bow type instrument rented from the Canadian Geological Survey (PGC) and operated

  16. Gas power plant with CO2 handling. A study of alternative technologies

    International Nuclear Information System (INIS)

    Bolland, Olav; Hagen, Roger I.; Maurstad, Ola; Tangen, Grethe; Juliussen, Olav; Svendsen, Hallvard

    2002-01-01

    The report documents a study which compares 12 different technologies for gas power plants with CO 2 handling. The additional costs in removing the CO 2 in connection with electricity production is calculated to at least 18-19 oere /kWh compared to conventional gas power production without CO 2 capture. The calculated extra costs are somewhat higher than previously published figures. The difference is mainly due to that the estimated costs for pipelines and injection system for CO 2 are higher than in other studies. The removal of CO 2 in connection with gas power production implies increased use of natural gas. The most developed technologies would lead to a procentual increase in the gas consumption per kWh electricity of 18-25%. Gas power plants based on the present technologies would have efficiencies in the size of 46-49%. The efficiency of power plants without CO 2 handling is supposed to be 58%. There is no foundation for pointing out a ''winner's' among the compared technologies in the study. The present available technologies excepted, there are no technology which stands out as better than the others from an economic viewpoint. Gas turbine with membrane based separation of oxygen from air (AZEP) has a potential for lower costs but implies challenging technological development and thence considerable technological risks. Two technologies, capture of carbon from natural gas previous to combustion and exhaust gas purification based on absorption, may be employed in 3 - 4 years. The other technologies require more development and maturing. Three of the technologies may be particularly interesting because hydrogen may be produced as a byproduct. Demonstration plant and choice of technology: 1) There is a limited need for demonstration plants with respect to technology development. 2) It is important for the technology development to be able to test various technologies in a laboratory or in a flexible pilot plant. 3) Many technologies and components may be

  17. Phase equilibria of carbon dioxide and methane gas-hydrates predicted with the modified analytical S-L-V equation of state

    Directory of Open Access Journals (Sweden)

    Span Roland

    2012-04-01

    Full Text Available Gas-hydrates (clathrates are non-stoichiometric crystallized solutions of gas molecules in the metastable water lattice. Two or more components are associated without ordinary chemical union but through complete enclosure of gas molecules in a framework of water molecules linked together by hydrogen bonds. The clathrates are important in the following applications: the pipeline blockage in natural gas industry, potential energy source in the form of natural hydrates present in ocean bottom, and the CO2 separation and storage. In this study, we have modified an analytical solid-liquid-vapor equation of state (EoS [A. Yokozeki, Fluid Phase Equil. 222–223 (2004] to improve its ability for modeling the phase equilibria of clathrates. The EoS can predict the formation conditions for CO2- and CH4-hydrates. It will be used as an initial estimate for a more complicated hydrate model based on the fundamental EoSs for fluid phases.

  18. Methodology and results of risk assessment of interconnections within the JET active gas handling system

    International Nuclear Information System (INIS)

    Ballantyne, P.R.; Bell, A.C.; Konstantellos, A.; Hemmerich, J.L.

    1992-01-01

    The Joint European Torus (JET) Active Gas Handling System (AGHS) is a complex interconnection of numerous subsystems. While individual subsystems were assessed for their risk of operation, an assessment of the effects of inadvertent interconnections was needed. A systematic method to document the assessment was devised to ease the assessment of complex plant and was applied to the AGHS. The methodology, application to AGHS, the four critical issues and required plant modifications as a result of this assessment are briefly discussed in this paper

  19. Overview of pressure drawdown production test results for the Japex/JNOC/GSC Mallik 5L-38 gas hydrate research well

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, S.; Carle, D. [APA Petroleum Engineering Ltd., Calgary, AB (Canada); Dallimore, S. [Geological Survey of Canada, Sidney, BC (Canada); Collett, T. [United States Geological Survey, Denver, CO (United States); Satoh, T. [Japan Petroleum Exploration Co. Ltd., Tokyo (Japan); Inoue, T. [Japan National Oil Corp., Chiba (Japan)

    2004-07-01

    Schlumberger's Modular Dynamic Tester (MDT) cased hole wireline tool was used during a pressure drawdown production test at the Mallik 5L-38 well to successfully test 3 separate hydrate intervals as well as free gas and water zones. The MDT test was initially performed to reduce reservoir pressure below the hydrate stability point, and to shut-in and observe the pressure build-up. It was assumed that the rate of gas production would be too small to measure, so the rate of hydrate dissociation would have to be inferred from changing pressure versus time data. Two important phenomena were observed during the hydrate tests: (1) free gas was produced on a steady state basis following the initial clean-up flow of water, and (2) the pressure response upon shut-in displayed porous media effects and indicated both flow contribution and pressure effects beyond the surface area of the hydrate open to the wellbore. In response to these observations, the MDT test procedures for the hydrate intervals were changed to include multiple flow and build-up periods, as well as injection and pressure fall-off periods. The factors that should be considered in interpreting the pressure transient data obtained during the MDT tests of the hydrate intervals include wellbore and perforation geometry with respect to the pressure affected area in the reservoir; radial and time dependent hydrate saturation changes which result in dynamic multiphase fluid flow, changing relative permeability, and changing system compressibility; the addition of free gas during the shut-in periods from continued hydrate dissociation; and the changing presence and character of boundaries due either to localized fractures or the limit of the hydrate dissociation front. Since analytical pressure transient analysis software cannot incorporate such dynamic reservoir parameters, conventional analytical techniques were used to evaluate the test data. 1 fig.

  20. Study of electrical conductivity response upon formation of ice and gas hydrates from salt solutions by a second generation high pressure electrical conductivity probe

    Science.gov (United States)

    Sowa, Barbara; Zhang, Xue Hua; Kozielski, Karen A.; Dunstan, Dave E.; Hartley, Patrick G.; Maeda, Nobuo

    2014-11-01

    We recently reported the development of a high pressure electrical conductivity probe (HP-ECP) for experimental studies of formation of gas hydrates from electrolytes. The onset of the formation of methane-propane mixed gas hydrate from salt solutions was marked by a temporary upward spike in the electrical conductivity. To further understand hydrate formation a second generation of window-less HP-ECP (MkII), which has a much smaller heat capacity than the earlier version and allows access to faster cooling rates, has been constructed. Using the HP-ECP (MkII) the electrical conductivity signal responses of NaCl solutions upon the formation of ice, tetrahydrofuran hydrates, and methane-propane mixed gas hydrate has been measured. The concentration range of the NaCl solutions was from 1 mM to 3M and the driving AC frequency range was from 25 Hz to 5 kHz. This data has been used to construct an "electrical conductivity response phase diagrams" that summarize the electrical conductivity response signal upon solid formation in these systems. The general trend is that gas hydrate formation is marked by an upward spike in the conductivity at high concentrations and by a drop at low concentrations. This work shows that HP-ECP can be applied in automated measurements of hydrate formation probability distributions of optically opaque samples using the conductivity response signals as a trigger.

  1. 3D Finite Element Modeling for Possible Creeping Behavior of Gas Hydrate-related Slipstream Submarine Slide, offshore Vancouver Island, Canada

    Science.gov (United States)

    LONG, S.; He, T.; Lan, K.; Spence, G.; Yelisetti, S.

    2017-12-01

    Natural gas hydrate-related submarine landslides have been identified on worldwide continental slope. Being a potential risk for marine environment and engineering projects, it has been a hot topic of hydrate research in recent decades. The study target is Slipstream submarine landslide, one of the slope failures on the frontal ridges of the Northern Cascadia accretionary margin, off Vancouver Island, Canada. The previous studies of P- & S-wave velocity structure based on OBS (Ocean Bottom Seismometer) data of SeaJade (Seafloor Earthquake Array - Japan Canada Cascadia Experiment) project indicated that there are two high concentration gas-hydrate layers within the ridge, one is at a depth of 100 mbsf (meter beneath the seafloor) with anomalous high P-wave velocities and the other is just above the prominent BSR (bottom-simulating reflector) at a depth of 265-275 mbsf. In this study we investigated the possible creeping behavior of gas hydrate layer to examine the critical instability of the ridge slope using the finite element method for self weight and additional stress (e.g., mega earthquake) conditions. The elastic and elasticoplasticity moduli of gas hydrate layer were obtained from laboratory measurements for different uniaxial pressure tests, which indicated that the sediments behave elastically for uniaxial pressures below 6 MPa, but elasticoplastically between 6-6.77 MPa. The modeled shear stress distribution indicated that the current sliding surface is more likely connected with the shallow high-velocity gas hydrate layer and sliding process related with gas hydrate starts from the toe of the slope and then progressively retreats to the place of current headwall, in a series of triangular blocks or wedges. Since the study area is in the earthquake belt, the large seismic acceleration will greatly affect the stress field and pore pressure distribution within the ridge, and the landslide is going to happen and supposedly at the shallow high-velocity gas

  2. Resource and hazard implications of gas hydrates in the Northern Gulf of Mexico: Results of the 2009 Joint Industry Project Leg II Drilling Expedition

    Science.gov (United States)

    Collett, Timothy S.; Boswell, Ray

    2012-01-01

    In the 1970's, Russian scientists were the first to suggest that gas hydrates, a crystalline solid of water and natural gas, and a historical curiosity to physical chemists, should occur in abundance in the natural environment. Since this early start, the scientific foundation has been built for the realization that gas hydrates are a global phenomenon, occurring in permafrost regions of the arctic and in deep water portions of most continental margins worldwide. Recent field testing programs in the Arctic (Dallimore et al., 2008; Yamamoto and Dallimore, 2008) have indicated that natural gas can be produced from gas hydrate accumulations, particularly when housed in sand-rich sediments, with existing conventional oil and gas production technology (Collett et al., 2008) and preparations are now being made for the first marine field production tests (Masuda et al., 2009). Beyond a future energy resource, gas hydrates in some settings may represent a geohazard. Other studies also indicate that methane released to the atmosphere from destabilized gas hydrates may have contributed to global climate change in the past.

  3. Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico

    Science.gov (United States)

    Cook, Anne E.; Anderson, Barbara I.; Rasmus, John; Sun, Keli; Li, Qiming; Collett, Timothy S.; Goldberg, David S.

    2012-01-01

    We present new results and interpretations of the electricalanisotropy and reservoir architecture in gashydrate-bearingsands using logging data collected during the Gulf of MexicoGasHydrate Joint Industry Project Leg II. We focus specifically on sandreservoirs in Hole Alaminos Canyon 21 A (AC21-A), Hole Green Canyon 955 H (GC955-H) and Hole Walker Ridge 313 H (WR313-H). Using a new logging-while-drilling directional resistivity tool and a one-dimensional inversion developed by Schlumberger, we resolve the resistivity of the current flowing parallel to the bedding, R| and the resistivity of the current flowing perpendicular to the bedding, R|. We find the sandreservoir in Hole AC21-A to be relatively isotropic, with R| and R| values close to 2 Ω m. In contrast, the gashydrate-bearingsandreservoirs in Holes GC955-H and WR313-H are highly anisotropic. In these reservoirs, R| is between 2 and 30 Ω m, and R| is generally an order of magnitude higher. Using Schlumberger's WebMI models, we were able to replicate multiple resistivity measurements and determine the formation resistivity the gashydrate-bearingsandreservoir in Hole WR313-H. The results showed that gashydrate saturations within a single reservoir unit are highly variable. For example, the sand units in Hole WR313-H contain thin layers (on the order of 10-100 cm) with varying gashydrate saturations between 15 and 95%. Our combined modeling results clearly indicate that the gashydrate-bearingsandreservoirs in Holes GC955-H and WR313-H are highly anisotropic due to varying saturations of gashydrate forming in thin layers within larger sand units.

  4. A Fluid Pulse on the Hikurangi Subduction Margin: Evidence From a Heat Flux Transect Across the Upper Limit of Gas Hydrate Stability

    Science.gov (United States)

    Pecher, I. A.; Villinger, H.; Kaul, N.; Crutchley, G. J.; Mountjoy, J. J.; Huhn, K.; Kukowski, N.; Henrys, S. A.; Rose, P. S.; Coffin, R. B.

    2017-12-01

    A transect of seafloor heat probe measurements on the Hikurangi Margin shows a significant increase of thermal gradients upslope of the updip limit of gas hydrate stability at the seafloor. We interpret these anomalously high thermal gradients as evidence for a fluid pulse leading to advective heat flux, while endothermic cooling from gas hydrate dissociation depresses temperatures in the hydrate stability field. Previous studies predict a seamount on the subducting Pacific Plate to cause significant overpressure beneath our study area, which may be the source of the fluid pulse. Double-bottom simulating reflections are present in our study area and likely caused by uplift based on gas hydrate phase boundary considerations, although we cannot exclude a thermogenic origin. We suggest that uplift may be associated with the leading edge of the subducting seamount. Our results provide further evidence for the transient nature of fluid expulsion in subduction zones.

  5. Overview of pressure-drawdown production-test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, S.H.; Carle, D.; Weatherill, B. [APA Petroleum Engineering Ltd., Calgary, AB (Canada); Dallimore, S.R. [Geological Survey of Canada, Pacific Geoscience Centre, Sidney, BC (Canada); Collett, T.S. [United States Geological Survey, Denver, CO (United States); Satoh, T. [Japan Petroleum Exploration Co. Ltd., Tokyo (Japan); Inoue, T. [Japan National Oil Corp., Chiba (Japan)

    2005-07-01

    Schlumberger's Modular Dynamic Tester (MDT) cased hole wireline tool was used during a pressure drawdown production test at the Mallik 5L-38 well to successfully test separate hydrate intervals as well as free gas and water zones. This paper provided an overview of the pressure-drawdown testing operations and results. Preliminary analysis of the gas hydrate porous-media response was also presented. Two important phenomena were observed during the hydrate tests: (1) free gas was produced on a steady state basis following the initial clean-up flow of water, and (2) the pressure response upon shut-in displayed porous media effects and indicated both flow contribution and pressure effects beyond the surface area of the hydrate open to the wellbore. Since analytical pressure transient analysis software cannot incorporate dynamic reservoir parameters, conventional analytical techniques were used to evaluate the test data.

  6. Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit

    Science.gov (United States)

    Hansen, T. C.; Falenty, A.; Kuhs, W. F.

    2016-02-01

    The lattice constants of hydrogenated and deuterated CH4-, CO2-, Xe- (clathrate structure type I) and N2-hydrates (clathrate structure type II) from 10 K up to the stability limit were established in neutron- and synchrotron diffraction experiments and were used to derive the related thermal expansivities. The following results emerge from this analysis: (1) The differences of expansivities of structure type I and II hydrates are fairly small. (2) Despite the larger guest-size of CO2 as compared to methane, CO2-hydrate has the smaller lattice constants at low temperatures, which is ascribed to the larger attractive guest-host interaction of the CO2-water system. (3) The expansivity of CO2-hydrate is larger than for CH4-hydrate which leads to larger lattice constants for the former at temperatures above ˜150 K; this is likely due to the higher motional degrees of freedom of the CO2 guest molecules. (4) The cage occupancies of Xe- and CO2-hydrates affect significantly the lattice constants. (5) Similar to ice Ih, the deuterated compounds have generally slightly larger lattice constants which can be ascribed to the somewhat weaker H-bonding. (6) Compared to ice Ih, the high temperature expansivities are about 50% larger; in contrast to ice Ih and the empty hydrate, there is no negative thermal expansion at low temperature. (7) A comparison of the experimental results with lattice dynamical work, with models based on an Einstein oscillator model, and results from inelastic neutron scattering suggest that the contribution of the guest atoms' vibrational energy to thermal expansion is important, most prominently for CO2- and Xe-hydrates.

  7. 3D Seismic Stratigraphic Analysis of Gas Hydrate Bearing Turbidite Channel-Overbank System in Northern Gulf of Mexico

    Science.gov (United States)

    Santra, M.; Flemings, P. B.; Scott, E.; Meazell, K.; Petrou, E. G.

    2017-12-01

    We present a depositional model for a gas hydrate bearing deepwater channel-overbank system in Green Canyon area (around Block 955) in northern Gulf of Mexico. The gas-hydrate bearing reservoir was tested by three wells drilled in 2009 as part of the Gulf of Mexico Gas Hydrate Joint Industry Project (JIP). The same reservoir was sampled during the recent UT-GOM2-1 pressure-coring expedition. Analysis of a newly available wide-azimuth 3D seismic data shows two distinct stages of development of the channel system that significantly impacted the reservoir characteristics. The study area is located near the present-day Green Canyon reentrant, where a succession of Miocene to recent clastic sediments overlies an extensive salt diapir connected to the autochthonous level. The entire supra-salt sedimentary section is intersected by a system of large-scale normal faults formed as a result of salt movement. The channel system containing the gas hydrate reservoir has a well-defined basal surface, and is capped by a channel abandonment surface. Seismic analysis shows at least two distinct phases of channel development. In the first phase, levees undergo progressive gravitational collapse along series of normal faults that dip towards the channel axis. The normal faults on either side of channel axis are linked to a zone of compression located at the channel axis by a decollement surface at the base of the channel. The compression is recorded by bulging and/or thrusting at the channel center. This compressional bulge was eroded at the channel axis. During this phase, no axial channel deposits have been preserved. However, the position of the channel axis is indicated by a prominent linear ridge of fine-grained material that represents the remnant of the compressional bulge. Mapping of gravitational failure surfaces shows significant rotation and displacement of levee deposits along them. The second phase of development of the channel system is marked by the termination of

  8. Overview of the performance of the JET active gas handling system during and after DTE1

    Energy Technology Data Exchange (ETDEWEB)

    Laesser, R.; Bell, A.C.; Bainbridge, N.; Brennan, P.D.; Grieveson, B.; Hemmerich, J.L.; Jones, G.; Kennedy, D.; Knipe, S.; Lupo, J.; Mart, J.; Perevezentsev, A.; Skinner, N.; Stagg, R.; Yorkshades, J.; Atkins, G.V. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Doerr, L. [Forchungszentrum Karlsruhe, Postfach 3640, D-76021, Karlsruhe (Germany); Green, N.; Stead, M.; Wilson, K. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1999-12-01

    The JET active gas handling system (AGHS) was designed, built and commissioned to handle radioactive tritium gas mixtures safely, to supply tritium (T{sub 2}) and deuterium (D{sub 2}) to the JET torus, to process the exhaust gases with the main purpose to enrich and re-use T{sub 2} and D{sub 2}, to detritiate tritiated impurities and to keep discharges below the approved daily release limits. In addition, the AGHS had to supply the necessary ventilation air streams during maintenance or repair inside or outside of the AGHS building. During the first Deuterium-Tritium Experiment (DTE1) at JET in 1997 the AGHS fulfilled all these tasks in an excellent manner. No unauthorised or unplanned tritium releases occurred and no operational delays were caused by the AGHS. In fact, this was the first true demonstration that quantities of tritium in the tens of grams range can be recycled safely and efficiently in a large fusion device. At the start of DTE1 20 g of tritium were available on the JET site. About 100 g of tritium were supplied from the AGHS to the users which necessitated the recycling of tritium at least five times. Approximately 220 tritium plasma shots were performed during DTE1. Large amounts of tritium were temporarily trapped in the torus. This overview presents the performance of the whole AGHS during DTE1 as well as general aspects such as the preparation for DTE1; the quantities of gases supplied from the AGHS to the users and pumped back to the AGHS; tritium accountancy; interlock systems; failure of equipment; and gives detailed information of the gas processing in each subsystem of the AGHS. As a result of the performance of the AGHS during DTE1 we can state confidently that the AGHS is ready for further Deuterium-Tritium Experiments. (orig.)

  9. Effects of Geomechanical Mechanism on the Gas Production Behavior: A Simulation Study of Class-3 Type Four-Way-Closure Ridge Hydrate Deposit Offshore Southwestern Taiwan

    Science.gov (United States)

    Wu, Cheng-Yueh; Chiu, Yung-Cheng; Huang, Yi-Jyun; Hsieh, Bieng-Zih

    2017-04-01

    The future energy police of Taiwan will heavily rely on the clean energy, including renewable energy and low-carbon energy, to meet the target of mitigating CO2 emission. In addition to developing the renewable energies like solar and wind resources, Taiwan will increase the natural gas consumption to obtain enough electrical power with low-carbon emission. The vast resources of gas hydrates recognized in southwestern offshore Taiwan makes a great opportunity for Taiwan to have own energy resources in the future. Therefore, Taiwan put significant efforts on the evaluation of gas hydrate reserves recently. Production behavior of natural gas dissociated from gas hydrate deposits is an important issue to the hydrate reserves evaluation. The depressurization method is a useful engineering recovery method for gas production from a class-3 type hydrate deposit. The dissociation efficiency will be affected by the pressure drawdown disturbance. However, when the pore pressure of hydrate deposits is depressurized for gas production, the rock matrix will surfer more stresses and the formation deformation might be occurred. The purpose of this study was to investigate the effects of geomechanical mechanism on the gas production from a class-3 hydrate deposit using depressurization method. The case of a class-3 type hydrate deposit of Four-Way-Closure Ridge was studied. In this study a reservoir simulator, STARS, was used. STARS is a multiphase flow, heat transfer, geo-chemical and geo-mechanical mechanisms coupling simulator which is capable to simulate the dissociation/reformation of gas hydrate and the deformation of hydrate reservoirs and overburdens. The simulating ability of STARTS simulator was validated by duplicating the hydrate comparison projects of National Energy Technology Lab. The study target, Four-Way-Closure (FWC) Ridge hydrate deposit, was discovered by the bottom simulating reflectors (BSRs). The geological parameters were collected from the geological and

  10. Evaluation of the Gas Production Potential of Marine HydrateDeposits in the Ulleung Basin of the Korean East Sea

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol,Yongkoo; Zhang, Keni

    2007-11-16

    Although significant hydrate deposits are known to exist in the Ulleung Basin of the Korean East Sea, their survey and evaluation as a possible energy resource has not yet been completed. However, it is possible to develop preliminary estimates of their production potential based on the limited data that are currently available. These include the elevation and thickness of the Hydrate-Bearing Layer (HBL), the water depth, and the water temperature at the sea floor. Based on this information, we developed estimates of the local geothermal gradient that bracket its true value. Reasonable estimates of the initial pressure distribution in the HBL can be obtained because it follows closely the hydrostatic. Other critical information needs include the hydrate saturation, and the intrinsic permeabilities of the system formations. These are treated as variables, and sensitivity analysis provides an estimate of their effect on production. Based on the geology of similar deposits, it is unlikely that Ulleung Basin accumulations belong to Class 1 (involving a HBL underlain by a mobile gas zone). If Class 4 (disperse, low saturation accumulations) deposits are involved, they are not likely to have production potential. The most likely scenarios include Class 2 (HBL underlain by a zone of mobile water) or Class 3 (involving only an HBL) accumulations. Assuming nearly impermeable confining boundaries, this numerical study indicates that large production rates (several MMSCFD) are attainable from both Class 2 and Class 3 deposits using conventional technology. The sensitivity analysis demonstrates the dependence of production on the well design, the production rate, the intrinsic permeability of the HBL, the initial pressure, temperature and hydrate saturation, as well as on the thickness of the water zone (Class 2). The study also demonstrates that the presence of confining boundaries is indispensable for the commercially viable production of gas from these deposits.

  11. Thermal regime of a continental permafrost associated gas hydrate occurrence a continuous temperature profile record after drilling

    Science.gov (United States)

    Henninges, J.; Huenges, E.; Mallik Working Group

    2003-04-01

    Both the size and the distribution of natural methane hydrate occurrences, as well as the release of gaseous methane through the dissociation of methane hydrate, are affected by the subsurface pressure and temperature conditions. During a field experiment, which was carried out in the Mackenzie Delta, NWT, Canada, within the framework of the Mallik 2002 Production Research Well Program*, the variation of temperature within three 40 m spaced, 1200 m deep wells was measured deploying the Distributed Temperature Sensing (DTS) technology. An innovative experimental design for the monitoring of spatial and temporal variations of temperature along boreholes was developed and successfully applied under extreme arctic conditions. A special feature is the placement of the fibre-optic sensor cable inside the cement annulus between the casing and the wall of the borehole. Temperature profiles were recorded with a sampling interval of 0.25 m and 5 min, and temperatures can be determined with a resolution of 0.3 °C. The observed variation of temperature over time shows the decay of the thermal disturbances caused by the drilling and construction of the wells. An excellent indicator for the location of the base of the ice-bonded permafrost layer, which stands out as a result of the latent heat of the frozen pore fluid, is a sharp rise in temperature at 604 m depth during the period of equilibration. A similar effect can be detected in the depth interval between 1105 m and 1110 m, which is interpreted as an indicator for the depth to the base of the methane hydrate stability zone. Nine months after the completion of the wells the measured borehole temperatures are close to equilibrium. The mean temperature gradient rises from 9.4 K/km inside the permafrost to 25.4 K/km in the ice-free sediment layers underneath. The zone of the gas hydrate occurrences between 900 m and 1100 m shows distinct variations of the geothermal gradient, which locally rises up to 40 K/km. At the lower

  12. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.

    Science.gov (United States)

    Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F

    2010-01-14

    The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.

  13. Distribution and abundance of gas hydrates in near-surface deposits of the Håkon Mosby Mud Volcano, SW Barents Sea

    Science.gov (United States)

    Pape, Thomas; Feseker, Tomas; Kasten, Sabine; Fischer, David; Bohrmann, Gerhard

    2011-09-01

    The occurrence of gas hydrates at submarine mud volcanoes (MVs) located within the gas hydrate stability zone (GHSZ) is controlled by upward fluid and heat flux associated with MV activity. Determining the spatial distribution of gas hydrates at MVs is crucial to evaluate their sensitivity to known episodic changes in volcanic activity. We determined the hydrocarbon inventory and spatial distribution of hydrates at an individual MV structure. The Håkon Mosby Mud Volcano (HMMV), located at 1,250 m water depth on the Barents Sea slope, was investigated by combined pressure core sampling, heat flow measurements, and pore water chemical analysis. Quantitative pressure core degassing revealed gas-sediment ratios between 3.1 and 25.7, corresponding to hydrate concentrations of up to 21.3% of the pore volume. Hydrocarbon compositions and physicochemical conditions imply that gas hydrates incipiently crystallize as structure I hydrate, with a dissociation temperature of around 13.8°C at this water depth. Based on numerous in situ measurements of the geothermal gradient in the seabed, pore water sulfate profiles and microbathymetric data, we show that the thickness of the GHSZ increases from less than 1 m at the warm center to around 47 m in the outer parts of the HMMV. We estimate the total mass of hydrate-bound methane stored at the HMMV to be about 102.5 kt, of which 2.8 kt are located within the morphological Unit I around the center and thus are likely to be dissociated in the course of a large eruption.

  14. Remote handling equipment for the decommissioning of the Windscale Advanced Gas Cooled Reactor

    International Nuclear Information System (INIS)

    Barker, A.; Birss, I.R.; Fish, G.

    1984-01-01

    A decision to decommission the Windscale Advanced Gas Cooled Reactor was taken shortly after reactor shutdown in 1981. The fuel has now been discharged and the decommissioning programme will l