WorldWideScience

Sample records for gas filter materials

  1. Material and component qualification of ceramic hot gas filter elements. Final report; Material- und Bauteilqualifizierung keramischer Heissgasfilterelemente. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Westerheide, R.; Adler, J.; Wehd, C. von der; Baumgarten, J.; Rehak, P.

    2003-04-01

    Hot gas filtering in modern power plants takes place at temperatures above 600 C. Filter elements are often based on ceramic materials, especially silicon carbide, which is a temperature and corrosion-sensitive material. The report characterises common filter materials and describes the development of new filter materials based on silicon carbide, Al{sub 2}O{sub 3}, and spinell, which were investigated under thermal, mechanical and corrosive stress for the purpose of identifying suitable filter materials. (orig.) [German] Die Heissgasreinigung einer Vielzahl moderner Kraftwerke arbeitet bei Betriebstemperaturen oberhalb 600 C. Die Filterelemente fuer diese Technologie basieren haeufig auf keramischen Materialien, insbesondere auf Siliziumcarbid. Die meisten Siliziumcarbid-Werkstoffe unterliegen jedoch Schaedigung durch Temperatur und Korrosion. Beides kann mit Veraenderungen des Gefuegeaufbaus einhergehen. In diesem Bericht ist die Charakterisierung bestehender Filtermaterialien und die Entwicklung neuer Filtermaterialien, die auf Siliziumcarbid, Al{sub 2}O{sub 3} und Spinell basieren, beschrieben. Das Ziel war, die Materialbestaendigkeit gegenueber thermischen, mechanischen und korrosiven Belastungen zu untersuchen und dafuer geeignete Filtermaterlialien weiterzuentwickeln. (orig.)

  2. Exhaust gas filter

    International Nuclear Information System (INIS)

    Wada, Tadamasa; Hiraki, Akimitsu.

    1993-01-01

    A filter material formed by joining glass clothes to both surfaces of a glass fiber non-woven fabric is used. The filter material is disposed at the inside of a square filter material support frame made of stainless steel. The filter material is attached in a zig-zag manner in the flowing direction of the exhaust gases so as to increase the filtration area. Separators, for example, made of stainless steel are inserted between the filter materials. The separator is corrugated so as to sandwich and support the filter materials from both sides by the ridged crests. The longitudinal bottom of the separator formed by corrugating it defines a flow channel of the exhaustion gases. The longitudinal bottom is also used as a channel for back blowing air. With such a constitution, combustion gases of radioactive miscellaneous solid wastes can be completely filtered. In addition, a back wash can be conducted under high temperature. (I.N.)

  3. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  4. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Connolly; G.D. Forsythe

    2000-09-30

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests

  5. Evaluation of Mechanical Properties and Structural Changes of Ceramic Filter Materials for Hot Gas Cleaning under Simulated Process Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Westerheide, R.; von der Wehd, C.; Adler, J.; Rehak, P.

    2002-09-19

    The objective of this study is to evaluate changes in structure and mechanical properties of ceramic filter materials under simulated corrosive process conditions. Due to an analysis of the mechanisms of degradation firstly an optimization of materials shall be enabled and secondly a material selection for specific applications shall be relieved. This publication describes the investigations made on many ceramic support materials based on oxides and carbides. Both commercially available and newly developed support materials have been evaluated for specific applications in hot gas cleaning.

  6. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Connolly; G.D. Forsythe

    1998-12-22

    Advanced, coal-based power plants will require durable and reliable hot gas filtration systems to remove particulate contaminants from the gas streams to protect downstream components such as turbine blades from erosion damage. It is expected that the filter elements in these systems will have to be made of ceramic materials to withstand goal service temperatures of 1600 F or higher. Recent demonstration projects and pilot plant tests have indicated that the current generation of ceramic hot gas filters (cross-flow and candle configurations) are failing prematurely. Two of the most promising materials that have been extensively evaluated are clay-bonded silicon carbide and alumina-mullite porous monoliths. These candidates, however, have been found to suffer progressive thermal shock fatigue damage, as a result of rapid cooling/heating cycles. Such temperature changes occur when the hot filters are back-pulsed with cooler gas to clean them, or in process upset conditions, where even larger gas temperature changes may occur quickly and unpredictably. In addition, the clay-bonded silicon carbide materials are susceptible to chemical attack of the glassy binder phase that holds the SiC particles together, resulting in softening, strength loss, creep, and eventual failure.

  7. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  8. Evaluation of mechanical properties and structural changes of ceramic filter materials for hot gas cleaning under simulated process conditions

    OpenAIRE

    Westerheide, R.; Wehd, C. von der; Rehak, P.; Adler, J.

    2002-01-01

    In the combined cycle technology for advanced coal fired power plants at high temperatures up to 950 °C the removal of particles from the stream to the gas turbine is carried out with ceramic filter elements. These elements consist often of siliceous bonded coarse grained silicon carbide. A stable long term operation of the filter elements leads to the demands on good resistance towards thermal, mechanical and chemical loading. The structure of ceramic filter elements consists usually of a hi...

  9. Gas cleaning with Granular Filters

    OpenAIRE

    Natvig, Ingunn Roald

    2007-01-01

    The panel bed filter (PBF) is a granular filter patented by A. M. Squires in the late sixties. PBFs consist of louvers with stationary, granular beds. Dust is deposited in the top layers and on the bed surface when gas flows through. PBFs are resistant to high temperatures, variations in the gas flow and hot particles. The filter is cleaned by releasing a pressure pulse in the opposite direction of the bulk flow (a puff back pulse). A new louver geometry patented by A. M. Squires is the filte...

  10. Filter material charging apparatus for filter assembly for radioactive contaminants

    International Nuclear Information System (INIS)

    Goldsmith, J.M.; O'Nan, A. Jr.

    1977-01-01

    A filter charging apparatus for a filter assembly is described. The filter assembly includes a housing with at least one filter bed therein and the filter charging apparatus for adding filter material to the filter assembly includes a tank with an opening therein, the tank opening being disposed in flow communication with opposed first and second conduit means, the first conduit means being in flow communication with the filter assembly housing and the second conduit means being in flow communication with a blower means. Upon activation of the blower means, the blower means pneumatically conveys the filter material from the tank to the filter housing

  11. Filter system for purifying gas or air streams

    International Nuclear Information System (INIS)

    Ohlmeyer, M.; Wilhelm, J.

    1981-01-01

    A filter system is provided for purifying a gas stream by means of flowable or tricklable contact filter material, wherein the stream flows through the filter material and the filter material forms a movable bed. The system contains a filter chamber through which the filter material can flow and which is provided with an inlet opening and an outlet opening for the filter material between which the filter material is conveyed by gravity. The filter system includes deflection means for deflecting the stream , after a first passage of the stream through the filter bed to charge the filter bed for a first time, to a position above where the stream first passed through the filter bed and for conducting the stream at least once again transversely through the filter bed above the first charge so that the filter bed is charged a second time. The filter chamber contains a first opening where the stream enters the filter bed for the first time and is aligned with the deflection means, and a second opening aligned with the deflection means and above the first opening. The second opening is located where the stream leaves the filter bed for the second time, with a partial quantity of the gas stream being able to pass directly through the filter bed from the first opening to the second opening without going through the deflection means. The distance between the upper edge of the first opening and the lower edge of the second opening is at least twice the thickness of the filter chamber

  12. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Matthew R. June; John L. Hurley; Mark W. Johnson

    1999-04-01

    Iron aluminide hot gas filters have been developed using powder metallurgy techniques to form seamless cylinders. Three alloys were short-term corrosion tested in simulated IGCC atmospheres with temperatures between 925 F and 1200 F with hydrogen sulfide concentrations ranging from 783 ppm{sub v} to 78,300 ppm{sub v}. Long-term testing was conducted for 1500 hours at 925 F with 78,300 ppm{sub v}. The FAS and FAL alloys were found to be corrosion resistant in the simulated environments. The FAS alloy has been commercialized.

  13. Process for making ceramic hot gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    2001-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  14. Hot-Gas Filter Ash Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, M.L.; Hurley, J.P.; Dockter, B.A.; O`Keefe, C.A.

    1997-07-01

    Large-scale hot-gas filter testing over the past 10 years has revealed numerous cases of cake buildup on filter elements that has been difficult, if not impossible, to remove. At times, the cake can blind or bridge between candle filters, leading to filter failure. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature, contribute to the difficulty in removing the cake, but chemical factors such as surface composition and gas-solid reactions also play roles in helping to bond the ash to the filters or to itself. This project is designed to perform the research necessary to determine the fuel-, sorbent-, and operations-related conditions that lead to blinding or bridging of hot-gas particle filters. The objectives of the project are threefold: (1) Determine the mechanisms by which a difficult-to-clean ash is formed and how it bridges hot-gas filters (2) Develop a method to determine the rate of bridging based on analyses of the feed coal and sorbent, filter properties, and system operating conditions and (3) Suggest and test ways to prevent filter bridging.

  15. Abatement of styrene waste gas emission by biofilter and biotrickling filter: comparison of packing materials and inoculation procedures.

    Science.gov (United States)

    Pérez, M C; Álvarez-Hornos, F J; Portune, K; Gabaldón, C

    2015-01-01

    The removal of styrene was studied using two biofilters packed with peat and coconut fibre (BF1-P and BF2-C, respectively) and one biotrickling filter (BTF) packed with plastic rings. Two inoculation procedures were applied: an enriched culture with strain Pseudomonas putida CECT 324 for BFs and activated sludge from a municipal wastewater treatment plant for the BTF. Inlet loads (ILs) between 10 and 45 g m(-3) h(-1) and empty bed residence times (EBRTs) from 30 to 120 s were applied. At inlet concentrations ranging between 200 and 400 mg Nm(-3), removal efficiencies between 70 % and 95 % were obtained in the three bioreactors. Maximum elimination capacities (ECs) of 81 and 39 g m(-3) h(-1) were obtained for the BF1-P and BF2-C, respectively (IL of 173 g m(-3) h(-1) and EBRT of 60 s in BF1-P; IL of 89 g m(-3) h(-1) and EBRT of 90 s in BF2-C). A maximum EC of 52 g m(-3) h(-1) was obtained for the BTF (IL of 116 g m(-3) h(-1), EBRT of 45 s). Problems regarding high pressure drop appeared in the peat BF, whereas drying episodes occurred in the coconut fibre BF. DGGE revealed that the pure culture used for BF inoculation was not detected by day 105. Although two different inoculation procedures were applied, similar styrene removal at the end of the experiments was observed. The use as inoculum of activated sludge from municipal wastewater treatment plant appears a more feasible option.

  16. Dynamic graphene filters for selective gas-water-oil separation.

    Science.gov (United States)

    Bong, Jihye; Lim, Taekyung; Seo, Keumyoung; Kwon, Cho-Ah; Park, Ju Hyun; Kwak, Sang Kyu; Ju, Sanghyun

    2015-09-23

    Selective filtration of gas, water, and liquid or gaseous oil is essential to prevent possible environmental pollution and machine/facility malfunction in oil-based industries. Novel materials and structures able to selectively and efficiently filter liquid and vapor in various types of solutions are therefore in continuous demand. Here, we investigate selective gas-water-oil filtration using three-dimensional graphene structures. The proposed approach is based on the adjustable wettability of three-dimensional graphene foams. Three such structures are developed in this study; the first allows gas, oil, and water to pass, the second blocks water only, and the third is exclusively permeable to gas. In addition, the ability of three-dimensional graphene structures with a self-assembled monolayer to selectively filter oil is demonstrated. This methodology has numerous potential practical applications as gas, water, and/or oil filtration is an essential component of many industries.

  17. Dynamic graphene filters for selective gas-water-oil separation

    OpenAIRE

    Jihye Bong; Taekyung Lim; Keumyoung Seo; Cho-Ah Kwon; Ju Hyun Park; Sang Kyu Kwak; Sanghyun Ju

    2015-01-01

    Selective filtration of gas, water, and liquid or gaseous oil is essential to prevent possible environmental pollution and machine/facility malfunction in oil-based industries. Novel materials and structures able to selectively and efficiently filter liquid and vapor in various types of solutions are therefore in continuous demand. Here, we investigate selective gas-water-oil filtration using three-dimensional graphene structures. The proposed approach is based on the adjustable wettability o...

  18. Liquid filter for liquids containing radioactive materials

    International Nuclear Information System (INIS)

    Rohleder, N.; Schwarz, F.

    1986-01-01

    A device for filtering radioactive liquids loaded with solids is described, which has a pressure-resistant housing with a lid and an incomer for the turbid liquid and a collecting space and drain for the filtrate at the bottom of the housing. A filter cartridge is present in this housing. Such a filtering device must be suitable for use in nuclear plants, must be easy to replace by remote control and must minimise the carrying over of radioactive particles. This problem should be solved by the filter cartridge consisting of a large number of horizontal filter plates stacked above one another, which carry a deep layer filter material acting in the sub-micron range. The turbid liquid runs into the centre of the stack of filter plates via a vertical central duct. The intermediate spaces between the filter places are connected to this central duct via the layer of filter material. The filter plates are sealed against one another on the outer circumference and have radial drain openings for the filtrate on the outside. The central duct is sealed at the lower end by a plate. When the filter cartridge is replaced, the radioactive waste in the filter cartridge remains safely enclosed and can be conditioned in suitable containers. (orig.) [de

  19. Material characterization of the clay bonded silicon carbide candle filters and ash formations in the W-APF system after 500 hours of hot gas filtration at AEP. Appendix to Advanced Particle Filter: Technical progress report No. 11, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.

    1993-04-05

    (1) After 500 hours of operation in the pressurized fluidized-bed combustion gas environment, the fibrous outer membrane along the clay bonded silicon carbide Schumacher Dia Schumalith candles remained intact. The fibrous outer membrane did not permit penetration of fines through the filter wall. (2) An approximate 10-15% loss of material strength occurred within the intact candle clay bonded silicon carbide matrix after 500 hours of exposure to the PFBC gas environment. A relatively uniform strength change resulted within the intact candles throughout the vessel (i.e., top to bottom plenums), as well as within the various cluster ring positions (i.e., outer versus inner ring candle filters). A somewhat higher loss of material strength, i.e., 25% was detected in fractured candle segments removed from the W-APF ash hopper. (3) Sulfur which is present in the pressurized fluidized-bed combustion gas system induced phase changes along the surface of the binder which coats the silicon carbide grains in the Schumacher Dia Schumalith candle filter matrix.

  20. High temperature filter for incinerator gas purification

    International Nuclear Information System (INIS)

    Billard, Francois; Brion, Jacques; Cousin, Michel; Delarue, Roger

    1969-01-01

    This note describes a regenerable filter for the hot filtering of incinerator gases. The filter is made of several wire gauze candles coated with asbestos fibers as filtering medium. Unburnt products, like carbon black, terminate their combustion on the filter, reducing the risk of clogging and enhancing the operation time to several hundreds of hours between two regeneration cycles. The filter was tested on a smaller scale mockup, and then on an industrial pilot plant with a 20 kg/h capacity during a long duration. This note describes the installation and presents the results obtained [fr

  1. Programmed temperature vaporizing injector to filter off disturbing high boiling and involatile material for on-line high performance liquid chromatography gas chromatography with on-column transfer.

    Science.gov (United States)

    Biedermann, Maurus; Grob, Koni

    2013-03-15

    Insertion of a programmed temperature vaporizing (PTV) injector under conditions of concurrent solvent recondensation (CSR) into the on-line HPLC-GC interface for on-column transfer (such as the retention gap technique with partially concurrent eluent evaporation) enables filtering off high boiling or involatile sample constituents by a desorption temperature adjusted to the required cut-off. Details of this technique were investigated and optimized. Memory effects, observed when transferred liquid was sucked backwards between the transfer line and the wall of the injector liner, can be kept low by a small purge flow rate through the transfer line at the end of the transfer and the release of the liquid through a narrow bore capillary kept away from the liner wall. The column entrance should be within the well heated zone of the injector to prevent losses of solute material retained on the liner wall during the splitless period. The desorption temperature must be maintained until an elevated oven temperature is reached to prevent peak broadening resulting of a cool inlet section in the bottom part of the injector. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Results of cleaning dissolver off-gas in the PASSAT prototype dissolver off-gas filter system

    International Nuclear Information System (INIS)

    Furrer, J.; Kaempffer, R.; Linek, A.; Merz, A.

    1981-01-01

    For demonstration of an advanced dissolver off-gas cleaning system the new PASSAT filter system has been developed, set up under licensing conditions pertinent to industrial scale reprocessing facilities and commissioned for trial operation. Major components of the PASSAT off-gas cleaning system are the packed fiber mist eliminator with flushing capability (Brink filter) for initial removal of droplet and solid aerosols, which has been installed to extend the service life of HEPA filters, and the series connected iodine adsorption filters for optimum utilization of the iodine adsorption material, AC 6120. The tests performed so far and the experience accumulated in testing these remotely operated filter components under simulated dissolver off-gas conditions, are described and discussed

  3. Fiber-reinforced composite hot-gas filters

    Science.gov (United States)

    Stinton, D. P.; Lowden, R. A.; Chang, R.

    1987-05-01

    A chemical vapor deposition process was developed for the fabrication of high-temperature particulate filters. Fibrous materials such as Nicalon (SiC) felt and aluminosilicate papers were used as the filter material. Preliminary evaluation of filter specimens fabricated from Nicalon revealed extremely encouraging results. Cleanable filters with collection efficiencies of greater than 99.9% were recorded for both PFBC flyash and gasifier char.

  4. Infrared Measurements of Possible IR Filter Materials

    Energy Technology Data Exchange (ETDEWEB)

    Koller,D.; Ediss, G.; Mihaly, L.; Carr, G.

    2006-01-01

    A Fourier Transform Infrared Spectrometer (FTS) was used to obtain the transmission spectra of candidate materials for use as infrared (IR) filters in cryogenic receivers. The data cover the range from 50 cm-1 ({approx}1.5 THz), well below the peak of the 300 K black body spectrum, to 5000 cm-1 ({approx}150 THz), Z-cut quartz, Gore-Tex, Zitex G and Zitex A, High Density Polyethylene (HDPE), Teflon (PTFE), Fluorogold and Black Polyethylene were measured. The relative effectiveness of each material as a filter is determined by integrating the transmission spectrum multiplied by the Planck distribution to obtain a normalized attenuation for the mid-IR band. Measurements at both room temperature and 8 K are compared.

  5. Cleanable sintered metal filters in hot off-gas systems

    International Nuclear Information System (INIS)

    Schurr, G.A.

    1981-01-01

    Filters with sintered metal elements, arranged as tube bundles with backflush air cleaning, are the equivalent of bag filters for high-temperature, harsh environments. They are virtually the only alternative for high-temperature off-gas systems where a renewable, highly efficient particle trap is required. Tests were conducted which show that the sintered metal elements installed in a filter system provide effective powder collection in high-temperature atmospheres over thousands of cleaning cycles. Such a sintered metal filter system is now installed on the experimental defense waste calciner at the Savannah River Laboratory. The experimental results included in this paper were used as the basis for its design

  6. Gas permeability through thin-foil x-ray filters

    Science.gov (United States)

    Tveekrem, June L.; Keski-Kuha, Ritva A.; Webb, Andrew T.

    1997-10-01

    We have measured the permeation rates of helium and water through thin-foil UV-blocking filters used in the ASTRO-E/x- ray spectrometer (XRS) instrument. In the XRS program, there is a concern that outgassed contaminants such as water could permeate through the outermost filter which will be at room temperature and freeze on the inner filters which will be at cryogenic temperatures. The filters tested consisted of approximately 1000 angstroms Al on approximately 1000 angstroms of either Lexan or polyimide. Measurements were made using a vacuum apparatus consisting essentially of two small chambers separated by the filter under test. A helium leak detector was used to measure helium permeation rates, and a residual gas analyzer (RGA) was used to detect water. Results discussed include permeation rate as a function of pressure difference across a filter, the ratio of helium permeation rate over water permeation rate, and the effect of the aluminum layer thickness on permeation.

  7. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    Science.gov (United States)

    Pinson, Paul A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated in barrier material, preferably in the form of a flexible sheet, one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention.

  8. Demonstration of fly-ash filter for trapping volatile radioactive cesium in off-gas stream

    International Nuclear Information System (INIS)

    Chun, K. S.; Park, J. J.; Shon, J. S.; Shin, J. M.; Choi, K. W.

    2000-02-01

    The object of this study is to design and operate the fly ash filter unit for trapping cesium in the vitrification pilot process of radioactive waste in the low and medium level. It is necessary to reuse fly ash, which is a kind of waste from coal fired power plant, in trapping cesium generated from vitrification process and improving safety and removal efficiency of off gas treatment system. According to the XRD analysis on the trapping cesium compounds by the fly ash filter, the thermally stable pollucite phase was formed when the SO x or NO x was used as the carrier gas. The trapping efficiency of volatile cesium by the fly ash filter was decreased with the increase of face velocity, whereas the efficiency was increased with the increase of the reaction temperature. And also, by increasing the reaction time, the efficiency was decreased. The trapping efficiency of volatile cesium by the fly ash filter was higher than 99.5 percent under the air or NO x /air as a carrier gas, however, the efficiency was decreased to 99.0 percent under the NO x /N 2 as a carrier gas. By the way, the effect of NO x in the vitrification pilot process might be negligible due to the supply of the significant amount of oxygen. However, because using the SO x as the carrier gas the efficiency was slightly decreased to 93.5 percent, the influence of the SO x on the trapping cesium by the fly ash filter seems to be concerned in that pilot process. The fly ash filter unit was performed in the vitrification pilot process, but the trapping efficiency of cesium by that filter could not measured because analytical instruments can not detect the cesium. However, it is confirmed that the the stainless steel 310 can be used for the material of filter frame and housing and shows the corrosion resistance at high temperature (1000 deg C). (author)

  9. Materials For Gas Capture, Methods Of Making Materials For Gas Capture, And Methods Of Capturing Gas

    KAUST Repository

    Polshettiwar, Vivek

    2013-06-20

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to materials that can be used for gas (e.g., CO.sub.2) capture, methods of making materials, methods of capturing gas (e.g., CO.sub.2), and the like, and the like.

  10. Development of filter module for passive filtration and accident gas release confinement system for NPP

    International Nuclear Information System (INIS)

    Yelizarov, P.G.; Efanov, A.D.; Martynov, P.N.; Masalov, D.P.; Osipov, V.P.; Yagodkin, I.V.

    2005-01-01

    Full text of publication follows: One of the urgent problems of the safe NPP operation is air cleaning from radioactive aerosols and volatile iodine compounds under the accident operation conditions of NPP. A principally new passive accident gas release confinement system is used as the basis of the designs of new generation reactor power blocks under the-beyond-design-basis accident conditions with total loss of current. The basic structural component of the passive filtration system (PFS) is the filter-sorber being heated up to 300 deg. C. The filter-sorber represents a design consisting of 150 connected in parallel two-step filtering modules. The first step is intended to clean air from radioactive aerosols, the second one - to clean air from radioactive iodine and its volatile compounds. The filter-sorber is located in the upper point of the exterior protection shell. Due to natural convection, it provides confinement of r/a impurities and controlled steam-gas release from the inter-shell space into atmosphere. The basic specific design feature is the two-section design of the PFS filter module consisting of a coarse-cleaning section and a fine-cleaning section. A combination of layer-by-layer put filtering materials on the basis of glass fiber and metal fiber. The pilot PFS filter module specimen tests run in conditions modeling accident situation indicated that at a filtration rate of 0,3 cm/s the aerodynamic resistance of the module does not exceed 12 Pa, the filtration effectiveness equals 99,99 % in terms of aerosol, no less than 99,9% in terms of radioactive 131 I and no less than 99,0% in terms of organic compounds of iodine (CH 3 131 I); the dust capacity amounts to a value above 50 g/m 2 . The obtained results of tests comply with the design requirements imposed on the PFS filter-sorber module. (authors)

  11. Properties of nanoparticles affecting simulation of fibrous gas filter performance

    International Nuclear Information System (INIS)

    Tronville, Paolo; Rivers, Richard

    2015-01-01

    Computational Fluid Dynamics (CFD) codes allow detailed simulation of the flow of gases through fibrous filter media. When the pattern of gas flow between fibers has been established, simulated particles of any desired size can be “injected” into the entering gas stream, and their paths under the influence of aerodynamic drag, Brownian motion and electrostatic forces tracked. Particles either collide with a fiber, or pass through the entire filter medium. They may bounce off the fiber surface, or adhere firmly to the surface or to particles previously captured. Simulated injection of many particles at random locations in the entering stream allows the average probability of capture to be calculated. Many particle properties must be available as parameters for the equations defining the forces on particles in the gas stream, at the moment of contact with a fiber, and after contact. Accurate values for all properties are needed, not only for predicting particle capture in actual service, but also to validate models for media geometries and computational procedures used in CFD. We present a survey of existing literature on the properties influencing nanoparticle dynamics and adhesion. (paper)

  12. Efficiency and mass loading characteristics of a typical HEPA filter media material

    International Nuclear Information System (INIS)

    Novick, V.J.; Higgins, P.J.; Dierkschiede, B.; Abrahamson, C.; Richardson, W.B.; Monson, P.R.; Ellison, P.G.

    1991-01-01

    The particle removal efficiency of the high-efficiency particulate air (HEPA) filter material used at the Savannah River Site was measured as a function of monodisperse particle diameter and two gas filtration velocities. the results indicate that the material meets or exceeds the minimum specified efficiency of 99.97% for all particle diameters at both normal and minimum operating flow conditions encountered at the Savannah River site. The pressure drop across the HEPA filter material used at the Savannah River site was measured as a function of particle mass loading for various aerosol size distributions. The pressure drop was found to increase linearly with the particle mass loaded onto the filters, as long as the particles were completely dry. The slope of the curve was found to be dependent on the particle diameter and velocity of the aerosol. The linear behavior between the initial pressure drop (clean filter) and the final pressure drop (loaded filter) implies that the filtration mechanism is dominated by the particle cake that rapidly forms on the front surface of the HEPA filter. This behavior is consistent with the high filtration efficiency of the material

  13. Defect detection in textured materials using optimized filters.

    Science.gov (United States)

    Kumar, A; Pang, G H

    2002-01-01

    The problem of automated defect detection in textured materials is investigated. A new approach for defect detection using linear FIR filters with optimized energy separation is proposed. The performance of different feature separation criteria with reference to fabric defects has been evaluated. The issues relating to the design of optimal filters for supervised and unsupervised web inspection are addressed. A general web inspection system based on the optimal filters is proposed. The experiments on this new approach have yielded excellent results. The low computational requirement confirms the usefulness of the approach for industrial inspection.

  14. Bioabsorbable materials for use in vena cava filters

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest

    Inferior vena cava (IVC) filters are used to prevent a blood clot from blocking the pulmonary vein causing a pulmonary embolism (PE). The filter is placed in the large vein, vena cava, through a minimally invasive procedure. The filter today are made from various metal alloys. Due to their long...... migration while withstanding the constant external force on the vena cava causing it to collapse continuously. Through investigation of the literature and performance of initial experiments on different bioabsorbable polymers, poly(L-lactide) (PLLA) was chosen as a possible material candidate and further...

  15. Thermal/chemical degradation of ceramic cross-flow filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  16. Effects of filter materials on microstructure and mechanical properties of AZ91

    Directory of Open Access Journals (Sweden)

    Wu Guohua

    2010-11-01

    Full Text Available The present investigation studied the effects of different kinds of ceramic foam filters (CFF incorporating gas bubbling on the microstructure and mechanical properties of virgin AZ91 alloys, and the reactions between filters and Mg melt during filtration. The results show that the purification process of CFF incorporating gas bubbling process can obviously improve the Rm and A of AZ91 alloy, especially the A. Amongst the selected four kinds of CFF, the MgO filter is the most suitable for filtrating Mg melt, and the filtration effective sequence of four kinds of filtrating materials is as follows: MgO>Al2O3>ZrO2>SiC. With MgO filter incorporating gas bubbling treatment under Ar flow rate of 2 L/min and temperature of 730 °C, the ultimate tensile strength Rm and elongation A can be improved greatly from 175.3 MPa and 2.74% to 195.4 MPa and 4.54%, respectively. No inclusions are found on the fracture surface of the sample filtrated by MgO ceramic foam filter, and the fracture mode is quasi-cleavage crack.

  17. Filter case for separating out radioactive effluents from gas flows

    International Nuclear Information System (INIS)

    Jannakos, K.; Zabel, G.

    1982-01-01

    A remotely operated change of filter in a filter case can be done with an annular or cylindrical filter insert, where the contaminated air side remains separate from the clean air side. A lid is provided which can be divided into two parts, and by which the openings of the filter insert and also in the intermediate floor can be opened or closed using the double lid technique. When closing the filter case lid, the double lid closure is always opened. (DG) [de

  18. Evaluation of new filter/demineralizer precoat materials

    International Nuclear Information System (INIS)

    Knight, J.T.; Halbfoster, J.

    1978-01-01

    An investigation into the problems associated with filter precoat materials used in LWR radwaste systems has led to the development of a new type of precoat material. A laboratory pilot plant study included testing on powdered resin, cellulose fibers, polyacrylonitrile fibers, diatomaceous earth, and several proprietary mixtures to assess performance in terms of precoatability, precoat bleedthrough, suspended and dissolved solids reduction, as well as oil removal. The results obtained with a special fiber-powdered resin mixture were superior, in nearly every test, to conventional materials. Subsequent field trials at operating BWR's confirmed the laboratory results. In addition, higher DF's were achieved and element fouling was significantly reduced

  19. Suitability of various materials for porous filters in diffusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aldaba, David; Vidal, Miquel; Rigol, Anna [Univ. de Barcelona (Spain). Dept. de Quimica Analitica; Glaus, Martin; Van Loon, Luc [Paul Scherrer Institut, Villigen PSI (Switzerland). Lab. for Waste Management; Leupin, Olivier [Nagra, Wettingen (Switzerland)

    2014-10-01

    The suitability of different porous materials (stainless steel, VYCOR {sup registered} glass, Al{sub 2}O{sub 3} and PEEK) for use as confining filters in diffusion experiments was evaluated by measuring the effective diffusion coefficients (D{sub e}) of neutral (HTO) and ionic solutes (Na{sup +}, Cs{sup +}, Sr{sup 2+}, Cl{sup -}, SeO{sub 4}{sup 2-}) in the materials in through-diffusion experiments. For stainless steel filters, the D{sub e} values of the target solutes correlated satisfactorily with their bulk diffusion coefficient in water (D{sub w}); thus, the diffusion process in the stainless steel filters was primarily controlled by the diffusivity of the solvated ions. For the remaining materials, the D{sub e} and D{sub w} values were also correlated for the target solutes, and the geometric factors were in the sequence: VYCOR {sup registered} glass < Al{sub 2}O{sub 3} < PEEK. Stainless steel and VYCOR {sup registered} glass were the most appropriate materials because of their high D{sub e} values, but a specific interaction of caesium with VYCOR {sup registered} glass was hypothesised because the D{sub e} values obtained for this solute were slightly higher than expected.

  20. Method and means for filtering polychlorinated biphenyls from a gas stream

    International Nuclear Information System (INIS)

    Sowinski, R.F.

    1992-01-01

    This patent describes a method of filtering, adjacent to an end user-customer's residence or business in which at least a single gas appliance is located, a natural gas stream in which polychlorinated biphenyls (PCB's) and degraded PCB products have been concentrated at sufficient levels to be a health threat in a natural gas gathering and distributing network. It comprises: introducing the natural gas stream to a filter selected from a group that includes impingement, absorbing and adsorbing media whereby PCB's and degraded PCB products concentrated in the gas stream at sufficient levels to be a health threat by a periodic loading of the natural gas within the gathering and distributing network, are filtered from the gas stream and captured irrespective of mode of transport, passing the filtered natural gas stream to the customer's gas appliance wherein safe use of the energy associated with the stream occurs; periodically and safely removing the filter, inserting a new filter in place of the removed filter

  1. Gas transport in graphitic materials

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1995-02-01

    The characterization of the gas transport properties of porous solids is of interest in several fields of science and technology. Many catalysts, adsorbents, soils, graphites and carbons are porous. The gas transport through most porous solids can be well described by the dusty gas model invented by Evans, Watson and Mason. This model includes all modes of gas tranport under steady-state conditions, which are Knudsen diffusion, combined Knudsen/continuum diffusion and continuum diffusion, both for gas pairs with equal and different molecular weights. In the absence of a pressure difference gas transport in a pore system can be described by the combined Knudsen/continuum diffusion coefficient D 1 for component 1 in the pores, the Knudsen diffusion coefficient D 1K in the pores, and the continuum diffusion coefficient D 12 for a binary mixture in the pores. The resistance to stationary continuum diffusion of the pores is characterized by a geometrical factor (ε/τ) 12 = (ε/τ)D 12 , were D 12 is the continuum diffusion coefficient for a binary mixture in free space. The Wicke-Kallenbach method was often used to measure D 1 as function of pressure. D 12 and D 1K can be derived from a plot 1/D 1 νs P, and ε/τcan be calculated since D 12 is known. D 1K and the volume of dead end pores can be derived from transient measurements of the diffusional flux at low pressures. From D 1K the expression (ε/τ c ) anti l por may be calculated, which characterizes the pore system for molecular diffusion, where collisions with the pore walls are predominant. (orig.)

  2. In-plane Material Filters for the Discrete Material Optimization Method

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    This paper presents in-plane material filters for the Discrete Material Optimization method used for optimizing laminated composite structures. The filters make it possible for engineers to specify a minimum length scale which governs the minimum size of areas with constant material continuity....... Consequently, engineers can target the available production methods, and thereby increase its manufacturability while the optimizer is free to determine which material to apply together with an optimum location, shape, and size of these areas with constant material continuity. By doing so, engineers no longer...... have to group elements together in so-called patches, so to statically impose a minimum length scale. The proposed method imposes the minimum length scale through a standard density filter known from topology optimization of isotropic materials. This minimum length scale is generally referred...

  3. Gas sensitive materials for gas detection and method of making

    Science.gov (United States)

    Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

    2012-12-25

    A gas sensitive material comprising SnO2 nanocrystals doped with In2O3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

  4. Gas sensitive materials for gas detection and methods of making

    Science.gov (United States)

    Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

    2014-07-15

    A gas sensitive material comprising SnO.sub.2 nanocrystals doped with In.sub.2O.sub.3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO.sub.2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

  5. Catalytic pleat filter bags for combined particulate separation and nitrogen oxides removal from flue gas streams

    International Nuclear Information System (INIS)

    Park, Young Ok; Choi, Ho Kyung

    2010-01-01

    The development of a high temperature catalytically active pleated filter bag with hybrid filter equipment for the combined removal of particles and nitrogen oxides from flue gas streams is presented. A special catalyst load in stainless steel mesh cartridge with a high temperature pleated filter bag followed by optimized catalytic activation was developed to reach the required nitrogen oxides levels and to maintain the higher collection efficiencies. The catalytic properties of the developed high temperature filter bags with hybrid filter equipment were studied and demonstrated in a pilot scale test rig and a demonstration plant using commercial scale of high temperature catalytic pleated filter bags. The performance of the catalytic pleated filter bags were tested under different operating conditions, such as filtration velocity and operating temperature. Moreover, the cleaning efficiency and residual pressure drop of the catalyst loaded cartridges in pleated filter bags were tested. As result of theses studies, the optimum operating conditions for the catalytic pleated filter bags are determined. (author)

  6. Magnetic filtration process, magnetic filtering material, and methods of forming magnetic filtering material

    Science.gov (United States)

    Taboada-Serrano, Patricia; Tsouris, Constantino; Contescu, Cristian I; McFarlane, Joanna

    2013-10-08

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically responsive activated carbon typically includes providing activated carbon in a solution containing ions of ferrite forming elements, wherein at least one of the ferrite forming elements has an oxidation state of +3 and at least a second of the ferrite forming elements has an oxidation state of +2, and increasing pH of the solution to precipitate particles of ferrite that bond to the activated carbon, wherein the activated carbon having the ferrite particles bonded thereto have a positive magnetic susceptibility. The present invention also provides a method of filtering waste water using magnetic activated carbon.

  7. Applications of Kalman Filtering to nuclear material control. [Kalman filtering and linear smoothing for detecting nuclear material losses

    Energy Technology Data Exchange (ETDEWEB)

    Pike, D.H.; Morrison, G.W.; Westley, G.W.

    1977-10-01

    The feasibility of using modern state estimation techniques (specifically Kalman Filtering and Linear Smoothing) to detect losses of material from material balance areas is evaluated. It is shown that state estimation techniques are not only feasible but in most situations are superior to existing methods of analysis. The various techniques compared include Kalman Filtering, linear smoothing, standard control charts, and average cumulative summation (CUSUM) charts. Analysis results indicated that the standard control chart is the least effective method for detecting regularly occurring losses. An improvement in the detection capability over the standard control chart can be realized by use of the CUSUM chart. Even more sensitivity in the ability to detect losses can be realized by use of the Kalman Filter and the linear smoother. It was found that the error-covariance matrix can be used to establish limits of error for state estimates. It is shown that state estimation techniques represent a feasible and desirable method of theft detection. The technique is usually more sensitive than the CUSUM chart in detecting losses. One kind of loss which is difficult to detect using state estimation techniques is a single isolated loss. State estimation procedures are predicated on dynamic models and are well-suited for detecting losses which occur regularly over several accounting periods. A single isolated loss does not conform to this basic assumption and is more difficult to detect.

  8. A study of gas contaminants and interaction with materials in RPC closed loop systems

    CERN Document Server

    Colafranceschi, S.; Benussi, L.; Bianco, S.; Passamonti, L.; Piccolo, D.; Pierluigi, D.; Russo, A.; Ferrini, M.; Greci, T.; Saviano, G.; Vendittozzi, C.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Iaselli, G.; Maggi, M.; Nuzzo, S.; Pugliese, G.; Verwilligen, P.; Sharma, A.

    2012-01-01

    Resistive Plate Counters (RPC) detectors at the Large Hadron Collider (LHC) experiments use gas recirculation systems to cope with large gas mixture volumes and costs. In this paper a long-term systematic study about gas purifiers, gas contaminants and detector performance is discussed. The study aims at measuring the lifetime of purifiers with unused and used cartridge material along with contaminants release in the gas system. During the data-taking the response of several RPC double-gap detectors was monitored in order to characterize the correlation between dark currents, filter status and gas contaminants.

  9. Method of making a continuous ceramic fiber composite hot gas filter

    Science.gov (United States)

    Hill, Charles A.; Wagner, Richard A.; Komoroski, Ronald G.; Gunter, Greg A.; Barringer, Eric A.; Goettler, Richard W.

    1999-01-01

    A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.

  10. Physical and chemical characterizations of nanometric indigo layers as efficient ozone filter for gas sensor devices

    International Nuclear Information System (INIS)

    Brunet, J.; Spinelle, L.; Ndiaye, A.; Dubois, M.; Monier, G.; Varenne, C.; Pauly, A.; Lauron, B.; Guerin, K.; Hamwi, A.

    2011-01-01

    The relevance of nanometric indigo layers as integrated ozone filters on chemical gas sensors has been established. Indigo can be considered as a selective filter because it ensures a complete removal of ozone in air while being very weakly reactive with CO and NO 2 . The nanometric layers have been realized by thermal evaporation and their chemical structures have been consecutively determined by FT-IR and XPS analyses. Studies about their morphology have been realized by means of SEM and AFM. Results underline the homogeneity and the low roughness of the samples. Electrical characterizations have revealed the high electronic resistivity of nanometric indigo layers. Current–voltage characterizations have put in obviousness that the integration of indigo layer has no effect on the electrical characteristics of sensitive element, even for material exhibiting a very low intrinsic electronic conductivity like metallophthalocyanines. The selective and reproducible measurements of NO 2 concentrations by an original sensing device which takes advantage of on the one hand, the sensitivity and the partial selectivity of copper phthalocyanine (CuPc) to oxidizing gases and on the other hand, the filtering selectivity of indigo toward O 3 have been successfully performed. Optimization of sensing performances as well as the scope of indigo nanolayers will be finally discussed.

  11. Gas Selectivity Control in Co3O4 Sensor via Concurrent Tuning of Gas Reforming and Gas Filtering using Nanoscale Hetero-Overlayer of Catalytic Oxides.

    Science.gov (United States)

    Jeong, Hyun-Mook; Jeong, Seong-Yong; Kim, Jae-Hyeok; Kim, Bo-Young; Kim, Jun-Sik; Abdel-Hady, Faissal; Wazzan, Abdulaziz A; Al-Turaif, Hamad Ali; Jang, Ho Won; Lee, Jong-Heun

    2017-11-29

    Co 3 O 4 sensors with a nanoscale TiO 2 or SnO 2 catalytic overlayer were prepared by screen-printing of Co 3 O 4 yolk-shell spheres and subsequent e-beam evaporation of TiO 2 and SnO 2 . The Co 3 O 4 sensors with 5 nm thick TiO 2 and SnO 2 overlayers showed high responses (resistance ratios) to 5 ppm xylene (14.5 and 28.8) and toluene (11.7 and 16.2) at 250 °C with negligible responses to interference gases such as ethanol, HCHO, CO, and benzene. In contrast, the pure Co 3 O 4 sensor did not show remarkable selectivity toward any specific gas. The response and selectivity to methylbenzenes and ethanol could be systematically controlled by selecting the catalytic overlayer material, varying the overlayer thickness, and tuning the sensing temperature. The significant enhancement of the selectivity for xylene and toluene was attributed to the reforming of less reactive methylbenzenes into more reactive and smaller species and oxidative filtering of other interference gases, including ubiquitous ethanol. The concurrent control of the gas reforming and oxidative filtering processes using a nanoscale overlayer of catalytic oxides provides a new, general, and powerful tool for designing highly selective and sensitive oxide semiconductor gas sensors.

  12. Gas sensing in 2D materials

    Science.gov (United States)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai

    2017-06-01

    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  13. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    International Nuclear Information System (INIS)

    Hu Xiaoyong; Liu Zheng; Gong Qihuang

    2008-01-01

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed

  14. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: xiaoyonghu@pku.edu.cn; Liu Zheng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: qhgong@pku.edu.cn

    2008-01-14

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed.

  15. Selection of packing materials for gas absorption

    OpenAIRE

    Arachchige, Udara Sampath P.; Melaaen, Morten Christian

    2012-01-01

    Carbon dioxide (CO2) capture is the most viable option to minimize the environmental impact by CO2 emissions. Amine scrubbing process is the well-known technology to achieve that. There are several packing types available for gas absorption. Both random and structured packing were considered in the simulation studies. The main idea behind this study was to select the best packing material which gives lowest re-boiler duty. Complete removal model was developed for selected packing materials. T...

  16. Off-gas filtration and releases: bag filters

    International Nuclear Information System (INIS)

    Hennart, D.M.J.G.

    1985-01-01

    During high-temperature incineration of radioactive waste, some metal oxides are volatilized and carried out with the off-gases. During cooling those oxides react with acidic components generated by the combustion of the fuel oil or of the waste itself. This results in a submicronic crystalline dust in which cesium isotopes are concentrated. Bag filters have been selected at S.C.K./C.E.N. to carry out the first step of dust separation. Two baghouses equipped with Teflon bags with a total filtering area of 100 m 2 have been installed. The bags are cleaned on line by compressed air backflow. The residual dust content is below 3 mg/m 3 , which is sufficiently low to be removed by HEPA filters. The baghouses were put into operation in October 1981 and since then have been on line for about 3000 hours. Some bags had to be replaced after a fire in mid-1983. (orig.)

  17. Statistical analysis and Kalman filtering applied to nuclear materials accountancy

    International Nuclear Information System (INIS)

    Annibal, P.S.

    1990-08-01

    Much theoretical research has been carried out on the development of statistical methods for nuclear material accountancy. In practice, physical, financial and time constraints mean that the techniques must be adapted to give an optimal performance in plant conditions. This thesis aims to bridge the gap between theory and practice, to show the benefits to be gained from a knowledge of the facility operation. Four different aspects are considered; firstly, the use of redundant measurements to reduce the error on the estimate of the mass of heavy metal in an 'accountancy tank' is investigated. Secondly, an analysis of the calibration data for the same tank is presented, establishing bounds for the error and suggesting a means of reducing them. Thirdly, a plant-specific method of producing an optimal statistic from the input, output and inventory data, to help decide between 'material loss' and 'no loss' hypotheses, is developed and compared with existing general techniques. Finally, an application of the Kalman Filter to materials accountancy is developed, to demonstrate the advantages of state-estimation techniques. The results of the analyses and comparisons illustrate the importance of taking into account a complete and accurate knowledge of the plant operation, measurement system, and calibration methods, to derive meaningful results from statistical tests on materials accountancy data, and to give a better understanding of critical random and systematic error sources. The analyses were carried out on the head-end of the Fast Reactor Reprocessing Plant, where fuel from the prototype fast reactor is cut up and dissolved. However, the techniques described are general in their application. (author)

  18. Testing of ceramic filter materials at the PCFB test facility; Keraamisten suodinmateriaalien testaus PCFB-koelaitoksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P.; Tiensuu, J. [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula, Finland since 1986. In 1989, a 10 MW PCFB test facility was constructed. The test facility has been used for performance testing with different coal types through the years 1990-1994 for obtaining data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main objective of the project Y53 was to evaluate advanced candle filter materials for the Hot Gas Clean-up Unit (HGCU) to be used in a commercial PCFB Demonstration Project. To achieve this goal, the selected candle materials were exposed to actual high temperature, high pressure coal combustion flue gases for a period of 1000-1500 h during the PCFB test runs. The test runs were carried out in three test segments in Foster Wheeler`s PCFB test facility at the Karhula R and D Center. An extensive inspection and sampling program was carried out after the second test segment. Selected sample candles were analyzed by the filter supplier and the preliminary results were encouraging. The material strength had decreased only within expected range. Slight elongation of the silicon carbide candles was observed, but at this phase the elongation can not be addressed to creep, unlike in the candles tested in 1993-94. The third and last test segment was completed successfully in October 1996. The filter system was inspected and several sample candles were selected for material characterization. The results will be available in February - March 1997. (orig.)

  19. Advanced hot-gas filter development. Topical report, September 30, 1994--May 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lane, J.E.; LeCostaouec, J.F.; Painter, C.J.; Sue, W.A.; Radford, K.C.

    1996-12-31

    The application of high-performance, high-temperature particulate control devices is considered to be beneficial to advanced fossil fuel processing technology, to selected high-temperature industrial processes, and to waste incineration concepts. Ceramic rigid filters represent the most attractive technology for these applications due to their capability to withstand high-temperature corrosive environments. However, current generation monolithic filters have demonstrated poor resistance to crack propagation and can experience catastrophic failure during use. To address this problem, ceramic fiber-reinforced ceramic matrix composite (CMC) filter materials are needed for reliable damage tolerant candle filters. This program is focused on the development of an oxide-fiber reinforced oxide material composite filter material that is cost competitive with prototype next generation filters. This goal would be achieved through the development of a low cost sol-gel fabrication process and a three-dimensional fiber architecture optimized for high volume filter manufacturing. The 3D continuous fiber reinforcement provides a damage tolerant structure which is not subject to delamination-type failures. This report documents the Phase 1, Filter Material Development and Evaluation, results. Section 2 provides a program summary. Technical results, including experimental procedures, are presented and discussed in Section 3. Section 4 and 5 provide the Phase 1 conclusions and recommendations, respectively. The remaining sections cover acknowledgements and references.

  20. Gas refractometry based on an all-fiber spatial optical filter.

    Science.gov (United States)

    Silva, Susana; Coelho, L; André, R M; Frazão, O

    2012-08-15

    A spatial optical filter based on splice misalignment between optical fibers with different diameters is proposed for gas refractometry. The sensing head is formed by a 2 mm long optical fiber with 50 μm diameter that is spliced with a strong misalignment between two single-mode fibers (SMF28) and interrogated in transmission. The misalignment causes a Fabry-Perot behavior along the reduced-size fiber and depending on the lead-out SMF28 position, it is possible to obtain different spectral responses, namely, bandpass or band-rejection filters. It is shown that the spatial filter device is highly sensitive to refractive index changes on a nitrogen environment by means of the gas pressure variation. A maximum sensitivity of -1390 nm/RIU for the bandpass filter was achieved. Both devices have shown similar temperature responses with an average sensitivity of 25.7 pm/°C.

  1. Gas Generation from Actinide Oxide Materials

    International Nuclear Information System (INIS)

    Bailey, George; Bluhm, Elizabeth; Lyman, John; Mason, Richard; Paffett, Mark; Polansky, Gary; Roberson, G. D.; Sherman, Martin; Veirs, Kirk; Worl, Laura

    2000-01-01

    This document captures relevant work performed in support of stabilization, packaging, and long term storage of plutonium metals and oxides. It concentrates on the issue of gas generation with specific emphasis on gas pressure and composition. Even more specifically, it summarizes the basis for asserting that materials loaded into a 3013 container according to the requirements of the 3013 Standard (DOE-STD-3013-2000) cannot exceed the container design pressure within the time frames or environmental conditions of either storage or transportation. Presently, materials stabilized and packaged according to the 3013 Standard are to be transported in certified packages (the certification process for the 9975 and the SAFKEG has yet to be completed) that do not rely on the containment capabilities of the 3013 container. Even though no reliance is placed on that container, this document shows that it is highly likely that the containment function will be maintained not only in storage but also during transportation, including hypothetical accident conditions. Further, this document, by summarizing materials-related data on gas generation, can point those involved in preparing Safety Analysis Reports for Packages (SARPs) to additional information needed to assess the ability of the primary containment vessel to contain the contents and any reaction products that might reasonably be produced by the contents

  2. Gas Generation from Actinide Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    George Bailey; Elizabeth Bluhm; John Lyman; Richard Mason; Mark Paffett; Gary Polansky; G. D. Roberson; Martin Sherman; Kirk Veirs; Laura Worl

    2000-12-01

    This document captures relevant work performed in support of stabilization, packaging, and long term storage of plutonium metals and oxides. It concentrates on the issue of gas generation with specific emphasis on gas pressure and composition. Even more specifically, it summarizes the basis for asserting that materials loaded into a 3013 container according to the requirements of the 3013 Standard (DOE-STD-3013-2000) cannot exceed the container design pressure within the time frames or environmental conditions of either storage or transportation. Presently, materials stabilized and packaged according to the 3013 Standard are to be transported in certified packages (the certification process for the 9975 and the SAFKEG has yet to be completed) that do not rely on the containment capabilities of the 3013 container. Even though no reliance is placed on that container, this document shows that it is highly likely that the containment function will be maintained not only in storage but also during transportation, including hypothetical accident conditions. Further, this document, by summarizing materials-related data on gas generation, can point those involved in preparing Safety Analysis Reports for Packages (SARPs) to additional information needed to assess the ability of the primary containment vessel to contain the contents and any reaction products that might reasonably be produced by the contents.

  3. Radioactive gas standby treatment apparatus with high efficiency rechargeable charcoal filter

    International Nuclear Information System (INIS)

    Hickey, T.N.; Spulgis, I.S.

    1975-01-01

    Described is a standby gas treatment system for removal of radioactive release from a nuclear containment structure not only during normal purge operations but also in the event of a design basis accident. Ventiduct trains arranged in parallel so that one is redundant are each operative to extract dust in excess of 0.3 microns and adsorb radioactive iodine and compounds thereof at 99.9 percent plus efficiency. A rechargeable gasketless charcoal filter in each train can be filled or emptied without removing the filter enclosures per se. Laminar flow filter beds entirely encapsulate the gas stream to provide low gas velocity and even distribution across the charcoal cage without channeling, thereby securing long residence time

  4. Radioactive gas standby treatment apparatus with high efficiency rechargeable charcoal filter

    International Nuclear Information System (INIS)

    Hickey, T.N.; Spulgis, I.S.

    1976-01-01

    A description is given of a standby gas treatment system for removal of radioactive release from a nuclear containment structure not only during normal purge operations but also in the event of a design basis accident. Ventiduct trains arranged in parallel so that one is redundant are each operative to extract dust in excess of 0.3 microns and adsorb radioactive iodine and compounds thereof at 99.9 percent plus efficiency. A rechargeable gasketless charcoal filter in each train can be filled or emptied without removing the filter enclosures per se. Laminar flow filter beds entirely encapsulate the gas stream to provide low gas velocity and even distribution across the charcoal cage without channeling, thereby securing long residence time. 2 claims, 9 drawing figures

  5. Olivine, dolomite and ceramic filters in one vessel to produce clean gas from biomass.

    Science.gov (United States)

    Rapagnà, Sergio; Gallucci, Katia; Foscolo, Pier Ugo

    2018-01-01

    Heavy organic compounds produced during almond shells gasification in a steam and/or air atmosphere, usually called tar, are drastically reduced in the product gas by using simultaneously in one vessel a ceramic filter placed in the freeboard and a mixture of olivine and dolomite particles in the fluidized bed of the gasifier. The content of tar in the product gas during a reference gasification test with air, in presence of fresh olivine particles only, was 8600mg/Nm 3 of dry gas. By gasifying biomass with steam at the same temperature level of 820°C in a bed of olivine and dolomite (20% by weight), and in the presence of a catalytic ceramic filter inserted in the freeboard of the fluidized bed gasifier, the level of tar was brought down to 57mg/Nm 3 of dry producct gas, with a decrease of more than two orders of magnitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evaluation of Core Loss in Magnetic Materials Employed in Utility Grid AC Filters

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    magnetic materials adopted in utility grid ac filters have been investigated and measured for both sinusoidal and rectangular excitation, with and without dc bias condition. The core loss information can ensure cost effective passive filter designs and may avoid trial-error design procedures of the passive......Inductive components play an important role in filtering the switching harmonics related to the pulse width modulation in voltage source converters. Particularly, the filter reactor on the converter side of the filter is subjected to rectangular excitation which may lead to significant losses...... in the core, depending on the magnetic material of choice and current ripple specifications. Additionally, shunt or series reactors that exists in LCL or trap filters and which are subjected to sinusoidal excitations have different specifications and requirements. Therefore, the core losses of different...

  7. Effects of humidity and filter material on diffusive sampling of isocyanates using reagent-coated filters

    NARCIS (Netherlands)

    Henneken, H.; Vogel, M.; Karst, U.

    2006-01-01

    Diffusive sampling of methyl isocyanate (MIC) on 4-nitro-7-piperazinobenzo-2-oxa-1,3-diazole (NBDPZ)-coated glass fibre (GF) filters is strongly affected by high relative humidity (RH) conditions. It is shown that the humidity interference is a physical phenomenon, based on displacement of reagent

  8. An improved particle filtering algorithm for aircraft engine gas-path fault diagnosis

    Directory of Open Access Journals (Sweden)

    Qihang Wang

    2016-07-01

    Full Text Available In this article, an improved particle filter with electromagnetism-like mechanism algorithm is proposed for aircraft engine gas-path component abrupt fault diagnosis. In order to avoid the particle degeneracy and sample impoverishment of normal particle filter, the electromagnetism-like mechanism optimization algorithm is introduced into resampling procedure, which adjusts the position of the particles through simulating attraction–repulsion mechanism between charged particles of the electromagnetism theory. The improved particle filter can solve the particle degradation problem and ensure the diversity of the particle set. Meanwhile, it enhances the ability of tracking abrupt fault due to considering the latest measurement information. Comparison of the proposed method with three different filter algorithms is carried out on a univariate nonstationary growth model. Simulations on a turbofan engine model indicate that compared to the normal particle filter, the improved particle filter can ensure the completion of the fault diagnosis within less sampling period and the root mean square error of parameters estimation is reduced.

  9. Experimental studies of flax-containing nonwoven fabric properties as a filter material

    Science.gov (United States)

    Nemirova, L. F.; Shtabnova, V. L.; Litunov, S. N.; Filkin, N. Yu.

    2017-08-01

    Nonwoven fabric (it consists of 50 % of modified flax fiber and a structure obtained by knitting the fabric with the scrim fibers) was examined. Air permeability, dust permeability, wind resistance and tensile strength at parameter range characteristic for industrial premises were determined. Findings support the use of the fabric as a filter material for filter elements.

  10. An assessment of cellulose filters as a standardized material for measuring litter breakdown in headwater streams

    Science.gov (United States)

    The decay rate of cellulose filters and associated chemical and biological characteristics were compared to those of white oak (Quercus alba) leaves to determine if cellulose filters could be a suitable standardized material for measuring deciduous leaf breakdown in headwater str...

  11. Phosphate removal from agricultural drainage water using an iron oxyhydroxide filter material

    Science.gov (United States)

    Phosphate discharged with agricultural drainage causes water quality degradation on local, regional, and national scales. Iron oxyhydroxide filter materials can potentially remove the soluble phosphate present in drainage waters. Laboratory saturated column experiments and preliminary small-scale ...

  12. The fluence research of filter material for fast neutron fluence measurement

    International Nuclear Information System (INIS)

    Tang Xiding

    2010-01-01

    When the fast neutron fluence is measured by radioactivation techniques in the nuclear reactor the fast neutron is also filtered a little by the thermal neutron filter material, and if the filter material thickness increase the filtered fast neutron increases therewith. For fast neutron fluenc measurement, there are only cadmium, boron and gadolinium three elements filtering fluence can be calculated ordinarily. In order to calculate the filtered fast neutron fluence of the all elements in the filter material, the many total cross sections of nuclides had checked out from nuclear cross section data library, converted them into the same energy group structure, then element's total cross section, compound's total cross section and multilayer filters' total cross section had calculated from these total cross sections with same energy group structure, a new cross section data library can be obtained lastly through merging these cross sections into the old cross section data library used for neutron fluence measurement. The calculation analysis indicates that the results of the unit 2 surveillance capsule U of DAYA Bay NPP and the unit 1 surveillance capsule A of the Second Nuclear Power Plant of Qinshan by considering the all elements subtracting iron are smaller about 1.5% and 2.6% respectively than the ones only to consider cadmium, boron. The old measured results accord with the new values under the measurement uncertainty, are reliable. The new results are more accuracy. (authors)

  13. Assessment of Filter Materials for Removal of Contaminants From Agricultural Drainage Waters

    Science.gov (United States)

    Allred, B. J.

    2007-12-01

    Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes resulting in an adverse environmental impact on these surface water bodies. Low cost filter materials have the potential to remove nutrient and pesticide contaminants from agricultural drainage waters before these waters are released from the farm site. Batch tests were conducted to find filter materials potentially capable of removing nutrient (nitrate and phosphate) and pesticide (atrazine) contaminants from subsurface drainage waters. For each batch test, stock solution (40 g) and filter material (5 g) were combined in 50 mL Teflon centrifuge tubes and mixed with a rotator for 24 hours. The stock solution contained 50 mg/L nitrate-N, 0.25 mg/L phosphate-P, 0.4 mg/L atrazine, 570 mg/L calcium sulfate, and 140 mg/L potassium chloride. Calcium sulfate and potassium chloride were added so that the stock solution would contain anions and cations normally found in agricultural drainage waters. There were six replicate batch tests for each filter material. At the completion of each test, solution was removed from the centrifuge tube and analyzed for nitrate-N, phosphate-P, and atrazine. A total of 38 filter materials were tested, which were divided into five classes; high carbon content substances, high iron content substances, high aluminum content substances, surfactant modified clay/zeolite, and coal combustion products. Batch test results generally indicate, that with regard to the five classes of filter materials; high carbon content substances adsorbed atrazine very effectively; high iron content substances worked especially well removing almost all of the phosphate present; high aluminum content substances lowered phosphate levels; surfactant modified clay/zeolite substantially reduced both nitrate and atrazine; and coal combustion products

  14. A Vapor Challenge Method of Measuring the Residual Life of Gas Filters

    Science.gov (United States)

    1990-08-01

    reaction with chromium complexes . Protection against these gases is so effective that these gases are no longer used in gas warfare; however...To do otherwise, would increase the complexity of the test, and provide a less direct measurement of filter performance under actual operation. Second...detected by colorimetric reactions with: * chromotropic acid; 6 J-acid; 0 metal precipitation from nickel dimethylglyoxime ; or 0 metal precipitation from

  15. Natural gas dehydration by desiccant materials

    Directory of Open Access Journals (Sweden)

    Hassan A.A. Farag

    2011-12-01

    Increasing water vapor concentration in inlet feed gas leads to a marked decrease in dehydration efficiency. As expected, a higher inlet flow rate of natural gas decrease dehydration efficiency. Increasing feed pressure leads to higher dehydration efficiency.

  16. A One ppm NDIR Methane Gas Sensor with Single Frequency Filter Denoising Algorithm

    Directory of Open Access Journals (Sweden)

    Binqing Jiang

    2012-09-01

    Full Text Available A non-dispersive infrared (NDIR methane gas sensor prototype has achieved a minimum detection limit of 1 parts per million by volume (ppm. The central idea of the design of the sensor is to decrease the detection limit by increasing the signal to noise ratio (SNR of the system. In order to decrease the noise level, a single frequency filter algorithm based on fast Fourier transform (FFT is adopted for signal processing. Through simulation and experiment, it is found that the full width at half maximum (FWHM of the filter narrows with the extension of sampling period and the increase of lamp modulation frequency, and at some optimum sampling period and modulation frequency, the filtered signal maintains a noise to signal ratio of below 1/10,000. The sensor prototype provides the key techniques for a hand-held methane detector that has a low cost and a high resolution. Such a detector may facilitate the detection of leakage of city natural gas pipelines buried underground, the monitoring of landfill gas, the monitoring of air quality and so on.

  17. Engineered Materials for Advanced Gas Turbine Engine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop innovative composite powders and composites that will surpass the properties of currently identified materials for advanced gas turbine...

  18. Antithrombotic Protein Filter Composed of Hybrid Tissue-Fabric Material has a Long Lifetime.

    Science.gov (United States)

    Inoue, Yusuke; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Kaneko, Akiko; Woo, Taeseong; Kobayashi, Shingo; Shibuya, Tomokazu; Tanaka, Masaru; Kosukegawa, Hiroyuki; Saito, Itsuro; Isoyama, Takashi; Abe, Yusuke; Yambe, Tomoyuki; Someya, Takao; Sekino, Masaki

    2017-05-01

    There are recent reports of hybrid tissue-fabric materials with good performance-high biocompatibility and high mechanical strength. In this study, we demonstrate the capability of a hybrid material as a long-term filter for blood proteins. Polyester fabrics were implanted into rats to fabricate hybrid tissue-fabric material sheets. The hybrid materials comprised biological tissue grown on the fabric. The materials were extracted from the rat's body, approximately 100 days post-implantation. The tissues were decellularized to prevent immunological rejection. An antithrombogenicity test was performed by dropping blood onto the hybrid material surface. The hybrid material showed lesser blood coagulation than polysulfone and cellulose. Blood plasma was filtered using the hybrid material to evaluate the protein removal percentage and the lifetime of the hybrid material in vitro. The hybrid material showed a comparable performance to conventional filters for protein removal. Moreover, the hybrid material could work as a protein filter for 1 month, which is six times the lifetime of polysulfone.

  19. Conceptual Design of Portable Filtered Air Suction Systems For Prevention of Released Radioactive Gas under Severe Accidents of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Beom W.; Choi, Su Y.; Yim, Man S.; Rim, Chun T. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    It becomes evident that severe accidents may occur by unexpected disasters such as tsunami, heavy flood, or terror. Once radioactive material is released from NPP through severe accidents, there are no ways to prevent the released radioactive gas spreading in the air. As a remedy for this problem, the idea on the portable filtered air suction system (PoFASS) for the prevention of released radioactive gas under severe accidents was proposed. In this paper, the conceptual design of a PoFASS focusing on the number of robot fingers and robot arm rods are proposed. In order to design a flexible robot suction nozzle, mathematical models for the gaps which represent the lifted heights of extensible covers for given convex shapes of pipes and for the covered areas are developed. In addition, the system requirements for the design of the robot arms of PoFASS are proposed, which determine the accessible range of leakage points of released radioactive gas. In this paper, the conceptual designs of the flexible robot suction nozzle and robot arm have been conducted. As a result, the minimum number of robot fingers and robot arm rods are defined to be four and three, respectively. For further works, extensible cover designs on the flexible robot suction nozzle and the application of the PoFASS to the inside of NPP should be studied because the radioactive gas may be released from connection pipes between the containment building and auxiliary buildings.

  20. Thickness filters for gradient based multi-material and thickness optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    This paper presents a new gradient based method for performing discrete material and thickness optimization of laminated composite structures. The novelty in the new method lies in the application of so-called casting constraints, or thickness filters in this context, to control the thickness...... variation throughout the laminate. The filters replace the layerwise density variables with a single continuous through-the-thickness design variable. Consequently, the filters eliminate the need for having explicit constraints for preventing intermediate void through the thickness of the laminate....... Therefore, the filters reduce both the number of constraints and design variables in the optimization problem. Based upon a continuous approximation of a unit step function, the thickness filters are capable of projecting discrete 0/1 values to the underlying layerwise or ”physical” density variables which...

  1. Natural gas as raw material for industrial development

    International Nuclear Information System (INIS)

    Kvisle, Steinar

    2006-01-01

    Industrial development based on natural gas has broad, industrial implications. Norway has a vital industry based on natural gas as raw material, here under Ormen Lange, Snoehvit LNG, Tjeldbergodden and Petrochemical Grenland. The petrochemical industry has challenges, e.g. the cost of raw materials and energy, localization related to the markets, and recruitment, but considerable investments are made in the sector. The Northern areas in Norway may have special challenges related to bringing the product to the market. Solutions to this challenge are in LNG (liquid natural gas), GTL (gas to liquids), and GTO (gas to olefins)

  2. Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: Gas/particle distribution and possible sampling artifacts

    Science.gov (United States)

    Kristensen, Kasper; Bilde, Merete; Aalto, Pasi P.; Petäjä, Tuukka; Glasius, Marianne

    2016-04-01

    Carboxylic acids and organosulfates comprise an important fraction of atmospheric secondary organic aerosols formed from both anthropogenic and biogenic precursors. The partitioning of these compounds between the gas and particle phase is still unclear and further research is warranted to better understand the abundance and effect of organic acids and organosulfates on the formation and properties of atmospheric aerosols. This work compares atmospheric aerosols collected at an urban and a boreal forest site using two side-by-side sampling systems; a high volume sampler (HVS) and a low volume (LVS) denuder/filter sampling system allowing for separate collection of gas- and particle-phase organics. All particle filters and denuder samples were collected at H.C. Andersen Boulevard (HCAB), Copenhagen, Denmark in the summer of 2010, and at the remote boreal forest site at Hyytiälä forestry field station in Finland in the summer of 2012. The chemical composition of gas- and particle-phase secondary organic aerosol was investigated by ultra-high performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOFMS), with a focus on carboxylic acids and organosulfates. Results show gas-phase concentrations higher than those observed in the particle phase by a factor of 5-6 in HCAB 2010 and 50-80 in Hyytiälä 2012. Although abundant in the particle phase, no organosulfates were detected in the gas phase at either site. Through a comparison of samples collected by the HVS and the LVS denuder/filter sampling system we evaluate the potential artifacts associated with sampling of atmospheric aerosols. Such comparison shows that particle phase concentrations of semi-volatile organic acids obtained from the filters collected by HVS are more than two times higher than concentrations obtained from filters collected using LVS denuder/filter system. In most cases, higher concentrations of organosulfates are observed in particles

  3. New luminescent materials and filters for Luminescent Solar Concentrators

    OpenAIRE

    De Boer, D.K.G.; Ronda, C.R.; Keur, W.C.; Meijerink, A.

    2012-01-01

    In a Luminescent Solar Concentrator (LSC), short-wavelength light isconverted by a luminescent material into long-wavelength light, which is guided towards a photovoltaic cell. In principle, an LSC allows for high concentration, but in practice this is prevented by lossmechanisms like limited sunlight absorption, limited quantum efficiency and high self absorption. To tackle these problems, a suitable luminescent material is needed. Another important loss mechanism is the escape of luminescen...

  4. High-frequency microstrip dual-band bandpass filter fabricated using FR-4 glass epoxy material

    Science.gov (United States)

    Challal, Mouloud; Mermoul, Ali; Hocine, Kenza

    2017-12-01

    In this paper, design, fabrication and measurement of a novel microstrip dual-band bandpass filter (BPF) structure with a compact size using FR-4 glass epoxy material is presented. The filter structure is composed of folded non-uniform meander resonators. The proposed filter with a total size of 0.24λg  ×  0.16λg is designed to exhibit two passbands centred at 2.68 GHz and 5.64 GHz with fractional bandwidths of 25.38% and 10.4%, respectively. The simulation and experimental measurement results are basically in good agreement which validate the proposed approach.

  5. Cigarette filter material and polypropylene fibres in concrete to control drying shrinkage

    OpenAIRE

    Richardson, Alan

    2012-01-01

    Due to a reduction in demand for cigarette filter material (North East UK), significant quantities have arisen that have little commercial value. The filter manufacturers have been looking for another outlet for their product and polypropylene fibre replacement in concrete was considered. The purpose of adding Type 1 polypropylene fibres (BS-EN14889) to concrete is to control plastic shrinkage and reduce bleeding. A paired comparison test was carried out to examine concrete cured under extrem...

  6. New luminescent materials and filters for Luminescent Solar Concentrators

    NARCIS (Netherlands)

    De Boer, D.K.G.; Ronda, C.R.; Keur, W.C.; Meijerink, A.

    2012-01-01

    In a Luminescent Solar Concentrator (LSC), short-wavelength light isconverted by a luminescent material into long-wavelength light, which is guided towards a photovoltaic cell. In principle, an LSC allows for high concentration, but in practice this is prevented by lossmechanisms like limited

  7. Batch Test Screening of Industrial Product/Byproduct Filter Materials for Agricultural Drainage Water Treatment

    Directory of Open Access Journals (Sweden)

    Barry J. Allred

    2017-10-01

    Full Text Available Filter treatment may be a viable means for removing the nitrate (NO3−, phosphate (PO43−, and pesticides discharged with agricultural drainage waters that cause adverse environmental impacts within the U.S. on local, regional, and national scales. Laboratory batch test screening for agricultural drainage water treatment potential was conducted on 58 industrial product/byproduct filter materials grouped into six categories: (1 high carbon content media; (2 high iron content media; (3 high aluminum content media; (4 surfactant modified clay/zeolite; (5 coal combustion residuals; and (6 spent foundry sands. Based on a percent contaminant removal criteria of 75% or greater, seven industrial products/byproducts were found to meet this standard for NO3− alone, 44 met this standard for PO43−, and 25 met this standard for the chlorinated triazine herbicide, atrazine. Using a 50% or greater contaminant removal criteria, five of the industrial product/byproduct filter materials exhibited potential for removing NO3−, PO43−, and atrazine together; eight showed capability for combined NO3− and PO43− removal; 21 showed capability for combined PO43− and atrazine removal; and nine showed capability for combined NO3− and atrazine removal. The results of this study delineated some potential industrial product/byproduct filter materials for drainage water treatment; however, a complete feasibility evaluation for drainage water treatment of any of these filter materials will require much more extensive testing.

  8. Experimental relationship between the specific resistance of a HEPA [High Efficiency Particulate Air] filter and particle diameters of different aerosol materials

    International Nuclear Information System (INIS)

    Novick, V.J.; Monson, P.R.; Ellison, P.E.

    1990-01-01

    The increase in pressure drop across a HEPA filter has been measured as a function of the particle mass loading using two materials with different particle morphologies. The HEPA filter media chosen, is identical to the filter media used in the Airborne Activity Confinement System (AACS) on the Savannah River Reactors. The velocity through the test filter media was the same as the velocity through the AACS media, under normal operating flow conditions. Sodium Chloride challenge particles were generated using an atomizer, resulting in regularly shaped crystalline forms. Ammonium chloride aerosols were formed from the gas phase reaction of HCl and NH 4 OH vapors resulting in irregular agglomerates. In both cases, the generation conditions were adjusted to provide several different particle size distributions. For each particle size distribution, the mass of material loaded per unit area of filter per unit pressure drop for a given filtration velocity (1/Specific resistance) was measured. Theoretical considerations in the most widely accepted filter cake model predict that the mass per unit area and per unit pressure drop should increase with the particle density times the particle diameter squared. However, these test results indicate that the increase in the mass loaded per unit area per unit pressure drop, for both materials, can be better described by plotting the specific resistance divided by the particle density as an inverse function of the particle density times the particle diameter squared. 9 refs., 7 figs

  9. USAGE OF FILTERS FROM FIBROUS MATERIALS IN AMELIORATIVE AND HYDRO-TECHNICAL CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    V. T. Klimkov

    2016-01-01

    Full Text Available Construction of first drainage tubular systems has been facing such problem as their protection against silting-up by soil particles penetrating through input openings. Searches and investigations have led to usage of various fibrous materials which are playing the role of filters. At the beginning glass-fibre mats have been widely applied for this purpose. However, the mats possessing good filtration properties have had a number of fundamental disadvantages. Works executed at the Institute of Mechanics of Metal Polymeric Systems (Gomel, Republic of Belarus have played a big role in usage of plastic materials. A new technology has been developed with the purpose to obtain thermally-bonded fibres from thermoplastic material. The fibres have been called as polyethylene mats. Investigation of their properties has been carried out under load and it has revealed that their lateral and longitudinal permeability becomes equal at specified pressures, in other words the material takes an isotropic state. The considered interactions of filtrating material and skeleton frame have shown that the main water filtration occurs directly above perforation holes while the material above blind frame sections does not participate in the process. Due to this a new design of the filtrating element has been developed and it can be used in water intake systems for surface and underground water. The filtrating element consists of the skeleton frame with openings and a filtration covering which is installed on the frame. Water-feeding groove cavities are located on the skeleton frame and they are dispersing from perforation holes in the form of beams. These grooves can have side branches of the second, third and other orders. As beam-like arrangement of grooves creates the shortest flow paths for filtrated water from periphery to frame holes and area of groove cross section exceeds the area of poral holes in water in-take covering by a factor of hundreds, it is possible

  10. Laser-line rejection or transmission filters based on surface structures built on infrared transmitting materials

    Science.gov (United States)

    Hobbs, Douglas S.

    2005-05-01

    Night vision and related thermal imaging systems play a critical role in the protection of our nation's security. These systems record images using video cameras designed for operation in the infrared (IR) region of the light spectrum. As with any imaging system, increased functionality and new information is gained when discrete portions of the observed light spectrum are analyzed separately using optical filters. Highly discriminating filters are needed to increase the sensitivity of atmospheric chemical sensors, to enable multi-spectral imaging and secure laser communications links, and to protect imaging systems from damage due to attack by high power laser weapons. Today, the performance of IR light filters is inadequate for many applications. Filters capable of efficient rejection of multiple discrete wavelength bands, combined with high transmission for wavelengths outside the rejection bands, do not exist. A new type of narrow-band optical filter capable of protecting critical imaging systems from attack from laser weapons operating at multiple wavelengths, is being developed. Based on rugged surface-structure wave-guide resonant holograms, the new filters will be capable of rejecting better than 99% of IR light within each notch, while maintaining the same level of transmission outside each notch covering a broad range of the IR spectrum. The theory, design and fabrication of surface structure, laser-line rejection and transmission filters built upon infrared transmitting materials, will be described. Optical performance data for prototype structures will be presented.

  11. 42 CFR 84.1153 - Dust, fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters...

    Science.gov (United States)

    2010-10-01

    ... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1153 Dust... tests; gas masks canisters containing filters; minimum requirements. 84.1153 Section 84.1153 Public...

  12. Clear of underground water from ferric and manganese modified filtering material active pink sand

    Science.gov (United States)

    Skolubovich, Yury; Voytov, Evgeny; Skolubovich, Alexey; Ilyina, Lilia

    2017-10-01

    The article analyzes the methods of purification of groundwater from iron and manganese. A particular problem is the removal of the manganese compounds from water. For the water treatment plants of small and medium capacity economically viable use of the modified filter materials. This research paper presents the technological characteristics of different catalytically active materials. The article describes the results of a study of a new modified material Active pink sand to clean groundwater from iron, manganese and other impurities.

  13. Validation of the new filters configuration for the RPC gas systems at LHC experiments

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Hahn, Ferdinand; Haider, Stefan

    2012-01-01

    Resistive Plate Chambers (RPCs) are widely employed as muon trigger systems at the Large Hadron Collider (LHC) experiments. Their large detector volume and the use of a relatively expensive gas mixture make a closed-loop gas circulation unavoidable. The return gas of RPCs operated in conditions similar to the experimental background foreseen at LHC contains large amount of impurities potentially dangerous for long-term operation. Several gas-cleaning agents, characterized during the past years, are currently in use. New test allowed understanding of the properties and performance of a large number of purifiers. On that basis, an optimal combination of different filters consisting of Molecular Sieve (MS) 5Å and 4Å, and a Cu catalyst R11 has been chosen and validated irradiating a set of RPCs at the CERN Gamma Irradiation Facility (GIF) for several years. A very important feature of this new configuration is the increase of the cycle duration for each purifier, which results in better system stabilit...

  14. Stock selection of high-dose-irradiation-resistant materials for filter press under high-dose irradiation operation

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Minami, Mamoru; Hara, Kouji; Yamashita, Manabu

    2015-01-01

    In a volume reduction process for the decontamination of contained soil, the performance degradation of a filter press is expected owing to material deterioration under high-dose irradiation. Eleven-stock selection of candidate materials including polymers, fibers and rubbers for the filter press was conducted to achieve a high performance of volume reduction of contaminated soil and the following results were derived. Crude rubber and nylon were selected as prime candidates for packing, diaphragm and filter plate materials. Polyethylene was also selected as a prime candidate for the filter cloth material. (author)

  15. Synthesis of Zeolite Materials for Noble Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Achey, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rivera, O. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wellons, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-02

    Microporous zeolite adsorbent materials are widely used as a medium for separating gases. Adsorbent gas separation systems can run at ambient temperature and require minimal pressure to flow the input gas stream across the adsorbent bed. This allows for low energy consumption relative to other types of separation systems. Specific zeolites also have a high capacity and selectivity for the gases of interest, leading to compact and efficient separation systems. These characteristics are particularly advantageous for the application of signatures detection for non-proliferation, which often requires portable systems with low power draw. Savannah River National Laboratory currently is the leader in using zeolites for noble gas sampling for non-proliferation detection platforms. However, there is a constant customer need for improved sampling capabilities. Development of improved zeolite materials will lead to improved sampling technology. Microwave-assisted and conventional hydrothermal synthesis have been used to make a variety of zeolites tailored for noble gas separation. Materials characterization data collected in this project has been used to help guide the synthesis of improved zeolite materials. Candidate materials have been down-selected based on highest available surface area, maximum overall capacity for gas adsorption and highest selectivity. The creation of improved adsorbent materials initiated in this project will lead to development of more compact, efficient and effective noble gas collectors and concentrators. The work performed in this project will be used as a foundation for funding proposals for further material development as well as possible industrial applications.

  16. A goal-oriented field measurement filtering technique for the identification of material model parameters

    KAUST Repository

    Lubineau, Gilles

    2009-05-16

    The post-processing of experiments with nonuniform fields is still a challenge: the information is often much richer, but its interpretation for identification purposes is not straightforward. However, this is a very promising field of development because it would pave the way for the robust identification of multiple material parameters using only a small number of experiments. This paper presents a goal-oriented filtering technique in which data are combined into new output fields which are strongly correlated with specific quantities of interest (the material parameters to be identified). Thus, this combination, which is nonuniform in space, constitutes a filter of the experimental outputs, whose relevance is quantified by a quality function based on global variance analysis. Then, this filter is optimized using genetic algorithms. © 2009 Springer-Verlag.

  17. New filtering antimicrobial nonwovens with various carriers for biocides as respiratory protective materials against bioaerosol.

    Science.gov (United States)

    Majchrzycka, Katarzyna; Gutarowska, Beata; Brochocka, Agnieszka; Brycki, Bogumił

    2012-01-01

    This study evaluated the bioactivity of polypropylene melt-blown filtering nonwovens used in respiratory protective devices (RPD) with a biocidal agent (alkylammonium microbiocides) on 2 mineral carriers. Two types of carriers were tested: a bentonite, with an aluminosilicate base, and a perlite, volcanic glass. High biostatic and biocidal effects of modified nonwovens with biocides were tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria. Nonwovens modified with a biocide on a bentonite carrier showed an opposite reaction to a biocide on a perlite. The research also showed that 10% concentration of a biocidal agent on a perlite carrier was sufficient to inhibit the growth of bacteria (100% reduction) placed in the structure of a filtering material during normal use of RPD. A comparison of the biological activity of 2 filtering materials, each containing 10% of a perlite and produced in a laboratory and industrial conditions, showed no statistically significant differences.

  18. Nanoporous Materials for the Onboard Storage of Natural Gas.

    Science.gov (United States)

    Kumar, K Vasanth; Preuss, Kathrin; Titirici, Maria-Magdalena; Rodríguez-Reinoso, Francisco

    2017-02-08

    Climate change, global warming, urban air pollution, energy supply uncertainty and depletion, and rising costs of conventional energy sources are, among others, potential socioeconomic threats that our community faces today. Transportation is one of the primary sectors contributing to oil consumption and global warming, and natural gas (NG) is considered to be a relatively clean transportation fuel that can significantly improve local air quality, reduce greenhouse-gas emissions, and decrease the energy dependency on oil sources. Internal combustion engines (ignited or compression) require only slight modifications for use with natural gas; rather, the main problem is the relatively short driving distance of natural-gas-powered vehicles due to the lack of an appropriate storage method for the gas, which has a low energy density. The U.S. Department of Energy (DOE) has set some targets for NG storage capacity to obtain a reasonable driving range in automotive applications, ruling out the option of storing methane at cryogenic temperatures. In recent years, both academia and industry have foreseen the storage of natural gas by adsorption (ANG) in porous materials, at relatively low pressures and ambient temperatures, as a solution to this difficult problem. This review presents recent developments in the search for novel porous materials with high methane storage capacities. Within this scenario, both carbon-based materials and metal-organic frameworks are considered to be the most promising materials for natural gas storage, as they exhibit properties such as large surface areas and micropore volumes, that favor a high adsorption capacity for natural gas. Recent advancements, technological issues, advantages, and drawbacks involved in natural gas storage in these two classes of materials are also summarized. Further, an overview of the recent developments and technical challenges in storing natural gas as hydrates in wetted porous carbon materials is also included

  19. Substituted polynorbornenes as promising materials for gas separation membranes

    International Nuclear Information System (INIS)

    Finkelshtein, Evgenii Sh; Bermeshev, Maksim V; Gringolts, Mariya L; Starannikova, L E; Yampolskii, Yu P

    2011-01-01

    Published results concerning the synthesis and study of the transport characteristics of polynorbornenes are considered and analyzed. Conclusions are drawn regarding the effect of the backbone rigidity and the nature of side groups on the gas permeability level. The prospects of using addition organosilicon polynorbornenes as gas separating membrane materials are discussed.

  20. Theories and Conflict: The Origins of Natural Gas. Instructional Materials.

    Science.gov (United States)

    Anderson, Susan

    This unit explores a recent and controversial theory of the origin of much of the Earth's natural gas and oil. The materials provided will give students the opportunity to: (1) gain an understanding of science and what is involved in the acceptance or rejection of theories; (2) learn about fossil fuels, especially natural gas; (3) learn the…

  1. End of FY2014 Report - Filter Measurement System for Nuclear Material Storage Canisters (Including Altitude Correction for Filter Pressure Drop)

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Kirk Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-24

    Two LANL FTS (Filter Test System ) devices for nuclear material storage canisters are fully operational. One is located in PF-4 ( i.e. the TA-55 FTS) while the other is located at the Radiation Protection Division’s Aerosol Engineering Facility ( i.e. the TA-3 FTS). The systems are functionally equivalent , with the TA-3 FTS being the test-bed for new additions and for resolving any issues found in the TA-55 FTS. There is currently one unresolved issue regarding the TA-55 FTS device. The canister lid clamp does not give a leak tight seal when testing the 1 QT (quart) or 2 QT SAVY lids. An adapter plate is being developed that will ensure a correct test configuration when the 1 or 2 QT SAVY lid s are being tested .

  2. Tunable M-channel filter based on Thue-Morse heterostructures containing meta materials

    Directory of Open Access Journals (Sweden)

    H Pashaei Adl

    2015-01-01

    Full Text Available In this paper the tunable M-channel filters based on Thue-Morse heterostructures consisting of single -negative materials has been studied. The results showed that the number of resonance modes inside the zero- gap increases as the number of heterogenous interface, M, increases. The number of resonance modes inside the zero- gap is equal to that of heterogenous interface M, and it can be used as M channels filter. This result provides a feasible method to adjust the channel number of multiple-channel filters. When losses are involved, the results showed that the electric fields of the resonance modes decay largely with the increase of the number of heterogenous interface and damping factors. Besides, the relationship between the quality factor of multiple-channel filters and the number of heterogenous interface M is linear, and the quality factor of multiple-channel filters decreases with the increase of the damping factor. These results provide feasible methods to adjust the quality factor of multiple-channel filters

  3. Adsorption of mixtures of nutrients and heavy metals in simulated urban stormwater by different filter materials.

    Science.gov (United States)

    Reddy, Krishna R; Xie, Tao; Dastgheibi, Sara

    2014-01-01

    In recent years, several best management practices have been developed for the removal of different types of pollutants from stormwater runoff that lead to effective stormwater management. Filter materials that remove a wide range of contaminants have great potential for extensive use in filtration systems. In this study, four filter materials (calcite, zeolite, sand, and iron filings) were investigated for their adsorption and efficiency in the removal of nutrients and heavy metals when they exist individually versus when they co-exist. Laboratory batch experiments were conducted separately under individual and mixed contaminants conditions at different initial concentrations. Adsorption capacities varied under the individual and mixed contaminant conditions due to different removal mechanisms. Most filter materials showed lower removal efficiency under mixed contaminant conditions. In general, iron filings were found effective in the removal of nutrients and heavy metals simultaneously to the maximum levels. Freundlich and Langmuir isotherms were used to model the batch adsorption results and the former better fitted the experimental results. Overall, the results indicate that the filter materials used in this study have the potential to be effective media for the treatment of nutrients and heavy metals commonly found in urban stormwater runoff.

  4. Brittle Materials Design, High Temperature Gas Turbine

    Science.gov (United States)

    1977-08-01

    barrier is cost and this too is strongly related to the hot component materials. Nickel-chrome superalloys , and more significantly cobalt based...performed on Refel reaction silicon carbide , the material used for ceramic combustors. Statistical bend strength distributions were measured at room...Silicon Carbide 91 4.5 Nitriding of Reaction Bonded Silicon Nitride 9ft 4.6 Sialon Research 99 4.7 Isostatic Densification and Strengthening of

  5. Multiphase imaging of gas flow in a nanoporous material using remote-detection NMR.

    Science.gov (United States)

    Harel, Elad; Granwehr, Josef; Seeley, Juliette A; Pines, Alex

    2006-04-01

    Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering or as reactors. We report a model study on silica aerogel using a time-of-flight magnetic resonance imaging technique to characterize the flow field and explain the effects of heterogeneities in the pore structure on gas flow and dispersion with 129Xe as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides insights into the dynamics of flow in porous media where several phases or chemical species may be present.

  6. Fiber metal acoustic material for gas turbine exhaust environments

    International Nuclear Information System (INIS)

    Beaton, M.S.

    1989-01-01

    FELTMETAL fiber metal acoustic materials function as broad band acoustic absorbers. Their acoustic energy absorbance occurs through viscous flow losses as sound waves pass through the tortuous pore structure of the material. Exhaust gas noise attenuation requirements are reviewed. Their selection process for higher performance materials is discussed. A new FELTMETAL fiber metal acoustic material has been designed for use in gas turbine auxiliary power unit exhaust environments without supplemental cooling. The physical and acoustic properties of mesh supported fiber metal acoustic medium FM 827 are discussed. Exposure testing was conducted under conditions which simulated auxiliary power unit operation. Weight gain and tensile strength data as a function of time of exposure at 650 0 C (1202 0 F) are reported. Fabrication of components with fiber metal acoustic materials is easily accomplished using standard roll forming and gas tungsten arc welding practices

  7. Biomass and fossil fuel conversion by pressurised fluidised bed gasification using hot gas ceramic filters as gas cleaning

    International Nuclear Information System (INIS)

    Jong, Wiebren de; Uenal, Oemer; Andries, Jans; Hein, K.R.G.; Spliethoff, Hartmut

    2003-01-01

    Gasification of biomass and fossil fuels, hot gas cleanup using a ceramic filter and combustion of LCV product gas in a combustor were performed using a 1.5 MWth test rig (pressurised bubbling fluidised bed gasifier) at Delft University and a 10-50 kWth system at Stuttgart University (DWSA) in the framework of experimental research on efficient, environmentally acceptable large-scale power generators based on fluidised bed gasification. The influence of operating conditions (pressure, temperature, stoichiometric ratio) on gasification (gas composition, conversion grades) was studied. The gasifiers were operated in a pressure range of 0.15-0.7 MPa and maximum temperatures of ca. 900 deg. C. The Delft gasifier has a 2 m high bed zone (diameter: 0.4 m) followed by a freeboard approximately 4 m high (diameter: 0.5 m). The IVD gasifier has a diameter of 0.1 m and a reactor length of 4 m. Carbon conversions during wood, miscanthus and brown coal gasification experiments were well above 80%. Fuel-nitrogen conversion to ammonia was above ca. 50% and the highest values were observed for biomass. The results are in line with other investigations with biomass bottom feeding. Deviation occurs compared with top feeding. Measurements are compared with simulation results of a reaction-kinetics-based model, using ASPEN PLUS, related to emission of components like fuel-nitrogen-derived species. Data from literature regarding initial biomass flash pyrolysis in the gasification process are used in the gasifier model and will be compared with simulation results from the FG-DVC model. Measurements and model predictions were in reasonably good agreement with each other

  8. Novel organic materials for gas sensing

    International Nuclear Information System (INIS)

    Paxton, G.A.N.

    2002-01-01

    Merocyanine dyes have been synthesised, with the general formula being; R-A + -C=X-D - Where R is either an octadecyl (C 18 H 37 ), hexadecyl tail (C 16 H 33 ) or thioacetate functionality. A + being a pyridinium, quinolinium or isoquinolinium acceptor, X being N or CH, with D - being either phenolate, 2,6-dichlorophenolate or 2,6-dibromophenolate. In addition zwitterionic dyes were synthesised, with the general formula being; R-A + -CH=CCN-C 6 H 4 -C(CN) 2 - Where R is either a hexadecyl (C 16 H 33 ) or benzyl functionality (CH 2 -C 6 H 5 ) and A is a quinolinium acceptor. All the dyes studied produced isotherm data, with the molecular areas of 0.60 -1.10 nm 2 molecule -1 , which are consistent with the cross-sectional areas of the chromophores when arranged in vertical alignment. The Langmuir films of the dyes were deposited as monolayers onto glass or gold substrates, and as such surface plasmon resonance, quartz crystal microbalance and gas sensing studies were conducted. Surface plasmon resonance studies gave thickness ranging from 1.75 nm to 3.2 nm which are consistent with the length of the fully aligned chromophores. QCM studies indicated molecular areas between 0.37 - 0.70 nm 2 which are consistent with the cross-sectional areas of the chromophores. The gas sensing response at 100 ppm ammonia vapour for the dyes ranged from 0.0 % - 12 % reflectance change. The dyes were found to favour aggregation (centric anti-parallel alignment) in less polar solvents, and this in turn modulated the properties of the Langmuir and Langmuir-Blodgett films. The dyes were markedly solvatochromic, with the dyes absorption bands ranging from 410 nm to 450 nm (for the protonated forms of the dyes) and 620 nm to 890 nm (for unprotonated forms of the dye). A comparison with Reichardt's normalised polarity index confirmed aggregation. (author)

  9. Efficiency of filtering materials used in respiratory protective devices against nanoparticles.

    Science.gov (United States)

    Brochocka, Agnieszka; Makowski, Krzysztof; Majchrzycka, Katarzyna; Grzybowski, Piotr

    2013-01-01

    The basic aim of this research was to establish the efficiency of filtering materials widely used in respiratory protection devices with particular interest in their porosity, degree of electric and changeable process parameters, such as the flow rate of the test nanoaerosol and the size range of nanoparticles. Tests were carried out with an NaCl solid aerosol of 3.2 × 105 particles/cm3 for the range of particle size of 7-270 nm, at aerosol flow rate of 1800, 2700, 3600, 4500 and 5400 L/h. The tests showed that electrospun nonwovens were the most effective filtering materials for nanoparticles over 20 nm. Melt-blown electret nonwovens with lower porosity than electrospun nonwovens had higher values of penetration of 1%-4%. Those materials provided very efficient protection against nanoparticles of certain sizes only.

  10. Radiolytic gas generation in plutonium contaminated waste materials

    International Nuclear Information System (INIS)

    Kazanjian, A.R.

    1976-01-01

    Many plutonium contaminated waste materials decompose into gaseous products because of exposure to alpha radiation. The gases generated (usually hydrogen) over long-storage periods may create hazardous conditions. To determine the extent of such hazards, knowing the gas generation yields is necessary. These yields were measured by contacting some common Rocky Flats Plant waste materials with plutonium and monitoring the enclosed atmospheres for extensive periods of time. The materials were Plexiglas, polyvinyl chloride, glove-box gloves, machining oil, carbon tetrachloride, chlorothene VG solvent, Kimwipes (dry and wet), polyethylene, Dowex-1 resin, and surgeon's gloves. Both 239 Pu oxide and 238 Pu oxide were used as radiation sources. The gas analyses were made by mass spectrometry and the results obtained were the total gas generation, the hydrogen generation, the oxygen consumption rate, and the gas composition over the entire storage period. Hydrogen was the major gas produced in most of the materials. The total gas yields varied from 0.71 to 16 cm 3 (standard temperature pressure) per day per curie of plutonium. The oxygen consumption rates varied from 0.0088 to 0.070 millimoles per day per gram of plutonium oxide-239 and from 0.0014 to 0.0051 millimoles per day per milligram 238 Pu

  11. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    Science.gov (United States)

    Hupp, Joseph T [Northfield, IL; Mulfort, Karen L [Chicago, IL; Snurr, Randall Q [Evanston, IL; Bae, Youn-Sang [Evanston, IL

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  12. Filter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  13. BUILDING MATERIALS MADE FROM FLUE GAS DESULFURIZATION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael W. Grutzeck; Maria DiCola; Paul Brenner

    2006-03-30

    Flue gas desulphurization (FGD) materials are produced in abundant quantities by coal burning utilities. Due to environmental restrains, flue gases must be ''cleaned'' prior to release to the atmosphere. They are two general methods to ''scrub'' flue gas: wet and dry. The choice of scrubbing material is often defined by the type of coal being burned, i.e. its composition. Scrubbing is traditionally carried out using a slurry of calcium containing material (slaked lime or calcium carbonate) that is made to contact exiting flue gas as either a spay injected into the gas or in a bubble tower. The calcium combined with the SO{sub 2} in the gas to form insoluble precipitates. Some plants have been using dry injection of these same materials or their own Class C fly ash to scrub. In either case the end product contains primarily hannebachite (CaSO{sub 3} {center_dot} 1/2H{sub 2}O) with smaller amounts of gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). These materials have little commercial use. Experiments were carried out that were meant to explore the feasibility of using blends of hannebachite and fly ash mixed with concentrated sodium hydroxide to make masonry products. The results suggest that some of these mixtures could be used in place of conventional Portland cement based products such as retaining wall bricks and pavers.

  14. Amine-oxide hybrid materials for acid gas separations

    KAUST Repository

    Bollini, Praveen

    2011-01-01

    Organic-inorganic hybrid materials based on porous silica materials functionalized with amine-containing organic species are emerging as an important class of materials for the adsorptive separation of acid gases from dilute gas streams. In particular, these materials are being extensively studied for the adsorption of CO 2 from simulated flue gas streams, with an eye towards utilizing these materials as part of a post-combustion carbon capture process at large flue gas producing installations, such as coal-fired electricity-generating power plants. In this Application Article, the utilization of amine-modified organic-inorganic hybrid materials is discussed, focusing on important attributes of the materials, such as (i) CO 2 adsorption capacities, (ii) adsorption and desorption kinetics, and (iii) material stability, that will determine if these materials may one day be useful adsorbents in practical CO 2 capture applications. Specific research needs and limitations associated with the current body of work are identified. © 2011 The Royal Society of Chemistry.

  15. Bending strength measurements at different materials used for IR-cut filters in mobile camera devices

    Science.gov (United States)

    Dietrich, Volker; Hartmann, Peter; Kerz, Franca

    2015-03-01

    Digital cameras are present everywhere in our daily life. Science, business or private life cannot be imagined without digital images. The quality of an image is often rated by its color rendering. In order to obtain a correct color recognition, a near infrared cut (IRC-) filter must be used to alter the sensitivity of imaging sensor. Increasing requirements related to color balance and larger angle of incidence (AOI) enforced the use of new materials as the e.g. BG6X series which substitutes interference coated filters on D263 thin glass. Although the optical properties are the major design criteria, devices have to withstand numerous environmental conditions during use and manufacturing - as e.g. temperature change, humidity, and mechanical shock, as wells as mechanical stress. The new materials show different behavior with respect to all these aspects. They are usually more sensitive against these requirements to a larger or smaller extent. Mechanical strength is especially different. Reliable strength data are of major interest for mobile phone camera applications. As bending strength of a glass component depends not only upon the material itself, but mainly on the surface treatment and test conditions, a single number for the strength might be misleading if the conditions of the test and the samples are not described precisely,. Therefore, Schott started investigations upon the bending strength data of various IRC-filter materials. Different test methods were used to obtain statistical relevant data.

  16. Workflow for High Throughput Screening of Gas Sensing Materials

    Directory of Open Access Journals (Sweden)

    Ulrich Simon

    2006-04-01

    Full Text Available The workflow of a high throughput screening setup for the rapid identification ofnew and improved sensor materials is presented. The polyol method was applied to preparenanoparticular metal oxides as base materials, which were functionalised by surface doping.Using multi-electrode substrates and high throughput impedance spectroscopy (HT-IS awide range of materials could be screened in a short time. Applying HT-IS in search of newselective gas sensing materials a NO2-tolerant NO sensing material with reducedsensitivities towards other test gases was identified based on iridium doped zinc oxide.Analogous behaviour was observed for iridium doped indium oxide.

  17. Acid Gas Emissions Measured by COSPEC, Volatile Trap, and Filter Pack at Volcán Villarrica, South Chile

    Science.gov (United States)

    Witter, J. B.; Kress, V. C.; Delmelle, P.; Hersum, T. G.

    2001-12-01

    Volcán Villarrica is a basaltic andesite stratovolcano 170 km SE of Temuco, Chile. Villarrica has been characterized by continuous degassing from a summit lava lake since 1985. We present new measurements of the flux of SO2, HCl, and HF from Villarrica using correlation spectrometry (COSPEC) combined with the method of volatile traps and filter packs. COSPEC measurements yielded an average SO2 flux of 460+/-260 tons/day SO2. This is greater than, but within error of, the 260+/-170 tons/day SO2 measured by us last year. We assume H2S emission is negligible. Volatile trap and filter pack measurements were made at the summit crater. To test for diffuse degassing on the flanks of the volcano, we conducted a soil CO2 flux survey. Using an accumulation chamber configured with a continuous infrared CO2 gas analyzer, we found diffuse degassing of CO2 to be undetectable. We assume flank degassing of other gases is similarly low. Four volatile traps (6N KOH solution in a plastic beaker) were deployed at the active crater on three occasions for periods ranging from 8 to 13 days. Acid gas species were absorbed into the alkaline solution and the relative concentrations of SO4, Cl, and F were obtained by ion chromatography. Volatile traps yielded an average SO2/HCl ratio of 5.9+/-1.2 and HCl/HF ratio of 4.1+/-0.7. This compares with an average SO2/HCl ratio of 9.3+/-2.6 and HCl/HF ratio of 3.0+/-0.4 obtained with volatile traps in the 2000 field season. Twenty-three gas measurements were made using filter packs during eight summit days. Using a small vacuum pump we filtered the gas through a series of three paper filters each impregnated with a saturated sodium bicarbonate solution. Total filtration time varied from 3 to 46.5 minutes. Filtration time was chosen so that nearly all of the acid gases were absorbed by the first two filters in the filter stack. Relative concentrations of the acid gas species (SO4, Cl, and F) absorbed onto the filter paper were obtained by ion

  18. Hot Gas Particulate Cleaning Technology Applied for PFBC/IGFC -The Ceramic Tube Filter (CTF) and Metal Filter-

    Energy Technology Data Exchange (ETDEWEB)

    Sasatsu, H; Misawa, N; Kobori, K; Iritani, J

    2002-09-18

    Coal is a fossil fuel abundant and widespread all over world. It is a vital resource for energy security, because the supply is stable. However, its CO2 emission per unit calorific value is greater than that of other fossil fuels. It is necessary to develop more efficient coal utilization technologies to expand the coal utilization that meets the social demand for better environment. The Pressurized Fluidized Bed Combustion (PFBC) combined cycle has become a subject of world attention in terms of better plant operation, improved plant efficiency, lower flue gas emission and fuel flexibility. The gas turbine, one of the most important components in the PFBC, is eager for a hot gas (approximately 650-850C) cleaning system in order to eliminate the severe erosion problem with the less thermal loss. The cyclone is most popular system for a hot gas cleaning, however, the severe damage for gas turbine blades by highly concentrated fine fly ash from PFBC boiler is reported.

  19. A Review of Materials for Gas Turbines Firing Syngas Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, Thomas [ORNL; Wright, Ian G [ORNL

    2009-05-01

    Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

  20. Gas generation by self-radiolysis of tritiated waste materials

    International Nuclear Information System (INIS)

    Tadlock, W.E.; Abell, G.C.; Steinmeyer, R.H.

    1980-01-01

    Studies simulating the effect of self-radiolysis in disposal packages containing tritiated waste materials show hydrogen to be the dominant gas-phase product. Pressure buildup and gas composition over various tritiated octane and tritiated water samples are designed to give worst case results. One effect of tritium fixation agents is to reduce pressure buildup. The results show that development of explosive gas mixtures is unlikely and that maximum pressure buildup in typical Mound Facility waste packages can be expected to be <0.25 MPa

  1. Gas-thermal coating of powdered materials. Communication 2

    International Nuclear Information System (INIS)

    Ermakov, S.S.

    1986-01-01

    This paper investigates the microstructure, microhardness, chemical composition of the transition zone, and also the strength characteristics of gas-thermal coatings including their adhesive power to the substrate (iron brand NC 100.24) and the residual stresses in the coatings. The microstructure of the transition zone was investigated; it was established that on the side of the substrate its density is greater than the mean density of both types of coating. It is shown that the porosity of the substrate has a competing effect on the thermal interaction of materials. Discovered regularities lead to the conclusion that the process of gas-thermal coating of powdered materials is more effective than when compact materials are coated; most effective is the combination of gas-thermal coating with processes of heat treatment of powder-metallurgy products

  2. Efficient Monte Carlo Simulations of Gas Molecules Inside Porous Materials.

    Science.gov (United States)

    Kim, Jihan; Smit, Berend

    2012-07-10

    Monte Carlo (MC) simulations are commonly used to obtain adsorption properties of gas molecules inside porous materials. In this work, we discuss various optimization strategies that lead to faster MC simulations with CO2 gas molecules inside host zeolite structures used as a test system. The reciprocal space contribution of the gas-gas Ewald summation and both the direct and the reciprocal gas-host potential energy interactions are stored inside energy grids to reduce the wall time in the MC simulations. Additional speedup can be obtained by selectively calling the routine that computes the gas-gas Ewald summation, which does not impact the accuracy of the zeolite's adsorption characteristics. We utilize two-level density-biased sampling technique in the grand canonical Monte Carlo (GCMC) algorithm to restrict CO2 insertion moves into low-energy regions within the zeolite materials to accelerate convergence. Finally, we make use of the graphics processing units (GPUs) hardware to conduct multiple MC simulations in parallel via judiciously mapping the GPU threads to available workload. As a result, we can obtain a CO2 adsorption isotherm curve with 14 pressure values (up to 10 atm) for a zeolite structure within a minute of total compute wall time.

  3. Radiation in controlled environments: influence of lamp type and filter material

    Science.gov (United States)

    Bubenheim, D. L.; Bugbee, B.; Salisbury, F. B.

    1988-01-01

    Radiation in controlled environments was characterized using fluorescent and various high-intensity-discharge (HID) lamps, including metal halide, low-pressure sodium, and high-pressure sodium as the radiation source. The effects of water, glass, or Plexiglas filters on radiation were determined. Photosynthetic photon flux (PPF, 400 to 700 nm), spectra (400 to 1000 nm), shortwave radiation (285-2800 nm), and total radiation (300 to 100,000 nm) were measured, and photosynthetically active radiation (PAR, 400 to 700 nm) and longwave radiation (2800 to 100,000 nm) were calculated. Measurement of PPF alone was not an adequate characterization of the radiation environment. Total radiant flux varied among lamp types at equal PPF. HID lamps provided a lower percentage of longwave radiation than fluorescent lamps, but, when HID lamps provided PPF levels greater than that possible with fluorescent lamps, the amount of longwave radiation was high. Water was the most effective longwave radiation filter. Glass and Plexiglas similarly filtered longwave more than shortwave radiation, but transmission of nonphotosynthetic shortwave radiation was less with Plexiglas than glass. The filter materials tested would not be expected to influence photomorphogenesis because radiation in the action spectrum of phytochrome was not altered, but this may not be the only pigment involved.

  4. [Glass fibre HEPA filters. II. Communication: Microbiological and physico-chemical researchs on used and unusued, hydrophilic and hydrophobic filter materials in an air conditioning plant (author's transl)].

    Science.gov (United States)

    Rüden, H; Mihm, U; Schoemann, D; Botzenhart, K; Thofern, E

    1975-07-01

    Hydrophobic and hydrophilic, used and unused HEPA filters from various manufacturers, inoculated with vegetative bacteria, bacterial and fungal spores, were exposed to clean outside air for up to 17 weeks in an air conditioning plant. With relative humidities up to 60%, an increase in germ count could not be found. The rate of killing the micro-organisms inoculated were different and were generally higher on used filters. The low water content of the filter material was apparently not sufficient for microbial growth. In addition, the increase in electric conductivity and reduction of pH value resulting from deposition of substances from the outside air with an acid reaction ascertained in the aqueous filter extracts had a negative effect on the living conditions of the microorganisms.

  5. Ageing studies for the ATLAS MDT muonchambers and development of a gas filter to prevent drift tube ageing

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, S.

    2008-01-15

    The muon spectrometer of the ATLAS detector, which is currently assembled at the LHC accelerator at CERN, uses drift tubes as basic detection elements over most of the solid angle. The performance of these monitored drift tubes (MDTs), in particular their spatial resolution of 80 {mu}m, determines the precision of the spectrometer. If ageing effects occur, the precision of the drift tubes will be degraded. Hence ageing effects have to be minimized or avoided altogether if possible. Even with a gas mixture of Ar:CO{sub 2}=93:7, which was selected for its good ageing properties, ageing effects were observed in test systems. They were caused by small amounts of impurities, in particular volatile silicon compounds. Systematic studies revealed the required impurity levels deteriorating the drift tubes to be well below 1 ppm. Many components of the ATLAS MDT gas system are supplied by industry. In a newly designed ageing experiment in Freiburg these components were validated for their use in ATLAS. With a fully assembled ATLAS gas distribution rack as test component ageing effects were observed. It was therefore decided to install gas filters in the gas distribution lines to remove volatile silicon compounds efficiently from the gas mixture. Finally a filter was designed that can adsorb up to 5.5 g of volatile silicon compounds, hereby reducing the impurities in the outlet gas mixture to less than 30 ppb. (orig.)

  6. Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon

    Directory of Open Access Journals (Sweden)

    Jones, Robert MD

    2010-05-01

    Full Text Available Chlorine gas represents a hazardous material threat from industrial accidents and as a terrorist weapon. This review will summarize recent events involving chlorine disasters and its use by terrorists, discuss pre-hospital considerations and suggest strategies for the initial management for acute chlorine exposure events. [West J Emerg Med. 2010; 11(2:151-156.

  7. Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon

    OpenAIRE

    Jones, Robert MD; Wills, Brandon DO; Kang, Christopher MD

    2010-01-01

    Chlorine gas represents a hazardous material threat from industrial accidents and as a terrorist weapon. This review will summarize recent events involving chlorine disasters and its use by terrorists, discuss pre-hospital considerations and suggest strategies for the initial management for acute chlorine exposure events. [West J Emerg Med. 2010; 11(2):151-156.

  8. Evaluation of the HEPA filter in-place test method in a corrosive off-gas environment

    International Nuclear Information System (INIS)

    Murphy, L.P.; Wong, M.A.; Girton, R.C.

    1978-01-01

    Experiments were performed to determine if the combined effects of temperature, humidity, and oxides of nitrogen (NO/sub x/) hinder the in-place testing of high-efficiency particulate air (HEPA) filters used for cleaning the off-gas from a nuclear waste solidification facility. The laboratory system that was designed to simulate the process off-gas contained two HEPA filters in series with sample ports before each filter and after the filter bank. The system also included a reaction bomb for partial conversion of NO to NO 2 . Instrumentation measured stream flow, humidity, NO/sub x/ concentration, and temperature. Comparison measurements of the DOP concentrations were made by a forward light-scattering photometer and a single particle intra-cavity laser particle spectrometer. Experimental conditions could be varied, but maximum system capabilities were 95% relative humidity, 90 0 C, and 10,000 ppM of NO/sub x/. A 2 3 factorial experimental design was used for the test program. This design determined the main effects of each factor plus the interactions of the factors in combination. The results indicated that water vapor and NO/sub x/ interfere with the conventional photometer measurements. Suggested modifications that include a unique sample dryer are described to correct the interferences. The laser particle spectrometer appears to be an acceptable instrument for measurements under adverse off-gas conditions

  9. Materials in flue gas condensation plants; Materialval vid roekgaskondensering

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara; Nordling Magnus

    2003-02-01

    This project is the first part of a larger project. In the part reported here, materials for flue gas condensers have been investigated by contact with plant owners and suppliers and by a literature review of reported failures. If it is decided to continue with another part of the project, a number of materials will be long term tested on site. The project is complementary to an earlier project, which investigated the operating experiences from flue gas condensers in biomass fired cogeneration plants. In the project materials (steel and polymeric) suitable for long term testing in existing plants are discussed. It is proposed that testing in the second part of the project is made with material coupons in one plant fired with only biomass and one plant where biomass is co fired with other fuels. In the biomass fired plant a number of steel materials should be tested. In the co fired plant, with its harsher operating conditions, the same steel materials plus a number of polymeric materials should be tested. Materials suitable for testing are summarised in the report.

  10. Gas chromatographic sensing on an optical fiber by mode-filtered light detection.

    Science.gov (United States)

    Bruckner, C A; Synovec, R E

    1996-06-01

    A chemical sensor for gas phase measurements is reported which combines the principles of chemical separation and fiber optic detection. The analyzer incorporates an annular column Chromatographic sensor, constructed by inserting a polymer-clad optical fiber into a silica capillary. Light from a helium-neon laser is launched down the fiber, producing a steady intensity distribution within the fiber, but a low background of scattered light. When sample vapor is introduced to the sensor, and an analyte-rich volume interacts with the polymer cladding, Chromatographic retention is observed simultaneously with a change in the local refractive index of the cladding. An increase in cladding refractive index (RI) causes light to be coupled out of the fiber, with detection at a right-angle to the annular column length to provide optimum S/N ratio. This detection mechanism is called mode-filtered light detection. We report a gas Chromatographic separation on a 3.1 m annular column (320 microm i.d. silica tube, 228 microm o.d. fiber with a 12 microm fluorinated silicone clad) of methane, benzene, butanone and chlorobenzene in 6 min. The annular column length was reduced to 22 cm to function as a sensor, with selected organic vapors exhibiting unique retention times and detection selectivity. The detection selectivity is determined by the analyte RI and the partition coefficient into the cladding. The calculated limit of detection (LOD) for benzene vapor is 0.03% by volume in nitrogen, and several chlorinated species had LOD values less than 1%. For binary mixtures of organic vapors, the detected response appears to be the linear combination of the two organic standards, suggesting that the annular column may be useful as a general approach for designing chemical sensors that incorporate separation and optical detection principles simultaneously.

  11. Advanced and clean gasification of solid wastes by downstream hot flue gas cleaning with high temperature filters and catalytic beds

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Narvaez, I.; Orio, A. [Univ. Complutense of Madrid (Spain)

    1996-12-31

    Thermochemical gasification of solid wastes has two main advantages over their incineration: a lesser flow rate of exit /stack gas is produced, smaller gas cleaning devices are thus required, and no formation of dioxins/furans, because of the reducing gas atmosphere. Nevertheless, at least two other problems remain to be solved: the destruction or elimination of the halogenated tars produced, and the removal of the heavy metals from the flue gas. Two small pilot plants are being used at University of Madrid to study and solve these problems. They are based on a bubbling fluidized bed gasifier and on a riser type gasifier. They have a continuous feeding of waste (1-4 kg/h) and downstream vessels for high temperature gas cleaning with filters and catalysts. 2 refs., 2 figs.

  12. [Hygienic study of an activated fibrous charcoal material as a sorbing filtering element for drinking water afterpurification].

    Science.gov (United States)

    Prokopov, V A; Mironets, N V; Gakal, R K; Maktaz, E D; Dugan, A M; Teteneva, I A; Tarabarova, S B; Martyshchenko, N V; Nadvornaia, Zh D

    1993-01-01

    The results of complex toxicological and hygienic study showed that the quality of pipe water filtered through the activated carbonic fibrous material (ACFM) "Dnepr-F" forming a part of absorptive filtering element improved markedly. The content of organic substances decreased drastically as well as that of nitrates and iron. Microbiological indices did not suffer appreciable changes and were within permissible limits. The water filtered through the absorptive element with ACFM had no adverse influence on the organisms of warm-blooded animals. Proceeding from foregoing one can conclude that the "Dnepr-F" may be recommended as a part of absorptive filtering element for the final refinement of drinking water.

  13. Microporous Organic Materials for Membrane-Based Gas Separation.

    Science.gov (United States)

    Zou, Xiaoqin; Zhu, Guangshan

    2018-01-01

    Membrane materials with excellent selectivity and high permeability are crucial to efficient membrane gas separation. Microporous organic materials have evolved as an alternative candidate for fabricating membranes due to their inherent attributes, such as permanent porosity, high surface area, and good processability. Herein, a unique pore-chemistry concept for the designed synthesis of microporous organic membranes, with an emphasis on the relationship between pore structures and membrane performances, is introduced. The latest advances in microporous organic materials for potential membrane application in gas separation of H 2 , CO 2 , O 2 , and other industrially relevant gases are summarized. Representative examples of the recent progress in highly selective and permeable membranes are highlighted with some fundamental analyses from pore characteristics, followed by a brief perspective on future research directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Thermal/Pyrolysis Gas Flow Analysis of Carbon Phenolic Material

    Science.gov (United States)

    Clayton, J. Louie

    2001-01-01

    Provided in this study are predicted in-depth temperature and pyrolysis gas pressure distributions for carbon phenolic materials that are externally heated with a laser source. Governing equations, numerical techniques and comparisons to measured temperature data are also presented. Surface thermochemical conditions were determined using the Aerotherm Chemical Equilibrium (ACE) program. Surface heating simulation used facility calibrated radiative and convective flux levels. Temperatures and pyrolysis gas pressures are predicted using an upgraded form of the SINDA/CMA program that was developed by NASA during the Solid Propulsion Integrity Program (SPIP). Multispecie mass balance, tracking of condensable vapors, high heat rate kinetics, real gas compressibility and reduced mixture viscosity's have been added to the algorithm. In general, surface and in-depth temperature comparisons are very good. Specie partial pressures calculations show that a saturated water-vapor mixture is the main contributor to peak in-depth total pressure. Further, for most of the cases studied, the water-vapor mixture is driven near the critical point and is believed to significantly increase the local heat capacity of the composite material. This phenomenon if not accounted for in analysis models may lead to an over prediction in temperature response in charring regions of the material.

  15. Phosphate sorption by three potential filter materials as assessed by isothermal titration calorimetry.

    Science.gov (United States)

    Lyngsie, Gry; Penn, Chad J; Hansen, Hans C B; Borggaard, Ole K

    2014-10-01

    Phosphorus eutrophication of lakes and streams, coming from drained farmlands, is a serious problem in areas with intensive agriculture. Installation of phosphate (P) sorbing filters at drain outlets may be a solution. The aim of this study was to improve the understanding of reactions involved in P sorption by three commercial P sorbing materials, i.e. Ca/Mg oxide-based Filtralite-P, Fe oxide-based CFH-12 and Limestone in two particle sizes (2-1 mm and 1-0.5 mm), by means of isothermal titration calorimetry (ITC), sorption isotherms, sequential extractions and SEM-EDS. The results indicate that P retention by CFH is due to surface complexation by rapid formation of strong Fe-P bonds. In contrast, retention of P by Filtralite-P and Limestone strongly depends on pH and time and is interpreted due to formation of calcium phosphate precipitate(s). Consequently, CFH can unambiguously be recommended as P retention filter material in drain outlets, whereas the use of Filtralite-P and Limestone has certain (serious) limitations. Thus, Filtralite-P has high capacity to retain P but only at alkaline pH (pH ≥ 10) and P retention by Limestone requires long-time contact and a high ratio between sorbent and sorbate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Optimizing the Advanced Ceramic Material (ACM) for Diesel Particulate Filter Applications

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Heather E.; Stewart, Mark L.; Maupin, Gary D.; Gallant, Thomas R.; Li, Cheng; Mao, Frank H.; Pyzik, Aleksander J.; Ramanathan, Ravi

    2006-10-02

    This paper describes the application of pore-scale filtration simulations to the ‘Advanced Ceramic Material’ (ACM) developed by Dow Automotive for use in advanced diesel particulate filters. The application required the generation of a three dimensional substrate geometry to provide the boundary conditions for the flow model. An innovative stochastic modeling technique was applied matching chord length distribution and the porosity profile of the material. Additional experimental validation was provided by the single channel experimental apparatus. Results show that the stochastic reconstruction techniques provide flexibility and appropriate accuracy for the modeling efforts. Early optimization efforts imply that needle length may provide a mechanism for adjusting performance of the ACM for DPF applications. New techniques have been developed to visualize soot deposition in both traditional and new DPF substrate materials. Loading experiments have been conducted on a variety of single channel DPF substrates to develop a deeper understanding of soot penetration, soot deposition characteristics, and to confirm modeling results.

  17. Durability of Selected Membrane Materials when Exposed to Chlorine Gas

    Energy Technology Data Exchange (ETDEWEB)

    Eikeland, Marianne Soerflaten

    2001-03-01

    This thesis is focusing on the durability of selected membrane materials when exposed to chlorine gas in the temperature range 30-100{sup o}C. Studies of the changes of membrane separation properties and the mechanisms promoting these changes have been studied. The selected membrane materials were poly(dimethylsioxane) (PDMS), Fluorel, fluorosilicone, and blends of PDMS and Fluorel. The thesis is organised in seven chapters. The first chapter gives an introduction to the background of the work. The second chapter presents the theory for gas separation using dense rubbery membranes. The properties of the selected membrane materials are presented in chapter three. The fourth chapter describes degradation mechanisms for polymeric materials in general and for the selected membrane materials in particular. Presentation of the experimental work is given in chapter five, while the results with discussions are presented in chapter six. The conclusions and recommendations for further studies are given in chapter seven. Five appendixes are attached: Appendix A describes the calculations of permeability and solubility coefficients and the accuracy of the experimental measurements. Appendix B summarises the measured values in tables and Appendix C describes the analytical methods. Appendix D gives the properties of the gases used in the experiments. Appendix E is the article ''Durability of Poly(dimethylsiloxane) when Exposed to Chlorine Gas'', submitted to the Journal of Applied Polymer Science. Highly crosslinked PDMS was found to have an initial high permeability for chlorine gas and a high Cl{sub 2}/O{sub 2} selectivity. However when exposed to chlorine gas the permeability decreased significantly. Crosslinking of the PDMS polymer chain and chlorination of the polymer gave a denser polymer structure and thus lower permeability. Fluorel showed very low permeabilities and selectivities for the gases in question and was thus not interesting for this

  18. Filter Measurement System for Nuclear Material Storage Canisters. End of Year Report FY 2013

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Kirk P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-03

    A test system has been developed at Los Alamos National Laboratory to measure the aerosol collection efficiency of filters in the lids of storage canisters for special nuclear materials. Two FTS (filter test system) devices have been constructed; one will be used in the LANL TA-55 facility with lids from canisters that have stored nuclear material. The other FTS device will be used in TA-3 at the Radiation Protection Division’s Aerosol Engineering Facility. The TA-3 system will have an expanded analytical capability, compared to the TA-55 system that will be used for operational performance testing. The LANL FTS is intended to be automatic in operation, with independent instrument checks for each system component. The FTS has been described in a complete P&ID (piping and instrumentation diagram) sketch, included in this report. The TA-3 FTS system is currently in a proof-of-concept status, and TA-55 FTS is a production-quality prototype. The LANL specification for (Hagan and SAVY) storage canisters requires the filter shall “capture greater than 99.97% of 0.45-micron mean diameter dioctyl phthalate (DOP) aerosol at the rated flow with a DOP concentration of 65±15 micrograms per liter”. The percent penetration (PEN%) and pressure drop (DP) of fifteen (15) Hagan canister lids were measured by NFT Inc. (Golden, CO) over a period of time, starting in the year 2002. The Los Alamos FTS measured these quantities on June 21, 2013 and on Oct. 30, 2013. The LANL(6-21-2013) results did not statistically match the NFT Inc. data, and the LANL FTS system was re-evaluated, and the aerosol generator was replaced and the air flow measurement method was corrected. The subsequent LANL(10-30-2013) tests indicate that the PEN% results are statistically identical to the NFT Inc. results. The LANL(10-30-2013) pressure drop measurements are closer to the NFT Inc. data, but future work will be investigated. An operating procedure for the FTS (filter test system) was written, and

  19. Toward single-material multilayer interference mid-infrared filters with sub-wavelength structures for cryogenic infrared astronomical missions

    Science.gov (United States)

    Makitsubo, Hironobu; Wada, Takehiko; Mita, Makoto

    2011-03-01

    We are trying to develop high performance mid-infrared (MIR) and far-infrared (FIR) optical filters with mechanical strength and robustness for thermal cycling toward cryogenic infrared astronomical space missions. Multilayer interference filters enable us to design a wide variety of spectral response by controlling refractive index and thickness of each layer, however, in longer MIR and FIR (30-300μm) wavelength regions, there are a few optical materials known to have both good transparency and physical robustness, which makes difficult to realize high performance filters because of limited refractive index values. It is also difficult to deposit thick layers required for MIR/FIR multilayer filters by conventional method. Furthermore, multilayer interference filters are realized by thin film coatings having different coefficients of thermal expansion (CTE), which makes filters fragile for thermal cycling. To clear these problems, we introduce sub-wavelength structures (SWS) for controlling the refractive index. Then, only one material is necessary for fabricating filters, which enables us to fabricate filters with mechanical strength and robustness for thermal cycling. In 30-300μm wavelength regions silicon is very suitable for filter material because not only silicon has little absorption and physical robustness but also SWS are easily fabricated by micro-electro mechanical systems (MEMS) technology. As a first step, we have fabricated anti-reflection SWS layer on silicon wafers to demonstrate the refractive index control by simple SWS (periodic cylindrical holes on a silicon wafer). Comparing measured transmittance with both effective medium approximation (EMA) theory and rigorous coupled wave analysis (RCWA) simulation, we confirm that the refractive control of SWS layer is verified.

  20. Final Report: Part 1. In-Place Filter Testing Instrument for Nuclear Material Containers. Part 2. Canister Filter Test Standards for Aerosol Capture Rates.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Austin Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Runnels, Joel T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Kirk Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-02

    A portable instrument has been developed to assess the functionality of filter sand o-rings on nuclear material storage canisters, without requiring removal of the canister lid. Additionally, a set of fifteen filter standards were procured for verifying aerosol leakage and pressure drop measurements in the Los Alamos Filter Test System. The US Department of Energy uses several thousand canisters for storing nuclear material in different chemical and physical forms. Specialized filters are installed into canister lids to allow gases to escape, and to maintain an internal ambient pressure while containing radioactive contaminants. Diagnosing the condition of container filters and canister integrity is important to ensure worker and public safety and for determining the handling requirements of legacy apparatus. This report describes the In-Place-Filter-Tester, the Instrument Development Plan and the Instrument Operating Method that were developed at the Los Alamos National Laboratory to determine the “as found” condition of unopened storage canisters. The Instrument Operating Method provides instructions for future evaluations of as-found canisters packaged with nuclear material. Customized stainless steel canister interfaces were developed for pressure-port access and to apply a suction clamping force for the interface. These are compatible with selected Hagan-style and SAVY-4000 storage canisters that were purchased from NFT (Nuclear Filter Technology, Golden, CO). Two instruments were developed for this effort: an initial Los Alamos POC (Proof-of-Concept) unit and the final Los Alamos IPFT system. The Los Alamos POC was used to create the Instrument Development Plan: (1) to determine the air flow and pressure characteristics associated with canister filter clogging, and (2) to test simulated configurations that mimicked canister leakage paths. The canister leakage scenarios included quantifying: (A) air leakage due to foreign material (i.e. dust and hair

  1. Materials Research for Advanced Inertial Instrumentation. Task 2. Gas Bearing Material Development.

    Science.gov (United States)

    1984-02-01

    boron trichloride (BC13 ) with hydrogen, and (2) thermal decomposition of diborane (B2H6 ). The depositions were carried out at temperatures in the...recommendation that further wear and friction evaluation be performed with materials of potential use in gas bearings, such as an aluminum oxide

  2. Transient radiation effects in D.O.I. optical materials: Schott filter glass

    International Nuclear Information System (INIS)

    Simmons-Potter, K.

    1998-07-01

    Department of Energy and Defense Programs systems are becoming increasingly reliant on the use of optical technologies that must perform under a range of ionizing radiation environments. In particular, the radiation response of materials under consideration for applications in direct optical initiation (D.O.I.) schemes must be well characterized. In this report, transient radiation effects observed in Schott filter glass S-7010 are characterized. Under gamma exposure with 2 MeV photons in a 20--30 nsec pulse, the authors observe strong initial induced fluorescence in the red region of the spectrum followed by significant induced absorption over the same spectral region. Peak induced absorption coefficients of 0.113 cm -1 and 0.088 cm -1 were calculated at 800 nm and 660 nm respectively

  3. Heavy metal removal mechanisms of sorptive filter materials for road runoff treatment and remobilization under de-icing salt applications.

    Science.gov (United States)

    Huber, Maximilian; Hilbig, Harald; Badenberg, Sophia C; Fassnacht, Julius; Drewes, Jörg E; Helmreich, Brigitte

    2016-10-01

    The objective of this research study was to elucidate the removal and remobilization behaviors of five heavy metals (i.e., Cd, Cu, Ni, Pb, and Zn) that had been fixed onto sorptive filter materials used in decentralized stormwater treatment systems receiving traffic area runoff. Six filter materials (i.e., granular activated carbon, a mixture of granular activated alumina and porous concrete, granular activated lignite, half-burnt dolomite, and two granular ferric hydroxides) were evaluated in column experiments. First, a simultaneous preloading with the heavy metals was performed for each filter material. Subsequently, the remobilization effect was tested by three de-icing salt experiments in duplicate using pure NaCl, a mixture of NaCl and CaCl2, and a mixture of NaCl and MgCl2. Three layers of each column were separated to specify the attenuation of heavy metals as a function of depth. Cu and Pb were retained best by most of the selected filter materials, and Cu was often released the least of all metals by the three de-icing salts. The mixture of NaCl and CaCl2 resulted in a stronger effect upon remobilization than the other two de-icing salts. For the material with the highest retention, the effect of the preloading level upon remobilization was measured. The removal mechanisms of all filter materials were determined by advanced laboratory methods. For example, the different intrusions of heavy metals into the particles were determined. Findings of this study can result in improved filter materials used in decentralized stormwater treatment systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Analysis of fire and smoke threat to off-gas HEPA filters in a transuranium processing plant

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1988-01-01

    The author performed an analysis of fire risk to the high-efficiency particulate air (HEPA) filters that provide ventilation containment for a transuranium processing plant at the Oak Ridge National Laboratory. A fire-safety survey by an independent fire-protection consulting company had identified the HEPA filters in the facility's off-gas containment ventilation system as being at risk from fire effects. Independently studied were the ventilation networks and flow dynamics, and typical fuel loads were analyzed. It was found that virtually no condition for fire initiation exists and that, even if a fire started, its consequences would be minimal as a result of standard shut-down procedures. Moreover, the installed fire-protection system would limit any fire and thus would further reduce smoke or heat exposure to the ventilation components. 4 references, 4 figures, 5 tables

  5. Static Hyperspectral Fluorescence Imaging of Viscous Materials Based on a Linear Variable Filter Spectrometer

    Directory of Open Access Journals (Sweden)

    Alexander W. Koch

    2013-09-01

    Full Text Available This paper presents a low-cost hyperspectral measurement setup in a new application based on fluorescence detection in the visible (Vis wavelength range. The aim of the setup is to take hyperspectral fluorescence images of viscous materials. Based on these images, fluorescent and non-fluorescent impurities in the viscous materials can be detected. For the illumination of the measurement object, a narrow-band high-power light-emitting diode (LED with a center wavelength of 370 nm was used. The low-cost acquisition unit for the imaging consists of a linear variable filter (LVF and a complementary metal oxide semiconductor (CMOS 2D sensor array. The translucent wavelength range of the LVF is from 400 nm to 700 nm. For the confirmation of the concept, static measurements of fluorescent viscous materials with a non-fluorescent impurity have been performed and analyzed. With the presented setup, measurement surfaces in the micrometer range can be provided. The measureable minimum particle size of the impurities is in the nanometer range. The recording rate for the measurements depends on the exposure time of the used CMOS 2D sensor array and has been found to be in the microsecond range.

  6. Evaluation of air samplers and filter materials for collection and recovery of airborne norovirus

    DEFF Research Database (Denmark)

    Uhrbrand, Katrine; Kalevi Koponen, Ismo; Schultz, Anna Charlotte

    2017-01-01

    sampler with four different filter types; NY, polycarbonate (PC), polytetrafluoroethylene (PTFE) and gelatine (GEL). The sampling efficiency of MNV was significantly influenced by both sampler and filter type. The GSP sampler was found to give significantly (P... 3P and NIO. A higher recovery was also found for GSP compared with TC, albeit not significantly. Finally, recovery of aerosolised MNV was significantly (PPTFE and GEL filters. Conclusions: The GSP sampler combined with a nylon filter was found to be the best method...

  7. Surface Observation and Pore Size Analyses of Polypropylene/Low-Melting Point Polyester Filter Materials: Influences of Heat Treatment

    Directory of Open Access Journals (Sweden)

    Lin Jia-Horng

    2016-01-01

    Full Text Available This study proposes making filter materials with polypropylene (PP and low-melting point (LPET fibers. The influences of temperatures and times of heat treatment on the morphology of thermal bonding points and average pore size of the PP/LPET filter materials. The test results indicate that the morphology of thermal bonding points is highly correlated with the average pore size. When the temperature of heat treatment is increased, the fibers are joined first with the thermal bonding points, and then with the large thermal bonding areas, thereby decreasing the average pore size of the PP/LPET filter materials. A heat treatment of 110 °C for 60 seconds can decrease the pore size from 39.6 μm to 12.0 μm.

  8. Carbon nanotubes for gas detection: materials preparation and device assembly

    International Nuclear Information System (INIS)

    Terranova, M L; Lucci, M; Orlanducci, S; Tamburri, E; Sessa, V; Reale, A; Carlo, A Di

    2007-01-01

    An efficient sensing device for NH 3 and NO x detection has been realized using ordered arrays of single-walled C nanotubes deposited onto an interdigitated electrode platform operating at room temperature. The sensing material has been prepared using several chemical-physical techniques for purification and positioning of the nanotubes inside the electrode gaps. In particular, both DC and AC fields have been applied in order to move and to align the nanostructures by electrophoresis and dielectrophoresis processes. We investigated the effects of different voltages applied to a gate contact on the back side of the substrate on the performances of the device and found that for different gas species (NH 3 , NO x ) a constant gate bias increases the sensitivity for gas detection. Moreover, in this paper we demonstrate that a pulsed bias applied to the gate contact facilitates the gas interaction with the nanotubes, either reducing the absorption times or accelerating the desorption times, thus providing a fast acceleration and a dramatic improvement of the time dependent behaviour of the device

  9. Hydraulic Behavior and Chemical Characterization of Lapilli as Material for Natural Filtering of Slurry

    Directory of Open Access Journals (Sweden)

    Nereida Falcón-Cardona

    2015-06-01

    Full Text Available Livestock effluents are a beneficial nutrient supply for crops, whereby their use is critical to ensure the sustainability of the farms global management. However, they can cause serious ecological problems if misused, polluting soils and groundwater. Combining “soft technology” and local materials is a low cost solution in terms of finance and energy. The REAGUA project (REuso AGUA, Water reuse in Spanish analyzes the possibility of using “picon” (lapilli as a material for the treatment of liquid manure from ruminants, for later use in subsurface drip irrigation system to produce forage and biofuels, in which the soil acts as a subsequent advanced treatment. A three-phase system, in which the effluent was poured with a vertical subsurface flow in an unsaturated medium, is designed. In order to determine the management conditions that optimize the filter, it was necessary to characterize the hydraulic behavior of lapilli and its ability to remove substances. Using three lapilli-filled columns, unsaturated flux, and a ruminant effluent, the reduction of chemical oxygen demand (COD, biochemical oxygen demand after 5 days (BOD5 and ammonia, phosphorus and suspension solids (SS obtained was over 80%, 90%, and 95% respectively, assumable values for irrigation.

  10. Naturally Occurring Radioactive Material (NORM) in oil and gas industry

    International Nuclear Information System (INIS)

    Algalhoud, K. A.; AL-Fawaris, B. H.

    2008-01-01

    Oil and gas industry in the Great Jamahiriya is one of those industries that were accompanied with generation of some solid and liquid waste, which associated with risks that might lead to harmful effects to the man and the environment. Among those risks the continuous increase of radioactivity levels above natural radioactive background around operating oil fields, due to accumulation of solid and liquid radioactive scales and sludge as well as contaminated produced water that contain some naturally occurring radioactive materials ( NORM/TE-NORM). Emergence of NORM/TE-NORM in studied area noticed when the natural background radioactivity levels increased around some oil fields during end of 1998, For this study, six field trips and a radiation surveys were conducted within selected oil fields that managed and owned by six operating companies under NOC, in order to determine the effective radiation dose in contrast with dose limits set by International Counsel of Radiation Protection(ICRP),and International Atomic Energy Agency(IAEA) Additionally solid samples in a form of scales and liquid samples were also taken for further investigation and laboratory analysis. Results were tabulated and discussed within the text .However to be more specific results pointed out to the fact that existence of NORM/TE-NORM as 226 Ra, 228 Ra, within some scale samples from surface equipment in some oil and gas fields in Jamahiriya were significant. As a result of that, the workers might receive moderate radiation dose less than the limits set by ICRP,IAEA, and other parts of the world producing oil and gas. Results predicted that within the investigated oil fields if workers receive proper training about handling of NORM/TE-NORM and follow the operating procedure of clean ups, work over and maintenance plane carefully, their committed exposure from NORM/TE-NORM will be less than the set limits by ICRP and IAEA. In a trend to estimate internal radiation dose as a result of possible

  11. [Performance of cross flow trickling filter for H2S gas treatment].

    Science.gov (United States)

    Liu, Chun-Jing; Li, Jian; Liu, Jia; Peng, Shu-Jing; Li, Chao; Chen, Ying; He, Hong

    2012-09-01

    A grading cross bio-trickling filter was designed for H2S removal. Mixed microorganisms domesticated from the former experiment were immobilized to start up the trickling filter. Removal performances during starting up period and different loadings were investigated. Results showed that the immobilization of the trickling filter was completed within 3 d. The removal efficiency was higher than 99% when the inlet concentration was in the range of 110 mg x m(-3) to 230 mg x m(-3) (EBRT 30 s). At low inlet loadings, the front part of the trickling filter played a major role in H2S degradation, accounting for about 85%. Microbial diversity and population of the front part were superior to the tail one. At higher loadings, microbial diversity and population of the tail part increased significantly, from 4.5 x 10(7) cells x g (-1) to 5.17 x 10(8) cells x g(-1), and the elimination capacity was also improved,from 0.04 g x h(-1) to 0.67 g x h(-1). Rod-shaped bacteria were the dominant microorganisms on the surface of ceramics in the steady state as observed by SEM. The surfaces of ceramics were covered by a lot of microbial metabolites at high loadings. Analysis of the metabolites indicated that the majority of H2S was oxidized to sulfur and only a small portion was converted to sulfate.

  12. Engineering a new material for hot gas cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Wheelock, T.D.; Doraiswamy, L.K.; Constant, K.

    2000-03-01

    The engineering development of a promising sorbent for desulfurizing hot coal gas was initiated and preliminary results are presented. The sorbent is calcium-based and is designed to be regenerated and reused repeatedly. It is prepared by pelletizing powdered limestone in a rotating drum pelletizer followed by the application of a coating which becomes a strong, porous shell upon further treatment. The resulting spherical pellets combine the high reactivity of lime with the strength of an inert protective shell. Preliminary work indicates that a satisfactory shell material is comprised of a mixture of ultrafine alumina powder, somewhat coarser alumina particles, and pulverized limestone which upon heating to 1,373 K (1,100 C) becomes a coherent solid through the mechanism of particle sintering. Several batches of core-in-shell pellets were prepared and tested with encouraging results.

  13. Interaction of some sterilizing filter materials with [111In]In-labelled monoclonal antibodies

    International Nuclear Information System (INIS)

    Reilly, R.M.

    1990-01-01

    The retention of [ 111 In]In-labelled monoclonal antibodies by four different types of sterilizing filters was investigated. Minimal retention was observed with filters composed of polysulfone or polyvinylidene difluoride. When the radio-labelled antibody was formulated in normal saline, there was almost complete retention on filters composed of cellulose acetate/nitrate. This phenomenon could be effectively overcome by including 1% human serum albumin in the formulation vehicle. (author)

  14. Simulating gas-liquid mass transfer in a spin filter bioreactor

    OpenAIRE

    Niño López, Lilibeth Caridad; Gelves Zambrano, Germán Ricardo

    2015-01-01

    Computational fluid dynamics (CFD) and population balance model (PBM) model have been used to simulate hydrodynamics and mass transfer in a 0.014 m3 Spin Filter Bioreactor. The operating conditions chosen were defined by typical settings used for culturing plant cells. Turbulence, rotating flow, bubbles breakage and coalescence were simulated by using the k-e, MRF (Multiple Reference Frame) and PBM approaches, respectively. The numerical results from different operational conditions are compa...

  15. Determination of selected UV filters in indoor dust by matrix solid-phase dispersion and gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Negreira, N; Rodríguez, I; Rubí, E; Cela, R

    2009-07-31

    A simple, inexpensive sample preparation procedure, based on the matrix solid-phase dispersion (MSPD) technique, for the determination of six UV filters: 2-ethylhexyl salicylate (EHS), 3,3,5-trimethylcyclohexyl salicylate (Homosalate, HMS), 3-(4-methylbenzylidene) camphor (4-MBC), isoamyl-p-methoxycinnamate (IAMC), 2-ethylhexyl-p-methoxycinnamate (EHMC) and octocrylene (OCR), in dust from indoor environments is presented and the influence of several operational parameters on the extraction performance discussed. Under the final working conditions, sieved samples (0.5 g) were mixed with the same amount of anhydrous sodium sulphate and dispersed with 2 g of octadecyl bonded silica (C18) in a mortar with a pestle. This blend was transferred to a polypropylene solid-phase extraction cartridge containing 2 g of activated silica, as the clean-up co-sorbent. The cartridge was first rinsed with 5 mL of n-hexane and the analytes were then recovered with 4 mL of acetonitrile. This extract was adjusted to 1 mL, filtered and the compounds were determined by gas chromatography combined with tandem mass spectrometry (GC-MS/MS). Recoveries for samples spiked at two different concentrations ranged between 77% and 99%, and the limits of quantification (LOQs) of the method between 10 and 40 ng g(-1). Analysis of settled dust from different indoor areas, including private flats, public buildings and vehicle cabins, showed that EHMC and OCR were ubiquitous in this matrix, with maximum concentrations of 15 and 41 microg g(-1), respectively. Both UV filters were also quantified in dust reference material SRM 2585 for first time. EHS, 4-MBC and IAMC were detected in some of the analyzed samples, although at lower concentrations than EHMC and OCR.

  16. Investigation of Atmospheric Pressure Plasma Discharge and Its Application to Surface Modification of Blood-Filtering Material

    Science.gov (United States)

    Tang, Xiaoliang; Feng, Xianping; Qiu, Gao; Yan, Yonghui; Shi, Yuncheng

    2004-10-01

    Melt-blown polybutylene terephthalate (PBT) nonwoven materials treated by using plasma is regarded as one of the excellent materials to filter white blood cells (WBC) from blood. In this paper, dielectric barrier discharge (DBD) plasma source at an improved quasi-stable atmospheric pressure is achieved when discharge voltage, discharge current, and gap between the electrodes are carefully controlled. This plasma source has been used to modify the surface of PBT melt-blown nonwoven materials. Experimental results indicate that both the wettability and permeation of treated PBT melt-blown nonwoven materials are greatly improved.

  17. Investigation of atmospheric pressure plasma discharge and its application to surface modification of blood-filtering material

    International Nuclear Information System (INIS)

    Tang Xiaoliang; Qiu Gao; Yan Yonghui; Shi Yuncheng

    2004-01-01

    Melt-blown polybutylene terephthalate (PBT) nonwoven materials treated by using plasma is regarded as one of the excellent materials to filter white blood cells (WBC) from blood. In this paper, dielectric barrier discharge (DBD) plasma source at an improved quasi-stable atmospheric pressure is achieved when discharge voltage, discharge current, and gap between the electrodes are carefully controlled. This plasma source has been used to modify the surface of PBT melt-blown nonwoven materials. Experimental results indicate that both the wettability and permeation of treated PBT melt-blown nonwoven materials are greatly improved. (authors)

  18. Mechanical properties of chemically bonded sand core materials dipped in sol-gel coating impregnated with filter

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2012-01-01

    -displacement curve from which the mechanical properties of the materials are deduced. The fracture surfaces were examined using a stereomicroscope and a scanning electron microscope. From the results, the strengths of the core materials were slightly reduced by the coating in tensile and flexural modes, while......A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force...

  19. Research on insulating material affecting the property of gas ionization chamber

    International Nuclear Information System (INIS)

    Wang Liqiang; Wang Zhentao; Zheng Jian

    2014-01-01

    The insulating material in ionization chamber affects the internal gas pressure and ionic pulse shape in the research process of the ion drift velocity in high pressure gas ionization chamber. It will affect the ion drift velocity measurement. It is required to isolate by insulating material between electrode to electrode and between electrodes to the shell of gas ionization chamber. Insulating material in gas ionization chamber is indispensable. Therefore it needs to carefully study the insulating material affecting the performance of gas ionization chamber. First of all, it is found that Teflon can slowly adsorb the working gas in ionization chamber, and the gas pressure in it is reduced when we measure the sensitivity of gas ionization chamber over time. It is verified by experiment that insulating materials absorbing and releasing gas is dynamically reversible process. Then the adsorbing gas property of 95% aluminium oxide ceramic and Teflon is studied through experimental comparision. Gas adsorption equilibrium time of ceramic material is faster, generally it is about a few hours, and the gas adsorption capacity is relatively less. Gas adsorption equilibrium time of Teflon is slower, it is about a few days, and the gas adsorption capacity is relatively more. It is found that Teflon will release part of the gas at higher temperature through experimental research on the influence of Teflon adsorbing gas. Finally it is studied that the distribution of insulation in ionization chamber affects the time response speed of ionization chamber by measuring the signal pulse shape of ionization chamber under the pulse X-ray. Through these experimental research, it is presented that it need to pay attention to select insulation material and to design the internal structure and arrangement of insulating material when we design gas ionization chamber. (authors)

  20. Analysis of pharmaceutical and other organic wastewater compounds in filtered and unfiltered water samples by gas chromatography/mass spectrometry

    Science.gov (United States)

    Zaugg, Steven D.; Phillips, Patrick J.; Smith, Steven G.

    2014-01-01

    Research on the effects of exposure of stream biota to complex mixtures of pharmaceuticals and other organic compounds associated with wastewater requires the development of additional analytical capabilities for these compounds in water samples. Two gas chromatography/mass spectrometry (GC/MS) analytical methods used at the U.S. Geological Survey National Water Quality Laboratory (NWQL) to analyze organic compounds associated with wastewater were adapted to include additional pharmaceutical and other organic compounds beginning in 2009. This report includes a description of method performance for 42 additional compounds for the filtered-water method (hereafter referred to as the filtered method) and 46 additional compounds for the unfiltered-water method (hereafter referred to as the unfiltered method). The method performance for the filtered method described in this report has been published for seven of these compounds; however, the addition of several other compounds to the filtered method and the addition of the compounds to the unfiltered method resulted in the need to document method performance for both of the modified methods. Most of these added compounds are pharmaceuticals or pharmaceutical degradates, although two nonpharmaceutical compounds are included in each method. The main pharmaceutical compound classes added to the two modified methods include muscle relaxants, opiates, analgesics, and sedatives. These types of compounds were added to the original filtered and unfiltered methods largely in response to the tentative identification of a wide range of pharmaceutical and other organic compounds in samples collected from wastewater-treatment plants. Filtered water samples are extracted by vacuum through disposable solid-phase cartridges that contain modified polystyrene-divinylbenzene resin. Unfiltered samples are extracted by using continuous liquid-liquid extraction with dichloromethane. The compounds of interest for filtered and unfiltered sample

  1. Variations on the Kalman filter for enhanced performance monitoring of gas turbine engines

    OpenAIRE

    Borguet, Sébastien

    2012-01-01

    Since their advent in the 1940's, gas turbines have been used in a wide range of land, sea and air applications due to their high power density and reliability. In today's competitive market, gas turbine operators need to optimise the dispatch availability (it i.e., minimise operational issues such as aborted take-offs or in-flight shutdowns) as well as the direct operating costs of their assets. Besides improvements in the design and manufacture processes, proactive maintenance pract...

  2. Computational study of porous materials for gas separations

    Science.gov (United States)

    Lin, Li-Chiang

    Nanoporous materials such as zeolites, zeolitic imidazolate frameworks (ZIFs), and metal-organic frameworks (MOFs) are used as sorbents or membranes for gas separations such as carbon dioxide capture, methane capture, paraffin/olefin separations, etc. The total number of nanoporous materials is large; by changing the chemical composition and/or the structural topologies we can envision an infinite number of possible materials. In practice one can synthesize and fully characterize only a small subset of these materials. Hence, computational study can play an important role by utilizing various techniques in molecular simulations as well as quantum chemical calculations to accelerate the search for optimal materials for various energy-related separations. Accordingly, several large-scale computational screenings of over one hundred thousand materials have been performed to find the best materials for carbon capture, methane capture, and ethane/ethene separation. These large-scale screenings identified a number of promising materials for different applications. Moreover, the analysis of these screening studies yielded insights into those molecular characteristics of a material that contribute to an optimal performance for a given application. These insights provided useful guidelines for future structural design and synthesis. For instance, one of the screening studies indicated that some zeolite structures can potentially reduce the energy penalty imposed on a coal-fired power plant by as much as 35% compared to the near-term MEA technology for carbon capture application. These optimal structures have topologies with a maximized density of pockets and they capture and release CO2 molecules with an optimal energy. These screening studies also pointed to some systems, for which conventional force fields were unable to make sufficiently reliable predictions of the adsorption isotherms of different gasses, e.g., CO2 in MOFs with open-metal sites. For these systems, we

  3. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    Science.gov (United States)

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  4. Process and apparatus for sampling gas-entrained particulate materials

    Energy Technology Data Exchange (ETDEWEB)

    Giddens, A.B.

    1991-09-24

    This patent describes an apparatus for sampling a stream of gas-entrained particulate matter. It comprises a sample receiver; a sampling tube having an inlet exposed to the stream of gas-entrained particulate matter and extending to an outlet in the sample receiver; a source of pressurized gas; gas injection port between the inlet and outlet which introduces the pressurized gas into the sample tube and directs the gas toward the sample receiver, the introduction of the gas acting to decrease the gas pressure present at the inlet of the sampling tube to induce the particulate matter to be substantially continuously drawn into the tube and deposited into the receiver; means for adjusting the rate at which the particulate matter is drawn into the sampling tube; and vent means for venting gas introduced into the receiver while retaining the particulate matter in the receiver.

  5. Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

    Energy Technology Data Exchange (ETDEWEB)

    Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

    2005-11-01

    A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

  6. A study of materials used for muon chambers at the CMS Experiment at the LHC: interaction with gas, new materials and new technologies for detector upgrade

    CERN Document Server

    Colafranceschi, Stefano

    This thesis lays its foundation in both technological and theoretical stud- ies carried out between several aspects of applied engineering. There are several original contributions within the material science. The first is the detailed studies about the CMS RPC gas filters, which required an intense 3 years data-taking and ended up with a complete characterization of purifier materials. On top of this a stable ad − hoc setup (GGM) has been devel- oped for the CMS Experiment in order to monitor the RPC muon chamber working point. Finally a complete new detector has been designed, build and tested using new technology and new electronics establishing the word’s record in size for this kind of detector, which is taken under consideration for the upgrade of the high-η region of the CMS Experiment.

  7. Ferrule material dependence of axial force sensitivity of a tunable optical frequency filter made of fiber fabry-perot etalon

    Science.gov (United States)

    Tateda, Mitsuhiro; Dong, Mohan

    2011-01-01

    Fiber Fabry-Perot etalon (FFPE) is a device designed as an optical frequency filter, and its transmission characteristics change depending on force and temperature. In this paper, axial force sensitivity of three types of FFPE is investigated, whose ferrule materials have different Young's modulus. Force sensitivity of an FFPE whose ferrule material is borosilicate glass was found to be 2.7 GHz/N, while those of FFPEs with glass ceramics and zirconium oxide ferrules were 1.7 and 0.8 GHz/N, respectively. Thus, the theoretical expectation is confirmed experimentally that the axial force sensitivity of FFPE is inversely proportional to Young's modulus of the ferrule material.

  8. Comparison of eye-safe solid state laser DIAL with passive gas filter correlation measurements from aircraft and spacecraft

    Science.gov (United States)

    Hess, Robert V.; Staton, Leo D.; Wallio, H. Andrew; Wang, Liang-Guo

    1992-01-01

    Differential Absorption Lidar (DIAL) using solid state Ti:sapphire lasers finds current application in the NASA/LASE Project for H2O vapor measurements in the approximately = 0.820 micron region for the lower and mid-troposphere and in potential future applications in planned measurements of the approximately = 0.940 micron region where both strong and weak absorption lines enables measurements throughout the troposphere and lower stratosphere. The challenge exists to perform measurements in the eye-safe greater than 1.5 micron region. A comparison between DIAL and passive Gas Filter Correlation Radiometer (GFCR) measurements is made. The essence of the differences in signal to noise ratio for DIAL and passive GFCR measurements is examined. The state of the art of lasers and optical parametric oscillators (OPO's) is discussed.

  9. Impact on vehicle fuel economy of the soot loading on diesel particulate filters made of different substrate materials

    International Nuclear Information System (INIS)

    Millo, Federico; Andreata, Maurizio; Rafigh, Mahsa; Mercuri, Davide; Pozzi, Chiara

    2015-01-01

    Wall flow DPFs (Diesel Particulate Filters) are nowadays universally adopted for all European passenger cars. Since the properties of the filter substrate material play a fundamental role in determining the optimal soot loading level to be reached before DPF regeneration, three different filter material substrates (Silicon Carbide, Aluminum Titanate and Cordierite) were investigated in this work, considering different driving conditions, after treatment layouts and regeneration strategies. In the first step of the research, an experimental investigation on the three different substrates over the NEDC (New European Driving Cycle) was performed. The data obtained from experiments were then used for the calibration and the validation of a one dimensional fluid-dynamic engine and after treatment simulation model. Afterward, the model was used to predict the vehicle fuel consumption increments as a function of the exhaust back pressure due to the soot loading for different driving cycles. The results showed that appreciable fuel consumption increments could be noticed only in particular driving conditions, and, as a consequence, in most of the cases the optimal filter regeneration strategy corresponds to reach the highest soot loading that still ensures the component safety even in case of uncontrolled regeneration events. - Highlights: • Three different substrate materials for a Diesel Particulate Filter were investigated. • Fuel consumption increases due to DPF soot loading were generally not appreciable. • Optimal soot loading before regeneration was the highest safeguarding DPF integrity. • SiC substrate showed highest soot load limit and lowest fuel consumption penalties. • AT and Cd substrate properties lead to lower soot load limits than SiC

  10. Fe-Ti/Fe (II)-loading on ceramic filter materials for residual chlorine removal from drinking water.

    Science.gov (United States)

    Man, Kexin; Zhu, Qi; Guo, Zheng; Xing, Zipeng

    2018-06-01

    Ceramic filter material was prepared with silicon dioxide (SiO 2 ), which was recovered from red mud and then modified with Fe (II) and Fe-Ti bimetal oxide. Ceramic filter material can be used to reduce the content of residual chlorine from drinking water. The results showed that after a two-step leaching process with 3 M hydrochloric acid (HCl) and 90% sulfuric acid (H 2 SO 4 ), the recovery of SiO 2 exceeded 80%. Fe (II)/Fe-Ti bimetal oxide, with a high adsorption capacity of residual chlorine, was prepared using a 3:1 M ratio of Fe/Ti and a concentration of 0.4 mol/L Fe 2+ . According to the zeta-potential, scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, Fe (II) and Fe-Ti bimetal oxide altered the zeta potential and structural properties of the ceramic filter material. There was a synergistic interaction between Fe and Ti in which FeOTi bonds on the material surface and hydroxyl groups provided the active sites for adsorption. Through a redox reaction, Fe (II) transfers hypochlorite to chloride, and FeOTiCl bonds were formed after adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A Dual-Line Detection Rayleigh Scattering Diagnostic Technique for the Combustion of Hydrocarbon Fuels and Filtered UV Rayleigh Scattering for Gas Velocity Measurements

    Science.gov (United States)

    Otugen, M. Volkan

    1997-01-01

    Non-intrusive techniques for the dynamic measurement of gas flow properties such as density, temperature and velocity, are needed in the research leading to the development of new generation high-speed aircraft. Accurate velocity, temperature and density data obtained in ground testing and in-flight measurements can help understand the flow physics leading to transition and turbulence in supersonic, high-altitude flight. Such non-intrusive measurement techniques can also be used to study combustion processes of hydrocarbon fuels in aircraft engines. Reliable, time and space resolved temperature measurements in various combustor configurations can lead to a better understanding of high temperature chemical reaction dynamics thus leading to improved modeling and better prediction of such flows. In view of this, a research program was initiated at Polytechnic University's Aerodynamics Laboratory with support from NASA Lewis Research Center through grants NAG3-1301 and NAG3-1690. The overall objective of this program has been to develop laser-based, non-contact, space- and time-resolved temperature and velocity measurement techniques. In the initial phase of the program a ND:YAG laser-based dual-line Rayleigh scattering technique was developed and tested for the accurate measurement of gas temperature in the presence of background laser glare. Effort was next directed towards the development of a filtered, spectrally-resolved Rayleigh/Mie scattering technique with the objective of developing an interferometric method for time-frozen velocity measurements in high-speed flows utilizing the uv line of an ND:YAG laser and an appropriate molecular absorption filter. This effort included both a search for an appropriate filter material for the 266 nm laser line and the development and testing of several image processing techniques for the fast processing of Fabry-Perot images for velocity and temperature information. Finally, work was also carried out for the development of

  12. Effect of Machine Smoking Intensity and Filter Ventilation Level on Gas-Phase Temperature Distribution Inside a Burning Cigarette

    Directory of Open Access Journals (Sweden)

    Li Bin

    2015-01-01

    Full Text Available Accurate measurements of cigarette coal temperature are essential to understand the thermophysical and thermo-chemical processes in a burning cigarette. The last system-atic studies of cigarette burning temperature measurements were conducted in the mid-1970s. Contemporary cigarettes have evolved in design features and multiple standard machine-smoking regimes have also become available, hence there is a need to re-examine cigarette combustion. In this work, we performed systematic measurements on gas-phase temperature of burning cigarettes using an improved fine thermocouple technique. The effects of machine-smoking parameters (puff volume and puff duration and filter ventilation levels were studied with high spatial and time resolutions during single puffs. The experimental results were presented in a number of differ-ent ways to highlight the dynamic and complex thermal processes inside a burning coal. A mathematical distribution equation was used to fit the experimental temperature data. Extracting and plotting the distribution parameters against puffing time revealed complex temperature profiles under different coal volume as a function of puffing intensities or filter ventilation levels. By dividing the coal volume prior to puffing into three temperature ranges (low-temperature from 200 to 400 °C, medium-temperature from 400 to 600 °C, and high-temperature volume above 600 °C by following their development at different smoking regimes, useful mechanistic details were obtained. Finally, direct visualisation of the gas-phase temperature through detailed temperature and temperature gradient contour maps provided further insights into the complex thermo-physics of the burning coal. [Beitr. Tabakforsch. Int. 26 (2014 191-203

  13. Laboratory Feasibility Evaluation of a New Modified Iron Product for Use as a Filter Material to Treat Agricultural Drainage Waters

    Science.gov (United States)

    Allred, B. J.

    2010-12-01

    The removal of excess soil water with a subsurface drainage pipe system is a common agricultural practice employed to improve crop yields, especially in the Midwest U.S. However, fertilizer nutrients (nitrate and phosphate) and pesticides applied on farm fields will frequently leach downwards through the soil profile to be intercepted by the buried drainage pipes and then discharged with drainage water into neighboring streams and lakes, oftentimes producing adverse environmental impacts on local, regional, and national scales. On-site drainage water filter treatment systems can potentially be employed to prevent the release of agricultural nutrients/pesticides into adjacent waterways. A recently developed modified iron product may have promise as a filter material used within this type of drainage water treatment system. Therefore, a laboratory study was initiated to directly evaluate the feasibility of employing this new modified iron product as a filter material to treat drainage waters. Laboratory research included saturated falling-head hydraulic conductivity tests, contaminant (nutrient/pesticide) removal batch tests, and saturated solute transport column experiments. The saturated falling-head hydraulic conductivity tests indicate that the unaltered modified iron product by itself has a high enough hydraulic conductivity (> 1.0 x 10-3 cm/s) to normally allow sufficient water flow rates that are needed to make this material hydraulically practical for use in drainage water filter treatment systems. Modified iron hydraulic conductivity can be improved substantially (> 1 x 10-2 cm/s) by using only the portion of this material that is retained on a 100 mesh sieve (particle size > 0.15 mm). Batch test results carried out with spiked drainage water and either unaltered or 100 mesh sieved modified iron showed nitrate reductions of greater than 30% and 100% removal of the pesticide, atrazine. Saturated solute transport columns tests with spiked drainage water

  14. Submicron and Nanoparticulate Matter Removal by HEPA-Rated Media Filters and Packed Beds of Granular Materials

    Science.gov (United States)

    Perry, J. L.; Agui, J. H.; Vijayakimar, R

    2016-01-01

    Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.

  15. Storage of natural gas in adsorbent materials; Armazenamento de gas natural em materiais adsorventes

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose R.; Rojas, Leopoldo O.A.; Silva, Claudio F. da; Dantas, Jose H.A. [Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil); Moraes, Caetano [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil); Freire, Luiz G. de M. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This paper presents a review of our research work in methane storage with adsorbents. The performance of three overseas (CA1, CA2, CA3) and one local-made (CAN) activated carbons were evaluated as natural gas adsorbent materials for storage in automotive reservoirs. A detailed analysis of the surface properties of these materials was also made so to correlate them with the storage capacity, in volume basis. The effects of micropore volume, pore size distribution, specific area and bulk density were considered in the analysis of the results. The storage tests showed that CA1 activate carbon presented the highest storage capacity (84,2 V/V) due for its very high specific area and micropore volume (95 %). CA2's activated carbon was the second best with 75,7 V/V of storage capacity, CA3 and CAN carbons presenting stored capacities of 55,4 V/V and 53,2 V/V respectively. (author)

  16. Experimental investigation of material chemical effects on emergency core cooling pump suction filter performance after loss of coolant accident

    International Nuclear Information System (INIS)

    Park, Jong Woon; Park, Byung Gi; Kim, Chang Hyun

    2009-01-01

    Integral tests of head loss through an emergency core cooling filter screen are conducted, simulating reactor building environmental conditions for 30 days after a loss of coolant accident. A test rig with five individual loops each of whose chamber is established to test chemical product formation and measure the head loss through a sample filter. The screen area at each chamber and the amounts of reactor building materials are scaled down according to specific plant condition. A series of tests have been performed to investigate the effects of calcium-silicate, reactor building spray, existence of calcium-silicate with tri-sodium phosphate (TSP), and composition of materials. The results showed that head loss across the chemical bed with even a small amount of calcium-silicate insulation instantaneously increased as soon as TSP was added to the test solution. Also, the head loss across the filter screen is strongly affected by spray duration and the head loss increase is rapid at the early stage, because of high dissolution and precipitation of aluminum and zinc. After passivation of aluminum and zinc by corrosion, the head loss increase is much slowed down and is mainly induced by materials such as calcium, silicon, and magnesium leached from NUKON TM and concrete. Furthermore, it is newly found that the spay buffer agent, tri-sodium phosphate, to form protective coating on the aluminum surface and reduce aluminum leaching is not effective for a large amount of aluminum and a long spray.

  17. Evaluation of air samplers and filter materials for collection and recovery of airborne norovirus.

    Science.gov (United States)

    Uhrbrand, K; Koponen, I K; Schultz, A C; Madsen, A M

    2018-04-01

    The aim of this study was to identify the most efficient sampling method for quantitative PCR-based detection of airborne human norovirus (NoV). A comparative experiment was conducted in an aerosol chamber using aerosolized murine norovirus (MNV) as a surrogate for NoV. Sampling was performed using a nylon (NY) filter in conjunction with four kinds of personal samplers: Gesamtstaubprobenahme sampler (GSP), Triplex-cyclone sampler (TC), 3-piece closed-faced Millipore cassette (3P) and a 2-stage NIOSH cyclone sampler (NIO). In addition, sampling was performed using the GSP sampler with four different filter types: NY, polycarbonate (PC), polytetrafluoroethylene (PTFE) and gelatine (GEL). The sampling efficiency of MNV was significantly influenced by both sampler and filter type. The GSP sampler was found to give significantly (P GSP compared with TC, albeit not significantly. Finally, recovery of aerosolized MNV was significantly (P GSP sampler combined with a nylon filter was found to be the best method for personal filter-based sampling of airborne NoV. The identification of a suitable NoV air sampler is an important step towards studying the association between exposure to airborne NoV and infection. © 2017 The Society for Applied Microbiology.

  18. High Temperature Gas Cooled Reactor Fuels and Materials

    International Nuclear Information System (INIS)

    2010-03-01

    At the third annual meeting of the technical working group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), held in Vienna, in 2004, it was suggested 'to develop manuals/handbooks and best practice documents for use in training and education in coated particle fuel technology' in the IAEA's Programme for the year 2006-2007. In the context of supporting interested Member States, the activity to develop a handbook for use in the 'education and training' of a new generation of scientists and engineers on coated particle fuel technology was undertaken. To make aware of the role of nuclear science education and training in all Member States to enhance their capacity to develop innovative technologies for sustainable nuclear energy is of paramount importance to the IAEA Significant efforts are underway in several Member States to develop high temperature gas cooled reactors (HTGR) based on either pebble bed or prismatic designs. All these reactors are primarily fuelled by TRISO (tri iso-structural) coated particles. The aim however is to build future nuclear fuel cycles in concert with the aim of the Generation IV International Forum and includes nuclear reactor applications for process heat, hydrogen production and electricity generation. Moreover, developmental work is ongoing and focuses on the burning of weapon-grade plutonium including civil plutonium and other transuranic elements using the 'deep-burn concept' or 'inert matrix fuels', especially in HTGR systems in the form of coated particle fuels. The document will serve as the primary resource materials for 'education and training' in the area of advanced fuels forming the building blocks for future development in the interested Member States. This document broadly covers several aspects of coated particle fuel technology, namely: manufacture of coated particles, compacts and elements; design-basis; quality assurance/quality control and characterization techniques; fuel irradiations; fuel

  19. Modification of gas separation membrane materials by antiplasticization

    Science.gov (United States)

    Ruiz-Trevino, Francisco Alberto

    The effects of adding low molecular weight diluents or additives on gas permeation properties of polysulfone, PSF, and substituted, high free volume polysulfones and polyarylates were analyzed. Such diluents to glassy polymers lead to the phenomenon called antiplasticization, i.e. they increase modulus and retard certain segmental motions. Additives based on naphthalene, bisphenol A and fluorene structures were incorporated into PSF. The incorporation of low concentrations of such additives increases the selectivity and reduces permeability of PSF. The largest increases in selectivity are observed for the additives that cause the largest reductions in the glass transition temperature and fractional free volume; typically, these additives have low glass transition temperature and are planar molecules containing polar or small asymmetric protuberances. The productivity-selectivity balance response of the modified PSF membranes reveals that the naphthalene-based additives containing asymmetric groups of atoms leads to membranes with higher selectivity and with only small losses in permeability relative to the unmodified PSF membranes. The permselectivity properties of tetramethylhexafluoro polysulfone, TMHFPSF, and tetramethylhexafluoro bisphenol A t-butyl isophthalate, TMHFBPA-tBIA, modified with a low molecular weight glassy additive Kenflex A, KXA, were compared to the permselectivity properties shown by the base, unsubstituted polysulfone, PSF, and bisphenol A t-butyl isophthalate, BPA-tBIA. The addition of modest amounts of KXA (ca 20 wt%) into TMHFPSF or TMHFBPA-tBIA, leads to materials whose permeability/selectivity combination is better than that of the PSF or BPA-tBIA materials. The polymer TMHFPSF responds more beneficially to the incorporation of KXA than TMHFBPA-tBIA. A mathematical model to describe the effect of incorporating diluents on the specific volume of polymers is presented. Comparisons of the predicted to the experimental specific volume reveals

  20. Energy-filtered environmental transmission electron microscopy for the assessment of solid-gas reactions at elevated temperature: NiO/YSZ-H2 as a case study

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2016-01-01

    A novel approach, which is based on the analysis of sequences of images recorded using energy-filtered transmission electron microscopy and can be used to assess the reaction of a solid with a gas at elevated temperature, is illustrated for the reduction of a NiO/ceramic solid oxide fuel cell anode...

  1. Test methodology for elemental sulfur resistant advanced materials for oil and gas field equipment

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, G. [Verein Deutscher Eisenhuettenleute, Duesseldorf (Germany); Bruckhoff, W. [BEB Erdgas und Erdoel GmbH, Hannover (Germany); Koehler, M. [Krupp-VDM AG, Werdohl (Germany); Schlerkmann, H. [Mannesmann Forschungsinstitut, Duisburg (Germany); Schmitt, G. [Iserlohn Polytechnic (Germany). Lab. for Corrosion Protection

    1995-10-01

    The great variety of methodologies for testing the performance of advanced materials for resistance to elemental sulfur in oil and gas industry prompted the Technical Committee for Corrosion of the German Iron and Steel Institute (VDEh) to define recommended test procedures. These procedures have already found wide acceptance in the German materials and oil and gas industry.

  2. Simulating gas-liquid mass transfer in a spin filter bioreactor

    Directory of Open Access Journals (Sweden)

    Lilibeth Caridad Niño-López

    2015-01-01

    Full Text Available Mediante dinámica de fluidos computacional (CFD y métodos de balance poblacional (PBM se simuló la hidrodinámica líquido-gaseosa y la transferencia de masa en un biorreactor de 0,014 m 3 operado con un Spin Filter para cultivos en modo perfusión. Las condiciones de operación fueron definidas con base en los requerimientos para células vegetales en suspensión. Los fenómenos de turbulencia, flujo giratorio, ruptura y coalescencia de burbujas fueron simulados utilizando los modelos k-e, MRF (Multiple Reference Frame y PBM. Se logra una predicción aceptable mediante la comparación entre los resultados numéricos de las diferentes condiciones de operación y los datos experimentales de los valores del coeficiente de transferencia de masa Con la motivación de estos resultados simulados y validados experimentalmente, se observa que CFD puede ser una herramienta muy prometedora, no sólo para la predicción de la hidrodinámica líquido-gaseosa, sino también para encontrar los requisitos de diseño que se deben implementar para optimizar un proceso biológico aerobio útil para aplicaciones de cultivos celulares de plantas, que son comúnmente caracterizados por el requerimiento de mantener condiciones relativamente altas tasa de transferencia de masa y simultáneamente evitar el daño celular debido a las condiciones hidrodinámicas.

  3. Klinkenberg effect in hydrodynamics of gas flow through anisotropic porous materials

    Directory of Open Access Journals (Sweden)

    Wałowski Grzegorz

    2017-01-01

    Full Text Available This study discusses results of experiments on hydrodynamic assessment of gas flow through backbone (skeletal porous materials with an anisotropic structure. The research was conducted upon materials of diversified petrographic characteristics, both natural origin (rocky, pumice and process materials (char and coke. The study was conducted for a variety of hydrodynamic conditions, using air, as well as for nitrogen and carbon dioxide. The basis for assessing hydrodynamics of gas flow through porous material was a gas stream that results from the pressure forcing such flow. The results of measurements indicate a clear impact of the type of material on the gas permeability, and additionally – as a result of their anisotropic internal structure – to a significant effect of the flow direction on the value of gas stream.

  4. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    Science.gov (United States)

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  5. Batch test screening of industrial product/byproduct filter materials for agricultural drainage water treatment

    Science.gov (United States)

    Filter treatment may be a viable means for removing the nitrate, phosphate, and pesticides discharged with agricultural drainage waters that cause adverse environmental impacts within the U.S. on local, regional, and national scales. Laboratory batch test screening for agricultural drainage water ...

  6. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    International Nuclear Information System (INIS)

    Grover, S.B.

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  7. Blunt needle revision with viscoelastic materials via the anterior chamber for early failed filtering blebs after trabeculectomy

    Directory of Open Access Journals (Sweden)

    Yamagami H

    2012-06-01

    Full Text Available Nozomi Kinoshita, Ayumi Ota, Fumihiko Toyoda, Hiroko Yamagami, Akihiro KakehashiDepartment of Ophthalmology, Saitama Medical Center, Jichi Medical University, Saitama, JapanPurpose: To report a new technique of blunt needle revision with viscoelastic materials via the anterior chamber for the treatment of early failed filtering blebs and elevated intraocular pressure after trabeculectomy, in which digital ocular massage and laser suture lysis have been ineffective.Methods: A 27-gauge blunt needle attached to a syringe containing viscoelastic material was inserted into the anterior chamber from the inferior paracentesis. The needle tip was inserted into the subscleral flap space from the filtering fistula at the anterior chamber side, and the scleral flap was lifted bluntly. The needle tip was then inserted into the subconjunctival space where the viscoelastic agent was injected and the adhesion between the sclera and conjunctiva was separated bluntly. Blunt needle revision via the anterior chamber was performed 14 times in six eyes of six patients at Saitama Medical Center, Jichi Medical University from January 2007 to May 2009. All procedures were performed within 1 month after trabeculectomy.Results: The intraocular pressure remained 21 mmHg or lower for more than 6 months in three of six eyes. Slight bleeding from the iris occurred in one of the 14 procedures, and hypotony (intraocular pressure below 5 mmHg occurred in one of the 14 procedures. No serious complications developed.Conclusion: Blunt needle revision via the anterior chamber for early failed filtering blebs is a new, simple, and safe procedure.Keywords: glaucoma, trabeculectomy, filtering bleb, needle revision, blunt needle

  8. Mechanical properties of structural materials for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Kim, D. W.; Park, J. Y.; Kim, W. G.; Yoon, J. H.

    2011-08-01

    Structural materials for high temperature gas cooled reactor should have good properties such as mechanical properties (tensile, creep, fatigue, creep-fatigue), microstructural stability, interaction between metal and gas, friction and wear, hydrogen and tritium permeation, irradiation behavior, corrosion by impurity in He. Mechanical properties of major structural materials, such as pressure vessel, heat exchanger, control rod, were investigated. Effect of He and irradiation on these structural materials were investigated

  9. Assessment of porous material anisotropy and its effect on gas permeability

    Science.gov (United States)

    Wałowski, Grzegorz

    2017-10-01

    The results of experimental research upon the assessment of porous material anisotropy and its effect on gas permeability of porous materials with respect to the gas flow. The conducted research applied to natural materials with an anisotropic gap-porous structure and - for comparative purposes - to model materials such as coke, pumice and polyamide agglomerates. The research was conducted with the use of a special test stand that enables measuring the gas permeability with respect to three flow orientations compared with symmetric cubic-shaped samples. The research results show an explicit impact of the flow direction on the permeability of materials porous, which results from their anisotropic internal structures. The anisotropy coefficient and permeability effective coefficient of such materials was determined and an experimental evaluation of the value of this coefficient was conducted with respect to the gas stream and the total pressure drop across the porous deposit. The process of gas permeability was considered in the category of hydrodynamics of gas flow through porous deposits. It is important to broaden the knowledge of gas hydrodynamics assessment in porous media so far unrecognised for the development of a new generation of clean energy sources, especially in the context of biogas or raw gas production.

  10. A preliminary investigation of sorbent-impregnated filters (SIFs) as an alternative to polyurethane foam (PUF) for sampling gas-phase semivolatile organic compounds in air

    Science.gov (United States)

    Galarneau, Elisabeth; Harner, Tom; Shoeib, Mahiba; Kozma, Melissa; Lane, Douglas

    Filters impregnated with XAD-4™ resin were used in a small series of high-volume air samples to compare their collection of gas-phase semivolatile toxic substances (organochlorine pesticides, OCs, and polycyclic aromatic hydrocarbons, PAHs) with that achieved by polyurethane foam (PUF). The advantages of the use of such sorbent-impregnated filters (SIFs) include a reduction in size which leads to numerous benefits. The latter include simplified sample handling, shipping and storage, and the potential for a decrease in solvent requirements for pre-cleaning and extraction. Furthermore, such SIFs could be used to measure combined particle/gas concentrations of target compounds. Gas concentrations derived from the SIFs in a filter-SIF-SIF-PUF configuration agreed well with values derived from the PUF plugs in a comparison filter-PUF configuration. The collection efficiency of a single SIF was ˜80% on average. As such, these SIFs are viewed as a promising alternative to PUF and further, more extensive study of their performance characteristics appears to be warranted.

  11. Tap water filters.

    Science.gov (United States)

    2003-02-01

    Moen PureTouch filters remove impurities from tap water without removing fluoride. These carbon block filters consist of finely powdered activated carbon that is combined with a plastic binder material and heated to form a hollow cylinder. The blocks are further wrapped with material to improve performance and reduce clogging. The filters are available with different filtering capabilities (Table 1). The filters mount in the faucet spout or under the sink.

  12. Thermally modulated nano-trampoline material as smart skin for gas molecular mass detection

    Science.gov (United States)

    Xia, Hua

    2012-06-01

    Conventional multi-component gas analysis is based either on laser spectroscopy, laser and photoacoustic absorption at specific wavelengths, or on gas chromatography by separating the components of a gas mixture primarily due to boiling point (or vapor pressure) differences. This paper will present a new gas molecular mass detection method based on thermally modulated nano-trampoline material as smart skin for gas molecular mass detection by fiber Bragg grating-based gas sensors. Such a nanomaterial and fiber Bragg grating integrated sensing device has been designed to be operated either at high-energy level (highly thermal strained status) or at low-energy level (low thermal strained status). Thermal energy absorption of gas molecular trigs the sensing device transition from high-thermal-energy status to low-thermal- energy status. Experiment has shown that thermal energy variation due to gas molecular thermal energy absorption is dependent upon the gas molecular mass, and can be detected by fiber Bragg resonant wavelength shift with a linear function from 17 kg/kmol to 32 kg/kmol and a sensitivity of 0.025 kg/kmol for a 5 micron-thick nano-trampoline structure and fiber Bragg grating integrated gas sensing device. The laboratory and field validation data have further demonstrated its fast response characteristics and reliability to be online gas analysis instrument for measuring effective gas molecular mass from single-component gas, binary-component gas mixture, and multi-gas mixture. The potential industrial applications include fouling and surge control for gas charge centrifugal compressor ethylene production, gas purity for hydrogen-cooled generator, gasification for syngas production, gasoline/diesel and natural gas fuel quality monitoring for consumer market.

  13. Material characterization and evaluation of Fyrquel effect on the metal part of filters in a system EHC

    International Nuclear Information System (INIS)

    Diaz S, A.; Zenteno S, J.; Robles P, E.; Contreras R, A.; Arganis J, C.; Griz C, M.

    2014-10-01

    In recent years, unexpected stoppages in power plants have been associated with problems in electro-hydraulic control systems (EHC) which generally operate with fluids to high pressure resistant to fire, but sensitive to the presence of water and contaminants that can promote damage and malfunction of government and discharge valves. The analysis here presented was performed to two filters prior to the servo valves of an EHC system that came out of service as a result of damage to these components. The study is based on analysis and inspection of metal and filter elements of these devices, integrating both chemical characterization by energy-dispersive X-ray spectroscopy of waste as materials that comprise both filters. The assessment made allowed documenting a poor design of the devices, same that promoted the stagnant fluid (Fyrquel), locally modifying the chemical composition of the medium, prompting the activation of auto-catalytic degradation processes that acidified the environment; the acid ph solutions began in susceptible sites of electrochemical corrosion processes which increased the Fyrquel contamination. (Author)

  14. Improving material management to reduce greenhouse gas emissions

    NARCIS (Netherlands)

    Hekkert, Marko Peter

    2000-01-01

    Climate change due to greenhouse gas emissions caused by human actions is probably one of the major global environmental problems that we face today. In order to reduce the risk of climate change and the potential effects thereof, the emission of greenhouse gases like carbon dioxide (CO2) and

  15. Materials dependence of mixed gas plasticization behavior in asymmetric membranes

    NARCIS (Netherlands)

    Visser, Tymen; Masetto, N.; Wessling, Matthias

    2007-01-01

    The mass transport of asymmetric membranes for the separation of carbon dioxide/methane mixtures is determined by competitive sorption and plasticization. With increasing feed pressure in mixed gas experiments, the selectivity decreases due to both effects. Distinction whether one or the other

  16. Biological degradation of gas-filled composite materials on the base of polyethylene

    Science.gov (United States)

    Grigoreva, E. A.; Kolesnikova, N. N.; Popov, A. A.; Olkhov, A. A.

    2017-12-01

    Gas-filled composite materials based on polyethylene were obtained. It was assumed that introduction of porosity in polyethylene will improve the biodegradability of synthetic materials. The morphological and structural changes were estimated, physical and mechanical properties, stability in water and soil of these materials were determined. It is stated that filling the polymer matrix with pores increases the ability to degrade in nature.

  17. Binary-collision-approximation-based simulation of noble gas irradiation to tungsten materials

    International Nuclear Information System (INIS)

    Saito, Seiki; Takayama, Arimichi; Ito, Atsushi M.; Nakamura, Hiroaki

    2013-01-01

    To reveal the possibility of fuzz formation of tungsten material under noble gas irradiation, helium, neon, and argon atom injections into tungsten materials are performed by binary-collision-approximation-based simulation. The penetration depth is strongly depends on the structure of the target material. Therefore, the penetration depth for amorphous and bcc crystalline structure is carefully investigated in this paper

  18. A Monte Carlo Study of the Photon Spectrum due to the Different Materials Used in the Construction of Flattening Filters of LINAC

    Directory of Open Access Journals (Sweden)

    J. S. Estepa Jiménez

    2017-01-01

    Full Text Available Different types the spectrum of photons were studied; they were emitted from the flattening filter of a LINAC Varian 2100 C/D that operates at 15 MV. The simplified geometry of the LINAC head was calculated using the MCNPX code based on the studies of the materials of the flattening filter, namely, SST, W, Pb, Fe, Ta, Al, and Cu. These materials were replaced in the flattening filter to calculate the photon spectra at the output of this device to obtain the spectrum that makes an impact with the patient. The different spectra obtained were analyzed and compared to the emission from the original spectra configuration of the LINAC, which uses material W. In the study, different combinations of materials were considered in order to establish differences between the use of different materials and the original material, with the objective of establishing advantages and disadvantages from a clinical standpoint.

  19. The influence of ultrasound on wine and wine materials acidity during clarification process in tubular membrane filters

    Directory of Open Access Journals (Sweden)

    A. A. Ponedelchenko

    2016-01-01

    Full Text Available Researches on the experimental ultrasonic installation were carried out, using industrial equipment for bottling liquids and ultrasonic apparatus "Volna-M" UZTA-1/22-OM, for clarification and filtering of table wines by tangential microfiltration using membrane ceramic filtering elements with a pore size of 0.2 micron at a pressure of 0.5-2.0 bar. Membrane ultrafiltration upon application of ultrasound of 30-40 microns amplitude and a frequency of 20 kHz ± 1.65 Hz at high filter performance and work stability changes the quantitative content of the valuable wine components slightly. But much attention to the increase of titratable acidity and pH medium due to possible degradation and esterification intensification of higher acids and alcohols was paid. At the same time more intense and rich aroma and distinct flavor with berry notes appears in wine that along with the physical- and chemical indicators helped to improve organoleptic characteristics and to increase the tasting evaluation of wines. At the same time, the content of phenolic and nitrogen compounds is reduced resulting in wines stability to protein and colloidal opacification. It became possible to refuse multiple regeneration of ceramic filter elements for the  ecovery of their performance, as well as the use of preservatives and antiseptics at a high wines bottling stability. It is shown that the filtration with the dosing of ultrasound in the wine industry allows not only reducing the cost of consumables, equipment and removing some of the traditional processes, but also providing the cold sterilization of wine materials with an increase in their quality.

  20. Laboratory Evaluation of Sulfur Modified Iron for Use as a Filter Material to Treat Agricultural Drainage Waters

    Science.gov (United States)

    Allred, B. J.

    2009-12-01

    Where subsurface drainage practices are employed, fertilizer nutrients and pesticides applied on farm fields and municipal locations are commonly intercepted by the buried drainage pipes and then discharged into local streams and lakes, oftentimes producing adverse environmental impacts on these surface water bodies. On-site water filter treatment systems can be employed to prevent the release of agricultural nutrients/pesticides into adjacent waterways. Sulfur modified iron is a relatively unknown industrial product that may have promise for use as a filter material to remove contaminants from subsurface drainage waters. Sulfur modified iron (SMI) is a high surface area iron powder (zero valent iron) that has been altered via chemical reaction with pure sulfur to produce a sulfur/iron surface coating on the iron particles. A laboratory investigation was conducted with contaminant removal batch tests, saturated falling-head hydraulic conductivity tests, and saturated solute transport column experiments to evaluate the feasibility for using SMI to treat subsurface drainage waters. Contaminant removal batch tests showed that three SMI samples were much more effective removing nitrate (> 94% nitrate removed) than three zero valent iron samples (pesticide, atrazine (< 37% atrazine removed). Hydraulic conductivity tests indicated that all three SMI samples that were evaluated had sufficient hydraulic conductivity, much greater than the 1 x 10-3 cm/s standard used for stormwater sand filters. The saturated solute transport tests confirmed that SMI can be effective removing nitrate and phosphate from drainage waters. Analysis of column effluent also showed that the large majority of nitrate removed by SMI was converted to ammonium. Consequently, these laboratory findings support the use of SMI in agricultural drainage water filter treatment systems, particularly when nitrate and phosphate pollution are major environmental concerns.

  1. Personalized Recommendation of Learning Material Using Sequential Pattern Mining and Attribute Based Collaborative Filtering

    Science.gov (United States)

    Salehi, Mojtaba; Nakhai Kamalabadi, Isa; Ghaznavi Ghoushchi, Mohammad Bagher

    2014-01-01

    Material recommender system is a significant part of e-learning systems for personalization and recommendation of appropriate materials to learners. However, in the existing recommendation algorithms, dynamic interests and multi-preference of learners and multidimensional-attribute of materials are not fully considered simultaneously. Moreover,…

  2. Experiences with sol-gel bonded high porosity alumina fiber materials for filter applications

    OpenAIRE

    Handrick, Karin E.; Mohlratzer, August; Ostertag, Rolf; Sporn, Dieter; Schmidt, Helmut K.

    1988-01-01

    High porous alumina fiber structures appear promising for hot gas filtration in particular for diesel particulate traps. For this purpose, however, a method is required for manufacturing of stable shapes resisant to the blow-out by the gas flow. The sol-gel process was expected to be the best suited method for fiber bonding to provide the required stability. The main tasks of the development-work were a uniform isotropic fiber-distribution, the adaptation of the sol-gel-process to the applica...

  3. Filter service system

    Science.gov (United States)

    Sellers, Cheryl L [Peoria, IL; Nordyke, Daniel S [Arlington Heights, IL; Crandell, Richard A [Morton, IL; Tomlins, Gregory [Peoria, IL; Fei, Dong [Peoria, IL; Panov, Alexander [Dunlap, IL; Lane, William H [Chillicothe, IL; Habeger, Craig F [Chillicothe, IL

    2008-12-09

    According to an exemplary embodiment of the present disclosure, a system for removing matter from a filtering device includes a gas pressurization assembly. An element of the assembly is removably attachable to a first orifice of the filtering device. The system also includes a vacuum source fluidly connected to a second orifice of the filtering device.

  4. Some problems on materials tests in high temperature hydrogen base gas mixture

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Tanabe, Tatsuhiko; Fujitsuka, Masakazu; Yoshida, Heitaro; Watanabe, Ryoji

    1980-01-01

    Some problems have been examined on materials tests (creep rupture tests and corrosion tests) in high temperature mixture gas of hydrogen (80%H 2 + 15%CO + 5%CO 2 ) simulating the reducing gas for direct steel making. H 2 , CO, CO 2 and CH 4 in the reducing gas interact with each other at elevated temperature and produce water vapor (H 2 O) and carbon (soot). Carbon deposited on the walls of retorts and the water condensed at pipings of the lower temperature gas outlet causes blocking of gas flow. The gas reactions have been found to be catalyzed by the retort walls, and appropriate selection of the materials for retorts has been found to mitigate the problems caused by water condensation and carbon deposition. Quartz has been recognized to be one of the most promising materials for minimizing the gas reactions. And ceramic coating, namely, BN (born nitride) on the heat resistant superalloy, MO-RE II, has reduced the amounts of water vapor and deposited carbon (sooting) produced by gas reactions and has kept dew points of outlet gas below room temperature. The well known emf (thermo-electromotive force) deterioration of Alumel-Chromel thermocouples in the reducing gases at elevated temperatures has been also found to be prevented by the ceramic (BN) coating. (author)

  5. Bacterial Suspensions Deposited on Microbiological Filter Material for Rapid Laser-Induced Breakdown Spectroscopy Identification.

    Science.gov (United States)

    Malenfant, Dylan J; Gillies, Derek J; Rehse, Steven J

    2016-03-01

    Four species of bacteria, E. coli, S. epidermidis, M. smegmatis, and P. aeruginosa, were harvested from agar nutrient medium growth plates and suspended in water to create liquid specimens for the testing of a new mounting protocol. Aliquots of 30 µL were deposited on standard nitrocellulose filter paper with a mean 0.45 µm pore size to create highly flat and uniform bacterial pads. The introduction of a laser-based lens-to-sample distance measuring device and a pair of matched off-axis parabolic reflectors for light collection improved both spectral reproducibility and the signal-to-noise ratio of optical emission spectra acquired from the bacterial pads by laser-induced breakdown spectroscopy. A discriminant function analysis and a partial least squares-discriminant analysis both showed improved sensitivity and specificity compared to previous mounting techniques. The behavior of the spectra as a function of suspension concentration and filter coverage was investigated, as was the effect on chemometric cell classification of sterilization via autoclaving. © The Author(s) 2016.

  6. The Grading Entropy-based Criteria for Structural Stability of Granular Materials and Filters

    Directory of Open Access Journals (Sweden)

    Janos Lőrincz

    2015-05-01

    Full Text Available This paper deals with three grading entropy-based rules that describe different soil structure stability phenomena: an internal stability rule, a filtering rule and a segregation rule. These rules are elaborated on the basis of a large amount of laboratory testing and from existing knowledge in the field. Use is made of the theory of grading entropy to derive parameters which incorporate all of the information of the grading curve into a pair of entropy-based parameters that allow soils with common behaviours to be grouped into domains on an entropy diagram. Applications of the derived entropy-based rules are presented by examining the reason of a dam failure, by testing against the existing filter rules from the literature, and by giving some examples for the design of non-segregating grading curves (discrete particle size distributions by dry weight. A physical basis for the internal stability rule is established, wherein the higher values of base entropy required for granular stability are shown to reflect the closeness between the mean and maximum grain diameters, which explains how there are sufficient coarser grains to achieve a stable grain skeleton.

  7. Short communication: measurements of methane emissions from feed samples in filter bags or dispersed in the medium in an in vitro gas production system.

    Science.gov (United States)

    Ramin, M; Krizsan, S J; Jančík, F; Huhtanen, P

    2013-07-01

    The objective of this study was to compare methane (CH4) emissions from different feeds when incubated within filter bags for in vitro analysis or directly dispersed in the medium in an automated gas in vitro system. Four different concentrates and 4 forages were used in this study. Two lactating Swedish Red cows were used for the collection of rumen fluid. Feed samples were milled to pass a 1.0-mm screen. Aliquots (0.5 g) of samples were weighed directly in the bottles or within the F 0285 filter bags that were placed in the bottles. Gas samples were taken during 24 and 48 h of incubation, and CH4 concentration was determined. The data were analyzed using a general linear model. Feeds differed significantly in CH4 emission both at 24 and at 48 h of incubation. The interaction between feed and method on methane emission in vitro was significant, indicating that the ranking of feeds was not consistent between the methods. Generally, greater amounts of CH4 were emitted from samples directly dispersed in the medium compared with those incubated within the filter bags, which could be a result of lower microbial activity within the filter bags. The ratio of CH4 to total gas was greater when the feeds were incubated within bags compared with samples directly dispersed in the medium. Incubating samples in filter bags during 48 h of incubation cannot be recommended for determination of CH4 emission of feeds in vitro. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Plasma-thermal processing and incineration of wastes in a shaft incinerator with a combustible filtering material

    Science.gov (United States)

    Kalitko, V. A.; Mossé, A. L.

    2000-09-01

    The authors report the basic technological principles and the special features of a method of combined plasma-thermal processing and incineration of harmful wastes in a shaft incinerator under a layer of the charge of such a well-filtering and well-combustible material as wood sawdust, which absorbs up to 99% of the aerosols of waste gases by fixing and concentrating them in the ash. A calculated-analytical estimate of the filtration properties of wood sawdust is obtained as a function of its dispersity, the thickness of the charge layer, and the filtration rate of the waste gases. Determination is made of the optimum design relations and the parameters of charging of a filtering material under different conditions of processing of wastes, including moistening and impregnation of wood sawdust by an aqueous solution of sorbents to absorb harmful metals. The calculated results are compared and demonstrate consistency with the data on the filtration properties of wood sawdust in other technologies, including thermal processing of radioactive wastes in a similar shaft incinerator.

  9. Calculation of steam-gas mixture parameters in WWER-1000/V-320 containment during severe accident taking into account operation of filtered venting system

    International Nuclear Information System (INIS)

    Zvonarev, Yu.A.; Budaev, M.A.; Kobzar', V.L.; Konobeev, A.V.; Shmel'kov, Yu.B.

    2015-01-01

    The considered accident is a double-ended break of the cold leg with equivalent diameter of 850 mm accompanied with simultaneous total loss of power supply. The break is situated near the reactor inlet. No operator actions are assumed. Calculation analysis of the processes in reactor and containment were performed by SOKRAT V.1 and ANGAR codes. Containment of Unit № 4 Balakovo NPP was used for calculation of steam-gas mixture parameters in containment during severe accident. For specified algorithm of operating of filtered venting system, parameters of steam-gas mixture in containment and decay heat capacity of fission products retained by this system were defined [ru

  10. Laboratory gas injection tests on compacted bentonite buffer material for TRU waste disposal

    International Nuclear Information System (INIS)

    Namiki, Kazuto; Asano, Hidekazu; Takahashi, Shinichi; Shimura, Tomoyuki; Hirota, Ken

    2012-01-01

    Document available in extended abstract form only. In order to evaluate the gas transport mechanism through the TRU waste disposal facility, it is important to understand the gas migration phenomena based on the previous results of relevant research. The conventional large scale gas migration tests were mainly carried out for the purpose of grasp of a phenomenon, under realistic site environment. On the other hand, the acquisition and expansion of fundamental data to the bentonite buffer material that is assumed for use in Japan are important. The Radioactive Waste Management Funding and Research Center is carrying out a series of laboratory gas injection tests with a view to acquiring the data on gas migration properties under the assumed disposal conditions/materials, in view of the fact that there are few examples of previously conducted gas injections, either in Japan or other countries. Two sizes of bentonite columns were taken with heights of 50 mm and 25 mm. Both types of columns had a diameter of 60 mm and a dry density of 1.36 Mg/m 3 . The test apparatus consists of a lower loading platform, a bentonite column mold, and a top loading platform. The bentonite columns were fully saturated and then gas was injected from the lower part of the bentonite column. A load cell was installed in the lower loading platform, and the swelling pressure of the sample was measured. The bentonite columns which have 90% of initial saturation were selected to reduce the duration for saturation. Moreover, the stepwise pressurization (0.05 MPa/day) approach was adopted for gas injection test. Gas/water permeability in saturated bentonite In the typical gas injection test, the water outflow from the outer section started to increase rapidly after the gas injection pressure reached 1.7 MPa, and then the gas breakthrough occurred at the injection pressure of 1.8 MPa. Once the gas breakthrough occurred, the amount of gas outflow from outer section increased uniformly until the

  11. Kalman-filtered compressive sensing for high resolution estimation of anthropogenic greenhouse gas emissions from sparse measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet; Michalak, Anna M.; van Bloemen Waanders, Bart Gustaaf; McKenna, Sean Andrew

    2013-09-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. The limited nature of the measured data leads to a severely-underdetermined estimation problem. If the estimation is performed at fine spatial resolutions, it can also be computationally expensive. In order to enable such estimations, advances are needed in the spatial representation of ffCO2 emissions, scalable inversion algorithms and the identification of observables to measure. To that end, we investigate parsimonious spatial parameterizations of ffCO2 emissions which can be used in atmospheric inversions. We devise and test three random field models, based on wavelets, Gaussian kernels and covariance structures derived from easily-observed proxies of human activity. In doing so, we constructed a novel inversion algorithm, based on compressive sensing and sparse reconstruction, to perform the estimation. We also address scalable ensemble Kalman filters as an inversion mechanism and quantify the impact of Gaussian assumptions inherent in them. We find that the assumption does not impact the estimates of mean ffCO2 source strengths appreciably, but a comparison with Markov chain Monte Carlo estimates show significant differences in the variance of the source strengths. Finally, we study if the very different spatial natures of biogenic and ffCO2 emissions can be used to estimate them, in a disaggregated fashion, solely from CO2 concentration measurements, without extra information from products of incomplete combustion e.g., CO. We find that this is possible during the winter months, though the errors can be as large as 50%.

  12. Learning Materials Recommendation Using Good Learners' Ratings and Content-Based Filtering

    Science.gov (United States)

    Ghauth, Khairil Imran; Abdullah, Nor Aniza

    2010-01-01

    The enormity of the amount of learning materials in e-learning has led to the difficulty of locating suitable learning materials for a particular learning topic, creating the need for recommendation tools within a learning context. In this paper, we aim to address this need by proposing a novel e-learning recommender system framework that is based…

  13. Mainstream Smoke Gas Phase Filtration Performance of Adsorption Materials Evaluated With A Puff-by-Puff Multiplex GC-MS Method

    Directory of Open Access Journals (Sweden)

    Xue L

    2014-12-01

    Full Text Available The mainstream smoke filtration performance of activated carbon, silica gel and polymeric aromatic resins for gas-phase components was evaluated using a puff-by-puff multiplex gas chromatography-mass spectrometry (GC-MS analysis method (1. The sample 1R4F Kentucky reference cigarettes were modified by placing the adsorbents in a plug/space/plug filter configuration. Due to differences in surface area and structural characteristics, the adsorbent materials studied showed different levels of filtration activities for the twenty-six constituents monitored. Activated carbon had significant adsorption activity for all the gas-phase smoke constituents observed except ethane and carbon dioxide, while silica gel had significant activities for polar components such as aldehydes, acrolein, ketones, and diacetyl. XAD-16 polyaromatic resins showed varied levels of activity for aromatic compounds, cyclic dienes and ketones.

  14. Behavior of W-based materials in hot helium gas

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Vilémová, Monika; Hadraba, Hynek; Di Gabriele, F.; Kuběna, Ivo; Kolíbalová, E.; Michalička, J.; Čech, J.; Jäger, Aleš

    2016-01-01

    Roč. 9, December (2016), s. 405-410 ISSN 2352-1791. [International Conference of Fusion Reactor Material (ICFRM-17) /17./. Aachen, 11.10.2015-16.10.2015] R&D Projects: GA ČR(CZ) GA14-12837S Institutional support: RVO:61389021 ; RVO:68081723 ; RVO:68378271 Keywords : tungsten * helium * fusion materials Subject RIV: JG - Metallurgy; JG - Metallurgy (UFM-A); JG - Metallurgy (FZU-D) http://dx. doi . org /10.1016/j.nme.2016.03.009

  15. Gas turbine blades and disks. Materials and component behaviour

    International Nuclear Information System (INIS)

    1990-01-01

    This progress report summarizes the research results obtained by the special research programme 339 in the years 1988 and 1989. Emphasis is given to the following aspects and problems: Optimisation of structure, protective coatings, connection between structure parameters and mechanical materials behaviour, tribologic materials and component behaviour, impacts of overall loads, and of stress and deformation state in the inelastic regime under mechanical and thermal load, and impacts of the manufacturing process on component behaviour, quality assurance. Eleven of the fifteen papers of the report have been separately analysed for the ENERGY database, and thirteen for the DELURA database. (orig./MM) With 191 figs., 13 tabs [de

  16. Handbook - Status assessment of polymeric materials in flue gas cleaning systems; Handbok - Statusbedoemning av polymera material i roekgassystem

    Energy Technology Data Exchange (ETDEWEB)

    Roemhild, Stefanie

    2011-01-15

    In today's flue gas cleaning systems with advanced energy recovery systems and improved flue gas cleaning, the use of polymeric materials has continuously increased in applications where the flue gas environment is to corrosive to be handled with metallic materials. Typical polymeric materials used are fibre reinforced plastics (FRP), glassflake-filled linings, polypropylene (PP) and fluoropolymers. Demands on increased profitability and efficiency at incineration plants involve that also polymeric materials have to face more demanding environments with increased temperature, temperature changes, changes in fuel composition and therewith fluegas composition and longer service intervals. The knowledge on how polymeric materials perform in general and how these service conditions influence them, is, however, poor and continuous status assessment is therefore necessary. The overall aim of this project has been to assess simple techniques for status assessment of polymeric materials in flue gas cleaning equipment and to perform an inventory of present experience and knowledge on the use of polymeric materials. The project consisted of an inventory of present experience, analysis of material from shut-down plants and plants still in service, field testing in a plant adding sulphur during combustion and the assessment of different non-destructive testing (NDT) methods by laboratory experiments. The results of the project are summarised in the form of a handbook which in the first place addresses plant owners and maintenance staff at incineration plants and within the pulp and paper industry. In the introductory chapter typical polymeric materials (FRP, flake linings, PP and fluoropolymers) used in flue gas cleaning equipment are described as well as the occurring corrosion mechanisms. The inventory of process equipment is divided into sections about scrubbers, flue gas ducts, stacks, internals and other equipment such as storage tanks. Typical damages are

  17. Evaporation system and method for gas jet deposition of thin film materials

    Science.gov (United States)

    Schmitt, J.J.; Halpern, B.L.

    1994-10-18

    A method and apparatus are disclosed for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases. 8 figs.

  18. High temperature metallic materials for gas-cooled reactors

    International Nuclear Information System (INIS)

    1989-06-01

    The Specialists' Meeting was organized in conjunction with an earlier meeting on this topic held in Vienna, Austria, 1981, which provided for a comprehensive review of the status of materials development and testing at that time and for a description of test facilities. This meeting provided an opportunity (1) to review and discuss the progress made since 1981 in the development, testing and qualification of high temperature metallic materials, (2) to critically assess results achieved, and (3) to give directions for future research and development programmes. In particular, the meeting provided a form for a close interaction between component designers and materials specialists. The meeting was attended by 48 participants from France, People's Republic of China, Federal Republic of Germany, Japan, Poland, Switzerland, United Kingdom, USSR and USA presenting 22 papers. The technical part of the meeting was subdivided into four technical sessions: Components Design and Testing - Implications for Materials (4 papers); Microstructure and Environmental Compatibility (4 papers); Mechanical Properties (9 papers); New Alloys and Developments (6 papers). At the end of the meeting a round table discussion was organized in order to summarize the meeting and to make recommendations for future activities. This volume contains all papers presented at the meeting. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  19. Materials exposure test facilities for varying low-Btu coal-derived gas

    Energy Technology Data Exchange (ETDEWEB)

    Nakaishi, C.V.; Carpenter, L.K.

    1980-01-01

    As a part of the United States Department of Energy's High Temperature Turbine Technology Readiness Program, the Morgantown Energy Technology Center is participating in the Ceramics Corrosion/Erosion Materials Study. The objective is to create a technology base for ceramic materials which could be used by stationary gas power turbines operating in a high-temperature, coal-derived, low-Btu gas products of combustion environment. Two METC facilities have been designed, fabricated and will be operated simultaneously exposing ceramic materials dynamically and statically to products of combustion of a coal-derived gas. The current studies will identify the degradation of ceramics due to their exposure to a coal-derived gas combustion environment.

  20. ASSESSING AS, HG AND SE SPECIATION AND TRANSPORT IN FLUE GAS DESULPHURIZATION MATERIAL AND DRYWALL

    Science.gov (United States)

    The risk associated with the reuse of flue gas desulphurization (FGD) material in drywall manufacture is largely determined by the distribution or mineralogical fractionation of mercury(Hg), arsenic (As) and selenium (Se). During coal combustion, FGD material is enriched in volat...

  1. Ultrathin Epitaxial Ferromagneticγ-Fe2O3Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors

    KAUST Repository

    Li, Peng

    2016-06-01

    In spintronics, identifying an effective technique for generating spin-polarized current has fundamental importance. The spin-filtering effect across a ferromagnetic insulating layer originates from unequal tunneling barrier heights for spin-up and spin-down electrons, which has shown great promise for use in different ferromagnetic materials. However, the low spin-filtering efficiency in some materials can be ascribed partially to the difficulty in fabricating high-quality thin film with high Curie temperature and/or partially to the improper model used to extract the spin-filtering efficiency. In this work, a new technique is successfully developed to fabricate high quality, ferrimagnetic insulating γ-Fe2O3 films as spin filter. To extract the spin-filtering effect of γ-Fe2O3 films more accurately, a new model is proposed based on Fowler–Nordheim tunneling and Zeeman effect to obtain the spin polarization of the tunneling currents. Spin polarization of the tunneled current can be as high as −94.3% at 2 K in γ-Fe2O3 layer with 6.5 nm thick, and the spin polarization decays monotonically with temperature. Although the spin-filter effect is not very high at room temperature, this work demonstrates that spinel ferrites are very promising materials for spin injection into semiconductors at low temperature, which is important for development of novel spintronics devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  2. Behavior of W-based materials in hot helium gas

    Directory of Open Access Journals (Sweden)

    J. Matějíček

    2016-12-01

    A number of W-based materials (pure tungsten and some of its alloys prepared by powder metallurgy techniques was exposed to He atmosphere at 720ºC and 500kPa for 500h. Morphological surface changes were observed by SEM, chemical and phase composition was analyzed by EDS and XRD, respectively. The internal microstructure was observed by a combination of SEM, FIB and TEM techniques. Mechanical properties were determined by instrumented indentation. Some alloys developed a thin oxide layer, in some cases new morphological features were observed, while some samples remained mostly intact. The observed changes are correlated with specific compositions and microstructures.

  3. Multi-Material and Thickness Optimization Utilizing Casting Filters for Laminated Composite Structures

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2013-01-01

    This extended abstract presents a new parameterization for performing discrete material and thickness optimization of laminated composite structures. The parameterization is based on the work by Sørensen and Lund 2013, where we present a reformulation of the original parameterization...

  4. Oxidative Decontamination of Tritiated Materials Employing Ozone Gas

    International Nuclear Information System (INIS)

    Gentile, Charles A.; Parker, John J.; Guttadora, Gregory L.

    2001-01-01

    The Princeton Plasma Physics Laboratory has developed a process by which to significantly reduce surface and near surface tritium contamination from various materials. The Oxidative Tritium Decontamination System (OTDS) reacts gaseous state ozone (accelerated by presence of catalyst), with tritium entrained/deposited on the surface of components (stainless steel, copper, plastics, ceramics, etc.), for the purpose of activity reduction by means of oxidation-reduction chemistry. In addition to removing surface and near surface tritium contamination from (high monetary value) components for reuse in non-tritium environments, the OTDS has the capability of removing tritium from the surfaces of expendable items, which can then be disposed of in a less expensive fashion. The OTDS can be operated in a batch mode by which up to approximately 40 pounds of tritium contaminated (expendable) items can be processed and decontaminated to levels permissible for free release (less than1,000 dpm/100 cm 2). This paper will discuss the OTDS process, the level of tritium surface contamination removed from various materials, and a technique for ''deep scrubbing'' tritium from subsurface layers

  5. Determination of UV filters in both soluble and particulate fractions of seawaters by dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Benedé, J L; Chisvert, A; Salvador, A; Sánchez-Quiles, D; Tovar-Sánchez, A

    2014-02-17

    An analytical method to determine the total content (i.e., not only in the soluble fraction but also in the particulate one) of eight commonly used UV filters in seawater samples is presented for the first time. Dispersive liquid-liquid microextraction (DLLME) is used as microextraction technique to pre-concentrate the target analytes before their determination by gas chromatography-mass spectrometry (GC-MS). In order to release the UV filters from the suspended particles an ultrasound treatment is performed before DLLME. The ultrasound treatment time was studied in order to achieve a quantitative lixiviation of the target analytes. The type and volume of both disperser and extraction solvent, the sample volume, the pH and the ionic strength involved in the DLLME have been optimized to provide the best enrichment factors. Under the optimized conditions, the method was successfully validated showing good linearity, enrichment factors between 112 and 263 depending on the analyte, limits of detection and quantification in the low ng L(-1) range (10-30 ng L(-1) and 33-99 ng L(-1), respectively) and good intra- and inter-day repeatability (RSD UV filters in the particulate fraction that would have been ignored if only the soluble fraction had been considered. This fact shows that the UV filters are also accumulated in the suspended particles contained in water, what should be taken into account from an environmental standpoint. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. UV filters for lighting of plants

    Science.gov (United States)

    Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.

    1994-01-01

    The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In

  7. UV filters for lighting of plants

    Science.gov (United States)

    Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.

    1994-03-01

    The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In

  8. Evaluation Of Gas Diffusion Through Plastic Materials Used In Experimental And Sampling Equipment

    DEFF Research Database (Denmark)

    Kjeldsen, Peter

    1993-01-01

    Plastic materials are often used in experimental and sampling equipment. Plastics are not gas tight, since gases are able to diffuse through the walls of tubing and containers made of plastic. Methods for calculating the significance of gas diffusion through the walls of containers and the walls ...... that the use of silicone rubber in experimental and sampling equipment to be used for anoxic water is, for most cases, prohibited by oxygen diffusion....

  9. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study

    Science.gov (United States)

    Ali, A. N.; Son, S. F.; Asay, B. W.; Sander, R. K.

    2005-03-01

    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6mm±0.4mm exists below which ignition by CO2 laser is not possible at the tested irradiances of 29W /cm2 and 38W/cm2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.

  10. Gas seal for installations for high-temperature treatment of carbon fibre materials

    Energy Technology Data Exchange (ETDEWEB)

    Cherednichenko, P.I.; Kosenok, V.A.

    1995-01-01

    A gas seal was developed in which the inlet and outlet openings of furnaces for high-temperature treatment of carbon fibre materials are hermetically sealed not only due to the energy of the jet but also due to directed eddy gas flows. A blocking effect is obtained in the seal with excess pressure of the gases in the working chamber of 100-200 Pa and a gas flow rate no greater than 1 m{sup 3}/h. The seal is distinguished by simplicity of construction, is compact, reliable, and easy to service.

  11. Evaluation Of Gas Diffusion Through Plastic Materials Used In Experimental And Sampling Equipment

    DEFF Research Database (Denmark)

    Kjeldsen, Peter

    1993-01-01

    . Calculations show that diffusion of oxygen through plastic tubing and reactors into anoxic water can be a serious problem for a series of plastic materials. Comparison of the method for turbulent and laminar flow in tubings shows that the difference is insignificant for most cases. Calculations show also......Plastic materials are often used in experimental and sampling equipment. Plastics are not gas tight, since gases are able to diffuse through the walls of tubing and containers made of plastic. Methods for calculating the significance of gas diffusion through the walls of containers and the walls...... of tubings for both turbulent and laminar flow conditions is presented. A more complex model for diffusion under laminar flow conditions is developed. A comprehensive review on gas diffusion coefficients for the main gases (O2, N2, CO2, CH4 etc.) and for a long range of plastic materials is also presented...

  12. Mathematical modeling of a biogenous filter cake and identification of oilseed material parameters

    Directory of Open Access Journals (Sweden)

    Očenášek J.

    2009-12-01

    Full Text Available Mathematical modeling of the filtration and extrusion process inside a linear compression chamber has gained a lot of attention during several past decades. This subject was originally related to mechanical and hydraulic properties of soils (in particular work of Terzaghi and later was this approach adopted for the modeling of various technological processes in the chemical industry (work of Shirato. Developed mathematical models of continuum mechanics of porous materials with interstitial fluid were then applied also to the problem of an oilseed expression. In this case, various simplifications and partial linearizations are introduced in models for the reason of an analytical or numerical solubility; or it is not possible to generalize the model formulation into the fully 3D problem of an oil expression extrusion with a complex geometry such as it has a screw press extruder.We proposed a modified model for the oil seeds expression process in a linear compression chamber. The model accounts for the rheological properties of the deformable solid matrix of compressed seed, where the permeability of the porous solid is described by the Darcy's law. A methodology of the experimental work necessary for a material parameters identification is presented together with numerical simulation examples.

  13. Utilization of red mud and bagasse for production of gas absorption materials

    Science.gov (United States)

    Thang, Nguyen Hoc; Quyen, Pham Vo Thi Ha; Nhung, Le Thuy; Phong, Dang Thanh; Tuyen, Nguyen Ngoc Kim

    2018-04-01

    Gas treatment or/and gas absorption is field which has more investigation from researchers. They are finding optimal solutions from catalyst or synthesized materials to obtain the best benefit for factories and community. This study would like to introduce a method to synthesis the gas absorption materials responding requirements for the process of gas treatment. More specially, raw materials used to produce the materials are industrial waste impacting negatively on the environment. In which, red mud is solid waste of Bayer process from bauxite mining which is being the hard problem to have solutions for its management and utilization, and bagasse is industrial waste of sugar factories. Both red mud and bagasse were dried, ground, and sieved and then mixed with bentonite and water for forming by wet pressing method. Continuously, the mixtures were passed processes of heat treatment at 400°C. The final samples were tested physic-chemical properties and characterized for microstructure. The productions were also tested for gas absorption capacity with data obtained very positive in comparison with others.

  14. Gas permeability of cement based materials; Etude de la permeabilite au gaz des materiaux cimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Galle, Ch.; Pin, M. [CEA Saclay, Dept. d' Entreposage et de Stockage des Dechets (DCC/DESD/SESD), 91 - Gif-sur-Yvette (France); Daian, J.F. [Universite Joseph-Fourier, Grenoble I, (INPG/CNRS/IRD), 38 (France)

    2000-07-01

    The study of the permeability of cement based materials is an important issue for their transport properties, which are good indicators of their durability. Studies were undertaken to acquire experimental data and to model the gas permeability of cement based materials. Among many parameters like cement type, water-cement ratio (w/c), curing, etc, the degree of water saturation and microstructural properties are the two main parameters controlling the ability of such type of materials to transport gas. It is well known that the higher the water saturation, the lower the gas permeability. Under pressure, gas will be also transported through the biggest pore accesses. It must be emphasized that the w/c ratio is the fundamental parameter for cement based materials. This ratio controls the hydration process and hence the material porosity. Gas permeability was calculated with Darcy law as modified by the Hagen-Poiseuille formula (1). Various materials were investigated: pure cement pastes prepared with different types of cement (CEM I-OPC, CEM V-BFS-PFA) and various w/c ratios, and industrial concretes. After curing, the samples were stored under controlled relative humidity conditions using saline solutions to reach a stable hydric state. N{sup 2} gas permeability tests were then performed with a Hassler apparatus. The microstructural properties of CEM I and CEM V materials are given in Figure 2. Examples of experimental results obtained with pure pastes are shown in Figure 3. A comparative example of paste and concrete data is provided in Figure 4. It was experimentally observed that gas permeability is extremely sensitive to material water saturation: up to five orders of magnitude of variation (between 10{sup -16} and 10{sup -21} m{sup 2} on average) for water saturations from a few % to 100%. The higher the w/c ratio, the higher the gas permeability. CEM I pastes are also less permeable than CEM V pastes. The higher total porosity effect of CEM V materials is not

  15. Gravimetric Measurements of Filtering Facepiece Respirators Challenged With Diesel Exhaust.

    Science.gov (United States)

    Satish, Swathi; Swanson, Jacob J; Xiao, Kai; Viner, Andrew S; Kittelson, David B; Pui, David Y H

    2017-07-01

    Elevated concentrations of diesel exhaust have been linked to adverse health effects. Filtering facepiece respirators (FFRs) are widely used as a form of respiratory protection against diesel particulate matter (DPM) in occupational settings. Previous results (Penconek A, Drążyk P, Moskal A. (2013) Penetration of diesel exhaust particles through commercially available dust half masks. Ann Occup Hyg; 57: 360-73.) have suggested that common FFRs are less efficient than would be expected for this purpose based on their certification approvals. The objective of this study was to measure the penetration of DPM through NIOSH-certified R95 and P95 electret respirators to verify this result. Gravimetric-based penetration measurements conducted using polytetrafluoroethylene (PTFE) and polypropylene (PP) filters were compared with penetration measurements made with a Scanning Mobility Particle Sizer (SMPS, TSI Inc.), which measures the particle size distribution. Gravimetric measurements using PP filters were variable compared to SMPS measurements and biased high due to adsorption of gas phase organic material. Relatively inert PTFE filters adsorbed less gas phase organic material resulting in measurements that were more accurate. To attempt to correct for artifacts associated with adsorption of gas phase organic material, primary and secondary filters were used in series upstream and downstream of the FFR. Correcting for adsorption by subtracting the secondary mass from the primary mass improved the result for both PTFE and PP filters but this correction is subject to 'equilibrium' conditions that depend on sampling time and the concentration of particles and gas phase hydrocarbons. Overall, the results demonstrate that the use of filters to determine filtration efficiency of FFRs challenged with diesel exhaust produces erroneous results due to the presence of gas phase hydrocarbons in diesel exhaust and the tendency of filters to adsorb organic material. Published by

  16. Convergence of European spot market prices for natural gas. A Real-Time Analysis of market integration using the Kalman filter

    International Nuclear Information System (INIS)

    Siliverstovs, Boriss; Neumann, Anne

    2005-01-01

    This paper provides a textbook example of an econometric analysis of the integration between two commodity markets and the subsequent price convergence or absence thereof. We analyze price relations between spot markets for natural gas in Europe. The European market for natural gas is currently undergoing a liberalization process with the aim of creating a single, unified market. We use time-varying coefficient estimation models, applying the Kalman filter to test whether price convergence between different locations is really taking place. Our results reveal that the construction of a pipeline between the UK and Zeebrugge (Belgium) has lead to almost perfect price convergence between theses locations; on the other hand, liberalization on the European continent does not seem to be working so far. (Author)

  17. Phosphorus removal using Ca-rich hydrated oil shale ash as filter material--the effect of different phosphorus loadings and wastewater compositions.

    Science.gov (United States)

    Kõiv, Margit; Liira, Martin; Mander, Ulo; Mõtlep, Riho; Vohla, Christina; Kirsimäe, Kalle

    2010-10-01

    We studied the phosphorus (P) binding capacity of Ca-rich alkaline filter material - hydrated oil shale ash (i.e. hydrated ash) in two onsite pilot-scale experiments (with subsurface flow filters) in Estonia: one using pre-treated municipal wastewater with total phosphorus (TP) concentration of 0.13-17.0 mg L(-1) over a period of 6 months, another using pre-treated landfill leachate (median TP 3.4 mg L(-1)) for a total of 12 months. The results show efficient P removal (median removal of phosphates 99%) in horizontal flow (HF) filters at both sites regardless of variable concentrations of several inhibitors. The P removal efficiency of the hydrated ash increases with increasing P loading, suggesting direct precipitation of Ca-phosphate phases rather than an adsorption mechanism. Changes in the composition of the hydrated ash suggest a significant increase in P concentration in all filters (e.g. from 489.5 mg kg(-1) in initial ash to 664.9 mg kg(-1) in the HF filter after one year in operation), whereas almost all TP was removed from the inflow leachate (R(2) = 0.99). Efficiency was high throughout the experiments (median outflow from HF hydrated ash filters 0.05-0.50 mg L(-1)), and P accumulation did not show any signs of saturation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor

    International Nuclear Information System (INIS)

    Jaeger, W.

    1984-01-01

    This invention concerns a device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor, where part of the carbon is gasified with hydration and the remaining carbon is converted to synthetic gas by adding steam. This synthetic gas consists mainly of H 2 , CO, CO 2 and CH 4 and can be converted to methane in so-called methanising using a nickel catalyst. The hydrogen gasifier is situated in the first of two helium circuits of a high temperature reactor, and the splitting furnace is situated in the second helium circuit, where part of the methane produced is split into hydrogen at high temperature, which is used for the hydrating splitting of another part of the material containing carbon. (orig./RB) [de

  19. Greenhouse gas emissions from beef feedlot surface materials as affected by diet, moisture, temperature, and time

    Science.gov (United States)

    A laboratory study was conducted to measure the effects of diet, moisture, temperature, and time on greenhouse gas (GHG) emissions from feedlot surface materials (FSM). The FSM were collected from open lot, pens where beef cattle were fed either a dry-rolled corn (DRC) diet containing no wet distil...

  20. Selective Laser Melting of Hot Gas Turbine Components: Materials, Design and Manufacturing Aspects

    DEFF Research Database (Denmark)

    Goutianos, Stergios

    2017-01-01

    Selective Laser Melting (SLM) allows the design and manufacturing of novel parts and structures with improved performance e.g. by incorporating complex and more efficient cooling schemes in hot gas turbine parts. In contrast to conventional manufacturing of removing material, with SLM parts...

  1. The studies on gas adsorption properties of MIL-53 series MOFs materials

    Directory of Open Access Journals (Sweden)

    Yuqiu Jiao

    2017-08-01

    Full Text Available Molecular dynamics (MD, grand canonical Monte Carlo (GCMC and ideal adsorbed solution theory (IAST were used to study the structures and gas adsorption properties of MIL-53(M[M=Cr, Fe, Sc, Al] metal organic framework (MOF materials. The results show that the volumes of those MOF materials increase significantly at high temperature. By analyzing the adsorption isotherms, we found that the temperature had a paramount effect on the gas adsorption behaviors of these MOF materials. For MIL-53(Cr, the orders of the quantities of adsorbed gases were CH4>N2>CO2>H2S, CH4>H2S>CO2>N2 and CH4>CO2>H2S>N2 at 100K, 293K and 623K, respectively. We also calculated the adsorption of several combinations of two gases by MIL-53(Cr at 293K, the results indicate that the material had selective adsorption of CH4 over CO2, H2S and N2. Our calculations provide microscopic insights into the gas adsorption performances of these MOFs and may further guide the practice of gas separation.

  2. The decrease of the energy performance for the soiling of the air filters in gas turbines; Disminucion de la eficiencia energetica por ensuciamiento de filtros de aire en turbinas de gas

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes, H.; Ambriz, J. J.; Vargas, M.; Godinez, M.; Gomez, F.; Valdez, L.; Pantoja, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Mexico D. F. (Mexico)

    1995-12-31

    The object of this paper is to study the effect in the turbine output of a gas turbine of the conditions of the compressor air inlet in going through a series of filters. The algorithm for the calculation of the energy losses due to the variation of the pressure drop caused by the filters according to their cleanliness condition. In the first part the series of variables that affect the gas turbines performance are exemplified, afterwards the characteristics of the air flow into a turbine are presented as well as their effects on the system. Later on, the results obtained of the system simulation are presented and compared with a real case. From the results it can be determined, that depending on the system and on the environment conditions the efficiency drop might be up to 3%, in accordance with the filters cleanliness. The maintenance periods strongly depend on the air quality variations at the filter house inlet in the zone where the power plant is located. [Espanol] El presente trabajo tiene por objetivo estudiar el efecto en la potencia generada en una turbina de gas de las condiciones de entrada del aire al compresor de una turbina de gas al pasar por un conjunto de filtros. Se presenta el algoritmo para la determinacion de las perdidas energeticas debidas a la variacion de la caida de presion generada por los filtros de acuerdo con su estado de limpieza. En la primera parte se ejemplifica el conjunto de variables que influyen en la eficiencia de las turbinas de gas, posteriormente se mencionan las caracteristicas de flujo de aire hacia una turbina y se muestran los efectos sobre el sistema. A continuacion se presentan los resultados obtenidos de la simulacion del sistema y se comparan con un caso real. De los resultados se puede apreciar que, dependiendo del sistema y de las condiciones ambientales el decremento en la eficiencia puede ser hasta del 3% en funcion del nivel de limpieza de los filtros. Los periodos de mantenimiento dependen fuertemente de las

  3. Simultaneous in-vial acetylation solid-phase microextraction followed by gas chromatography tandem mass spectrometry for the analysis of multiclass organic UV filters in water.

    Science.gov (United States)

    Vila, Marlene; Celeiro, Maria; Lamas, J Pablo; Garcia-Jares, Carmen; Dagnac, Thierry; Llompart, Maria

    2017-02-05

    UV filters are a class of emerging contaminants that are widely used in personal care products (PCPs) and that can be detected at low concentrations in the aquatic environment (ngL -1 ). Sensitive modern analytical methods are then mandatory to accurately analyze them. A methodology based on solid-phase-microextraction (SPME), considered as a 'Green Chemistry' technique, followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) has been developed for the simultaneous analysis of 14 UV filters of different chemical nature in environmental and recreational waters. In-vial low-cost derivatization was carried out to improve chromatographic performance of phenolic compounds. The extraction parameters (fiber coating, extraction mode, and salt addition) were optimized by means of experimental designs in order to achieve reliable conditions. Finally, the SPME-GC-MS/MS method was validated in terms of linearity, accuracy and precision with LODs in the low ngL -1 level. Its application to the analysis of 28 different samples including sea, river, spa, swimming pool, and aquapark waters, enabled the detection of 11 target UV filters at concentration levels up to 540μgL -1 , highlighting the presence of OCR in all analyzed samples and of 2EHMC (proposed to be considered as priority pollutant) in 79% of them. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Gravimetric monitoring of water influx into a gas reservoir: A numerical study based on the ensemble kalman filter

    NARCIS (Netherlands)

    Glegola, M.; Ditmar, P.; Hanea, R.G.; Vossepoel, F.C.; Arts, R.; Klees, R.

    2012-01-01

    Water influx into gas fields can reduce recovery factors by 10-40%. Therefore, information about the magnitude and spatial distribution of water influx is essential for efficient management of waterdrive gas reservoirs. Modern geophysical techniques such as gravimetry may provide a direct measure of

  5. METC/3M Cooperative Agreement CRADA 94-024 high temperature high pressure filter materials exposure test program. Volume 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-06-01

    This report is a summary of the results of activities of the particulate monitoring group in support of the METC/3M CRADA 94024. Online particulate monitoring began in June 1994 and ended in October, 1994. The particulate monitoring group participated in four MGCR runs (No. 7 through No. 10). The instrument used in measuring the particle loadings (particle counts and size distribution) is the Particle Measuring Systems Classical Scattering Aerosol Spectrometer Probe High Temperature and High Pressure (PMS Model CSASP-100-HTHP). This PMS unit is rated to operate at temperatures up to 540{degree}C and gage pressures up to 2.0 MPa. Gas stream conditions, temperature at 540{degree}C, gage pressure at 2.93 MPa, and gas flowrate at 0.0157 SCM per second, precluded the direct measurement of particulate loadings in the gas stream with the PMS unit. A side stream was extracted from the gas stream after it came over to the MGCR, Modular Gas Cleanup Rig, from the FBG, pressurized Fluidized-Bed Gasifier, but before it entered the filter testing vessel. A sampling probe of 0.635 cm O.D. thin wall stainless steel tubing was used for extracting the sample gas isokinetically based on the expected flowrate. The sample gas stream was further split into two streams; one was directed to the PMS unit and the other to the alkali monitor unit. The alkali monitor unit was not used during runs No. 7 through No. 10.

  6. Determination of steroid hormones and related compounds in filtered and unfiltered water by solid-phase extraction, derivatization, and gas chromatography with tandem mass spectrometry

    Science.gov (United States)

    Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Lindley, Chris E.; Losche, Scott A.; Barber, Larry B.

    2012-01-01

    A new analytical method has been developed and implemented at the U.S. Geological Survey National Water Quality Laboratory that determines a suite of 20 steroid hormones and related compounds in filtered water (using laboratory schedule 2434) and in unfiltered water (using laboratory schedule 4434). This report documents the procedures and initial performance data for the method and provides guidance on application of the method and considerations of data quality in relation to data interpretation. The analytical method determines 6 natural and 3 synthetic estrogen compounds, 6 natural androgens, 1 natural and 1 synthetic progestin compound, and 2 sterols: cholesterol and 3--coprostanol. These two sterols have limited biological activity but typically are abundant in wastewater effluents and serve as useful tracers. Bisphenol A, an industrial chemical used primarily to produce polycarbonate plastic and epoxy resins and that has been shown to have estrogenic activity, also is determined by the method. A technique referred to as isotope-dilution quantification is used to improve quantitative accuracy by accounting for sample-specific procedural losses in the determined analyte concentration. Briefly, deuterium- or carbon-13-labeled isotope-dilution standards (IDSs), all of which are direct or chemically similar isotopic analogs of the method analytes, are added to all environmental and quality-control and quality-assurance samples before extraction. Method analytes and IDS compounds are isolated from filtered or unfiltered water by solid-phase extraction onto an octadecylsilyl disk, overlain with a graded glass-fiber filter to facilitate extraction of unfiltered sample matrices. The disks are eluted with methanol, and the extract is evaporated to dryness, reconstituted in solvent, passed through a Florisil solid-phase extraction column to remove polar organic interferences, and again evaporated to dryness in a reaction vial. The method compounds are reacted with

  7. Particular cases of materials balance equation generalized for gas deposits associated to the coal

    International Nuclear Information System (INIS)

    Penuela, G; Ordonez, A; Bejarano, A

    1997-01-01

    One of the fundamental principles used in the work, developed in engineering is the law of the matter conservation. The application of this principle to the hydrocarbons fields, with the purpose of to quantify and to be predicted expresses by means of materials balance method. While the equation construction of conventional materials balance and the calculations that come with their application are not a difficult task, the approach of selection of the solution that better it represents the deposit it is one of the problems that the petroleum engineer should face. The materials balance is a useful analysis method of the deposit operation, reserves estimate of raw and gas, and prediction of the future behavior of the deposit. The coal, beds, devonian shales and geo pressurized-aquifer are some examples of natural gas sources and to possess production mechanisms and behaviors significantly different to the traditional than have been considered as non conventional deposits

  8. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research.

    Science.gov (United States)

    Wu, Jianbo; Shan, Hao; Chen, Wenlong; Gu, Xin; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2016-11-01

    Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Attenuation of hydrogen radicals traveling under flowing gas conditions through tubes of different materials

    International Nuclear Information System (INIS)

    Grubbs, R.K.; George, S.M.

    2006-01-01

    Hydrogen radical concentrations traveling under flowing gas conditions through tubes of different materials were measured using a dual thermocouple probe. The source of the hydrogen radicals was a toroidal radio frequency plasma source operating at 2.0 and 3.3 kW for H 2 pressures of 250 and 500 mTorr, respectively. The dual thermocouple probe was comprised of exposed and covered Pt/Pt13%Rh thermocouples. Hydrogen radicals recombined efficiently on the exposed thermocouple and the energy of formation of H 2 heated the thermocouple. The second thermocouple was covered by glass and was heated primarily by the ambient gas. The dual thermocouple probe was translated and measured temperatures at different distances from the hydrogen radical source. These temperature measurements were conducted at H 2 flow rates of 35 and 75 SCCM (SCCM denotes cubic centimeter per minute at STP) inside cylindrical tubes made of stainless steel, aluminum, quartz, and Pyrex. The hydrogen radical concentrations were obtained from the temperatures of the exposed and covered thermocouples. The hydrogen concentration decreased versus distance from the plasma source. After correcting for the H 2 gas flow using a reference frame transformation, the hydrogen radical concentration profiles yielded the atomic hydrogen recombination coefficient, γ, for the four materials. The methodology of measuring the hydrogen radical concentrations, the analysis of the results under flowing gas conditions, and the determination of the atomic hydrogen recombination coefficients for various materials will help facilitate the use of hydrogen radicals for thin film growth processes

  10. Use of Cold Gas Dynamic Spraying of bi-metallic powder mixtures as alternative to classic powder metallurgy route for producing intermetallic materials

    Directory of Open Access Journals (Sweden)

    Vit Jan

    2016-06-01

    Full Text Available The paper presents cold gas dynamic spraying (or Cold Spray as a novel surface treatment technology capable not only of surface modifications but also being used as bulk creating technology. This is demonstrated on numerous samples where bi-metallic powder feedstock is deposited into bulk, self-standing pieces of material that does not need the support of substrate. Mixtures from the group of Fe, Al, Ti, Ni, Cu were used for the initial bi-metallic mixtures. The deposited samples were then subjected to annealing at temperatures ranging from 300 to 1100°C in protective atmosphere and resulting morphologies and microstructures were analysed. Generally materials with high proportion of intermetallic phase content were obtained. These are discussed as potential scaffolds for metal or polymer matrix composites or as hi temperature resistive supports for catalysts with filter functions.

  11. Assessment of radiation exposures from naturally occurring radioactive materials in the oil and gas industry

    International Nuclear Information System (INIS)

    Hamlat, M.S.; Djeffal, S.; Kadi, H.

    2001-01-01

    Radioactive deposits, often referred to as naturally occurring radioactive material scale, can, because of incompatibility of formation and injection waters, be formed inside production equipment of the oil and gas industry. These scales contain mainly 226 Ra and its daughter products, which can cause an exposure risk. The gamma ray dose rates, with the associated occupational doses in the oil and gas industry, and 226 Ra concentration in production water, crude oil and hard/soft scale samples were determined. Results obtained are discussed and compared to those from other studies

  12. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    International Nuclear Information System (INIS)

    MM Hall

    2006-01-01

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing

  13. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    Energy Technology Data Exchange (ETDEWEB)

    MM Hall

    2006-01-31

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

  14. [Glass fibre HEPA filters. I. Communication: Microbiological and physico-chemical researchs on used and unused, hydrophobic and hydrophilic filter materials at relative humidities up to 98% in the climatic test chamber (author's transl)].

    Science.gov (United States)

    Rüden, H; Botzenhart, K; Mihm, U; Tenge, H; Thofern, E

    1975-07-01

    1. At high humidities up to 98%, an increase in bacteria cannot be detected. This applies to all HEPA filters investigated from the various manufacturers, independent of whether they are hydrophilic or hydrophobic, used or unused. 2. Fungal growth can only be obtained when large amounts of nutrient material (e.g. bacterial cultures) are present. In these cases a streaky growth appears . Under normal conditions of use, however, such intense contamination is not to be expected because of the prefiltration. Penetration only occurs with fungi. 3. Limitation of supply air humidity to 90% or less seems therefore to be unjustified on the basis of these investigations, if prefiltration and a satisfactory intermixing section can be guaranteed technically, and condensation is avoided. 4. HEPA filters of Grade S from various manufacturers and with different behaviour with respect to water do not allow bacterial growth even in the presence of nutrients. Additional measures for the killing of bacteria are therefore not considered necessary.

  15. Filter-adsorber aging assessment

    Energy Technology Data Exchange (ETDEWEB)

    Winegardner, W.K. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-02-01

    An aging assessment of high-efficiency particulate (HEPA) air filters and activated carbon gas adsorption units was performed by the Pacific Northwest Laboratory as part of the U.S. Nuclear Regulatory Commission`s (USNRC) Nuclear Plant Aging Research (NPAR) Program. This evaluation of the general process in which characteristics of these two components gradually change with time or use included the compilation of information concerning failure experience, stressors, aging mechanisms and effects, and inspection, surveillance, and monitoring methods (ISMM). Stressors, the agents or stimuli that can produce aging degradation, include heat, radiation, volatile contaminants, and even normal concentrations of aerosol particles and gasses. In an experimental evaluation of degradation in terms of the tensile breaking strength of aged filter media specimens, over forty percent of the samples did not meet specifications for new material. Chemical and physical reactions can gradually embrittle sealants and gaskets as well as filter media. Mechanisms that can lead to impaired adsorber performance are associated with the loss of potentially available active sites as a result of the exposure of the carbon to airborne moisture or volatile organic compounds. Inspection, surveillance, and monitoring methods have been established to observe filter pressure drop buildup, check HEPA filters and adsorbers for bypass, and determine the retention effectiveness of aged carbon. These evaluations of installed filters do not reveal degradation in terms of reduced media strength but that under normal conditions aged media can continue to effectively retain particles. However, this degradation may be important when considering the likelihood of moisture, steam, and higher particle loadings during severe accidents and the fact it is probable that the filters have been in use for an extended period.

  16. 49 CFR 173.305 - Charging of cylinders with a mixture of compressed gas and other material.

    Science.gov (United States)

    2010-10-01

    ... Packaging § 173.305 Charging of cylinders with a mixture of compressed gas and other material. (a) Detailed... 49 Transportation 2 2010-10-01 2010-10-01 false Charging of cylinders with a mixture of compressed gas and other material. 173.305 Section 173.305 Transportation Other Regulations Relating to...

  17. Pennsylvania's technologically enhanced, naturally occurring radioactive material experiences and studies of the oil and gas industry.

    Science.gov (United States)

    Allard, David J

    2015-02-01

    This presentation provides an overview of the Commonwealth of Pennsylvania's experiences and ongoing studies related to technologically enhanced, naturally occurring radioactive material (TENORM) in the oil and gas industry. It has been known for many years that Pennsylvania's geology is unique, with several areas having relatively high levels of natural uranium and thorium. In the 1950s, a few areas of the state were evaluated for commercial uranium production. In the late 1970s, scoping studies of radon in homes prompted the Pennsylvania Department of Environmental Protection (DEP) Bureau of Radiation Protection (BRP) to begin planning for a larger state-wide radon study. The BRP and Oil and Gas Bureau also performed a TENORM study of produced water in the early 1990s for a number of conventional oil and gas wells. More recently, BRP and the Bureau of Solid Waste developed radiation monitoring regulations for all Pennsylvania solid waste disposal facilities. These were implemented in 2001, prompting another evaluation of oil and gas operations and sludge generated from the treatment of conventionally produced water and brine but mainly focused on the disposal of TENORM solid waste in the state's Resource Conservation and Recovery Act Subtitle D landfills. However, since 2008, the increase in volumes of gas well wastewater and levels of Ra observed in the unconventional shale gas well flow-back fracking water has compelled DEP to fully re-examine these oil and gas operations. Specifically, with BRP in the lead, a new TENORM study of oil and gas operations and related wastewater treatment operations has been initiated (), supported by an American National Standards Institute standard on TENORM () and a U.S. Government Accountability Office report on shale resource development and risks (). This study began in early 2013 and will examine the potential public and worker radiation exposure and environmental impact as well as re-evaluate TENORM waste disposal. This

  18. Effect of anode material on the breakdown in low-pressure helium gas

    Science.gov (United States)

    Demidov, V. I.; Adams, S. F.; Kudryavtsev, A. A.; Kurlyandskaya, I. P.; Miles, J. A.; Tolson, B. A.

    2017-10-01

    The electric breakdown of gases is one of the fundamental phenomena of gas discharge physics. It has been studied for a long time but still attracts incessant interest of researchers. Besides the interesting physics, breakdown is important for many applications including development of reliable electric insulation in electric grids and the study of different aspects of gas discharge physics. In this work an experimental study of the electric breakdown in helium gas for the plane-parallel electrode configuration has been conducted using a copper cathode and a variety of anode materials: copper, aluminum, stainless steel, graphite, platinum-plated aluminum and gold-plated aluminum. According to the Paschen law for studied electrode configuration, the breakdown voltage is a function of the product of gas pressure and inter-electrode gap. The breakdown processes on the left, lower pressure side of the Paschen curve have been the subject of this investigation. For those pressures, the Paschen curve may become multi-valued, where any given pressure corresponds to three breakdown voltage values. It was experimentally demonstrated that the form of the Paschen curve might strongly depend on the material of the anode and the cleanness of the anode surface. A possible explanation for this phenomenon is that electrons streaming from the cathode are reflected by the surface of the anode.

  19. Effect of anode material on the breakdown in low-pressure helium gas

    Science.gov (United States)

    Adams, S. F.; Demidov, V. I.; Kudryavtsev, A. A.; Kurlyandskaya, I. P.; Miles, J. A.; Tolson, B. A.

    2017-11-01

    An experimental study of the electric breakdown in helium gas for the plane-parallel electrode configuration has been conducted using a copper cathode and a variety of anode materials: copper, aluminum, stainless steel, graphite, platinum-plated aluminum and goldplated aluminum. According to the Paschen law for studied electrode configuration, the breakdown voltage is a function of the product of gas pressure and inter-electrode gap. The breakdown processes on the left, lower pressure side of the Paschen curve have been the subject of this investigation. For those pressures, the Paschen curve may become multi-valued, where any given pressure corresponds to three breakdown voltage values. It was experimentally demonstrated that the form of the Paschen curve might strongly depend on the material of the anode and the cleanness of the anode surface. A possible explanation for this phenomenon is that electrons streaming from the cathode are reflected by the surface of the anode.

  20. A compressed hydrogen gas storage system with an integrated phase change material

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus Damgaard; Jørgensen, Jens Erik

    2015-01-01

    change material, mainly occurs after the fueling is completed, resulting in a higher hydrogen peak temperature inside the tank and a lower fuelled mass than a gas-cooled system. Such a mass reduction accounts for 12% with respect to the case of a standard tank system fuelled at -40 °C.......A dynamic fueling model is built to simulate the fueling process of a hydrogen tank with an integrated passive cooling system. The study investigates the possibility of absorbing a part of the heat of compression in the high latent-heat material during melting, with the aim of keeping the walls...... below the critical temperature of 85 °C, while filling the hydrogen at ambient temperature. Results show that a 10-mm-thick layer of paraffin wax can absorb enough heat to reduce the adiabatic temperature by 20 K when compared to a standard Type IV tank. The heat transfer from the gas to the phase...

  1. HEPA Filter Vulnerability Assessment

    International Nuclear Information System (INIS)

    GUSTAVSON, R.D.

    2000-01-01

    This assessment of High Efficiency Particulate Air (HEPA) filter vulnerability was requested by the USDOE Office of River Protection (ORP) to satisfy a DOE-HQ directive to evaluate the effect of filter degradation on the facility authorization basis assumptions. Within the scope of this assessment are ventilation system HEPA filters that are classified as Safety-Class (SC) or Safety-Significant (SS) components that perform an accident mitigation function. The objective of the assessment is to verify whether HEPA filters that perform a safety function during an accident are likely to perform as intended to limit release of hazardous or radioactive materials, considering factors that could degrade the filters. Filter degradation factors considered include aging, wetting of filters, exposure to high temperature, exposure to corrosive or reactive chemicals, and exposure to radiation. Screening and evaluation criteria were developed by a site-wide group of HVAC engineers and HEPA filter experts from published empirical data. For River Protection Project (RPP) filters, the only degradation factor that exceeded the screening threshold was for filter aging. Subsequent evaluation of the effect of filter aging on the filter strength was conducted, and the results were compared with required performance to meet the conditions assumed in the RPP Authorization Basis (AB). It was found that the reduction in filter strength due to aging does not affect the filter performance requirements as specified in the AB. A portion of the HEPA filter vulnerability assessment is being conducted by the ORP and is not part of the scope of this study. The ORP is conducting an assessment of the existing policies and programs relating to maintenance, testing, and change-out of HEPA filters used for SC/SS service. This document presents the results of a HEPA filter vulnerability assessment conducted for the River protection project as requested by the DOE Office of River Protection

  2. Simulating novel gas turbine conditions for materials assessment: cascade design and operation

    OpenAIRE

    Sumner, Joy; Simms, Nigel J.; Stamm, W.; Oakley, John

    2017-01-01

    Integrated gasification combined cycles can incorporate pre-combustion carbon capture. High-H2 syngas produces high H2O levels after combustion, potentially accelerating gas turbine component damage. Determining materials systems’ suitability for this novel environment requires exposures in representative environments. Thus, an existing 0.7 MW burner rig was modified to generate the combustion environment and incorporate a cascade of 15 air-cooled turbine blades. Computational fluid dynamic c...

  3. Binary-collision-approximation simulation for noble gas irradiation onto plasma facing materials

    International Nuclear Information System (INIS)

    Saito, Seiki; Nakamura, Hiroaki; Takayama, Arimichi; Ito, Atsushi M

    2014-01-01

    A number of experiments show that helium plasma constructs filament (fuzz) structures whose diameter is in nanometer-scale on the tungsten material under the suitable experimental condition. In this paper, binary-collision-approximation-based simulation is performed to reveal the mechanism and the conditions of fuzz formation of tungsten material under plasma irradiation. The irradiation of the plasma of hydrogen, deuterium, and tritium, and also the plasma of noble gas such as helium, neon, and argon atoms are investigated. The possibility of fuzz formation is discussed on the simulation result of penetration depth of the incident atoms

  4. Wettability in the liquid Cu-Ag alloy – fireproof materialgas phase system

    Directory of Open Access Journals (Sweden)

    G. Siwiec

    2013-07-01

    Full Text Available In the present paper, results of wettability studies on the liquid metal – fireproof materialgas phase system using copper and Cu-Ag alloys as well as typical fireproof materials, i.e. aluminium oxide, magnesium oxide and graphite, are presented. Contact angle measurements were conducted at 1 373–1 573 K by means of a high-temperature microscope coupled with a camera and a computer equipped with a program for recording and analysing images. For the measurements, the sessile drop method was used.

  5. Formation and emissions of carbonyls during and following gas-phase ozonation of indoor materials

    DEFF Research Database (Denmark)

    Poppendieck, D.G.; Hubbard, H.F.; Weschler, Charles J.

    2007-01-01

    Ozone concentrations that are several orders of magnitude greater than typical urban ambient concentrations are necessary for gas-phase ozonation of buildings, either for deodorization or for disinfection of biological agents. However, there is currently no published literature on the interaction...... relatively high BOBP releases. The greatest overall BOBP mass releases were observed for three materials that building occupants might have significant contact with: paper, office partition, and medium density fiberboard, e.g., often used in office furniture. These materials also exhibited extended BOBP...

  6. Electron microscopic observation of fractures in carbonaceous materials produced by cracking of natural gas

    International Nuclear Information System (INIS)

    Blanchard, R.; Pelissier, J.; Pluchery, M.

    1964-01-01

    Circulating natural gas at 900 deg. C in an agglomerate of crushed graphite powder results in the formation of a compact material with high mechanical properties. Electron microscopic observation of fracture in resilience and compression specimens have been carried on, expecting a correlation between their mechanical properties and micrographic aspects. Fracture proceeds across the graphite grains and through the surrounding pyrocarbon as well. Heat-treated materials exhibit poorer mechanical properties: these changes could not be evidence in the micro-fractographic aspects of pyrocarbon; they may however account for differences in the fracture of the graphite grains. (authors) [fr

  7. Materials and Structures Research for Gas Turbine Applications Within the NASA Subsonic Fixed Wing Project

    Science.gov (United States)

    Hurst, Janet

    2011-01-01

    A brief overview is presented of the current materials and structures research geared toward propulsion applications for NASA s Subsonic Fixed Wing Project one of four projects within the Fundamental Aeronautics Program of the NASA Aeronautics Research Mission Directorate. The Subsonic Fixed Wing (SFW) Project has selected challenging goals which anticipate an increasing emphasis on aviation s impact upon the global issue of environmental responsibility. These goals are greatly reduced noise, reduced emissions and reduced fuel consumption and address 25 to 30 years of technology development. Successful implementation of these demanding goals will require development of new materials and structural approaches within gas turbine propulsion technology. The Materials and Structures discipline, within the SFW project, comprise cross-cutting technologies ranging from basic investigations to component validation in laboratory environments. Material advances are teamed with innovative designs in a multidisciplinary approach with the resulting technology advances directed to promote the goals of reduced noise and emissions along with improved performance.

  8. Simple Synthesis of ZnCo2O4 Nanoparticles as Gas-sensing Materials

    Directory of Open Access Journals (Sweden)

    S. V. Bangale

    2011-11-01

    Full Text Available Semiconductive nanometer-size material ZnCo2O4 was synthesized by a solution combustion reaction of inorganic reagents of Zn(NO33. 6H2O, Co(NO33.6H2O and glycine as a fuel. The process was a convenient, environment friendly, inexpensive and efficient preparation method for the ZnCo2O4 nanomaterial. The synthesized materials were characterized by TG/DTA, XRD, EDX, SEM, and TEM. Conductance responses of the nanocrystalline ZnCo2O4 thick film were measured by exposing the film to reducing gases like Acetone, Ethanol, Ammonia (NH3, Hydrogen (H2, Hydrogen sulphide (H2S, Chlorine (Cl2 and Liquefied petroleum gas (LPG. It was found that the sensors exhibited various sensing responses to these gases at different operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. The results demonstrated that ZnCo2O4 can be used as a new type of gas-sensing material which has a high sensitivity and good selectivity to Liquefied petroleum gas (LPG at 100 ppm.

  9. Accurate van der Waals force field for gas adsorption in porous materials.

    Science.gov (United States)

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Air filters for use at nuclear facilities

    International Nuclear Information System (INIS)

    Linder, P.

    1970-01-01

    The ventilation system of a nuclear facility plays a vital role in ensuring that the air in working areas and the environment remains free from radioactive contamination. An earlier IAEA publication, Techniques for Controlling Air Pollution from the Operation of Nuclear Facilities, Safety Series No. 17, deals with the design and operation of ventilation systems at nuclear facilities. These systems are usually provided with air-cleaning devices which remove the contaminants from the air. This publication is intended as a guide to those who are concerned with the design of air-filtering systems and with the testing, operation and maintenance of air-filter installations at nuclear facilities. Emphasis is mainly placed on so-called high-efficiency particulate air filters (HEPA filters) and on providing general information on them. Besides describing the usual filter types, their dimensions and construction materials, the guidebook attempts to explain their properties and behaviour under different operating conditions. It also gives advice on testing and handling the filters so that effective and safe performance is ensured. The guidebook should serve as an introduction to the use of high efficiency particulate air filters in countries where work with radioactive materials has only recently commenced. The list of references at the end of the book indicates sources of more advanced information for those who already have comprehensive experience in this field. It is assumed here that the filters are obtained from a manufacturer, and the guidebook thus contains no information on the design and development of the filter itself, nor does it deal with the cleaning of the intake air to a plant, with gas sorption or protective respiratory equipment

  11. Energy-filtered environmental transmission electron microscopy for the assessment of solid-gas reactions at elevated temperature: NiO/YSZ-H2 as a case study.

    Science.gov (United States)

    Jeangros, Q; Hansen, T W; Wagner, J B; Dunin-Borkowski, R E; Hébert, C; Van Herle, J; Hessler-Wyser, A

    2016-10-01

    A novel approach, which is based on the analysis of sequences of images recorded using energy-filtered transmission electron microscopy and can be used to assess the reaction of a solid with a gas at elevated temperature, is illustrated for the reduction of a NiO/ceramic solid oxide fuel cell anode in 1.3mbar of H2. Three-window elemental maps and jump-ratio images of the O K edge and total inelastic mean free path images are recorded as a function of temperature and used to provide local and quantitative information about the reaction kinetics and the volume changes that result from the reaction. Under certain assumptions, the speed of progression of the reaction front in all three dimensions is obtained, thereby providing a three-dimensional understanding of the reaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of organophosphate pesticides in filtered water by gas chromatography with flame photometric detection

    Science.gov (United States)

    Jha, Virendra K.; Wydoski, Duane S.

    2002-01-01

    A method for the isolation of 20 parent organophosphate pesticides and 5 pesticide degradates from filtered natural-water samples is described. Seven of these compounds are reported permanently with an estimated concentration because of performance issues. Water samples are filtered to remove suspended particulate matter, and then 1 liter of filtrate is pumped through disposable solid-phase extraction columns that contain octadecyl-bonded porous silica to extract the compounds. The C-18 columns are dried with nitrogen gas, and method compounds are eluted from the columns with ethyl acetate. The extract is analyzed by dual capillary-column gas chromatography with flame photometric detection. Single-operator method detection limits in all three water-matrix samples ranged from 0.004 to 0.012 microgram per liter. Method performance was validated by spiking all compounds into three different matrices at three different concentrations. Eight replicates were analyzed at each concentration level in each matrix. Mean recoveries of method compounds spiked in surface-water samples ranged from 39 to 149 percent and those in ground-water samples ranged from 40 to 124 percent for all pesticides except dimethoate. Mean recoveries of method compounds spiked in reagent-water samples ranged from 41 to 119 percent for all pesticides except dimethoate. Dimethoate exhibited reduced recoveries (mean of 43 percent in low- and medium-concentration level spiked samples and 20 percent in high-concentration level spiked samples) in all matrices because of incomplete collection on the C-18 column. As a result, concen-trations of dimethoate and six other compounds (based on performance issues) in samples are reported in this method with an estimated remark code.

  13. Effects of a material filter on the performance of a gamma camera GE400 XC/T in Tc-99m imaging

    International Nuclear Information System (INIS)

    Sayed Inayatullah Shah; Leeman, S.

    2002-01-01

    The effect of using an unconventional Sn (Tin) material filter in conjunction with a standard energy window (126 keV - 154 keV) on spatial resolution, and MTF is measured. The system sensitivity, standard deviation and SNR in a transverse image slice of a uniform section of a cylindrical phantom have also been investigated. Data were collected by scanning a line source in both air and in scattering medium for determining spatial resolution and MTF. SPECT data for system sensitivity, standard deviation and SNR were gathered by scanning a cylindrical phantom filled with Tc-99m, both with and without the material filter. Both LEGP and LEHR collimators are used. Results obtained from the data that mere acquired with the material filter show an overall improvement, with an expected reduction only in system sensitivity. It Is concluded that the technique could be useful for some SPECT clinical studies in which, for instance, scanning of relatively small cold or hot regions in scattering media, is called for. (Author)

  14. Changing ventilation filters

    International Nuclear Information System (INIS)

    Hackney, S.

    1980-01-01

    A filter changing unit has a door which interlocks with the door of a filter chamber so as to prevent contamination of the outer surfaces of the doors by radioactive material collected on the filter element and a movable support which enables a filter chamber thereonto to be stored within the unit in such a way that the doors of the unit and the filter chamber can be replaced. The door pivots and interlocks with another door by means of a bolt, a seal around the periphery lip of the first door engages the periphery of the second door to seal the gap. A support pivots into a lower filter element storage position. Inspection windows and glove ports are provided. The unit is releasably connected to the filter chamber by bolts engaging in a flange provided around an opening. (author)

  15. Radiation effects on polymer materials. Ionizing radiation induces degradation or improvement? (2) Gas evolution by irradiation

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo

    2005-01-01

    The present article reviews gas evolution from organic polymers induced by ionizing radiations, focusing on gamma-ray irradiation of PE (polyethylene) and PP (polypropylene)-model compounds at temperatures from -77 to 55degC. In the polyolefins, the main gas evolved by irradiation is hydrogen with G-value of 3-4 at room temperatures and G(H 2 ) is 1.8 at 77K. For PE, G(H 2 ) is higher for the low-density PE than for higher-density PE. For the halogenated polymers as PVC, etc., evolved gas is hydrogen halogenated: G(HCl)=6.8 for PVC. For the case where the irradiation is accompanied with the oxidation of polymers, the de-oxygenation and formation of carboxylic radicals are remarkably high and known to emit a bad smell which depends on the thickness of oxidized layers. In conclusion, the gas evolution can be estimated by considering the molecular structure of polymer materials. (S.Ohno)

  16. Gas chromatographic study of degradation phenomena concerning building and cultural heritage materials.

    Science.gov (United States)

    Metaxa, E; Agelakopoulou, T; Bassiotis, I; Karagianni, Ch; Roubani-Kalantzopoulou, F

    2009-05-30

    Air pollution influences all aspects of social and economical life nowadays. In order to investigate the impact of air pollution on materials of works of art, the method of Reversed Flow-Inverse Gas Chromatography has been selected. The presence of various atmospheric pollutants is studied on marbles, oxides--building materials and samples of authentic statues from the Greek Archaeological Museums of Kavala and of Philippi. The method leads to the determination of several physicochemical quantities and the characterization of the heterogeneous surfaces of these solids. Moreover, the influence of a second pollutant (synergistic effect) is examined. The structure, the properties and the behavior of the materials are examined by X-Ray Diffraction, Scanning Electron Microscopy and Raman Spectroscopy. Therefore, the precise measurement of the above mentioned quantities form the scientific basis for elucidation of the mechanism of the whole phenomenon of the degradation, thus providing a scientific platform to conservation procedures.

  17. Gas chromatographic study of degradation phenomena concerning building and cultural heritage materials

    International Nuclear Information System (INIS)

    Metaxa, E.; Agelakopoulou, T.; Bassiotis, I.; Karagianni, Ch.; Roubani-Kalantzopoulou, F.

    2009-01-01

    Air pollution influences all aspects of social and economical life nowadays. In order to investigate the impact of air pollution on materials of works of art, the method of Reversed Flow-Inverse Gas Chromatography has been selected. The presence of various atmospheric pollutants is studied on marbles, oxides-building materials and samples of authentic statues from the Greek Archaeological Museums of Kavala and of Philippi. The method leads to the determination of several physicochemical quantities and the characterization of the heterogeneous surfaces of these solids. Moreover, the influence of a second pollutant (synergistic effect) is examined. The structure, the properties and the behavior of the materials are examined by X-Ray Diffraction, Scanning Electron Microscopy and Raman Spectroscopy. Therefore, the precise measurement of the above mentioned quantities form the scientific basis for elucidation of the mechanism of the whole phenomenon of the degradation, thus providing a scientific platform to conservation procedures.

  18. Carbon-Carbon Composites as Recuperator Materials for Direct Gas Brayton Systems

    International Nuclear Information System (INIS)

    RA Wolf

    2006-01-01

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed

  19. Carbon-Carbon Composites as Recuperator Material for Direct Gas Brayton Systems

    Energy Technology Data Exchange (ETDEWEB)

    RA Wolf

    2006-07-19

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed.

  20. Integration of phase change materials in compressed hydrogen gas systems: Modelling and parametric analysis

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus; Jørgensen, Jens-Erik

    2016-01-01

    to the phase change material, mainly occurs after the fueling is completed, resulting in a hydrogen peak temperature higher than 85 C and a lower fueled mass than a gas-cooled system. Such a mass reduction accounts for 12% with respect to the case of a standard tank system fueled at 40 C. A parametric analysis...... that embraces the main thermal properties of the heat-absorbing material as well as the major design parameters is here carried out to determine possible solutions. It is found that the improvement of a single thermal property does not provide any significant benefit and that the most effective strategy......A dynamic fueling model is built to simulate the fueling process of a hydrogen tank with an integrated passive cooling system. The study investigates the possibility of absorbing a part of the heat of compression in the high latent-heat material during melting, with the aim of saving the monetary...

  1. Chemical form of release tritium from solid breeder materials under the various purge gas conditions

    International Nuclear Information System (INIS)

    Tomohiro Kinjyo; Masabumi Nishikawa; Naoya Yamashita; Takanori Koyama; Takaaki Tanifuji; Mikio Enoeda

    2006-01-01

    Understanding of the release behavior of bred tritium from solid breeder materials is necessary to design tritium recovery system from blanket of a fusion reactor because permeation loss of bred tritium in the piping system or type of tritium recovery system depends on the tritium release behavior. Chemical form of released tritium from Li 4 SiO 4 (from FzK), LiAlO 2 (from JAERI), Li 2 TiO 3 (from CEA) and Li 2 ZrO 3 (from MAPI) under various purge gas condition is discussed in this study by using the data obtained from the out-pile tritium release experiment in JAEA. It is experimentally confirmed in this study that not a little portion of bred tritium is release as the chemical form of HTO even when hydrogen is added to the purge gas. It is also confirmed that desorption of surface water together with liberation of water vapor formed by water formation reaction from contact of hydrogen with solid breeder materials at high temperature gives rather high partial pressure of water vapor in the blanket purge gas. Tritium liberation model to represent the release behavior of bred tritium from solid breeder materials has been developed by the present authors considering tritium migration in bulk of grain, tritium transfer from bulk to surface and surface reactions on grain. Then, competition of such surface reactions as adsorption/desorption, isotope exchange reaction with hydrogen in purge gas and isotope exchange reaction with water vapor in purge gas decides the portion of HTO and HT. Using the tritium release model obtained so far, the portion of HTO or HT released from solid breeder materials is estimated and compared with observed values under various conditions in this study. The tritium release behavior and chemical form of tritium in the test blanket module with solid breeder under the ITER condition is also discussed based on the estimation obtained using the tritium release model formed by the present authors. (author)

  2. Vanadium As a Potential Membrane Material for Carbon Capture: Effects of Minor Flue Gas Species.

    Science.gov (United States)

    Yuan, Mengyao; Liguori, Simona; Lee, Kyoungjin; Van Campen, Douglas G; Toney, Michael F; Wilcox, Jennifer

    2017-10-03

    Vanadium and its surface oxides were studied as a potential nitrogen-selective membrane material for indirect carbon capture from coal or natural gas power plants. The effects of minor flue gas components (SO 2 , NO, NO 2 , H 2 O, and O 2 ) on vanadium at 500-600 °C were investigated by thermochemical exposure in combination with X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and in situ X-ray diffraction (XRD). The results showed that SO 2 , NO, and NO 2 are unlikely to have adsorbed on the surface vanadium oxides at 600 °C after exposure for up to 10 h, although NO and NO 2 may have exhibited oxidizing effects (e.g., exposure to 250 ppmv NO/N 2 resulted in an 2.4 times increase in surface V 2 O 5 compared to exposure to just N 2 ). We hypothesize that decomposition of surface vanadium oxides and diffusion of surface oxygen into the metal bulk are both important mechanisms affecting the composition and morphology of the vanadium membrane. The results and hypothesis suggest that the carbon capture performance of the vanadium membrane can potentially be strengthened by material and process improvements such as alloying, operating temperature reduction, and flue gas treatment.

  3. Opportunities of influence of plasma streams formed in IKA with continuos nor king gas filling en the surface of materials

    International Nuclear Information System (INIS)

    Useinov, B.M.; Useinova, A.M.; Amrenova, A.U.; Pusankov, S.A.; Sartin, S.A.; Virko, P.G.

    2001-01-01

    The results of the investigation of influence of plasma stream formed in IKA with continuous working gas filling on the surface of stainless steel 12X18H10T and aluminum are given in this article. It is shown here that the effect of influence of plasma stream on the surface of materials depends on the way of working gas filling. There is the comparison of influence of plasma stream formed in plasma accelerator with impulse and continuous working gas filling

  4. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part II: The Laws of Thermodynamics.

    Science.gov (United States)

    Smith, Brent

    2002-01-01

    Describes the laws of thermodynamics as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of ideal gas. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (YDS)

  5. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part I: Equations of State.

    Science.gov (United States)

    Smith, Brent

    2002-01-01

    Describes equations of state as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of an ideal gas and explains the molar basis of REM. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (Contains 22 references.)…

  6. Naturally occurring radioactive materials (NORM) in the oil and gas processing and production facilities

    International Nuclear Information System (INIS)

    Najera F, J.

    1994-01-01

    NORM contamination is produced by concentration in petroleum facilities of naturally occurring radioactive materials. The presence of NORM in petroleum reservoirs and in the oil and gas industry has been widely recognized. It's not a critical technical problem if you proceed timely to solve it. NORM is a great but controllable hazard to the human health and the environment, and represents a severe waste management problem. We suggest to the latino american oil companies to conduct studies to detect NORM contamination in their facilities an use to them to plan the appropriate actions to control the situation. (author). 15 refs

  7. Radioactive contamination of Natural Material and Decontamination methods In the Oil and Gas Industry

    International Nuclear Information System (INIS)

    Alsumiri, M.; Qsem, N.

    2007-01-01

    The aim of our papers was to elaborate the sources materials and the classification of waste radioactive contamination in oil field equipment can contain hard radioactive scales and sludges which appear as coatings or sediments NORM is brought to the surface through the down hole tubing as part of oil -gas -water mixture. Decontamination methods ,Manual removal and vacuum cleaning Mechanical dry and wet abrasive methods, Chemical descaling ,High pressure water jetting . Optimize occupational and public doses - minimize risk to humans and environment but be cost-effective

  8. Assessing and monitoring the effects of filter material amendments on the biophysicochemical properties during composting of solid winery waste under open field and varying climatic conditions.

    Science.gov (United States)

    Mtimkulu, Y; Meyer, A H; Mulidzi, A R; Shange, P L; Nchu, F

    2017-01-01

    Waste management in winery and distillery industries faces numerous disposal challenges as large volumes of both liquid and solid waste by-products are generated yearly during cellar practices. Composting has been suggested as a feasible option to beneficiate solid organic waste. This incentivized the quest for efficient composting protocols to be put in place. The objective of this study was to experiment with different composting strategies for spent winery solid waste. Compost materials consisting of chopped pruning grape stalks, skins, seed and spent wine filter material consisting of a mixture of organic and inorganic expend ingredients were mixed in compost heaps. The filter material component varied (in percentage) among five treatments: T1 (40%) lined, T2 (20%) lined, T3 (0%) lined, T4 (40%) ground material, lined and T5 (40%) unlined. Composting was allowed to proceed under open field conditions over 12months, from autumn to summer. Indicators such as temperature, moisture, enzyme activities, microbial counts, pH, and C/N ratio, were recorded. Generally, season (df=3, 16, P<0.05) had significant effects (df=1, 3, P<0.05) on heap temperature and moisture in all treatments. Similarly, microorganisms (actinobacteria and heterotrophs) varied significantly in all treatments in response to seasonal change (df=3, 16; P<0.05). Enzyme activities fluctuated in accordance with seasonal factors and compost maturity stages, with phosphatases, esterases, amino-peptidases, proteases and glycosyl-hydrolases being most prominent. Compared to treatments T2 and T3, compost treatments with higher percentage waste filter materials (T1, T4 and T5) had higher N (16,100-21,300mg/kg), P (1500-2300mg/kg), K (19,800-28,200mg/kg), neutral pH, and lower C/N ratios (13:1-10:1), which were also comparable with commercially produced composts. Filter materials therefore, appears to be a vital ingredient for composting of winery solid waste. Copyright © 2016 Elsevier Ltd. All rights

  9. Peltier heat measurements at a junction between materials exhibiting Fermi gas and Fermi liquid behaviour

    International Nuclear Information System (INIS)

    Kuznetsov, V L; Kuznetsova, L A; Rowe, D M

    2003-01-01

    The feasibility of improving the conversion efficiency of a thermoelectric converter by employing interfaces between materials exhibiting Fermi gas (FG) and Fermi liquid (FL) behaviour has been studied. Thermocouples consisting of a semiconductor and a strongly correlated material have been fabricated and the Peltier heat measured over the temperature range 15 deg 330 K. A number of materials possessing different types of strong electron correlation have been synthesized including the heavy fermion compound YbAl 3 , manganite La 0.7 Ca 0.3 MnO 3 and high-T c superconductor YBa 2 Cu 3 O 7δ . n- and p-Bi 2 Te 3 -based solid solutions as well as n-Bi 0.85 Sb 0.15 solid solution have also been synthesized and used as materials exhibiting FG properties. Experimental measurements of the Peltier heat were compared to the results of calculations based on preliminary measured thermoelectric properties of materials and electrical contact resistance at the interfaces. The potential of employing FG/FL interfaces in thermoelectric energy conversion is discussed

  10. Water washable stainless steel HEPA filter

    Science.gov (United States)

    Phillips, Terrance D.

    2001-01-01

    The invention is a high efficiency particulate (HEPA) filter apparatus and system, and method for assaying particulates. The HEPA filter provides for capture of 99.99% or greater of particulates from a gas stream, with collection of particulates on the surface of the filter media. The invention provides a filter system that can be cleaned and regenerated in situ.

  11. Gas-Transport-Property Performance of Hybrid Carbon Molecular Sieve−Polymer Materials

    KAUST Repository

    Das, Mita

    2010-10-06

    High-performance hybrid materials using carbon molecular sieve materials and 6FDA-6FpDA were produced. A detailed analysis of the effects of casting processes and the annealing temperature is reported. Two existing major obstacles, sieve agglomeration and residual stress, were addressed in this work, and subsequently a new membrane formation technique was developed to produce high-performing membranes. The successfully improved interfacial region of the hybrid membranes allows the sieves to increase the selectivity of the membranes above the neat polymer properties. Furthermore, an additional performance enhancement was seen with increased sieve loading in the hybrid membranes, leading to an actual performance above the upper bound for pure polymer membranes. The membranes were also tested under a mixed-gas environment, which further demonstrated promising results. © 2010 American Chemical Society.

  12. Iodine Gas Adsorption in Nanoporous Materials: A Combined Experiment–Modeling Study

    Energy Technology Data Exchange (ETDEWEB)

    Sava Gallis, Dorina F.; Ermanoski, Ivan; Greathouse, Jeffrey A.; Chapman, Karena W.; Nenoff, Tina M.

    2017-02-13

    Here, we present a combined experimental and Grand Canonical Monte Carlo (GCMC) modeling study on the adsorption of iodine in three classes of nanoporous materials: activated charcoals, zeolites, and metal–organic frameworks (MOFs). Iodine adsorption profiles were measured for the first time in situ, with a uniquely designed sorption apparatus. It was determined that pore size and pore environment are responsible for a dynamic adsorption profile, correlated with distinct pressure ranges. At pressures below 0.3 atm, iodine adsorption is governed by a combination of small pores and extra-framework components (e.g., Ag+ ions in the zeolite mordenite). At regimes above 0.3 atm, the amount of iodine gas stored relates with an increase in pore size and specific surface area. GCMC results validate the trends noted experimentally and in addition provide a measure of the strength of the adsorbate–adsorbent interactions in these materials.

  13. Formation and emissions of carbonyls during and following gas-phase ozonation of indoor materials

    Science.gov (United States)

    Poppendieck, D. G.; Hubbard, H. F.; Weschler, C. J.; Corsi, R. L.

    Ozone concentrations that are several orders of magnitude greater than typical urban ambient concentrations are necessary for gas-phase ozonation of buildings, either for deodorization or for disinfection of biological agents. However, there is currently no published literature on the interaction of building materials and ozone under such extreme conditions. It would be useful to understand, for example in the case of building re-occupation planning, what types and amounts of reaction products may form and persist in a building after ozonation. In this study, 24 materials were exposed to ozone at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged from 1 to 20 mg m -2, with most of the carbonyls being of lower molecular weight (C 1-C 4). In contrast, total BOBP mass released from wood-based products ranged from 20 to 100 mg m -2, with a greater fraction of the BOBPs being heavier carbonyls (C 5-C 9). The total BOBP mass released during an ozonation event is a function of both the total surface area of the material and the BOBP emission rate per unit area of material. Ceiling tile, carpet, office partition, and gypsum wallboard with flat latex paint often have large surface areas in commercial buildings and these same materials exhibited relatively high BOBP releases. The greatest overall BOBP mass releases were observed for three materials that building occupants might have significant contact with: paper, office partition, and medium density fiberboard, e.g., often used in office furniture. These materials also exhibited extended BOBP persistence following ozonation; some BOBPs (e.g., nonanal) persist for months or more at emission rates large enough to result in indoor concentrations that exceed their odor

  14. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  15. Heat transfer characteristics of liquid-gas Taylor flows incorporating microencapsulated phase change materials

    International Nuclear Information System (INIS)

    Howard, J A; Walsh, P A

    2014-01-01

    This paper presents an investigation on the heat transfer characteristics associated with liquid-gas Taylor flows in mini channels incorporating microencapsulated phase change materials (MPCM). Taylor flows have been shown to result in heat transfer enhancements due to the fluid recirculation experienced within liquid slugs which is attributable to the alternating liquid slug and gas bubble flow structure. Microencapsulated phase change materials (MPCM) also offer significant potential with increased thermal capacity due to the latent heat required to cause phase change. The primary aim of this work was to examine the overall heat transfer potential associated with combining these two novel liquid cooling technologies. By investigating the local heat transfer characteristics, the augmentation/degradation over single phase liquid cooling was quantified while examining the effects of dimensionless variables, including Reynolds number, liquid slug length and gas void fraction. An experimental test facility was developed which had a heated test section and allowed MPCM-air Taylor flows to be subjected to a constant heat flux boundary condition. Infrared thermography was used to record high resolution experimental wall temperature measurements and determine local heat transfer coefficients from the thermal entrance point. 30.2% mass particle concentration of the MPCM suspension fluid was examined as it provided the maximum latent heat for absorption. Results demonstrate a significant reduction in experimental wall temperatures associated with MPCM-air Taylor flows when compared with the Graetz solution for conventional single phase coolants. Total enhancement in the thermally developed region is observed to be a combination of the individual contributions due to recirculation within the liquid slugs and also absorption of latent heat. Overall, the study highlights the potential heat transfer enhancements that are attainable within heat exchange devices employing MPCM

  16. Preliminary study of silica aerogel as a gas-equivalent material in ionization chambers

    Science.gov (United States)

    Caresana, M.; Zorloni, G.

    2017-12-01

    Since about two decades, a renewed interest on aerogels has risen. These peculiar materials show fairly unique properties. Thus, they are under investigation for both scientific and commercial purposes and new optimized production processes are studied. In this work, the possibility of using aerogel in the field of radiation detection is explored. The idea is to substitute the gas filling in a ionization chamber with the aerogel. The material possesses a density about 100 times greater than ambient pressure air. Where as the open-pore structure should allow the charge carriers to move freely. Small hydrophobic silica aerogel samples were studied. A custom ionization chamber, capable of working both with aerogel or in the classic gas set up, was built. The response of the chamber in current mode was investigated using an X-ray tube. The results obtained showed, under proper conditions, an enhancement of about 60 times of the current signal in the aerogel configuration with respect to the classic gas one. Moreover, some unusual behaviours were observed, i.e. time inertia of the signal and super-/sub-linear current response with respect to the dose rate. While testing high electric fields, aerogel configuration seemed to enhance the Townsend's effects. In order to represent the observed trends, a trapping-detrapping model is proposed, which is capable to predict semi-empirically the steady state currents measured. The time evolution of the signal is semi-quantitatively represented by the same model. The coefficients estimated by the fits are in agreement with similar trapping problems in the literature. In particular, a direct comparison between the benchmark of the FET silica gates and aerogel case endorses the idea that the same type of phenomenon occurs in the studied case.

  17. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

    International Nuclear Information System (INIS)

    Hamaguchi, Fumiya; Ando, Keita

    2015-01-01

    Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh–Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh–Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials

  18. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  19. Characterization of a Y-TZP Zirconia material for gas gun experiments

    Science.gov (United States)

    Goff, Michael; Millett, Jeremy; Whiteman, Glenn; Collinson, Mark; Ferguson, James

    2017-06-01

    A number of shots were carried out on the AWE single stage gas gun with Het-V diagnostics to determine the shock Hugoniot of a commercial Y-TZP Zirconia ceramic material (ρ 6.05 g/cc). Zirconia ceramic has a higher density and acoustic impedance than alumina, this allows for higher shock pressures to be achieved in impact velocity limited scenarios where conductive materials are not suitable. For example, when using electromagnetic particle velocity gauge diagnostics. The grade examined here was highly reflective to 1550 nm wavelengths, which negated the need for window materials when taking free surface velocity measurements. The shock Hugoniot was determined to be linear up to 13.4 GPa with the form Us = 5.82 + 2.20Up and the HEL was in the range of 7-9 GPa. Additionally data from lateral gauge shots examining the failure behavior of the material are reported on. ©British Crown Owned Copyright 2017/AWE

  20. Numerical study of canister filters with alternatives filter cap configurations

    Science.gov (United States)

    Mohammed, A. N.; Daud, A. R.; Abdullah, K.; Seri, S. M.; Razali, M. A.; Hushim, M. F.; Khalid, A.

    2017-09-01

    Air filtration system and filter play an important role in getting a good quality air into turbo machinery such as gas turbine. The filtration system and filter has improved the quality of air and protect the gas turbine part from contaminants which could bring damage. During separation of contaminants from the air, pressure drop cannot be avoided but it can be minimized thus helps to reduce the intake losses of the engine [1]. This study is focused on the configuration of the filter in order to obtain the minimal pressure drop along the filter. The configuration used is the basic filter geometry provided by Salutary Avenue Manufacturing Sdn Bhd. and two modified canister filter cap which is designed based on the basic filter model. The geometries of the filter are generated by using SOLIDWORKS software and Computational Fluid Dynamics (CFD) software is used to analyse and simulates the flow through the filter. In this study, the parameters of the inlet velocity are 0.032 m/s, 0.063 m/s, 0.094 m/s and 0.126 m/s. The total pressure drop produce by basic, modified filter 1 and 2 is 292.3 Pa, 251.11 Pa and 274.7 Pa. The pressure drop reduction for the modified filter 1 is 41.19 Pa and 14.1% lower compared to basic filter and the pressure drop reduction for modified filter 2 is 17.6 Pa and 6.02% lower compared to the basic filter. The pressure drops for the basic filter are slightly different with the Salutary Avenue filter due to limited data and experiment details. CFD software are very reliable in running a simulation rather than produces the prototypes and conduct the experiment thus reducing overall time and cost in this study.

  1. The effects of material loading and flow rate on the disinfection of pathogenic microorganisms using cation resin-silver nanoparticle filter system

    Science.gov (United States)

    Mpenyana-Monyatsi, L.; Mthombeni, N. H.; Onyango, M. S.; Momba, M. N. B.

    2017-08-01

    Waterborne diseases have a negative impact on public health in instances where the available drinking water is of a poor quality. Decentralised systems are needed to provide safe drinking water to rural communities. Therefore, the present study aimed to develop and investigate the point-of-use (POU) water treatment filter packed with resin-coated silver nanoparticles. The filter performance was evaluated by investigating the effects of various bed masses (10 g, 15 g, 20 g) and flow rates (2 mL/min, 5 mL/min, 10 mL/min) by means of breakthrough curves for the removal efficiency of presumptive Escherichia coli, Shigella dysenteriae, Salmonella typhimurium and Vibrio cholerae from spiked groundwater samples. The results revealed that, as the bed mass increases the breakthrough time also increases with regards to all targeted microorganisms. However, when the flow rate increases the breakthrough time decreased. These tests demonstrated that resin-coated silver nanoparticle can be an effective material in removing all targeted microorganisms at 100% removal efficiency before breakthrough points are achieved. Moreover the filter system demonstrated that it is capable of producing 15 L/day of treated water at an operating condition of 10 mL/min flow rate and 15 g bed mass, which is sufficient to provide for seven individuals in the household if they consume 2 L/person/day for drinking purpose. Therefore, the bed mass of the filter system should be increased in order for it to produce sufficient water that will conform to the daily needs of an individual.

  2. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain; Jung, Hun Bok; Carroll, Kenneth C.

    2018-01-23

    An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.

  3. Needs in Research and Development on materials for the gas coolant nuclear system: HTR/VHTR and GFR

    International Nuclear Information System (INIS)

    Billot, Ph.

    2003-01-01

    This presentation takes stock on the materials for high temperature reactors HTR (850 C), very high temperature VHTR(>1000 C) and fast neutrons high temperature GGF(850 C). It concerns the welding materials for the vessel, Ni-based superalloys for gas turbines, coatings, graphite, ceramics and corrosion studies. (A.L.B.)

  4. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, January 1, 1978--March 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-26

    The activities associated with the procurement of the materials for the screening test program, information from vendor certification for the materials received, and preliminary information from the materials characterization tests performed by GE are reported. The construction status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment are discussed. The final recommended impurity levels for the screening phase helium are presented and the rational behind this gas chemistry is discussed. The status of the data management system is presented.

  5. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    International Nuclear Information System (INIS)

    Shropshire, D.E.; Herring, J.S.

    2004-01-01

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  6. Treating landfill gas hydrogen sulphide with mineral wool waste (MWW) and rod mill waste (RMW).

    Science.gov (United States)

    Bergersen, Ove; Haarstad, Ketil

    2014-01-01

    Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Material Control and Accounting Design Considerations for High-Temperature Gas Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trond Bjornard; John Hockert

    2011-08-01

    The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work

  8. Gas cluster ion beam for the characterization of organic materials in submarine basalts as Mars analogs

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Naoko, E-mail: naoko.sano@ncl.ac.uk; Barlow, Anders J.; Cumpson, Peter J. [National EPSRC XPS Users' Service (NEXUS), School of Mechanical and Systems Engineering, Stephenson Building, Newcastle University, Newcastle-upon-Tyne NE1 7RU (United Kingdom); Purvis, Graham W. H.; Abbott, Geoffrey D.; Gray, Neil N. D. [School of Civil Engineering and Geosciences, Devonshire Building, Newcastle University, Newcastle-upon-Tyne NE1 7RU (United Kingdom)

    2016-07-15

    The solar system contains large quantities of organic compounds that can form complex molecular structures. The processing of organic compounds by biological systems leads to molecules with distinctive structural characteristics; thus, the detection and characterization of organic materials could lead to a high degree of confidence in the existence of extra-terrestrial life. Given the nature of the surface of most planetary bodies in the solar system, evidence of life is more likely to be found in the subsurface where conditions are more hospitable. Basalt is a common rock throughout the solar system and the primary rock type on Mars and Earth. Basalt is therefore a rock type that subsurface life might exploit and as such a suitable material for the study of methods required to detect and analyze organic material in rock. Telluric basalts from Earth represent an analog for extra-terrestrial rocks where the indigenous organic matter could be analyzed for molecular biosignatures. This study focuses on organic matter in the basalt with the use of surface analysis techniques utilizing Ar gas cluster ion beams (GCIB); time of flight secondary ion mass spectrometry (ToF-SIMS), and x-ray photoelectron spectroscopy (XPS), to characterize organic molecules. Tetramethylammonium hydroxide (TMAH) thermochemolysis was also used to support the data obtained using the surface analysis techniques. The authors demonstrate that organic molecules were found to be heterogeneously distributed within rock textures. A positive correlation was observed to exist between the presence of microtubule textures in the basalt and the organic compounds detected. From the results herein, the authors propose that ToF-SIMS with an Ar GCIB is effective at detecting organic materials in such geological samples, and ToF-SIMS combined with XPS and TMAH thermochemolysis may be a useful approach in the study of extra-terrestrial organic material and life.

  9. Gas cluster ion beam for the characterization of organic materials in submarine basalts as Mars analogs

    International Nuclear Information System (INIS)

    Sano, Naoko; Barlow, Anders J.; Cumpson, Peter J.; Purvis, Graham W. H.; Abbott, Geoffrey D.; Gray, Neil N. D.

    2016-01-01

    The solar system contains large quantities of organic compounds that can form complex molecular structures. The processing of organic compounds by biological systems leads to molecules with distinctive structural characteristics; thus, the detection and characterization of organic materials could lead to a high degree of confidence in the existence of extra-terrestrial life. Given the nature of the surface of most planetary bodies in the solar system, evidence of life is more likely to be found in the subsurface where conditions are more hospitable. Basalt is a common rock throughout the solar system and the primary rock type on Mars and Earth. Basalt is therefore a rock type that subsurface life might exploit and as such a suitable material for the study of methods required to detect and analyze organic material in rock. Telluric basalts from Earth represent an analog for extra-terrestrial rocks where the indigenous organic matter could be analyzed for molecular biosignatures. This study focuses on organic matter in the basalt with the use of surface analysis techniques utilizing Ar gas cluster ion beams (GCIB); time of flight secondary ion mass spectrometry (ToF-SIMS), and x-ray photoelectron spectroscopy (XPS), to characterize organic molecules. Tetramethylammonium hydroxide (TMAH) thermochemolysis was also used to support the data obtained using the surface analysis techniques. The authors demonstrate that organic molecules were found to be heterogeneously distributed within rock textures. A positive correlation was observed to exist between the presence of microtubule textures in the basalt and the organic compounds detected. From the results herein, the authors propose that ToF-SIMS with an Ar GCIB is effective at detecting organic materials in such geological samples, and ToF-SIMS combined with XPS and TMAH thermochemolysis may be a useful approach in the study of extra-terrestrial organic material and life.

  10. Materials considerations for UF6 gas-core reactor. Interim report for preliminary design study

    International Nuclear Information System (INIS)

    Wagner, P.

    1977-04-01

    The limiting materials problem in a high-temperature UF 6 core reactor is the corrosion of the core containment vessel. The UF 6 , the lower fluorides of uranium, and the fluorine that exist at the anticipated reactor operating conditions (1000 K and about one atmosphere UF 6 ) are all corrosive. Because of this, the materials evaluation effort for this reactor design study has concentrated on the identification of a viable system for the containment vessel that meets both the materials and neutronic requirements. A study of the literature has revealed that the most promising corrosion-resistant candidates are Ni or Ni-Al alloys. One of the conclusions of this work is that the containment vessel use a nickel liner or clad since the use of Ni as a structural member is precluded by its relative blackness to thermal neutrons. Estimates of corrosion rates of Ni and Ni-Al alloys, the effects of the pressure and temperature of F 2 on the corrosion rates, calculated equilibrium gas compositions at reactor core operating conditions, suggested methods of fabrication, and recommendations for future research and development are included

  11. Analisis Kekuatan Tangki CNG Ditinjau dengan Material Logam Lapis Komposit pada Kapal Pengangkut Compressed Natural Gas

    Directory of Open Access Journals (Sweden)

    Aulia Firmansah

    2013-03-01

    Full Text Available Pada penelitian ini, dilakukan analisa perbandingan pada kekuatan pressure vessel compressed natural gas. Pressure vessel yang digunakan yaitu tipe satu dan tipe tiga, tipe satu adalah tabung menggunakan material logam yaitu Carbon Steel SA 516 Grade 70 dan Aluminium Alloy T6-6061. Pada tabung tipe tiga material menggunakan Aluminium Alloy T6-6061 dengan lapisan Komposit (Carbon Fibre – Epoxy pada seluruh tabung (full wrapped. Sudut orientasi serat yang digunakan 54.73560 dan terdiri dari 4 lapis komposit yang membungkus aluminium. Variasi yang dilakukan pada tebal komposit yaitu 25% komposit, 50% komposit, dan 75% komposit. Pressure vessel mendapat perlakuan internal pressure sebesar 125 bar dan temperatur -300C. Analisa dilakukan dengan dua metode yaitu dengan perhitungan manual dan software finite element method (NASTRAN 2010. Dari hasil perhitungan tersebut tabung tipe satu dengan material logam terbukti aman karena memenuhi dari faktor keamanan yang ditentukan tetapi pressure vessel sangat berat. Pada tabung tipe tiga lamina dengan komposisi 75% komposit dan 50% komposit dinyatakan aman karena memenuhi dari kriteria tegangan maksimum. Sedangkan pada komposisi 25% komposit lamina mengalami kegagalan yang disebabkan terlalu rendahnya lapisan komposit. Dari keseluruhan hasil perhitungan dan analisa didapatkan komposisi ideal pressure vessel yaitu 75% komposit dan 25% aluminium dari tebal keseluruhan sehingga menghasilkan tegangan yang sangat kecil dan memiliki berat yang paling ringan.

  12. Wien filter

    NARCIS (Netherlands)

    Mook, H.W.

    1999-01-01

    The invention relates to a Wien filter provided with electrodes for generating an electric field, and magnetic poles for generating a magnetic field, said electrodes and magnetic poles being positioned around and having a finite length along a filter axis, and being positioned around the filter axis

  13. Rectifier Filters

    Directory of Open Access Journals (Sweden)

    Y. A. Bladyko

    2010-01-01

    Full Text Available The paper contains definition of a smoothing factor which is suitable for any rectifier filter. The formulae of complex smoothing factors have been developed for simple and complex passive filters. The paper shows conditions for application of calculation formulae and filters

  14. FILTER TREATMENT

    Science.gov (United States)

    Sutton, J.B.; Torrey, J.V.P.

    1958-08-26

    A process is described for reconditioning fused alumina filters which have become clogged by the accretion of bismuth phosphate in the filter pores, The method consists in contacting such filters with faming sulfuric acid, and maintaining such contact for a substantial period of time.

  15. Experiments in support of the Gas Dynamic Trap based facility for plasma–material interaction testing

    Energy Technology Data Exchange (ETDEWEB)

    Soldatkina, E.I., E-mail: E.I.Soldatkina@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Lavrentieva Prospect 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090 (Russian Federation); Arakcheev, A.S.; Bagryansky, P.A. [Budker Institute of Nuclear Physics SB RAS, Lavrentieva Prospect 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090 (Russian Federation)

    2013-11-15

    Highlights: • Measurement of plasma heat flux in the mirror of a GDT device had been conducted. • The power density up to 0.25 GW m{sup −2} was experimentally obtained. • Steady state operation has not been achieved due to short NBI pulse. • The possibility of creating the PMI setup based on GDT had been discussed. -- Abstract: The power density along the field lines in the scrape-off layer plasma in machines of the class of ITER, Wendelstein 7-X, NSTX-U is in the range of few hundreds megawatt per square meter. It is crucial for the future of tokamaks and stellarators to develop the plasma science and component technology to handle such high plasma heat fluxes. It would be valuable to produce parallel plasma heat fluxes at these power densities, impinging on test components at very shallow angles, as planned in tokamaks. The primary objective of this work is the direct measurement of plasma heat fluxes in the mirror throat of a Gas Dynamic Trap device. Options to develop a facility for plasma–material interaction testing based on the Gas Dynamic Trap are discussed.

  16. Microbial communities and greenhouse gas emissions associated with the biodegradation of specified risk material in compost

    International Nuclear Information System (INIS)

    Xu, Shanwei; Reuter, Tim; Gilroyed, Brandon H.; Tymensen, Lisa; Hao, Yongxin; Hao, Xiying; Belosevic, Miodrag; Leonard, Jerry J.; McAllister, Tim A.

    2013-01-01

    Highlights: ► Addition of feathers altered bacterial and fungal communities in compost. ► Microbial communities degrading SRM and compost matrix were distinct. ► Addition of feathers may enrich for microbial communities that degrade SRM. ► Inclusion of feather in compost increased both CH 4 and N 2 O emissions from compost. ► Density of methanogens and methanotrophs were weakly associated with CH 4 emissions. - Abstract: Provided that infectious prions (PrP Sc ) are inactivated, composting of specified risk material (SRM) may be a viable alternative to rendering and landfilling. In this study, bacterial and fungal communities as well as greenhouse gas emissions associated with the degradation of SRM were examined in laboratory composters over two 14 day composting cycles. Chicken feathers were mixed into compost to enrich for microbial communities involved in the degradation of keratin and other recalcitrant proteins such as prions. Feathers altered the composition of bacterial and fungal communities primarily during the first cycle. The bacterial genera Saccharomonospora, Thermobifida, Thermoactinomycetaceae, Thiohalospira, Pseudomonas, Actinomadura, and Enterobacter, and the fungal genera Dothideomycetes, Cladosporium, Chaetomium, and Trichaptum were identified as candidates involved in SRM degradation. Feathers increased (P 4 primarily during the early stages of the first cycle and N 2 O during the second. Although inclusion of feathers in compost increases greenhouse gas emissions, it may promote the establishment of microbial communities that are more adept at degrading SRM and recalcitrant proteins such as keratin and PrP Sc

  17. Equation of material balance for systems of double porosity with layer of initial gas

    International Nuclear Information System (INIS)

    Niz, Eider; Hidrobo, Eduardo A; Penuela, Gherson; Ordonez, Anibal; Calderon, Zuly H

    2004-01-01

    The physical complexity associated to naturally fractured reservoirs calls for the use of more robust formulations of the Material-Balance Equation (MBE) for determining the initial hydrocarbon in place and predicting reservoir performance. In this paper, we present an improved version of the dual-porosity MBE for naturally fractured reservoirs, published by Penuela et al. (2001), including the existence of an initial gas phase in the reservoir. Considering that a fractured reservoir may be modeled either using different properties for each porous medium or with average values for the total system, two solution techniques based on each of these assumptions are proposed. Convenient arrangements of the equation allow us to estimate not only the original oil and gas volumes but also the relative storage capacity of the porous media (fractures and matrix) and the compressibility for the fractured and total systems. The new equation can be applied to a broader range of reservoirs due to its more general character. The consistency of the expression proposed has been tested with a set of synthetic models exhibiting different storage capacity in the fractures

  18. Approach to IAEA material-balance verification at the Portsmouth Gas Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    Gordon, D.M.; Sanborn, J.B.; Younkin, J.M.; DeVito, V.J.

    1983-01-01

    This paper describes a potential approach by which the International Atomic Energy Agency (IAEA) might verify the nuclear-material balance at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). The strategy makes use of the attributes and variables measurement verification approach, whereby the IAEA would perform independent measurements on a randomly selected subset of the items comprising the U-235 flows and inventories at the plant. In addition, the MUF-D statistic is used as the test statistic for the detection of diversion. The paper includes descriptions of the potential verification activities, as well as calculations of: (1) attributes and variables sample sizes for the various strata, (2) standard deviations of the relevant test statistics, and (3) the detection sensitivity which the IAEA might achieve by this verification strategy at GCEP

  19. Headspace solid-phase microextraction procedures for gas chromatographic analysis of biological fluids and materials.

    Science.gov (United States)

    Mills, G A; Walker, V

    2000-12-01

    Solid-phase microextraction (SPME) is a new solventless sample preparation technique that is finding wide usage. This review provides updated information on headspace SPME with gas chromatographic separation for the extraction and measurement of volatile and semivolatile analytes in biological fluids and materials. Firstly the background to the technique is given in terms of apparatus, fibres used, extraction conditions and derivatisation procedures. Then the different matrices, urine, blood, faeces, breast milk, hair, breath and saliva are considered separately. For each, methods appropriate for the analysis of drugs and metabolites, solvents and chemicals, anaesthetics, pesticides, organometallics and endogenous compounds are reviewed and the main experimental conditions outlined with specific examples. Then finally, the future potential of SPME for the analysis of biological samples in terms of the development of new devices and fibre chemistries and its coupling with high-performance liquid chromatography is discussed.

  20. Progress towards the use of disposable filters

    International Nuclear Information System (INIS)

    Macphail, I.

    1979-08-01

    Thermally degradable materials have been evaluated for service in HEPA filter units used to filter gases from active plants. The motivation was to reduce the bulk storage problems of contaminated filters by thermal decomposition to gaseous products and a solid residue substantially comprised of the filtered particulates. It is shown that while there are no commercially available alternatives to the glass fibre used in the filter medium, it would be feasible to manufacture the filter case and spacers from materials which could be incinerated. Operating temperatures, costs and the type of residues for disposal are discussed for filter case materials. (U.K.)

  1. A high precision gas flow cell for performing in situ neutron studies of local atomic structure in catalytic materials.

    Science.gov (United States)

    Olds, Daniel; Page, Katharine; Paecklar, Arnold; Peterson, Peter F; Liu, Jue; Rucker, Gerald; Ruiz-Rodriguez, Mariano; Olsen, Michael; Pawel, Michelle; Overbury, Steven H; Neilson, James R

    2017-03-01

    Gas-solid interfaces enable a multitude of industrial processes, including heterogeneous catalysis; however, there are few methods available for studying the structure of this interface under operating conditions. Here, we present a new sample environment for interrogating materials under gas-flow conditions using time-of-flight neutron scattering under both constant and pulse probe gas flow. Outlined are descriptions of the gas flow cell and a commissioning example using the adsorption of N 2 by Ca-exchanged zeolite-X (Na 78-2x Ca x Al 78 Si 144 O 384 ,x ≈ 38). We demonstrate sensitivities to lattice contraction and N 2 adsorption sites in the structure, with both static gas loading and gas flow. A steady-state isotope transient kinetic analysis of N 2 adsorption measured simultaneously with mass spectrometry is also demonstrated. In the experiment, the gas flow through a plugged-flow gas-solid contactor is switched between N215 and N214 isotopes at a temperature of 300 K and a constant pressure of 1 atm; the gas flow and mass spectrum are correlated with the structure factor determined from event-based neutron total scattering. Available flow conditions, sample considerations, and future applications are discussed.

  2. A high precision gas flow cell for performing in situ neutron studies of local atomic structure in catalytic materials

    Science.gov (United States)

    Olds, Daniel; Page, Katharine; Paecklar, Arnold; Peterson, Peter F.; Liu, Jue; Rucker, Gerald; Ruiz-Rodriguez, Mariano; Olsen, Michael; Pawel, Michelle; Overbury, Steven H.; Neilson, James R.

    2017-03-01

    Gas-solid interfaces enable a multitude of industrial processes, including heterogeneous catalysis; however, there are few methods available for studying the structure of this interface under operating conditions. Here, we present a new sample environment for interrogating materials under gas-flow conditions using time-of-flight neutron scattering under both constant and pulse probe gas flow. Outlined are descriptions of the gas flow cell and a commissioning example using the adsorption of N2 by Ca-exchanged zeolite-X (Na78-2xCaxAl78Si144O384,x ≈ 38). We demonstrate sensitivities to lattice contraction and N2 adsorption sites in the structure, with both static gas loading and gas flow. A steady-state isotope transient kinetic analysis of N2 adsorption measured simultaneously with mass spectrometry is also demonstrated. In the experiment, the gas flow through a plugged-flow gas-solid contactor is switched between 15N2 and 14N2 isotopes at a temperature of 300 K and a constant pressure of 1 atm; the gas flow and mass spectrum are correlated with the structure factor determined from event-based neutron total scattering. Available flow conditions, sample considerations, and future applications are discussed.

  3. Thermal effects associated with the Raman spectroscopy of WO3 gas-sensor materials.

    Science.gov (United States)

    Garcia-Sanchez, Raul F; Ahmido, Tariq; Casimir, Daniel; Baliga, Shankar; Misra, Prabhakar

    2013-12-19

    Metal oxides are suitable for detecting, through conductive measurements, a variety of reducing and oxidizing gases in environmental and sensing applications. Metal-oxide gas sensors can be developed with the goal of sensing gases under specific conditions and, as a whole, are heavily dependent on the manufacturing process. Tungsten oxide (WO3) is a promising metal-oxide material for gas-sensing applications. The purpose of this paper is to determine the existence of a correlation between thermal effects and the changes in the Raman spectra for multiple WO3 structures. We have obtained results utilizing Raman spectroscopy for three different structures of WO3 (monoclinic WO3 on Si substrate, nanopowder, and nanowires) that have been subjected to temperatures in the range of 30-160 °C. The major vibrational modes of the WO3:Si and the nanopowder samples, located at ~807, ~716, and ~271 cm(-1), correspond to the stretching of O-W-O bonds, the stretching of W-O, and the bending of O-W-O, respectively; these are consistent with a monoclinic WO3 structure. However in the nanowires sample only asymmetric stretching of the W-O bonds occurs, resulting in a 750 cm(-1) band, and the bending of the O-W-O mode (271 cm(-1)) is a stretching mode (239 cm(-1)) instead, suggesting the nanowires are not strictly monoclinic. The most notable effect of increasing the temperature of the samples is the appearance of the bending mode of W-OH bonds in the approximate range of 1550-1150 cm(-1), which is related to O-H bonding caused by humidity effects. In addition, features such as those at 750 cm(-1) for nanowires and at 492 and 670 cm(-1) for WO3:Si disappear as the temperature increases. A deeper understanding of the effect that temperature has on the Raman spectral characteristics of a metal oxide such as WO3 has helped to extend our knowledge regarding the behavior of metal oxide-gas interactions for sensing applications. This, in turn, will help to develop theoretical models for

  4. Performance evaluation and modeling of a conformal filter (CF) based real-time standoff hazardous material detection sensor

    Science.gov (United States)

    Nelson, Matthew P.; Tazik, Shawna K.; Bangalore, Arjun S.; Treado, Patrick J.; Klem, Ethan; Temple, Dorota

    2017-05-01

    Hyperspectral imaging (HSI) systems can provide detection and identification of a variety of targets in the presence of complex backgrounds. However, current generation sensors are typically large, costly to field, do not usually operate in real time and have limited sensitivity and specificity. Despite these shortcomings, HSI-based intelligence has proven to be a valuable tool, thus resulting in increased demand for this type of technology. By moving the next generation of HSI technology into a more adaptive configuration, and a smaller and more cost effective form factor, HSI technologies can help maintain a competitive advantage for the U.S. armed forces as well as local, state and federal law enforcement agencies. Operating near the physical limits of HSI system capability is often necessary and very challenging, but is often enabled by rigorous modeling of detection performance. Specific performance envelopes we consistently strive to improve include: operating under low signal to background conditions; at higher and higher frame rates; and under less than ideal motion control scenarios. An adaptable, low cost, low footprint, standoff sensor architecture we have been maturing includes the use of conformal liquid crystal tunable filters (LCTFs). These Conformal Filters (CFs) are electro-optically tunable, multivariate HSI spectrometers that, when combined with Dual Polarization (DP) optics, produce optimized spectral passbands on demand, which can readily be reconfigured, to discriminate targets from complex backgrounds in real-time. With DARPA support, ChemImage Sensor Systems (CISS™) in collaboration with Research Triangle Institute (RTI) International are developing a novel, real-time, adaptable, compressive sensing short-wave infrared (SWIR) hyperspectral imaging technology called the Reconfigurable Conformal Imaging Sensor (RCIS) based on DP-CF technology. RCIS will address many shortcomings of current generation systems and offer improvements in

  5. Filter unit

    International Nuclear Information System (INIS)

    Shiba, Kazuo; Nagao, Koji; Akiyama, Toshio; Tanaka, Fumikazu; Osumi, Akira; Hirao, Yasuhiro.

    1997-01-01

    The filter unit is used by attaching to a dustproof mask, and used in a radiation controlled area such as in a nuclear power plant. The filter unit comprises sheet-like front and back filtering members disposed vertically in parallel, a spacer for keeping the filtering members to a predetermined distance and front and back covering members for covering the two filtering members respectively. An electrostatic filter prepared by applying resin-fabrication to a base sheet comprising 100% by weight of organic fibers as fiber components, for example, wool felt, synthetic fiber non-woven fabric, wool and synthetic fiber blend non-woven fabric and then electrifying the resin is used for the filtering members. Then, residue of ashes can be eliminated substantially or completely after burning them. (I.N.)

  6. Microleakage of gold casting repairs with different materials as quantified by a helium gas system.

    Science.gov (United States)

    Briseño Marroquin, B; Kremers, L; Willershausen-Zönchen, B; Mücke, A

    1995-01-01

    Inadequate adaptation of a filling material to a gold crown can promote the passage of bacteria; thus, recontamination of sound dentin and/or the pulp canal space is feasible. The aim of this study was to determine the marginal microleakage between two different amalgams (Tytin and Valiant PHD-XT), three different composites (Tetric, Charisma, and Polofil Molar), and one glass-ionomer cement (Ketac Silver) and gold cast crowns using a helium gas microleakage method. In order to standardize the research parameters, gold washers with standardized dimensions were used as study models together with a helium leakage testing device. Standardized cavities were filled according to the manufacturers' recommendations with the different materials. The amount of helium passing the marginal interface between the fillings and cavities was measured with a mass spectrometer 48 hours after the fillings were placed and 100, 1000, and 2000 thermocycles (5 degrees C-55 degrees C). The results showed that amalgam allowed the least microleakage. Ketac Silver showed the greatest microleakage. Statistically significant differences were found between the composites and both amalgams and Ketac Silver between the 48-hour and 100-thermocycling groups. Yet, Ketac Silver showed a significant ascending tendency when compared to the composites and amalgams after 100, 1000, and 2000 thermocycles.

  7. Water gas shift reaction over Cu catalyst supported by mixed oxide materials for fuel cell application

    Directory of Open Access Journals (Sweden)

    Tepamatr Pannipa

    2016-01-01

    Full Text Available The water gas shift activities of Cu on ceria and Gd doped ceria have been studied for the further enhancement of hydrogen purity [1] after the steam reforming of ethanol. The catalytic properties of commercial catalysts were also studied to compare with the as-prepared catalysts. Copper-containing cerium oxide materials are shown in this work to be suitable for the high temperature. Copper-ceria is a stable high-temperature shift catalyst, unlike iron-chrome catalysts that deactivate severely in CO2-rich gases. We found that 5%Cu/10%GDC(D has much higher activity than other copper ceria based catalysts. The finely dispersed CuO species is favorable to the higher activity, which explained the activity enhancement of this catalyst. The kinetics of the WGS reaction over Cu catalysts supported by mixed oxide materials were measured in the temperature range 200-400 °C. An independence of the CO conversion rate on CO2 and H2 was found.

  8. A suitable material for the substrate of micro-strip gas chamber

    International Nuclear Information System (INIS)

    Zhang Minglong; Xia Yiben; Wang Linjun; Zhang Weili

    2004-01-01

    Micro-strip Gas Chamber (MSGC) used as a position sensitive detector has perfect performances in the detection of nuclear irradiations. However, it encounters a severe problem, that is, positive charge accumulation which can be avoided by reducing the surface resistivity of insulating substrate. So, diamond-like carbon (DLC) film is coated on D263 glass to modify its electrical properties as substrate for MSGC. Raman spectroscopy demonstrates that DLC film is of sp 3 (σ bounding) and sp 2 bonding (π bonding), and therefore it is a type of electronically conducting material. It also reveals that the film deposited on D263 glass possesses very large of sp 3 content and consequently is a high quality DLC film. I-V plots indicate that samples with DLC film enjoy very steady and suitable resistivities in the range of 10 9 -10 12 Ω·cm. C-F characteristics also show that samples coated by DLC film have low and stable capacitance with frequency. These excellent performances of the new material, DLC film/D263 glass, meet the optimum requirements of MSGC. DLC film/D263 glass used as the substrate of MSGC should effectively avoid the charge pile-up effect and substrate instability and then improve its performances

  9. Synthesis of Improved Catalytic Materials for High-Temperature Water-gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Zara P. Cherkezova-Zheleva

    2015-12-01

    Full Text Available In this investigation, we report the preparation and characterization of Co-, Cu- and Mn-substituted iron oxide catalytic materials supported on activated carbon. Co-precipitation method and low temperature treatment were used for their synthesis. The influence of chemical composition, stoichiometry, particle size and dispersity on their catalytic activity was studied. Samples were characterized in all stages of their co-precipitation, heating and spend samples after catalytic tests. The obtained results from room and low temperature Mössbauer spectroscopy were combined with analysis of powder X-ray diffraction patterns (XRD. They revealed the preparation of nano-sized iron oxide materials supported on activated carbon. Relaxation phenomena were registered also for the supported phases. The catalytic performance in the water-gas shift reaction was studied. The activity order was as follows: Cu0.5Fe2.5O4 > Co0.5Fe2.5O4 > Mn0.5Fe2.5O4. Catalytic tests demonstrated very promising results and potential application of studied samples due to their cost-effective composition.

  10. Inverse gas chromatography as a method for determination of surface properties of binding materials

    Science.gov (United States)

    Yu, Jihai; Lu, Xiaolei; Yang, Chunxia; Du, Baoli; Wang, Shuxian; Ye, Zhengmao

    2017-09-01

    Inverse gas chromatography (IGC) is a promising measurement technique for investigating the surface properties of binding materials, which are the major influence element for the adsorption performance of superplasticizer. In this work, using the IGC method, blast furnace slag (BFS), sulphoaluminate cement (SAC) and portland cement (P·O) are employed to systematically evaluate the corresponding dispersive component (γsd), specific surface free energy (γsab), and acid-base properties. The obtained results show that γsd contributes to a major section of the surface free energy in the three binding materials, suggesting they are of a relatively low polarity. Compared to the two kinds of cements, the BFS possesses the highest dispersive and specific surface free energies (the values are 45.01 mJ/m2 and 11.68 mJ/m2, respectively), and also exhibits a wider distribution range of γsd, indicating their surfaces are heterogeneous. For acid-base properties, the results indicate the surfaces of three samples are basic in nature. In addition, the adsorption investigation shows that per unit surface of BFS adsorbs the most superplasticizer molecules, which indicates the higher surface free energies is beneficial to the superplasticizer adsorption.

  11. Perovskites for energy applications. From cathode material for fuel cells to a gas separation membrane

    Energy Technology Data Exchange (ETDEWEB)

    Meulenberg, W.A.; Baumann, S.; Betz, M.; Buchkremer, H.P.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF); Serra, J.M.; Vert, V.B. [Universidad Politecnica de Valencia (Spain). Inst. de Tecnologia Quimica

    2010-07-01

    Oxyfuel power plants are one possibility for Carbon Capture and Storage (CCS) using pure oxygen instead of air to combust a carbon containing fuel. This oxygen can be produced by ceramic membranes, which consist of a Mixed Ionic Electronic Conductor (MIEC). Appropriate materials for oxygen separation from air are perovskites transporting oxygen ions through oxygen vacancies in the crystal lattice. Perovskites show highest permeability in particular Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) and offer a theoretical selectivity of 100%. However, perovskites with high permeability show in principle poor chemical stability e.g. in atmosphere containing CO{sub 2}, SO{sub 2}, or H{sub 2}O and particularly reducing conditions. Moreover the thermal and chemical expansion coefficient is very high, which makes the manufacturing of a gas-tight thin film on or joining to a material different from BSCF nearly impossible. Solid oxide fuel cells (SOFCs) are becoming promising candidates for highly efficient energy generation from conventional and biomass-derived fuels due to different reasons: (i) electricity can be obtained directly from a fuel; (ii) the sub-product is a high quality heat, usable in (micro) turbines and for building central heating (CHP) units; (iii) zero-emission operation is achieved when hydrogen is fuelled; (iv) SOFCs can operate besides H{sub 2} with hydrocarbons without extensive fuel purification and reforming; and (v) SOFCs are noiseless and modular. However, conventional SOFCs need to operate in the 800-1000 C temperature range. The reduction of the operating temperature below 700 C implies that the electrode polarization resistance of classical cathodes limits the whole cell operation, and consequently the performance is significantly reduced. Therefore, it is needed the development of new cathode materials with sufficient chemical stability and electrochemical activity to enable the operation at lower temperatures with

  12. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  13. Material characterization and evaluation of Fyrquel effect on the metal part of filters in a system EHC; Caracterizacion del material y evaluacion del efecto del Fyrquel en la parte metalica de filtros en un sistema EHC

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Zenteno S, J.; Robles P, E.; Contreras R, A.; Arganis J, C. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Griz C, M., E-mail: angeles.diaz@inin.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Carretera Cardel-Nautla Km. 42.5, Veracruz (Mexico)

    2014-10-15

    In recent years, unexpected stoppages in power plants have been associated with problems in electro-hydraulic control systems (EHC) which generally operate with fluids to high pressure resistant to fire, but sensitive to the presence of water and contaminants that can promote damage and malfunction of government and discharge valves. The analysis here presented was performed to two filters prior to the servo valves of an EHC system that came out of service as a result of damage to these components. The study is based on analysis and inspection of metal and filter elements of these devices, integrating both chemical characterization by energy-dispersive X-ray spectroscopy of waste as materials that comprise both filters. The assessment made allowed documenting a poor design of the devices, same that promoted the stagnant fluid (Fyrquel), locally modifying the chemical composition of the medium, prompting the activation of auto-catalytic degradation processes that acidified the environment; the acid ph solutions began in susceptible sites of electrochemical corrosion processes which increased the Fyrquel contamination. (Author)

  14. Microbial communities and greenhouse gas emissions associated with the biodegradation of specified risk material in compost

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shanwei [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (Canada); Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta, Canada T1J 4B1 (Canada); Reuter, Tim [Alberta Agriculture and Rural Development, Lethbridge, Alberta, Canada T1J 4V6 (Canada); Gilroyed, Brandon H. [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta, Canada T1J 4B1 (Canada); Tymensen, Lisa [Alberta Agriculture and Rural Development, Lethbridge, Alberta, Canada T1J 4V6 (Canada); Hao, Yongxin; Hao, Xiying [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta, Canada T1J 4B1 (Canada); Belosevic, Miodrag [Department of Biological Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 (Canada); Leonard, Jerry J. [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (Canada); McAllister, Tim A., E-mail: tim.mcallister@agr.gc.ca [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta, Canada T1J 4B1 (Canada)

    2013-06-15

    Highlights: ► Addition of feathers altered bacterial and fungal communities in compost. ► Microbial communities degrading SRM and compost matrix were distinct. ► Addition of feathers may enrich for microbial communities that degrade SRM. ► Inclusion of feather in compost increased both CH{sub 4} and N{sub 2}O emissions from compost. ► Density of methanogens and methanotrophs were weakly associated with CH{sub 4} emissions. - Abstract: Provided that infectious prions (PrP{sup Sc}) are inactivated, composting of specified risk material (SRM) may be a viable alternative to rendering and landfilling. In this study, bacterial and fungal communities as well as greenhouse gas emissions associated with the degradation of SRM were examined in laboratory composters over two 14 day composting cycles. Chicken feathers were mixed into compost to enrich for microbial communities involved in the degradation of keratin and other recalcitrant proteins such as prions. Feathers altered the composition of bacterial and fungal communities primarily during the first cycle. The bacterial genera Saccharomonospora, Thermobifida, Thermoactinomycetaceae, Thiohalospira, Pseudomonas, Actinomadura, and Enterobacter, and the fungal genera Dothideomycetes, Cladosporium, Chaetomium, and Trichaptum were identified as candidates involved in SRM degradation. Feathers increased (P < 0.05) headspace concentrations of CH{sub 4} primarily during the early stages of the first cycle and N{sub 2}O during the second. Although inclusion of feathers in compost increases greenhouse gas emissions, it may promote the establishment of microbial communities that are more adept at degrading SRM and recalcitrant proteins such as keratin and PrP{sup Sc}.

  15. Fabrication of Activated Rice Husk Charcoal by Slip Casting as a Hybrid Material for Water Filter Aid

    Science.gov (United States)

    Tuaprakone, T.; Wongphaet, N.; Wasanapiarnpong, T.

    2011-04-01

    Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 μm. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 °C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 °C for 1 h showed the highest specific surface area as 174.95 m2/g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.

  16. The ''Nuclear-Karlsruhe'' air-filter system

    International Nuclear Information System (INIS)

    Berliner, P.; Ohlmeyer, M.; Stotz, W.

    1976-01-01

    Increasing requirements for exhaust-air filter systems used in nuclear facilities induced the Gesellschaft fuer Kernforschung to develop the ''Nuclear-Karlsruhe'' HEPA filter system. This novel development has profited by experience gained in previous incidents as well as by maitenance and decontamination work performed with different HEPA filter systems. The proved ''Nuclear-Karlsruhe'' system takes equally into account the demands for optimum safety, maximum efficiency and economy, and is distinguished by the following features: (1) The air current is defected by 180 0 in the casing. Deflection causes quite a number of improvements, results in substantial reduction of space requirements, and avoids the dispersion of pollutants to the clean-air side. Besides, the HEPA filter is protected from damage by condensed particles or foreign materials entrained; (2) The ''Nuclear-Karlsruhe'' system allows gas-tight filter replacement. Special replacement collars have been provided at the casing, which allow the tight fastening of replacement bags which are self-locking. (3) In-place testing in the operating condition can be carried out very conveniently because the air is deflected. Minimum leaks in the filter medium or in the filter gasket can be detected by the high-sensitivity visual oil-thread test, which makes leaks distinctly visible as oil mist threads through a transparent front window provided on the clean-air side. The test takes only some minutes and its sensitivity is hardly matched by any other technique. (4) The clamping mechanism is installed outside the casing, i.e. outside the polluted or aggressive media. The contact force is spring-loaded absolutely uniformly to the circular filter gasket. (5) For practical and econmic reasons the filter casings can be locked individually so as to be gas-tight. (6) The entire system is made of stainless or coated steel and metal parts which are corrosion and fire-resistant. (author)

  17. Nano/microscopic patterning of low dimensional material, sensors and devices through nano/micro moulds-nuclear track filters

    International Nuclear Information System (INIS)

    Chakarvarti, S.K.

    2000-01-01

    In the recent years there has been a tremendous spurt in the potential applications of metallic as well as non metallic nano/microstructures and materials. Variety of techniques are being used in their fabrication. Of late, a novel application of track etch technique, called Template Synthesis, which is a membrane based technology, has been used in the synthesis of these structures and materials of very low dimensions-down to few nm. This technique entails synthesis of the desired material (metal, semiconductor, polymer, metal semiconductor, junctions) within the pores of the template membranes having the custom made pores. This leads to the production of true replicas of the pore geometry. Described here in details is this technology besides reviewing other available methods also. (author)

  18. Wien filter

    OpenAIRE

    Mook, H.W.

    1999-01-01

    The invention relates to a Wien filter provided with electrodes for generating an electric field, and magnetic poles for generating a magnetic field, said electrodes and magnetic poles being positioned around and having a finite length along a filter axis, and being positioned around the filter axis such that electric and magnetic forces induced by the respective fields and exerted on an electrically charged particle moving substantially along the fileter axis at a certain velocity

  19. Superwettability of Gas Bubbles and Its Application: From Bioinspiration to Advanced Materials.

    Science.gov (United States)

    Yu, Cunming; Zhang, Peipei; Wang, Jingming; Jiang, Lei

    2017-12-01

    Gas bubbles in aqueous media are common and inevitable in, for example, agriculture and industrial processes. The behaviors of gas bubbles on solid interfaces, including generation, growth, coalescence, release, transport, and collection, are crucial to gas-bubble-related applications, which are always determined by gas-bubble wettability on solid interfaces. Here, the recent progress regarding the study of interfaces with gas-bubble superwettability in aqueous media, i.e., superaerophilicity and superaerophobicity, is summarized. Some examples illustrate how to design microstructures and chemical compositions to achieve reliable and effective manipulation of gas-bubble wettability on artificial interfaces. These designed interfaces exhibit excellent performance in gas-evolution reactions, gas-adsorption reactions, and directional gas-bubble transportation. Moreover, progress in the theoretical investigation of gas-bubble superwettability is reported. Lastly, some challenges are presented, such as the reliable manipulation of gas-bubble wettability and the establishment of mature theory for exactly and systematically explaining gas-bubble wetting phenomena. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Matched Spectral Filter Imager, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — OPTRA proposes the development of an imaging spectrometer for greenhouse gas and volcanic gas imaging based on matched spectral filtering and compressive imaging....

  1. Management of graphite material: a key issue for High Temperature Gas Reactor system (HTGR)

    International Nuclear Information System (INIS)

    Bourdeloie, C.; Marimbeau, P.; Robin, J.C.; Cellier, F.

    2005-01-01

    Graphite material is used in nuclear High Temperature Gas-cooled Reactors (HTGR, Fig.1) as moderator, thermal absorber and also as structural components of the core (Fig.2). This type of reactor was selected by the Generation IV forum as a potential high temperature provider for supplying hydrogen production plants and is under development in France in the frame of the AREVA ANTARES program. In order to select graphite grades to be used in these future reactors, the requirements for mechanical, thermal, physical-chemical properties must match the internal environment of the nuclear core, especially with regard to irradiation effect. Another important aspect that must be addressed early in design is the waste issue. Indeed, it is necessary to reduce the amount of nuclear waste produced by operation of the reactor during its lifetime. Preliminary assessment of the nuclear waste output for an ANTARES type 280 MWe HTGR over 60 year-lifetime gives an estimated 6000 m 3 of activated graphite waste. Thus, reducing the graphite waste production is an important issue for any HTGR system. First, this paper presents a preliminary inventory of graphite waste fluxes coming from a HTGR, in mass and volume, with magnitudes of radiological activities based on activation calculations of graphite during its stay in the core of the reactor. Normalized data corresponding to an output of 1 GWe.year electricity allows comparison of the waste production with other nuclear reactor systems. Second, possible routes to manage irradiated graphite waste are addressed in both the context of French nuclear waste management rules and by comparison to other national regulations. Routes for graphite waste disposal studied in different countries (concerning existing irradiated graphite waste) will be discussed with regard to new issues of large graphite waste from HTGR. Alternative or complementary solutions aiming at lowering volume of graphite waste to be managed will be presented. For example

  2. A new carbon-based magnetic material for the dispersive solid-phase extraction of UV filters from water samples before liquid chromatography-tandem mass spectrometry analysis.

    Science.gov (United States)

    Piovesana, Susy; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2017-07-01

    Magnetic solid-phase extraction is one of the most promising new extraction methods for liquid samples before ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. Several types of materials, including carbonaceous ones, have been prepared for this purpose. In this paper, for the first time, the preparation, characterization, and sorption capability of Fe 3 O 4 -graphitized carbon black (mGCB) composite toward some compounds of environmental interest were investigated. The synthesized mGCB consisted of micrometric GCB particles with 55 m 2  g -1 surface area bearing some carbonyl and hydroxyl functionalities and the surface partially decorated by Fe 3 O 4 microparticles. The prepared mGCB was firstly tested as an adsorbent for the extraction from surface water of 50 pollutants, including estrogens, perfluoroalkyl compounds, UV filters, and quinolones. The material showed good affinity to many of the tested compounds, except carboxylates and glucoronates; however, some compounds were difficult to desorb. Ten UV filters belonging to the chemical classes of benzophenones and p-aminobenzoates were selected, and parameters were optimized for the extraction of these compounds from surface water before UHPLC-MS/MS determination. Then, the method was validated in terms of linearity, trueness, intra-laboratory precision, and detection and quantification limits. In summary, the method performance (trueness, expressed as analytical recovery, 85-114%; RSD 5-15%) appears suitable for the determination of the selected compounds at the level of 10-100 ng L -1 , with detection limits in the range of 1-5 ng L -1 . Finally, the new method was compared with a published one, based on conventional solid-phase extraction with GCB, showing similar performance in real sample analysis. Graphical Abstract Workflow of the analytical method based on magnetic solid-phase extraction followed by LC-MS/MS determination.

  3. Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report

    International Nuclear Information System (INIS)

    Luke, D.E.; Hamp, S.

    2002-01-01

    Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE's Environmental Management (EM) organizations to address gas generation concerns. This paper presents a ''program level'' roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities

  4. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    Science.gov (United States)

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements in the three potential mitigation pathways, i.e., emission to ambient air, uptake by surface vegetation (i.e., grass), and rainfall infiltration, after flue gas desulfurization (FGD) material ...

  5. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments.

    Science.gov (United States)

    Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi

    2017-08-09

    Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.

  6. Gas cooled fast reactor materials: compatibility and reaction kinetics of fuel/matrices couples

    International Nuclear Information System (INIS)

    Lechelle, J.; Aufore, L.; Basini, V.; Belin, R.; Vaudez, S.

    2004-01-01

    Fourth Generation Gas cooled Fast Reactor concept implies a fast neutron spectrum and aims to lead to an iso-generation of minor actinides. Criteria have been defined for these fuels such as: high core filling factor, efficient fuel cooling, low operation temperature, i.e. 400-850 deg C, good fission product retention, burn-ups in the range of 5-8 atom%, Pu content in the range of 15-25%. Materials matching this demand are considered: mixed uranium - plutonium nitrides and carbides as fuels, whereas TiN, TiC, ZrN, ZrC, SiC are investigated as inert matrices. Thermo-chemical compatibility studies have been carried out, mostly for (U,Pu)N/SiC and (U,Pu)N/TiN couples. They have been associated to matching diffusional studies. For the first studies, accidental reactor conditions have been chosen (1600 deg C) so as to select a couple. Results are presented in terms of nature and quantity of resulting phases identified by XRD and SEM for thermodynamical equilibrium experiments. (authors)

  7. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings

    Science.gov (United States)

    Bhushan, B.; Ruscitto, D.; Gray, S.

    1978-01-01

    Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles.

  8. Determination of pyrrolizidine alkaloids in selected feed materials with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Kowalczyk, Ewelina; Kwiatek, Krzysztof

    2017-05-01

    1,2-Dehydropyrrolizidine alkaloids are known to be toxic to many animals and humans. To provide safety of feeds a method based on gas chromatography-mass spectrometry enabling the determination of a content of 1,2-unsaturated PAs in feed materials was developed. After extraction with aqueous solution of HCl and purification of the extract, 1,2-unsaturated alkaloids are reduced to their common backbone structures and subsequently derivatised with heptafluorobutyric anhydride (HFBA). The method was validated according to SANTE/11945/2015. All received parameters are consistent with the document requirements as recovery of a final compound retronecine derivative was from 81.8% to 94.4% when retrosine was used for spiking and from 72.7% to 85.5% when retrorsine N-oxide was spiked. The repeatability was calculated as relative standards deviation and ranged from 7.5% to 14.4%, for N-oxide was from 7.9% to 15.4%. The reproducibility was in the range from 14.2% to 16.3% and from 17.0% to 18.1% for free base and N-oxide respectively. The limit of quantification was determined as 10 µg kg - 1 . Good linearity of the method was obtained with coefficient of determination R 2  > 0.99. The method was applied to 35 silage and two hay samples analysis.

  9. Porous materials as high performance adsorbents for CO2 capture, gas separation and purification

    Science.gov (United States)

    Wang, Jun

    Global warming resulted from greenhouse gases emission has received a widespread attention. Among the greenhouse gases, CO2 contributes more than 60% to global warming due to its huge emission amount. The flue gas contains about 15% CO2 with N2 as the balance. If CO2 can be separated from flue gas, the benefit is not only reducing the global warming effect, but also producing pure CO2 as a very useful industry raw material. Substantial progress is urgent to be achieved in an industrial process. Moreover, energy crisis is one of the biggest challenges for all countries due to the short life of fossil fuels, such as, petroleum will run out in 50 years and coal will run out in 150 years according to today's speed. Moreover, the severe pollution to the environment caused by burning fossil fuels requires us to explore sustainable, environment-friendly, and facile energy sources. Among several alternative energy sources, natural gas is one of the most promising alternative energy sources due to its huge productivity, abundant feed stock, and ease of generation. In order to realize a substantial adsorption process in industry, synthesis of new adsorbents or modification of existing adsorbent with improved properties has become the most critical issue. This dissertation reports systemic characterization and development of five serials of novel adsorbents with advanced adsorption properties. In chapter 2, nitrogen-doped Hypercross-linking Polymers (HCPs) have been synthesized successfully with non-carcinogenic chloromethyl methyl ether (CME) as the cross-linking agent within a single step. Texture properties, surface morphology, CO2/N2 selectivity, and adsorption heat have been presented and demonstrated properly. A comprehensive discussion on factors that affect the CO2 adsorption and CO2/N 2 separation has also been presented. It was found that high micropore proportion and N-content could effectively enhance CO2 uptake and CO2/N2 separation selectivity. In chapter 3, a

  10. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  11. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    Directory of Open Access Journals (Sweden)

    Chia-Chun Ho

    2015-03-01

    Full Text Available The multi-soil-layering (MSL system primarily comprises two parts, specifically, the soil mixture layer (SML and the permeable layer (PL. In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%.

  12. Efficiency of a multi-soil-layering system on wastewater treatment using environment-friendly filter materials.

    Science.gov (United States)

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-03-23

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%-99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3--N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%.

  13. Study of the composition and gas-phase release characteristics of salt material extracted from MSW ash particles using STA

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming; Koukios, E.G.

    2007-01-01

    The ash material generated from the MSW incineration contains large amounts of alkali metals, heavy metals, chlorine and sulfur mainly deposited as inorganic salts and/or oxides on the surface of the Si-rich ash particles. In this work, the composition and gas-phase release characteristics of salt...... material extracted from MSW ash particles using a six-stage leaching process is studied using simultaneous thermal analysis (STA). The produced results provide useful information regarding the composition of the salt material and its melting behavior that is considered to play an important role...

  14. Controlling flow conditions of test filters in iodine filters

    International Nuclear Information System (INIS)

    Holmberg, R.; Laine, J.

    1979-03-01

    Several different iodine filter and test filter designs and experience gained from their operation are presented. For the flow experiments, an iodine filter system equipped with flow regulating and measuring devices was built. In the experiments the influence of the packing method of the iodine sorption material and the influence of the flow regulating and measuring divices upon the flow conditions in the test filters was studied. On the basis of the experiments it has been shown that the flows through the test filters always can be adjusted to a correct value if there only is a high enough pressure difference available across the test filter ducting. As a result of the research, several different methods are presented with which the flows through the test filters in both operating and future iodine sorption system can easily be measured and adjusted to their correct values. (author)

  15. EVIDENCE OF CORROSIVE GAS FORMED BY RADIOLYSIS OF CHLORIDE SALTS IN PLUTONIUM-BEARING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, K.; Louthan, M.

    2010-02-01

    Corrosion and pitting have been observed in headspace regions of stainless steel containers enclosing plutonium oxide/salt mixtures. These observations are consistent with the formation of a corrosive gas, probably HCl, and transport of that gas to the headspace regions of sealed containers. The NH{sub 4}Cl films found on the walls of the sealed containers is also indicative of the presence of HCl gas. Radiolysis of hydrated alkaline earth salts is the probable source of HCl.

  16. Study of radiolysis products of natural organic materials by means of gas chromatography

    International Nuclear Information System (INIS)

    Pogocki, D.

    1994-01-01

    Analytical methods based on gas chromatography for identification determination of products arising during food irradiation have been presented. Behind the classics version of the methods one has shown also combined methods being the on-line connection of gas chromatography with mass spectroscopy as well as gas chromatography with liquid chromatography and mass spectroscopy. The applicability as well as weakness and advantages of each version have been discussed on the context of food irradiation. 11 refs, 7 figs

  17. Synthesis of Nanocrystalline SnO2 Modified TiO2:a Material for Carbon Monoxide Gas Sensor

    OpenAIRE

    A. B. BODADE; M. ALVI; A. V.KADU; S. V.JAGTAP; S. K. RITHE; P. R. PADOLE; G. N. CHAUDHARI

    2008-01-01

    Nanocrystalline SnO2 doped TiO2 having average crystallite size of 45-50 nm were synthesized by the sol-gel method and studied for gas sensing behavior to reducing gases like CO, liquefied petroleum gas (LPG), NH3 and H2. The material characterization was done by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The sensitivity measurements were carried out as a function of different operating temperature in SnO2 doped TiO2....

  18. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    International Nuclear Information System (INIS)

    Barnett, J.M.

    2008-01-01

    Since the mid-1980s the Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as a correction factor for the self absorption of activity of particulate radioactive air samples. More recently, an effort was made to evaluate the current particulate radioactive air sample filters (Versapor(reg s ign) 3000) used at PNNL for self absorption effects. There were two methods used in the study, (1) to compare the radioactivity concentration by direct gas-flow proportional counting of the filter to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection and (2) to evaluate sample filters by high resolution visual/infrared microscopy to determine the depth of material loading on or in the filter fiber material. Sixty samples were selected from the archive for acid digestion in the first method and about 30 samples were selected for high resolution visual/infrared microscopy. Mass loading effects were also considered. From the sample filter analysis, large error is associated with the average self absorption factor, however, when the data is compared directly one-to-one, statistically, there appears to be good correlation between the two analytical methods. The mass loading of filters evaluated was <0.2 mg cm-2 and was also compared against other published results. The microscopy analysis shows the sample material remains on the top of the filter paper and does not imbed into the filter media. Results of the microscopy evaluation lead to the conclusion that there is not a mechanism for significant self absorption. The overall conclusion is that self-absorption is not a significant factor in the analysis of filters used at PNNL for radioactive air stack sampling of radionuclide particulates and that an applied correction factor is conservative in determining overall sample activity. A new self absorption factor of 1.0 is recommended

  19. Evaluation method of gas leakage rate from transportation casks of radioactive materials (gas leakage rates from scratches on O-ring surface)

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Li Ninghua; Asano, Ryoji; Kawa, Tsunemichi

    2004-01-01

    A sealing function is essential for transportation and/or storage casks of radioactive materials under both normal and accidental operating conditions in order to prevent radioactive materials from being released into the environment. In the safety analysis report, the release rate of radioactive materials into the environment is evaluated using the correlations specified in the ANSI N14.5, 1987. The purposes of the work are to reveal the underlying problems on the correlations specified in the ANSI N14.5 related to gas leakage rates from a scratch on O-ring surface and from multi-leak paths, to offer a data base to study the evaluation method of the leakage rate and to propose the evaluation method. In this paper, the following insights were obtained and clarified: 1. If a characteristic value of a leak path is defined as D 4 /a ('D' is the diameter and 'a' is the length), a scratch on the O-ring surface can be evaluated as a circular tube. 2. It is proper to use the width of O-ring groove on the flange as the leak path length for elastomer O-rings. 3. Gas leakage rates from multi leak paths of the transportation cask can be evaluated in the same manner as a single leak path if an effective D4/a is introduced. (author)

  20. Determination of phthalates and organophosphate esters in particulated material from harbour air samples by pressurised liquid extraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Aragón, M; Marcé, R M; Borrull, F

    2012-11-15

    A method based on gas chromatography-mass spectrometry (GC-MS) combined with a pressurised liquid extraction (PLE) to determine four organophosphates, seven phthalate esters and bis(2-ethylhexyl) adipate in particulated material of harbour air samples has been developed. Some studies show that these compounds may cause hormone disrupting effects on human health. Moreover, the U.S. Environmental Protection Agency (EPA) has classified benzyl butyl phthalate and di(2-ethylhexyl) phthalate as possible human carcinogens.The chromatographic time per run analysis is less than 15 min and the complete separation of all compounds is achieved. The PLE was optimised with recoveries above 90% and the repeatability of the method with real samples is less than 11% (%RSD, n=4). The MDLs (0.004-0.4 ng m(-3)) and MQLs (0.02-2 ng m(-3)) are limited by the fact of some compounds are present in low levels in sampling blank filters.The method was successfully applied in several samples and most of the compounds under study were found. The most relevant values were the high concentration of di-iso-butyl phthalate (between 28 and 529 ng m(-3)) and the significant concentration of di(2-ethylhexyl) phthalate (between MQL and 22 ng m(-3)). In addition, benzyl butyl phthalate was also detected in some samples but at low concentration levels (between MQL to 0.2 ng m(-3)). Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Studies of cluster-assembled materials: From gas phase to condensed phase

    Science.gov (United States)

    Gao, Lin

    . After being mass gated in a reflectron equipped time-of-flight mass spectrometer (TOF-MS) and deposited onto TEM grids, the resultant specimens can be loaded onto high-resolution TEM investigation via electron diffraction. In conclusion, soft-landing of mass selected clusters has been shown to be a successful approach to obtain structural information on Zr-Met-Car cluster-assembled materials collected from the gas phase. TEM images indicate the richness of the morphologies associated with these cluster crystals. However, passivation methods are expected to be examined further to overcome the limited stabilities of these novel clusters. From this initial study, it's shown the promising opportunity to study other Met-Cars species and more cluster-based materials. Experimental results of reactions run with a solvothermal synthesis method obtained while searching for new Zr-C cluster assembled materials, are reported. One unexpected product in single crystal form was isolated and tentatively identified by X-ray diffraction to be [Zr6i O(OH)O12·2(Bu)4], with space group P2 1/n and lattice parameters of a = 12.44 A, b = 22.06 A, c = 18.40 A, alpha = 90°, beta = 105°, gamma = 90°, V = 4875 A3 and R 1 = 3.15% for the total observed data (I ≥ 2 sigma I) and oR2 = 2.82%. This novel hexanuclear Zr(IV)-oxo-hydroxide cluster anion may be the first member in polyoxometalates class with metal atoms from the IVB group and having Oh symmetry. Alternatively, it may be the first member in {[(Zr6Z)X 12]X6}m- class with halides replaced by oxo- and hydroxyl groups and with an increased oxidation state of Zr. It is predicted to bear application potentials directed by both families. This work could suggest a direction in which the preparation of Zr-C cluster-assembled materials in a liquid environment may be eventually fulfilled. 1,3-Bis(diethylphosphino)propane (depp) protected small gold clusters are studied via multiple techniques, including Electrospray Ionization Mass Spectrometry

  2. Computational Screening for Design of Optimal Coating Materials to Suppress Gas Evolution in Li-Ion Battery Cathodes.

    Science.gov (United States)

    Min, Kyoungmin; Seo, Seung-Woo; Choi, Byungjin; Park, Kwangjin; Cho, Eunseog

    2017-05-31

    Ni-rich layered oxides are attractive materials owing to their potentially high capacity for cathode applications. However, when used as cathodes in Li-ion batteries, they contain a large amount of Li residues, which degrade the electrochemical properties because they are the source of gas generation inside the battery. Here, we propose a computational approach to designing optimal coating materials that prevent gas evolution by removing residual Li from the surface of the battery cathode. To discover promising coating materials, the reactions of 16 metal phosphates (MPs) and 45 metal oxides (MOs) with the Li residues, LiOH, and Li 2 CO 3 are examined within a thermodynamic framework. A materials database is constructed according to density functional theory using a hybrid functional, and the reaction products are obtained according to the phases in thermodynamic equilibrium in the phase diagram. In addition, the gravimetric efficiency is calculated to identify coating materials that can eliminate Li residues with a minimal weight of the coating material. Overall, more MP and MO materials react with LiOH than with Li 2 CO 3 . Specifically, MPs exhibit better reactivity to both Li residues, whereas MOs react more with LiOH. The reaction products, such as Li-containing phosphates or oxides, are also obtained to identify the phases on the surface of a cathode after coating. On the basis of the Pareto-front analysis, P 2 O 5 could be an optimal material for the reaction with both Li residuals. Finally, the reactivity of the coating materials containing 3d/4d transition metal elements is better than that of materials containing other types of elements.

  3. Filter systems

    International Nuclear Information System (INIS)

    Vanin, V.R.

    1990-01-01

    The multidetector systems for high resolution gamma spectroscopy are presented. The observable parameters for identifying nuclides produced simultaneously in the reaction are analysed discussing the efficiency of filter systems. (M.C.K.)

  4. Large-scale Experiment for Water and Gas Transport in Cementitious Backfill Materials (Phase 1 ): COLEX I

    International Nuclear Information System (INIS)

    Mayer, G.; Wittmann, F.H.; Moetsch, H.A.

    1998-05-01

    In the planned Swiss repository for low- and intermediate-level radioactive waste, the voids between the waste containers will be backfilled with a highly permeable mortar (NAGRA designation: mortar M1 ). As well as providing mechanical stability through filling of voids and sorbing radionuclides, the mortar must divert gases formed in the repository as a result of corrosion into the neighbouring host rock. This will prevent damage which could be caused by excess pressure on the repository structures. Water transport, which is coupled to gas transport, is also of interest. The former is responsible for the migration of radionuclides. Up till now, numerical simulations for a repository situation were carried out using transport parameters determined for small samples in the laboratory. However, the numerical simulations still had to be validated by a large-scale experiment. The investigations presented here should close this gap. Investigations into gas and water transport were carried out using a column (up to 5.4 m high) filled with backfill mortar. The column has a modular construction and can be sealed at the top end with a material of defined permeability (plug or top plug). The possibility to vary the material of the plug allows the influence of the more impermeable cavern lining or possible gas escape vents in the cavern roof to be investigated. A gas supply is connected to the bottom end and is used to simulate different gas generation rates from the waste. A total of 5 experiments were carried out in which the gas generation rate, the column height and the permeability of the plug were varied. Before the start of the experiments, the mortar in the column and the plug were saturated with water to approx. 95 %. In all the experiments, an increase in pressure with time could be observed. The higher the gas generation rate and the lower the permeability of the plug, the more quickly this occurred. At the beginning, only water flow out of the top of the column

  5. Barite: a case study of import reliance on an essential material for oil and gas exploration and development drilling

    Science.gov (United States)

    Bleiwas, Donald I.; Miller, M. Michael

    2015-01-01

    Global dependence on a limited number of countries for specific mineral commodities could lead to sudden supply disruptions for the United States, and barite is one such commodity. Analyses of barite supply amounts and sources for the United States are demonstrative of mineral commodities on which the country is import reliant. Mineral commodity trade flows can be analyzed more easily than import reliances for commodities in which U.S. domestic demand is primarily met by materials contained within manufactured products, as with the rare-earth elements in cellular phones and computers. Barite plays an essential role as a weighting material in drilling muds used in oil and gas drilling, primarily to prevent the explosive release of gas and oil during drilling. The Nation’s efforts to become more energy independent are based largely on the domestic oil and gas industry’s ability to explore and develop onshore and offshore fuel deposits. These activities include increased efforts by the United States to locate and recover oil and gas within unconventional deposits, such as those in the Bakken, Eagle Ford, and Marcellus Formations, using advanced drilling technologies.

  6. Admissible loads in wastewater treatment, using a recycled support materials in a biological aerated filter; Cargas admisibles en depuracion de aguas residuales, usando material reciclado como soporte de un filtro sumergido

    Energy Technology Data Exchange (ETDEWEB)

    Osorio Robles, F. [E.T.S.I. de Caminos Canales y Puertos de Granada (Spain)

    2000-07-01

    This study places in the context of the research into Biological Aerated Filters that the Environmental Technology and Environmental Microbiology Research Group (University of Granada, Spain) has been developing for several years. We have achieved a high level of optimization of the system, using a recycled ceramic-based materials as biofilm support. It enables to give some design parameters, which will make possible the practical application in the future. In this article the relations among volumetric and hydraulic loads applied and effluent concentrations and elimination rates in relation to several pollutants are presented. The oxygen supplied has been accurately controlled, and the relation among the consumption value and the loads applied and the system efficiency obtained is presented. The tests were performed at a pilot plant with full scale height. The influent used was the primary effluent of a conventional treatment plant and the operational flow was counter-current flow. (Author) 11 refs.

  7. Effect of damage on water retention and gas transport properties geo-materials: Application to geological storage of radioactive waste

    International Nuclear Information System (INIS)

    M'Jahad, S.

    2012-01-01

    In the context of geological disposal of radioactive waste, this work contributes to the characterization of the effect of diffuse damage on the water retention and gas transfer properties of concrete (CEM I and CEM V) selected by Andra, Callovo-Oxfordian argillite (host rock) and argillite / concrete interfaces. This study provides information on the concrete microstructure from Mercury porosimetry intrusion and water retention curves: each concrete has a distinct microstructure, CEM I concrete is characterized by a significant proportion of capillary pores while CEM V concrete has a large proportion of C-S-H pores. Several protocols have been developed in order to damage concrete. The damage reduces water retention capacity of CEM I concrete and increases its gas permeability. Indeed, gas breakthrough pressure decreases significantly for damaged concrete, and this regardless of the type of concrete. For argillite, the sample mass increases gradually at RH = 100%, which creates and increases damage in the material. This reduces its ability to retain water. Otherwise, water retention and gas transport properties of argillite are highly dependent of its initial water saturation, which is linked to its damage. Finally, we observed a clogging phenomenon at the argillite/concrete interfaces, which is first mechanical and then hydraulic (and probably chemical) after water injection. This reduces the gas breakthrough pressure interfaces. (author)

  8. Nanocomposite films of cobalt-containing polyacrylonitrile as a basis of gas-sensitive material for resistive type sensors

    Science.gov (United States)

    Bednaya, T. A.; Konovalenko, S. P.

    2017-05-01

    The structure of the metal-carbon nanocomposite based on cobalt-containing polyacrylonitrile (PAN) is studied. The morphology of a surface with the theory of selforganization was analysed. The elemental composition, chemical and electronic states of the elements composing the material films are determined by the X-ray photoelectron spectroscopy (XPS) method. The X-ray diffraction (XRD) method shows that the obtained materials contain crystalline inclusions of CoO, Co3O4 and CoO (OH) in the organic matrix of PAN. Gas-sensitive characteristics of the obtained films.

  9. Leukodepletion blood filters: filter design and mechanisms of leukocyte removal.

    Science.gov (United States)

    Dzik, S

    1993-04-01

    Modern leukocyte removal filters have been developed after years of refinement in design. Current filters are composite filters in which synthetic microfiber material is prepared as a nonwoven web. The filter material may be surface modified to alter surface tension or charge to improve performance. The housing design promotes effective contact of blood with the filter material and decreases shear forces. The exact mechanisms by which these filters remove leukocytes from blood components are uncertain, but likely represent a combination of both physical and biological processes whose contributions to leukocyte removal are interdependent. Small-pore microfiber webs result in barrier phenomena that permit retention of individual cells and increase the total adsorptive area of the filter. Modifications in surface charge can increase or decrease cell attraction to the fibers. Optimum interfacial surface tensions between blood cells, plasma, and filter fibers not only permit effective blood flow through small fiber pores, but also facilitate cell contact with the material. Barrier retention is a common mechanism for all modern leukocyte-removal filters and applies to all leukocyte subtypes. Because barrier retention does not depend on cell viability, it is operative for cells of any age and will retain any nondeformable cell, including whole nuclei from lymphocytes or monocytes. Barrier retention is supplemented by retention by adhesion. RBCs, lymphocytes, monocytes, granulocytes, and platelets differ in their relative adhesiveness to filter fibers. Different adhesive mechanisms are used in filters designed for RBCs compared with filters designed for platelets. Although lymphocytes, monocytes, and granulocytes can adhere directly to filter fibers, the biological mechanisms underlying cell adhesion may differ for these cell types. These differences may depend on expression of cell adhesion molecules. In the case of filtration of fresh RBCs, platelet-leukocyte interaction

  10. Electric characteristics of thin films and gas sensors with varying conductivity: from purely organic materials to nano-composite architectures

    International Nuclear Information System (INIS)

    Pradeau, Jean Paul

    1998-01-01

    This research thesis reports a work which aimed at producing active molecular devices which could be used for gas detection, and which notably display better electric characteristics than existing ones. The author first outlines that these devices present a high sensitivity, and then discusses why they display these reliability problems in terms of electric characteristics. Thus, he studied the influence of the electrode/material interface, and the influence of the material thickness on measured electric characteristics. He highlighted the non negligible influence of a control of physical-chemical properties of the electrode/material interface on the measurement of electric characteristics. Then, in order to solve these problems, the author proposes and reports the study of a mixing, within the same material, of organic molecules (for detection purposes) and metallic particles (for transduction purposes) [fr

  11. Dust extraction from gas in cement kilns, using bag filters; Depoussierage des gaz de four cimentier par les filtres a manches

    Energy Technology Data Exchange (ETDEWEB)

    Harmegnies, M. [CALCIA, 78 - Guerville (France). Direction Technique

    1996-12-31

    After a review of regulations concerning cement plant emissions, the two main cement production techniques (dry and semi-dry processes) are described and the electrostatic and bag filter de-dusting techniques are compared. Examples of pilot applications of these techniques in two French cement plants are presented and operating results (performances, transient procedures, costs) are discussed

  12. Filter for isotopic alteration of mercury vapor

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1989-01-01

    A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

  13. Chemo-mechanical microscale characterization of materials heterogeneity in oil/gas shales: linking organics and inorganics

    Science.gov (United States)

    Ferralis, N.; Abedi, S.; Grossman, J. C.; Ulm, F.

    2013-12-01

    From a materials perspective, the unconventional peculiarity of oil/gas shales resides in the intrinsic multi-scale heterogeneity in their chemical composition, organic maturity, mineralogy and microtexture. In contrast to common assumptions of maturity being driven only by the reservoir conditions (temperature and pressure), the presence of organic matter with different maturity within a few microns apart calls into question the role played by the organic and mineral heterogeneity into the chemo-mechanical properties of the material. Understanding how the upscaling of chemical diversity affects the fracturability and in general the mechanical strength of oil/gas shales is crucial. Compared to conventional oil and gas reservoirs, as well as coal, such heterogeneity requires novel and additional characterization tools from nano- to macro-scales to allow for a complete understanding of the role played by such heterogeneity in the chemo- mechanical properties of gas shales. Here we present a novel suite of chemical and mineralogical characterization tools that allow the in situ, non-destructive imaging of organic maturity and mineralogy from the microscale to the millimeter scale. This method is based on a combination of Raman, fluorescence and UV-Visible absorption spectroscopy. The upscaling is designed to provide a maturity population distribution from the nanoscale to the conventionally used macro-scale averaged parameters (such as vitrinite reflectance). Furthermore, in combination with registered micro/nano-mechanical indentation data a direct correlation of fracture mechanics and chemistry is made, allowing for the determination of high yield strain regions, relations between organic and inorganic anisotropy and interface mechanics. The underlying scientific insight at the nano and micro-scale of the potential origin of fractures in oil/gas shales, will potentially provide a connection bottom-up link to continuum fracture mechanics.

  14. Methods for in-place testing of HEPA and iodine filters used in nuclear power plants

    International Nuclear Information System (INIS)

    Holmberg, R.; Laine, J.

    1978-04-01

    The purpose of this work was a general investigation of existing in-place test methods and to build an equipment for in-place testing of HEPA and iodine sorption filters. In this work the discussion is limited to methods used in in-place testing of HEPA and iodine sorption filters used in light-water-cooled reactor plants. Dealy systems, built for the separation of noble gases, and testing of them is not discussed in the work. Contaminants present in the air of a reactor containment can roughly be diveded into three groups: aerosols, reactive gases, and noble gases. The aerosols are filtered with HEPA (High Efficiency Particulate Air) filters. The most important reactive gases are molecular iodine and its two compounds: hydrogen iodide and methyl iodide. Of gases to be removed by the filters methyl iodide is the gas most difficult to remove especially at high relative humidities. Impregnated activated charcoal is generally used as sorption material in the iodine filters. Experience gained from the use of nuclear power plants proves that the function of high efficiency air filter systems can not be considered safe until this is proved by in-place tests. In-place tests in use are basically equal. A known test agent is injected upstream of the filter to be tested. The efficiency is calculated from air samples taken from both sides of the filter. (author)

  15. Filters in topology optimization

    DEFF Research Database (Denmark)

    Bourdin, Blaise

    1999-01-01

    In this article, a modified (``filtered'') version of the minimum compliance topology optimization problem is studied. The direct dependence of the material properties on its pointwise density is replaced by a regularization of the density field using a convolution operator. In this setting...... it is possible to establish the existence of solutions. Moreover, convergence of an approximation by means of finite elements can be obtained. This is illustrated through some numerical experiments. The ``filtering'' technique is also shown to cope with two important numerical problems in topology optimization...

  16. Apparatus for material tests using an internal loading system in high-pressure gas at room temperature

    Science.gov (United States)

    Imade, M.; Fukuyama, S.; Yokogawa, K.

    2008-07-01

    A new type of apparatus for material tests using an internal loading system in high-pressure gas up to 100MPa at room temperature without conventional material testing equipment was developed. The apparatus consists of a high-pressure control system and a pressure vessel, in which a piston is installed in the cylinder of the pressure vessel. The load caused by the pressure difference between spaces separated by the piston in the vessel cylinder is applied on the specimen connected to the piston in the vessel cylinder. The actual load on the specimen is directly measured by an external load cell and the displacement of the specimen is also measured by an external extensometer. As an example of the application of the apparatus, a tensile test on SUS316 stainless steel the Japanese Industrial Standard (JIS) G4303, which is comparable to the type 316 stainless steel ASTM A276, was conducted in 90MPa hydrogen and argon. Hydrogen showed a marked effect on the tensile property of the material. The hydrogen gas embrittlement of the material was briefly discussed.

  17. Comparative chemical analysis of commercial creosotes and solvent refined coal-II materials by high resolution gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.; Wilson, B.W.

    1985-06-01

    The chemical composition of a commercially available creosote was compared to a direct coal liquefaction product, i.e., solvent refined coal-II fuel oil blend (SRC-II FOB) using high resolution gas chromatography (HRGC). In addition, hydrogenated products of these materials were studied. Samples were fractionated by chemical class on neutral alumina. Those fractions previously shown to be the most mutagenic and tumorigenic in laboratory bioassays of coal-derived materials were analyzed and compared by HRGC and gas chromatography/mass spectrometry (GC/MS). Individual components were tentatively identified and quantitated. Although similar chemical components were present in the creosote and SRC-II FOB fractions studied, the creosotes had higher concentrations of heavy molecular weight materials and a lower ratio of alkylated to parent polycyclic aromatic compounds than the coal liquefaction products. The creosote samples also had a significantly higher concentration of components which eluted in the polycyclic aromatic hydrocarbon (PAH) chemical class fraction. Amino-substituted PAH were present in both nonhydrogenated coal liquid and creosote materials. The creosote and SRC-II FOB crudes and nitrogen-containing polycyclic aromatic compound (NPAC) chemical class fractions expressed similar microbial mutagenicity. Based on chemical analysis data, the predicted tumorigenic potency of the creosote in laboratory bioassay systems would be equivalent to or greater than the SRC-II FOB. 16 references, 2 figures, 4 tables.

  18. Effects of fresh gas flow, tidal volume, and charcoal filters on the washout of sevoflurane from the Datex Ohmeda (GE) Aisys, Aestiva/5, and Excel 210 SE Anesthesia Workstations.

    Science.gov (United States)

    Sabouri, A Sassan; Lerman, Jerrold; Heard, Christopher

    2014-10-01

    We investigated the effects of tidal volume (VT), fresh gas flow (FGF), and a charcoal filter in the inspiratory limb on the washout of sevoflurane from the following Datex Ohmeda (GE) Anesthesia Workstations (AWSs): Aisys, Aestiva/5, and Excel 210SE. After equilibrating the AWSs with 2% sevoflurane, the anesthetic was discontinued, and the absorbent anesthesia breathing circuit (ABC), reservoir bag, and test lung were changed. The lung was ventilated with 350 or 200 mL·breath(-1), 15 breaths·min(-1), and a FGF of 10 L·min(-1) while the washout of sevoflurane was performed in triplicate using a calibrated Datex Ohmeda Capnomac Ultima™ and a calibrated MIRAN SapphIRe XL ambient air analyzer until the concentration was ≤ 10 parts per million (ppm). The effects of decreasing the FGF to 5 and 2 L·min(-1) after the initial washout and of a charcoal filter in the ABC were recorded separately. The median washout times with the Aisys AWS (14 min, P Excel 210SE (32 min). The mean (95% confidence interval) washout time with the Aisys increased to 23.5 (21.5 to 25.5) min with VT 200 mL·breath(-1) (P < 0.01). Decreasing the FGF from 10 to 5 and 2 L·min(-1) with the Aisys caused a rebound in sevoflurane concentration to ≥ 50 ppm. Placement of a charcoal filter in the inspiratory limb reduced the sevoflurane concentration to < 2 ppm in the Aisys and Aestiva/5 AWSs within two minutes. The GE AWSs should be purged with large FGFs and VTs ~350 mL·breath(-1) for ~25 min to achieve 10 ppm sevoflurane. The FGF should be maintained to avoid a rebound in anesthetic concentration. Charcoal filters rapidly decrease the anesthetic concentration to < 2 ppm.

  19. Synthesis and characterization of activated carbon materials for natural gas storage; Sintese e caracterizacao de materiais carbonosos ativados para armazenamento de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, A.R.; Mendez, M.O.; Capobianco, G. [MULTIVACUO Industria e Comercio de Filtros Ltda., Campinas, SP (Brazil); Otani, C.; Petraconi, G.; Maciel, H.; Massi, M.; Urruchi, W. [Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica; Campos, F.B. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Campos, M.F.; Furin, R. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The activated carbon (AC) materials are characterized by a highly porous structure and high specific surface area, giving the capacity to adsorb molecules in liquid and gaseous phase. The present work has the objectives: project and construction of a pilot plant for production of 30 kg/month of AC; development of hybrid process of AC production using physical and/or chemical activation and cold plasma. The biomass raw materials are used, like pinnus wood and macadamia shell. The samples are prepared in form of grains or briquettes, and inserted in reactor inside of the furnace for the pre-activation process. This process is realized in temperatures of 600 deg C - 900 deg C, with heating rates of 1 deg C.min{sup -1} - 10 deg C.min{sup -1}, using different flow rate of inert gas (200 ml.min{sup -1} - 1000 ml.min{sup -1}); with two kinds of a activating agent: steam and CO{sub 2}. After the withdrawal of the samples of the reactor, the samples are submitted to the final process of activation, in oxidant plasma reactor, varying the following process parameters: pressure, gas flow rate, power and residence time. The chemical activation process consists of adding to the raw material the activating agents, as ZnCl{sub 2}, KOH, and others, in varied ratios. The AC had been characterized by: scanning electronic microscopy (SEM), specific surface area (SSA) by the BET and DR techniques. The preliminary results presents AC produced by the chemical activation with a SSA of 1700 m{sup 2}.g{sup -1} and pore volume of 0,8 cm{sup 3}.g{sup -1}, with average pore diameter of 2,0 nm and burn-off degree of 50%. The AC prepared by plasma process shown values of SSA up to 3200 m{sup 2}.g{sup -1}. (Project supported by Rede Gas Energia - PETROBRAS TC 540.4.049.03-0). (author)

  20. Analysis and description of the long-term creep behaviour of high-temperature gas turbine materials

    International Nuclear Information System (INIS)

    Bartsch, H.

    1985-01-01

    On a series of standard high-temperature gas turbine materials, creep tests were accomplished with the aim to obtain improved data on the long-term creep behaviour. The tests were carried out in the range of the main application temperatures of the materials and in the range of low stresses and elongations similar to operation conditions. They lasted about 5000 to 16000 h at maximum. At all important temperatures additional annealing tests lasting up to about 10000 h were carried out for the determination of a material-induced structure contraction. Thermal tension tests were effected for the description of elastoplastic short-time behaviour. As typical selection of materials the nickel investment casting alloys IN-738 LC, IN-939 and Udimet 500 for industrial turbine blades, IN-100 for aviation turbine blades and IN-713 C for integrally cast wheels of exhaust gas turbochargers were investigated, and also the nickel forge alloy Inconel 718 for industrial and aviation turbine disks and Nimonic 101 for industrial turbine blades and finally the cobalt alloy FSC 414 for guide blades and heat accumulation segments of industrial gas turbines. The creep tests were started on long-period individual creep testing machines with high strain measuring accuracy and economically continued on long-period multispecimen creep testing machines with long duration of test. The test results of this mixed test method were first subjected to a conventional evaluation in logarithmic time yield and creep diagrams which besides creep strength curves provided creep stress limit curves down to 0.2% residual strain. (orig./MM) [de

  1. Formation of martian araneiforms by gas-driven erosion of granular material

    DEFF Research Database (Denmark)

    de Villiers, S.; Nermoen, A.; Jamtveit, B.

    2012-01-01

    Sublimation at the lower surface of a seasonal sheet of translucent CO2 ice at high southern latitudes during the Martian spring, and rapid outflow of the CO2 gas generated in this manner through holes in the ice, has been proposed as the origin of dendritic 100 m–1 km scale branched channels kno...

  2. Extraction and identification of organic materials present in soot from a natural gas flame

    Energy Technology Data Exchange (ETDEWEB)

    Vick, R.D.; Avery, M.J.

    1978-01-01

    Aliphatic and polynuclear aromatic hydrocarbons are readily extracted from soot formed from a natural gas flame using methylene chloride and ultrasonic agitation. Identification of 24 organic compounds via capillary column GC retention times and GC-MS data is reported along with details of experimental procedures.

  3. Efficiency of laser beam utilization in gas laser cutting of materials

    Science.gov (United States)

    Galushkin, M. G.; Grishaev, R. V.

    2018-02-01

    Relying on the condition of dynamic matching of the process parameters in gas laser cutting, the dependence of the beam utilization factor on the cutting speed and the beam power has been determined. An energy balance equation has been derived for a wide range of cutting speed values.

  4. Stochastic processes and filtering theory

    CERN Document Server

    Jazwinski, Andrew H

    1970-01-01

    This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well.Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probab

  5. An inert-gas furnace for neutron scattering measurements of internal stresses in engineering materials

    Science.gov (United States)

    Haynes, R.; Paradowska, A. M.; Chowdhury, M. A. H.; Goodway, C. M.; Done, R.; Kirichek, O.; Oliver, E. C.

    2012-04-01

    The ENGIN-X beamline is a dedicated engineering science facility at ISIS optimized for the measurement of strain, and thus stress, deep within crystalline materials using the atomic lattice planes as an atomic ‘strain gauge’. Internal stresses in materials have a considerable effect on material properties including fatigue resistance, fracture toughness and strength. The growing interest in properties of materials at high temperatures may be attributed to the dynamic development in technologies where materials are exposed to a high-temperature environment for example in the aerospace industry or fission and fusion nuclear reactors. This article describes in detail the design and construction of a furnace for neutron scattering measurements of internal stress in engineering materials under mechanical load and in elevated temperature environments, designed to permit a range of gases to provide a non-oxidizing atmosphere for hot samples.

  6. Generalised Filtering

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2010-01-01

    Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

  7. The Thermochemical Degradation of Hot Section Materials for Gas Turbine Engines in Alternative-Fuel Combustion Environments

    Science.gov (United States)

    Montalbano, Timothy

    Gas turbine engines remain an integral part of providing the world's propulsion and power generation needs. The continued use of gas turbines requires increased temperature operation to reach higher efficiencies and the implementation of alternative fuels for a lower net-carbon footprint. This necessitates evaluation of the material coatings used to shield the hot section components of gas turbines in these new extreme environments in order to understand how material degradation mechanisms change. Recently, the US Navy has sought to reduce its use of fossil fuels by implementing a blended hydroprocessed renewable diesel (HRD) derived from algae in its fleet. To evaluate the material degradation in this alternative environment, metal alloys are exposed in a simulated combustion environment using this blended fuel or the traditional diesel-like fuel. Evaluation of the metal alloys showed the development of thick, porous scales with a large depletion of aluminum for the blend fuel test. A mechanism linking an increased solubility of the scale to the blend fuel test environment will be discussed. For power generation applications, Integrated Gasification Combined Cycle (IGCC) power plants can provide electricity with 45% efficiency and full carbon capture by using a synthetic gas (syngas) derived from coal, biomass, or another carbon feedstock. However, the combustion of syngas is known to cause high water vapor content levels in the exhaust stream with unknown material consequences. To evaluate the effect of increased humidity, air-plasma sprayed (APS), yttria-stabilized zirconia (YSZ) is thermally aged in an environment with and without humidity. An enhanced destabilization of the parent phase by humid aging is revealed by x-ray diffraction (XRD) and Raman spectroscopy. Microstructural analysis by transmission electron microscopy (TEM) and scanning-TEM (STEM) indicate an enhanced coarsening of the domain structure of the YSZ in the humid environment. The enhanced

  8. Mercury sorbent delivery system for flue gas

    Science.gov (United States)

    Klunder,; Edgar, B [Bethel Park, PA

    2009-02-24

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  9. Synthesis of Nanocrystalline SnO2 Modified TiO2:a Material for Carbon Monoxide Gas Sensor

    Directory of Open Access Journals (Sweden)

    A. B. BODADE

    2008-11-01

    Full Text Available Nanocrystalline SnO2 doped TiO2 having average crystallite size of 45-50 nm were synthesized by the sol-gel method and studied for gas sensing behavior to reducing gases like CO, liquefied petroleum gas (LPG, NH3 and H2. The material characterization was done by using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR and scanning electron microscope (SEM. The sensitivity measurements were carried out as a function of different operating temperature in SnO2 doped TiO2. The 15 wt.% SnO2 doped TiO2 based CO sensor shows better sensitivity at an operating temperature 240°C Incorporation of 0.5 wt% Pd improved the sensitivity, selectivity, response time and reduced the operating temperature from 240°C to 200°C for CO sensor.

  10. On numerical model of one-dimensional time-dependent gas flows through bed of encapsulated phase change material

    Science.gov (United States)

    Lutsenko, N. A.; Fetsov, S. S.

    2017-10-01

    Mathematical model and numerical method are proposed for investigating the one-dimensional time-dependent gas flows through a packed bed of encapsulated Phase Change Material (PCM). The model is based on the assumption of interacting interpenetrating continua and includes equations of state, continuity, momentum conservation and energy for PCM and gas. The advantage of the method is that it does not require predicting the location of phase transition zone and can define it automatically as in a usual shock-capturing method. One of the applications of the developed numerical model is the simulation of novel Adiabatic Compressed Air Energy Storage system (A-CAES) with Thermal Energy Storage subsystem (TES) based on using the encapsulated PCM in packed bed. Preliminary test calculations give hope that the method can be effectively applied in the future for modelling the charge and discharge processes in such TES with PCM.

  11. Stability assessment of gas mixtures containing monoterpenes in varying cylinder materials and treatments.

    Science.gov (United States)

    Rhoderick, George C; Lin, Janice

    2013-05-07

    Studies of climate change increasingly recognize the diverse influences exerted by monoterpenes in the atmosphere, including roles in particulates, ozone formation, and oxidizing potential. Measurements of key monoterpenes suggest atmospheric mole fractions ranging from low pmol/mol (parts-per-trillion; ppt) to nmol/mol (parts-per-billion; ppb), depending on location and compound. To accurately establish the mole fraction trends, assess the role of monoterpenes in atmospheric chemistry, and relate measurement records from many laboratories and researchers, it is essential to have good calibration standards. The feasibility of preparing well-characterized, stable gas cylinder standards for monoterpenes at the nmol/mol level was previously tested using treated (Aculife IV) aluminum gas cylinders at NIST. Results for 4 of the 11 monoterpenes, monitored versus an internal standard of benzene, indicated stability in these treated aluminum gas cylinders for over 6 months and projected long-term (years) stability. However, the mole fraction of the key monoterpene β-pinene decreased, while the mole fractions of α-pinene, d-limonene (R-(+)-limonene), p-cymene, and camphene (a terpene not present in the initial gas mixture) increased, indicating a chemical transformation of β-pinene to these species. A similar pattern of decreasing mole fraction was observed in α-pinene where growth of d-limonene, p-cymene, and camphene has been observed in treated gas cylinders prepared with a mixture of just α-pinene and benzene as the internal standard. The current research discusses the testing of other cylinders and treatments for the potential of long-term stability of monoterpenes in a gas mixture. In this current study, a similar pattern of decreasing mole fraction, although somewhat improved short-term stability, was observed for β-pinene and α-pinene, with growth of d-limonene, p-cymene, and camphene, in nickel-plated carbon steel cylinders. β-Pinene and α-pinene showed

  12. Brittle Materials Design High Temperature Gas Turbine Stator Vane Development and Static Rig Tests. Volume 2

    Science.gov (United States)

    1976-12-01

    of this analysis. Analogous to the practice of crowning steel rollers (blending large radii to taper the ends), 0.250 inch edge radii were introduced...Materials 59 A cursory review of low conductivity materials indicated that reaction sintered silicon nitride or high density stabilized zirconia would

  13. The influence of the internal microbiome on the materials used for construction of the transmission natural gas pipelines in the Lodz Province

    OpenAIRE

    Staniszewska Agnieszka; Jastrzębska Magdalena; Ziemiński Krzysztof

    2017-01-01

    This paper presents investigation results of the influence of gas microbes on the biocorrosion rate of the materials used for gas pipelines construction in the Lodz Province. Samples of two types of carbon steel and cast iron were stored in the laboratory pipeline model reflecting the real conditions of working natural gas pipelines were. In the next step the influence of cathodic protection with parameters recommended for protection of underground structures was tested. Analyses of biologica...

  14. Improved enrichment culture technique for methane-oxidizing bacteria from marine ecosystems: the effect of adhesion material and gas composition.

    Science.gov (United States)

    Vekeman, Bram; Dumolin, Charles; De Vos, Paul; Heylen, Kim

    2017-02-01

    Cultivation of microbial representatives of specific functional guilds from environmental samples depends largely on the suitability of the applied growth conditions. Especially the cultivation of marine methanotrophs has received little attention, resulting in only a limited number of ex situ cultures available. In this study we investigated the effect of adhesion material and headspace composition on the methane oxidation activity in methanotrophic enrichments obtained from marine sediment. Addition of sterilized natural sediment or alternatively the addition of acid-washed silicon dioxide significantly increased methane oxidation. This positive effect was attributed to bacterial adhesion on the particles via extracellular compounds, with a minimum amount of particles required for effect. As a result, the particles were immobilized, thus creating a stratified environment in which a limited diffusive gas gradients could build up and various microniches were formed. Such diffusive gas gradient might necessitate high headspace concentrations of CH 4 and CO 2 for sufficient concentrations to reach the methane-oxidizing bacteria in the enrichment culture technique. Therefore, high concentrations of methane and carbon dioxide, in addition to the addition of adhesion material, were tested and indeed further stimulated methane oxidation. Use of adhesion material in combination with high concentrations of methane and carbon dioxide might thus facilitate the cultivation and subsequent enrichment of environmentally important members of this functional guild. The exact mechanism of the observed positive effects on methane oxidation and the differential effect on methanotrophic diversity still needs to be explored.

  15. 27 CFR 24.243 - Filtering aids.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Filtering aids. 24.243... OF THE TREASURY LIQUORS WINE Storage, Treatment and Finishing of Wine § 24.243 Filtering aids. Inert fibers, pulps, earths, or similar materials, may be used as filtering aids in the cellar treatment and...

  16. In Situ Cleanable Alternative HEPA Filter Media

    International Nuclear Information System (INIS)

    Adamson, D. J.; Terry, M. T.

    2002-01-01

    The Westinghouse Savannah River Company, located at the Savannah River Site in Aiken, South Carolina, is currently testing two types of filter media for possible deployment as in situ regenerable/cleanable High Efficiency Particulate Air (HEPA) filters. The filters are being investigated to replace conventional, disposable, glass-fiber, HEPA filters that require frequent removal, replacement, and disposal. This is not only costly and subjects site personnel to radiation exposure, but adds to the ever-growing waste disposal problem. The types of filter media being tested, as part of a National Energy Technology Laboratory procurement, are sintered nickel metal and ceramic monolith membrane. These media were subjected to a hostile environment to simulate conditions that challenge the high-level waste tank ventilation systems. The environment promoted rapid filter plugging to maximize the number of filter loading/cleaning cycles that would occur in a specified period of time. The filters were challenged using nonradioactive simulated high-level waste materials and atmospheric dust; materials that cause filter pluggage in the field. The filters are cleaned in situ using an aqueous solution. The study found that both filter media were insensitive to high humidity or moisture conditions and were easily cleaned in situ. The filters regenerated to approximately clean filter status even after numerous plugging and in situ cleaning cycles. Air Techniques International is conducting particle retention testing on the filter media at the Oak Ridge Filter Test Facility. The filters are challenged using 0.3-mm di-octyl phthalate particles. Both the ceramic and sintered media have a particle retention efficiency > 99.97%. The sintered metal and ceramic filters not only can be cleaned in situ, but also hold great potential as a long life alternative to conventional HEPA filters. The Defense Nuclear Facility Safety Board Technical Report, ''HEPA Filters Used in the Department of

  17. Nuclear material safeguards for enrichments plants: Part 4, Gas Centrifuge Enrichment Plant: Diversion scenarios and IAEA safeguards activities: Safeguards training course

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This publication is Part 4 of a safeguards training course in Nuclear Material Safeguards for enrichment plants. This part of the course deals with diversion scenarios and safeguards activities at gas centrifuge enrichment plants.

  18. Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans.

    Science.gov (United States)

    Hartmann, L; Bauer, M; Bertram, J; Gube, M; Lenz, K; Reisgen, U; Schettgen, T; Kraus, T; Brand, P

    2014-03-01

    The aim of this study was to investigate biological effects and potential health risks due to two different metal-inert-gas (MIG) welding fumes (MIG welding of aluminium and MIG soldering of zinc coated steel) in healthy humans. In a threefold cross-over design study 12 male subjects were exposed to three different exposure scenarios. Exposures were performed under controlled conditions in the Aachener Workplace Simulation Laboratory (AWSL). On three different days the subjects were either exposed to filtered ambient air, to welding fumes from MIG welding of aluminium, or to fumes from MIG soldering of zinc coated materials. Exposure was performed for 6 h and the average fume concentration was 2.5 mg m(-3). Before, directly after, 1 day after, and 7 days after exposure spirometric and impulse oscillometric measurements were performed, exhaled breath condensate (EBC) was collected and blood samples were taken and analyzed for inflammatory markers. During MIG welding of aluminium high ozone concentrations (up to 250 μg m(-3)) were observed, whereas ozone was negligible for MIG soldering. For MIG soldering, concentrations of high-sensitivity CRP (hsCRP) and factor VIII were significantly increased but remained mostly within the normal range. The concentration of neutrophils increased in tendency. For MIG welding of aluminium, the lung function showed significant decreases in Peak Expiratory Flow (PEF) and Mean Expiratory Flow at 75% vital capacity (MEF 75) 7 days after exposure. The concentration of ristocetin cofactor was increased. The observed increase of hsCRP during MIG-soldering can be understood as an indicator for asymptomatic systemic inflammation probably due to zinc (zinc concentration 1.5 mg m(-3)). The change in lung function observed after MIG welding of aluminium may be attributed to ozone inhalation, although the late response (7 days after exposure) is surprising. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Transport Processes in Materials Processing Plasmas: Particulate Behavior and Neutral Gas Transport.

    Science.gov (United States)

    Kilgore, Michael Duane

    This research work focuses on two transport problems in low pressure plasma reactors which are used in thin film manufacturing processes. Computer simulation techniques are used to study particulate behavior in processing discharges and neutral species transport in high plasma density discharges. Particulate behavior is predicted by combining models of charging and transport with numerical plasma simulation. A charged particulate is influenced by discharge electric fields and by momentum transfer collisions with drifting plasma species. A particulate is also subject to other forces including neutral gas drag, thermophoresis, and gravity. For radio frequency capacitively coupled discharges, several forces which act on a particulate may be of comparable magnitude. This results in particulate trapping at plasma-sheath boundaries in many cases. For high plasma density discharges, high ion fluxes make the ion drag force dominate particulate behavior. This means that it is more difficult for particulates to be suspended in the plasma, compared to the situation in parallel plate systems. However, particulate contamination of a wafer can still occur in high density plasmas because particulates may be ejected from chamber walls and reach the wafer after residing very briefly in the gas phase. The direct simulation Monte Carlo method is applied to follow transition regime neutral gas transport in high plasma density processing discharges. Three effects are evaluated: neutral depletion by ionization; neutral heating by collisions with energetic plasma species; and gas flow and pumping. These effects are important for discharges that operate at relatively high fractional ionization. Results show the magnitude of these effects in an electron cyclotron resonance reactor and in an inductively coupled reactor operated under a range of typical conditions. The neutral gas transport simulation is extended to investigate neutral beam processing. A high density inductively coupled

  20. The production of synthetic material gas (SNG) from pit coal by a combined auto-allothermic steam gasification

    International Nuclear Information System (INIS)

    Buch, A.

    1975-01-01

    The steam gasification of pit coal requires temperatures which cannot yet be reached with the present state of HTGR technology for material technical reasons. The use of nuclear heat thus remains limited to some fields of application outside the gasifier, which are specified. The production costs of synthetic natural gas from autothermal gasification on the one hand, and from combined auto-allothermal gasification on the other hand are calculated considering the heat price of pit coal and of the selling price of electrical energy and are compared. (GG/LH) [de

  1. Modeling and Measurements of Novel Monolithic Filters

    Directory of Open Access Journals (Sweden)

    Adalbert Beyer

    2008-11-01

    Full Text Available This paper presents novel multilayer tuneable high Q-filters based on hairpin resonators including ferroelectric materials. This configuration allows the miniaturization of these filters to a size that makes them suitable for chip and package integration and narrow-band applications. The main focus was miniaturizing filters with coupled loops using multilayer dielectric substrates. A further goal was to increase the quality factor of these distributed filters by embedding high dielectric materials in a multilayer high- and low-k (dielectric constant substrate that is supported by LTCC technology. An improved W-shape bandpass filter was proposed with a wide stopband and approximately 5% bandwidth.

  2. Long-term creep behavior of high-temperature gas turbine materials under constant and variable stress

    International Nuclear Information System (INIS)

    Granacher, J.; Preussler, T.

    1987-01-01

    Within the framework of the documented research project, extensive creep rupture tests were carried out with characteristic, high-temperature gas turbine materials for establishment of improved design data. In the range of the main application temperatures and in stress ranges down to application-relevant values the tests extended over a period of about 40,000 hours. In addition, long-term annealing tests were carried out in the most important temperature ranges for the measurement of the density-dependent straim, which almost always manifested itself as a material contraction. Furthermore, hot tensile tests were carried out for the description of the elastoplastic short-term behavior. Several creep curves were derived from the results of the different tests with a differentiated evaluation method. On the basis of these creep curves, creep equations were set up for a series of materials which are valid in the entire examined temperature range and stress range and up to the end of the secondary creep range. Also, equations for the time-temperature-dependent description of the material contraction behavior were derived. With these equations, the high-temperature deformation behavior of the examined materials under constant creep stress can be described simply and application-oriented. (orig.) With 109 figs., 19 tabs., 77 refs [de

  3. Eyeglass Filters

    Science.gov (United States)

    1987-01-01

    Biomedical Optical Company of America's suntiger lenses eliminate more than 99% of harmful light wavelengths. NASA derived lenses make scenes more vivid in color and also increase the wearer's visual acuity. Distant objects, even on hazy days, appear crisp and clear; mountains seem closer, glare is greatly reduced, clouds stand out. Daytime use protects the retina from bleaching in bright light, thus improving night vision. Filtering helps prevent a variety of eye disorders, in particular cataracts and age related macular degeneration.

  4. Study of new materials for use as flooded filter media in waste water treatment; Estudio de nuevos materiales como soporte en filtros inundados en la depuracion de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Zamorano, M.; Hontoria, E. [Universidad de Granada, (Spain)

    1998-06-01

    The purpose of this study was to investigate pulverized brick taken from brick factories and recycled plastic used to cover crops as supported beds in submerged bi filters for the purification of residual water, which also permit the re-used of recycled or waste products and the clarification and improvement of the effluent flow from the filter. The study of this landfills shows that the ceramic efficiency was 92% COD-removal and 91% SS-removal, with secondary clarification. The study of recycled plastic shows that the efficiency was 88% COD-removal and 84% SS-removal, without secondary clarification. Although the functioning of the system with these materials have not improved 100%, this study has opened up a new field of investigation that will perfect the system and materials. (Author) 10 refs.

  5. Unit with Fluidized Bed for Gas-Vapor Activation of Different Carbonaceous Materials for Various Purposes: Design, Computation, Implementation.

    Science.gov (United States)

    Strativnov, Eugene

    2017-12-01

    We propose the technology of obtaining the promising material with wide specter of application-activated nanostructured carbon. In terms of technical indicators, it will stand next to the materials produced by complex regulations with the use of costly chemical operations. It can be used for the following needs: as a sorbent for hemosorption and enterosorption, for creation of the newest source of electric current (lithium and zinc air batteries, supercapacitors), and for processes of short-cycle adsorption gas separation.In this study, the author gives recommendations concerning the design of the apparatus with fluidized bed and examples of calculation of specific devices. The whole given information can be used as guidelines for the design of energy effective aggregates. Calculation and design of the reactor were carried out using modern software complexes (ANSYS and SolidWorks).

  6. Low-pressure plasma-etching of bulk polymer materials using gas mixture of CF4 and O2

    Science.gov (United States)

    Nabesawa, Hirofumi; Hiruma, Takaharu; Hitobo, Takeshi; Wakabayashi, Suguru; Asaji, Toyohisa; Abe, Takashi; Seki, Minoru

    2013-11-01

    In this study, we have proposed a low-pressure reactive ion etching of bulk polymer materials with a gas mixture of CF4 and O2, and have achieved precise fabrication of poly(methyl methacrylate) (PMMA) and perfluoroalkoxy (PFA) bulk polymer plates with high-aspect-ratio and narrow gap array structures, such as, pillar, frustum, or cone, on a nano/micro scale. The effects of the etching conditions on the shape and size of each pillar were evaluated by changing etching duration and the size/material of etching mask. The fabricated PMMA array structures indicate possibilities of optical waveguide and nanofiber array. PFA cone array structures showed super-hydrophobicity without any chemical treatments. Also, polystyrene-coated silica spheres were used as an etching mask for the pillar array structure formation to control the gap between pillars.

  7. Comparative characteristic of concentration units relating to reference materials for gas chromatography analysis of hydrocarbon samples

    Directory of Open Access Journals (Sweden)

    S. A. Arystanbekova

    2014-01-01

    Full Text Available Application of a method of absolute calibration relating to gas chromatography analysis of liquid hydrocarbon samples is considered. It is shown for this task that both from theoretical, and practical points of view the optimum concentration unit is mass (not molar fraction. Information on average molar mass of the analyzed sample is necessary for the determination of analytes in liquid hydrocarbon samples in terms of mole fraction. Meanwhile, the normative documents of rather high rank (ASTM, ISO, GOST, GOST R concerning methods of the determination of average molar weight of samples of such a kind are absent.

  8. Experimental Evaluation of Journal Bearing Stability and New Gas Wave Bearing Materials

    Science.gov (United States)

    Keith, Theo G., Jr.; Dimofte, Florin

    1998-01-01

    A gas journal bearing, with a wavy surfaces was tested in a range of speeds up to 18,000 RPM to determine its stability in an unloaded condition as a function of the wave amplitude. The bearing, was 50 mm in diameter, 58 mm long and had 0.01 65 mm radial clearance. Three waves were created on the inner surface by deforming the bearing sleeve. The ratio of the wave amplitude to the radial clearance (the wave amplitude ratio) was varied from zero to 0.3.

  9. Development of exhaust air filters for reprocessing plants

    International Nuclear Information System (INIS)

    Furrer, J.; Kaempffer, R.; Jannakos, K.; Apenberg, W.

    1975-01-01

    Investigations of the iodine loading capacity of highly impregnated iodine sorption material (AC 6,120/H 1 ) for the GWA-filters (GWA: reprocessing plant for 1,500 metric tons per year of uranium) have been continued for low NO 2 -contents of the simulated dissolver offgas from GWA. When fully loading AC 6,120/H 1 , a conversion to silver iodides of Ag + of the impregnation of about 80% was reached in experiments with 1% NO 2 in the carrier gas. Despite the consumption of a substantial portion of the impregnation removal efficiencies > 99.99% were measured for a bed depth corresponding to a GWA filter stage. The test facility allowing to examine the behavior and the capacity of the AC 6,120/H 1 iodine sorption material under actual conditions at SAP Marcoule (reprocessing plant) has been completed except for installation in the reprocessing plant. (orig.) [de

  10. Compostagem de bagaço de cana-de-açúcar triturado utilizado como material filtrante de águas residuárias da suinocultura Composting of sugarcane trash used as filtering material for swine wastewater

    Directory of Open Access Journals (Sweden)

    Marcos A. de Magalhães

    2006-06-01

    Full Text Available A suinocultura moderna, de produção animal confinada, em virtude de ser concentradora de dejetos em pequenas áreas, gera vultosos volumes de águas residuárias de grande potencial poluidor para o solo, o ar e a água, já que se trata de efluente rico em sólidos em suspensão e, dissolvidos, matéria orgânica, nutrientes (nitrogênio e fósforo, dentre outros, agentes patogênicos, metais pesados e sais diversos. No presente trabalho avaliou-se o processo de compostagem de resíduo orgânico (bagaço de cana-de-açúcar triturado, utilizado como material filtrante para águas residuárias de suinocultura, imediatamente após este material perder a capacidade filtrante e ter sido descartado da coluna filtrante. Os resultados obtidos permitiram concluir-se que o composto de bagaço de cana-de-açúcar corresponde ao fertilizante obtido por processo bioquímico, natural e controlado com mistura de resíduos de origem vegetal ou animal, contendo um ou mais nutrientes de plantas. Na avaliação da composição química do composto maturado, as pilhas de bagaço de cana-de-açúcar mais dejeto de suínos apresentaram concentração total de metais pesados que pode ser considerada segura, sob o ponto de vista de uso na adubação de culturas agrícolas, desde que obedecidos os critérios de taxa máxima de aplicação acumulativa.The modern swine production under confined conditions due to accumulation of dejects in small areas, generates large volumes of wastewater of high potential pollutant for the soil, the air and the water, since it is rich effluent in solids in suspension and dissolved organic nutritients (nitrogen and phosphorus, among others, pathogenic agents, heavy metals and several salts. In the present work the composting of organic residue (sugarcane trash used as filtering material for swine wastewater was evaluated immediately after the material lost its filtering capacity and was discarded from the column. The results led to the

  11. An alternative gas sensor material: Synthesis and electrical characterization of SmCoO3

    International Nuclear Information System (INIS)

    Michel, Carlos Rafael; Delgado, Emilio; Santillan, Gloria; Martinez, Alma H.; Chavez-Chavez, Arturo

    2007-01-01

    Single-phase perovskite SmCoO 3 was prepared by a wet-chemical synthesis technique using metal-nitrates and citric acid; after its characterization by thermal analyses and X-ray diffraction, sintering at 900 deg. C in air, gave single phase and well crystallized powders. The powders were mixed with an organic solvent to prepare a slurry, which was deposited on alumina substrates as thick films, using the screen-printing technique. Electrical and gas sensing properties of sintered SmCoO 3 films were investigated in air, O 2 and CO 2 , the results show that sensitivity reached a maximum value at 420 deg. C, for both gases. Dynamic tests revealed a better behavior of SmCoO 3 in CO 2 than O 2 , due to a fast response and a larger electrical resistance change to this gas. X-ray diffraction made on powders after electrical characterization in gases, showed that perovskite-type structure was preserved

  12. Effects of Gas-Wall Partitioning in Teflon Tubing, Instrumentation and Other Materials on Time-Resolved Measurements of Gas-Phase Organic Compounds

    Science.gov (United States)

    Pagonis, D.; Deming, B.; Krechmer, J. E.; De Gouw, J. A.; Jimenez, J. L.; Ziemann, P. J.

    2017-12-01

    Recently it has been shown that gas-phase organic compounds partition to and from the walls of Teflon environmental chambers. This process is fast, reversible, and can be modeled as absorptive partitioning. Here these studies were extended to investigate gas-wall partitioning inside Teflon tubing by introducing step function changes in the concentration of compounds being sampled and measuring the delay in the response of a proton transfer reaction-mass spectrometer (PTR-MS). We find that these delays are significant for compounds with a saturation vapor concentration (c*) below 106 μg m-3, and that the Teflon tubing and the PTR-MS both contribute to the delays. Tubing delays range from minutes to hours under common sampling conditions and can be accurately predicted by a simple chromatography model across a range of tubing lengths and diameters, flow rates, compound functional groups, and c*. This method also allows one to determine the volatility-dependent response function of an instrument, which can be convolved with the output of the tubing model to correct for delays in instrument response time for these "sticky" compounds. This correction is expected to be of particular interest to researchers utilizing and developing chemical ionization mass spectrometry (CIMS) techniques, since many of the multifunctional organic compounds detected by CIMS show significant tubing and instrument delays. These results also enable better design of sampling systems, in particular when fast instrument response is needed, such as for rapid transients, aircraft, or eddy covariance measurements. Additional results presented here extend this method to quantify the relative sorptive capacities for other commonly used tubing materials, including PFA, FEP, PTFE, PEEK, glass, copper, stainless steel, and passivated steel.

  13. Porous carbon material containing CaO for acidic gas capture: preparation and properties.

    Science.gov (United States)

    Przepiórski, Jacek; Czyżewski, Adam; Pietrzak, Robert; Toyoda, Masahiro; Morawski, Antoni W

    2013-12-15

    A one-step process for the preparation of CaO-containing porous carbons is described. Mixtures of poly(ethylene terephthalate) with natural limestone were pyrolyzed and thus hybrid sorbents could be easily obtained. The polymeric material and the mineral served as a carbon precursor and CaO delivering agent, respectively. We discuss effects of the preparation conditions and the relative amounts of the raw materials used for the preparations on the porosity of the hybrid products. The micropore areas and volumes of the obtained products tended to decrease with increasing CaO contents. Increase in the preparation temperature entailed a decrease in the micropore volume, whereas the mesopore volume increased. The pore creation mechanism is proposed on the basis of thermogravimetric and temperature-programmed desorption measurements. The prepared CaO-containing porous carbons efficiently captured SO2 and CO2 from air. Washing out of CaO from the hybrid materials was confirmed as a suitable method to obtain highly porous carbon materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Influence of synthetic packing materials on the gas dispersion and biodegradation kinetics in fungal air biofilters

    NARCIS (Netherlands)

    Prenafeta-Boldú, F.X.; Illa, J.; Groenestijn, J.W. van; Flotats, X.

    2008-01-01

    The biodegradation of toluene was studied in two lab-scale air biofilters operated in parallel, packed respectively with perlite granules (PEG) and polyurethane foam cubes (PUC) and inoculated with the same toluene-degrading fungus. Differences on the material pore size, from micrometres in PEG to

  15. The material balance of process of plasma-chemical conversion of polymer wastes into synthesis gas

    International Nuclear Information System (INIS)

    Tazmeev, A Kh; Tazmeeva, R N

    2017-01-01

    The process of conversion of polymer wastes in the flow of water-steam plasma which are created by the liquid electrodes plasma generators was experimentally studied. The material balance was calculated. The regularities of the participating of hydrogen and oxygen which contained in the water-steam plasma, in formation of chemical compounds in the final products were revealed. (paper)

  16. The material balance of process of plasma-chemical conversion of polymer wastes into synthesis gas

    Science.gov (United States)

    Tazmeev, A. Kh; Tazmeeva, R. N.

    2017-01-01

    The process of conversion of polymer wastes in the flow of water-steam plasma which are created by the liquid electrodes plasma generators was experimentally studied. The material balance was calculated. The regularities of the participating of hydrogen and oxygen which contained in the water-steam plasma, in formation of chemical compounds in the final products were revealed.

  17. Climate Benefits of Material Recycling: Inventory of Average Greenhouse Gas Emissions for Denmark, Norway and Sweden

    DEFF Research Database (Denmark)

    Hillman, Karl; Damgaard, Anders; Eriksson, Ola

    . The results can be used by companies and industry associations in Denmark, Norway and Sweden to communicate the current climate benefits of material recycling in general. They may also contribute to discussions on a societal level, as long as their average and historic nature is recognised....

  18. Filter device for radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Hirano, Mikio; Suzuki, Masahiro.

    1983-01-01

    Purpose : To prevent captured particles from falling upon filter replacement by changing the positions for the gas inlet and outlet from those in the conventional device. Constitution : The filter device comprises a tightly closed vertical cylindrical vessel with an end plate and high efficiency granular filters (HEPA). Inlet and outlet nozzles are disposed at the upper and lower parts of the closed vessel on both sides of the HEPA filter. Radio-active gases are passed from above to below the HEPA filter and discharged from the outlet. In such a structure, captured particles are accumulated on the surface of the HEPA filter and do not fall even upon replacement of the HEPA filter. (Kawakami, Y.)

  19. Evaluation of Five Decontamination Methods for Filtering Facepiece Respirators

    Science.gov (United States)

    Bergman, Michael S.; Eimer, Benjamin C.; Shaffer, Ronald E.

    2009-01-01

    Concerns have been raised regarding the availability of National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) during an influenza pandemic. One possible strategy to mitigate a respirator shortage is to reuse FFRs following a biological decontamination process to render infectious material on the FFR inactive. However, little data exist on the effects of decontamination methods on respirator integrity and performance. This study evaluated five decontamination methods [ultraviolet germicidal irradiation (UVGI), ethylene oxide, vaporized hydrogen peroxide (VHP), microwave oven irradiation, and bleach] using nine models of NIOSH-certified respirators (three models each of N95 FFRs, surgical N95 respirators, and P100 FFRs) to determine which methods should be considered for future research studies. Following treatment by each decontamination method, the FFRs were evaluated for changes in physical appearance, odor, and laboratory performance (filter aerosol penetration and filter airflow resistance). Additional experiments (dry heat laboratory oven exposures, off-gassing, and FFR hydrophobicity) were subsequently conducted to better understand material properties and possible health risks to the respirator user following decontamination. However, this study did not assess the efficiency of the decontamination methods to inactivate viable microorganisms. Microwave oven irradiation melted samples from two FFR models. The remainder of the FFR samples that had been decontaminated had expected levels of filter aerosol penetration and filter airflow resistance. The scent of bleach remained noticeable following overnight drying and low levels of chlorine gas were found to off-gas from bleach-decontaminated FFRs when rehydrated with deionized water. UVGI, ethylene oxide (EtO), and VHP were found to be the most promising decontamination methods; however, concerns remain about the throughput capabilities for EtO and VHP

  20. Operation of the NETL Chemical Looping Reactor with Natural Gas and a Novel Copper-Iron Material

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Douglas [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Bayham, Samuel [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Weber, Justin [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2017-02-21

    The proposed Clean Power Plan requires CO2 emission reductions of 30% by 2030 and further reductions are targeted by 2050. The current strategies to achieve the 30% reduction targets do not include options for coal. However, the 2016 Annual Energy Outlook suggests that coal will continue to provide more electricity than renewable sources for many regions of the country in 2035. Therefore, cost effective options to reduce greenhouse gas emissions from fossil fuel power plants are vital in order to achieve greenhouse gas reduction targets beyond 2030. As part of the U.S. Department of Energy’s Advanced Combustion Program, the National Energy Technology Laboratory’s Research and Innovation Center (NETL R&IC) is investigating the feasibility of a novel combustion concept in which the GHG emissions can be significantly reduced. This concept involves burning fuel and air without mixing these two reactants. If this concept is technically feasible, then CO2 emissions can be significantly reduced at a much lower cost than more conventional approaches. This indirect combustion concept has been called Chemical Looping Combustion (CLC) because an intermediate material (i.e., a metal-oxide) is continuously cycled to oxidize the fuel. This CLC concept is the focus of this research and will be described in more detail in the following sections. The solid material that is used to transport oxygen is called an oxygen carrier material. The cost, durability, and performance of this material is a key issue for the CLC technology. Researchers at the NETL R&IC have developed an oxygen carrier material that consists of copper, iron, and alumina. This material has been tested extensively using lab scale instruments such as thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mechanical attrition (ASTM D5757), and small fluidized bed reactor tests. This report will describe the results from a realistic, circulating, proof-of-concept test that was

  1. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  2. Ceramic HEPA Filter Program

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

    2012-04-30

    Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

  3. The intractable cigarette 'filter problem'.

    Science.gov (United States)

    Harris, Bradford

    2011-05-01

    became the fundamental cigarette filter material. By the mid-1960s, the meaning of the phrase 'filter problem' changed, such that the effort to develop effective filters became a campaign to market cigarette designs that would sustain the myth of cigarette filter efficacy. This study indicates that cigarette designers at Philip Morris, British-American Tobacco, Lorillard and other companies believed for a time that they might be able to reduce some of the most dangerous substances in mainstream smoke through advanced engineering of filter tips. In their attempts to accomplish this, they developed the now ubiquitous cellulose acetate cigarette filter. By the mid-1960s cigarette designers realised that the intractability of the 'filter problem' derived from a simple fact: that which is harmful in mainstream smoke and that which provides the smoker with 'satisfaction' are essentially one and the same. Only in the wake of this realisation did the agenda of cigarette designers appear to transition away from mitigating the health hazards of smoking and towards the perpetuation of the notion that cigarette filters are effective in reducing these hazards. Filters became a marketing tool, designed to keep and recruit smokers as consumers of these hazardous products.

  4. Effect of Projectile Materials on Foreign Object Damage of a Gas-Turbine Grade Silicon Nitride

    Science.gov (United States)

    Choi, Sung R.; Racz, Zsolt; Bhatt, Ramakrishna T.; Brewer, David N.; Gyekenyesi, John P.

    2005-01-01

    Foreign object damage (FOD) behavior of AS800 silicon nitride was determined using four different projectile materials at ambient temperature. The target test specimens rigidly supported were impacted at their centers by spherical projectiles with a diameter of 1.59 mm. Four different types of projectiles were used including hardened steel balls, annealed steel balls, silicon nitride balls, and brass balls. Post-impact strength of each target specimen impacted was determined as a function of impact velocity to better understand the severity of local impact damage. The critical impact velocity where target specimens fail upon impact was highest with brass balls, lowest with ceramic ball, and intermediate with annealed and hardened steel balls. Degree of strength degradation upon impact followed the same order as in the critical impact velocity with respect to projectile materials. For steel balls, hardened projectiles yielded more significant impact damage than annealed counterparts. The most important material parameter affecting FOD was identified as hardness of projectiles and was correlated in terms of critical impact velocity, impact deformation, and impact load.

  5. Materials processing issues for non-destructive laser gas sampling (NDLGS)

    Energy Technology Data Exchange (ETDEWEB)

    Lienert, Thomas J [Los Alamos National Laboratory

    2010-12-09

    The Non-Destructive Laser Gas Sampling (NDLGS) process essentially involves three steps: (1) laser drilling through the top of a crimped tube made of 304L stainles steel (Hammar and Svennson Cr{sub eq}/Ni{sub eq} = 1.55, produced in 1985); (2) gas sampling; and (3) laser re-welding of the crimp. All three steps are performed in a sealed chamber with a fused silica window under controlled vacuum conditions. Quality requirements for successful processing call for a hermetic re-weld with no cracks or other defects in the fusion zone or HAZ. It has been well established that austenitic stainless steels ({gamma}-SS), such as 304L, can suffer from solidification cracking if their Cr{sub eq}/Ni{sub eq} is below a critical value that causes solidification to occur as austenite (fcc structure) and their combined impurity level (%P+%S) is above {approx}0.02%. Conversely, for Cr{sub eq}/Ni{sub eq} values above the critical level, solidification occurs as ferrite (bcc structure), and cracking propensity is greatly reduced at all combined impurity levels. The consensus of results from studies of several researchers starting in the late 1970's indicates that the critical Cr{sub eq}/Ni{sub eq} value is {approx}1.5 for arc welds. However, more recent studies by the author and others show that the critical Cr{sub eq}/Ni{sub eq} value increases to {approx}1 .6 for weld processes with very rapid thermal cycles, such as the pulsed Nd:YAG laser beam welding (LBW) process used here. Initial attempts at NDLGS using pulsed LBW resulted in considerable solidification cracking, consistent with the results of work discussed above. After a brief introduction to the welding metallurgy of {gamma}-SS, this presentation will review the results of a study aimed at developing a production-ready process that eliminates cracking. The solution to the cracking issue, developed at LANL, involved locally augmenting the Cr content by applying either Cr or a Cr-rich stainless steel (ER 312) to the top

  6. UV filters for lighting of plants

    Energy Technology Data Exchange (ETDEWEB)

    Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H.K.; Payer, H.D. [GSF-Forschungszentrum fuer Umwelt und Gesundheit GmbH, Oberschleissheim (Germany)

    1994-12-31

    Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The ageing of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In any case chamber experiments require a careful selection of the filter material used and must be accompanied by a continuous UV-B monitoring.

  7. Carbon nanotube-like materials in the exhaust from a diesel engine using gas oil/ethanol mixing fuel with catalysts and sulfur.

    Science.gov (United States)

    Suzuki, Shunsuke; Mori, Shinsuke

    2017-08-01

    Particulate matter from a diesel engine, including soot and carbon nanomaterials, was collected on a sampling holder and the structure of the materials was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). As a result of employing gas oil/ethanol mixing fuel with sulfur and ferrocene/molybdenum as catalyst sources, formation of carbon nanotubes (CNT)-like materials in addition to soot was observed in the exhaust gas from a diesel engine. It was revealed that CNT-like materials were included among soot in our system only when the following three conditions were satisfied simultaneously: high ethanol fraction in fuel, high sulfur loading, and presence of catalyst sources in fuel. This study confirmed that if at least one of these three conditions was not satisfied, CNT-like materials were not observed in the exhaust from a diesel engine. These experimental results shown in this work provide insights into understanding CNT-like material formation mechanism in a diesel engine. Recent papers reported that carbon nanotube-like materials were included in the exhaust gas from engines, but conditions for carbon nanotube-like material formation have not been well studied. This work provides the required conditions for carbon nanotube-like material growth in a diesel engine, and this will be helpful for understanding the carbon nanotube-like material formation mechanism and taking countermeasures to preventing carbon nanotube-like material formation in a diesel engine.

  8. Improved Trace Gas Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes development of gas filter correlation (GFC) spectroscopy using non-periodic gratings for spaceborne and airborne deployment. Our proposed...

  9. Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.

    Science.gov (United States)

    Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2018-01-17

    Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

  10. Silane Modification of Cellulose Acetate Dense Films as Materials for Acid Gas Removal

    KAUST Repository

    Achoundong, Carine S. K.

    2013-07-23

    The modification of cellulose acetate (CA) films via grafting of vinyltrimethoxysilane (VTMS) to -OH groups, with subsequent condensation of hydrolyzed methoxy groups on the silane to form a polymer network is presented. The technique is referred to as GCV-modification. The modified material maintains similar H2S/CH4 and CO2/CH 4 selectivities compared to the unmodified material; however the pure CO2 and H2S permeabilities are 139 and 165 barrers, respectively, which are more than an order of magnitude higher than the neat polymer. The membranes were tested at feed pressures of up to 700 psia in a ternary 20 vol. %H2S/20 vol. % CO2/60 vol. % CH 4 mixture. Even under aggressive feed conditions, GCV-modified CA showed comparable selectivities and significantly higher permeabilities. Furthermore, GCV-modified membrane had a lower Tg, lower crystallinity, and higher flexibility than neat CA. The higher flexibility is due to the vinyl substituent provided by VTMS, thereby reducing brittleness, which could be helpful in an asymmetric membrane structure. © 2013 American Chemical Society.

  11. Gas-cooled reactor technology safety and siting. Report of a technical committee meeting. Working material

    International Nuclear Information System (INIS)

    1990-01-01

    At the invitation of the Government of the Union of Soviet Socialist Republics, the Eleventh International Conference on the HTGR and the IAEA Technical Committee Meeting on Gas-Cooled Reactor Technology, Safety and Siting were held in Dimitrovgrad, USSR, on June 21-23, 1989. The Technical Committee Meeting provided the Soviet delegates with an opportunity to display the breadth of their program on HTGRs to an international audience. Nearly one-half of the papers were presented by Soviet participants. Among the highlights of the meeting were the following: the diverse nature and large magnitude of the Soviet research and development program on high temperature gas-cooled reactors; the Government approval of the budget for the construction of the 30 MWt High Temperature Test Reactor (HTTR) in Japan (The schedule contemplates a start of construction in spring 1990 on a site at the Oarai Research Establishment and about a five year construction period.); disappointment in the announced plans to shutdown both the Fort St. Vrain (FSV) plant in the United States (US) and the Thorium High Temperature Reactor (THTR-300) in Germany (These two reactors presently represent the only operating HTGRs in the world since the AVR plant in Juelich, Germany, was also shutdown at the end of 1988.); the continuing negotiations between Germany and the USSR on the terms of the co-operation between the two countries for the construction of a HTR Module supplemented by joint research and development activities aimed at increasing coolant outlet temperatures from 750 deg. C to 950 deg. C; the continued enthusiasm displayed by both the US and German representatives for the potential of the small modular designs under development in both countries and the ability for these designs to meet the stringent requirements demanded for the future expansion of nuclear power; the combining of the HTGR technology interest of ABB-Atom and Siemens in Germany into a joint enterprise, HTR GmbH, in May 1989

  12. Pengembangan tes kreativitas pada pembelajaran fisika dengan pendekatan inkuiri pada materi teori kinetik gas

    Directory of Open Access Journals (Sweden)

    Aprilia Santofani

    2016-10-01

    Abstract This study aims to: (1 get an assessment of creativity with an inquiry approach in the physics learning and, (2 investigate the capability of test for measure student`s creative thinking in the physics learning with an inquiry approach. This study was research and development with a procedural model, which applied some steps for getting an assessment that is used for Senior High School students. The steps of study consisted of: (1 research and collecting information, (2 planning, (3 developing preliminary form of product, (4 preliminary field testing, (5 product revision, (6 main field testing, and (7 product revision. The assessment that was developed had been validated by experts of theory and evaluation, and then evaluated by a physics teacher, experts of theory and evaluation. The try out subjects of this reseacrh were the students of class XI MIA Sewon Senior High School. The data were collected by using validation sheets, observation sheets, and creativity tests. The techniques of data analysis used descriptive statistics and inferential statistics. The result of the research and development is as follows: (1 Creativity tests with an inquiry approach in gas kinetic theory topic in the form of an essay has been appropriate consisting of validity, reliability, and difficulty levels. The evaluation of creativity consisted of matter, construct and techniques aspect which are in the best category. (2 The learning process with an inquiry approach had an effect on student`s creativity which is interpreted by the value of effect size 0.202 which are in medium efffect. The main testing instruments points out the gain of student`s creativity who learned with an inquiry approach is higher. Keywords: assessment instrument, creativity tests, essay, inquiry approach

  13. Treatment and disposal of naturally occurring radioactive material (NORM) in the oil and gas industry. A review

    International Nuclear Information System (INIS)

    Richter, Ruediger B.; Schmuelling, Marcus; Hosemann, Peter

    2014-01-01

    Concerning naturally occurring radioactive material (NORM) from the oil/ and gas industry most of the industrial countries were lacking clear regulatory frameworks in waste legislation for many years. In the meanwhile on several places in Europe, but also in some of the GCC states in the Middle East such as in the United Arab Emirates and in Oman specialized treatment facilities are either in the stage of construction or already in operation. In particular, pilot plants for the decontamination of NORM-contaminated equipment have been tested recently. The paper reflects on the generation and the technical characterization of NORM but also the legislation compared on international level. Particularly an overview was provided by comparing the common practice on disposal in the North American Countries in comparison to Germany, the UK but also Australia. In addition the successful treatment of produced water from crude oil separation in a ''Constructed Wetland'' in the Sultanate Oman is briefly highlighted.

  14. Effect of gas adsorption on acoustic wave propagation in MFI zeolite membrane materials: experiment and molecular simulation.

    Science.gov (United States)

    Manga, Etoungh D; Blasco, Hugues; Da-Costa, Philippe; Drobek, Martin; Ayral, André; Le Clezio, Emmanuel; Despaux, Gilles; Coasne, Benoit; Julbe, Anne

    2014-09-02

    The present study reports on the development of a characterization method of porous membrane materials which consists of considering their acoustic properties upon gas adsorption. Using acoustic microscopy experiments and atomistic molecular simulations for helium adsorbed in a silicalite-1 zeolite membrane layer, we showed that acoustic wave propagation could be used, in principle, for controlling the membranes operando. Molecular simulations, which were found to fit experimental data, showed that the compressional modulus of the composite system consisting of silicalite-1 with adsorbed He increases linearly with the He adsorbed amount while its shear modulus remains constant in a large range of applied pressures. These results suggest that the longitudinal and Rayleigh wave velocities (VL and VR) depend on the He adsorbed amount whereas the transverse wave velocity VT remains constant.

  15. Linear Regression Based Real-Time Filtering

    Directory of Open Access Journals (Sweden)

    Misel Batmend

    2013-01-01

    Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.

  16. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available community. The construction industry is a significantly consumer of materials, using 50 per cent of all products produced globally. Building materials is any material which is used for a construction purpose. Many of these materials are sources from natural...

  17. Solar wind rare gas analysis: Trapped solar wind helium and neon in Surveyor 3 material

    Science.gov (United States)

    Buehler, F.; Eberhardt, P.; Geiss, J.; Schwarzmueller, J.

    1972-01-01

    The He-4 and Ne-20 contents in sections of the Surveyor 3 support strut samples were determined by optical and scanning electron microscopy and are compared to the results of the Apollo solar wind composition (SWC) experiments. The He-4/Ne-20 ratio in the samples from the sunlit side of the strut was approximately 300; the ratios determined in Apollo 12 lunar fines and SWC foil were below 100. The He-4/He-3 ratios were also determined, and the ratio obtained from Surveyor 3 material is higher than those found with Apollo 11 and 12 SWC experiments. The effects of spallation by cosmic rays or solar protons, stripping by cosmic ray or energetic solar alpha particles, recycling of solar wind He and radiogenic Ne, He from terrestrial atmosphere, mass discrimination near the moon, mass dependence of trapping probability, diffusion, and contamination by lunar dust are considered.

  18. Gas-phase measurements of combustion interaction with materials for radiation-cooled chambers

    Science.gov (United States)

    Barlow, R. S.; Lucht, R. P.; Jassowski, D. M.; Rosenberg, S. D.

    1991-01-01

    Foil samples of Ir and Pt are exposed to combustion products in a controlled premixed environment at atmospheric pressure. Electrical heating of the foil samples is used to control the surface temperature and to elevate it above the radiative equilibrium temperature within the test apparatus. Profiles of temperature and OH concentration in the boundary layer adjacent to the specimen surface are measured by laser-induced fluorescence. Measured OH concentrations are significantly higher than equilibrium concentrations calculated for the known mixture ratio and the measured temperature profiles. This result indicates that superequilibrium concentrations of H-atoms and O-atoms are also present in the boundary layer, due to partial equilibrium of the rapid binary reactions of the H2/O2 chemical kinetic system. These experiments are conducted as part of a research program to investigate fundamental aspects of the interaction of combustion gases with advanced high-temperature materials for radiation-cooled thrusters.

  19. Aspects of tests and assessment of filtering materials used for respiratory protection against bioaerosols. Part I: type of active substance, contact time, microorganism species.

    Science.gov (United States)

    Majchrzycka, Katarzyna; Gutarowska, Beata; Brochocka, Agnieszka

    2010-01-01

    This paper presents the results of a study on antimicrobial activity of polymer filter nonwovens produced by needle-punching or melt-blowing with an addition of disinfecting agents. The first part of the paper discusses how the biocidal activity of nonwovens is a function of the active agent added to the nonwovens, the duration of the contact of microorganisms with nonwovens and the type of microorganisms. The types of fibres and disinfecting agents had a considerable effect on the biocidal activity of nonwovens. The biocidal effect of nonwovens increased with the duration of their contact with microorganisms. Fibre activity differed considerably depending on the species of the microorganism. The microorganisms most sensitive to biocidal activity of the active filter nonwoven were S. aureus, M. flavus and E. coli. There were no biocidal effects on spore-forming bacterium B. subtilis.

  20. Hydrogen Gas Sensing Using Palladium-Graphene Nanocomposite Material Based on Surface Acoustic Wave

    Directory of Open Access Journals (Sweden)

    Nguyen Hai Ha

    2017-01-01

    Full Text Available We report the fabrication and characterization of surface acoustic wave (SAW hydrogen sensors using palladium-graphene (Pd-Gr nanocomposite as sensing material. The Pd-Gr nanocomposite as sensing layer was deposited onto SAW delay line sensor-based interdigitated electrodes (IDTs/aluminum nitride (AlN/silicon (Si structure. The Pd-Gr nanocomposite was synthesized by a chemical route and deposited onto SAW sensors by air-brush spraying. The SAW H2 sensor using Pd-Gr nanocomposite as a sensing layer shows a frequency shift of 25 kHz in 0.5% H2 concentration at room temperature with good repeatability and stability. Moreover, the sensor showed good linearity and fast response/recovery within ten seconds with various H2 concentrations from 0.25 to 1%. The specific interaction between graphene and SAW transfer inside AlN/Si structures yields a high sensitivity and fast response/recovery of SAW H2 sensor based on Pd-Gr/AlN/Si structure.

  1. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.

    Science.gov (United States)

    Edison, J R; Monson, P A

    2013-11-12

    We present the extension of dynamic mean field theory (DMFT) for fluids in porous materials (Monson, P. A. J. Chem. Phys. 2008, 128, 084701) to the case of mixtures. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable equilibrium states for fluids in pores after a change in the bulk pressure or composition. It is especially useful for studying systems where there are capillary condensation or evaporation transitions. Nucleation processes associated with these transitions are emergent features of the theory and can be visualized via the time dependence of the density distribution and composition distribution in the system. For mixtures an important component of the dynamics is relaxation of the composition distribution in the system, especially in the neighborhood of vapor-liquid interfaces. We consider two different types of mixtures, modeling hydrocarbon adsorption in carbon-like slit pores. We first present results on bulk phase equilibria of the mixtures and then the equilibrium (stable/metastable) behavior of these mixtures in a finite slit pore and an inkbottle pore. We then use DMFT to describe the evolution of the density and composition in the pore in the approach to equilibrium after changing the state of the bulk fluid via composition or pressure changes.

  2. Development of proton conducting materials and membranes based on lanthanum tungstate for hydrogen separation from gas mixtures

    International Nuclear Information System (INIS)

    Seeger, Janka

    2013-01-01

    Lanthanum tungstate La 6-x WO 12-δ (named LWO) is a ceramic material with mixed protonic electronic conductivity. Thereby it is a good candidate membrane material for hydrogen separation from synthesis gas in a fossil pre-combustion power plant. This work shows a material optimization by substitution targeted to clearly enhance the mixed conductivity and thereby the hydrogen flow through the LWO membrane. The first part of the work shows the synthesis and characterization of unsubstituted LWO. It points out that monophase LWO powder can be reproducibly synthesized. The La/W-ratio has to be considerably smaller than the nominal ratio of La/W = 6.0. It also depends on the used sintering conditions. Different relevant properties of LWO like stability in conditions close to application, thermal expansion, sintering behavior or microstructure were determined. Furthermore, the electrical conductivity of the material was investigated. LWO exhibits a prevailing protonic conductivity up to 750 C in wet atmospheres. Under dry atmospheres n-type conductivity was dominating. Oxygen ion and n-type conductivity dominated in wet and dry atmospheres above 750 C. The main part of the work is concerned with the development of new LWO based materials by substitutions. The aim is to achieve an improved mixed protonic electronic conductivity. Substitution elements for lanthanum side were Mg, Ca, Sr, Ba, Ce, Nd, Tb, Y and Al, while for the tungsten side Mo, Re and Ir were used. The total conductivity of the developed materials was investigated and compared to that of the unsubstituted LWO. The substitution of lanthanum led to no appreciable enhancement of the conductivity whereas the substitution of tungsten with 20 mol% molybdenum or 20 mol% rhenium clearly improved it. This caused a hydrogen flow about seven times higher for 20 mol% molybdenum- and about ten times higher for 20 mol% rhenium-substituted LWO in comparison with the unsubstituted LWO at 700 C. In the last part of the

  3. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    International Nuclear Information System (INIS)

    Barnett, J.M.; Cullinan, Valerie I.; Barnett, Debra S.; Trang-Le, Truc LT; Bliss, Mary; Greenwood, Lawrence R.; Ballinger, Marcel Y.

    2009-01-01

    Since the mid-1980s, Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as the correction factor for self absorption of activity for particulate radioactive air samples collected from building exhaust for environmental monitoring. This value accounts for activity that cannot be detected by direct counting of alpha and beta particles. Emissions can be degraded or blocked by filter fibers for particles buried in the filter material or by inactive dust particles collected with the radioactive particles. These filters are used for monitoring air emissions from PNNL stacks for radioactive particles. This paper describes an effort to re-evaluate self-absorption effects in particulate radioactive air sample filters (Versapor(reg s ign) 3000, 47 mm diameter) used at PNNL. There were two methods used to characterize the samples. Sixty samples were selected from the archive for acid digestion to compare the radioactivity measured by direct gas-flow proportional counting of filters to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection. Thirty different sample filters were selected for visible light microscopy to evaluate filter loading and particulate characteristics. Mass-loading effects were also considered. Filter ratios were calculated by dividing the initial counts by the post-digestion counts with the expectation that post-digestion counts would be higher because digestion would expose radioactivity embedded in the filter in addition to that on top of the filter. Contrary to expectations, the post digestion readings were almost always lower than initial readings and averaged approximately half the initial readings for both alpha and beta activity. Before and after digestion readings appeared to be related to each other, but with a low coefficient of determination (R 2 ) value. The ratios had a wide range of values indicating that this method did not provide sufficient precision to quantify

  4. Gas adsorption and structural diversity in a family of Cu(II) pyridyl-isophthalate metal–organic framework materials

    Science.gov (United States)

    Gould, Jamie A.; Athwal, Harprit Singh; Blake, Alexander J.; Lewis, William; Hubberstey, Peter; Schröder, Martin

    2017-01-01

    A family of Cu(II)-based metal–organic frameworks (MOFs) has been synthesized using three pyridyl-isophthalate ligands, H2L1 (4′-(pyridin-4-yl)biphenyl-3,5-dicarboxylic acid), H2L2 (4′′-(pyridin-4-yl)-1,1′:4′,1′′-terphenyl-3,5-dicarboxylic acid) and H2L3 (5-[4-(pyridin-4-yl)naphthalen-1-yl]benzene-1,3-dicarboxylic acid). Although in each case the pyridyl-isophthalate ligands adopt the same pseudo-octahedral [Cu2(O2CR)4N2] paddlewheel coordination modes, the resulting frameworks are structurally diverse, particularly in the case of the complex of Cu(II) with H2L3, which leads to three distinct supramolecular isomers, each derived from Kagomé and square nets. In contrast to [Cu(L2)] and the isomers of [Cu(L3)], [Cu(L1)] exhibits permanent porosity. Thus, the gas adsorption properties of [Cu(L1)] were investigated with N2, CO2 and H2, and the material exhibits an isosteric heat of adsorption competitive with leading MOF sorbents for CO2. [Cu(L1)] displays high H2 adsorption, with the density in the pores approaching that of liquid H2. This article is part of the themed issue ‘Coordination polymers and metal–organic frameworks: materials by design’. PMID:27895262

  5. Comparison of two common adsorption materials for thermal desorption gas chromatography - mass spectrometry of biogenic volatile organic compounds.

    Science.gov (United States)

    Marcillo, Andrea; Jakimovska, Viktorija; Widdig, Anja; Birkemeyer, Claudia

    2017-09-08

    Volatile organic compounds (VOCs) are commonly collected from gaseous samples by adsorption to materials such as the porous polymer Tenax TA. Adsorbed compounds are subsequently released from these materials by thermal desorption (TD) and separated then by gas chromatography (GC) with flame ionization (FID) or mass spectrometry (MS) detection. Tenax TA is known to be particularly suitable for non-polar to semipolar volatiles, however, many volatiles from environmental and biological samples possess a rather polar character. Therefore, we tested if the polymer XAD-2, which so far is widely used to adsorb organic compounds from aqueous and organic solvents, could provide a broader coverage for (semi)polar VOCs during gas-phase sampling. Mixtures of volatile compounds covering a wide range of volatility (bp. 20-256°C) and different chemical classes were introduced by liquid spiking into sorbent tubes with one of the two porous polymers, Tenax TA or XAD-2, and analyzed by TD/GC-MS. At first, an internal standard mixture composed of 17 authentic standards was used to optimize desorption temperature with respect to sorbent degradation and loading time for calibration. Secondly, we tested the detectability of a complex standard mixture composed of 57 volatiles, most of them common constituents of the body odor of mammals. Moreover, the performance of XAD-2 compared with Tenax TA was assessed as limit of quantitation and linearity for the internal standard mixture and 33 compounds from the complex standard mixture. Volatiles were analyzed in a range between 0.01-∼250ng/tube depending on the compound and material. Lower limits of quantitation were between 0.01 and 3 ng±0.9). Interestingly, we found different kinetics for compound adsorption with XAD-2, and a partially better sensitivity in comparison with Tenax TA. For these analytes, XAD-2 might be recommended as an alternative of Tenax TA for TD/GC-MS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology.

    Science.gov (United States)

    Genner, Andreas; Gasser, Christoph; Moser, Harald; Ofner, Johannes; Schreiber, Josef; Lendl, Bernhard

    2017-01-01

    On-line monitoring of key chemicals in an industrial production plant ensures economic operation, guarantees the desired product quality, and provides additional in-depth information on the involved chemical processes. For that purpose, rapid, rugged, and flexible measurement systems at reasonable cost are required. Here, we present the application of a flexible mid-IR filtometer for industrial gas sensing. The developed prototype consists of a modulated thermal infrared source, a temperature-controlled gas cell for absorption measurement and an integrated device consisting of a Fabry-Pérot interferometer and a pyroelectric mid-IR detector. The prototype was calibrated in the research laboratory at TU Wien for measuring methanol and methyl formate in the concentration ranges from 660 to 4390 and 747 to 4610 ppmV. Subsequently, the prototype was transferred and installed at the project partner Metadynea Austria GmbH and linked to their Process Control System via a dedicated micro-controller and used for on-line monitoring of the process off-gas. Up to five process streams were sequentially monitored in a fully automated manner. The obtained readings for methanol and methyl formate concentrations provided useful information on the efficiency and correct functioning of the process plant. Of special interest for industry is the now added capability to monitor the start-up phase and process irregularities with high time resolution (5 s).

  7. Matched-Filter Thermography

    Directory of Open Access Journals (Sweden)

    Nima Tabatabaei

    2018-04-01

    Full Text Available Conventional infrared thermography techniques, including pulsed and lock-in thermography, have shown great potential for non-destructive evaluation of broad spectrum of materials, spanning from metals to polymers to biological tissues. However, performance of these techniques is often limited due to the diffuse nature of thermal wave fields, resulting in an inherent compromise between inspection depth and depth resolution. Recently, matched-filter thermography has been introduced as a means for overcoming this classic limitation to enable depth-resolved subsurface thermal imaging and improving axial/depth resolution. This paper reviews the basic principles and experimental results of matched-filter thermography: first, mathematical and signal processing concepts related to matched-fileting and pulse compression are discussed. Next, theoretical modeling of thermal-wave responses to matched-filter thermography using two categories of pulse compression techniques (linear frequency modulation and binary phase coding are reviewed. Key experimental results from literature demonstrating the maintenance of axial resolution while inspecting deep into opaque and turbid media are also presented and discussed. Finally, the concept of thermal coherence tomography for deconvolution of thermal responses of axially superposed sources and creation of depth-selective images in a diffusion-wave field is reviewed.

  8. Fail save shut off valve for filtering systems employing candle filters

    Science.gov (United States)

    VanOsdol, John [Fairmont, WV

    2006-01-03

    The invention relates to an apparatus that acts as a fail save shut off valve. More specifically, the invention relates to a fail save shut off valve that allows fluid flow during normal operational conditions, but prevents the flow of fluids in the event of system failure upstream that causes over-pressurization. The present invention is particularly well suited for use in conjunction with hot gas filtering systems, which utilize ceramic candle filters. Used in such a hot gas system the present invention stops the flow of hot gas and prevents any particulate laden gas from entering the clean side of the system.

  9. Qualitative analysis by X ray fluorescence of impurities in materials used as air filters; Analisis cualitativo por fluorescencia de rayos X de impurezas en materiales utilizados como filtros de aire

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue G, J; Munoz M, G; Navarrete T, M [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    1995-06-01

    A qualitative analysis of impurities in 5 materials commonly used as air filters was performed with 2 aims: to compare them, in regard to their impurities and to set a methodology to identify spectroscopically, in a short time (1000 seconds), those impurities in order to subtract the blanks signal from that one generated by the collected sample. Some papers on air filters impurities (cellulose, polycarbonate and glass fiber) were found in literature. In one case, the analysis was performed by energy-dispersive X ray fluorescence, tube generated method. In this work it was employed the same method but a radioisotope (Cd-109) was used as primary source. This was applied to 2 of the above mentioned materials as well as to nylon, teflon and quartz. The glass fiber filter had the highest impurity level: Ca, Ba, Pb, Zn, Sr, Rb, and Fe (0.5 {mu}gFe/cm{sup 2}, measured by Atomic Absorption Spectroscopy). The teflon filter had the lowest impurity level. The developed procedure is fast, precise and reproducible and it may be applied also to wastewaters filters. [Spanish] Se realizo el analisis cualitativo de impurezas en cinco materiales comunmente utilizados como filtros de aire, con dos propositos: compararlos en base a sus impurezas y establecer una metodologia que permitiera, en muy corto tiempo (1000 segundos), identificar espectroscopicamente las impurezas a fin de restar la senal del blanco de aquella que genera eventualmente la muestra. En la bibliografia se encontraron algunas publicaciones acerca de impurezas en filtros de aire (celulosa, pollicarbonato y fibra de vidrio), determinadas principalmente por Absorcion Atomica. En un caso, tal determinacion se realizo por Fluorescencia de Rayos X generados en tubo de descargas y detectados por dispersion de energia. En este trabajo se empleo el mismo metodo de Fluorescencia de Rayos X detectados por dispersion de energia pero generados por un radioisotopo (Cd-109) y se aplico a dos de los tres materiales antes

  10. PENGARUH PENGGUNAAN GAS PELINDUNG ARGON GRADE A DAN GRADE C TERHADAP KEKUATAN TARIK LASAN SAMBUNGAN BUTT PADA MATERIAL KAPAL ALUMINIUM 5083

    Directory of Open Access Journals (Sweden)

    Hartono Yudo

    2012-04-01

    Full Text Available Material aluminum 5083 banyak digunakan dalam industri perkapalan khususnya sebagai material konstruksi kapal aluminium. Jika dilakukan pengelasan untuk penyambungan material aluminum 5083 akan terdapat kekurangsempurnaan hasil  pengelasanya ditinjau dari kekuatanya. Penelitian ini bertujuan mengetahui kekuatan tarik hasil las material aluminum 5083 dengan menggunakan dua jenis gas pelindung yang berbeda yakni argon grade A dan argon grade C. Pada perancangan percobaan ini menggunakan material kapal aluminium crew boat KM. Pan Maitime dengan LOA (length over all 35 m, yaitu material aluminium 5083 dengan ketebalan 6 mm dengan Elektrode ER 5356 sesuai rekomdeasi ANSI/ AWS spesification A 5 10/ A 5 10 M dengan  proses pengelasan MIG (metal inert gas. Hasil penelitian menunjukan  bahwa penggunaan gas pelindung argon grade C sebagai gas pelindung pengelasan material aluminum 5083 memiliki kekuatan tarik yang lebih besar 57,89 %  untuk spesimen sambungan las dan 19,85 %  untuk spesimen logam las (weld metal daripada gas pelindung argon grade A. Dimana kekuatan tarik (s rata-rata spesimen sambungan las menggunakan argon grade C adalah 202.5 N/mm2, dan spesimen sambungan las menggunakan argon grade A adalah 128.25 N/mm2, sedangkan untuk kekuatan tarik (s rata-rata spesimen logam las menggunakan argon grade C adalah 299,01 N/mm2, dan spesimen logam las menggunakan argon grade A adalah  249,47 N/mm2. Selain pengujian juga dilakukan analisa menggunakan software Nastran 4.5  dengan hasil tegangan spesimen 111,40 N/mm2 untuk beban tarik 7700 N yang terjadi pada sambungan las.

  11. Simulation of a thermoelectric gas sensor that determines hydrocarbon concentrations in exhausts and the light-off temperature of catalyst materials

    Directory of Open Access Journals (Sweden)

    T. Ritter

    2017-12-01

    Full Text Available Catalyst materials can be characterized with a thermoelectric gas sensor. Screen-printed thermopiles measure the temperature difference between an inert part of the planar sensor and a part that is coated with the catalyst material to be analyzed. If the overall sensor temperature is modulated, the catalytic activity of the material can be varied. Exothermic reactions that occur at the catalyst layer cause a temperature increase that can then be measured as a sensor voltage due to the Seebeck coefficient of the thermopiles. This mechanism can also be employed at stationary conditions at constant sensor temperature to measure gas concentrations. Then, the sensor signal changes linearly with the analyte concentration. Many variables influence the sensing performance, for example, the offset voltage due to asymmetric inflow and the resulting inhomogeneous temperature distributions are an issue. For even better understanding of the whole sensing principle, it is simulated in this study by a 3-D finite element model. By coupling all influencing physical effects (fluid flow, gas diffusion, heat transfer, chemical reactions, and electrical properties a model was set up that is able to mirror the sensor behavior precisely, as the comparison with experimental data shows. A challenging task was to mesh the geometry due to scaling problems regarding the resolution of the thin catalyst layer in the much larger gas tube. Therefore, a coupling of a 3-D and a 1-D geometry is shown. This enables to calculate the overall temperature distribution, fluid flow, and gas concentration distribution in the 3-D model, while a very accurate calculation of the chemical reactions is possible in a 1-D dimension. This work does not only give insight into the results at stationary conditions for varying feed gas concentrations and used substrate materials but shows also how various exhaust gas species behave under transient temperature modulation.

  12. performance evaluation of clay-sawdust composite filter for point

    African Journals Online (AJOL)

    user

    This implies that while burnout materials improve water quality, increasing burnout materials in clay filters beyond 50% does not significantly affect the performance for the filter with respect to the quality of effluent but with respect to flow rate. Keywords: Point of use, filter, water, water treatment, sawdust. 1. INTRODUCTION.

  13. A biological oil adsorption filter

    International Nuclear Information System (INIS)

    Pasila, A.

    2005-01-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  14. A biological oil adsorption filter

    Energy Technology Data Exchange (ETDEWEB)

    Pasila, A. [University of Helsinki (Finland). Dept. of Agricultural Engineering and Household Technology

    2005-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  15. A biological oil adsorption filter.

    Science.gov (United States)

    Pasila, Antti

    2004-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore.

  16. Study of filterable materials and protection instruments by the use of radioactive aerosols; Etude de materiaux filtrants et d'appareils de protection a l'aide des aerosols radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Billard; Chevalier; Pradel [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Many filtration problems can be studied by means of radioactive aerosols. For the investigations described in this paper we have chosen the solid disintegration products of radon, the radioactive gas formed from radium, because of the facilities of generation and measurement it offers. Radon and its daughters are in fact always present in the atmosphere in sufficient concentration for certain tests. In order to improve the sensitivity of the measurements, radon from uranium ore can be used. The technique of measuring by counting {alpha} particles is rapid and easy to employ. We have thus been able to define a test for filterable substances, and to check filtering installation and individual protection instruments. (author) [French] Les aerosols radioactifs permettent d'etudier de nombreux problemes de filtration. Pour les etudes decrites dans ce document, nous avons choisi les produits solides de desintegration du radon, gaz radioactif forme a partir du radium en raison des facilites de generation et de mesure. Le radon et ses descendants sont, en effet, toujours presents dans l'atmosphere en concentration suffisante pour certains essais. Pour ameliorer la sensibilite des mesures, il suffit d'utiliser le radon provenant de minerai d'uranium. La technique de mesure par comptage des particules {alpha} est rapide et facile a mettre en oeuvre. Nous avons pu ainsi definir un test pour les substances filtrantes et controler les installations de filtration et des appareils de protection individuelle. (auteur)

  17. Assessment of the pseudo-tracking approach for the calculation of material acceleration and pressure fields from time-resolved PIV: part II. Spatio-temporal filtering

    Science.gov (United States)

    van Gent, P. L.; Schrijer, F. F. J.; van Oudheusden, B. W.

    2018-04-01

    The present study characterises the spatio-temporal filtering associated with pseudo-tracking. A combined theoretical and numerical assessment is performed that uses the relatively simple flow case of a two-dimensional Taylor vortex as analytical test case. An additional experimental assessment considers the more complex flow of a low-speed axisymmetric base flow, for which time-resolved tomographic PIV measurements and microphone measurements were obtained. The results of these assessments show how filtering along Lagrangian tracks leads to amplitude modulation of flow structures. A cut-off track length and spatial resolution are specified to support future applications of the pseudo-tracking approach. The experimental results show a fair agreement between PIV and microphone pressure data in terms of fluctuation levels and pressure frequency spectra. The coherence and correlation between microphone and PIV pressure measurements were found to be substantial and almost independent of the track length, indicating that the low-frequency behaviour of the flow could be reproduced regardless of the track length. It is suggested that a spectral analysis can be used inform the selection of a suitable track length and to estimate the local error margin of reconstructed pressure values.

  18. Performance of PrekotAC Filter Aids on Pressure Drop across Two Different Filter Media

    Directory of Open Access Journals (Sweden)

    Hajar S.

    2017-01-01

    Full Text Available A study on the performance of formulated PrekotAC filter aids on pressure drop across two different types of filter media, i.e polytetrafluoroethylene (PTFE and polyimide (P84 was carried out in a laboratory scale fabric filtration system. Filter aids is applied in order to prolong the lifespan of the fabric filter by reducing the pressure drop across a filter cake. PrekotAC which is a combination of 90%wt activated carbon and 10%wt PreKotTM was tested under various material loadings of 0.2, 0.4, and 0.6 mg/mm2 at a constant filtration velocity of 5 m/min across its cake and filter media. The results showed that PrekotAC presents a lower pressure drop across the P84 compared to PTFE filter media under various material loadings. This is because of its different characteristics that effect the porosity of the filter media and allow a higher volumetric airflow passing through, resulting in lower pressure drop compared to PTFE filter media. In addition, the diversity in terms of particle size distribution of the formulated PrekotAC that increase its permeability property helps to reduce the pressure drop across the media and its filter cake. Thus, PrekotAC has a promising characteristic as a two in one filter aids, a pre-coating and adsorbent material for fabric filtration system.

  19. Microstructure and gas sensitive properties of alpha-Fe2O3-MO2 (M: Sn and Ti) materials prepared by ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lin, R.; Mørup, Steen

    1998-01-01

    Metastable alpha-Fe2O3-MO2 (M: Sn and Ti) solid solutions can be synthesized by mechanical alloying. The alloy formation, microstructure, and gas sensitive properties of mechanically milled alpha-Fe2O3-SnO2 materials are discussed. Tin ions in alpha-Fe2O3 are found to occupy the empty octahedral...

  20. High-Performance Wireless Ammonia Gas Sensors Based on Reduced Graphene Oxide and Nano-Silver Ink Hybrid Material Loaded on a Patch Antenna.

    Science.gov (United States)

    Wu, Bian; Zhang, Xingfei; Huang, Beiju; Zhao, Yutong; Cheng, Chuantong; Chen, Hongda

    2017-09-09

    Reduced graphene oxide (rGO) has been studied as a resistive ammonia gas sensor at room temperature. The sensitive hybrid material composed of rGO and nano-silver ink (Ag-ink) was loaded on a microstrip patch antenna to realize high-performance wireless ammonia sensors. The material was investigated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Firstly, interdigital electrodes (IDEs) printed on the polyethylene terephthalate (PET) by direct printing were employed to measure the variation of resistance of the sensitive material with the ammonia concentration. The results indicated the response of sensor varied from 4.25% to 14.7% under 15-200 ppm ammonia concentrations. Furthermore, the hybrid material was loaded on a microstrip patch antenna fabricated by a conventional printed circuit board (PCB) process, and a 10 MHz frequency shift of the sensor antenna could be observed for 200 ppm ammonia gas. Finally, the wireless sensing property of the sensor antenna was successfully tested using the same emitted antenna outside the gas chamber with a high gain of 5.48 dBi, and an increased reflection magnitude of the emitted antenna due to the frequency mismatch of the sensor antenna was observed. Therefore, wireless ammonia gas sensors loaded on a patch antenna have significant application prospects in the field of Internet of Things (IoTs).

  1. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Potential for energy recovery and greenhouse gas mitigation from municipal solid waste using a waste-to-material approach.

    Science.gov (United States)

    Chen, Ying-Chu

    2016-12-01

    Energy recovery and greenhouse gas (GHG) emissions from wastes are getting noticed in recent years. This study evaluated the potential for energy recovery and GHG mitigation from municipal solid waste (MSW) with a waste-to-material (WTM) approach. Waste generated in Taiwan contains a large amount of paper, food waste, and plastics, which previously were mostly sent to waste-to-energy (WTE) plants for incineration. However, the mitigation of GHGs by the WTM approach has been especially successful in the recycling of metals (averaging 1.83×10 6 kgCO 2 -eq/year) and paper (averaging 7.38×10 5 kgCO 2 -eq/year). In addition, the recycling of paper (1.33×10 10 kWh) and plastics (1.26×10 10 kWh) has contributed greatly to energy saving. Both metal and glass are not suitable for incineration due to their low energy content. The volumes of paper and food waste contained in the MSW are positively related to the carbon concentration, which may contribute to increased GHGs during incineration. Therefore, the recycling of paper, metals, and food waste is beneficial for GHG mitigation. Measures to reduce GHGs were also suggested in this study. The development of the WTM approach may be helpful for the proper management of MSW with regards to GHG mitigation. The results of this study can be a successful example for other nations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Investigation of Locally Made Ceramic Filter for Household Water Treatment

    OpenAIRE

    Nurmiyanto, Awaluddin; Prasetya, Agus

    2012-01-01

    This research have objective to develop and evaluate the performance of ceramic filter in using locally available material at Yogyakarta. Ceramic filter are made by pressing a mixture of clay, discarded pottery (grog) and combustible material (coconut fiber) into the molder. Curving processes are then applied to form tubular shape before firing it using kiln (1005°C). Filtration test were performed gravitationally by flowing well water into ceramic filter. Filtered water quality was complying...

  4. Nonequal iteration directional filters permit selective clearance of ripples in passband circuits

    Science.gov (United States)

    Kurpis, G. P.

    1970-01-01

    Modified directional filter is comprised of alternate pairs of dielectric and air gap filter sections with unequal electrical lengths. Filter provides more flexibility in choosing dielectric material thickness and permits switching from specially ground to standard thicknesses.

  5. New performance data for open-quotes Emery 3002close quotes and open-quotes Emery 3004,close quotes two Army-approved safe materials to replace DOP in mask and filter testing

    International Nuclear Information System (INIS)

    Carlon, H.R.; Guelta, M.A.

    1995-01-01

    At the 22nd Conference in Denver, we reported that the U.S. Army Surgeon General (SGJ) had approved our developmental material open-quotes Emery 3004close quotes as a safe replacement for the suspected carcinogen DOP (dioctyl phthalate) in mask and filter testing throughout the Army. Subsequently the SG approved a second, less viscous material, open-quotes Emery 3002,close quotes for similar applications. We have measured the viscosities and surface tensions of these liquids over a wide range of temperatures, and have initiated liquid breakup studies through Laskin and two-fluid nozzles. New measurements have been carried out with both liquids, e.g. using the ATI, Inc., TDA-4A cold generator to disperse aerosols for which droplet size distributions were measured using the TSI, Inc., Differential Mobility Particle Sizer (DMPS). Among the findings were that Emery 3004 performs much like DOP in the TDA-4A, with some possible advantages, while Emery 3002 in the TDA-4A produces mean droplet diameters about one-half those of Emery 3004 or DOP. This suggests that Emery 3002 could yield more rigorous filter tests with a smaller consumption of material. New laboratory results will be summarized. Sources of the open-quotes Emeryclose quotes materials will be discussed since the production facility formerly operated by Emery is now run by the Ethyl Corporation and the source products are now known as open-quotes Ethylflo 192close quotes (Emery 3002) and open-quotes Ethylflo 194close quotes (Emery 3004)

  6. New performance data for {open_quotes}Emery 3002{close_quotes} and {open_quotes}Emery 3004,{close_quotes} two Army-approved safe materials to replace DOP in mask and filter testing

    Energy Technology Data Exchange (ETDEWEB)

    Carlon, H.R.; Guelta, M.A. [Army Edgewood Research, Development and Engineering Center, Aberdeen Proving Ground, MD (United States)

    1995-02-01

    At the 22nd Conference in Denver, we reported that the U.S. Army Surgeon General (SGJ) had approved our developmental material {open_quotes}Emery 3004{close_quotes} as a safe replacement for the suspected carcinogen DOP (dioctyl phthalate) in mask and filter testing throughout the Army. Subsequently the SG approved a second, less viscous material, {open_quotes}Emery 3002,{close_quotes} for similar applications. We have measured the viscosities and surface tensions of these liquids over a wide range of temperatures, and have initiated liquid breakup studies through Laskin and two-fluid nozzles. New measurements have been carried out with both liquids, e.g. using the ATI, Inc., TDA-4A cold generator to disperse aerosols for which droplet size distributions were measured using the TSI, Inc., Differential Mobility Particle Sizer (DMPS). Among the findings were that Emery 3004 performs much like DOP in the TDA-4A, with some possible advantages, while Emery 3002 in the TDA-4A produces mean droplet diameters about one-half those of Emery 3004 or DOP. This suggests that Emery 3002 could yield more rigorous filter tests with a smaller consumption of material. New laboratory results will be summarized. Sources of the {open_quotes}Emery{close_quotes} materials will be discussed since the production facility formerly operated by Emery is now run by the Ethyl Corporation and the source products are now known as {open_quotes}Ethylflo 192{close_quotes} (Emery 3002) and{open_quotes}Ethylflo 194{close_quotes} (Emery 3004).

  7. Evaluation of Temperature and Material Combinations on Several Lubricants for Use in the Geostationary Operational Environmental Satellite (GOES) Mission Filter Wheel Bearings

    Science.gov (United States)

    Jansen, Mark J.; Jones, William R., Jr.; Predmore, Roamer E.

    2001-01-01

    A bearing test apparatus was used to investigate lubricant degradation rates and elastohydrodynamic transition temperatures for several perfluoropolyether (Krytox) formulations, a pentasilahydrocarbon, and a synthetic hydrocarbon (Pennzane 2001 A) in an MPB 1219 bearing, which is used in the geostationary operational environmental satellite (GOES) mission filter wheel assembly. Test conditions were the following: 1000-hr duration, 75 C, 20 lb axial load, vacuum level less than 1 x 10(exp -6) Torr, and a 600-rpm rotational speed. Baseline tests were performed using unformulated Krytox 143AB, the heritage lubricant. Krytox additive formulations showed small reductions in degradation rate. Krytox GPL-105, a higher viscosity version, yielded the least amount of degradation products. Both the silahydrocarbon and Pennzane 2001A showed no signs of lubricant degradation and had ample amounts of free oil at test conclusion.

  8. Aspects of tests and assessment of filtering materials used for respiratory protection against bioaerosols. Part II: sweat in the environment, microorganisms in the form of a bioaerosol.

    Science.gov (United States)

    Majchrzycka, Katarzyna; Gutarowska, Beata; Brochocka, Agnieszka

    2010-01-01

    The second part of the article presents the results of a study of antimicrobial activity of filter nonwovens with an addition of biocides, as a function of the presence of sweat in the environment and the method of microbe deposition on a nonwoven in the form of a liquid and a bioaerosol. At the same time, the filtration efficiency of nonwovens against microorganisms in the form of a bioaerosol was tested with the dynamic method. The results showed that the addition of sweat on the surface of a nonwoven resulted in an insignificant decrease of biological activity that still remained high. Moreover, an active nonwoven showed biostatic and biocidal activity only when microbes were deposited on the surface in the form of a solution. The nonwoven did not show any biological activity after deposition of microorganisms with the dynamical method in the form of a bioaerosol.

  9. Oil removal from runoff with natural sorbing filter fillers.

    Science.gov (United States)

    Mažeikienė, Aušra; Vaiškūnaitė, Rasa; Vaišis, Vaidotas

    2014-08-01

    The aim of this paper was to investigate the ability of Lithuanian sheep wool waste and reeds (Phragmites australis) to absorb oil from runoff when it flows through filters filled with these materials. The third material that was analysed, the synthetic sorbent Fibroil, was chosen for comparing the results. The laboratory experiments were performed in several stages, with the following being filtrated: tap water with a diesel admixture, road runoff contaminated with oils, and also suspended solids. The significance of this work is due to the high runoff filtering rate (∼10 m/h) and high oil concentrations in the runoff (50-230 mg/L) used in the experiment. In these cases the use of sorbents is limited. Wool waste and reed (Phragmites australis) fillers are quite efficient (98-99%) in oil removal from runoff at a 10 m/h filtering rate. However, wool fillers clog up quickly. Reeds of the genus Phragmites australis are a natural source for the production of oil sorbents. The results obtained in this experimental work can be used in the design of equipment for the treatment of oil-contaminated runoff from gas stations as well as sullage from roads and tunnels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Passive Power Filters

    CERN Document Server

    Künzi, R.

    2015-06-15

    Power converters require passive low-pass filters which are capable of reducing voltage ripples effectively. In contrast to signal filters, the components of power filters must carry large currents or withstand large voltages, respectively. In this paper, three different suitable filter struc tures for d.c./d.c. power converters with inductive load are introduced. The formulas needed to calculate the filter components are derived step by step and practical examples are given. The behaviour of the three discussed filters is compared by means of the examples. P ractical aspects for the realization of power filters are also discussed.

  11. Filter replacement lifetime prediction

    Science.gov (United States)

    Hamann, Hendrik F.; Klein, Levente I.; Manzer, Dennis G.; Marianno, Fernando J.

    2017-10-25

    Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air.

  12. Research of Acoustic Properties of Materials with the Purpose of Their Use at Design of Special Noise Protective Clothes for Oil and Gas Industry

    Science.gov (United States)

    Drofa, E. A.; Lipilina, E. Yu

    2018-01-01

    The article is devoted to the substantiation of the choice of a rational package of materials, which has the greatest noise-protective properties when designing special clothes with reference to the oil and gas industry. Studies were conducted to assess the factors that have the most significant effect on the noise-protective properties of clothing. Conclusions are made about the possibility of using the developed technique for studying the noise-protective properties of materials in selecting rational packages of materials for the production of special clothes with high noise-protective properties.

  13. Biodesulphurization Within Natural Gas in Oil and Gas Field

    Directory of Open Access Journals (Sweden)

    Sri Rahayu

    2010-10-01

    Full Text Available The presence of sulphur compounds in natural gas can interfere to the quality of natural gas. The decline of combustion gas capacity, metal instrument corrosion in gas piping, and the environmental pollution from gas emission can affect by their presence. Bio-filter is one of the methods  that selected to reduce sulphur content in natural gas. A lab scale study of hydrogen sulphide reduction in natural gas had conducted in oil and gas field using bio-filter method. The bio-filter system (±1 L volume contains an active carbon and thiosulphide medium as a substrate, Thiobacillus thioparus as a single culture of sulphur bacteria, and Thiobacillus thioparus with sludge as a mixed culture of sulphur bacteria. The study of hydrogen sulphide reduction was conducted with continuous flow line process. The gas flow rate approximately 1.5 L/min with a fluctuate presence of Hydrogen sulphide (approximately 40 - 70 mg/L. The bio-filter system contains active carbon, thiosulphide medium, and single culture of T. thioparus appear as a good filter for hydrogen sulphide reduction. During 24 hours, the hydrogen sulphide reduction obtains 93% to 16%. When  culture media added, the hydrogen sulphide reduction will increase almost 60% and then the reduction decrease to 4% after 20 hours. It is concluded that the bio-filter have potential to develop for sulphur reduction in natural gas.

  14. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters.

    Science.gov (United States)

    Alderman, Steven L; Parsons, Michael S; Hogancamp, Kristina U; Waggoner, Charles A

    2008-11-01

    High-efficiency particulate air (HEPA) filters are widely used to control particulate matter emissions from processes that involve management or treatment of radioactive materials. Section FC of the American Society of Mechanical Engineers AG-1 Code on Nuclear Air and Gas Treatment currently restricts media velocity to a maximum of 2.5 cm/sec in any application where this standard is invoked. There is some desire to eliminate or increase this media velocity limit. A concern is that increasing media velocity will result in higher emissions of ultrafine particles; thus, it is unlikely that higher media velocities will be allowed without data to demonstrate the effect of media velocity on removal of ultrafine particles. In this study, the performance of nuclear grade HEPA filters, with respect to filter efficiency and most penetrating particle size, was evaluated as a function of media velocity. Deep-pleat nuclear grade HEPA filters (31 cm x 31 cm x 29 cm) were evaluated at media velocities ranging from 2.0 to 4.5 cm/sec using a potassium chloride aerosol challenge having a particle size distribution centered near the HEPA filter most penetrating particle size. Filters were challenged under two distinct mass loading rate regimes through the use of or exclusion of a 3 microm aerodynamic diameter cut point cyclone. Filter efficiency and most penetrating particle size measurements were made throughout the duration of filter testing. Filter efficiency measured at the onset of aerosol challenge was noted to decrease with increasing media velocity, with values ranging from 99.999 to 99.977%. The filter most penetrating particle size recorded at the onset of testing was noted to decrease slightly as media velocity was increased and was typically in the range of 110-130 nm. Although additional testing is needed, these findings indicate that filters operating at media velocities up to 4.5 cm/sec will meet or exceed current filter efficiency requirements. Additionally

  15. 21 CFR 870.4260 - Cardiopulmonary bypass arterial line blood filter.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass arterial line blood filter... Cardiopulmonary bypass arterial line blood filter. (a) Identification. A cardiopulmonary bypass arterial line blood filter is a device used as part of a gas exchange (oxygenator) system to filter nonbiologic...

  16. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    individual gas cleaning stages, and the probable operating conditions of the gas cleaning stages to conceptually satisfy the gas cleaning requirements; (2) Estimate process material & energy balances for the major plant sections and for each gas cleaning stage; (3) Conceptually size and specify the major gas cleaning process equipment; (4) Determine the resulting overall performance of the application; and (5) Estimate the investment cost and operating cost for each application. Analogous evaluation steps were applied for each application using conventional gas cleaning technology, and comparison was made to extract the potential benefits, issues, and development needs of the Filter-Reactor Novel Gas Cleaning technology. The gas cleaning process and related gas conditioning steps were also required to meet specifications that address plant environmental emissions, the protection of the gas turbine and other Power Island components, and the protection of the methanol synthesis reactor. Detailed material & energy balances for the gas cleaning applications, coupled with preliminary thermodynamic modeling and laboratory testing of candidate sorbents, identified the probable sorbent types that should be used, their needed operating conditions in each stage, and their required levels of performance. The study showed that Filter-Reactor Novel Gas Cleaning technology can be configured to address and conceptually meet all of the gas cleaning requirements for IGCC, and that it can potentially overcome several of the conventional IGCC power plant availability issues, resulting in improved power plant thermal efficiency and cost. For IGCC application, Filter-Reactor Novel Gas Cleaning yields 6% greater generating capacity and 2.3 percentage-points greater efficiency under the Current Standards case, and more than 9% generating capacity increase and 3.6 percentage-points higher efficiency in the Future Standards case. While the conceptual equipment costs are estimated to be only slightly

  17. Transmission of broad W/Rh and W/Al (target/filter) x-ray beams operated at 25-49 kVp through common shielding materials

    Energy Technology Data Exchange (ETDEWEB)

    Li Xinhua; Zhang Da; Liu, Bob [Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2012-07-15

    Purpose: To provide transmission data for broad 25-39 kVp (kilovolt peak) W/Rh and 25-49 kVp W/Al (target/filter, W-tungsten, Rh-rhodium, and Al-aluminum) x-ray beams through common shielding materials, such as lead, concrete, gypsum wallboard, wood, steel, and plate glass. Methods: The unfiltered W-target x-ray spectra measured on a Selenia Dimensions system (Hologic Inc., Bedford, MA) set at 20-49 kVp were, respectively, filtered using 50-{mu}m Rh and 700-{mu}m Al, and were subsequently used for Monte Carlo calculations. The transmission of broad x-ray beams through shielding materials was simulated using Geant4 low energy electromagnetic physics package with photon- and electron-processes above 250 eV, including photoelectric effect, Compton scattering, and Rayleigh scattering. The calculated transmission data were fitted using Archer equation with a robust fitting algorithm. Results: The transmission of broad x-ray beams through the above-mentioned shielding materials was calculated down to about 10{sup -5} for 25-39 kVp W/Rh and 25-49 kVp W/Al. The fitted results of {alpha}, {beta}, and {gamma} in Archer equation were provided. The {alpha} values of kVp Greater-Than-Or-Slanted-Equal-To 40 were approximately consistent with those of NCRP Report No. 147. Conclusions: These data provide inputs for the shielding designs of x-ray imaging facilities with W-anode x-ray beams, such as from Selenia Dimensions.

  18. Strategic blue-green communication filters

    Science.gov (United States)

    Rosenberg, W. J.

    1984-04-01

    The project began as an effort to construct narrowband, wide-field-of-view, large-aperture, plastic, birefringent filters suitable for blue-green communications. During the course of the study we investigated the use of crystalline materials in addition to plastic films, and we studied filter design theory in order to find designs more suitable to the blue-green system requirements. In addition, we constructed a quartz, 2A filter for the 1981 SLCAIR experiment. In this report we have included an introduction to the principles of narrowband, wide-field-of-view, birefringent filters. This section is included since the subject matter is not readily available except piecemeal in technical journals. Section 3 is a discussion of the materials which were considered during this study. It contains subsections devoted to crystals, plastics and analog element, respectively. A class of new lossless filter designs is described in Section 4. These designs are expected to provide a basis for high-transmission filters in the future. The operational SLCAIR-81 filter is described in Section 5. It was part of the successful experiment which demonstrated communication to the USN Dolphin, a research submarine. Finally, in Section 6 we describe the non-vignetting filter design which was discovered during this study. It represents a significant throughput advantage for crystal filters used in non-imaging applications.

  19. The Handbook of Nonwoven Filter Media

    OpenAIRE

    Dr. Larry C. Wadsworth,

    2007-01-01

    The Handbook of Nonwoven Filter Media is a new textbook and is one of the few books dealing with the subject of nonwoven filter media through the entire text. It is highly recommended as a prime reference for people in the nonwovens industry. This book culminates a productive career in the field and impressively lives up to the author’s aim, as stated in the “Preface,” “to provide the reader with a fundamental understanding of nonwoven filter media.” Gas, liquid, and engine filtration are dis...

  20. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  1. Multi-Canister overpack internal HEPA filters

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The rationale for locating a filter assembly inside each Multi-Canister Overpack (MCO) rather than include the filter in the Cold Vacuum Drying (CVD) process piping system was to eliminate the potential for contamination to the operators, processing equipment, and the MCO. The internal HEPA filters provide essential protection to facility workers from alpha contamination, both external skin contamination and potential internal depositions. Filters installed in the CVD process piping cannot mitigate potential contamination when breaking the process piping connections. Experience with K-Basin material has shown that even an extremely small release can result in personnel contamination and costly schedule disruptions to perform equipment and facility decontamination. Incorporating the filter function internal to the MCO rather than external is consistent with ALARA requirements of 10 CFR 835. Based on the above, the SNF Project position is to retain the internal HEPA filters in the MCO design

  2. High-performance ceramic filters for energy engineering. Final report; Filter aus Hochleistungskeramik fuer die Energietechnik. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Westerheide, R. [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany); Adler, J. [Fraunhofer-Institut fuer Keramische Technologien und Sinterwerkstoffe (IKTS), Dresden (Germany); Buhl, H. [ESK-SIC GmbH, Frechen-Grefrath (Germany); Fister, D. [H.C. Starck GmbH, Laufenburg (Germany); Krein, J. [LLB Lurgi Lentjes Energietechnik GmbH, Frankfurt (Germany); Voelker, W. [Annawerk GmbH, Roedental (Germany); Walch, A. [eds.] [USF Schumacher Umwelt- und Trenntechnik GmbH, Crailsheim (Germany)

    1999-09-30

    The hot gas particulate removal of many advanced coal fired power generation technologies works at temperatures above 800 C. The filter elements for these applications are often based on ceramic materials, e.g. silicon carbide. However, the mostly clay bonded silicon carbide is subject to creep and oxidation due to probable changes of the binder phase. In this work the development of new ceramic filter materials based on silicon carbide and alumina is described. The goal of the development was to increase the potential application temperature. To obtain the goal, the work was performed together with ceramic powder manufacturers, developers of ceramic materials and components as well as with companies who operate test facilities. Different routes were chosen to increase the high temperature resistance in consideration of corrosion resistance, fracture strength and pressure loss of the filter materials. One of these routes was the optimization of the binder phase of the silicon carbide materials. Other routes were concentrated on the base material and the investigation of other possibilities for the silicon carbide bonding, i.e. a recrystallization process of SiC (RSiC) or a self bonding of granulated small grained silicon carbide powder. Additionally filter materials based on alumina were developed. The report covers these material development oriented topics as well as the additional work in materials reliability, coating development and modeling of microstructure. (orig.) [German] In der Kombikraftwerkstechnik wird insbesondere bei Kohlefeuerung die Heissgasreinigung oft bei Temperaturen ueber 800 C eingesetzt. Die Filterelemente fuer diese Anwendungen bestehen oft aus keramischen Materialien. Das haeufig eingesetzte tongebundene Siliciumcarbid unterliegt jedoch besonders aufgrund der Beschaffenheit der Bindephase Kriech- und Oxidationsschaedigungen. In diesem Bericht wird die Entwicklung von neuen keramischen Filtermaterialien, die auf Siliciumcarbid oder

  3. Excellent impact performance of PVC pipeline materials in gas distribution networks after many years of service (CD-rom)

    NARCIS (Netherlands)

    Visser, Roy; Hermkens, R.M.J.; Wolters, Mannes; Weller, J.; Warnet, Laurent; Beckervordersandforth, C.; Verberg, G.H.B.; Kramer, M.

    2008-01-01

    It has been about fifty years ago since the first unplasticized poly(vinyl chloride) (uPVC) pipes were installed for use in gas distribution purposes. Currently, about 22,500 km of uPVC is still in use in the Dutch gas distribution network. The pipes were originally designed for a lifetime of 50

  4. Electroceramic functional gradient materials. Final report 1995 - 1998

    Energy Technology Data Exchange (ETDEWEB)

    Toft Soerensen, O. [ed.

    1999-10-01

    In this programme the research and development is focused on electroceramic materials, which are of direct interest for the Danish producers of electronic components (AMP Danmark) and ceramic gas sensors (PBI-Dansensor) as well as companies involved in development of fuel cells (Haldor Topsoee). The R and D work has been focused on strategic materials research, both application oriented and more basic research, and on development of new techniques for fabrication of EFGM (Electroceramic Functional Gradient Materials) of three types: LC circuit materials (electronic noise filters), oxides for electrochemical reactors and solid oxide fuel cell applications (SOFC) and materials (semiconductors, oxygen ion conductors) for oxygen sensors. This work has been carried out in five projects: 1) Integrated filter components; 2) Electrochemical reactor materials; 3) Oxygen sensors based on semiconductors and oxygen ion conductors; 4) Interface models - synthesis and characterisation; 5) Suppression of cracking in multilayered ceramic materials. (EHS)

  5. Passband-shifting filters through postgrowth modification of filter optical thickness.

    Science.gov (United States)

    Patel, Rajesh R; Krol, Denise M; Bond, Steven W; Pocha, Michael D; Meyer, Glenn A; Behymer, Elaine; Sperry, Victor

    2002-12-01

    We describe a postgrowth method to produce passband filters with different center wavelengths from a single growth run by irreversibly changing the refractive index of a layer or a series of layers within the filter. This leads to a new type of filter, the passband-shifting filter, whose center wavelength can be irreversibly shifted from lambda0 to lambda0 - deltalambda after the filter has been grown. The passband shift can be controlled exactly by proper design of the multilayer. We present the theory behind passband-shifting-filter design along with transfer-matrix simulations and preliminary experimental results for a two-cavity filter, using lateral oxidation of AlxGa1-x As-based materials to effect the passband shift.

  6. Solid phase characterization and gas transfers through unsaturated porous media: experimental study and modeling applied diffusion of hydrogen through cement-based materials

    International Nuclear Information System (INIS)

    Vu, T.H.

    2009-10-01

    This thesis documents the relationship between the porous microstructure of cement based materials and theirs gaseous diffusivity properties relative to the aqueous phase location and the global saturation level of the material. The materials studied are cement pastes and mortars. To meet the thesis objective, the materials are characterized in detail by means of several experimental methods: mercury intrusion porosimetry, water porosimetry, thermo-poro-metry, nitrogen sorption and water desorption. In addition, diffusion tests realized on materials maintained in controlled humidity chambers allow obtaining the effective hydrogen diffusivity as function of the microstructure and the saturation state of material with a gas chromatography. The experimental results are then used as a data base that is compared to a modeling approach. The model developed consists of a combination of ordinary diffusion (Fick regime) and Knudsen diffusion of hydrogen. The model also accounts for the effects of the liquid curtains, the impact of tortuosity on gas diffusion, and the saturation level of the porous system. (author)

  7. Granular filters for water treatment: heterogeneity and diagnostic tools

    DEFF Research Database (Denmark)

    Lopato, Laure Rose

    in a proactive manner. They can also be used to optimize the filtration process. However, further research is necessary to relate the information obtained through the tools to specific causes. New tools such as the total dissolved gas probe, salt tracers and ammonium profiles are presented. Potential tools from......Rapid granular filters are the most commonly used filters in drinking water treatment plants and are the focus of this PhD study. They are usually constructed with sand, anthracite, activated carbon, garnet sand, and ilmenite and have filtration rates ranging from 3 to 15 m/h. Filters are often...... and reliable filter performance, and water quality compliance. A salt tracer tool is developed to be used in full-scale filters to investigate the heterogeneity of the filter bed. The tool allows the pore velocity to be estimated in different locations of the filter bed during the duration of a filter run...

  8. Cleaning of porous filters in fluidized bed reactors. Use of one ejector for various filters

    International Nuclear Information System (INIS)

    Sancho Rod, J.; Rodrigo Otero, A.

    1966-01-01

    Tests to know the efficiency of a porous filters cleaning system by blow-back that uses on ejector for each set of simultaneously cleaned filters were carried out. A Calculation method to obtain the optimum ejector for this system was shown, taking n=2, as optimum number of working for the fluidized bed reactors belonging to the Pilot plant of the Materials Division at JEN. That is two filters for each ejector. (Author)

  9. Apparatus for the investigation of high-temperature, high-pressure gas-phase heterogeneous catalytic and photo-catalytic materials.

    Science.gov (United States)

    Alvino, Jason F; Bennett, Trystan; Kler, Rantej; Hudson, Rohan J; Aupoil, Julien; Nann, Thomas; Golovko, Vladimir B; Andersson, Gunther G; Metha, Gregory F

    2017-05-01

    A high-temperature, high-pressure, pulsed-gas sampling and detection system has been developed for testing new catalytic and photocatalytic materials for the production of solar fuels. The reactor is fitted with a sapphire window to allow the irradiation of photocatalytic samples from a lamp or solar simulator light source. The reactor has a volume of only 3.80 ml allowing for the investigation of very small quantities of a catalytic material, down to 1 mg. The stainless steel construction allows the cell to be heated to 350 °C and can withstand pressures up to 27 bar, limited only by the sapphire window. High-pressure sampling is made possible by a computer controlled pulsed valve that delivers precise gas flow, enabling catalytic reactions to be monitored across a wide range of pressures. A residual gas analyser mass spectrometer forms a part of the detection system, which is able to provide a rapid, real-time analysis of the gas composition within the photocatalytic reaction chamber. This apparatus is ideal for investigating a number of industrially relevant reactions including photocatalytic water splitting and CO 2 reduction. Initial catalytic results using Pt-doped and Ru nanoparticle-doped TiO 2 as benchmark experiments are presented.

  10. Apparatus for the investigation of high-temperature, high-pressure gas-phase heterogeneous catalytic and photo-catalytic materials

    Science.gov (United States)

    Alvino, Jason F.; Bennett, Trystan; Kler, Rantej; Hudson, Rohan J.; Aupoil, Julien; Nann, Thomas; Golovko, Vladimir B.; Andersson, Gunther G.; Metha, Gregory F.

    2017-05-01

    A high-temperature, high-pressure, pulsed-gas sampling and detection system has been developed for testing new catalytic and photocatalytic materials for the production of solar fuels. The reactor is fitted with a sapphire window to allow the irradiation of photocatalytic samples from a lamp or solar simulator light source. The reactor has a volume of only 3.80 ml allowing for the investigation of very small quantities of a catalytic material, down to 1 mg. The stainless steel construction allows the cell to be heated to 350 °C and can withstand pressures up to 27 bar, limited only by the sapphire window. High-pressure sampling is made possible by a computer controlled pulsed valve that delivers precise gas flow, enabling catalytic reactions to be monitored across a wide range of pressures. A residual gas analyser mass spectrometer forms a part of the detection system, which is able to provide a rapid, real-time analysis of the gas composition within the photocatalytic reaction chamber. This apparatus is ideal for investigating a number of industrially relevant reactions including photocatalytic water splitting and CO2 reduction. Initial catalytic results using Pt-doped and Ru nanoparticle-doped TiO2 as benchmark experiments are presented.

  11. Microstructure and gas sensitive properties of alpha-Fe2O3-MO2 (M: Sn and Ti) materials prepared by ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lin, R.; Mørup, Steen

    1998-01-01

    Metastable alpha-Fe2O3-MO2 (M: Sn and Ti) solid solutions can be synthesized by mechanical alloying. The alloy formation, microstructure, and gas sensitive properties of mechanically milled alpha-Fe2O3-SnO2 materials are discussed. Tin ions in alpha-Fe2O3 are found to occupy the empty octahedral...... holes in the alpha-Fe2O3 lattice. This interstitial model can also describe the structure of alpha-Fe2O3-TiO2 solid solutions. Finally, a correlation of gas sensitive properties with microstructure of alpha-Fe2O3-SnO2 materials is presented....

  12. The application of the statistical classifying models for signal evaluation of the gas sensors analyzing mold contamination of the building materials

    Science.gov (United States)

    Majerek, Dariusz; Guz, Łukasz; Suchorab, Zbigniew; Łagód, Grzegorz; Sobczuk, Henryk

    2017-07-01

    Mold that develops on moistened building barriers is a major cause of the Sick Building Syndrome (SBS). Fungal contamination is normally evaluated using standard biological methods which are time-consuming and require a lot of manual labor. Fungi emit Volatile Organic Compounds (VOC) that can be detected in the indoor air using several techniques of detection e.g. chromatography. VOCs can be also detected using gas sensors arrays. All array sensors generate particular voltage signals that ought to be analyzed using properly selected statistical methods of interpretation. This work is focused on the attempt to apply statistical classifying models in evaluation of signals from gas sensors matrix to analyze the air sampled from the headspace of various types of the building materials at different level of contamination but also clean reference materials.

  13. Radioactive liquid waste filtering device

    International Nuclear Information System (INIS)

    Inami, Ichiro; Tabata, Masayuki; Kubo, Koji.

    1988-01-01

    Purpose: To prevent clogging in filter materials and improve the filtration performance for radioactive liquid wastes without increasing the amount of radioactive wastes. Constitution: In a radioactive waste filtering device, a liquid waste recycling pipe and a liquid recycling pump are disposed for recycling the radioactive liquid wastes in a liquid wastes vessel. In this case, the recycling pipe and the recycling pump are properly selected so as to satisfy the conditions capable of making the radioactive liquid wastes flowing through the pipe to have the Reynolds number of 10 4 - 10 5 . By repeating the transportation of radioactive liquid wastes in the liquid waste vessel through the liquid waste recycling pipe by the liquid waste recycling pump and then returning them to the liquid waste vessel again, particles of fine grain size in the suspended liquids are coagulated with each other upon collision to increase the grain size of the suspended particles. In this way, clogging of the filter materials caused by the particles of fine grain size can be prevented, thereby enabling to prevent the increase in the rising rate of the filtration differential pressure, reduce the frequency for the occurrence of radioactive wastes such as filter sludges and improve the processing performance. (Kamimura, M.)

  14. HEPA filter monitoring program

    Science.gov (United States)

    Kirchner, K. N.; Johnson, C. M.; Aiken, W. F.; Lucerna, J. J.; Barnett, R. L.; Jensen, R. T.

    1986-07-01

    The testing and replacement of HEPA filters, widely used in the nuclear industry to purify process air, are costly and labor-intensive. Current methods of testing filter performance, such as differential pressure measurement and scanning air monitoring, allow determination of overall filter performance but preclude detection of incipient filter failure such as small holes in the filters. Using current technology, a continual in-situ monitoring system was designed which provides three major improvements over current methods of filter testing and replacement. The improvements include: cost savings by reducing the number of intact filters which are currently being replaced unnecessarily; more accurate and quantitative measurement of filter performance; and reduced personnel exposure to a radioactive environment by automatically performing most testing operations.

  15. Bias aware Kalman filters

    DEFF Research Database (Denmark)

    Drecourt, J.-P.; Madsen, H.; Rosbjerg, Dan

    2006-01-01

    This paper reviews two different approaches that have been proposed to tackle the problems of model bias with the Kalman filter: the use of a colored noise model and the implementation of a separate bias filter. Both filters are implemented with and without feedback of the bias into the model state...... are illustrated on a simple one-dimensional groundwater problem. The results show that the presented filters outperform the standard Kalman filter and that the implementations with bias feedback work in more general conditions than the implementations without feedback. 2005 Elsevier Ltd. All rights reserved........ The colored noise filter formulation is extended to correct both time correlated and uncorrelated model error components. A more stable version of the separate filter without feedback is presented. The filters are implemented in an ensemble framework using Latin hypercube sampling. The techniques...

  16. UV holographic filters

    Science.gov (United States)

    Kalyashova, Zoya N.

    2017-11-01

    A new approach to UV holographic filter's manufacturing, when the filters are the volume reflection holograms, working in UV region in the second Bragg diffraction order, is offered. The method is experimentally realized for wavelength of 266 nm.

  17. Filter Cake Oil-Wax as Raw Material for the Production of Biodiesel: Analysis of the Extraction Process and the Transesterification Reaction

    OpenAIRE

    L. Casas; Y. Hernández; C. Mantell; N. Casdelo; E. Martinez de la Ossa

    2015-01-01

    The viability of using the waste obtained in the manufacture of sugar from sugarcane for the production of biodiesel has been analyzed. Two fundamental stages are necessary to obtain biodiesel; the first stage is the extraction process from the waste oil materials and the second is the transesterification reaction. Four techniques, Soxhlet, orbital shaker extraction, ultrasonic-assisted extraction, and supercritical fluid extraction, have been analyzed. For Soxhlet, orbital shaker extraction,...

  18. AlphaGUARD, the new reference for continuous radon monitoring in air, soil, gas, water and material

    International Nuclear Information System (INIS)

    Roessler, F.; Buerkin, W.; Villert, J.

    2016-01-01

    The company Saphymo GmbH has more than 25 years of experience in the field of radon measurement. More than 20 years ago Saphymo developed the professional and robust radon monitor AlphaGUARD, quickly recognized as a standard for reliable and continuous measurements of the radon concentration. Today AlphaGUARD is internationally established as the reference in radon measurement. Following up on this success story the new generation of AlphaGUARD can now be presented. Based on the excellent measurement characteristics of its predecessor the new AlphaGUARD combines the well-proven principle of the pulse ionisation chamber with new and additional features. The robust housing is oriented on the well-proven design of the predecessor and includes now an integrated flow controlled and powerful pump. The instrument can be operated in flow as well as in diffusion mode (without pump). Via the new large display and the intuitive menu navigation all measurement data can be retrieved. The presentation of time series in charts is possible as well as the parametrisation of the instrument. A wide range of accessories, developed in cooperation with various radon experts of universities and laboratories, enables the user a varied and flexible application of the AlphaGUARD: Measurement of the radon concentration in air (radon, thoron, radon progenies), in water (sampling and time resolved measurements) and in soil (soil gas measurements, exhalation measurements), emanation measurements from material, multi spot measurement, online measurement with remote data transmission via Ethernet/DSL, Bluetooth, Wi-Fi, GPRS/3G or satellite. Due to its high sensitivity and its fast and linear response over a large measuring range the AlphaGUARD is excellently suited for calibration laboratories. Furthermore the AlphaGUARD enables ideal prerequisites for field applications: robust housing for operations under harsh conditions, long battery life for the measurement at any location, low

  19. Corrosion resistance of ceramic materials in pyrochemical reprocessing atmosphere by using molten salt for spent nuclear oxide fuel. Corrosion research under chlorine gas condition

    International Nuclear Information System (INIS)

    Takeuchi, Masayuki; Hanada, Keiji; Koizumi, Tsutomu; Aose, Shinichi; Kato, Toshihiro

    2002-12-01

    Pyrochemical reprocessing using molten salts (RIAR process) has been recently developed for spent nuclear oxide fuel and discussed in feasibility study. It is required to improve the corrosion resistance of equipments such as electrolyzer because the process is operated in severe corrosion environment. In this study, the corrosion resistance of ceramic materials was discussed through the thermodynamic calculation and corrosion test. The corrosion test was basically carried out in alkali molten salt under chlorine gas condition. And further consideration about the effects of oxygen, carbon and main fission product's chlorides were evaluated in molten salt. The result of thermodynamic calculation shows most of ceramic oxides have good chemical stability on chlorine, oxygen and uranyl chloride, however the standard Gibb's free energies with carbon have negative value. On the other hand, eleven kinds of ceramic materials were examined by corrosion test, then silicon nitride, mullite and cordierite have a good corrosion resistance less than 0.1 mm/y. Cracks were not observed on the materials and flexural strength did not reduce remarkably after 480 hours test in molten salt with Cl 2 -O 2 bubbling. In conclusion, these three ceramic materials are most applicable materials for the pyrochemical reprocessing process with chlorine gas condition. (author)

  20. MST Filterability Tests

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.