WorldWideScience

Sample records for gas dynamic laser

  1. Gas dynamic laser device

    International Nuclear Information System (INIS)

    Born, G.

    1975-01-01

    The gas dynamic laser device is provided with an expansion chamber arranged between a heating chamber for the CO-gas and the resonance chamber. The expansion chamber is initially evacuated for producing a rarefaction wave. Between the heating chamber and the expansion chamber there are arranged rapid release means such as a valve or a diaphragm. Pressure recovering means are connected to the other side of the resonance chamber

  2. Closed cycle gas dynamic laser

    International Nuclear Information System (INIS)

    Pinsley, E.A.

    1975-01-01

    The device includes a closed cycle gasdynamic laser wherein the lasing fluid is recirculated in a closed loop. The closed loop includes a nozzle array, a lasing cavity and a diffuser. The exit of the diffuser is connected to the inlet to the nozzle array with a fuel heat exchanger located in the lasing flow and a pumping means located between the heat exchanger and the nozzle array. To provide for cooling of the pumping means and to improve diffuser performance, gas bled from the diffuser is cooled by two heat exchangers and pumped into cooling passages in the pumping means. The heat exchangers for cooling the flow to the pumping means are located in series and carry fuel from a supply to an injector in said combustor and the heat exchanger in the lasing flow cools the fluid and carries the fuel from a supply to an injector in said combustor. (U.S.)

  3. On the Gas Dynamics of Inert-Gas-Assisted Laser Cutting of Steel Plate

    Science.gov (United States)

    Brandt, A. D.; Settles, G. S.; Scroggs, S. D.

    1996-11-01

    Laser beam cutting of sheet metal requires an assist gas to blow away the molten material. Since the assist-gas dynamics influences the quality and speed of the cut, the orientation of the gas nozzle with respect to the kerf is also expected to be important. A 1 kW cw CO2 laser with nitrogen assist gas was used to cut mild steel sheet of 1 to 4 mm thickness, using a sonic coaxial nozzle as a baseline. Off-axis nozzles were oriented from 20 deg to 60 deg from normal with exit Mach numbers from 1 to 2.4. Results showed maximum cutting speed at a 40 deg nozzle orientation. Shadowgrams of a geometrically-similar model kerf then revealed a separated shock wave-boundary layer interaction within the kerf for the (untilted) coaxial nozzle case. This was alleviated, resulting in a uniform supersonic flow throughout the kerf and consequent higher cutting speeds, by tilting the nozzle between 20 deg and 45 deg from the normal. This result did not depend upon the exit Mach number of the nozzle. (Research supported by NSF Grant DMI-9400119.)

  4. Diode laser absorption sensors for gas-dynamic and combustion flows

    Science.gov (United States)

    Allen, M. G.

    1998-01-01

    Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room

  5. Waveguide gas laser

    Science.gov (United States)

    Zedong, C.

    1982-05-01

    Waveguide gas lasers are described. Transmission loss of hollow tube light waveguides, coupling loss, the calculation of output power, and the width of the oscillation belt are discussed. The structure of a waveguide CO2 laser is described.

  6. Present status of rarefied gas dynamics approach to the structure of a laser-induced evaporating jet

    International Nuclear Information System (INIS)

    Cercignani, C.

    1980-01-01

    With reference to the relation between the state of the surface and the measurements downstream in the dynamic laser pulse technique, the problems arising in connection with the study of the structure of a jet evaporating into a vacuum are investigated. Particular attention is paid to the following aspects gas surface interaction, internal degrees of freedom, presence of more than one species, chemical reactions

  7. Two dimensional laser induced fluorescence in the gas phase: a spectroscopic tool for studying molecular spectroscopy and dynamics

    Science.gov (United States)

    Gascooke, Jason R.; Lawrance, Warren D.

    2017-11-01

    Two dimensional laser induced fluorescence (2D-LIF) extends the usual laser induced fluorescence technique by adding a second dimension, the wavelength at which excited states emit, thereby significantly enhancing the information that can be extracted. It allows overlapping absorption features, whether they arise from within the same molecule or from different molecules in a mixture, to be associated with their appropriate "parent" state and/or molecule. While the first gas phase version of the technique was published a decade ago, the technique is in its infancy, having been exploited by only a few groups to date. However, its potential in gas phase spectroscopy and dynamics is significant. In this article we provide an overview of the technique and illustrate its potential with examples, with a focus on those utilising high resolution in the dispersed fluorescence dimension.

  8. Ambient gas effects on the dynamics of laser-produced tin plume expansion

    International Nuclear Information System (INIS)

    Harilal, S. S.; O'Shay, Beau; Tao Yezheng; Tillack, Mark S.

    2006-01-01

    Controlling the debris from a laser-generated tin plume is one of the prime issues in the development of an extreme ultraviolet lithographic light source. An ambient gas that is transparent to 13.5 nm radiation can be used for controlling highly energetic particles from the tin plume. We employed a partial ambient argon pressure for decelerating various species in the tin plume. The kinetic energy distributions of tin species were analyzed at short and large distances using time and space resolved optical emission spectroscopy and a Faraday cup, respectively. A fast-gated intensified charged coupled device was used for understanding the hydrodynamics of the plume's expansion into argon ambient. Our results indicate that the tin ions can be effectively mitigated with a partial argon pressure ∼65 mTorr. Apart from thermalization and deceleration of plume species, the addition of ambient gas leads to other events such as double peak formation in the temporal distributions and ambient plasma formation

  9. Novel gas target for laser wakefield accelerators

    Science.gov (United States)

    Aniculaesei, C.; Kim, Hyung Taek; Yoo, Byung Ju; Oh, Kyung Hwan; Nam, Chang Hee

    2018-02-01

    A novel gas target for interactions between high power lasers and gaseous medium, especially for laser wakefield accelerators, has been designed, manufactured, and characterized. The gas target has been designed to provide a uniform density profile along the central gas cell axis by combining a gas cell and slit nozzle. The gas density has been tuned from ˜1017 atoms/cm3 to ˜1019 atoms/cm3 and the gas target length can be varied from 0 to 10 cm; both changes can be made simultaneously while keeping the uniform gas profile. The gas density profile inside the gas cell has been measured using interferometry and validated using computational fluid dynamics.

  10. Laser Annealing for Gas-Dynamical Spraying of HA Coating upon a Titanium Surface

    Directory of Open Access Journals (Sweden)

    Victor Saphronov

    2015-10-01

    Full Text Available Laser post-heating computer controlled detonation spraying (CCDS and cold spray (CS hybrid processes were proposed for fabrication of near sub micron structure coatings of hydroxyapatite (HA + Ti system. Optical and SEM with energy dispersive X-ray analysis and comparative XRD phase analysis were used to evaluate microstructure. After those hybrid processes, no substantial variation in HA composition was noted by structural and phase examination. Nano-sized HA powders can be recommended for laser annealing CS (LaCS process. Regimes of laser treatment optimal for increasing the adhesion between the HA and titanium coatings, providing more strength, ductility and decreasing of HA destruction in the coatings were determined.

  11. Brome isotope selective control of CF3Br molecule clustering by IR laser radiation in gas-dynamic expansion of CF3Br - Ar mixture

    Science.gov (United States)

    Apatin, V. M.; Lokhman, V. N.; Makarov, G. N.; Ogurok, N.-D. D.; Ryabov, E. A.

    2018-02-01

    We report the results of research on the experimental control of CF3Br molecule clustering under gas-dynamic expansion of the CF3Br - Ar mixture at a nozzle exit by using IR laser radiation. A cw CO2 laser is used for exciting molecules and clusters in the beam and a time-of-flight mass-spectrometer with laser UV ionisation of particles for their detection. The parameters of the gas above the nozzle are determined (compositions and pressure) at which intensive molecule clustering occurs. It is found that in the case of the CF3Br gas without carrier when the pressure P0 above the nozzle does not exceed 4 atm, molecular clusters actually are not generated in the beam. If the gas mixture of CF3Br with argon is used at a pressure ratio 1 : N, where N >= 3, and the total pressure above the nozzle is P0 >= 2 atm, then there occurs molecule clustering. We study the dependences of the efficiency of suppressing the molecule clustering on parameters of the exciting pulse, gas parameters above the nozzle, and on a distance of the molecule irradiation zone from the nozzle exit section. It is shown that in the case of resonant vibrational excitation of gas-dynamically cooled CF3Br molecules at the nozzle exit one can realise isotope-selective suppression of molecule clustering with respect to bromine isotopes. With the CF3Br - Ar mixtures having the pressure ratio 1 : 3 and 1 : 15, the enrichment factors obtained with respect to bromine isotopes are kenr ≈ 1.05 ± 0.005 and kenr ≈ 1.06 ± 0.007, respectively, under jet irradiation by laser emission in the 9R(30) line (1084.635 cm-1). The results obtained let us assume that this method can be used to control clustering of molecules comprising heavy element isotopes, which have a small isotopic shift in IR absorption spectra.

  12. High enthalpy gas dynamics

    CERN Document Server

    Rathakrishnan, Ethirajan

    2014-01-01

    This is an introductory level textbook which explains the elements of high temperature and high-speed gas dynamics. written in a clear and easy to follow style, the author covers all the latest developments in the field including basic thermodynamic principles, compressible flow regimes and waves propagation in one volume covers theoretical modeling of High Enthalpy Flows, with particular focus on problems in internal and external gas-dynamic flows, of interest in the fields of rockets propulsion and hypersonic aerodynamics High enthalpy gas dynamics is a compulsory course for aerospace engine

  13. Fundamentals of gas dynamics

    CERN Document Server

    Babu, V

    2014-01-01

    Fundamentals of Gas Dynamics, Second Edition isa comprehensively updated new edition and now includes a chapter on the gas dynamics of steam. It covers the fundamental concepts and governing equations of different flows, and includes end of chapter exercises based on the practical applications. A number of useful tables on the thermodynamic properties of steam are also included.Fundamentals of Gas Dynamics, Second Edition begins with an introduction to compressible and incompressible flows before covering the fundamentals of one dimensional flows and normal shock wav

  14. Gas-dynamic perturbations in an electric-discharge repetitively pulsed DF laser and the role of He in their suppression

    Energy Technology Data Exchange (ETDEWEB)

    Evdokimov, P A; Sokolov, D V [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2015-11-30

    The gas-dynamic perturbations in a repetitively pulsed DF laser are studied using a Michelson interferometer. Based on the analysis of experimental data obtained in two experimental sets (working medium without buffer gas and with up to 90% of He), it is concluded that such phenomena as isentropic expansion of a thermal plug, gas heating by shock waves and resonance acoustic waves do not considerably decrease the upper limit of the pulse repetition rate below a value determined by the time of the thermal plug flush out of the discharge gap. It is suggested that this decrease for a DF laser with the SF{sub 6} – D{sub 2} working mixture is caused by the development of overheat instability due to an increased energy deposition into the near-electrode regions and to the formation of electrode shock waves. Addition of He to the active media of the DF laser changes the discharge structure and improves its homogeneity over the discharge gape cross section, thus eliminating the reason for the development of this instability. A signification dilution of the active medium of a DF laser with helium up to the atmospheric pressure allowed us to achieve the limiting discharge initiation frequencies with the active medium replacement ratio K ∼ 1. (active media)

  15. Laser and gas centrifuge enrichment

    Science.gov (United States)

    Heinonen, Olli

    2014-05-01

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  16. Laser-induced gas plasma machining

    Energy Technology Data Exchange (ETDEWEB)

    Elhadj, Selim; Bass, Isaac Louis; Guss, Gabriel Mark; Matthews, Manyalibo J.

    2017-10-17

    Techniques for removing material from a substrate are provided. A laser beam is focused at a distance from the surface to be treated. A gas is provided at the focus point. The gas is dissociated using the laser energy to generate gas plasma. The substrate is then brought in contact with the gas plasma to enable material removal.

  17. Elements of gas dynamics

    CERN Document Server

    Liepmann, H W

    2001-01-01

    The increasing importance of concepts from compressible fluid flow theory for aeronautical applications makes the republication of this first-rate text particularly timely. Intended mainly for aeronautics students, the text will also be helpful to practicing engineers and scientists who work on problems involving the aerodynamics of compressible fluids. Covering the general principles of gas dynamics to provide a working understanding of the essentials of gas flow, the contents of this book form the foundation for a study of the specialized literature and should give the necessary background

  18. Gas-ion laser with gas pressure maintenance means

    International Nuclear Information System (INIS)

    Thatcher, J.B.

    1975-01-01

    A gas-ion laser is described including means to maintain the ionizable gas in the laser cavity at a rather constant pressure over an extended period of time to significantly increase the useful life of the gas-ion laser. The gas laser includes a gas makeup system having a high pressure source or storage container and a regulating valve. The valve has a permeable solid state orifice member through which the gas flows from the high pressure source to the laser cavity to replenish the gas in the laser cavity and maintain the gas pressure in the cavity rather constant. The permeable orifice member is selected from a solid state material having a permeability that is variable in relation to the magnitude of the energy applied to the orifice member. The gas-ion laser has a valve operating means such as a heater for varying the applied energy such as thermal energy to the member to regulate the gas flow. Additionally, the gas-ion laser has a valve control means that is responsive to the gas pressure in the laser cavity for controlling the valve control means to maintain the pressure at a desired level. (U.S.)

  19. Infrared laser spectroscopic trace gas sensing

    Science.gov (United States)

    Sigrist, Markus

    2016-04-01

    Chemical sensing and analyses of gas samples by laser spectroscopic methods are attractive owing to several advantages such as high sensitivity and specificity, large dynamic range, multi-component capability, and lack of pretreatment or preconcentration procedures. The preferred wavelength range comprises the fundamental molecular absorption range in the mid-infared between 3 and 15 μm, whereas the near-infrared range covers the (10-100 times weaker) higher harmonics and combination bands. The availability of near-infrared and, particularly, of broadly tunable mid-infrared sources like external cavity quantum cascade lasers (EC-QCLs), interband cascade lasers (ICLs), difference frequency generation (DFG), optical parametric oscillators (OPOs), recent developments of diode-pumped lead salt semiconductor lasers, of supercontinuum sources or of frequency combs have eased the implementation of laser-based sensing devices. Sensitive techniques for molecular absorption measurements include multipass absorption, various configurations of cavity-enhanced techniques such as cavity ringdown (CRD), or of photoacoustic spectroscopy (PAS) including quartz-enhanced (QEPAS) or cantilever-enhanced (CEPAS) techniques. The application requirements finally determine the optimum selection of laser source and detection scheme. In this tutorial talk I shall discuss the basic principles, present various experimental setups and illustrate the performance of selected systems for chemical sensing of selected key atmospheric species. Applications include an early example of continuous vehicle emission measurements with a mobile CO2-laser PAS system [1]. The fast analysis of C1-C4 alkanes at sub-ppm concentrations in gas mixtures is of great interest for the petrochemical industry and was recently achieved with a new type of mid-infrared diode-pumped piezoelectrically tuned lead salt vertical external cavity surface emitting laser (VECSEL) [2]. Another example concerns measurements on short

  20. Dynamics of the Ammonia Laser

    Science.gov (United States)

    White, Jonathon David

    An experimental and theoretical study of the dynamics of NH_3 lasers is presented. The significant achievements of this work are summarized below. In initial experiments, a pulsed transversely -excited CO_2 laser operating on the 9R(30) transition is used to optically pump mixtures of NH_3 in buffer gas. A simple oscillator/amplifier system allows the performance of the NH_3 amplifier in the 11 μm region to be characterized. Small-signal gain coefficients of >10%/cm are measured on the aQ(3,3) transition at 10.8 mum, while pump conversion efficiencies of ~ 50% are shown to occur under saturation conditions. The NH_3 laser system is described by a rate-equation model, which is validated by comparison with experiment over a wide range of operating conditions. Measurements are made for NH_3 concentrations ranging from 0.05 to 0.2%, for Ar, N_2 and He buffer gas pressures from 170 to 700 Torr, and for gas temperatures from 200 to 300 K. Optically pumped NH _3 is shown to be a versatile and efficient system for the amplification of mid-infrared radiation. The rate-equation model is used to aid in the design of a simple and efficient NH_3 laser. This laser is tuned over more than 70 vibrational band transitions between 10.08 and 14.14 mu m. Output energies greater than 1 J per pulse are achieved on several of the strongest lines. In a non-selective cavity an energy conversion efficiency of greater than 35% is obtained with a maximum output energy of 4.6 J. Optically pumped NH_3 is shown to be a flexible and efficient system for the downconversion of CO _2 radiation to the 10-14 mu m region. In other experiments, it is shown that optically pumped high pressure mixtures of NH_3 in N_2 are efficient, broadband amplifiers of pulsed CO_2 radiation. In a dilute NH_3 mixture at 6 atmospheres and 200 K, a single pass gain of 150 (21.8 dB) is measured for the 10P(34) CO_2 transition. Gain is observed in NH_3 at pressures as high as 10 atmospheres. Experimental measurements are

  1. GAS LASERS FOR STRONG-FIELD APPLICATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    POGORELSKY,I.V.

    2004-09-15

    Atomic-, molecular- and excimer-gas lasers employ variety of pumping schemes including electric discharge, optical, or chemical reactions and cover a broad spectral range from UV to far-IR. Several types of gas lasers can produce multi-kilojoule pulses and kilowatts of average power. Among them, excimer- and high-pressure molecular lasers have sufficient bandwidth for generating pico- and femtosecond pulses. Projects are underway and prospects are opening up to bring ultrafast gas laser technology to the front lines of advanced accelerator applications.

  2. Introduction to gas lasers with emphasis on selective excitation processes

    CERN Document Server

    Willett, Colin S

    1974-01-01

    Introduction to Gas Lasers: Population Inversion Mechanisms focuses on important processes in gas discharge lasers and basic atomic collision processes that operate in a gas laser. Organized into six chapters, this book first discusses the historical development and basic principles of gas lasers. Subsequent chapters describe the selective excitation processes in gas discharges and the specific neutral, ionized and molecular laser systems. This book will be a valuable reference on the behavior of gas-discharge lasers to anyone already in the field.

  3. Power stabilized CO2 gas transport laser

    International Nuclear Information System (INIS)

    Foster, J.D.; Kirk, R.F.; Moreno, F.E.; Ahmed, S.A.

    1975-01-01

    The output power of a high power (1 kW or more) CO 2 gas transport laser is stabilized by flowing the gas mixture over copper plated baffles in the gas channel during operation of the laser. Several other metals may be used instead of copper, for example, nickel, manganese, palladium, platinum, silver and gold. The presence of copper in the laser gas circuit stabilizes output power by what is believed to be a compensation of the chemical changes in the gas due to the cracking action of the electrical discharge which has the effect of diminishing the capactiy of the carbon dioxide gas mixture to maintain the rated power output of the laser. (U.S.)

  4. Reactive pulsed laser deposition with gas jet

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.

    2001-01-01

    Different metal (Sn, Al, steel, Cu, W) thin films were synthesized by reactive pulsed laser deposition on steel, copper and glass wafers. In our work pulsed Nd:glass (10 J, 800μs) laser system was used. Jet of gas was created by electromagnetic valve perpendicularly to the laser beam. Nitrogen, oxygen and argon were used. We used several to tens laser shots to obtain visible with the naked eye layers. Thin layers were observed under an optical microscope. (author)

  5. Quasi-gas dynamic equations

    CERN Document Server

    Elizarova, Tatiana G

    2009-01-01

    This book presents two interconnected mathematical models generalizing the Navier-Stokes system. The models, called the quasi-gas-dynamic and quasi-hydrodynamic equations, are then used as the basis of numerical methods solving gas- and fluid-dynamic problems.

  6. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  7. Multitube coaxial closed cycle gas laser system

    International Nuclear Information System (INIS)

    Davis, J.W.; Walch, A.P.

    1975-01-01

    A gas laser design capable of long term reliable operation in a commercial environment is disclosed. Various construction details which insulate the laser optics from mechanical distortions and vibrations inevitably present in the environment are developed. Also, a versatile optical cavity made up of modular units which render the basic laser configuration adaptable to alternate designs with different output capabilities is shown in detail. The system built around a convection laser operated in a closed cycle and the working medium is a gas which is excited by direct current electric discharges. (auth)

  8. Compact electron accelerator for pumping gas lasers

    International Nuclear Information System (INIS)

    Duncan, C.V.; Bradley, L.P.

    1976-01-01

    A description is given of the design and application of a simple e-beam generator for the repetitive pulse pumping of gas lasers. The circuit uses a low inductance Marx and series tuned pulse forming elements

  9. Gas-phase chemical dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  10. Laser Additive Manufacturing of Gas Permeable Structures

    Science.gov (United States)

    Klahn, C.; Bechmann, F.; Hofmann, S.; Dinkel, M.; Emmelmann, C.

    Laser additive manufacturing offers a variety of new design possibilities. In mold making laser additive manufactured inserts with conformal cooling channels are already state of the art. Pneumatic ejectors for injection molds are a new application for laser additive manufacturing. The pneumatic ejectors require a durable gas permeable material. This material is produced by placing the scan vectors for the laser additive manufacturing process in a defined pattern. Trials with different plastics proofed the function and reliability of the pneumatic ejector concept in the injection molding cycle.

  11. Efficiency of laser beam utilization in gas laser cutting of materials

    Science.gov (United States)

    Galushkin, M. G.; Grishaev, R. V.

    2018-02-01

    Relying on the condition of dynamic matching of the process parameters in gas laser cutting, the dependence of the beam utilization factor on the cutting speed and the beam power has been determined. An energy balance equation has been derived for a wide range of cutting speed values.

  12. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    1997-01-01

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...

  13. Optically pumped microplasma rare gas laser.

    Science.gov (United States)

    Rawlins, W T; Galbally-Kinney, K L; Davis, S J; Hoskinson, A R; Hopwood, J A; Heaven, M C

    2015-02-23

    The optically pumped rare-gas metastable laser is a chemically inert analogue to three-state optically pumped alkali laser systems. The concept requires efficient generation of electronically excited metastable atoms in a continuous-wave (CW) electric discharge in flowing gas mixtures near atmospheric pressure. We have observed CW optical gain and laser oscillation at 912.3 nm using a linear micro-discharge array to generate metastable Ar(4s, 1s(5)) atoms at atmospheric pressure. We observed the optical excitation of the 1s(5) → 2p(9) transition at 811.5 nm and the corresponding fluorescence, optical gain and laser oscillation on the 2p(10) ↔ 1s(5) transition at 912.3 nm, following 2p(9)→2p(10) collisional energy transfer. A steady-state kinetics model indicates efficient collisional coupling within the Ar(4s) manifold.

  14. High-Speed Multiplexed Spatiotemporally Resolved Measurements of Exhaust Gas Recirculation Dynamics in a Multi-Cylinder Engine Using Laser Absorption Spectroscopy.

    Science.gov (United States)

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2016-04-01

    The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is therefore crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compression ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 µm. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. The probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines. © The Author(s) 2016.

  15. Ablation plume dynamics in a background gas

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2010-01-01

    the expansion. The model also leads to an insightful treatment of the stopping behavior in dimensionless units for plumes and background gases of different atomic/molecular masses. The energetics of the plume dynamics can also be treated with this model. Experimental time-of-flight data of silver ions in a neon......The expansion of a plume in a background gas of pressure comparable to that used in pulsed laser deposition (PLD) has been analyzed in terms of the model of Predtechensky and Mayorov (PM). This approach gives a relatively clear and simple description of the essential hydrodynamics during...

  16. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses.

    Science.gov (United States)

    Yao, Jinping; Xie, Hongqiang; Zeng, Bin; Chu, Wei; Li, Guihua; Ni, Jielei; Zhang, Haisu; Jing, Chenrui; Zhang, Chaojin; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-08-11

    We experimentally demonstrate ultrafast dynamic of generation of the 337-nm nitrogen laser by injecting an external seed pulse into a femtosecond laser filament pumped by a circularly polarized laser pulse. In the pump-probe scheme, it is revealed that the population inversion between the C(3)Π(u) and B(3)Π(g) states of N(2) for the free-space 337-nm laser is firstly built up on the timescale of several picoseconds, followed by a relatively slow decay on the timescale of tens of picoseconds, depending on the nitrogen gas pressure. By measuring the intensities of 337-nm signal from nitrogen gas mixed with different concentrations of oxygen gas, it is also found that oxygen molecules have a significant quenching effect on the nitrogen laser signal. Our experimental observations agree with the picture of electron-impact excitation.

  17. Gas lasers applied atomic collision physics, v.3

    CERN Document Server

    McDaniel, E W

    1982-01-01

    Applied Atomic Collision Physics, Volume 3: Gas Lasers describes the applications of atomic collision physics in the development of many types of gas lasers. Topics covered range from negative ion formation in gas lasers to high-pressure ion kinetics and relaxation of molecules exchanging vibrational energy. Ion-ion recombination in high-pressure plasmas is also discussed, along with electron-ion recombination in gas lasers and collision processes in chemical lasers.Comprised of 14 chapters, this volume begins with a historical summary of gas laser developments and an overview of the basic ope

  18. Rotational temperature determinations in molecular gas lasers

    International Nuclear Information System (INIS)

    Weaver, L.A.; Taylor, L.H.; Denes, L.J.

    1975-01-01

    The small-signal gain expressions for vibrational-rotational transitions are examined in detail to determine possible methods of extracting the rotational temperature from experimental gain measurements in molecular gas lasers. Approximate values of T/subr/ can be deduced from the rotational quantum numbers for which the P- and R-branch gains are maximum. Quite accurate values of T/subr/ and the population inversion density (n/subv//sub prime/-n/subv//sub double-prime/) can be determined by fitting data to suitably linearized gain relationships, or by performing least-squares fits of the P- and R-branch experimental data to the full gain expressions. Experimental gain measurements for 15 P-branch and 12 R-branch transitions in the 10.4-μm CO 2 band have been performed for pulsed uv-preionized laser discharges in CO 2 : N 2 : He=1 : 2 : 3 mixtures at 600 Torr. These data are subjected to the several gain analyses described herein, yielding a rotational temperature of 401plus-or-minus10 degreeK and an inversion density of (3.77plus-or-minus0.07) times10 17 cm -3 for conditions of maximum gain. These techniques provide accurate values of the gas temperature in molecular gas lasers with excellent temporal and spatial resolution, and should be useful in extending the conversion efficiency and arcing limits of high-energy electrically exc []ted lasers

  19. Numerical investigation of the electron dynamic dependence on gas pressure in the breakdown of hydrogen by KrF laser radiation

    Science.gov (United States)

    Gamal, Yosr E. E.-D.; Elsayed, Khaled A.; Mahmoud, M. A.

    2012-10-01

    This paper presents a numerical investigation of the measurements that were carried out by Yagi et al. [12] to study the breakdown of molecular hydrogen induced by short laser of wavelength 248 nm and pulse duration 20 ns. The aim of the study is to give a detailed description of the physical processes which contributed to the breakdown of molecular hydrogen at focused intensities between 4×1012 W/cm2 and 8.0×1012 W/cm2 over gas pressure range extended from 150 to 7000 Torr. The applied computer simulation model is based on the numerical solution of the time dependent Boltzmann equation and a set of rate equations that describe the rate of change of the formed excited states population. The experimentally measured rate constants and cross-sections for the various physical processes involved in the model are used in the calculations. Provision is made for the electron impact ionization and photoionization of the excited states. The former process is incorporated parametrically in the calculation owing to the lack of quantitative description of this process. Computations are performed at each gas pressure. The calculated threshold intensities are found to be in good agreement with the experimentally measured ones, both showing a noticeable increase in the higher pressure region. Moreover, calculation of the electron energy distribution function (EEDF) and its parameters demonstrated the exact correlation between gas pressure and the physical processes responsible for determining the breakdown threshold intensity.

  20. Subcycle engineering of laser filamentation in gas by harmonic seeding

    Science.gov (United States)

    Béjot, P.; Karras, G.; Billard, F.; Doussot, J.; Hertz, E.; Lavorel, B.; Faucher, O.

    2015-11-01

    Manipulating at will the propagation dynamics of high power laser pulses is a long-standing dream whose accomplishment would lead to the control of fascinating physical phenomena emerging from laser-matter interaction. The present work represents a significant step towards such a control by manipulating the nonlinear optical response of the gas medium. This is accomplished by shaping an intense laser pulse experiencing filamentation at the subcycle level with a relatively weak (≃1 % ) third-harmonic radiation. The control results from quantum interference between a single- and a two-color (mixing the fundamental frequency with its third-harmonic) ionization channel. This mechanism, which depends on the relative phase between the two electric fields, is responsible for wide refractive index modifications in relation with significant enhancement or suppression of the ionization rate. As a first application, we demonstrate the production and control of an axially modulated plasma channel.

  1. Gas embedded Z-pinch dynamics

    International Nuclear Information System (INIS)

    Soto N, Leopoldo A.

    1993-09-01

    An experimental study of the dynamics of a gas embedded Z-pinch discharge is presented. The experiments have been carried out using a pulse power generator capable of delivering d I/d t > 10 12 A/s (GEPOPU, 300 kV, 1.5Ω, 120 ns double transient time). Different preionization schemes are used: laser or micro discharge initiation. The results obtained lead to the proposal of a new configuration, a double column pinch. Discharges in H and He at 1/6, 1/3 1 atm were performed. The diagnostics used included: electrical monitors, holography and multi frame holographic interferometry, from which, voltage, current, electron density profile, line density and pinch radius are obtained, all with temporal resolution. The laser initiated results shows that the pinch expands continuously during ∼ 40 ns, ant it evolves into a helical structure through a m=1 instability. In the micro discharge initiated case continuous expansion without is observed. The double column pinch produces a gas embedded compressional Z-pinch, in which the electron density at the axis increases with time. No significant radial expansion or macroscopic instabilities are observed. A 0-D model of a Z-pinch with variable line density is presented in order to discuss the radial evolution. Bennet temperature, internal pinch structure and stability are also analyzed. Stability is discussed using a Universal Diagram for Z-pinch Stability Regimes. The experimental data are plotted as trajectories in this diagram. (author)

  2. Dynamically variable spot size laser system

    Science.gov (United States)

    Gradl, Paul R. (Inventor); Hurst, John F. (Inventor); Middleton, James R. (Inventor)

    2012-01-01

    A Dynamically Variable Spot Size (DVSS) laser system for bonding metal components includes an elongated housing containing a light entry aperture coupled to a laser beam transmission cable and a light exit aperture. A plurality of lenses contained within the housing focus a laser beam from the light entry aperture through the light exit aperture. The lenses may be dynamically adjusted to vary the spot size of the laser. A plurality of interoperable safety devices, including a manually depressible interlock switch, an internal proximity sensor, a remotely operated potentiometer, a remotely activated toggle and a power supply interlock, prevent activation of the laser and DVSS laser system if each safety device does not provide a closed circuit. The remotely operated potentiometer also provides continuous variability in laser energy output.

  3. Gas detectors for x-ray lasers

    International Nuclear Information System (INIS)

    Tiedtke, K.; Feldhaus, J.; Hahn, U.; Jastrow, U.; Nunez, T.; Tschentscher, T.; Bobashev, S. V.; Sorokin, A. A.; Hastings, J. B.; Moeller, S.; Cibik, L.; Gottwald, A.; Hoehl, A.; Kroth, U.; Krumrey, M.; Schoeppe, H.; Ulm, G.; Richter, M.

    2008-01-01

    We have developed different types of photodetectors that are based on the photoionization of a gas at a low target density. The almost transparent devices were optimized and tested for online photon diagnostics at current and future x-ray free-electron laser facilities on a shot-to-shot basis with a temporal resolution of better than 100 ns. Characterization and calibration measurements were performed in the laboratory of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II in Berlin. As a result, measurement uncertainties of better than 10% for the photon-pulse energy and below 20 μm for the photon-beam position were achieved at the Free-electron LASer in Hamburg (FLASH). An upgrade for the detection of hard x-rays was tested at the Sub-Picosecond Photon Source in Stanford

  4. Gas detectors for x-ray lasers

    Science.gov (United States)

    Tiedtke, K.; Feldhaus, J.; Hahn, U.; Jastrow, U.; Nunez, T.; Tschentscher, T.; Bobashev, S. V.; Sorokin, A. A.; Hastings, J. B.; Möller, S.; Cibik, L.; Gottwald, A.; Hoehl, A.; Kroth, U.; Krumrey, M.; Schöppe, H.; Ulm, G.; Richter, M.

    2008-05-01

    We have developed different types of photodetectors that are based on the photoionization of a gas at a low target density. The almost transparent devices were optimized and tested for online photon diagnostics at current and future x-ray free-electron laser facilities on a shot-to-shot basis with a temporal resolution of better than 100 ns. Characterization and calibration measurements were performed in the laboratory of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II in Berlin. As a result, measurement uncertainties of better than 10% for the photon-pulse energy and below 20 μm for the photon-beam position were achieved at the Free-electron LASer in Hamburg (FLASH). An upgrade for the detection of hard x-rays was tested at the Sub-Picosecond Photon Source in Stanford.

  5. Long life gas laser system and method

    International Nuclear Information System (INIS)

    Hochuli, E.E.

    1975-01-01

    A long life gas discharge laser having an improved self-repairing cathode system is described. In a specific embodiment, water vapor having a partial pressure below about 10 -5 torr incorporated in a molecular sieve is used to provide impurities (in this case water vapor) for repairing the cathode surface by regenerating the oxide surface and/or preventing same from deteriorating. Other impurities may be incorporated in the molecular sieve such as hydrogen, oxygen, for example. In some cases CO 2 may be used. This application includes material disclosed in a paper entitled ''Continuation of the Investigation into Material Properties Affecting the Frequency Stability and Reliability of He-Ne Laser Structures'' submitted to the Office of Naval Research dated June 1972 by the inventor hereof and also a paper entitled ''Investigations of the Long Term Frequency Stability of Stable Laser Structures'' Progress Report for ONR Contract N00014-67-A-D239-0016 July 1972 by the inventor hereof. A royalty free license is hereby granted to the United States for use of the invention for all government purposes. (auth)

  6. Laser non-uniformity smoothing using gas jets

    Czech Academy of Sciences Publication Activity Database

    Batani, D.; Dezulian, R.; Redaelli, R.; Benocci, R.; Stabile, H.; Canova, F.; Lucchini, G.; Koenig, M.; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Skála, Jiří; Dudžák, Roman; Desai, T.; Tikhonchuk, V.; Faure, B.; Malka, V.

    2008-01-01

    Roč. 112, - (2008), 022045/1-022045/4 ISSN 1742-6588 R&D Projects: GA MŠk(CZ) LC528 EU Projects: European Commission(XE) 506350 - LASER LAB-EUROPE Institutional research plan: CEZ:AV0Z10100523 Keywords : laser smoothing technique * gas jet Subject RIV: BH - Optics, Masers, Laser s

  7. Gas-controlled dynamic vacuum insulation with gas gate

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  8. Dynamic optics for ultrafast laser processing

    Directory of Open Access Journals (Sweden)

    Salter Patrick

    2013-11-01

    Full Text Available We present a range of dynamic optical methods to control focal fields for material processing using ultrafast lasers. Adaptive aberration correction maintains focal quality when focusing deep into materials. Dynamic parallelisation methods permit independent control of hundreds of fabrication spots. New adaptive methods for control of pulse front tilt are also presented.

  9. Modern gas centrifuge and rarefied-gas dynamics

    International Nuclear Information System (INIS)

    Lowry, R.A.; Halle, E.V.; Wood, H.G. III.

    1981-01-01

    Today, the modern gas centrifuge appears to be the preferred method for the enrichment of the isotopes of uranium on a commercial scale. That this is the case is the result of diligent development programs pursued in this country as well as in the UK, Germany, and the Netherlands over the several decades since the end of WW II. The theoretical modelling of gas centrifuge performance has made notable advances. However, the theoretical work has been based primarily on continuum fluid dynamics considerations. Centrifuge problems involving rarefied gas dynamics considerations are discussed in this paper

  10. Laser interferometry of radiation driven gas jets

    Science.gov (United States)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

    2017-06-01

    In a series of experiments performed at the 1MA Zebra pulsed power accelerator of the Nevada Terawatt Facility nitrogen gas jets were driven with the broadband x-ray flux produced during the collapse of a wire-array z-pinch implosion. The wire arrays were comprised of 4 and 8, 10μm-thick gold wires and 17μm-thick nickel wires, 2cm and 3cm tall, and 0.3cm in diameter. They radiated 12kJ to 16kJ of x-ray energy, most of it in soft x-ray photons of less than 1keV of energy, in a time interval of 30ns. This x-ray flux was used to drive a nitrogen gas jet located at 0.8cm from the axis of the z-pinch radiation source and produced with a supersonic nozzle. The x-ray flux ionizes the nitrogen gas thus turning it into a photoionized plasma. We used laser interferometry to probe the ionization of the plasma. To this end, a Mach-Zehnder interferometer at the wavelength of 266 nm was set up to extract the atom number density profile of the gas jet just before the Zebra shot, and air-wedge interferometers at 266 and 532 nm were used to determine the electron number density of the plasma right during the Zebra shot. The ratio of electron to atom number densities gives the distribution of average ionization state of the plasma. A python code was developed to perform the image data processing, extract phase shift spatial maps, and obtain the atom and electron number densities via Abel inversion. Preliminary results from the experiment are promising and do show that a plasma has been created in the gas jet driven by the x-ray flux, thus demonstrating the feasibility of a new experimental platform to study photoionized plasmas in the laboratory. These plasmas are found in astrophysical scenarios including x-ray binaries, active galactic nuclei, and the accretion disks surrounding black holes1. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.1R. C. Mancini et al, Phys. Plasmas 16, 041001 (2009)

  11. Dynamic response analysis of DFB fibre lasers

    DEFF Research Database (Denmark)

    Yujun, Qian; Varming, Poul; Povlsen, Jørn Hedegaard

    1998-01-01

    We present a model for relative intensity noise (RIN) in DFB fibre lasers which predicts measured characteristics accurately. Calculation results implies that the RIN decreases rapidly with stronger Bragg grating and higher pump power. We propose here a simplified model based on three spatially...... independent rate equations to describe the dynamic response of erbium doped DFB fibre lasers on pump power fluctuations, using coupled-mode theory to calculate the steady-state hole-burning of the erbium ion inversion...

  12. Diffusion dynamics in microfluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2007-01-01

    We have investigated the bleaching dynamics that occur in opto-fluidic dye lasers, where the liquid laser dye in a channel is locally bleached due to optical pumping. Our studies suggest that for micro-fluidic devices, the dye bleaching may be compensated through diffusion of dye molecules alone....... By relying on diffusion rather than convection to generate the necessary dye replenishment, our observation potentially allows for a significant simplification of opto-fluidic dye laser device layouts, omitting the need for cumbersome and costly external fluidic handling or on-chip micro-fluidic pumping...

  13. Dynamics of the spectral behaviour of an ultrashort laser pulse in an argon-gas-filled capillary discharge-preformed plasma channel

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-11-01

    Full Text Available We have reported the argon plasma waveguide produced in an alumina (Al2O3 capillary discharge and used to guide ultrashort laser pulses at intensities of the order of 1016  W/cm2. A one-dimensional magnetohydrodynamic (MHD code was used to evaluate the average degree of ionization of Ar in the preformed plasma channel. The spectrum of the propagated laser pulse in the Ar plasma waveguide was not modified and was well reproduced by a particle-in-cell (PIC simulation under initial ion charge state of Ar3+ in the preformed plasma waveguide. The optimum timing for the laser pulse injection was around 150 ns after initiation of a discharge with a peak current of 200 A.

  14. Influence of the atomic mass of the background gas on laser ablation plume propagation

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2008-01-01

    A combination of time-of-flight ion probe measurements and gas dynamical modeling has been used to investigate the propagation of a laser ablation plume in gases of different atomic/molecular weight. The pressure variation of the ion time-of-flight was found to be well described by the gas...... dynamical model of Predtechensky and Mayorov (Appl. Supercond. 1:2011, 1993). In particular, the model describes how the pressure required to stop the plume in a given distance depends on the atomic/molecular weight of the gas, which is a feature that cannot be explained by standard point......-blast-wave descriptions of laser ablation plume expansion in gas....

  15. Repetitively pulsed gas-jet laser cutting of metals in an oxygen-containing gas

    International Nuclear Information System (INIS)

    Makashev, N K; Asmolov, E S; Buzykin, O G

    2000-01-01

    A model of the repetitively pulsed gas-jet laser cutting of thick metals in an oxidising gas is developed. It is shown that the optimal choice of the time-dependent (radiation) and beam-focusing parameters will make it possible to increase the average cutting rate by a factor of 1.5 - 1.8. (interaction of laser radiation with matter. laser plasma)

  16. Assisting Gas Optimization in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    1996-01-01

    are applied with three different flow rates for each of the gases. A number of systematic laboratory experiments is carried out by employing various experimental designs, 33 and 32 Factorial Design. In the experiments a CO2 laser is used to weld thin sheets of mild steel. The welding specimens are evaluated....... The relations between the gas parameters and signal frequencies are studied. Finally the relationships of the gas parameters and weld characteristics are studied. The possibility of using photo diode signals in controlling the gas parameters is discussed.KeywordsCO2 laser welding, assisting gas parameters...

  17. Electron-beam pumping of visible and ultraviolet gas lasers

    International Nuclear Information System (INIS)

    Bradley, L.P.

    1975-01-01

    Several techniques for using direct electron-pumping of gas lasers are reviewed. The primary objective is to categorize pump geometries and to give guidelines for gun selection and pulser design. Examples and application of pump technology are given

  18. Transient processes in high-power gas laser amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Bakanina, L.P.; Belonuchkin, V.E.; Kozel, S.M.; Kuznetsov, E.P.; Lokshin, T.R.

    1980-01-01

    A system of equations is derived which describes the laser onset process in a high-gain gas laser amplifier. The intrinsic, amplified spontaneous emission plays the determinate role in the transient processes. The transient processes for a HeFe (3.39 micrometers) laser amplifier are calculated on a computer for three amplifier lengths (40, 80 and 200 centimeters) with the instantaneous onset of inversion.

  19. Comparative evaluation of tungsten inert gas and laser beam ...

    Indian Academy of Sciences (India)

    In this study, the bead-on-plate welds were made on AA5083-H321 alloy plates using both tungsten inert gas (TIG) welding and laser beam (LB) welding processes to study the enhancement of mechanical properties such as weld yield strength and hardness. The low heat input of laser beam welding effectively reduced the ...

  20. Comparative evaluation of tungsten inert gas and laser beam ...

    Indian Academy of Sciences (India)

    Abstract. In this study, the bead-on-plate welds were made on AA5083-H321 alloy plates using both tungsten inert gas (TIG) welding and laser beam (LB) welding pro- cesses to study the enhancement of mechanical properties such as weld yield strength and hardness. The low heat input of laser beam welding effectively ...

  1. Laser spectroscopy and dynamics of transient species

    Energy Technology Data Exchange (ETDEWEB)

    Clouthier, D.J. [Univ. of Kentucky, Lexington (United States)

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  2. Shock Waves in Gas Dynamics

    Directory of Open Access Journals (Sweden)

    Abdolrahman Razani

    2007-11-01

    Full Text Available Shock wave theory was studied in literature by many authors. This article presents a survey with references about various topics related to shock waves: Hyperbolic conservation laws, Well-posedness theory, Compactness theory, Shock and reaction-diffusion wave, The CJ and ZND theory, Existence of detonation in Majda's model, Premixed laminar flame, Multidimensional gas flows, Multidimensional Riemann problem.

  3. The gas dynamics of explosions

    CERN Document Server

    Lee,\tJohn H S

    2016-01-01

    Explosions, and the non-steady shock propagation associated with them, continue to interest researchers working in different fields of physics and engineering (such as astrophysics and fusion). Based on the author's course in shock dynamics, this book describes the various analytical methods developed to determine non-steady shock propagation. These methods offer a simple alternative to the direct numerical integration of the Euler equations and offer a better insight into the physics of the problem. Professor Lee presents the subject systematically and in a style that is accessible to graduate students and researchers working in shock dynamics, combustion, high-speed aerodynamics, propulsion and related topics.

  4. Electromagnetic radiations from laser interaction with gas-filled Hohlraum

    Science.gov (United States)

    Yang, Ming; Yang, Yongmei; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2018-01-01

    The emission of intensive electromagnetic pulse (EMP) due to laser-target interactions at the ShenGuang-III laser facility has been evaluated by probes. EMP signals measured using the small discone antennas demonstrated two variation trends including a bilateral oscillation wave and a unilateral oscillation wave. The new trend of unilateral oscillation could be attributed to the hohlraum structure and low-Z gas in the hohlraum. The EMP waveform showed multiple peaks when the gas-filled hohlraum was shot by the high-power laser. Comparing the EMP signals with the verification of stimulated Raman scattering energy and hard x-ray energy spectrum, we found that the intensity of EMP signals decreased with the increase of the hohlraum size. The current results are expected to offer preliminary information to study physical processes on laser injecting gas-filled hohlraums in the National Ignition Facility implementation.

  5. Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas

    Science.gov (United States)

    Starikovskiy, Andrey; Shneider, Mikhail; PU Team

    2016-09-01

    Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.

  6. Molecular dynamics simulation of laser shock phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).

    2001-10-01

    Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)

  7. Gas dynamics in strong centrifugal fields

    OpenAIRE

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2017-01-01

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of $10^6$g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wa...

  8. Preformed transient gas channels for laser wakefield particle acceleration

    International Nuclear Information System (INIS)

    Wood, W.M.

    1994-01-01

    Acceleration of electrons by laser-driven plasma wake fields is limited by the range over which a laser pulse can maintain its intensity. This distance is typically given by the Rayleigh range for the focused laser beam, usually on the order of 0.1 mm to 1 mm. For practical particle acceleration, interaction distances on the order of centimeters are required. Therefore, some means of guiding high intensity laser pulses is necessary. Light intensities on the order of a few times 10 17 W/cm 2 are required for laser wakefield acceleration schemes using near IR radiation. Gas densities on the order of or greater than 10 17 cm -3 are also needed. Laser-atom interaction studies in this density and intensity regime are generally limited by the concomitant problems in beam propagation introduced by the creation of a plasma. In addition to the interaction distance limit imposed by the Rayleigh range, defocusing of the high intensity laser pulse further limits the peak intensity which can be achieved. To solve the problem of beam propagation limitations in laser-plasma wakefield experiments, two potential methods for creating transient propagation channels in gaseous targets are investigated. The first involves creation of a charge-neutral channel in a gas by an initial laser pulse, which then is ionized by a second, ultrashort, high-intensity pulse to create a waveguide. The second method involves the ionization of a gas column by an ultrashort pulse; a transient waveguide is formed by the subsequent expansion of the heated plasma into the neutral gas

  9. Selective gas sensing for photonic crystal lasers

    DEFF Research Database (Denmark)

    Smith, Cameron; Christiansen, Mads Brøkner; Buss, Thomas

    2011-01-01

    We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk.......We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk....

  10. Simulation of Gas-Surface Dynamical Interactions

    Science.gov (United States)

    2007-07-01

    surface. The substrate with lattice constant a is represented in a simple ball and spring picture. on the particular problem. Time-independent...παvwell , (26) Simulation of Gas-Surface Dynamical Interactions 4 - 10 RTO-EN-AVT-142 g E ad v mvc ∆ v’well vc cM Figure 4

  11. Gas dynamics in strong centrifugal fields

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V. [National research nuclear university “MEPhI”, Kashirskoje shosse, 31,115409, Moscow (Russian Federation)

    2015-03-10

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  12. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics

    Directory of Open Access Journals (Sweden)

    Mizuho Fushitani

    2016-11-01

    Full Text Available We present applications of extreme ultraviolet (XUV single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N2 molecules.

  13. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics.

    Science.gov (United States)

    Fushitani, Mizuho; Hishikawa, Akiyoshi

    2016-11-01

    We present applications of extreme ultraviolet (XUV) single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I 2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N 2 molecules.

  14. Smoothing of laser energy deposition by gas jets

    Czech Academy of Sciences Publication Activity Database

    Batani, D.; Benocci, R.; Dezulian, R.; Redaelli, R.; Canova, F.; Stabile, H.; Lucchini, G.; Malka, V.; Fauré, J.; Koenig, M.; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Skála, Jiří; Dudžák, Roman; Limpouch, J.; Tikhonchuk, V.; Nicolai, P.

    2009-01-01

    Roč. 175, č. 1 (2009), s. 65-70 ISSN 1951-6355 R&D Projects: GA MŠk(CZ) LC528 EU Projects: European Commission(XE) 506350 - LASERLAB-EUROPE Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-generated plasma * laser smoothing technique Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.840, year: 2009

  15. Modeling of diode pumped metastable rare gas lasers.

    Science.gov (United States)

    Yang, Zining; Yu, Guangqi; Wang, Hongyan; Lu, Qisheng; Xu, Xiaojun

    2015-06-01

    As a new kind of optically pumped gaseous lasers, diode pumped metastable rare gas lasers (OPRGLs) show potential in high power operation. In this paper, a multi-level rate equation based model of OPRGL is established. A qualitative agreement between simulation and Rawlins et al.'s experimental result shows the validity of the model. The key parameters' influences and energy distribution characteristics are theoretically studied, which is useful for the optimized design of high efficient OPRGLs.

  16. Laser deposition of sulfonated phthalocyanines for gas sensors

    Czech Academy of Sciences Publication Activity Database

    Fitl, Přemysl; Vrňata, M.; Kopecký, D.; Vlček, J.; Škodová, J.; Bulíř, Jiří; Novotný, Michal; Pokorný, Petr

    2014-01-01

    Roč. 302, MAY (2014), s. 37-41 ISSN 0169-4332. [European-Materials-Research-Society Symposium on Laser Material Interactions for Micro- and Nano- Applications /5./. Strasbourg, 27.05.2013-31.05.2013] R&D Projects: GA ČR(CZ) GAP108/11/1298 Institutional support: RVO:68378271 Keywords : Matrix Assisted Pulsed Laser Evaporation * substituted phthalocyanines * gas sensors * impedance measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014

  17. Laser-Irradiated Gas Puff Target Plasma Modeling

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.

    2014-01-01

    Roč. 42, č. 10 (2014), s. 2600-2601 ISSN 0093-3813 R&D Projects: GA ČR GAP102/12/2043 Grant - others:GA MŠk(CZ) CZ.1.07/2.3.00/20.0092 Institutional support: RVO:61389021 Keywords : Gas puff laser plasma * water window radiation source * RHMD code Z* Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.101, year: 2014 http://ieeexplore.ieee.org

  18. Gas laser tube and method of fabricating same

    International Nuclear Information System (INIS)

    Garman, L.E.

    1975-01-01

    An improved gas laser tube is fabricated by counter boring the ends of a tubular aluminum extrusion having an inner tubular portion supported from an outer tubular portion via the intermediary of a plurality of radially directed support vanes or legs. Metallic transverse walls are sealed across the ends of the tubular extrusion to define the ends of a gas tight metallic envelope. An electrically insulative glow discharge tube is axially disposed within and supported by the inner tubular portion of the extrusion in axial alignment with an optical resonator of the laser tube. (U.S.)

  19. Applications of laser-photoacoustic gas analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Stenberg, J. [Tampere Univ. of Technology (Finland). Dept. of Physics

    1996-12-01

    The dynamic behavior of a circulating fluidized bed boiler (CFB) was studied using two high speed gas analysis systems during combustion of coal, peat and wood chips. Time resolved concentrations of some pollutants (SO{sub 2}, NO, NH{sub 3} and H{sub 2}S) were measured using laser induced photoacoustic spectroscopy (LIPS). A zirkonia cell based probe (lambda-probe) was used in synchronization with the LIPS-probe to measure fluctuations between reducing and oxidizing conditions. The two probes were positioned in the same measurement volume on the center-line of the combustion chamber of the CFB. The purpose of the measurements was to investigate the behavior of the LIPS in a combustion chamber containing large amounts of other unburnt hydrocarbons. The correlations between oxidizing and reducing conditions and concentrations at three locations in the combustion chamber are presented. The best correlations were found in the upper part of the CFB combustion chamber. In some cases the correlations between reducing conditions and the LIPS signal were caused by hydrocarbons. Comparison of the average values obtained by the LIPS-system for NO and SO{sub 2} with the result from a sampling probe system connected to on-line analysers was also carried out. (author)

  20. The influence of shielding gas in hybrid LASER MIG welding

    Science.gov (United States)

    Tani, Giovanni; Campana, Giampaolo; Fortunato, Alessandro; Ascari, Alessandro

    2007-07-01

    Hybrid LASER-GMAW welding technique has been recently studied and developed in order to meet the needs of modern welding industries. The two sources involved in this process play, in fact, a complementary role: fast welding speed, deep bead penetration and high energy concentration can be achieved through the LASER beam, while gap bridgeability and cost-effectiveness are typical of the GMAW process. Particularly interesting, in this context, is the CO 2 LASER-MIG welding which differs from the Nd:YAG LASER-MIG technique for the high powers that can be exploited and for the good power/cost ratio of the process. This paper is a part of a wide study on the hybrid CO 2 LASER-MIG welding and investigates the influence of the shielding gas both on the stability of the process and on the dimensional characteristics of the weld bead. Two different parameters have been taken into consideration in order to develop this analysis: the shielding gas composition and the shielding gas flow. The experiment, performed on AISI 304 stainless steel plates, has been planned exploiting design of experiment techniques. The results have been analyzed through a statistical approach in order to determine the real influence of each parameter on the overall process.

  1. Modeling Gas Dynamics in California Sea Lions

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Modeling Gas Dynamics in California Sea Lions Andreas...California sea lions . The model will be calibrated against measured arterial and venous PO2 levels from California sea lions , and estimate the error between...existing model with new species-specific parameter estimates for California sea lions . Aim 2: Compare estimated and measured arterial and venous

  2. Melt flow characteristics in gas-assisted laser cutting

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. We present a study on laser cutting of mild steel with oxygen as an assist gas. We correlate the cut surface quality with the melt film thickness. We estimate the optimum pressure required for melt ejection under laminar flow regime. The thickness of melt film inside the kerf is estimated using mass balance and the ...

  3. Melt flow characteristics in gas-assisted laser cutting

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    email: trao@cat.ernet.in. MS received 24 May 2001; revised 28 December 2001. Abstract. We present a study on laser cutting of mild steel with oxygen as an assist gas. We correlate the cut surface quality with the melt film thickness. We estimate the optimum pressure required for melt ejection under laminar flow regime.

  4. Laser speckle analysis of retinal vascular dynamics

    DEFF Research Database (Denmark)

    Neganova, Anastasiia Y.; Postnov, Dmitry D.; Jacobsen, Jens Christian B.

    2016-01-01

    -field laser speckle imaging to evaluate vascular responses of the retinal network. Image segmentation and vessel recognition algorithms together with response mapping allow us to analyze diameter changes and blood flow responses in the intact retinal network upon systemic administration of the vasoconstrictor......Studies of vascular responses are usually performed on isolated vessels or on single vessels in vivo. This allows for precise measurements of diameter or blood flow. However, dynamical responses of the whole microvascular network are difficult to access experimentally. We suggest to use full...

  5. Theory of porous wall capillary tubes for flowing gas lasers

    International Nuclear Information System (INIS)

    Papayoanou, A.; Fujisawa, A.

    1975-01-01

    Flowing gas capillary lasers exhibit high optical gains. However, as a result of the linear axial pressure variation in the tube bore, gain and saturation intensities are not axially uniform. This pressure variation can be reduced by introducing the gas into the tube bore through the walls of a porous capillary tube. Analysis of the gas flow shows that the axial pressure variation in the porous wall tubes is more gradual than for dense wall tubes leading to more uniform gain conditions. The saturation intensity is more uniform not only due to the reduced pressure anisotropy but also, at higher flow rates, because of axially varying particle dwell times in the discharge region

  6. Modelling and interpretation of gas detection using remote laser pointers.

    Science.gov (United States)

    Hodgkinson, J; van Well, B; Padgett, M; Pride, R D

    2006-04-01

    We have developed a quantitative model of the performance of laser pointer style gas leak detectors, which are based on remote detection of backscattered radiation. The model incorporates instrumental noise limits, the reflectivity of the target background surface and a mathematical description of gas leak dispersion in constant wind speed and turbulence conditions. We have investigated optimum instrument performance and limits of detection in simulated leak detection situations. We predict that the optimum height for instruments is at eye level or above, giving an operating range of 10 m or more for most background surfaces, in wind speeds of up to 2.5 ms(-1). For ground based leak sources, we find laser pointer measurements are dominated by gas concentrations over a short distance close to the target surface, making their readings intuitive to end users in most cases. This finding is consistent with the results of field trials.

  7. Spectral redshift in harmonic generation from plasma dynamics in the laser focus

    NARCIS (Netherlands)

    Brandi, F.; Giammanco, F.; Ubachs, W.M.G.

    2006-01-01

    High-precision spectral measurements on the 9th harmonic generated in xenon gas are compared with calculations of the plasma dynamics resulting from multiphoton ionization in the laser focus. For the regime of 300 ps pulses and above-saturation intensities a novel mechanism producing redshifts in

  8. All-Solid-State Drivers for High Power Excimer Lasers Used in Projection Gas Immersion Laser Doping

    National Research Council Canada - National Science Library

    Jacob, Jonah

    2001-01-01

    The objective of this SBIR program is to develop all-solid-state pulsed modulators to drive the high power excimer lasers required to commercialize the Projection Gas Immersion Laser Doping (P-GILD) process...

  9. Thermal dynamics-based mechanism for intense laser-induced ...

    Indian Academy of Sciences (India)

    Thermal dynamics-based mechanism for intense laser-induced material surface vaporization ... http://www.ias.ac.in/article/fulltext/pram/071/03/0529-0543 ... Laser material processing involving welding, ablation and cutting involves interaction of intense laser pulses of nanosecond duration with a condensed phase.

  10. Dynamics of gas in a rotating galaxy

    International Nuclear Information System (INIS)

    Mulder, W.A.

    1985-01-01

    This thesis contains a series of papers that deal with some aspects of the gas-dynamics in a disk galaxy. The dissertation is divided in three parts. In the first part, the three dimensional response to the rotating barred potential is studied. Here, the strongest simplication is made: the pressure is neglected. This turns the problem from a global into a local one and leaves the equations of motion for a star or test particle. What if the pressure term is included. It turned out that no efficient numerical methods for computing steady gas flows with strong shocks were available. The key assumption of the second part of this thesis is the existence of a stationary solution. In that case, significant short-cuts over time-dependent integration schemes must be attainable. The various steps that lead to an efficient numerical method are described. In the third part of this dissertation, a two-dimensional code was developed. Technical aspects of the computer program are described as well as the properties of the computed quasi-steady solution. An initial global gas dynamical model for our Galaxy is constructed from one of the solutions. Here the main problem is the determination of the position of the sun in the model. (Auth.)

  11. Splash plasma channels produced by picosecond laser pulses in argon gas for laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    Y. Mizuta

    2012-12-01

    Full Text Available Short-lived, ∼10  ps, deep plasma channels, with their lengths of ∼1  mm and diameters of ∼20  μm, are observed and characterized in Ar gas jets irradiated by moderate intensity, ∼10^{15–16}  W/cm^{2}, laser pulses with a duration from subpicosecond to several picoseconds. The channels, upon 2D particle-in-cell simulations including ionization, fit well in the guiding of high intensity femtosecond laser pulses and, therefore, in laser wakefield acceleration with a controllable electron self-injection.

  12. Nonlinear laser dynamics from quantum dots to cryptography

    CERN Document Server

    Lüdge, Kathy

    2012-01-01

    A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research.By presenting both experimental and theoretical results, the distinguished authors consider solitary lase

  13. The dynamics of the world gas trade

    International Nuclear Information System (INIS)

    Chabrelie, M.F.

    2003-01-01

    The steadily growing distances between the world's gas rich regions and consumer zones foreshadow a powerful expansion of the international trade, at an annual rate of around 3.5% by 2020. Flows could then account for about 32% of marketed production. Trade by LNG tanker is very likely to emerge as the winner of this dynamic, with the flexibility it procures exploited to adjust supply to the demand of a more global market. This is today's gamble of an industry which, driven by technological improvements and market potential, is investing massively in new infrastructures

  14. Dynamics Of A Laser-Induced Plume Self-Similar Expansion

    International Nuclear Information System (INIS)

    Bennaceur-Doumaz, D.; Djebli, M.

    2008-01-01

    The dynamics of a laser ablation plume during the first stage of its expansion, just after the termination of the laser pulse is modeled. First, we suppose the laser fluence range low enough to consider a neutral vapor. The expansion of the evaporated material is described by one-component fluid and one-dimensional Euler equations. The vapor is assumed to follow an ideal gas flow. For high energetic ions, the charge separation can be neglected and the hydrodynamics equations can be solved using self-similar formulation. The obtained ordinary differential equations are solved numerically. Secondly, the effect of ionization is investigated when the evaporated gas temperature is sufficiently high. In this case, Saha equation is included in the formulation of the model. We find a self-similar solution for a finite value of the similarity variable which depends on the laser ablation parameters.

  15. Predicting gas decomposition in an industrialized pulsed CO2 laser

    CSIR Research Space (South Africa)

    Forbes, A

    2005-03-01

    Full Text Available , and then test this against experimental data. This is because rate laws must be determined from measurements of reaction rates, and cannot be deduced from reaction stoichiometry. The reader is refered to standard physical chemistry texts5 for further... if kd is not gas species dependent. 3. CATALYSTS PRESENT With catalysts present in the laser, the oxygen concentration stabilise quickly and at lower levels than in the case of no catalysts. Using the model already found for the discharge chemistry...

  16. Thermal blooming effects of gas on laser propagation in a closed tube

    Science.gov (United States)

    Yu, Huahua; Hu, Peng; An, Jianzhu; Zhang, Feizhou

    2015-02-01

    Thermal blooming effect of inner optical path remarkably affects far-field beam quality and energy distributions which should be taken into account in high energy laser (HEL) system. A physical model of thermal blooming is established. Based on the model, numerical simulations are carried out to study both the influences of absorptions of laser energy and tube structures on laser propagation in a closed tube. The natural convection of gas is numerically simulated by computational fluid dynamics (CFD) method. Gas temperature distributions, additional phase differences (APDs), variations of beam quality and drifts of mass center in far-field under different absorptions of laser energy and tube structures (Z-shaped and U-shaped) are compared, respectively. By analysis of numerical simulation results, the switch time of heat conduction and heat convection in gas is distinguished, which significantly affects the variations of beam quality and drifts of mass center in far-field. In addition, it also indicates that less absorption of laser energy improves beam quality and delays the switch time of beam quality between two heat transfer mechanisms. Therefore, it is significant to control the absorptions of laser energy for HEL system in practice. Different tube structures owning different beam paths change the distributions of APDs and thus influence beam quality. APDs of the two horizontal sections are the same (superposition effect) for Z-shaped tube while inverse (compensation effect) for U-shaped tube. It is shown that drifts of mass center in far-field are greatly suppressed for U-shaped tube than that of Z-shaped tube and beam quality is also improved.

  17. Laser Doppler detection systems for gas velocity measurement.

    Science.gov (United States)

    Huffaker, R M

    1970-05-01

    The velocity of gas flow has been remotely measured using a technique which involves the coherent detection of scattered laser radiation from small particles suspended in the fluid utilizing the doppler effect. Suitable instrumentation for the study of wind tunnel type and atmospheric flows are described. Mainly for reasons of spatial resolution, a function of the laser wavelength, the wind tunnel system utilizes an argon laser operating at 0.5 micro. The relaxed spatial resolution requirement of atmospheric applications allows the use of a carbon dioxide laser, which has superior performance at a wavelength of 10.6 micro, a deduction made from signal-to-noise ratio considerations. Theoretical design considerations are given which consider Mie scattering predictions, two-phase flow effects, photomixing fundamentals, laser selection, spatial resolution, and spectral broadening effects. Preliminary experimental investigations using the instrumentation are detailed. The velocity profile of the flow field generated by a 1.27-cm diam subsonic jet was investigated, and the result compared favorably with a hot wire investigation conducted in the same jet. Measurements of wind velocity at a range of 50 m have also shown the considerable promise of the atmospheric system.

  18. Kinetic studies of gas mixtures and their application to gas lasers and pollutant detection

    International Nuclear Information System (INIS)

    Chen, C.H.; Judish, J.P.; Payne, M.G.

    1978-01-01

    A 2-MeV proton beam with a 10-ns pulse width was used to excite various gas mixtures. The emitted vacuum ultraviolet (500 A to 2000 A) and ultraviolet visible (2000 A to 8000 A) photons passing through separate monochromators were detected by using single photon counting techniques. Time-resolved and time-integrated fluorescent spectroscopy was used to study the detailed mechanism of excitation energy transfer, Penning ionization, charge transfer, and ion-ion recombination processes. The energy precursors of various excited species in a number of gas mixtures were identified, and the quenching rates of excited atoms and ions by numerous small molecules were measured. Relative fluorescence efficiencies and energy pathways of proton-excited gas mixtures were used to study the kinetics of high power gas lasers. An ultrasensitive method for the detection of certain pollutants utilizing energy or charge transfer processes in proton-excited gas mixtures has been developed

  19. Laser Acceleration of Electrons in Shock Wave Enhanced Gas Jets

    Science.gov (United States)

    Kaganovich, Dmitri; Helle, Michael; Gordon, Daniel; Ting, Antonio

    2012-10-01

    Controlling the gas density gradient and profile is important for electron and proton acceleration. Using an optimized gas density profile, we have demonstrated 40 times higher electron energy compared to a Gaussian gas jet without lost of charge or stability. Propagation of a shock wave through a gas jet can modify the gas density profile and create sharp density gradients [1, 2]. Using different shock waves energies and shock originating positions, we were able to modify the plasma density profile of a ``typical'' Gaussian gas jet into a variety of profiles, from thin (foil-like) structure to elongated profiles with fast rise and slow fall. We used a plasma bubble Cherenkov diagnostic [3, 4] to optimize the acceleration process. Accelerated electron energy and charge were cross-correlated with the second harmonic diagnostic signal. The optimized gas density profile generated stable 0.5 nC of 40 MeV electrons using a 10 TW laser. The shock wave modified gas jet can be used as a stand alone electron source or as an injector coupled to additional acceleration structures. We demonstrated stable injection of electrons from the shock wave modified gas jet into a lower density plasma. The results are also being studied with numerical simulations. [4pt] [1] D. Kaganovich et al., Physics of Plasmas 18, 120701 (2011)[0pt] [2] D. Kaganovich et al., Applied Physics Letters 97, 191501 (2010)[0pt] [3] D. F. Gordon, et al., Phys. Rev. Lett. 101, 045004 (2008)[0pt] [4] M. H. Helle et al., Phys. Rev. Lett. 105, 105001 (2010)

  20. Attosecond pulse trains from long laser-gas interaction targets

    International Nuclear Information System (INIS)

    Hauri, C.P.; Lopez-Martens, R.; Varju, K.; Ruchon, T.; Gustafsson, E.; L'Huillier, A.

    2006-01-01

    Complete test of publication follows. Many experiments in attosecond physics require high XUV photon flux as well as a clean attosecond pulse train (APT) temporal structure. Temporal characterization of high-order harmonic generation (HHG) in long interaction targets is thus of high interest. HHG being a very inefficient process, a large effort has been made to increase the amount of XUV photons emitted per infrared laser pulse. Besides quasi phase-matching in a modulated capillary, loose driving laser focusing conditions and subsequent self-channeling have shown to significantly increase the conversion efficiency. We characterized the temporal structure of APTs generated during the self-channeling of an intense IR driving laser pulse. Our first results indicate, however, that the temporal structure of the APT generated during the HHG process might be affected by quantum path interference and spectral phase distortion due to the self-channeling process itself. In particular, our measurements show that the relative spectral phase between consecutive harmonics can strongly vary depending on the target length and the position of the laser focus with respect to the target. In general for short gas targets, no clean APT structure can be expected since the individual attosecond pulses carry significant chirp. For longer targets, however, we observe a flattening of the harmonic spectral phase, resulting in near-transform-limited attosecond pulse trains. A complete analysis of the process is complex and involves detailed knowledge of the spatial and temporal evolution of the self-channeling driver laser pulse throughout the gas target.

  1. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, Yu., E-mail: yuri.kudryavtsev@fys.kuleuven.be; Ferrer, R.; Huyse, M.; Van den Bergh, P.; Van Duppen, P. [Instituut voor Kern- en Stralingsfysica, KU Leuven, 3001 Leuven (Belgium); Vermeeren, L. [SCK-CEN, Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium)

    2014-02-15

    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented.

  2. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopes.

    Science.gov (United States)

    Kudryavtsev, Yu; Ferrer, R; Huyse, M; Van den Bergh, P; Van Duppen, P; Vermeeren, L

    2014-02-01

    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented.

  3. Laser Plasmas: Plasma dynamics from laser ablated solid lithium

    Indian Academy of Sciences (India)

    Emission plasma plume generated by pulsed laser ablation of a lithium solid target by a ruby laser (694 nm, 20 ns, 3 J) was subjected to optical emission spectroscopy: time and space resolved optical emission was characterised as a function of distance from the target surface. Propagation of the plume was studied through ...

  4. Intrinsic Dynamics of Quantum-Dash Lasers

    KAUST Repository

    Chen, Cheng

    2011-10-01

    Temperature-dependent intrinsic modulation response of InAs/InAlGaAs quantum-dash lasers was investigated by using pulse optical injection modulation to minimize the effects of parasitics and self-heating. Compared to typical quantum-well lasers, the quantum-dash lasers were found to have comparable differential gain but approximately twice the gain compression factor, probably due to carrier heating by free-carrier absorption, as opposed to stimulated transition. Therefore, the narrower modulation bandwidth of the quantum-dash lasers than that of quantum-well lasers was attributed to their higher gain compression factor. In addition, as expected, quantum-dash lasers with relatively long and uniform dashes exhibit higher temperature stability than quantum-well lasers. However, the lasers with relatively short and nonuniform dashes exhibit stronger temperature dependence, probably due to their higher surface-to-volume ratio and nonuniform dash sizes. © 2011 IEEE.

  5. Nonlinear dynamics in photonic crystal nanocavity lasers

    DEFF Research Database (Denmark)

    Skovgård, Troels Suhr; Kristensen, Philip Trøst; Frandsen, Lars Hagedorn

    2009-01-01

    We model coupled nanolasers by adding phase-dependent coupling terms to the Purcell-enhanced laser rate equations. Transitions between phase-locking and complex oscillatory behavior are observed at critical coupling strengths in detuned two-laser systems.......We model coupled nanolasers by adding phase-dependent coupling terms to the Purcell-enhanced laser rate equations. Transitions between phase-locking and complex oscillatory behavior are observed at critical coupling strengths in detuned two-laser systems....

  6. Evaporation-induced gas-phase flows at selective laser melting

    Science.gov (United States)

    Zhirnov, I.; Kotoban, D. V.; Gusarov, A. V.

    2018-02-01

    Selective laser melting is the method for 3D printing from metals. A solid part is built from powder layer-by-layer. A continuum-wave laser beam scans every powder layer to fuse powder. The process is studied with a high-speed CCD camera at the frame rate of 104 fps and the resolution up to 5 µm per pixel. Heat transfer and evaporation in the laser-interaction zone are numerically modeled. Droplets are ejected from the melt pool in the direction around the normal to the melt surface and the powder particles move in the horizontal plane toward the melt pool. A vapor jet is observed in the direction of the normal to the melt surface. The velocities of the droplets, the powder particles, and the jet flow and the mass loss due to evaporation are measured. The gas flow around the vapor jet is calculated by Landau's model of submerged jet. The measured velocities of vapor, droplets, and powder particles correlate with the calculated flow field. The obtained results show the importance of evaporation and the flow of the vapor and the ambient gas. These gas-dynamic phenomena can explain the formation of the denudated zones and the instability at high-energy input.

  7. Pulsed laser stereophotography of plasmas and dynamically moving surfaces

    International Nuclear Information System (INIS)

    Paisley, D.L.

    1987-01-01

    A pulsed laser is used as a light source for illuminating the surface of a dynamic event of 3 mm//μs. At a predetermined time during the dynamic action, a stereo camera is used to record a pair of images of the dynamically moving surface. The stereoimage pair can be quantified for surface contour

  8. Dynamics of polynomial Chaplygin gas warm inflation

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Chaudhary, Shahid [Sharif College of Engineering and Technology, Department of Mathematics, Lahore (Pakistan); Videla, Nelson [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile)

    2017-11-15

    In the present work, we study the consequences of a recently proposed polynomial inflationary potential in the context of the generalized, modified, and generalized cosmic Chaplygin gas models. In addition, we consider dissipative effects by coupling the inflation field to radiation, i.e., the inflationary dynamics is studied in the warm inflation scenario. We take into account a general parametrization of the dissipative coefficient Γ for describing the decay of the inflaton field into radiation. By studying the background and perturbative dynamics in the weak and strong dissipative regimes of warm inflation separately for the positive and negative quadratic and quartic potentials, we obtain expressions for the most relevant inflationary observables as the scalar power spectrum, the scalar spectral, and the tensor-to-scalar ratio. We construct the trajectories in the n{sub s}-r plane for several expressions of the dissipative coefficient and compare with the two-dimensional marginalized contours for (n{sub s}, r) from the latest Planck data. We find that our results are in agreement with WMAP9 and Planck 2015 data. (orig.)

  9. Dynamic laser piercing of thick section metals

    Science.gov (United States)

    Pocorni, Jetro; Powell, John; Frostevarg, Jan; Kaplan, Alexander F. H.

    2018-01-01

    Before a contour can be laser cut the laser first needs to pierce the material. The time taken to achieve piercing should be minimised to optimise productivity. One important aspect of laser piercing is the reliability of the process because industrial laser cutting machines are programmed for the minimum reliable pierce time. In this work piercing experiments were carried out in 15 mm thick stainless steel sheets, comparing a stationary laser and a laser which moves along a circular trajectory with varying processing speeds. Results show that circular piercing can decrease the pierce duration by almost half compared to stationary piercing. High speed imaging (HSI) was employed during the piercing process to understand melt behaviour inside the pierce hole. HSI videos show that circular rotation of the laser beam forces melt to eject in opposite direction of the beam movement, while in stationary piercing the melt ejects less efficiently in random directions out of the hole.

  10. Laser fields in dynamically ionized plasma structures for coherent acceleration

    CERN Document Server

    Luu-Thanh, Ph.; Pukhov, A.; Kostyukov, I.

    2015-01-01

    With the emergence of the CAN (Coherent Amplification Network) laser technology, a new scheme for direct particle acceleration in periodic plasma structures has been proposed. By using our full electromagnetic relativistic particle-in-cell (PIC) simulation code equipped with ionisation module, we simulate the laser fields dynamics in the periodic structures of different materials. We study how the dynamic ionization influences the field structure.

  11. Key factors of combustion from kinetics to gas dynamics

    CERN Document Server

    Rubtsov, Nikolai M

    2017-01-01

    This book summarizes the main advances in the mechanisms of combustion processes. It focuses on the analysis of kinetic mechanisms of gas combustion processes and experimental investigation into the interrelation of kinetics and gas dynamics in gas combustion. The book is complimentary to the one previously published, The Modes of Gaseous Combustion.

  12. Laser production for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar

    Science.gov (United States)

    Stysley, Paul R.; Coyle, D. Barry; Clarke, Greg B.; Frese, Erich; Blalock, Gordon; Morey, Peter; Kay, Richard B.; Poulios, Demetrios; Hersh, Michael

    2016-05-01

    The Lasers and Electro-Optics Branch at Goddard Space Flight Center has been tasked with building the Lasers for the Global Ecosystems Dynamics Investigation (GEDI) Lidar Mission, to be installed on the Japanese Experiment Module (JEM) on the International Space Station (ISS)1. GEDI will use three NASA-developed lasers, each coupled with a Beam Dithering Unit (BDU) to produce three sets of staggered footprints on the Earth's surface to accurately measure global biomass. We will report on the design, assembly progress, test results, and delivery process of this laser system.

  13. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Laser ablation plume dynamics in nanoparticle synthesis

    Science.gov (United States)

    Osipov, V. V.; Platonov, V. V.; Lisenkov, V. V.

    2009-06-01

    The dynamics of the plume ejected from the surface of solid targets (YSZ, Nd:YAG and graphite) by a CO2 laser pulse with a duration of ~500 μs (at the 0.03 level), energy of 1.0-1.3 J and peak power of 6-7 kW have been studied using high-speed photography of the plume luminescence and shadow. The targets were used to produce nanopowders by laser evaporation. About 200 μs after termination of the pulse, shadowgraph images of the plumes above the YSZ and Nd:YAG targets showed dark straight tracks produced by large particles. The formation of large (~10 μm) particles is tentatively attributed to cracking of the solidified melt at the bottom of the ablation crater. This is supported by the fact that no large particles are ejected from graphite, which sublimes without melting. Further support to this hypothesis is provided by numerical 3D modelling of melt cooling in craters produced by laser pulses of different shapes.

  14. Modeling pulsed excitation for gas-phase laser diagnostics

    International Nuclear Information System (INIS)

    Settersten, Thomas B.; Linne, Mark A.

    2002-01-01

    Excitation dynamics for pulsed optical excitation are described with the density-matrix equations and the rate equations for a two-level system. A critical comparison of the two descriptions is made with complete and consistent formalisms that are amenable to the modeling of applied laser-diagnostic techniques. General solutions, resulting from numerical integration of the differential equations describing the excitation process, are compared for collisional conditions that range from the completely coherent limit to the steady-state limit, for which the two formalisms are identical. This analysis demonstrates the failure of the rate equations to correctly describe the transient details of the excitation process outside the steady-state limit. However, reasonable estimates of the resultant population are obtained for nonsaturating (linear) excitation. This comparison provides the laser diagnostician with the means to evaluate the appropriate model for excitation through a simple picture of the breakdown of the rate-equation validity

  15. Open Path Trace Gas Laser Sensors for UAV Deployment

    Science.gov (United States)

    Shadman, S.; Mchale, L.; Rose, C.; Yalin, A.

    2015-12-01

    Novel trace gas sensors based on open-path Cavity Ring-down Spectroscopy (CRDS) are being developed to enable remote and mobile deployments including on small unmanned aerial systems (UAS). Relative to established closed-path CRDS instruments, the use of open-path configurations allows removal of the bulky and power hungry vacuum and flow system, potentially enabling lightweight and low power instruments with high sensitivity. However, open path operation introduces new challenges including the need to maintain mirror cleanliness, mitigation of particle optical effects, and the need to measure spectral features that are relatively broad. The present submission details open-path CRDS instruments for ammonia and methane and their planned use in UAS studies. The ammonia sensor uses a quantum cascade laser at 10.3 mm in a configuration in which the laser frequency is continuously swept and a trigger circuit and acousto-optic modulator (AOM) extinguish the light when the laser is resonant with the cavity. Ring-down signals are measured with a two-stage thermoelectrically cooled MCT photodetector. The cavity mirrors have reflectivity of 0.9995 and a noise equivalent absorption of 1.5 ppb Hz-1/2 was demonstrated. A first version of the methane sensor operated at 1.7um with a telecom diode laser while the current version operates at 3.6 um with an interband cascade laser (stronger absorption). We have performed validation measurements against known standards for both sensors. Compact optical assemblies are being developed for UAS deployment. For example, the methane sensor head will have target mass of designed for sensor control and signal processing with target mass <1 kg and power draw <10 W. The sensor size and power parameters are suitable for UAS deployment on both fixed wing and rotor style UAS. We plan to deploy the methane sensor to measure leakage and emission of methane from natural gas infrastructure, and to deploy both sensors together to study emissions from

  16. Dynamics of gas-thrust bearings

    Science.gov (United States)

    Stiffler, A. K.; Tapia, R. R.

    1978-01-01

    Computer program calculates load coefficients, up to third harmonic, for hydrostatic gas thrust bearings. Program is useful in identification of industrial situations where gas-thrust bearings have potential applications.

  17. Calibrating Laser Gas Measurements by Use of Natural CO2

    Science.gov (United States)

    Webster, Chris

    2003-01-01

    An improved method of calibration has been devised for instruments that utilize tunable lasers to measure the absorption spectra of atmospheric gases in order to determine the relative abundances of the gases. In this method, CO2 in the atmosphere is used as a natural calibration standard. Unlike in one prior calibration method, it is not necessary to perform calibration measurements in advance of use of the instrument and to risk deterioration of accuracy with time during use. Unlike in another prior calibration method, it is not necessary to include a calibration gas standard (and the attendant additional hardware) in the instrument and to interrupt the acquisition of atmospheric data to perform calibration measurements. In the operation of an instrument of this type, the beam from a tunable diode laser or a tunable quantum-cascade laser is directed along a path through the atmosphere, the laser is made to scan in wavelength over an infrared spectral region that contains one or two absorption spectral lines of a gas of interest, and the transmission (and, thereby, the absorption) of the beam is measured. The concentration of the gas of interest can then be calculated from the observed depth of the absorption line(s), given the temperature, pressure, and path length. CO2 is nearly ideal as a natural calibration gas for the following reasons: CO2 has numerous rotation/vibration infrared spectral lines, many of which are near absorption lines of other gases. The concentration of CO2 relative to the concentrations of the major constituents of the atmosphere is well known and varies slowly and by a small enough amount to be considered constant for calibration in the present context. Hence, absorption-spectral measurements of the concentrations of gases of interest can be normalized to the concentrations of CO2. Because at least one CO2 calibration line is present in every spectral scan of the laser during absorption measurements, the atmospheric CO2 serves

  18. Thermochemically Driven Gas-Dynamic Fracturing (TDGF)

    Energy Technology Data Exchange (ETDEWEB)

    Michael Goodwin

    2008-12-31

    This report concerns efforts to increase oil well productivity and efficiency via a method of heating the oil-bearing rock of the well, a technique known as Thermochemical Gas-Dynamic Fracturing (TGDF). The technique uses either a chemical reaction or a combustion event to raise the temperature of the rock of the well, thereby increasing oil velocity, and oil pumping rate. Such technology has shown promise for future application to both older wellheads and also new sites. The need for such technologies in the oil extraction field, along with the merits of the TGDF technology is examined in Chapter 1. The theoretical basis underpinning applications of TGDF is explained in Chapter 2. It is shown that productivity of depleted well can be increased by one order of magnitude after heating a reservoir region of radius 15-20 m around the well by 100 degrees 1-2 times per year. Two variants of thermal stimulation are considered: uniform heating and optimal temperature distribution in the formation region around the perforation zone. It is demonstrated that the well productivity attained by using equal amounts of thermal energy is higher by a factor of 3 to 4 in the case of optimal temperature distribution as compared to uniform distribution. Following this theoretical basis, two practical approaches to applying TDGF are considered. Chapter 3 looks at the use of chemical intiators to raise the rock temperature in the well via an exothermic chemical reaction. The requirements for such a delivery device are discussed, and several novel fuel-oxidizing mixtures (FOM) are investigated in conditions simulating those at oil-extracting depths. Such FOM mixtures, particularly ones containing nitric acid and a chemical initiator, are shown to dramatically increase the temperature of the oil-bearing rock, and thus the productivity of the well. Such tests are substantiated by preliminary fieldwork in Russian oil fields. A second, more cost effective approach to TGDF is considered in

  19. Intensity dependence of electron gas kinetics in a laser corona

    Directory of Open Access Journals (Sweden)

    Mašek Martin

    2013-11-01

    Full Text Available In various experimental situations relevant to the laser fusion, such as plasma near the light entrance holes of hohlraum in the indirect drive experiments or more recently in the shock ignition direct drive a relatively long underdense plasma of corona type is encountered, which is subject to an intense nanosecond laser beam. The plasma is only weakly collisional and thus in the electron phase space a complicated kinetic evolution is going on, which is taking the electron gas fairly far from the thermal equilibrium and contributes to its unstable behaviour. These phenomena impede the absorption and thermalization of the incoming laser energy, create groups of fast electrons and also may lead to a non-linear reflection of the heating laser beam. One of the key processes leading to the electron acceleration is the stimulated Raman scattering (SRS in its non-linear phase. The SRS in the presence of electron-ion collisions requires a certain threshold intensity above which the mentioned non-dissipative phenomena can occur and develop to the stage, where they may become unpleasant for the fusion experiments. To assess this intensity limit a computational model has been developed based on the Vlasov-Maxwell kinetics describing such a plasma in 1D geometry. At a relatively high intensity of 1016 W/cm2 a number of non-linear phenomena are predicted by the code such as a saturation of Landau damping, which is then translated in an unfavourable time dependence of the reflected light intensity and formation of accelerated electron groups due to the electron trapping. The purpose of the present contribution is to map the intensity dependence of this non-linear development with the aim of assessing its weight in fusion relevant situations.

  20. Application of Factorial Design for Gas Parameter Optimization in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Dragsted, Birgitte; Olsen, Flemming Ove

    1997-01-01

    The effect of different gas process parameters involved in CO2 laser welding has been studied by applying two-set of three-level complete factorial designs. In this work 5 gas parameters, gas type, gas flow rate, gas blowing angle, gas nozzle diameter, gas blowing point-offset, are optimized...... to be a very useful tool for parameter optimi-zation in laser welding process. Keywords: CO2 laser welding, gas parameters, factorial design, Analysis of Variance........ The bead-on-plate welding specimens are evaluated by a number of quality char-acteristics, such as the penetration depth and the seam width. The significance of the gas pa-rameters and their interactions are based on the data found by the Analysis of Variance-ANOVA. This statistic methodology is proven...

  1. Plasma dynamics from laser ablated solid lithium

    Indian Academy of Sciences (India)

    ) model, invoked for the high density laser plasma under study. Some interesting results pertaining to the analysis of plume structure and spatio-temporal behaviour ofTe and ne along the plume length will be presented and discussed.

  2. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.

    2017-06-01

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in

  3. The computer simulation of 3d gas dynamics in a gas centrifuge

    Science.gov (United States)

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there.

  4. The computer simulation of 3d gas dynamics in a gas centrifuge

    International Nuclear Information System (INIS)

    Borman, V D; Bogovalov, S V; Borisevich, V D; Tronin, I V; Tronin, V N

    2016-01-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there. (paper)

  5. Investigation on gas medium parameters for an ArF excimer laser through orthogonal experimental design

    Science.gov (United States)

    Song, Xingliang; Sha, Pengfei; Fan, Yuanyuan; Jiang, R.; Zhao, Jiangshan; Zhou, Yi; Yang, Junhong; Xiong, Guangliang; Wang, Yu

    2018-02-01

    Due to complex kinetics of formation and loss mechanisms, such as ion-ion recombination reaction, neutral species harpoon reaction, excited state quenching and photon absorption, as well as their interactions, the performance behavior of different laser gas medium parameters for excimer laser varies greatly. Therefore, the effects of gas composition and total gas pressure on excimer laser performance attract continual research studies. In this work, orthogonal experimental design (OED) is used to investigate quantitative and qualitative correlations between output laser energy characteristics and gas medium parameters for an ArF excimer laser with plano-plano optical resonator operation. Optimized output laser energy with good pulse to pulse stability can be obtained effectively by proper selection of the gas medium parameters, which makes the most of the ArF excimer laser device. Simple and efficient method for gas medium optimization is proposed and demonstrated experimentally, which provides a global and systematic solution. By detailed statistical analysis, the significance sequence of relevant parameter factors and the optimized composition for gas medium parameters are obtained. Compared with conventional route of varying single gas parameter factor sequentially, this paper presents a more comprehensive way of considering multivariables simultaneously, which seems promising in striking an appropriate balance among various complicated parameters for power scaling study of an excimer laser.

  6. Resonant holographic measurements of laser ablation plume expansion in vacuum and argon gas backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, Roger Alan [Michigan Univ., Ann Arbor, MI (United States)

    1993-01-01

    This thesis discusses the following on resonant holographic measurements of laser ablation plume expansion: Introduction to laser ablation; applications of laser ablation; The study of plume expansion; holographic interferometry; resonant holographic interferometry; accounting for finite laser bandwidth; The solution for doppler broadening and finite bandwidth; the main optical table; the lumonics laser spot shape; developing and reconstructing the holograms; plume expansion in RF/Plasma Environments; Determining λ°; resonant refraction effects; fringe shift interpretation; shot-to-shot consistency; laser ablation in vacuum and low pressure, inert, background gas; theoretically modeling plume expansion in vacuum and low pressure, inert, background gas; and laser ablation in higher pressure, inert, background gas.

  7. Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute

    Science.gov (United States)

    Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir

    2003-05-01

    Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.

  8. Plasma dynamics during pulsed laser evaporation of high Tc superconductors

    International Nuclear Information System (INIS)

    Singh, R.K.; Narayan, J.

    1991-01-01

    The authors of this paper theoretically and experimentally investigated the dynamics of the evaporated material generated by nanosecond excimer laser irradiation of YBa 2 Cu 3 O 7 targets in vacuum. The velocity distribution and the ionization of the plasma were determined by the ion time of flight measurements. The excimer laser ablated species possessed very high velocities (>120 6 cm/sec) which increased non-linearly with energy density. The ionization/volume of the evaporated material exhibited a weak dependency on energy density, thereby suggesting the role of non-thermal mechanisms in the ionization process. These experimental results have been correlated with the theoretical model analyzing the plasma dynamics during pulsed laser evaporation of materials. A new modification to the earlier theoretical model is developed which accurately predicts the terminal velocities and the effect of ionization on these velocities. Various factors including, evaporation rates, degree of ionization, and laser wavelength which affect the plasma velocities will also be discussed

  9. Strategy implications of world gas market dynamics

    NARCIS (Netherlands)

    Weijermars, R.

    2011-01-01

    Global trends – past and future – of world natural gas consumption, production, reserves, and prices are highlighted here analyzing the BP Statistical Review of World Energy 2011, the BP Energy Outlook 2011, and the latest natural gas data from the world’s major energy agencies. Growing demand and

  10. Bleaching and diffusion dynamics in optofluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Asger

    2007-01-01

    The authors have investigated the bleaching dynamics that occur in optofluidic dye lasers where the liquid laser dye in a microfluidic channel is locally bleached due to optical pumping. They find that for microfluidic devices, the dye bleaching may be compensated through diffusion of dye molecules...... alone. By relying on diffusion rather than convection to generate the necessary dye replenishment, their observation potentially allows for a significant simplification of optofluidic dye laser device layouts, omitting the need for cumbersome and costly external fluidic handling or on-chip microfluidic...

  11. Greenhouse Gas Laser Imaging Tomography Experiment (GreenLITE

    Directory of Open Access Journals (Sweden)

    Dobler Jeremy

    2016-01-01

    Full Text Available Exelis has recently developed a novel laser-based instrument to aid in the autonomous real-time monitoring and mapping of CO2 concentration over a two-dimensional area. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE instrument uses two transceivers and a series of retroreflectors to continuously measure the differential transmission over a number of overlapping lines of sight or “chords”, forming a plane. By inverting the differential transmission measurements along with locally measured temperature (T, pressure (P and relative humidity (RH the average concentration of CO2 along each chord can be determined and, based on the overlap between chords, a 2D map of CO2 concentration over the measurement plane can be estimated. The GreenLITE system was deployed to the Zero Emissions Research and Technology (ZERT center in Bozeman, Montana, in Aug-Sept 2014, where more than 200 hours of data were collected over a wide range of environmental conditions, while utilizing a controlled release of CO2 into a segmented underground pipe [1]. The system demonstrated the ability to identify persistent CO2 sources at the test facility and showed strong correlation with an independent measurement using a LI-COR based system. Here we describe the measurement approach, instrument design, and results from the deployment to the ZERT site.

  12. Ignition parameters and early flame kernel development of laser-ignited combustible gas mixtures

    International Nuclear Information System (INIS)

    Kopecek, H.; Wintner, E.; Ruedisser, D.; Iskra, K.; Neger, T.

    2002-01-01

    Full text: Laser induced breakdown of focused pulsed laser radiation, the subsequent plasma formation and thermalization offers a possibility of ignition of combustible gas mixtures free from electrode interferences, an arbitrary choice of the location within the medium and exact timing regardless of the degree of turbulence. The development and the decreasing costs of solid state laser technologies approach the pay-off for the higher complexity of such an ignition system due to several features unique to laser ignition. The feasability of laser ignition was demonstrated in an 1.5 MW(?) natural gas engine, and several investigations were performed to determine optimal ignition energies, focus shapes and laser wavelengths. The early flame kernel development was investigated by time resolved planar laser induced fluorescence of the OH-radical which occurs predominantly in the flame front. The flame front propagation showed typical features like toroidal initial flame development, flame front return and highly increased flame speed along the laser focus axis. (author)

  13. Quantum-cascade laser photoacoustic detection of methane emitted from natural gas powered engines

    Science.gov (United States)

    Rocha, M. V.; Sthel, M. S.; Silva, M. G.; Paiva, L. B.; Pinheiro, F. W.; Miklòs, A.; Vargas, H.

    2012-03-01

    In this work we present a laser photoacoustic arrangement for the detection of the important greenhouse gas methane. A quantum-cascade laser and a differential photoacoustic cell were employed. A detection limit of 45 ppbv in nitrogen was achieved as well as a great selectivity. The same methodology was also tested in the detection of methane issued from natural gas powered vehicles (VNG) in Brazil, which demonstrates the excellent potential of this arrangement for greenhouse gas detection emitted from real sources.

  14. Plasma dynamics from laser ablated solid lithium

    Indian Academy of Sciences (India)

    ture with respect to an appropriate theoretical plasma model. For a high density laser plasma one invokes the concept of local thermodynamic equilibrium (LTE) as a model to explain the atomic collision processes [4]. The experimental results when fitted to the proposed model, will validate the assumptions underlying the ...

  15. Optodynamics: dynamic aspects of laser beam-surface interaction

    International Nuclear Information System (INIS)

    Možina, J; Diaci, J

    2012-01-01

    This paper presents a synthesis of the results of our original research in the area of laser-material interaction and pulsed laser material processing with a special emphasis on the dynamic aspects of laser beam-surface interaction, which include the links between the laser material removal and the resulting material motion. In view of laser material processing, a laser beam is not only considered as a tool but also as a generator of information about the material transformation. The information is retained and conveyed by different kinds of optically induced mechanical waves. Several generation/detection schemes have been developed to extract this information, especially in the field of non-destructive material evaluation. Blast and acoustic waves, which propagate in the air surrounding the work-piece, have been studied using microphone detection as well as various setups of the laser beam deflection probe. Stress waves propagating through the work-piece have been studied using piezoelectric transducers and laser interferometers.

  16. Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the Leuven laser ion source LISOL

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, R., E-mail: Rafael.Ferrer@fys.kuleuven.be [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Sonnenschein, V.T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (YFL), FI-40014 Jyvaeskylae (Finland); Bastin, B. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Franchoo, S. [Institut de Physique Nucleaire (IPN) d' Orsay, 91406 Orsay, Cedex (France); Huyse, M.; Kudryavtsev, Yu. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Kron, T. [Institut fuer Physik, Universitaet Mainz, D-55128 Mainz (Germany); Lecesne, N. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Moore, I.D. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (YFL), FI-40014 Jyvaeskylae (Finland); Osmond, B. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Pauwels, D. [SCK-CEN, Belgian Nuclear Research Center, Boeretang 200, 2400 Mol (Belgium); Radulov, D. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Raeder, S. [Institut fuer Physik, Universitaet Mainz, D-55128 Mainz (Germany); Rens, L. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); and others

    2012-11-15

    The laser ionization efficiency of the Leuven gas cell-based laser ion source was investigated under on- and off-line conditions using two distinctly different laser setups: a low-repetition rate dye laser system and a high-repetition rate Ti:sapphire laser system. A systematic study of the ion signal dependence on repetition rate and laser pulse energy was performed in off-line tests using stable cobalt and copper isotopes. These studies also included in-gas-jet laser spectroscopy measurements on the hyperfine structure of {sup 63}Cu. A final run under on-line conditions in which the radioactive isotope {sup 59}Cu (T{sub 1/2} = 81.5 s) was produced, showed a comparable yield of the two laser systems for in-gas-cell ionization. However, a significantly improved time overlap by using the high-repetition rate laser system for in-gas-jet ionization was demonstrated by an increase of the overall duty cycle, and at the same time, pointed to the need for a better shaped atomic jet to reach higher ionization efficiencies.

  17. Laser-driven nuclear-polarized hydrogen internal gas target

    International Nuclear Information System (INIS)

    Seely, J.; Crawford, C.; Clasie, B.; Xu, W.; Dutta, D.; Gao, H.

    2006-01-01

    We report the performance of a laser-driven polarized internal hydrogen gas target (LDT) in a configuration similar to that used in scattering experiments. This target used the technique of spin-exchange optical pumping to produce nuclear spin polarized hydrogen gas that was fed into a cylindrical storage (target) cell. We present in this paper the performance of the target, methods that were tried to improve the figure-of-merit (FOM) of the target, and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation and the experimental results were in good agreement with the results from the simulation. The best experimental result achieved was at a hydrogen flow rate of 1.1x10 18 atoms/s, where the sample beam exiting the storage cell had 58.2% degree of dissociation and 50.5% polarization. Based on this measurement, the atomic fraction in the storage cell was 49.6% and the density averaged nuclear polarization was 25.0%. This represents the highest FOM for hydrogen from an LDT and is higher than the best FOM reported by atomic beam sources that used storage cells

  18. UV laser induced proton-transfer of protein molecule in the gas phase produced by droplet-beam laser ablation

    Science.gov (United States)

    Kohno, Jun-ya; Kondow, Tamotsu

    2008-09-01

    Droplet-beam laser-ablation mass-spectrometry was applied for a study of the UV-laser induced proton-transfer reaction of protonated lysozyme hydrated clusters in the gas phase. Protonated lysozyme hydrated clusters were produced by irradiation of an IR laser onto a droplet-beam of an aqueous solution of lysozyme and were subsequently irradiated by a UV laser. It is found that H + and H 3O + are produced through photodissociation of protonated lysozyme hydrated clusters. The mechanism of the proton-transfer reaction is discussed.

  19. Optimal Control of Atomic, Molecular and Electron Dynamics with Tailored Femtosecond Laser Pulses

    Science.gov (United States)

    Brixner, Tobias; Pfeifer, Thomas; Gerber, Gustav; Wollenhaupt, Matthias; Baumert, Thomas

    With the invention of the laser, the dream was realized to actively exert control over quantum systems. Active control over the dynamics of quantum mechanical systems is a fascinating perspective in modern physics. Cleavage and creation of predetermined chemical bonds, selective population transfer in atoms and molecules, and steering the dynamics of bound and free electrons have been important milestones along this way. A promising tool for this purpose is available with femtosecond laser technologies. In this chapter we review some of our work on adaptive femtosecond quantum control where a learning algorithm and direct experimental feedback signals are employed to optimize user-defined objectives. Femtosecond laser pulses are modified in frequency-domain pulse shapers, which apart from phase- and intensity-modulation can also modify the polarization state as a function of time. We will highlight the major advances in the field of optimal control by presenting our own illustrative experimental examples such as gas-phase and liquid-phase femtochemistry, control in weak and strong laser fields, and control of electron dynamics.

  20. Distribution and dynamics of laser-polarized (129)Xe magnetization in vivo.

    Science.gov (United States)

    Swanson, S D; Rosen, M S; Coulter, K P; Welsh, R C; Chupp, T E

    1999-12-01

    The first magnetic resonance imaging studies of laser-polarized (129)Xe, dissolved in the blood and tissue of the lungs and the heart of Sprague-Dawley rats, are described. (129)Xe resonances at 0, 192, 199, and 210 ppm were observed and assigned to xenon in gas, fat, tissue, and blood, respectively. One-dimensional chemical-shift imaging (CSI) reveals xenon magnetization in the brain, kidney, and lungs. Coronal and axial two-dimensional CSI show (129)Xe dissolved in blood and tissue in the thorax. Images of the blood resonance show xenon in the lungs and the heart ventricle. Images of the tissue resonance reveal xenon in lung parenchyma and myocardium. The (129)Xe spectrum from a voxel located in the heart ventricle shows a single blood resonance. Time-resolved spectroscopy shows that the dynamics of the blood resonance match the dynamics of the gas resonance and demonstrates efficient diffusion of xenon gas to the lung parenchyma and then to pulmonary blood. These observations demonstrate the utility of laser-polarized (129)Xe to detect exchange across the gas-blood barrier in the lungs and perfusion into myocardial tissue. Applications to measurement of lung function, kidney perfusion, myocardial perfusion, and regional cerebral blood flow are discussed. Magn Reson Med 42:1137-1145, 1999. Copyright 1999 Wiley-Liss, Inc.

  1. Gas Price Formation, Structure and Dynamics

    International Nuclear Information System (INIS)

    Davoust, R.

    2008-01-01

    Our study, focused on gas prices in importing economies, describes wholesale prices and retail prices, their evolution for the last one or two decades, the economic mechanisms of price formation. While an international market for oil has developed thanks to moderate storage and transportation charges, these costs are much higher in the case of natural gas, which involves that this energy is still traded inside continental markets. There are three regional gas markets around the world: North America (the United States, importing mainly from Canada and Mexico), Europe (importing mainly from Russia, Algeria and Norway) and Asia (Japan, Korea, Taiwan, China and India, importing mainly from Indonesia, Malaysia and Australia). A market for gas has also developed in South America, but it will not be covered by our paper. In Europe and the US, due to large domestic resources and strong grids, natural gas is purchased mostly through pipelines. In Northeast Asia, there is a lack of such infrastructures, so imported gas takes mainly the form of Liquefied Natural Gas (LNG), shipped on maritime tankers. Currently, the LNG market is divided into two zones: the Atlantic Basin (Europe and US) and the Pacific Basin (Asia and the Western Coast of America). For the past few years, the Middle East and Africa have tended to be crucial suppliers for both LNG zones. Gas price formation varies deeply between regional markets, depending on several structural factors (regulation, contracting practises, existence of a spot market, liquidity, share of imports). Empirically, the degree of market opening (which corresponds to the seniority in the liberalization process) seems to be the primary determinant of pricing patterns. North America has the most liberalized and well-performing natural gas industry in the world. Gas pricing is highly competitive and is based on supply/demand balances. Spot and futures markets are developed. The British gas sector is also deregulated and thus follows a

  2. Laser sources and techniques for spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kung, A.H. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This program focuses on the development of novel laser and spectroscopic techniques in the IR, UV, and VUV regions for studying combustion related molecular dynamics at the microscopic level. Laser spectroscopic techniques have proven to be extremely powerful in the investigation of molecular processes which require very high sensitivity and selectivity. The authors approach is to use quantum electronic and non-linear optical techniques to extend the spectral coverage and to enhance the optical power of ultrahigh resolution laser sources so as to obtain and analyze photoionization, fluorescence, and photoelectron spectra of jet-cooled free radicals and of reaction products resulting from unimolecular and bimolecular dissociations. New spectroscopic techniques are developed with these sources for the detection of optically thin and often short-lived species. Recent activities center on regenerative amplification of high resolution solid-state lasers, development of tunable high power mid-IR lasers and short-pulse UV/VUV tunable lasers, and development of a multipurpose high-order suppressor crossed molecular beam apparatus for use with synchrotron radiation sources. This program also provides scientific and technical support within the Chemical Sciences Division to the development of LBL`s Combustion Dynamics Initiative.

  3. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-01-01

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters

  4. Complex double-mass dynamic model of rotor on thrust foil gas dynamic bearings

    Science.gov (United States)

    Sytin, A.; Babin, A.; Vasin, S.

    2017-08-01

    The present paper considers simulation of a rotor’s dynamics behaviour on thrust foil gas dynamic bearings based on simultaneous solution of gas dynamics differential equations, equations of theory of elasticity, motion equations and some additional equations. A double-mass dynamic system was considered during the rotor’s motion simulation which allows not only evaluation of rotor’s dynamic behaviour, but also to evaluate the influence of operational and load parameters on the dynamics of the rotor-bearing system.

  5. Vacuum Ultraviolet Laser Probe of Chemical Dynamics of Aerospace Relevance

    Science.gov (United States)

    2012-09-12

    RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 09/12/12 01/15/09-11/30/11 VACUUM ULTRAVIOLET LASER PROBES OF CHEMICAL DYNAMICS PF...is to be limited. Standard Form 298 Back (Rev. 8/98) FINAL AFOSR REPORT (Dec. 1, 2008-Nov. 30, 2011) I. Grant Title: Vacuum Ultraviolet ...goal of this research program is to provide pertinent information about the energetics, photochemistry , and chemical dynamics of spacecraft effluents

  6. Feedback Control Of Dynamical Instabilities In Classical Lasers And Fels

    CERN Document Server

    Bielawski, S; Szwaj, C

    2005-01-01

    Dynamical instabilities lead to unwanted full-scale power oscillations in many classical lasers and FEL oscillators. For a long time, applications requiring stable operation were typically performed by working outside the problematic parameter regions. A breakthrough occurred in the nineties [1], when emphasis was made on the practical importance of unstable states (stationary or periodic) that coexist with unwanted oscillatory states. Indeed, although not observable in usual experiments, unstable states can be stabilized, using a feedback control involving arbitrarily small perturbations of a parameter. This observation stimulated a set of works leading to successful suppression of dynamical instabilities (initially chaos) in lasers, sometimes with surprisingly simple feedback devices [2]. We will review a set of key results, including in particular the recent works on the stabilization of mode-locked lasers, and of the super-ACO, ELETTRA and UVSOR FELs [3].

  7. Ultrafast dynamics and laser action of organic semiconductors

    CERN Document Server

    Vardeny, Zeev Valy

    2009-01-01

    Spurred on by extensive research in recent years, organic semiconductors are now used in an array of areas, such as organic light emitting diodes (OLEDs), photovoltaics, and other optoelectronics. In all of these novel applications, the photoexcitations in organic semiconductors play a vital role. Exploring the early stages of photoexcitations that follow photon absorption, Ultrafast Dynamics and Laser Action of Organic Semiconductors presents the latest research investigations on photoexcitation ultrafast dynamics and laser action in pi-conjugated polymer films, solutions, and microcavities.In the first few chapters, the book examines the interplay of charge (polarons) and neutral (excitons) photoexcitations in pi-conjugated polymers, oligomers, and molecular crystals in the time domain of 100 fs-2 ns. Summarizing the state of the art in lasing, the final chapters introduce the phenomenon of laser action in organics and cover the latest optoelectronic applications that use lasing based on a variety of caviti...

  8. Gas ion laser construction for electrically isolating the pressure gauge thereof

    Science.gov (United States)

    Wood, C. E.; Witte, R. S. (Inventor)

    1975-01-01

    The valve and the pressure gauge of a gas ion laser were electrically insulated from the laser discharge path by connecting them in series with the cathode of the laser. The laser cathode can be grounded and preferably is a cold cathode although a hot cathode may be used instead. The cold cathode was provided with a central aperture to which was connected both the pressure gauge and the gas pressure reservoir through the valve. This will effectively prevent electric discharges from passing either to the pressure gauge or the valve which would otherwise destroy the pressure gauge.

  9. Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE)

    Energy Technology Data Exchange (ETDEWEB)

    Dobler, Jeremy [Exelis Inc., Fort Wayne, IN (United States); Zaccheo, T. Scott [Exelis Inc., Fort Wayne, IN (United States); Blume, Nathan [Exelis Inc., Fort Wayne, IN (United States); Pernini, Timothy [Exelis Inc., Fort Wayne, IN (United States); Braun, Michael [Exelis Inc., Fort Wayne, IN (United States); Botos, Christopher [Exelis Inc., Fort Wayne, IN (United States)

    2016-03-31

    This report describes the development and testing of a novel system, the Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE), for Monitoring, Reporting and Verification (MRV) of CO2 at Geological Carbon Storage (GCS) sites. The system consists of a pair of laser based transceivers, a number of retroreflectors, and a set of cloud based data processing, storage and dissemination tools, which enable 2-D mapping of the CO2 in near real time. A system was built, tested locally in New Haven, Indiana, and then deployed to the Zero Emissions Research and Technology (ZERT) facility in Bozeman, MT. Testing at ZERT demonstrated the ability of the GreenLITE system to identify and map small underground leaks, in the presence of other biological sources and with widely varying background concentrations. The system was then ruggedized and tested at the Harris test site in New Haven, IN, during winter time while exposed to temperatures as low as -15 °CºC. Additional testing was conducted using simulated concentration enhancements to validate the 2-D retrieval accuracy. This test resulted in a high confidence in the reconstruction ability to identify sources to tens of meters resolution in this configuration. Finally, the system was deployed for a period of approximately 6 months to an active industrial site, Illinois Basin – Decatur Project (IBDP), where >1M metric tons of CO2 had been injected into an underground sandstone basin. The main objective of this final deployment was to demonstrate autonomous operation over a wide range of environmental conditions with very little human interaction, and to demonstrate the feasibility of the system for long term deployment in a GCS environment.

  10. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics

    NARCIS (Netherlands)

    Csatho, Beata M.; Schenk, Anton F.; van der Veen, Cornelis J.; Babonis, Gregory; Duncan, Kyle; Rezvanbehbahani, Soroush; van den Broeke, Michiel R.|info:eu-repo/dai/nl/073765643; Simonsen, Sebastian B.; Nagarajan, Sudhagar; van Angelen, Jan H.|info:eu-repo/dai/nl/325922470

    2014-01-01

    We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993-2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass

  11. Thermal dynamics-based mechanism for intense laser-induced ...

    Indian Academy of Sciences (India)

    dynamics of laser surface vaporization process also lays the basis to analyse tech- nological processes like keyhole ..... positive again initiating a new period of vaporization (from t = 2.5 ns to t = 3.5 ns). The secondary ... Some of the assumptions associated with the adoption of equilibrium solutions are discussed by Chung ...

  12. Femtosecond electron-bunch dynamics in laser wakefields and vacuum

    NARCIS (Netherlands)

    Khachatryan, A.G.; Irman, A.; van Goor, F.A.; Boller, Klaus J.

    2007-01-01

    Recent advances in laser wakefield acceleration demonstrated the generation of extremely short (with a duration of a few femtoseconds) relativistic electron bunches with relatively low (of the order of couple of percent) energy spread. In this article we study the dynamics of such bunches in drift

  13. Ab initio molecular dynamics simulation of laser melting of silicon

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting

  14. Laser dynamics in sawtooth-like self-mixing signals.

    Science.gov (United States)

    Teysseyre, Raphael; Bony, Francis; Perchoux, Julien; Bosch, Thierry

    2012-09-15

    In this Letter, we experimentally show that transient phenomenons in self-mixing signals from a moving target contain information about the target reflectivity and distance. These transient phenomenons are well explained with a dynamical model of the laser diode, which is used to trace an abacus giving the target reflectivity and distance from a measured high-bandwidth, self-mixing signal.

  15. [Gas pipeline leak detection based on tunable diode laser absorption spectroscopy].

    Science.gov (United States)

    Zhang, Qi-Xing; Wang, Jin-Jun; Liu, Bing-Hai; Cai, Ting-Li; Qiao, Li-Feng; Zhang, Yong-Ming

    2009-08-01

    The principle of tunable diode laser absorption spectroscopy and harmonic detection technique was introduced. An experimental device was developed by point sampling through small multi-reflection gas cell. A specific line near 1 653. 7 nm was targeted for methane measurement using a distributed feedback diode laser as tunable light source. The linearity between the intensity of second harmonic signal and the concentration of methane was determined. The background content of methane in air was measured. The results show that gas sensors using tunable diode lasers provide a high sensitivity and high selectivity method for city gas pipeline leak detection.

  16. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, S., E-mail: s.raeder@gsi.de [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Bastin, B. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Block, M. [Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Institut für Kernchemie, Johannes Gutenberg Universität, 55128 Mainz (Germany); Creemers, P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Delahaye, P. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Ferrer, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Fléchard, X. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Franchoo, S. [Institute de Physique Nucléaire (IPN) d’Orsay, 91406 Orsay, Cedex (France); Ghys, L. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); SCK-CEN, Belgian Nuclear Research Center, Boeretang 200, 2400 Mol (Belgium); Gaffney, L.P.; Granados, C. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heinke, R. [Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz (Germany); Hijazi, L. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); and others

    2016-06-01

    To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility that are needed for the first on-line studies of in-gas-jet laser spectroscopy. Different geometries for the gas outlet and extraction ion guides have been tested for their performance regarding the acceptance of laser ionized species as well as for their differential pumping capacities. The specifications and performance of the temporarily installed high repetition rate laser system, including a narrow bandwidth injection-locked Ti:sapphire laser, are discussed and first preliminary results on neutron-deficient actinium isotopes are presented indicating the high capability of this novel technique.

  17. Dynamic imaging of molecular motion ultrashort intense laser pulses

    Science.gov (United States)

    Bandrauk, Andre D.

    2002-05-01

    The nonlinear nonperturbative response of atoms in intense laser fields has been extensively studied both experimentally and theoretically in the past twenty years leading to new unexpected effects such as Above Threshold Ionization, ATI, high order frequency generation etc. and these are documented in recent book The similar studies of molecules is a new chapter in the pursuit of laser control and manipulation of molecules. The nonlinear nonperturbative response of molecules to intense (Icm2 ) and ultrashort (V10 fs) laser pulses [2] is expected to yield new effects due to the extra degrees of freedom nuclear motion as compared to atoms [3], such as creation of Laser Induced Molecular Potentials, LIMP' s, Charge Resonance Enhanced Ionization, CREI [4] and molecular High Order Harmonic Generation [5]. These nonlinear nonperturbative in effects were seen in experiments [6] and were predicted and confirmed by high-level numerical simulations of appropriate time-dependent Schrodinger equations [3-5,7], TDSE's, of molecules in laser fields. Our recent supercomputer simulations of H2+ molecule dynamics in intense laser fields, [7-9] based on TDSE, also allowed us to propose two new molecular imaging techniques: a) LCEI, Laser Coulomb Explosion Imaging [8] and b) LPEI, Laser Photoelectron Imaging [9]. The first is based on the analysis of the kinetic energy of molecular fragments after Coulomb Explosion, CE, whereas the latter imaging uses the shape of ATI electron peaks, produced by an intense laser pulse. We describe summarily in the present communication these two imaging methods which were developed using high level supercomputer simulations

  18. Two-phase dynamics of gas-heated steam generators

    International Nuclear Information System (INIS)

    Schittke, H.J.

    1977-01-01

    The dynamic behavior of a once-through steam generator plant operating in the secondary loop of a gas-cooled high-temperature reactor is considered. The mathematical model used for the description of the thermohydraulics of the problem comprises not only the dynamic behavior of the primary heating gas flow and the tube wall temperatures but especially the effects of pressure dynamics in the secondary fluid and the relevant two-phase flow phenomena: using an additional momentum balance equation for the dynamics of the slip velocity it is shown that the analytical computation of the slip velocity it is shown that the analytical computation of slip and two-phase pressure drop effects from the model equations is possible without the use of external correlations. Based on this mathematical model a generally applicable computer model is used to simulate the dynamic response of a given system

  19. Dynamical refocusing laser guide stars with membrane mirrors

    Science.gov (United States)

    Rabien, S.; Ziegleder, J.

    2012-07-01

    Laser guide stars created in the earth's sodium layer are the choice for all ELTs as adaptive optics reference. With the thickness of the sodium layer spanning up to 10km, the apparent image of the guide stars on the adaptive optics wavefront sensors is elongated. The further away sub-apertures of the WFS are from the guide star launch location, the more elongated the guide star appears on the sensor. To counteract the decreased signal from the elongation, usually an increased laser power is demanded or special format radial CCDs are proposed. Another known possibility is to utilize pulsed lasers and follow dynamically the propagating pulse on its way through the sodium layer, creating a sharp spot at the wavefront sensor location. Similar processes have been used for laser guide stars created with Rayleigh scattering in the lower atmosphere, increasing greatly the number of photons that can be received from the guide star. We present here the design and first laboratory tests of such a dynamically refocus device, based on membrane mirrors. Driven acoustically at high frequencies the stroke and phase of the mirror can be controlled. With a compact appearance the system seems to be easy to use and could enable precise wavefront control with lower power pulsed lasers at ELTs and other telescopes.

  20. Gain and Index Dynamics in Semiconductor Lasers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    changed character from bulk semiconductor to quantum wells and most recently to quantum dots. By quantum confinement of the carriers, the light-matter interactions can be significantly modified and the optical properties, including dynamics, can be engineered to match the required functionalities...... and specifications. We have measured ultrafast gain and index dynamics of SOAs in pump-and-probe experiments applying 100 fs pulses and a heterodyne detection scheme, where both amplitude and phase of the probe pulses are determined. The gain depletion, and associated index change, and the subsequent recovery afte...

  1. Spectroscopic and Dynamic Applications of Laser - Interactions.

    Science.gov (United States)

    Quesada, Mark Alejandro

    1987-05-01

    Five different studies of laser-molecule interactions are conducted in this thesis. In part one, the first observation of Autler-Townes splitting of molecules is discussed and used to measure vibronic transition moments between excited electronic states. The effect was observed in the two-color, four -photon ionization of hydrogen via the resonant levels E,F(v = 6, J = 1) and D(v = 2, J = 2). Calculations gave good fits to the observed spectra yielding a vibronic transition moment of 2.0 +/- 0.5 a.u. between the above excited states. In part two, a method for extracting the alignment parameters of a molecular angular momentum distribution using laser-induced fluorescence is presented. The treatment is applicable to the common case of cylindrically symmetric orientation distributions in the high J-limit. Four different combinations of rotational branches in the LIF absorption emission process are examined. Computer algebra programs are used to generate simple analytical expressions which account for the influence of saturation on determining alignment parameters. In part three, the application of MPI-optogalvanic spectroscopy to the molecule 1,4-diazabicyclo (2.2.2) octane (DABCO) at various levels in a methane/air flame environment is described. The method employs a burner design that permits access to preheated and primary reaction zones of the flame for laser probing. Hot bands arising from two-photon resonant (X_1 ' to A_1') transitions are measured and the intramolecular vibrational potentials for the ground and first excited state are determined. In part four, DABCO's nu_ {13} torsional mode relaxation in a helium -DABCO and argon-DABCO supersonic jet, under low expansion conditions, is discussed. Modeling of the relaxation using the linear Landau-Teller relaxation equation is undertaken with various attempts to incorporate the effects of velocity slip. The relaxation rate is found to be independent of slip and the cross section dependent on the inverse of

  2. In situ laser measurement of oxygen concentration and flue gas temperature utilizing chemical reaction kinetics.

    Science.gov (United States)

    Viljanen, J; Sorvajärvi, T; Toivonen, J

    2017-12-01

    Combustion research requires detailed localized information on the dynamic combustion conditions to improve the accuracy of the simulations and, hence, improve the performance of the combustion processes. We have applied chemical reaction kinetics of potassium to measure the local temperature and O 2 concentration in flue gas. An excess of free atomic potassium is created in the measurement volume by a photofragmenting precursor molecule such as potassium chloride or KOH which are widely released from solid fuels. The decay of the induced potassium concentration is followed with an absorption measurement using a narrow-linewidth diode laser. The temperature and O 2 concentration are solved from the decay curve features using equations obtained from calibration measurements in a temperature range of 800°C-1000°C and in O 2 concentrations of 0.1%-21%. The local flue gas temperature and O 2 concentration were recorded in real time during devolatilization, char burning, and ash cooking phases of combustion in a single-particle reactor with a 5 Hz repetition rate. The method can be further extended to other target species and applications where the chemical dynamics can be disturbed with photofragmentation.

  3. The Laser Ion Source Trap (LIST) coupled to a gas cell catcher

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, T. [Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)], E-mail: tetsu@riken.jp; Cocolios, T.E.; Gentens, J.; Huyse, M.; Ivanov, O.; Kudryavtsev, Yu.; Pauwels, D.; Van den Bergh, P.; Van Duppen, P. [Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2009-09-01

    The proof of principle of the Laser Ion Source Trap (LIST) coupled to a gas cell catcher system has been demonstrated at the Leuven Isotope Separator On Line (LISOL). The experiments were carried out by using the modified gas cell-based laser ion source and the SextuPole Ion Guide (SPIG). Element-selective resonance laser ionization of neutral atoms was taking place inside the cold jet expanding out of the gas cell catcher. The laser path was oriented in longitudinal as well as transverse geometries with respect to the atoms flow. The enhancement of beam purity and the feasibility for in-source laser spectroscopy were investigated in off-line and on-line conditions.

  4. Erosion processes and micro-particle production in gas discharge lasers

    Energy Technology Data Exchange (ETDEWEB)

    Letardi, T.; Giordano, G. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Dipt. Innovazione

    1999-07-01

    The erosion processes of the cathode for pulsed excimer gas lasers are explained by comparing the initiation conditions of the pulsed excimer gas laser discharge to that of the vacuum discharge breakdown. The number of the micro-particles, generated due to the above cathode-processes, are estimated. Several possible influences of the micro-particles on performances of the gas discharge lasers are analyzed. Two methods for eliminating the micro-particles or reducing their influences are discussed. [Italian] Viene descritto, comparandolo con la scarica in vuoto, il processo di erosione del catodo di un laser ad eccimeri a scarica. Viene stimato il numero delle micro-particelle generate dal processo di scarica. Vengono analizzate le possibili influenze di tali micro-particelle sulle prestazioni dei laser a scarica. Sono presentati e discussi due possibili metodi per la eliminazione delle micro-particelle generate dalla scarica.

  5. Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target.

    Science.gov (United States)

    Fiedorowicz, H; Bartnik, A; Dunn, J; Smith, R F; Hunter, J; Nilsen, J; Osterheld, A L; Shlyaptsev, V N

    2001-09-15

    We demonstrate a neonlike argon-ion x-ray laser, using a short-pulse laser-irradiated gas puff target. The gas puff target was formed by pulsed injection of gas from a high-pressure solenoid valve through a nozzle in the form of a narrow slit and irradiated with a combination of long, 600-ps and short, 6-ps high-power laser pulses with a total of 10 J of energy in a traveling-wave excitation scheme. Lasing was observed on the 3p (1)S(0)?3s (1)P(1) transition at 46.9 nm and the 3d (1)P(1)?3p (1)P(1) transition at 45.1 nm. A gain of 11 cm(-1) was measured on these transitions for targets up to 0.9 cm long.

  6. Review on the dynamics of semiconductor nanowire lasers

    Science.gov (United States)

    Röder, Robert; Ronning, Carsten

    2018-03-01

    Semiconductor optoelectronic devices have contributed tremendously to the technological progress in the past 50-60 years. Today, they also play a key role in nanophotonics stimulated by the inherent limitations of electronic integrated circuits and the growing demand for faster communications on chip. In particular, the field of ‘nanowire photonics’ has emerged including the search for coherent light sources with a nano-scaled footprint. The past decade has been dedicated to find suitable semiconductor nanowire (NW) materials for such nanolasers. Nowadays, such NW lasers consistently work at room temperature covering a huge spectral range from the ultraviolet down to the mid-infrared depending on the band gap of the NW material. Furthermore, first approaches towards the modification and optimization of such NW laser devices have been demonstrated. The underlying dynamics of the electronic and photonic NW systems have also been studied very recently, as they need to be understood in order to push the technological relevance of nano-scaled coherent light sources. Therefore, this review will first present novel measurement approaches in order to study the ultrafast temporal and optical mode dynamics of individual NW laser devices. Furthermore, these fundamental new insights are reviewed and deeply discussed towards the efficient control and adjustment of the dynamics in semiconductor NW lasers.

  7. Ablation plume dynamics in a background gas

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2010-01-01

    the expansion. The model also leads to an insightful treatment of the stopping behavior in dimensionless units for plumes and background gases of different atomic/molecular masses. The energetics of the plume dynamics can also be treated with this model. Experimental time-of-flight data of silver ions in a neon...

  8. Numerical analysis of excimer laser-induced breakdown of Kr gas

    Science.gov (United States)

    Hamam, Kholoud A.; Elsayed, Khaled A.; Gamal, Yosr E. E.

    2017-03-01

    The present paper displays a numerical study on the role of electron dynamics in relation to the dependence of the threshold intensity on the pressure in the breakdown of gases by laser radiation. The analysis aimed to find out the origin of the steep slope observed in the measurements of threshold intensity against gas pressure in the breakdown of Kr induced by an excimer laser source (Opt. Commun. 13:66-68, 1). The experiment was carried out using wavelength 248 nm and pulse width of 18 ns for a gas pressure range 4.5-300 torr. The investigation centered on an adaptation of our previously developed electron cascade model given in Evans and Gamal (J. Phys. D Appl. Phys. 13:1447-1458, 2). This model solves numerically a time-dependent energy equation simultaneously with a set of rate equations that describe the change of the population of the formed excited states. The modifications introduced into the model the realistic structure of the krypton gas atom as well as electron diffusion as a loss process to inspect the experimentally tested low-pressure regime. A computer program is undertaken to determine the breakdown threshold intensity as a function of gas pressure. Reasonable agreement is obtained between the calculated thresholds and measured ones, corresponding to the examined pressure range. This agreement validates the applicability of the model. The relationship between the role of the physical mechanisms and gas pressure is studied by analyzing the EEDF and its parameters at selected pressure values that cover the experimentally tested range. The result of this study clarified that electron diffusion out of the focal region is responsible for the steep slope of the threshold intensities for pressures <75 torr. For higher pressures (75-300 torr), collisional excitation of ground-state atoms followed by their ionization via multiphoton and collisional processes acts to convert the Kr gas in the interaction region into the state of breakdown. Investigation of

  9. Electron Dynamics in Nanostructures in Strong Laser Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kling, Matthias

    2014-09-11

    The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.

  10. Cellular automaton model for the simulation of laser dynamics.

    Science.gov (United States)

    Guisado, J L; Jiménez-Morales, F; Guerra, J M

    2003-06-01

    The classical modeling approach for laser study relies on the differential equations. In this paper, a cellular automaton model is proposed as an alternative for the simulation of population dynamics. Even though the model is simplified it captures the essence of laser phenomenology: (i) there is a threshold pumping rate that depends inversely on the decaying lifetime of the atoms and the photons; and (ii) depending on these lifetimes and on the pumping rate, a constant or an oscillatory behavior can be observed. More complex behaviors such as spiking and pattern formation can also be studied with the cellular automaton model.

  11. Characterization of a plasma produced using a high power laser with a gas puff target for x-ray laser experiments

    International Nuclear Information System (INIS)

    Fiedorowicz, H.; Bartnik, A.; Gac, K.; Parys, P.; Szczurek, M.; Tyl, J.

    1995-01-01

    A high temperature, high density plasma can be produced by using a nanosecond, high-power laser with a gas puff target. The gas puff target is formed by puffing a small amount of gas from a high-pressure reservoir through a nozzle into a vacuum chamber. In this paper we present the gas puff target specially designed for x-ray laser experiments. The solenoid valve with the nozzle in the form of a slit 0.3-mm wide and up to 40-mm long, allows to form an elongated gas puff suitable for the creation of an x-ray laser active medium by its perpendicular irradiation with the use of a laser beam focused to a line. Preliminary results of the experiments on the laser irradiation of the gas puff targets, produced by the new valve, show that hot plasma suitable for x-ray lasers is created

  12. Thermodynamic explanation of eliminating platinum inclusions in laser glass by POCl3 gas bubbling

    International Nuclear Information System (INIS)

    Jiang Zhonghong; Hu Lili; Yu Yaochu

    1995-01-01

    The mechanism of eliminating platinum inclusions in laser glass by POCl 3 gas bubbling has been discussed from thermodynamic aspects in the present paper. It is deduced from calculated reaction free energy that the platinum inclusion is ionized after POCl 3 gas bubbling in the existence of water and oxygen. The platinum inclusion is dissolved as platinum(II) metaphosphate in the laser glass matrix

  13. Laser-induced transformation of GaS and GaSe nanosheets to ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Experimental evidence for the transformation of nanosheets of GaS and GaSe into onion struc- tures on UV excimer pulsed laser irradiation is presented. Few-layer GaS and GaSe on Si substrates were exposed to KrF pulsed laser with wavelength of 248 nm and the effect was studied as a function of number of.

  14. Pulsed Gas Lasers Pumped by a Runaway Electron Initiated Discharge

    Science.gov (United States)

    Panchenko, A. N.; Tarasenko, V. F.; Panchenko, N. A.

    2017-12-01

    The generation parameters are investigated in a runaway electron preionized diffuse discharge (REP DD). Laser generation is produced in different spectral bands from the IR to VUV range. New modes of the nitrogen laser operation are obtained. Ultimate efficiencies of N2- and nonchain HF(DF)-lasers are achieved. A possibility of increasing the pulse durations of XeF-, KrF-, ArF- and VUV F2- lasers (157 nm) in an oscillating REP DD is shown. The efficiencies of VUV- and UV-generation comparable with that of a laser pumped by a self-sustained volume discharge with preionization are gained.

  15. Influence of light polarization on the dynamics of optically pumped lasers

    Energy Technology Data Exchange (ETDEWEB)

    Arjona, M.; Corbalan, R. (Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)); Laguarta, F.; Pujol, J. (Departament d' Optica i Optometria, Universitat Politecnica de Catalunya, 08222 Terrassa (Spain)); Vilaseca, R. (Departament I. D' Optica, Universitat de Valencia, 46100 Burjassot (Spain))

    1990-06-01

    The dynamic behavior of a coherently pumped ring laser with a homogeneously broadened four-level medium is analyzed theoretically, considering linearly polarized pump and generated laser beams. The laser is shown to be much more stable when these polarizations are parallel than when they are orthogonal. In the latter case the instability pump threshold can be as low as four times the first laser threshold, and the laser dynamics shows Lorenz-type features.

  16. Gas laser having an integral optical resonator with external stabilizing means

    International Nuclear Information System (INIS)

    Hensolt, R.A.; Dowley, M.W.

    1975-01-01

    A gaseous laser having an internal optical resonator is provided with external stabilizing means for maintaining alignment of mirrors forming the optical resonator. Means are also provided for allowing expansion of the remainder of the gas-confining envelope relative to the stabilized resonator mirrors during the operation of the laser. (U.S.)

  17. High repetition rate pulsed gas lasers and their applications in chemistry and isotope separation

    International Nuclear Information System (INIS)

    Barahov, V.Y.

    1983-01-01

    Presented in this paper are the results of experimental studies of pulsed high repetition rate XeCl, CO 2 , NH 3 , and CF 4 lasers with a closed gas cycle. Some applications of these lasers in chemistry and isotope separation are discussed

  18. Cellular automatons applied to gas dynamic problems

    Science.gov (United States)

    Long, Lyle N.; Coopersmith, Robert M.; Mclachlan, B. G.

    1987-01-01

    This paper compares the results of a relatively new computational fluid dynamics method, cellular automatons, with experimental data and analytical results. This technique has been shown to qualitatively predict fluidlike behavior; however, there have been few published comparisons with experiment or other theories. Comparisons are made for a one-dimensional supersonic piston problem, Stokes first problem, and the flow past a normal flat plate. These comparisons are used to assess the ability of the method to accurately model fluid dynamic behavior and to point out its limitations. Reasonable results were obtained for all three test cases, but the fundamental limitations of cellular automatons are numerous. It may be misleading, at this time, to say that cellular automatons are a computationally efficient technique. Other methods, based on continuum or kinetic theory, would also be very efficient if as little of the physics were included.

  19. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  20. A Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    1997-01-01

    stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds......A prototype shield gas box with different plasma control nozzles have been investigated for laser welding of stainless steel (AISI 316). Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and gas flows show the impact on process...

  1. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...... with nonlocal Einstein-Podolsky-Rosen entanglement....

  2. Instrumentation of dynamic gas pulse loading system

    Energy Technology Data Exchange (ETDEWEB)

    Mohaupt, H.

    1992-04-14

    The overall goal of this work is to further develop and field test a system of stimulating oil and gas wells, which increases the effective radius of the well bore so that more oil can flow into it, by recording pressure during the gas generation phase in real time so that fractures can be induced more predictably in the producing formation. Task 1: Complete the laboratory studies currently underway with the prototype model of the instrumentation currently being studied. Task 2: Perform field tests of the model in the Taft/Bakersfield area, utilizing operations closest to the engineers working on the project, and optimize the unit for various conditions encountered there. Task 3: Perform field test of the model in DGPL jobs which are scheduled in the mid-continent area, and optimize the unit for downhole conditions encountered there. Task 4: Analyze and summarize the results achieved during the complete test series, documenting the steps for usage of downhole instrumentation in the field, and compile data specifying use of the technology by others. Task 5: Prepare final report for DOE, and include also a report on the field tests completed. Describe and estimate the probability of the technology being commercialized and in what time span. The project has made substantial technical progress, though we are running about a month behind schedule. Expenditures are in line with the schedule. Increased widespread interest in the use of DGPL stimulation has kept us very busy. The computer modeling and test instrumentation developed under this program is already being applied to commercial operations.

  3. Nonlinear dynamics from lasers to butterflies

    CERN Document Server

    Ball, R

    2003-01-01

    This book is an inspirational introduction to modern research directions and scholarship in nonlinear dynamics, and will also be a valuable reference for researchers in the field. With the scholarly level aimed at the beginning graduate student, the book will have broad appeal to those with an undergraduate background in mathematical or physical sciences.In addition to pedagogical and new material, each chapter reviews the current state of the area and discusses classic and open problems in engaging, surprisingly non-technical ways. The contributors are Brian Davies (bifurcations in maps), Nal

  4. Azides and nitrides in joints welded by laser using N2 as covering gas

    Science.gov (United States)

    Daurelio, Giuseppe; Dionoro, G.; Memola Capece Minutolo, F.; Panagopoulos, Christos N.

    1993-05-01

    A large amount of metals and alloys are successfully penetration welded by pulsed or cw laser. The laser welding process requires a gas flow (covering gas) to ensure adequate protection of the melt against atmospheric oxidation. The gas can be supplied in a variety of ways but in many cases the coaxial gas-laser geometry is used. This work is concerned with technological and structural investigations (using SEM and A.E.S. microanalysis) aimed at identifying any particular differences in the welds obtained using N2 instead of He as the covering gas. The investigations conducted on INCONEL 600 and stainless steel appear to provide conclusive evidence that N2 may be readily used as an alternative to He. Very recent works have studied some peculiarities (blanketing, transmission, and process efficiency) of N2 as a covering gas, when used in 2 kW CO2 laser welding. The influence of the covering gas in welding two stainless steels (AISI 304 and 430) and of a nickel alloy (INCONEL 600) using a 2 kW CO2 laser is examined.

  5. SHIELD: Neutral Gas Kinematics and Dynamics

    Science.gov (United States)

    McNichols, Andrew T.; Teich, Yaron G.; Nims, Elise; Cannon, John M.; Adams, Elizabeth A. K.; Bernstein-Cooper, Elijah Z.; Giovanelli, Riccardo; Haynes, Martha P.; Józsa, Gyula I. G.; McQuinn, Kristen B. W.; Salzer, John J.; Skillman, Evan D.; Warren, Steven R.; Dolphin, Andrew; Elson, E. C.; Haurberg, Nathalie; Ott, Jürgen; Saintonge, Amelie; Cave, Ian; Hagen, Cedric; Huang, Shan; Janowiecki, Steven; Marshall, Melissa V.; Thomann, Clara M.; Van Sistine, Angela

    2016-11-01

    We present kinematic analyses of the 12 galaxies in the “Survey of H I in Extremely Low-mass Dwarfs” (SHIELD). We use multi-configuration interferometric observations of the H I 21 cm emission line from the Karl G. Jansky Very Large Array (VLA)22 to produce image cubes at a variety of spatial and spectral resolutions. Both two- and three-dimensional fitting techniques are employed in an attempt to derive inclination-corrected rotation curves for each galaxy. In most cases, the comparable magnitudes of velocity dispersion and projected rotation result in degeneracies that prohibit unambiguous circular velocity solutions. We thus make spatially resolved position-velocity cuts, corrected for inclination using the stellar components, to estimate the circular rotation velocities. We find {v}{circ} ≤slant 30 km s-1 for the entire survey population. Baryonic masses are calculated using single-dish H I fluxes from Arecibo and stellar masses derived from HST and Spitzer imaging. Comparison is made with total dynamical masses estimated from the position-velocity analysis. The SHIELD galaxies are then placed on the baryonic Tully-Fisher relation. There exists an empirical threshold rotational velocity, V {}{rot} < 15 km s-1, below which current observations cannot differentiate coherent rotation from pressure support. The SHIELD galaxies are representative of an important population of galaxies whose properties cannot be described by current models of rotationally dominated galaxy dynamics.

  6. Dynamic light scattering on bioconjugated laser generated gold nanoparticles.

    Directory of Open Access Journals (Sweden)

    Massimo Zimbone

    Full Text Available Gold nanoparticles (AuNPs conjugated to DNA are widely used for biomedical targeting and sensing applications. DNA functionalization is easily reached on laser generated gold nanoparticles because of their unique surface chemistry, not reproducible by other methods. In this context, we present an extensive investigation concerning the attachment of DNA to the surface of laser generated nanoparticles using Dynamic Light Scattering and UV-Vis spectroscopy. The DNA conjugation is highlighted by the increase of the hydrodynamic radius and by the UV-Vis spectra behavior. Our investigation indicates that Dynamic Light Scattering is a suitable analytical tool to evidence, directly and qualitatively, the binding between a DNA molecule and a gold nanoparticle, therefore it is ideal to monitor changes in the conjugation process when experimental conditions are varied.

  7. The dynamical complexity of optically injected semiconductor lasers

    International Nuclear Information System (INIS)

    Wieczorek, S.; Krauskopf, B.; Simpson, T.B.; Lenstra, D.

    2005-01-01

    This report presents a modern approach to the theoretical and experimental study of complex nonlinear behavior of a semiconductor laser with optical injection-an example of a widely applied and technologically relevant forced nonlinear oscillator. We show that the careful bifurcation analysis of a rate equation model yields (i) a deeper understanding of already studied physical phenomena, and (ii) the discovery of new dynamical effects, such as multipulse excitability. Different instabilities, cascades of bifurcations, multistability, and sudden chaotic transitions, which are often viewed as independent, are in fact logically connected into a consistent web of bifurcations via special points called organizing centers. This theoretical bifurcation analysis has predictive power, which manifests itself in good agreement with experimental measurements over a wide range of parameters and diversity of dynamics. While it is dealing with the specific system of an optically injected laser, our work constitutes the state-of-the-art in the understanding and modeling of a nonlinear physical system in general

  8. Applications of laser-induced gratings to spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, E.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program has traditionally emphasized two principal areas of research. The first is the spectroscopic characterization of large-amplitude motion on the ground-state potential surface of small, transient molecules. The second is the reactivity of carbonaceous clusters and its relevance to soot and fullerene formation in combustion. Motivated initially by the desire to find improved methods of obtaining stimulated emission pumping (SEP) spectra of transients, most of our recent work has centered on the use of laser-induced gratings or resonant four-wave mixing in free-jet expansions. These techniques show great promise for several chemical applications, including molecular spectroscopy and photodissociation dynamics. The author describes recent applications of two-color laser-induced grating spectroscopy (LIGS) to obtain background-free SEP spectra of transients and double resonance spectra of nonfluorescing species, and the use of photofragment transient gratings to probe photodissociation dynamics.

  9. Development of a gas cell-based laser ion source for RIKEN PALIS

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, T., E-mail: tetsu@riken.jp; Wada, M. [RIKEN, SLOWRI Team, Nishina Center for Accelerator-Based Science (Japan); Tomita, H.; Sakamoto, C.; Takatsuka, T.; Noto, T. [Nagoya University, Faculty of Engineering (Japan); Iimura, H. [Japan Atomic Energy Agency (JAEA) (Japan); Matsuo, Y.; Kubo, T. [RIKEN, SLOWRI Team, Nishina Center for Accelerator-Based Science (Japan); Shinozuka, T.; Wakui, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Mita, H. [Tsukuba University, Department of Physics (Japan); Naimi, S. [RIKEN, SLOWRI Team, Nishina Center for Accelerator-Based Science (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Itou, Y.; Schury, P. [Tsukuba University, Department of Physics (Japan); Miyatake, H.; Jeong, S.; Ishiyama, H.; Watanabe, Y. [High Energy Accelerator Research Organization (KEK) (Japan); and others

    2013-04-15

    We developed a prototype laser ionization gas cell with a beam extraction system. This device is for use of PArasitic Laser Ion-Source (PALIS), which will be implemented into RIKEN's fragment separator, BigRIPS as a part of SLOWRI. Off-line resonant laser ionization for stable Co, Cu, Fe, Ni, Ti, Nb, Sn, In and Pd inside the gas cell, ion extraction and transport to the high-vacuum region via SPIG and QMS have been confirmed (Sonoda et al, Nucl Instrum Meth B 295:1, 2013).

  10. Dynamic thermal model of photovoltaic cell illuminated by laser beam

    Science.gov (United States)

    Liu, Xiaoguang; Hua, Wenshen; Guo, Tong

    2015-07-01

    Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.

  11. Experimental Study of Gas Hydrate Dynamics

    Science.gov (United States)

    Fandino, O.; Ruffine, L.

    2011-12-01

    Important quantities of methane and other gases are trapped below the seafloor and in the permafrost by an ice-like solid, called gas hydrates or clathrate hydrates. The latter is formed when water is mixing with different gases at high pressures and low temperatures. Due to a their possible use as a source of energy [1] or the problematic related to flow assurance failure in pipelines [2] the understanding of their processes of formation/destabilisation of these structures becomes a goal for many laboratories research as well as industries. In this work we present an experimental study on the stochastic behaviour of hydrate formation from a bulk phase. The method used here for the experiments was to repeat several time the same hydrate formation procedure and to notice the different from one experiment to another. A variable-volume type high-pressure apparatus with two sapphire windows was used. This device, already presented by Ruffine et al.[3], allows us to perform both kinetics and phase equilibrium measurements. Three initial pressure conditions were considered here, 5.0 MPa, 7.5 MPa and 10.0 MPa. Hydrates have been formed, then allowed to dissociate by stepwise heating. The memory effect has also been investigated after complete dissociation. It turned out that, although the thermodynamics conditions of formation and/or destabilization were reproducible. An attempt to determine the influence of pressure on the nucleation induction time will be discussed. References 1. Sum, A. K.; Koh, C. A.; Sloan, E. D., Clathrate Hydrates: From Laboratory Science to Engineering Practice. Industrial & Engineering Chemistry Research 2009, 48, 7457-7465. 2. Sloan, E. D., A changing hydrate paradigm-from apprehension to avoidance to risk management. Fluid Phase Equilibria 2005, 228, 67-74. 3. Ruffine, L.; Donval, J. P.; Charlou, J. L.; Cremière, A.; Zehnder, B. H., Experimental study of gas hydrate formation and destabilisation using a novel high-pressure apparatus. Marine

  12. Optically pumped alkali laser and amplifier using helium-3 buffer gas

    Science.gov (United States)

    Beach, Raymond J.; Page, Ralph; Soules, Thomas; Stappaerts, Eddy; Wu, Sheldon Shao Quan

    2010-09-28

    In one embodiment, a laser oscillator is provided comprising an optical cavity, the optical cavity including a gain medium including an alkali vapor and a buffer gas, the buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Additionally, an optical excitation source is provided. Furthermore, the laser oscillator is capable of outputting radiation at a first frequency. In another embodiment, an apparatus is provided comprising a gain medium including an alkali vapor and a buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Other embodiments are also disclosed.

  13. Investigation of longitudinal dynamic in laser electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukhov, I.; Zelinsky, A. E-mail: zelinsky@kipt.kharkov.ua; Telegin, Yu

    2001-09-01

    Longitudinal dynamic of electron beam due to radiation damping and quantum fluctuations in the storage ring with a laser-electron interaction section (Compton scattering) is investigated. This investigation was carried out by numerical simulations using the Monte Carlo method. The dependence of the steady-state energy spread of electron beam due to the Compton back scattering of photons on the electron beam energy and photon flash density were obtained. Simulation findings are compared with the analytical estimations by Z. Huang.

  14. Investigation of longitudinal dynamic in laser electron storage ring

    CERN Document Server

    Karnaukhov, I; Telegin, Yu P

    2001-01-01

    Longitudinal dynamic of electron beam due to radiation damping and quantum fluctuations in the storage ring with a laser-electron interaction section (Compton scattering) is investigated. This investigation was carried out by numerical simulations using the Monte Carlo method. The dependence of the steady-state energy spread of electron beam due to the Compton back scattering of photons on the electron beam energy and photon flash density were obtained. Simulation findings are compared with the analytical estimations by Z. Huang.

  15. Greenhouse gas flux dynamics in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Silvola, J.; Alm, J.; Saarnio, S. [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology

    1996-12-31

    Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites

  16. Cloud-particle galactic gas dynamics and star formation

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.

    1983-01-01

    Galactic gas dynamics, spiral structure, and star formation are discussed in the context of N-body computational studies based on a cloud-particle model of the interstellar medium. On the small scale, the interstellar medium appears to be cloud-dominated and supernova-perturbed. The cloud-particle model simulates cloud-cloud collisions, the formation of stellar associations, and supernova explosions as dominant local processes. On the large scale in response to a spiral galactic gravitational field, global density waves and galactic shocks develop with large-scale characteristics similar to those found in continuum gas dynamical studies. Both the system of gas clouds and the system of young stellar associations forming from the clouds share in the global spiral structure. However, with the attributes of neither assuming a continuum of gas (as in continuum gas dynamical studies) nor requiring a prescribed equation of state such as the isothermal condition so often employed, the cloud-particle picture retains much of the detail lost in earlier work: namely, the small-scale features and structures so important in understanding the local, turbulent state of the interstellar medium as well as the degree of raggedness often observed superposed on global spiral structure. (Auth.)

  17. Narrow-linewidth Si/III-V lasers: A study of laser dynamics and nonlinear effects

    Science.gov (United States)

    Vilenchik, Yaakov Yasha

    Narrow-linewidth lasers play an important role in a wide variety of applications, from sensing and spectroscopy to optical communication and on-chip clocks. Current narrow-linewidth systems are usually implemented in doped fibers and are big, expensive, and power-hungry. Semiconductor lasers compete favorably in size, cost, and power consumption, but their linewidth is historically limited to the sub-MHz regime. However, it has been recently demonstrated that a new design paradigm, in which the optical energy is stored away from the active region in a composite high-Q resonator, has the potential to dramatically improve the coherence of the laser. This work explores this design paradigm, as applied on the hybrid Si/III-V platform. It demonstrates a record sub-KHz white-noise-floor linewidth. It further shows, both theoretically and experimentally, that this strategy practically eliminates Henry's linewidth enhancement by positioning a damped relaxation resonance at frequencies as low as 70 MHz, yielding truly quantum limited devices at frequencies of interest. In addition to this empirical contribution, this work explores the limits of performance of this platform. Here, the effect of two-photon-absorption and free-carrier-absorption are analyzed, using modified rate equations and Langevin force approach. The analysis predicts that as the intra-cavity field intensity builds up in the high-Q resonator, non-linear effects cause a new domain of performance-limiting factors. Steady-state behavior, laser dynamics, and frequency noise performance are examined in the context of this unique platform, pointing at the importance of nonlinear effects. This work offers a theoretical model predicting laser performance in light of nonlinear effects, obtaining a good agreement with experimental results from fabricated high-Q Si/III-V lasers. In addition to demonstrating unprecedented semiconductor laser performance, this work establishes a first attempt to predict and demonstrate

  18. Parametric Study of Laser Driven Proton Beams from a Critical Density Gas Jet

    Science.gov (United States)

    Haberberger, D.; Tsung, F.; Tochitsky, S.; Mori, W.; Joshi, C.

    2009-11-01

    Laser driven ion acceleration (LDIA) is studied via particle-in-cell simulations in a novel parameter space for laser-plasma interactions of a relativistic laser pulse with a gas jet target at the critical plasma density (nc). Previous LDIA studies have been based on the interaction of a 1μm laser pulse with either a solid foil (n˜100nc) or a gas jet (nhigh power CO2 laser pulse at a H2 gas jet which is tunable around the critical plasma density for 10μm radiation (10^19cm-3). A rectangular H2 gas jet operated near nc lends itself to efficient coupling of the laser light to forward directed electrons instigating the target normal sheath acceleration mechanism to produce a beam of protons. Results are presented here on a parametric study of the peak plasma density and plasma profile to find optimal conditions for total charge, divergence, and energy of the accelerated proton beam. These simulations support an ongoing LDIA experiment at the Neptune Laboratory at UCLA using a 3ps 1TW CO2 laser pulse for the production of collimated proton beams.

  19. Global III - posedness of the isentropic system of gas dynamics

    Czech Academy of Sciences Publication Activity Database

    Chiodaroli, E.; DeLellis, C.; Kreml, Ondřej

    2015-01-01

    Roč. 68, č. 7 (2015), s. 1157-1190 ISSN 0010-3640 Institutional support: RVO:67985840 Keywords : Euler system * gas dynamics Subject RIV: BA - General Mathematics Impact factor: 3.617, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/cpa.21537/abstract

  20. Computational fluid dynamics applied to gas-liquid contactors.

    NARCIS (Netherlands)

    Delnoij, E.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1997-01-01

    In this paper a `hierarchy of models¿ is discussed to study the fluid dynamic behaviour of gas-liquid bubble columns. This `hierarchy of models¿ consists of a Eulerian-Eulerian two fluid model, a Eulerian-Lagrangian discrete bubble model and a Volume Tracking or Marker Particle model. These models

  1. 3D printing of gas jet nozzles for laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École Polytechnique, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-07-15

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the SALLE JAUNE terawatt laser at Laboratoire d’Optique Appliquée.

  2. Resonance ionization in a gas cell: a feasibility study for a laser ion source

    International Nuclear Information System (INIS)

    Qamhieh, Z.N.; Vandeweert, E.; Silverans, R.E.; Duppen, P. van; Huyse, M.; Vermeeren, L.

    1992-01-01

    A laser ion source based on resonance photo-ionization in a gas cell is proposed. The gas cell, filled with helium, consists of a target chamber in which the recoil products are stopped and neutralized, and an ionization chamber where the atoms of interest are selectively ionized by the laser light. The extraction of the ions from the ionization chamber through the exit hole-skimmer setup is similar to the ion-guide system. The conditions to obtain an optimal system are given. The results of a two-step one-laser resonance photo-ionization of nickel and the first results of laser ionization in a helium buffer gas cell are presented. (orig.)

  3. High pressure gas laser technology for atmospheric remote sensing

    Science.gov (United States)

    Javan, A.

    1980-01-01

    The development of a fixed frequency chirp-free and highly stable intense pulsed laser made for Doppler wind velocity measurements with accurate ranging is described. Energy extraction from a high pressure CO2 laser at a tunable single mode frequency is also examined.

  4. Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove; Petersen, Kaj

    1997-01-01

    stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds......An integrated plasma nozzle and a shield gas box have been investigated for laser welding of 2 mm stainless steel sheets. Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and coaxial and plasma flow show the impact on process...

  5. Nonlinear Optics and Nonlinear Dynamics in Semiconductor Lasers Subject to External Optical Injection

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2000-01-01

    ...) arrays, and analysis of chaotic dynamics that can be induced by optical injection. Under external optical injection, all semiconductor lasers tested, conventional edge emitting Fabry Perot laser diodes, VCSELs, and distributed feedback (DFB...

  6. Dynamics of Laser-Driven Shock Waves in Solid Targets

    Science.gov (United States)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J.; Schmitt, A. J.; Obenschain, S. P.; Grun, J.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.

    2009-11-01

    Accurate shock timing is a key issue of both indirect- and direct-drive laser fusions. The experiments on the Nike laser at NRL presented here were made possible by improvements in the imaging capability of our monochromatic x-ray diagnostics based on Bragg reflection from spherically curved crystals. Side-on imaging implemented on Nike makes it possible to observe dynamics of the shock wave and ablation front in laser-driven solid targets. We can choose to observe a sequence of 2D images or a continuous time evolution of an image resolved in one spatial dimension. A sequence of 300 ps snapshots taken using vanadium backlighter at 5.2 keV reveals propagation of a shock wave in a solid plastic target. The shape of the shock wave reflects the intensity distribution in the Nike beam. The streak records with continuous time resolution show the x-t trajectory of a laser-driven shock wave in a 10% solid density DVB foam.

  7. (Monitoring interfacial dynamics by pulsed laser techniques): (Annual report)

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, G.L.

    1988-01-01

    Our approach in these studies is to use Second Harmonic Generation (SHG) to monitor the response of the system at a known time delay following a fast perturbation such as a voltage pulse or photoexcitation. In the first experiments of this kind, we reported the success in performing these experiments using a 10 ns, 10 Hz YAG laser. By monitoring the SH light generated by the IR laser pulse at numerous delays after a potential step, we captured the complete transient response of the charging of the double layer after the perturbation. One drawback to these studies was that it took several hours to capture a single decay curves since each delay point required signal averaging at a repetition rate of 0.03 Hz. We alleviated this problem by setting up a 76 Hz, 100 psec YAG laser with photon counting equipment which enabled us to continuously monitor the SHG response to the applied voltage step. The adsorption and desorption of specifically and nonspecifically adsorbed anions on polycrystalline Ag electrodes biased within the limits of the ideally polarizable region (/minus/1.2 V to /minus/0.1 V vs. Ag/AgCl) was begun. The results demonstrate the utility of fast pulsed laser light as a continuous monitor of surface dynamics on the millisecond timescale using this time resolved SHG method. 5 refs.

  8. Statistical dynamics of transient processes in a gas discharge plasma

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Telegin, G.G.

    1991-01-01

    The properties of a gas discharge plasma to a great extent depend on random processes whose study has recently become particularly important. The present work is concerned with analyzing the statistical phenomena that occur during the prebreakdown stage in a gas discharge. Unlike other studies of breakdown in the discharge gap, in which secondary electron effects and photon processes at the electrodes must be considered, here the authors treat the case of an electrodeless rf discharge or a laser photoresonant plasma. The analysis is based on the balance between the rates of electron generation and recombination in the plasma. The fluctuation kinetics for ionization of atoms in the hot plasma may also play an important role when the electron temperature changes abruptly, as occurs during adiabatic pinching of the plasma or during electron cyclotron heating

  9. Dynamic safety assessment of natural gas stations using Bayesian network

    Energy Technology Data Exchange (ETDEWEB)

    Zarei, Esmaeil, E-mail: smlzarei65@gmail.com [Center of Excellence for Occupational Health Engineering, Research Center for Health Sciences, Faculty of Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Azadeh, Ali [School of Industrial and Systems Engineering, Center of Excellence for Intelligent-Based Experimental Mechanic, College of Engineering, University of Tehran (Iran, Islamic Republic of); Khakzad, Nima [Safety and Security Science Section, Delft University of Technology, Delft (Netherlands); Aliabadi, Mostafa Mirzaei [Center of Excellence for Occupational Health Engineering, Research Center for Health Sciences, Faculty of Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Mohammadfam, Iraj, E-mail: mohammadfam@umsha.ac.ir [Center of Excellence for Occupational Health Engineering, Research Center for Health Sciences, Faculty of Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of)

    2017-01-05

    Graphical abstract: Dynamic cause-consequence analysis of the regulator system failure using BN. - Highlights: • A dynamic and comprehensive QRA (DCQRA) framework is proposed for safety assessment of CGSs. • Bow-tie diagram and Bayesian network are employed for accident scenario modeling. • Critical basic events and minimal cut sets are identified using probability updating. - Abstract: Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks.

  10. Dynamic safety assessment of natural gas stations using Bayesian network

    International Nuclear Information System (INIS)

    Zarei, Esmaeil; Azadeh, Ali; Khakzad, Nima; Aliabadi, Mostafa Mirzaei; Mohammadfam, Iraj

    2017-01-01

    Graphical abstract: Dynamic cause-consequence analysis of the regulator system failure using BN. - Highlights: • A dynamic and comprehensive QRA (DCQRA) framework is proposed for safety assessment of CGSs. • Bow-tie diagram and Bayesian network are employed for accident scenario modeling. • Critical basic events and minimal cut sets are identified using probability updating. - Abstract: Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks.

  11. Femtosecond electron-bunch dynamics in laser wakefields and vacuum

    Directory of Open Access Journals (Sweden)

    A. G. Khachatryan

    2007-12-01

    Full Text Available Recent advances in laser wakefield acceleration demonstrated the generation of extremely short (with a duration of a few femtoseconds relativistic electron bunches with relatively low (of the order of couple of percent energy spread. In this article we study the dynamics of such bunches in drift space (vacuum and in channel-guided laser wakefields. Analytical solutions were found for the transverse coordinate of an electron and for the bunch envelope in the wakefield in the case of arbitrary change in the energy. Our results show strong bunch dynamics already on a millimeter scale propagation distance both in plasma and in vacuum. When the bunch propagates in vacuum, its transverse sizes grow considerably; the same is observed for the normalized bunch emittance that worsens the focusability of the bunch. A scheme of two-stage laser wakefield accelerator with small drift space between the stages is proposed. It is found that fast longitudinal betatron phase mixing occurs in a femtosecond bunch when it propagates along the wakefield axis. When bunch propagates off axis, strong bunch decoherence and fast emittance degradation due to the finite bunch length was observed.

  12. Using cellular automata for parallel simulation of laser dynamics with dynamic load balancing

    NARCIS (Netherlands)

    Guisado, J.L.; Fernández de Vega, F.; Jiménez Morales, F.; Iskra, K.A.; Sloot, P.M.A.

    2008-01-01

    We present an analysis of the feasibility of executing a parallel bioinspired model of laser dynamics, based on cellular automata (CA), on the usual target platform of this kind of applications: a heterogeneous non-dedicated cluster. As this model employs a synchronous CA, using the single program,

  13. Parallel Cellular Automata-based simulation of laser dynamics using dynamic load balancing

    NARCIS (Netherlands)

    Guisado, J.L.; Fernández de Vega, F.; Jiménez Morales, F.; Iskra, K.A.; Sloot, P.M.A.; Garnica, Ó.

    2008-01-01

    In order to analyze the feasibility of executing a parallel bioinspired model of laser dynamics on a heterogeneous non-dedicated cluster, we evaluate its performance including artificial load to simulate other tasks or jobs submitted by other users. As the model is based on a synchronous cellular

  14. Thermo-Gas Dynamics of Hydrogen Combustion and Explosion

    CERN Document Server

    Gelfand, Boris E; Medvedev, Sergey P; Khomik, Sergey V

    2012-01-01

    The potential of hydrogen as an important future energy source has generated fresh interest in the study of hydrogenous gas mixtures. Indeed, both its high caloricity and reactivity are unique properties, the latter underscoring safety considerations when handling such mixtures.   The present monograph is devoted to the various aspects of hydrogen combustion and explosion processes. In addition to theoretical and phenomenological considerations, this work also collates the results of many experiments from less well known sources. The text reviews the literature in this respect, thereby providing valuable information about the thermo-gas-dynamical parameters of combustion processes for selected experimental settings in a range of scientific and industrial applications.

  15. Vacuum sealing with a spiral grooved gas dynamic seal

    International Nuclear Information System (INIS)

    Sawada, Tadashi

    1979-01-01

    Gas dynamic seals with rectangular spiral grooves are studied theoretically taking the effects of sidewalls of the grooves and the effects of gas compressibility into account, and slip boundary conditions are employed. The results are compared with the existing experimental data and the validity of the theory is confirmed over a wide pressure range except for the extremely low pressures. Suggestions are made regarding the choice of the geometrical dimensions, i.e., aspect ratio, helix angle, clearance parameter and groove width ratio. (author)

  16. High power electron beam accelerators for gas laser excitation

    International Nuclear Information System (INIS)

    Kelly, J.G.; Martin, T.H.; Halbleib, J.A.

    1976-06-01

    A preliminary parameter investigation has been used to determine a possible design of a high-power, relativistic electron beam, transversely excited laser. Based on considerations of present and developing pulsed power technology, broad area diode physics and projected laser requirements, an exciter is proposed consisting of a Marx generator, pulse shaping transmission lines, radially converging ring diodes and a laser chamber. The accelerator should be able to deliver approximately 20 kJ of electron energy at 1 MeV to the 10 4 cm 2 cylindrical surface of a laser chamber 1 m long and 0.3 m in diameter in 24 ns with very small azimuthal asymmetry and uniform radial deposition

  17. Comparative evaluation of tungsten inert gas and laser beam ...

    Indian Academy of Sciences (India)

    - cluded that LB welding process is more suitable to join AA5083-H321. Keywords. Aluminum alloys; laser beam welding; mechanical properties; vapourization. 1. Introduction. Aluminum and its alloys are widely used in the transportation, ...

  18. Effect of molecular weight and density of ambient gas on shock wave in laser-induced surface nanostructuring

    International Nuclear Information System (INIS)

    Guo Liying; Wang Xinwei

    2009-01-01

    This paper presents the results of molecular dynamics studies about the shock wave during laser-induced surface nanostructuring. A quasi-three dimensional model is constructed to study systems consisting of over 2 million atoms. Detailed studies are carried out about the shock wave front and Mach number, evolution of plume and ambient gas interaction zone, and energy exchange between the ambient gas and plume. Under an ambience of lower pressure or lighter molecular mass, the plume affects a larger area while the strength of the shock wave front is weaker. With the same ambient pressure, the ablated material features the same kinetic energy at the late stage regardless of the molecular weight of the ambient gas. The same conclusion holds for the energy increase of the ambient gas as well. When the ambient pressure is reduced, more kinetic energy is carried out by the ablated material while less energy is transferred to the ambient gas. It is observed that heavier ambient gas could bounce back the ablated material to the target surface.

  19. In-gas laser ionization and spectroscopy of actinium isotopes near the N =126 closed shell

    Science.gov (United States)

    Granados, C.; Creemers, P.; Ferrer, R.; Gaffney, L. P.; Gins, W.; de Groote, R.; Huyse, M.; Kudryavtsev, Yu.; Martínez, Y.; Raeder, S.; Sels, S.; Van Beveren, C.; Van den Bergh, P.; Van Duppen, P.; Wrzosek-Lipska, K.; Zadvornaya, A.; Barzakh, A. E.; Bastin, B.; Delahaye, P.; Hijazi, L.; Lecesne, N.; Luton, F.; Piot, J.; Savajols, H.; Thomas, J.-C.; Traykov, E.; Beerwerth, R.; Fritzsche, S.; Block, M.; Fléchard, X.; Franchoo, S.; Ghys, L.; Grawe, H.; Heinke, R.; Kron, T.; Naubereit, P.; Wendt, K.; Laatiaoui, M.; Moore, I.; Sonnenschein, V.; Loiselet, M.; Mogilevskiy, E.; Rothe, S.

    2017-11-01

    The in-gas laser ionization and spectroscopy (IGLIS) technique was applied on the Ac-215212 isotopes, produced at the Leuven Isotope Separator On-Line (LISOL) facility by using the in-gas-cell and the in-gas-jet methods. The first application under on-line conditions of the in-gas-jet laser spectroscopy method showed a superior performance in terms of selectivity, spectral resolution, and efficiency in comparison with the in-gas-cell method. Following the analysis of both experiments, the magnetic-dipole moments for the Ac-215212 isotopes, electric-quadrupole moments and nuclear spins for the Ac,215214 isotopes are presented and discussed. A good agreement is obtained with large-scale nuclear shell-model calculations by using a 208Pb core.

  20. Laser ignition of liquid petroleum gas at elevated pressures

    Science.gov (United States)

    Loktionov, E.; Pasechnikov, N.; Telekh, V.

    2017-11-01

    Recent development of laser spark plugs for internal combustion engines have shown lack of data on laser ignition of fuel mixtures at multi-bar pressures needed for laser pulse energy and focusing optimisation. Methane and hydrogen based mixtures are comparatively well investigated, but propane and butane based ones (LPG), which are widely used in vehicles, are still almost unstudied. Optical breakdown thresholds in gases decrease with pressure increase up to ca. 100 bar, but breakdown is not a sufficient condition for combustion ignition. So minimum ignition energy (MIE) becomes more important for combustion core onset, and its dependency on mixture composition and pressure has several important features. For example, unlike breakdown threshold, is poorly dependent on laser pulse length, at least in pico- and to microsecond range. We have defined experimentally the dependencies of minimum picosecond laser pulse energies (MIE related value) needed for ignition of LPG based mixtures of 1.0 to 1.6 equivalence ratios and pressure of 1.0 to 3.5 bar. In addition to expected values decrease, low-energy flammability range broadening has been found at pressure increase. Laser ignition of LPG in Wankel rotary engine is reported for the first time.

  1. Laser gas assisted treatment of steel 309: Corrosion and scratch resistance of treated surface

    Science.gov (United States)

    Toor, Ihsan-ul-Haq; Yilbas, B. S.; Ahmed, Junaid; Karatas, C.

    2017-10-01

    Laser gas assisted surface treatment of steel 309 is carried out and the characteristics of the resulting surface are analyzed using the analytical tools. Scanning electron and 3-D optical microscopes are used to assess the morphological and metallurgical changes in the laser treated layer. Energy spectroscopy and X-ray diffraction are carried out to determine the elemental composition and compounds formed on the laser treated surface. The friction coefficient of the laser treated surface is measured using the micro-tribometer and compared to that of the as received surface. The corrosion resistance of the laser treated and as received surfaces is measured incorporating the electrochemical tests. It is found that laser treatment results in a dense layer and formation of nitride compounds at the surface. This enhances the microhardness at the laser treated surface. The friction coefficient attains lower values at the laser treated surface than that corresponding to the as received surface. The corrosion rate of the surface reduces significantly after the laser treatment process, which can be attributed to the passive layer at the surface via formation of a dense layer and nitride compounds in the surface vicinity. In addition, the number of pit sites decreased for the laser treated surface than that of as received surface.

  2. Annular billiard dynamics in a circularly polarized strong laser field

    Science.gov (United States)

    Kamor, A.; Mauger, F.; Chandre, C.; Uzer, T.

    2012-01-01

    We analyze the dynamics of a valence electron of the buckminsterfullerene molecule (C60) subjected to a circularly polarized laser field by modeling it with the motion of a classical particle in an annular billiard. We show that the phase space of the billiard model gives rise to three distinct trajectories: “whispering gallery orbits,” which hit only the outer billiard wall; “daisy orbits,” which hit both billiard walls (while rotating solely clockwise or counterclockwise for all time); and orbits that only visit the downfield part of the billiard, as measured relative to the laser term. These trajectories, in general, maintain their distinct features, even as the intensity is increased from 1010 to 1014Wcm-2. We attribute this robust separation of phase space to the existence of twistless tori.

  3. Charged beam dynamics, particle accelerators and free electron lasers

    CERN Document Server

    Dattoli, Giuseppe; Sabia, Elio; Artioli, Marcello

    2017-01-01

    Charged Beam Dynamics, Particle Accelerators and Free Electron Lasers summarises different topics in the field of accelerators and of Free Electron Laser (FEL) devices. It is intended as a reference manual for the different aspects of FEL devices, explaining how to design both a FEL device and the accelerator providing the driving beam. It covers both theoretical and experimental aspects, allowing researchers to attempt a first design of a FEL device in different operating conditions. It provides an analysis of what is already available, what is needed, and what the challenges are to determine new progress in this field. All chapters contain complements and exercises that are designed in such a way that the reader will gradually acquire self-confidence with the matter treated in the book.

  4. Electron dynamics in RF sources with a laser controlled emission

    CERN Document Server

    Khodak, I V; Metrochenko, V V

    2001-01-01

    Photoemission radiofrequency (RF) electron sources are sources of electron beams with extremely high brightness. Beam bunching processes in such devices are well studied in case when laser pulse duration is much lower of rf oscillation period.At the same time photoemission RF guns have some merits when operating in 'long-pulse' mode. In this case the laser pulse duration is much higher of rf oscillation period but much lower of rise time of oscillations in a gun cavity. Beam parameters at the gun output are compared for photoemission and thermoemission cathode applications. The paper presents results of a beam dynamics simulation in such guns with different resonance structures. Questions connected with defining of the current pulse peak value that can be obtained in such guns are discussed.

  5. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    Science.gov (United States)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  6. Computer simulations of a single-laser double-gas-jet wakefield accelerator concept

    Directory of Open Access Journals (Sweden)

    R. G. Hemker

    2002-04-01

    Full Text Available We report in this paper on full scale 2D particle-in-cell simulations investigating laser wakefield acceleration. First we describe our findings of electron beam generation by a laser propagating through a single gas jet. Using realistic parameters which are relevant for the experimental setup in our laboratory we find that the electron beam resulting after the propagation of a 0.8 μm, 50 fs laser through a 1.5 mm gas jet has properties that would make it useful for further acceleration. Our simulations show that the electron beam is generated when the laser exits the gas jet, and the properties of the generated beam, especially its energy, depend only weakly on most properties of the gas jet. We therefore propose to use the first gas jet as a plasma cathode and then use a second gas jet placed immediately behind the first to provide additional acceleration. Our simulations of this proposed setup indicate the feasibility of this idea and also suggest ways to optimize the quality of the resulting beam.

  7. Robust Design of SAW Gas Sensors by Taguchi Dynamic Method

    Directory of Open Access Journals (Sweden)

    Hsun-Heng Tsai

    2009-02-01

    Full Text Available This paper adopts Taguchi’s signal-to-noise ratio analysis to optimize the dynamic characteristics of a SAW gas sensor system whose output response is linearly related to the input signal. The goal of the present dynamic characteristics study is to increase the sensitivity of the measurement system while simultaneously reducing its variability. A time- and cost-efficient finite element analysis method is utilized to investigate the effects of the deposited mass upon the resonant frequency output of the SAW biosensor. The results show that the proposed methodology not only reduces the design cost but also promotes the performance of the sensors.

  8. High temperature gas dynamics an introduction for physicists and engineers

    CERN Document Server

    Bose, Tarit K

    2014-01-01

    High Temperature Gas Dynamics is a primer for scientists, engineers, and students who would like to have a basic understanding of the physics and the behavior of high-temperature gases. It is a valuable tool for astrophysicists as well. The first chapters treat the basic principles of quantum and statistical mechanics and how to derive thermophysical properties from them. Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer. Furthermore, collision processes between different particles are discussed. Separate chapters deal with the production of high-temperature gases and with electrical emission in plasmas, as well as related diagnostic techniques.This new edition adds over 100 pages and includes the following updates: several sections on radiative properties of high temperature gases and various radiation models, a section on shocks in magneto-gas-dynamics, a sectio...

  9. Semiconductor Laser Complex Dynamics: From Optical Neurons to Optical Rogue Waves

    Science.gov (United States)

    2017-02-11

    AFRL-AFOSR-UK-TR-2017-0009 Semiconductor laser complex dynamics: from optical neurons to optical rogue waves Christina Masoller UNIVERSIDAD...11-02-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) 30 Sep 2014 to 29 Sep 2016 4. TITLE AND SUBTITLE Semiconductor laser complex dynamics...dynamics of semiconductor lasers with two main goals: i) to advance our understanding of nonlinear and stochastic phenomena and ii) to exploit the

  10. MERGER SIGNATURES IN THE DYNAMICS OF STAR-FORMING GAS

    International Nuclear Information System (INIS)

    Hung, Chao-Ling; Sanders, D. B.; Hayward, Christopher C.; Smith, Howard A.; Ashby, Matthew L. N.; Martínez-Galarza, Juan R.; Zezas, Andreas; Lanz, Lauranne

    2016-01-01

    The recent advent of integral field spectrographs and millimeter interferometers has revealed the internal dynamics of many hundreds of star-forming galaxies. Spatially resolved kinematics have been used to determine the dynamical status of star-forming galaxies with ambiguous morphologies, and constrain the importance of galaxy interactions during the assembly of galaxies. However, measuring the importance of interactions or galaxy merger rates requires knowledge of the systematics in kinematic diagnostics and the visible time with merger indicators. We analyze the dynamics of star-forming gas in a set of binary merger hydrodynamic simulations with stellar mass ratios of 1:1 and 1:4. We find that the evolution of kinematic asymmetries traced by star-forming gas mirrors morphological asymmetries derived from mock optical images, in which both merger indicators show the largest deviation from isolated disks during strong interaction phases. Based on a series of simulations with various initial disk orientations, orbital parameters, gas fractions, and mass ratios, we find that the merger signatures are visible for ∼0.2–0.4 Gyr with kinematic merger indicators but can be approximately twice as long for equal-mass mergers of massive gas-rich disk galaxies designed to be analogs of z ∼ 2–3 submillimeter galaxies. Merger signatures are most apparent after the second passage and before the black holes coalescence, but in some cases they persist up to several hundred Myr after coalescence. About 20%–60% of the simulated galaxies are not identified as mergers during the strong interaction phase, implying that galaxies undergoing violent merging process do not necessarily exhibit highly asymmetric kinematics in their star-forming gas. The lack of identifiable merger signatures in this population can lead to an underestimation of merger abundances in star-forming galaxies, and including them in samples of star-forming disks may bias the measurements of disk

  11. Effects of superficial gas velocity on process dynamics in bioreactors

    Science.gov (United States)

    Devi, T. T.; Kumar, B.

    2014-06-01

    Present work analyzes the flow hydrodynamics and mass transfer mechanisms in double Rushton and CD-6 impeller on wide range (0.0075-0.25 m/s) of superficial gas velocity ( v g) in a gas-liquid phase bioreactor by employing computational fluid dynamics (CFD) technique. The volume averaged velocity magnitude and dissipation rate are found higher with increasing superficial gas velocity. Higher relative power draw ( P g/ P 0) is predicted in CD-6 than the Rushton impeller but no significant difference in volume averaged mass transfer coefficient ( k L a) observed between these two types of impeller. The ratio of power draw with mass transfer coefficient has been found higher in CD-6 impeller (25-50 %) than the Rushton impeller.

  12. Gas dynamics an introduction with examples from astrophysics and geophysics

    CERN Document Server

    Achterberg, Abraham

    2016-01-01

    This book lays the foundations of gas- and fluid dynamics. The basic equations are developed from first principles, building on the (assumed) knowledge of Classical Mechanics. This leads to the discussion of the mathematical properties of flows, conservation laws, perturbation analysis, waves and shocks. Most of the discussion centers on ideal (frictionless) fluids and gases. Viscous flows are discussed when considering flows around obstacles and shocks. Many of the examples used to illustrate various processes come from astrophysics and geophysical phenomena.

  13. The origin of the hot metal-poor gas in NGC 1291 - Testing the hypothesis of gas dynamics as the cause of the gas heating

    NARCIS (Netherlands)

    Perez, [No Value; Freeman, K

    In this paper we test the idea that the low-metallicity hot gas in the centre of NGC 1291 is heated via a dynamical process. In this scenario, the gas from the outer gas-rich ring loses energy through bar-driven shocks and falls to the centre. Heating of the gas to X-ray temperatures comes from the

  14. High-power gas-discharge excimer ArF, KrCl, KrF and XeCl lasers utilising two-component gas mixtures without a buffer gas

    Science.gov (United States)

    Razhev, A. M.; Kargapol'tsev, E. S.; Churkin, D. S.

    2016-03-01

    Results of an experimental study of the influence of a gas mixture (laser active medium) composition on an output energy and total efficiency of gas-discharge excimer lasers on ArF* (193 nm), KrCl* (222 nm), KrF* (248 nm) and XeCl* (308 nm) molecules operating without a buffer gas are presented. The optimal ratios of gas components (from the viewpoint of a maximum output energy) of an active medium are found, which provide an efficient operation of laser sources. It is experimentally confirmed that for gas-discharge excimer lasers on halogenides of inert gases the presence of a buffer gas in an active medium is not a necessary condition for efficient operation. For the first time, in two-component gas mixtures of repetitively pulsed gas-discharge excimer lasers on electron transitions of excimer molecules ArF*, KrCl*, KrF* and XeCl*, the pulsed energy of laser radiation obtained under pumping by a transverse volume electric discharge in a low-pressure gas mixture without a buffer gas reached up to 170 mJ and a high pulsed output power (of up to 24 MW) was obtained at a FWHM duration of the KrF-laser pulse of 7 ns. The maximal total efficiency obtained in the experiment with two-component gas mixtures of KrF and XeCl lasers was 0.8%.

  15. Axion particle production in a laser-induced dynamical spacetime

    Science.gov (United States)

    Wadud, M. A.; King, B.; Bingham, R.; Gregori, G.

    2018-02-01

    We consider the dynamics of a charged particle (e.g., an electron) oscillating in a laser field in flat spacetime and describe it in terms of the variable mass metric. By applying Einstein's equivalence principle, we show that, after representing the electron motion in a time-dependent manner, the variable mass metric takes the form of the Friedmann-Lemaître-Robertson-Walker metric. We quantize a pseudo-scalar field in this spacetime and derive the production rate of electrically neutral, spinless particles. We show that this approach can provide an alternative experimental method to axion searches.

  16. Price dynamics of natural gas and the regional methanol markets

    International Nuclear Information System (INIS)

    Masih, A. Mansur M.; Albinali, Khaled; DeMello, Lurion

    2010-01-01

    A 'methanol economy' based mainly on natural gas as a feedstock has a lot of potential to cope with the current and ongoing concerns for energy security along with the reduction of CO-2 emissions. It is, therefore, important to examine the price dynamics of methanol in order to ascertain whether the price of methanol is mainly natural-gas-cost driven or demand driven in the context of different regions. This paper is the first attempt to investigate the following: (1) is the natural gas price significantly related to the regional methanol prices in the Far East, United States and Europe? (2) who drives the regional methanol prices? The paper is motivated by the recent and growing debate on the lead-lag relationship between natural gas and methanol prices. Our findings, based on the most recently developed 'long-run structural modelling' and subject to the limitations of the study, tend to suggest: (1) natural gas price is cointegrated with the regional methanol prices, (2) our within-sample error-correction model results tend to indicate that natural gas was driving the methanol prices in Europe and the United States but not in the Far East. These results are consistent, during most of the period under review (1998.5-2007.3), with the surge in demand for methanol throughout the Far East, particularly in China, Taiwan and South Korea, which appears to have played a relatively more dominant role in the Far East compared to that in Europe and the United States within the framework of the dynamic interactions of input and product prices. However, during the post-sample forecast period as evidenced in our variance decompositions analysis, the emergence of natural gas as the main driver of methanol prices in all three continents is consistent with the recent surge in natural gas price fueled mainly, among others, by the strong hedging activities in the natural gas futures/options as well as refining tightness (similar to those that were happening in the crude oil markets

  17. Diode laser MIR-DFG spectrometer for trace gas detection

    Science.gov (United States)

    Willer, Ulrike; Blanke, Torsten; Schade, Wolfgang

    1996-10-01

    Two cw-single mode diode-lasers with powers of 30 and 50 mW at the center wavelengths 682 and 791 nm are applied as signal and pump sources for difference frequency generation (DFG) in an AgGaS2 crystal with a length of 30 mm. For 90 degree type I phase matching tunable mid-infrared laser radiation is obtained in the spectral range between 4.9 and 5.1 micrometers , while the DFG-output power is 0.2 (mu) W. The performance of this diode-laser MIR-DFG spectrometer is shown as the absorption of CO for the P(28) rotational line around 2023 cm-1 is probed in a cell and on-line in the exhaust of an engine.

  18. In-gas-cell laser ionization studies of plutonium isotopes at IGISOL

    Science.gov (United States)

    Pohjalainen, I.; Moore, I. D.; Kron, T.; Raeder, S.; Sonnenschein, V.; Tomita, H.; Trautmann, N.; Voss, A.; Wendt, K.

    2016-06-01

    In-gas-cell resonance laser ionization has been performed on long-lived isotopes of Pu at the IGISOL facility, Jyväskylä. This initiates a new programme of research towards high-resolution optical spectroscopy of heavy actinide elements which can be produced in sufficient quantities at research reactors and transported to facilities elsewhere. In this work a new gas cell has been constructed for fast extraction of laser-ionized elements. Samples of 238-240,242Pu and 244Pu have been evaporated from Ta filaments, laser ionized, mass separated and delivered to the collinear laser spectroscopy station. Here we report on the performance of the gas cell through studies of the mass spectra obtained in helium and argon, before and after the radiofrequency quadrupole cooler-buncher. This provides valuable insight into the gas phase chemistry exhibited by Pu, which has been additionally supported by measurements of ion time profiles. The resulting monoatomic yields are sufficient for collinear laser spectroscopy. A gamma-ray spectroscopic analysis of the Pu samples shows a good agreement with the assay provided by the Mainz Nuclear Chemistry department.

  19. Characterization of plasmas produced by laser-gas jet interaction

    International Nuclear Information System (INIS)

    Malka, V.; Faure, J.; Amiranoff, F.

    2001-01-01

    An experiment has been performed with one of the six nanosecond beams of the Laboratoire pour l'Utilisation des Lasers Intenses laser facility in order to create long scale uniform plasmas over a wide range of electron density (1x10 19 -1.6x10 20 cm -3 ) and electron temperature (0.5-1.3 keV). Electron density and temperature evolution have been measured using Thomson scattering. Numerical simulations obtained by using a simple model are presented. Scaling law related electron density and electron temperature have been established in agreement with experimental data

  20. Formation Dynamics of Excited Components in ArF Excimer Laser Discharge

    OpenAIRE

    古橋, 秀夫; 内田, 悦行

    1993-01-01

    Time-resolved density measurements of excited components in a discharge pumped ArF excimer laser were performed using laser absorption probing with a cw dye laser pumped by a Ar^+ laser. The dependence of the He^* 2p^3P densities on the gas parameters were measured. The relationships between laser output power and the number densities of He^* are discussed. The relationships between the laser output power and the formation rate of Ar^+ ions by Penning ionization with He^* atoms are also discu...

  1. [INVITED] Laser gas assisted treatment of Ti-alloy: Analysis of surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-04-01

    Laser gas assisted treatment of Ti6Al4V alloy surface is carried out and nitrogen/oxygen mixture with partial pressure of PO2/PN2=1/3 is introduced during the surface treatment process. Analytical tools are used to characterize the laser treated surfaces. The fracture toughness at the surface and the residual stress in the surface region of the laser treated layer are measured. Scratch tests are carried out to determine the friction coefficient of the treated surface. It is found that closely spaced regular laser scanning tracks generates a self-annealing effect in the laser treated layer while lowering the stress levels in the treated region. Introducing high pressure gas mixture impingement at the surface results in formation of oxide and nitride species including, TiO, TiO2, TiN and TiOxNy in the surface region. A dense layer consisting of fine size grains are formed in the surface region of the laser treated layer, which enhances the microhardness at the surface. The fracture toughness reduces after the laser treatment process because of the microhardness enhancement at the surface. The residual stress formed is comprehensive, which is in the order of -350 MPa.

  2. Gas-Filled Targets to Study Laser Backscatter on the National Ignition Facility

    Science.gov (United States)

    London, R. A.; Williams, E. A.; Hinkel, D. E.; Moody, J. D.; Suter, L. J.

    2009-11-01

    To achieve indirect drive fusion at the National Ignition Facility (NIF), laser beams must propagate through several millimeters of high-density plasma to reach the hohlraum walls. Stimulated Brillouin and Raman backscatter could create problems with energetics and/or symmetry. Laser backscatter at NIF will be diagnosed with full aperture backscatter systems (FABS) and near backscatter imagers (NBI). Several gas-filled targets (``gas pipes'') have been designed to provide backscatter sources to commission the diagnostics. The 7-mm long gas pipes are filled with various gases, including C5H12 and CO2, and are irradiated by a NIF quad with 16 kJ of energy in 2-4 ns pulses. We describe the design of the gas pipes using hydrodynamics and laser-plasma-interaction computer codes. The relationship between the design parameters (gas composition and density and laser pulse shape) and the character of the backscatter (Brillouin versus Raman and narrow versus broad angle) are discussed. Comparisons of predicted and measured backscatter distributions and levels are discussed.

  3. Initiation of long, free-standing z discharges by CO2 laser gas heating

    Science.gov (United States)

    Niemann, C.; Tauschwitz, A.; Penache, D.; Neff, S.; Knobloch, R.; Birkner, R.; Presura, R.; Hoffmann, D. H. H.; Yu, S. S.; Sharp, W. M.

    2002-01-01

    High current discharge channels can neutralize both current and space charge of very intense ion beams. Therefore, they are considered an interesting solution for final focus and beam transport in a heavy ion beam fusion reactor. At the Gesellschaft für Schwerionenforschung accelerator facility, 50 cm long, free-standing discharge channels were created in a 60 cm diameter metallic chamber. Discharges with currents of 45 kA in 2 to 25 mbar ammonia (NH3) gas are initiated by a CO2 laser pulse along the channel axis before the capacitor bank is triggered. Resonant absorption of the laser, tuned to the v2 vibration of the ammonia molecule, causes strong gas heating. Subsequent expansion and rarefaction of the gas prepare the conditions for a stable discharge to fulfill the requirements for ion beam transport. The influence of an electric prepulse on the high current discharge was investigated. This article describes the laser-gas interaction and the discharge initiation mechanism. We found that channels are magnetohydrodynamic stable up to currents of 45 kA, measured by fast shutter and streak imaging techniques. The rarefaction of the laser heated gas is studied by means of a one-dimensional Lagrangian fluid code (CYCLOPS) and is identified as the dominant initiation mechanism of the discharge.

  4. Carrier dynamics in femtosecond-laser-excited bismuth telluride

    Science.gov (United States)

    Wang, J. L.; Guo, L.; Ling, C.; Song, Y. M.; Xu, X. F.; Ni, Z. H.; Chen, Y. F.

    2016-04-01

    The carrier dynamics of B i2T e3 is studied using the femtosecond pump-probe technique. Three distinct processes, including free carrier absorption, band filling, and electron-hole recombination, are found to contribute to the reflectivity changes. The two-temperature model is used to describe the intraband energy relaxation process of carriers, and the Drude contribution well explains the intensity dependence of the peak values of the nonoscillatory component in the reflectivity signal. The combined effects of free carrier absorption and band filling result in a reflection minimum at about 2 ps after laser excitation. The nonzero background signal increases linearly with the pump fluence, which is attributed to the electron-hole recombination. Finally, our results provide an illustration of investigating the carrier dynamics in semiconductors from the ultrafast reflectivity spectra.

  5. Imaging molecular structure and dynamics using laser driven recollisions

    International Nuclear Information System (INIS)

    Marangos, J.P.; Baker, S.; Torres, R.; Kajumba, N.; Haworth, C.; Robinson, J.; Tisch, J.W.G.; Lein, M.; Chirila, C.; Vozzi, C.

    2006-01-01

    Complete test of publication follows. Laser driven electron recollision provides a unique tool for measuring the structure and dynamics of matter. We illustrate this with experiments that use HHG to measure molecular structure with sub-Angstrom spatial and sub-femtosecond temporal resolution. Our recent work has looked in particular at the signal from high order harmonic generation which contains rich information about the structure and intra-molecular dynamics of small molecules. This we will illustrate by two types of experiment; (a) measurements of HHG from aligned molecular samples to observe two-centre recombination interference and electronic structure dependence of the angle dependent yield, (b) reconstruction of intra-molecular proton dynamics from the spectral dependence of the HHG using the intrinsic chirp of recolliding electrons. We experimentally investigate the process of intramolecular quantum interference in high-order harmonic generation in impulsively aligned CO 2 molecules. The recombination interference effect is clearly seen through the order dependence of the harmonic yield in an aligned sample. This confirms that the effective de Broglie wavelength of the returning electron wave is not significantly altered by acceleration in the Coulomb field of the molecular ion. For the first time, to our knowledge, we demonstrate that such interference effects can be effectively controlled by changing the ellipticity of the driving laser field. Here we also report the results of angular dependence measurements of high order harmonics (17 tt h - 27 th ) from impulsively aligned organic molecules: Acetylene, Ethylene, and Allene. Since these molecules have a relatively low I p an appropriately short pulse is required to produce as many harmonic orders as possible. This was provided by the ∼ 10 fs beam line of the ASTRA laser at Rutherford Appleton Laboratory whilst a somewhat longer pulse, properly forwarded with respect to the driving pulse, induced the

  6. Lasers and laser applications. Imaging implosion dynamics: The x-ray pinhole/streak camera

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1976-01-01

    A Livermore-developed x-ray-sensitive streak camera was combined with a unique x-ray pinhole camera to make dynamic photographs of laser-irradiated fusion target implosions. These photographs show x radiation emitted from the imploding shell during its 100-ps implosion; they are the first continuous observations of an imploding laser-driven fusion capsule. The diagnostic system has a time resolution of 15 ps and a spatial resolution of about 6 μm. Results agree very well with those predicted by our LASNEX calculations, confirming that the essential physics are correctly described in the code and providing further confidence in the soundness of this approach to inertial confinement fusion

  7. Measurement of gas flow velocities by laser-induced gratings

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Stampanoni-Panariello, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kozlov, A.D.N. [General Physics Institute, Moscow (Russian Federation)

    1999-08-01

    Time resolved light scattering from laser-induced electrostrictive gratings was used for the determination of flow velocities in air at room temperature. By measuring the velocity profile across the width of a slit nozzle we demonstrated the high spatial resolution (about 200 mm) of this novel technique. (author) 3 figs., 1 ref.

  8. Tissue ablation and gas formation of two excimer laser systems: an in vitro evaluation on porcine aorta.

    Science.gov (United States)

    Appelman, Y E; Piek, J J; Verhoofstad, G G; Gijsbers, G H; Van Gemert, M J

    1996-01-01

    The relationship between tissue ablation volume and the formation of insoluble gas of the currently available excimer laser systems is unknown. This aspect was evaluated in two excimer laser systems. We measured tissue ablation volume and gas production of two excimer laser systems (308 nm) on porcine aortic tissue immersed in saline (the CVX-300 using 1.4 and 1.7 mm laser catheters and the Dymer 200 + using 1.3, 1.3z and 1.6 mm laser catheters). Tissue ablation volume and gas production increased proportionally with the applied energy fluence, ranging from 30-60 mJ/mm2. The gas production per unit of ablated tissue volume of the 1.4 mm laser catheter was significantly higher than the 1.3 mm laser catheter (mean difference +117%, 95% CI from +64% till +188%, PCVX-300 laser system results in significantly higher gas production than the Dymer 200+ laser system, which can be markedly reduced by lowering the applied energy fluence. The 1.3z laser catheter constitutes an exception, showing similar characteristics as the CVX-300 laser catheters.

  9. Dynamical heterogeneity in a glass-forming ideal gas.

    Science.gov (United States)

    Charbonneau, Patrick; Das, Chinmay; Frenkel, Daan

    2008-07-01

    We conduct a numerical study of the dynamical behavior of a system of three-dimensional "crosses," particles that consist of three mutually perpendicular line segments of length sigma rigidly joined at their midpoints. In an earlier study [W. van Ketel, Phys. Rev. Lett. 94, 135703 (2005)] we showed that this model has the structural properties of an ideal gas, yet the dynamical properties of a strong glass former. In the present paper we report an extensive study of the dynamical heterogeneities that appear in this system in the regime where glassy behavior sets in. On the one hand, we find that the propensity of a particle to diffuse is determined by the structure of its local environment. The local density around mobile particles is significantly less than the average density, but there is little clustering of mobile particles, and the clusters observed tend to be small. On the other hand, dynamical susceptibility results indicate that a large dynamical length scale develops even at moderate densities. This suggests that propensity and other mobility measures are an incomplete measure of the dynamical length scales in this system.

  10. Beam Dynamics Studies for a Laser Acceleration Experiment

    CERN Document Server

    Spencer, James; Noble, Robert; Palmer, Dennis T; Siemann, Robert

    2005-01-01

    The NLC Test Accelerator at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun, originally proposed for the NLCTA, is being installed together with a large-angle extraction line at 60 MeV. This is followed by a matching section, final focus and buncher for the laser acceleration experiment, E163. The laser-electron interaction area is followed by a broad range, high resolution spectrometer (HES) for electron bunch analysis. The RF gun is discussed in another paper. We discuss only the beam dynamics and high resolution analysis system at 6 MeV based on using Parmela and high-order Transport for bunch charges from 50 pC to 1 nC. Beyond the diagnostics, this system uses the emittance compensating solenoids and a low energy, high resolution spectrometer (LES) to help tune for best operating point and match to the linac. Optical symmetries in the design of the 25.5° extraction line provide 1:1 phase space transfer without linear dispersion or use of sextu...

  11. Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film

    DEFF Research Database (Denmark)

    Smith, Cameron; Lind, Johan Ulrik; Christiansen, Mads Brøkner

    2011-01-01

    We present the enhanced transduction of a photonic crystal dye laser for gas sensing via deposition of an additional swelling polymer film. Device operation involves swelling of the polymer film during exposure to specific gases, leading to a change in total effective refractive index. Experimental...... in its application to other intracavity-based detection schemes to enable gas sensing. © 2011 Optical Society of America....

  12. Postharvest Monitoring of Tomato Ripening Using the Dynamic Laser Speckle

    Directory of Open Access Journals (Sweden)

    Piotr Mariusz Pieczywek

    2018-04-01

    Full Text Available The dynamic laser speckle (biospeckle method was tested as a potential tool for the assessment and monitoring of the maturity stage of tomatoes. Two tomato cultivars—Admiro and Starbuck—were tested. The process of climacteric maturation of tomatoes was monitored during a shelf life storage experiment. The biospeckle phenomena were captured using 640 nm and 830 nm laser light wavelength, and analysed using two activity descriptors based on biospeckle pattern decorrelation—C4 and ε. The well-established optical parameters of tomatoes skin were used as a reference method (luminosity, a*/b*, chroma. Both methods were tested with respect to their prediction capabilities of the maturity and destructive indicators of tomatoes—firmness, chlorophyll and carotenoids content. The statistical significance of the tested relationships were investigated by means of linear regression models. The climacteric maturation of tomato fruit was associated with an increase in biospckle activity. Compared to the 830 nm laser wavelength the biospeckle activity measured at 640 nm enabled more accurate predictions of firmness, chlorophyll and carotenoids content. At 640 nm laser wavelength both activity descriptors (C4 and ε provided similar results, while at 830 nm the ε showed slightly better performance. The linear regression models showed that biospeckle activity descriptors had a higher correlation with chlorophyll and carotenoids content than the a*/b* ratio and luminosity. The results for chroma were comparable with the results for both biospeckle activity indicators. The biospeckle method showed very good results in terms of maturation monitoring and the prediction of the maturity indices of tomatoes, proving the possibility of practical implementation of this method for the determination of the maturity stage of tomatoes.

  13. LASER SYSTEM COMPONENTS. LASER APPLICATIONS: Dynamics of plasma mirror formation in a neodymium laser due to secondary optical breakdown in air

    Science.gov (United States)

    Prokhorov, A. M.; Fedorov, V. B.; Fomenkov, I. V.

    1988-11-01

    It was established that the formation of a plasma mirror, accompanying the interaction of radiation from a free-running neodymium laser with a gas target, occurs after the primary microsecond breakdown at the rear boundary of a relaxing plasma at the moment when the gas suffers a secondary breakdown due to one of the succeeding microsecond spikes.

  14. Tissue ablation and gas formation of two excimer laser systems: an in vitro evaluation on porcine aorta

    NARCIS (Netherlands)

    Appelman, Y. E.; Piek, J. J.; Verhoofstad, G. G.; Gijsbers, G. H.; van Gemert, M. J.

    1996-01-01

    BACKGROUND and The relationship between tissue ablation volume and the formation of insoluble gas of the currently available excimer laser systems is unknown. This aspect was evaluated in two excimer laser systems. STUDY DESIGN/MATERIALS and We measured tissue ablation volume and gas production of

  15. Rare gas-benzene-rare gas interactions: structural properties and dynamic behavior.

    Science.gov (United States)

    Albertí, Margarita

    2010-02-18

    In the present work, some static and dynamic properties of trimers containing one benzene molecule and two rare gas atoms are investigated. These trimers can be formed in two different configurations, one in which the two rare gas atoms are placed in opposite sides of the benzene plane, (1|1), and the other in which the two atoms are placed on the same side, (2|0). The (1|1) configuration is more stable than the (2|0), and both minima are connected by small energy barriers. Accordingly, molecular dynamics simulations show frequent (2|0) (1|1) interconversions, even at low temperatures. The time spent in each configuration has been related to the abundance of isomers. It has been found that at temperatures just below the dissociation, when interconversions are quite frequent, the relative abundance of (2|0) is always higher than that of (1|1), independently of the nature of the two rare gases.

  16. Cavitation at the air/water interface induced by CO2 laser: formation, dynamics and mechanism

    Science.gov (United States)

    Hu, Man; Wang, Feng; Deng, Daosheng

    2017-11-01

    We report CO2-laser-induced cavitation at the interface between air and water, since strong photo-thermal effect of water occurs at the infrared wavelength. Using high-speed camera, we record explosive evaporation and the evolution of cavitation at the interface. By analyzing the growth dynamics of cavitation at various experimental conditions, we identify two stages of its growth associated with different mechanisms correspondingly. One stage is an initial faster expanding process driven by the influx of dissolved gas expelled from the surrounding water due to laser heating; and the other stage is a subsequent slower isobaric expanding process related with liquid properties. More quantitatively, we find that the evolution of cavitation at first stage is characterized by scaling law with an exponent of 1/3 for its diameter as a function of time, while its evolution at the second stage can be well described by Rayleigh-Plesset theory. This study of interfacial cavitation due to photo-thermal effect might have implications for solar-steam technology and infrared-laser surgery as well.

  17. Dynamics of dissociation versus ionization in strong laser fields

    International Nuclear Information System (INIS)

    In this paper, experimental results are presented which clearly demonstrate the effectiveness that an external field has in altering the dissociation dynamics. The experiment examines the strong-field dissociation dynamics of molecular hydrogen ions and its deuterated isotopes. These studies involve multiphoton excitation in the intensity regime of 10 11-14 W/cm 2 with the fundamental and second harmonic of a ND:YAG or ND:YLF laser system. Measurements include energy resolved electron and mass spectroscopy which provide useful probes in elucidating the interaction dynamics predicted by existing models. The example this in this paper, examines the strong-field dissociation of H 2 + , HD + , and D 2 + at green (0.5 μm) and (1μm) frequencies. The diatomic ions are formed via multiphonon ionization of the neutral precursor which is physically separable from the dissociation process. This study provides the first observation of the dynamics associated with the above threshold dissociation (ATD) process and analogies will be made with the more familiar above threshold ionization (ATI) phenomenon

  18. Soft x-ray emission characteristics from laser produced plasmas using a double stream gas-puff nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masayuki; Yamagami, Susumu; Mima, Kunioki [Osaka Univ., Institute of Laser Engineering, Suita, Osaka (Japan); Daido, Hiroyuki; Oketa, Takatsugu [Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan). Kansai Research Establishment; Fiedorowicz, Henrky; Bartnik, Andrzej [Military University of Technology, Institute of Optoelectronics, Kaliskiego, Warsaw (Poland); Nakayama, Takeyoshi [Kinki Univ., School of Science and Engineering, Osaka (Japan)

    2001-10-01

    We characterize a laser produced double-stream gas puff plasma for soft x-ray generation. The double-stream nozzle gas puff target could suppress sideway gas expansion by surrounding the gas from the outer nozzle. Therefore, the x-ray emission from a double nozzle Xe gas-puff target irradiated by a nano-second laser pulse is as strong as that using a solid target. In addition the x-ray source size is smaller than ordinary gas puff plasma. (author)

  19. Dynamics of pulsed expansion of polyatomic gas cloud: Internal-translational energy transfer contribution

    International Nuclear Information System (INIS)

    Morozov, A. A.

    2007-01-01

    Polyatomic gas cloud expansion under pulsed laser evaporation is studied on the basis of one-dimensional direct Monte Carlo simulation. The effect of rotational-translational (RT) and vibrational-translational (VT) energy transfer on dynamics of the cloud expansion is considered. Efficiency of VT energy transfer dependence on the amount of evaporated matter is discussed. To analyze VT energy transfer impact, the number of collisions per molecule during the expansion is calculated. The data are generally in good agreement with available analytical and numerical predictions. Dependencies of the effective number of vibrational degrees of freedom on the number of vibrationally inelastic collisions are obtained and generalized. The importance of the consideration of energy transfer from the internal degrees of freedom to the translational ones is illustrated by an example of pulsed laser evaporation of polytetrafluoroethylene (PTFE). Based on the obtained regularities, analysis of experimental data on pulsed laser evaporation of aniline is performed. The calculated aniline vibrational temperature correlates well with the experimentally measured one

  20. Continuously observing a dynamically decoupled spin-1 quantum gas

    Science.gov (United States)

    Anderson, R. P.; Kewming, M. J.; Turner, L. D.

    2018-01-01

    We continuously observe dynamical decoupling in a spin-1 quantum gas using a weak optical measurement of spin precession. Continuous dynamical decoupling modifies the character and energy spectrum of spin states to render them insensitive to parasitic fluctuations. Continuous observation measures this new spectrum in a single preparation of the quantum gas. The measured time series contains seven tones, which spectrogram analysis parses as splittings, coherences, and coupling strengths between the decoupled states in real time. With this we locate a regime where a transition between two states is decoupled from magnetic-field instabilities up to fourth order, complementary to a parallel work at higher fields [D. Trypogeorgos et al., preceding paper, Phys. Rev. A 97, 013407 (2018), 10.1103/PhysRevA.97.013407]. The decoupled microscale quantum gas offers magnetic sensitivity in a tunable band, persistent over many milliseconds: the length scales, frequencies, and durations relevant to many applications, including sensing biomagnetic phenomena such as neural spike trains.

  1. Lattice gas simulations of dynamical geometry in two dimensions.

    Science.gov (United States)

    Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A; Love, Peter J

    2010-10-01

    We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t(1/3), in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.

  2. Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids

    Science.gov (United States)

    Faccio, D.; Tamošauskas, G.; Rubino, E.; Darginavičius, J.; Papazoglou, D. G.; Tzortzakis, S.; Couairon, A.; Dubietis, A.

    2012-09-01

    We study cavitation dynamics when focusing ring-shaped femtosecond laser beams in water. This focusing geometry reduces detrimental nonlinear beam distortions and enhances energy deposition within the medium, localized at the focal spot. We observe remarkable postcollapse dynamics of elongated cavitation bubbles with high-speed ejection of microbubbles out of the laser focal region. Bubbles are ejected along the laser axis in both directions (away and towards the laser). The initial shape of the cavitation bubble is also seen to either enhance or completely suppress jet formation during collapse. In the absence of jetting, microbubble ejection occurs orthogonal to the laser propagation axis.

  3. Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids.

    Science.gov (United States)

    Faccio, D; Tamošauskas, G; Rubino, E; Darginavičius, J; Papazoglou, D G; Tzortzakis, S; Couairon, A; Dubietis, A

    2012-09-01

    We study cavitation dynamics when focusing ring-shaped femtosecond laser beams in water. This focusing geometry reduces detrimental nonlinear beam distortions and enhances energy deposition within the medium, localized at the focal spot. We observe remarkable postcollapse dynamics of elongated cavitation bubbles with high-speed ejection of microbubbles out of the laser focal region. Bubbles are ejected along the laser axis in both directions (away and towards the laser). The initial shape of the cavitation bubble is also seen to either enhance or completely suppress jet formation during collapse. In the absence of jetting, microbubble ejection occurs orthogonal to the laser propagation axis.

  4. Mode composition of radiation from waveguide gas lasers

    Energy Technology Data Exchange (ETDEWEB)

    Il' in, A.V.; Kozel, S.M.

    1979-06-01

    Calculations are made of the mode composition of radiation emerging from a waveguide laser. Allowance is made for all types of resonator losses and also for a spatially inhomogeneous distribution of the population inversion. Using a two-mode model, it is shown that a transverse inhomogeneity of the inversion results in efficient filtering of higher-order modes even in the case of identical diffraction losses for the different modes.

  5. Experimental investigation of CFRP cutting with nano second laser under air and Ar gas ambience

    Science.gov (United States)

    Sato, Yuji; Tsukamoto, Masahiro; Matsuoka, Fumihiro; Yamashita, Kensuke; Takahashi, Kenjiro; Masuno, Shinichiro

    2015-03-01

    A carbon fiber reinforced plastic (CFRP) is widely used for automobile, aircraft and so on, because of having high strength, lightweight and weather resistance. A laser is one of useful tools for cutting CFRP. However, a matrix evaporated zone (MEZ) is formed around the laser irradiation area since heat property of the resin is different from that of carbon fiber. It is required for optimizing the laser processing condition to minimize the MEZ. In our experiment, the CFRP plate was cut with a nanosecond laser under air and Ar gas ambience. The ambient gas is an important factor for reduction of MEZ since formation of MEZ might be caused due to an oxidization of carbon fiber and epoxy resin. In order to evaluate the oxidization, spectroscopic analysis was carried out to investigate an ablation plume under air and Ar gas. Furthermore, a surface on CFRP plate was observed with a scanning electron microscope (SEM). As the results, the cutting quality for argon is better than that for air, and the MEZ for Ar gas is smaller than than that for air.

  6. Direct evidence of gas-induced laser beam smoothing in the interaction with thin foils

    Czech Academy of Sciences Publication Activity Database

    Benocci, R.; Batani, D.; Dezulian, R.; Redaelli, R.; Lucchini, G.; Canova, F.; Stabile, H.; Fauré, J.; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Skála, Jiří; Dudžák, Roman; Koenig, M.; Tikhonchuk, V.; Nicolai, Ph.; Malka, V.

    2009-01-01

    Roč. 16, č. 1 (2009), 012703/1-012703/5 ISSN 1070-664X R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : foils * ionisation * plasma heating by laser * plasma shock waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.475, year: 2009

  7. Development of CO2 and KrF gas lasers as drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rockwood, S.D.

    1983-01-01

    Several different driver systems are currently under development in the national ICF program. Los Alamos has traditionally emphasized gas laser systems because of their intrinsic high average power capability and ease of operation. This paper will review the status of activities in both carbon dioxide (CO 2 ) and krypton fluoride (KrF) development at the Laboratory

  8. Fireworks in noble gas clusters a first experiment with the new "free-electron laser"

    CERN Multimedia

    2002-01-01

    An international group of scientists has published first experiments carried out using the new soft X-ray free-electron laser (FEL) at the research center DESY in Hamburg, Germany. Using small clusters of noble gas atoms, for the first time, researchers studied the interaction of matter with intense X-ray radiation from an FEL on extremely short time scales (1 page).

  9. Selective Laser Melting of Hot Gas Turbine Components: Materials, Design and Manufacturing Aspects

    DEFF Research Database (Denmark)

    Goutianos, Stergios

    2017-01-01

    Selective Laser Melting (SLM) allows the design and manufacturing of novel parts and structures with improved performance e.g. by incorporating complex and more efficient cooling schemes in hot gas turbine parts. In contrast to conventional manufacturing of removing material, with SLM parts...

  10. Monte Carlo description of gas flow from laser-evaporated silver

    DEFF Research Database (Denmark)

    Ellegaard, O.; Schou, Jørgen; Urbassek, H.M.

    1999-01-01

    at times t much greater than tau(laser), and this demonstrates that at these later times, the collisions in the plume efficiently smear out the characteristics of the varying temperature at the surface during ablation. The physical properties of the gas flow are determined by the mean thermal energy...

  11. Liquid jet formation through the interactions of a laser-induced bubble and a gas bubble

    Directory of Open Access Journals (Sweden)

    Bing Han

    2017-10-01

    Full Text Available The mechanisms of the liquid jet formation from the interaction of the laser-induced and gas bubble pair are investigated and compared with the jet formation from the interaction of the laser-induced anti-phase bubble pair. The strobe photography experimental method and numerical simulations are implemented to obtain the parameter space of the optimum liquid jet, i.e. highest speed and lowest diameter. It is found that due to the enhanced “catapult effect”, which is induced by the protrusion of the first bubble into the second bubble and the flip back of the elongated part of the first bubble, the optimum liquid jet of the second bubble of the laser-induced anti-phase bubble pair compared to that of the laser-induced and gas bubble pair is 54 %, 65 % and 11 % faster in speed, and 4 %, 44 % and 64 % smaller in diameter, for the 500 μm, 50 μm and 5 μm sized bubbles, respectively. The optimum dimensionless distance for the optimum jet of the laser-induced and the gas bubble is around 0.7, when the maximum bubble radius increases from ∼ 5μm to ∼500 μm, which is different from the laser-induced anti-phase bubble pairs. Besides, the optimum jet of the laser-induced bubble appeared when the bubbles are equal sized, while that of the gas bubble is independent of the relative bubble size, i.e. the liquid jet of the gas bubble has higher robustness in real liquid jet assisted applications when the laser-induced bubble size varies. However, the jet of bubble 2 could maintain a high speed (20 m/s - 35 m/s and a low diameter (∼5 % of the maximum bubble diameter over a big range of the dimensionless distance (0.6 - 0.9 for both of the 50 μm and 500 μm sized laser-induced equal sized anti-phase bubble pairs.

  12. Liquid jet formation through the interactions of a laser-induced bubble and a gas bubble

    Science.gov (United States)

    Han, Bing; Liu, Liu; Zhao, Xiong-Tao; Ni, Xiao-Wu

    2017-10-01

    The mechanisms of the liquid jet formation from the interaction of the laser-induced and gas bubble pair are investigated and compared with the jet formation from the interaction of the laser-induced anti-phase bubble pair. The strobe photography experimental method and numerical simulations are implemented to obtain the parameter space of the optimum liquid jet, i.e. highest speed and lowest diameter. It is found that due to the enhanced "catapult effect", which is induced by the protrusion of the first bubble into the second bubble and the flip back of the elongated part of the first bubble, the optimum liquid jet of the second bubble of the laser-induced anti-phase bubble pair compared to that of the laser-induced and gas bubble pair is 54 %, 65 % and 11 % faster in speed, and 4 %, 44 % and 64 % smaller in diameter, for the 500 μm, 50 μm and 5 μm sized bubbles, respectively. The optimum dimensionless distance for the optimum jet of the laser-induced and the gas bubble is around 0.7, when the maximum bubble radius increases from ˜ 5μm to ˜500 μm, which is different from the laser-induced anti-phase bubble pairs. Besides, the optimum jet of the laser-induced bubble appeared when the bubbles are equal sized, while that of the gas bubble is independent of the relative bubble size, i.e. the liquid jet of the gas bubble has higher robustness in real liquid jet assisted applications when the laser-induced bubble size varies. However, the jet of bubble 2 could maintain a high speed (20 m/s - 35 m/s) and a low diameter (˜5 % of the maximum bubble diameter) over a big range of the dimensionless distance (0.6 - 0.9) for both of the 50 μm and 500 μm sized laser-induced equal sized anti-phase bubble pairs.

  13. Laser-induced breakdown ignition in a gas fed two-stroke engine

    Science.gov (United States)

    Loktionov, E. Y.; Pasechnikov, N. A.; Telekh, V. D.

    2018-01-01

    Laser-induced ignition for internal combustion engines is investigated intensively after demonstration of a compact ‘laser plug’ possibility. Laser spark benefits as compared to traditional spark plugs are higher compression rate, and possibility of almost any fuel ignition, so lean mixtures burning with lower temperatures could reduce harmful exhausts (NO x , CH, etc). No need in electrode and possibility for multi-point, linear or circular ignition can make combustion even more effective. Laser induced combustion wave appears faster and is more stable in time, than electric one, so can be used for ramjets, chemical thrusters, and gas turbines. To the best of our knowledge, we have performed laser spark ignition of a gas fed two-stroke engine for the first time. Combustion temperature and pressure, exhaust composition, ignition timing were investigated at laser and compared to a regular electric spark ignition in a two-stroke model engine. Presented results show possibility for improvement of two-stroke engines performance, in terms of rotation rate increase and NO x emission reduction. Such compact engines using locally mined fuel could be highly demanded in remote Arctic areas.

  14. Monolithic wide tunable laser diodes for gas sensing at 2100 nm

    Science.gov (United States)

    Koslowski, Nicolas; Heger, Andreas; Roessner, Karl; Legge, Michael; Koeth, Johannes; Hildebrandt, Lars

    2013-03-01

    Novel monolithic widely tunable laser diodes in the 2.1μm wavelength region based on GaSb / AlGaAsSb are presented. Using the concept of a lateral binary superimposed (BSG) grating structures and multisegment Verniertuning, stable single-mode output is realized at discrete wavelength channels in the 2060 nm - 2140 nm region. A total tuning above 80 nm in six channels is demonstrated. In every wavelength channel, the output wavelength can be tuned by current and temperature. Each wavelength channel offers up to 6 nm of mode hop free tuning, making this novel widely tunable laser highly attractive as a monolithic light source for multiple-gas sensing or liquid detection purposes. The wavelength channels can be arbitrarily placed within the material gain allowing BSG lasers to sweep e.g. over several gas absorption line within 80 nm. Within a wavelength channel, the widely tunable lasers show DFB like spectral performance with average side-mode suppression-ratios above 40 dB, output power of up to 15 mW at 25°C. Also temperature and current tuning coefficients are comparable to those of DFB lasers. This paper will present an overview of laser concept, performance data and applications.

  15. Resonance-enhanced laser-induced plasma spectroscopy: ambient gas effects

    International Nuclear Information System (INIS)

    Lui, S.L.; Cheung, N.H.

    2003-01-01

    When performing laser-induced plasma spectroscopy for elemental analysis, the sensitivity could be significantly enhanced if the plume was resonantly rekindled by a dye laser pulse. The extent of the enhancement was found to depend on the ambient gas. Air, nitrogen, helium, argon and xenon at pressures ranging from vacuum to 1 bar were investigated. In vacuum, the analyte signal was boosted because of reduced cooling, but it soon decayed as the plume freely expanded. By choosing the right ambient gas at the right pressure, the expanding plume could be confined as well as thermally insulated to maximize the analyte signal. For instance, an ambient of 13 mbar xenon yielded a signal-to-noise ratio of 110. That ratio was 53 when the pellet was ablated in air, and decreased further to 5 if the dye laser was tuned off resonance

  16. Dynamic design of gas sorption J-T refrigerator

    International Nuclear Information System (INIS)

    Chan, C.K.

    1986-01-01

    A long-life Joule-Thomson refrigerator which is heat powered, involves no sealing, and has few mechanical parts and is desirable for longterm sensor cooling in space. In the gas-sorption J-T refrigerator, cooling is achieved by gas sorption (either adsorption or absorption) processes. Currently, a modular, single-stage refrigerator is being designed and built to be operated at 20 K. The design was analyzed using a dynamic model, which is described here. The model includes the kinetics of the compressors and the heat switches, the heat transfer of the pre-coolers and the heat exchangers, the on/off ratio of the check valves, and the impedance of the J-T valve. The cooling power, the cycle time, and the operating conditions were obtained in terms of the power input, the heat sink temperature, and the J-T impedance

  17. Dynamic design of gas sorption J-T refrigerator

    Science.gov (United States)

    Chan, C. K.

    1986-01-01

    A long-life Joule-Thomson refrigerator which is heat powered, involves no sealing, and has few mechanical parts is desirable for long-term sensor cooling in space. In the gas-sorption J-T refrigerator, cooling is achieved by gas sorption (either adsorption or absorption) processes. Currently, a modular, single-stage refrigerator is being designed and built to be operated at 20 K. The design was analyzed using a dynamic model, which is described here. The model includes the kinetics of the compressors and the heat switches, the heat transfer of the pre-coolers and the heat exchangers, the on/off ratio of the check valves, and the impedance of the J-T valve. The cooling power, the cycle time, and the operating conditions were obtained in terms of the power input, the heat sink temperature, and the J-T impedance.

  18. Lattice gas simulations of dynamical geometry in one dimension.

    Science.gov (United States)

    Love, Peter J; Boghosian, Bruce M; Meyer, David A

    2004-08-15

    We present numerical results obtained using a lattice gas model with dynamical geometry. The (irreversible) macroscopic behaviour of the geometry (size) of the lattice is discussed in terms of a simple scaling theory and obtained numerically. The emergence of irreversible behaviour from the reversible microscopic lattice gas rules is discussed in terms of the constraint that the macroscopic evolution be reproducible. The average size of the lattice exhibits power-law growth with exponent at late times. The deviation of the macroscopic behaviour from reproducibility for particular initial conditions ('rogue states') is investigated as a function of system size. The number of such 'rogue states' is observed to decrease with increasing system size. Two mean-field analyses of the macroscopic behaviour are also presented. Copyright 2004 The Royal Society

  19. DFB lasers at wavelengths in excess of 2300 nm for remote gas sensing

    Science.gov (United States)

    Koeth, J.; Fischer, M.; Legge, M.; Seufert, J.; Werner, R.

    2017-11-01

    Remote gas sensing for atmospheric and environmental studies using single mode emitting semiconductor lasers, e.g. in LIDAR applications has gained wide interest in the last few years. This technique has been brought to sophisticated sensitivity levels and nowadays detection limits are in the range of a few ppb. However, up until recently only semiconductor laser diode sources with wavelengths below 2.3 μm have been available, which inherently limits the detection sensitivity due to the fact that the fundamental absorption band of many gases lies in the spectral range beyond 2.3 μm. With novel distributed feedback laser diodes at wavelengths up to 2.9 μm higher detection sensitivities as compared to currently available laser based sensors are possible.

  20. Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation.

    Science.gov (United States)

    Assar, Mohammadreza; Karimzadeh, Rouhollah

    2016-12-01

    The present study uses a rapid, easy and practical method for cost-effective fabrication of a methane gas sensor. The sensor was made by drop-casting a graphene oxide suspension onto an interdigital circuit surface. The electrical conductivity and gas-sensing characteristics of the sensor were determined and then heat treatment and in situ laser irradiation were applied to improve the device conductivity and gas sensitivity. Real-time monitoring of the evolution of the device current as a function of heat treatment time revealed significant changes in the conductance of the graphene oxide sensor. The use of low power laser irradiation enhanced both the electrical conductivity and sensing response of the graphene oxide sensor. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Model-based dynamic control and optimization of gas networks

    Energy Technology Data Exchange (ETDEWEB)

    Hofsten, Kai

    2001-07-01

    This work contributes to the research on control, optimization and simulation of gas transmission systems to support the dispatch personnel at gas control centres for the decision makings in the daily operation of the natural gas transportation systems. Different control and optimization strategies have been studied. The focus is on the operation of long distance natural gas transportation systems. Stationary optimization in conjunction with linear model predictive control using state space models is proposed for supply security, the control of quality parameters and minimization of transportation costs for networks offering transportation services. The result from the stationary optimization together with a reformulation of a simplified fluid flow model formulates a linear dynamic optimization model. This model is used in a finite time control and state constrained linear model predictive controller. The deviation from the control and the state reference determined from the stationary optimization is penalized quadratically. Because of the time varying status of infrastructure, the control space is also generally time varying. When the average load is expected to change considerably, a new stationary optimization is performed, giving a new state and control reference together with a new dynamic model that is used for both optimization and state estimation. Another proposed control strategy is a control and output constrained nonlinear model predictive controller for the operation of gas transmission systems. Here, the objective is also the security of the supply, quality control and minimization of transportation costs. An output vector is defined, which together with a control vector are both penalized quadratically from their respective references in the objective function. The nonlinear model predictive controller can be combined with a stationary optimization. At each sampling instant, a non convex nonlinear programming problem is solved giving a local minimum

  2. Experimental and computational study of the effect of 1 atm background gas on nanoparticle generation in femtosecond laser ablation of metals

    Science.gov (United States)

    Wu, Han; Wu, Chengping; Zhang, Nan; Zhu, Xiaonong; Ma, Xiuquan; Zhigilei, Leonid V.

    2018-03-01

    Laser ablation of metal targets is actively used for generation of chemically clean nanoparticles for a broad range of practical applications. The processes involved in the nanoparticle formation at all relevant spatial and temporal scales are still not fully understood, making the precise control of the size and shape of the nanoparticles challenging. In this paper, a combination of molecular dynamics simulations and experiments is applied to investigate femtosecond laser ablation of aluminum targets in vacuum and in 1 atm argon background gas. The results of the simulations reveal a strong effect of the background gas environment on the initial plume expansion and evolution of the nanoparticle size distribution. The suppression of the generation of small/medium-size Al clusters and formation of a dense layer at the front of the expanding ablation plume, observed during the first nanosecond of the plume expansion in a simulation performed in the gas environment, have important implications on the characteristics of the nanoparticles deposited on a substrate and characterized in the experiments. The nanoparticles deposited in the gas environment are found to be more round-shaped and less flattened as compared to those deposited in vacuum. The nanoparticle size distributions exhibit power-law dependences with similar values of exponents obtained from fitting experimental and simulated data. Taken together, the results of this study suggest that the gas environment may be effectively used to control size and shape of nanoparticles generated by laser ablation.

  3. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Azer Yalin; Bryan Willson

    2008-06-30

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

  4. Evaluating platelet aggregation dynamics from laser speckle fluctuations.

    Science.gov (United States)

    Hajjarian, Zeinab; Tshikudi, Diane M; Nadkarni, Seemantini K

    2017-07-01

    Platelets are key to maintaining hemostasis and impaired platelet aggregation could lead to hemorrhage or thrombosis. We report a new approach that exploits laser speckle intensity fluctuations, emanated from a drop of platelet-rich-plasma (PRP), to profile aggregation. Speckle fluctuation rate is quantified by the speckle intensity autocorrelation, g 2 (t) , from which the aggregate size is deduced. We first apply this approach to evaluate polystyrene bead aggregation, triggered by salt. Next, we assess dose-dependent platelet aggregation and inhibition in human PRP spiked with adenosine diphosphate and clopidogrel. Additional spatio-temporal speckle analyses yield 2-dimensional maps of particle displacements to visualize platelet aggregate foci within minutes and quantify aggregation dynamics. These findings demonstrate the unique opportunity for assessing platelet health within minutes for diagnosing bleeding disorders and monitoring anti-platelet therapies.

  5. Pico-second laser spectroscopy and reaction dynamics in liquids

    International Nuclear Information System (INIS)

    Mialocq, Jean-Claude

    1984-01-01

    The dynamic relaxation of excited singlet states of molecules and ions in liquid solution is investigated using picosecond laser spectroscopy. The more efficient process for the deactivation of the first excited singlet state of pinacyanol is internal conversion S 1 → S 0 between iso-energetic states. At low viscosity, the rate constant is inversely proportional to the macroscopic viscosity and depends on the relaxation of the angle between the quinoline end groups around the polymethinic chain. Electron photodetachment by 265 nm excitation of the ferrocyanide and phenolate anions and photoionisation of neutral molecules, phenol, indole and tryptophan in polar solvents give rise to the solvated electron formation. The mono-or bi-photonic nature of the ejection process and the solvent relaxation around the excess electron are analyzed. (author) [fr

  6. Dynamic ADI computations of thermoelastic stresses in crystalline laser media

    International Nuclear Information System (INIS)

    Gelinas, R.J.; Doss, S.K.; Carlson, N.N.

    1985-01-01

    This article considers thermoelastic effects which influence both the thermal engineering design and optical propagation in solid state high average power laser (HAPL) systems. The methods and computations described here have been developed for applications, ultimately, to crystalline slabs with arbitrary symmetry properties and with arbitrary spatial orientations between crystalline axes and slab configurations. For this, accurate numerical solutions are required simultaneously for the heat equation and Hooke's law in thier most general tensor forms. Prompted by the optical problem requirements in HAPL systems, this work utilizes implementations of Eulerian discretizations and dynamic ADI methods for solving general fourth-order elliptic partial differential equations (PDE's) which describe stress potentials in anisotropic media. These formulations can provide both steady state and transient PDE solutions. This article concludes with computed results for trigonal Al 2 O 3 crystal deformations in various crystal axes/slab orientations

  7. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular...... simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic...... techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization...

  8. Gas dynamic reaction process and system for laser chemistry

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    A reaction system is disclosed wherein a moving, unidirectional stream of an activatable gaseous species is produced, the individual members of which have the forward components of their velocities at least 10 times greater than the lateral components of their velocities. The stream is irradiated with substantially monochromatic light having a frequency which activates at least some of the individual members of the species. The activated members can then be reacted with another stream or otherwise utilized

  9. Laser technology (selected articles)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-09

    This paper presents high-energy CW HF/DF chemical lasers developed under the U.S. Navy Sealite program and the Alpha program of the DARPA Triad program, and a brief account of Soviet chemical lasers. Continuous wave HF/DF chemical lasers were developed starting in the late sixties as high-power lasers of consistent interest to military circles. These are lasers that have the most matured technology among present-day high-energy lasers. It is hoped that in the near future CW HF/DF chemical lasers can be developed into a space laser weapon to deal with ICBMs. CW HF/DF chemical lasers are an integration of technologies in gas dynamics, chemistry, fluid chemistry, optics, and lasers. By using the branching chain reaction of heat liberation, inversion of the population ratio is generated to obtain lasers.

  10. Evolution of collision numbers for a chaotic gas dynamics.

    Science.gov (United States)

    Vidgop, Alexander Jonathan; Fouxon, Itzhak

    2011-11-01

    We put forward a conjecture of recurrence for a gas of hard spheres that collide elastically in a finite volume. The dynamics consists of a sequence of instantaneous binary collisions. We study how the numbers of collisions of different pairs of particles grow as functions of time. We observe that these numbers can be represented as a time integral of a function on the phase space. Assuming the results of the ergodic theory apply, we describe the evolution of the numbers by an effective Langevin dynamics. We use the facts that hold for these dynamics with probability one, in order to establish properties of a single trajectory of the system. We find that for any triplet of particles there will be an infinite sequence of moments of time, when the numbers of collisions of all three different pairs of the triplet will be equal. Moreover, any value of difference of collision numbers of pairs in the triplet will repeat indefinitely. On the other hand, for larger numbers of pairs there is but a finite number of repetitions. Thus the ergodic theory produces a limitation on the dynamics.

  11. Comparative assessment of erbium fiber ring lasers and reflective SOA linear lasers for fiber Bragg grating dynamic strain sensing.

    Science.gov (United States)

    Wei, Heming; Krishnaswamy, Sridhar

    2017-05-01

    Fiber Bragg grating (FBG) dynamic strain sensors using both an erbium-based fiber ring laser configuration and a reflective semiconductor optical amplifier (RSOA)-based linear laser configuration are investigated theoretically and experimentally. Fiber laser models are first presented to analyze the output characteristics of both fiber laser configurations when the FBG sensor is subjected to dynamic strains at high frequencies. Due to differences in the transition times of erbium and the semiconductor (InP/InGaAsP), erbium-doped fiber amplifier (EDFA)- and RSOA-based fiber lasers exhibit different responses and regimes of stability when the FBG is subjected to dynamic strains. The responses of both systems are experimentally verified using an adaptive photorefractive two-wave mixing (TWM) spectral demodulation technique. The experimental results show that the RSOA-FBG fiber linear cavity laser is stable and can stably respond to dynamic strains at high frequencies. An example application using a multiplexed TWM interferometer to demodulate multiple FBG sensors is also discussed.

  12. Modeling beam-front dynamics at low gas pressures

    International Nuclear Information System (INIS)

    Briggs, R.J.; Yu, S.

    1982-01-01

    The dynamics of space charge neutralization at the front of an intense self-focused electron beam pulse exhibits important differences in different gas pressure regimes. At very low pressures, the beam front is in the so-called ion-focused regime (IFR) where all secondary electrons are expelled from the beam region by the radial electric field without causing significant additional ionization. We estimate the upper pressure boundary of this regime by considering the distance scale length for cascade (avalanche) ionization. Data from the FX-25 diode experiments indicate a critical transition pressure (P/sub c/) that agrees with this estimate and with its scaling among various gas types. Normal mobility-limited treatments (local conductivity models) of the secondary electrons at the beam front are not justified until the gas pressure is 10 to 50 times higher than P/sub c/, due to runaway of these secondary electrons in the strong space-charge electric field at the lower pressures. The main conclusion of this study is that a non-local phase space (Boltzmann) treatment of the secondary electrons is required to accurately describe these different beam front regimes and the transitions between them; such a code model is currently under development

  13. Application of a high-density gas laser target to the physics of x-ray lasers and coronal plasmas

    International Nuclear Information System (INIS)

    Pronko, J.G.; Kohler, D.

    1996-01-01

    An experiment has been proposed to investigate a photopumped x-ray laser approach using a novel, high-density, laser heated supersonic gas jet plasma to prepare the lasant plasma. The scheme uses the He- like sodium 1.10027 nm line to pump the He-like neon 1s-4p transition at 1.10003 nm with the lasing transitions between the n=4 to n=2,3 states and the n=3 to n=2 state at 5.8 nm, 23.0 nm, and 8.2 nm, respectively. The experiment had been proposed in 1990 and funding began Jan. 1991; however circumstances made it impossible to pursue the research over the past 5 years, and it was decided not to pursue the research any further

  14. [Measurement on gas temperature distribution by tunable diode laser absorption spectroscopy].

    Science.gov (United States)

    Li, Ning; Yan, Jian-hua; Wang, Fei; Chi, Yong; Cen, Ke-fa

    2008-08-01

    The technique of tunable diode laser absorption spectroscopy (TDLAS) can be used for gas temperature distribution measurement by scanning multiple gas absorption lines with a tunable diode laser. The fundamental of gas temperature distribution measurement by TDLAS is introduced in the present paper, and the discretization strategy of equation for gas absorption is also given here. Using constrained linear least-square fitting method, the gas temperature distribution can be calculated with the help of physical constraints under the condition of uniform gas concentration and pressure. Based on the spectral parameters of four CO absorption lines near 6330 cm(-1) from HITRAN database, the model of two-temperature distribution at 300 and 600 K with each path length of 55 cm was set up. The effects of relative measurement error and different path length constraints of temperature bins on the gas temperature distribution measurement results were simulated by constrained linear least-square fitting. The results show that the temperature distribution calculation error increases as the relative measurement error rises. A measurement error of 5% could lead to a maximum relative error of 11%, and an average relative error of 2.2% for calculation result. And the weak physical constraints of path length for temperature bins could increase the calculation result error during the process of constrained linear least-square fitting. By setting up the model of two-temperature distribution with gas cells at room temperature as the cold section and in tube furnace as the hot section, the experiment of gas temperature distribution measurement in lab was carried out. Using four absorption lines of CO near 6330 cm(-1) scanned by VCSEL diode laser, and fitting the background laser intensity without absorption by the cubic polynomial to get the baseline signal, the integrals of spectral absorbance for gas temperature distribution measurement can be calculated. The relative calculation

  15. Laser photoacoustic spectroscopy of biosystems gas exchange with the atmosphere

    Science.gov (United States)

    Ageev, B. G.; Ponomarev, Y. N.; Sapozhnikova, V. A.

    1998-10-01

    A response of plants to stress action is characterized by an activation of the respiration process. The CO2 evolution by some plants exposed to elevated concentration of pollutants and pressure decrease is studied using a photoacoustic spectrometer with a CO2 laser. The measurements show a considerable CO2 evolution by all kinds of the test plants. The quantity of CO2 emitted by pea seedlings at 8 kPa, for example, exceeds the control one by about 20 times (24 h after the exposure start). The exposure of pea seedlings to C2H4 and O3 at various concentrations also increases CO2 evolution: the 48-h exposure of test plants to C2H4 (at 0.01 ppm) increases CO2 evolution by approximately 100% with respect to the control plants.

  16. Titanium Matrix Composite Ti/TiN Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Aleksander Lisiecki

    2015-01-01

    Full Text Available A high power direct diode laser, emitting in the range of near infrared radiation at wavelength 808–940 nm, was applied to produce a titanium matrix composite on a surface layer of titanium alloy Ti6Al4V by laser surface gas nitriding. The nitrided surface layers were produced as single stringer beads at different heat inputs, different scanning speeds, and different powers of laser beam. The influence of laser nitriding parameters on the quality, shape, and morphology of the surface layers was investigated. It was found that the nitrided surface layers consist of titanium nitride precipitations mainly in the form of dendrites embedded in the titanium alloy matrix. The titanium nitrides are produced as a result of the reaction between molten Ti and gaseous nitrogen. Solidification and subsequent growth of the TiN dendrites takes place to a large extent at the interface of the molten Ti and the nitrogen gas atmosphere. The direction of TiN dendrites growth is perpendicular to the surface of molten Ti. The roughness of the surface layers depends strongly on the heat input of laser nitriding and can be precisely controlled. In spite of high microhardness up to 2400 HV0.2, the surface layers are crack free.

  17. Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.

    Science.gov (United States)

    Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A

    2014-08-01

    Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database).

  18. First Results from Laser-Driven MagLIF Experiments on OMEGA: Time Evolution of Laser Gas Heating Using Soft X-Ray Diagnostics

    Science.gov (United States)

    Barnak, D. H.; Betti, R.; Chang, P.-Y.; Davies, J. R.

    2015-11-01

    Magnetized liner inertial fusion (MagLIF) is a promising inertial confinement fusion scheme comprised of three stages: axial magnetization, laser heating of the deuterium -tritium gas fill, and compression of the gas by the liner. To study the physics of MagLIF, a scaled-down version has been designed and implemented on the OMEGA-60 laser. This talk will focus primarily on the heating process of a MagLIF target using a 351-nm laser. A neon-doped deuterium gas capsule was heated using a 2.5-ns square pulse delivering 200 J of laser energy. Spectral analysis of the x-ray emission from the side and the laser entrance hole of the capsule is used to infer the time evolution of the gas temperature. The x-ray spectra for a grid of possible gas temperatures and densities are simulated using Spect3D atomic modeling software. The simulation results are then used to deconvolve the raw signals and obtain density and temperature estimations. A gas temperature lower bound of 100 eV at 1.3 ns after the start of the laser pulse can be inferred from these estimations. The estimations are then compared to 2-D hydrocode modeling. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and by DE-FG02-04ER54786 and DE-FC02-04ER54789 (Fusion Science Center).

  19. Influence of Ambient Gas on Laser-Induced Breakdown Spectroscopy of Uranium Metal

    International Nuclear Information System (INIS)

    Zhang Dacheng; Ma Xinwen; Wang Shulong; Zhu Xiaolong

    2015-01-01

    Laser-induced breakdown spectroscopy (LIBS) is regarded as a suitable method for the remote analysis of materials in any phase, even in an environment with high radiation levels. In the present work we used the third harmonic pulse of a Nd:YAG laser for ablation of uranium metal and measured the plasma emission with a fiber-optic spectrometer. The LIBS spectra of uranium metal and their features in different ambient gases (i.e., argon, neon, oxygen, and nitrogen) at atmospheric pressure were studied. Strong continuum spectrum and several hundreds of emission lines from UI and UII were observed. It is found that the continuum spectrum observed in uranium not only comes from bremsstrahlung emission but is also due to the complex spectrum of uranium. The influence of ambient gas and the gas flow rate for ablation of uranium metal was investigated. The experimental results indicate that the intensity of the uranium lines was enhanced in argon and nitrogen. However, the intensity of uranium lines was decreased in oxygen due to the generation of UO and other oxides. The results also showed that the highest intensity of uranium lines were obtained in argon gas with a gas flow rate above 2.5 L/min. The enhanced mechanism in ambient gas and the influence of the gas flow rate were analyzed in this work. (paper)

  20. Development of a resonant laser ionization gas cell for high-energy, short-lived nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, T., E-mail: tetsu@riken.jp [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wada, M. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tomita, H.; Sakamoto, C.; Takatsuka, T. [Faculty of Engineering, Nagoya University, Nagoya 464-8603 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Furukawa, T. [Department of Physics, Tokyo Metropolitan University, Tokyo 116-8551 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Iimura, H. [Japan Atomic Energy Agency (JAEA), Tokaimura 319-1100 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ito, Y. [Department of Physics, Tsukuba University, Tsukuba 305-8577 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kubo, T.; Matsuo, Y. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Mita, H. [Department of Physics, Tsukuba University, Tsukuba 305-8577 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Naimi, S. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nakamura, S. [Department of Physics, Tsukuba University, Tsukuba 305-8577 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Noto, T. [Faculty of Engineering, Nagoya University, Nagoya 464-8603 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Schury, P. [Department of Physics, Tsukuba University, Tsukuba 305-8577 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shinozuka, T. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); and others

    2013-01-15

    A new laser ion source configuration based on resonant photoionization in a gas cell has been developed at RIBF RIKEN. This system is intended for the future PArasitic RI-beam production by Laser Ion-Source (PALIS) project which will be installed at RIKEN’s fragment separator, BigRIPS. A novel implementation of differential pumping, in combination with a sextupole ion beam guide (SPIG), has been developed. A few small scroll pumps create a pressure difference from 1000 hPa–10{sup −3} Pa within a geometry drastically miniaturized compared to conventional systems. This system can utilize a large exit hole for fast evacuation times, minimizing the decay loss for short-lived nuclei during extraction from a buffer gas cell, while sufficient gas cell pressure is maintained for stopping high energy RI-beams. In spite of the motion in a dense pressure gradient, the photo-ionized ions inside the gas cell are ejected with an assisting force gas jet and successfully transported to a high-vacuum region via SPIG followed by a quadrupole mass separator. Observed behaviors agree with the results of gas flow and Monte Carlo simulations.

  1. Multi-species trace gas analysis with dual-wavelength quantum cascade laser

    Science.gov (United States)

    Jágerská, Jana; Tuzson, Béla; Looser, Herbert; Jouy, Pierre; Hugi, Andreas; Mangold, Markus; Soltic, Patrik; Faist, Jérôme; Emmenegger, Lukas

    2015-04-01

    Simultaneous detection of multiple gas species using mid-IR laser spectroscopy is highly appealing for a large variety of applications ranging from air quality monitoring, medical breath analysis to industrial process control. However, state-of-the-art distributed-feedback (DFB) mid-IR lasers are usually tunable only within a narrow spectral range, which generally leads to one-laser-one-compound measurement strategy. Thus, multi-species detection involves several lasers and elaborate beam combining solutions [1]. This makes them bulky, costly, and highly sensitive to optical alignment, which limits their field deployment. In this paper, we explore an alternative measurement concept based on a dual-wavelength quantum cascade laser (DW-QCL) [2]. Such a laser can emit at two spectrally distinct wavelengths using a succession of two DFB gratings with different periodicities and a common waveguide to produce one output beam. The laser design was optimized for NOx measurements and correspondingly emits single-mode at 5.26 and 6.25 μm. Electrical separation of the respective laser sections makes it possible to address each wavelength independently. Thereby, it is possible to detect NO and NO2 species with one laser using the same optical path, without any beam combining optics, i.e. in a compact and cost-efficient single-path optical setup. Operated in a time-division multiplexed mode, the spectrometer reaches detection limits at 100 s averaging of 0.5 and 1.5 ppb for NO2 and NO, respectively. The performance of the system was validated against the well-established chemiluminescence detection while measuring the NOx emissions on an automotive test-bench, as well as monitoring the pollution at a suburban site. [1] B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, 'Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,' Atmospheric Measurement Techniques 6, 927-936 (2013

  2. Vorticity and symplecticity in multi-symplectic, Lagrangian gas dynamics

    Science.gov (United States)

    Webb, G. M.; Anco, S. C.

    2016-02-01

    The Lagrangian, multi-dimensional, ideal, compressible gas dynamic equations are written in a multi-symplectic form, in which the Lagrangian fluid labels, m i (the Lagrangian mass coordinates) and time t are the independent variables, and in which the Eulerian position of the fluid element {x}={x}({m},t) and the entropy S=S({m},t) are the dependent variables. Constraints in the variational principle are incorporated by means of Lagrange multipliers. The constraints are: the entropy advection equation S t = 0, the Lagrangian map equation {{x}}t={u} where {u} is the fluid velocity, and the mass continuity equation which has the form J=τ where J={det}({x}{ij}) is the Jacobian of the Lagrangian map in which {x}{ij}=\\partial {x}i/\\partial {m}j and τ =1/ρ is the specific volume of the gas. The internal energy per unit volume of the gas \\varepsilon =\\varepsilon (ρ ,S) corresponds to a non-barotropic gas. The Lagrangian is used to define multi-momenta, and to develop de Donder-Weyl Hamiltonian equations. The de Donder-Weyl equations are cast in a multi-symplectic form. The pullback conservation laws and the symplecticity conservation laws are obtained. One class of symplecticity conservation laws give rise to vorticity and potential vorticity type conservation laws, and another class of symplecticity laws are related to derivatives of the Lagrangian energy conservation law with respect to the Lagrangian mass coordinates m i . We show that the vorticity-symplecticity laws can be derived by a Lie dragging method, and also by using Noether’s second theorem and a fluid relabelling symmetry which is a divergence symmetry of the action. We obtain the Cartan-Poincaré form describing the equations and we discuss a set of differential forms representing the equation system.

  3. Kinetic analysis of rare gas metastable production and optically pumped Xe lasers

    Science.gov (United States)

    Demyanov, A. V.; Kochetov, I. V.; Mikheyev, P. A.; Azyazov, V. N.; Heaven, M. C.

    2018-01-01

    Optically pumped all-rare-gas lasers use metastable rare gas atoms as the lasing species in mixtures with He or Ar buffer gas. The metastables are generated in a glow discharge, and we report model calculations for the optimal production of Ne*, Ar*, Kr* and Xe*. Discharge efficiency was estimated by solving the Boltzmann equation. Laser efficiency, gain and output power of the CW optically pumped Xe laser were assessed as functions of heavier rare gas content, pressure, optical pump intensity and the optical path length. It was found that, for efficient operation the heavier rare gas content has to be of the order of one percent or less, and the total pressure—in the range 0.3–1.5 atm. Output power and specific discharge power increase approximately linearly with pump intensity over the output range from 300–500 W cm‑2. Ternary mixtures Xe:Ar:He were found to be the most promising. Total laser efficiency was found to be nearly the same for pumping the 2p8 or 2p9 state, reaching 61%–70% for a pump intensity of ~720 W cm‑2 when the Xe fraction was in the range 0.001 ÷ 0.01 and Ar fraction—0.1 ÷ 0.5. However, when the 2p8 state was pumped, the maximum total efficiency occurred at larger pressures than for pumping of the 2p9 state. The discharge power density required to sustain a sufficient Xe* number density was in the range of tens of watts per cubic centimeter for 50% Ar in the mixture.

  4. Greenhouse gas dynamics in degraded and restored tropical peatlands

    Directory of Open Access Journals (Sweden)

    J. Jauhiainen

    2016-06-01

    Full Text Available Agricultural and other land uses on ombrotrophic lowland tropical peat swamps typically lead to reduced vegetation biomass and water table drawdown. We review what is known about greenhouse gas (GHG dynamics in natural and degraded tropical peat systems in south-east Asia, and on this basis consider what can be expected in terms of GHG dynamics under restored conditions. Only limited in situ data are available on the effects of restoration and the consequences for peat carbon (C dynamics. Hydrological restoration seeks to bring the water table closer to the peat surface and thus re-create near-natural water table conditions, in order to reduce wildfire risk and associated fire impacts on the peat C store, as well as to reduce aerobic peat decomposition rates. However, zero emissions are unlikely to be achieved due to the notable potential for carbon dioxide (CO2 production from anaerobic peat decomposition processes. Increased vegetation cover (ideally woody plants resulting from restoration will increase shading and reduce peat surface temperatures, and this may in turn reduce aerobic decomposition rates. An increase in litter deposition rate will compensate for C losses by peat decomposition but also increase the supply of labile C, which may prime decomposition, especially in peat enriched with recalcitrant substrates. The response of tropical peatland GHG emissions to peatland restoration will also vary according to previous land use and land use intensity.

  5. The Huber’s Method-based Gas Concentration Reconstruction in Multicomponent Gas Mixtures from Multispectral Laser Measurements under Noise Overshoot Conditions

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2016-01-01

    Full Text Available Laser gas analysers are the most promising for the rapid quantitative analysis of gaseous air pollution. A laser gas analysis problem is that there are instable results in reconstruction of gas mixture components concentration under real noise in the recorded laser signal. This necessitates using the special processing algorithms. When reconstructing the quantitative composition of multi-component gas mixtures from the multispectral laser measurements are efficiently used methods such as Tikhonov regularization, quasi-solution search, and finding of Bayesian estimators. These methods enable using the single measurement results to determine the quantitative composition of gas mixtures under measurement noise. In remote sensing the stationary gas formations or in laboratory analysis of the previously selected (when the gas mixture is stationary air samples the reconstruction procedures under measurement noise of gas concentrations in multicomponent mixtures can be much simpler. The paper considers a problem of multispectral laser analysis of stationary gas mixtures for which it is possible to conduct a series of measurements. With noise overshoots in the recorded laser signal (and, consequently, overshoots of gas concentrations determined by a single measurement must be used stable (robust estimation techniques for substantial reducing an impact of the overshoots on the estimate of required parameters. The paper proposes the Huber method to determine gas concentrations in multicomponent mixtures under signal overshoot. To estimate the value of Huber parameter and the efficiency of Huber's method to find the stable estimates of gas concentrations in multicomponent stationary mixtures from the laser measurements the mathematical modelling was conducted. Science & Education of the Bauman MSTU 108 The mathematical modelling results show that despite the considerable difference among the errors of the mixture gas components themselves a character of

  6. Enhancement of the vacuum ultraviolet emission from excimer laser-generated plasmas by ambient gas atoms

    Science.gov (United States)

    Mehlman, G.; Chrisey, D. B.; Horwitz, J. S.; Burkhalter, P. G.; Auyeung, R. C. Y.; Newman, D. A.

    1993-11-01

    We have measured the axial (z) and radial (x) distribution of the vacuum ultraviolet emission from excimer laser generated aluminum plasmas in vacuum and in 300 mTorr of argon. The ratio of the radiated line intensities (emission in a gas versus vacuum) on the z axis (i.e., x=0) increased exponentially with distance from the target surface for plasmas generated in a 300 mTorr argon ambient. The absolute line intensities increased linearly with the argon pressure and approximately linearly with the ambient gas atomic cross section when other rare gases were substituted. The line intensity radial distribution was broader for plasmas in argon than in vacuum and the magnitude of the effect increased monotonically with z. The spectral data obtained from plasmas in a gas ambient are discussed in terms of the diffusion of plasma electrons in an ionized gas.

  7. Transport phenomena in non-uniform gas subjected to laser radiation

    Science.gov (United States)

    Chermyaninov, I. V.; Chernyak, V. G.

    2017-04-01

    The paper discusses the theory of transport processes in one-component gas located in capillary subjected to resonant laser radiation and both temperature and pressure gradients. The equations for the kinetic coefficients determining heat- and mass transport in the gas are derived on the basis of modified Boltzmann equations for the excited and unexcited particles. The cross kinetic coefficients satisfy the Onsager reciprocity for all Knudsen numbers and laws of gas particles interaction with each other and with boundary surface of the capillary. Analysis of possible non-equilibrium stationary states of first and second order for the one-component gas in the capillary has been developed on the basis of the Prigogine theorem of stationary states. Equations describing the stationary states in Knudsen limit (Kn >> 1) and slip-flow regime (Kn << 1) were derived.

  8. Diode laser absorption spectroscopy for studies of gas exchange in fruits

    Science.gov (United States)

    Persson, L.; Gao, H.; Sjöholm, M.; Svanberg, S.

    2006-07-01

    Gas exchange in fruits, in particular oxygen transport in apples, was studied non-intrusively using wavelength modulation diode laser absorption spectroscopy at about 761 nm, applied to the strongly scattering intact fruit structure. The applicability of the technique was demonstrated by studies of the influence of the skin to regulate the internal oxygen balance and of cling film in modifying it by observing the response of the signal from the internal oxygen gas to a transient change in the ambient gas concentration. Applications within controlled atmosphere fruit storage and modified atmosphere packaging are discussed. The results suggest that the technique could be applied to studies of a large number of problems concerning gas exchange in foods and in food packaging.

  9. Simultaneous high-speed gas property measurements at the exhaust gas recirculation cooler exit and at the turbocharger inlet of a multicylinder diesel engine using diode-laser-absorption spectroscopy.

    Science.gov (United States)

    Jatana, Gurneesh S; Magee, Mark; Fain, David; Naik, Sameer V; Shaver, Gregory M; Lucht, Robert P

    2015-02-10

    as the first documented application of diode-laser absorption for high-speed gas dynamics measurements in the turbocharger inlet and EGR cooler exit of a diesel engine.

  10. Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization

    Science.gov (United States)

    Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S.

    To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at.%) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.

  11. Hollow Core Optical Fiber Gas Lasers: Toward Novel and Practical Systems in Fused Silica

    Science.gov (United States)

    2017-05-18

    release. John Luginsland Hollow-Core Optical Fiber Gas Lasers K. Corwin et al. 16 Fig. 18 (a) The mode- locked Tm/Ho...18. NUMBER OF PAGES 19a.  NAME OF RESPONSIBLE PERSON LUGINSLAND, JOHN 19b.  TELEPHONE NUMBER (Include area code) 703-588-1775 Standard Form 298 (Rev. 8...for public release. John Luginsland FA9550-14-1-0024 Final Report K. Corwin et al. 1 A. Project Summary/Abstract Hollow Core Optical Fiber Gas

  12. Infrared Lunar Laser Ranging at Calern : Impact on Lunar Dynamics

    Science.gov (United States)

    Viswanathan, Vishnu; Fienga, Agnes; Manche, Herve; Gastineau, Mickael; Courde, Clement; Torre, Jean Marie; Exertier, Pierre; Laskar, Jacques

    2017-04-01

    Introduction: Since 2015, in addition to the traditional green (532nm), infrared (1064nm) has been the preferred wavelength for lunar laser ranging at the Calern lunar laser ranging (LLR) site in France. Due to the better atmospheric transmission of IR with respect to Green, nearly 3 times the number of normal points have been obtained in IR than in Green [1]. Dataset: In our study, in addition to the historical data obtained from various other LLR sites, we include the recent IR normal points obtained from Calern over the 1 year time span (2015-2016), constituting about 4.2% of data spread over 46 years of LLR. Near even distribution of data provided by IR on both the spatial and temporal domain, helps us to improve constraints on the internal structure of the Moon modeled within the planetary ephemeris : INPOP [2]. Data reduction: IERS recommended models have been used in the data reduction software GINS (GRGS,CNES) [3]. Constraints provided by GRAIL [4], on the Lunar gravitational potential and Love numbers have been taken into account in the least-square fit procedure. Earth orientation parameters from KEOF series have been used as per a recent study [5]. Results: New estimates on the dynamical parameters of the lunar core will be presented. Acknowledgements: We thank the lunar laser ranging observers at Observatoire de la Côte d'Azur, France, McDonald Observatory, Texas, Haleakala Observatory, Hawaii, and Apache Point Observatory in New Mexico for providing LLR observations that made this study possible. The research described in this abstract was carried out at Geoazur-CNRS, France, as a part of a PhD thesis funded by Observatoire de Paris and French Ministry of Education and Research. References: [1] Clement C. et al. (2016) submitted to A&A [2] Fienga A. et al. (2015) Celest Mech Dyn Astr, 123: 325. doi:10.1007/s10569-015-9639-y [3] Viswanathan V. et al. (2015) EGU, Abstract 18, 13995 [4] Konopliv A. S. et al. (2013) J. Geophys. Res. Planets, 118, 1415

  13. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting

    Science.gov (United States)

    Li, Ruidi; Shi, Yusheng; Wang, Zhigang; Wang, Li; Liu, Jinhui; Jiang, Wei

    2010-04-01

    The densification during selective laser melting (SLM) process is an important factor determining the final application of SLM-part. In the present work, the densifications under different processing conditions were investigated and the densification mechanisms were elucidated. It was found that the higher laser power, lower scan speed, narrower hatch spacing and thinner layer thickness could enable a much smoother melting surface and consequently a higher densification. The gas atomized powder possessed better densification than water atomized powder, due to the lower oxygen content and higher packing density of gas atomized powder. A large number of regular-shaped pores can be generated at a wider hatch spacing, even if the scanning track is continuous and wetted very well. The densification mechanisms were addressed and the methods for building dense metal parts were also proposed as follows: inhibiting the balling phenomenon, increasing the overlap ratio of scanning tracks and reducing the micro-cracks.

  14. Momentum distributions of selected rare-gas atoms probed by intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses. The cal......We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses....... The calculations are performed by solving the time-dependent Schrödinger equation within the single-active-electron approximation, and focal-volume effects are taken into account by appropriately averaging the results. The resulting momentum distributions are in quantitative agreement with the experimental...

  15. He-Ne and cw CO2 laser long-path systems for gas detection.

    Science.gov (United States)

    Grant, W B

    1986-03-01

    This paper describes the design and testing of a laboratory prototype dual He-Ne laser system for the detection of methane leaks from underground pipelines and solid-waste landfill sites using differential absorption of radiation backscattered from topographic targets. A laboratory-prototype dual cw carbon dioxide laser system also using topographic backscatter is discussed, and measurement results for methanol are given. With both systems, it was observed that the time-varying differential absorption signal was useful in indicating the presence of a gas coming from a nearby source. Limitations to measurement sensitivity, especially the role of speckle and atmospheric turbulence, are described. The speckle results for hard targets are contrasted with those from atmospheric aerosols. The Appendix gives appropriate laser lines and values of absorption coefficients for the hydrazine fuel gases.

  16. CO{sub 2} laser gas assisted nitriding of Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S. [KFUPM, Dhahran (Saudi Arabia)]. E-mail: bsyilbas@kfupm.edu.sa; Karatas, C. [Hacettepe University, Ankara (Turkey); Uslan [Gazi University, Ankara (Turkey); Keles, O. [Gazi University, Ankara (Turkey); Usta, I.Y. [Gazi University, Ankara (Turkey); Ahsan, M. [KFUPM, Dhahran (Saudi Arabia)

    2006-10-15

    Laser gas assisted nitriding of Ti-6Al-4V alloy is carried out and nitride compounds formed and their concentration in the surface vicinity are examined. SEM, XRD and XPS are accommodated to examine the nitride layer characteristics. Microhardness across the nitride layer is measured. Temperature field and nitrogen distribution due to laser irradiation pulse is predicted. It is found that the nitride layer appears like golden color; however, it becomes dark gold color once the laser power irradiation is increased. The {delta}-TiN and {epsilon}-TiN are dominant phases in the surface vicinity. The needle like dendrite structure replace with the feathery like structure in the surface region due to high nitrogen concentration. No porous or microcracks are observed in the nitrided layer, except at high power irradiation, in this case, elongated cracks are observed in the surface region where the nitrogen concentration is considerably high.

  17. Monte Carlo description of gas flow from laser-evaporated silver

    DEFF Research Database (Denmark)

    Ellegaard, Ole; SCHOU, J; Urbassek, H

    1999-01-01

    at times t much greater than tau(laser), and this demonstrates that at these later times, the collisions in the plume efficiently smear out the characteristics of the varying temperature at the surface during ablation. The physical properties of the gas flow are determined by the mean thermal energy...... are determined by the mean thermal energy in the initial plume as well as the number of monolayers emitted.......In the present work, we have studied ablation of a silver metal surface with a Nd:YAG laser (355 nm, 0.8 J/cm(2), 6 ns) on the basis of measured data. We have solved the nonlinear heat conduction equation for the laser heating of the system and calculated the varying surface temperature...

  18. Novel test of modified Newtonian dynamics with gas rich galaxies.

    Science.gov (United States)

    McGaugh, Stacy S

    2011-03-25

    The current cosmological paradigm, the cold dark matter model with a cosmological constant, requires that the mass-energy of the Universe be dominated by invisible components: dark matter and dark energy. An alternative to these dark components is that the law of gravity be modified on the relevant scales. A test of these ideas is provided by the baryonic Tully-Fisher relation (BTFR), an empirical relation between the observed mass of a galaxy and its rotation velocity. Here, I report a test using gas rich galaxies for which both axes of the BTFR can be measured independently of the theories being tested and without the systematic uncertainty in stellar mass that affects the same test with star dominated spirals. The data fall precisely where predicted a priori by the modified Newtonian dynamics. The scatter in the BTFR is attributable entirely to observational uncertainty, consistent with a single effective force law.

  19. The dynamics of the Frustrated Ising Lattice Gas

    International Nuclear Information System (INIS)

    Arenzon, J.J.; Stariolo, D.A.; Ricci-Tersenghi, F.

    2000-04-01

    The dynamical properties of a three dimensional model glass, the Frustrated Ising Lattice Gas (FILG) are studied by Monte Carlo simulations. We present results of compression experiments, where the chemical potential is either slowly or abruptly changed, as well as simulations at constant density. One-time quantities like density and two-times ones as correlations, responses and mean square displacements are measured, and the departure from equilibrium clearly characterized. The aging scenario, particularly in the case of the density autocorrelations, is reminiscent of spin glass phenomenology with violations of the fluctuation-dissipation theorem, typical of systems with one replica symmetry breaking. The FILG, as a valid on-lattice model of structural glasses, can be described with tools developed in spin glass theory and, being a finite dimensional model, can open the way for a systematic study of activated processes in glasses. (author)

  20. The homogeneous property and flux splitting in gas dynamics

    Science.gov (United States)

    Lerat, A.

    The homogeneous property of fluxes in gas dynamics is investigated, and its consequences concerning the flux splitting introduced by Steger and Warming (1981) are examined. It is shown that, for any hyperbolic system w sub t + f(w) sub x = 0 which satisfies the homogeneous property, the flux f(w) can be expressed in terms of the eigenvalues and eigenvectors of the matrix A(w) = df(w)/dw. This same result is also found to hold for the split fluxes f(+)(w) and f(-)(w). The problem of the validity of flux splitting is studied using these results. Three applications of flux splitting are then considered. The first application concerns uncentered schemes and particularly a precise analysis of their stability, the second is connected with a method for correcting the dispersive error of second-order accurate schemes, and the third deals with a nonreflective boundary condition.

  1. Intensification of rare gas halide lasers with application to laser fusion

    International Nuclear Information System (INIS)

    Jacobs, R.R.; Eimerl, D.; Goldhar, J.; Murray, J.R.; Rapoport, W.R.; Schlitt, L.; Swingle, J.C.

    1980-01-01

    The two techniques of backward-wave Raman pulse compression and pulse stacking are reviewed in the context of using KrF lasers as drivers in inertial confinement fusion. Experimental and theoretical results on Raman pulse compression in methane are presented including data on 70 to 75% pump energy extraction by the counter propagating Stokes wave. Results from on-going pulse stacker/Raman compressor experiments are also described, along with future investigations in this general area

  2. Dynamic behavior of multirobot systems using lattice gas automata

    Science.gov (United States)

    Stantz, Keith M.; Cameron, Stewart M.; Robinett, Rush D., III; Trahan, Michael W.; Wagner, John S.

    1999-07-01

    Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems (or swarms). Our group has been studying the collective, autonomous behavior of these such systems and their applications in the area of remote-sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories are conducting tests in the fields of sensor technology, robotics, and multi- agents architectures. Our goal is to coordinate a constellation of point sensors using unmanned robotic vehicles (e.g., RATLERs, Robotic All-Terrain Lunar Exploration Rover- class vehicles) that optimizes spatial coverage and multivariate signal analysis. An overall design methodology evolves complex collective behaviors realized through local interaction (kinetic) physics and artificial intelligence. Learning objectives incorporate real-time operational responses to environmental changes. This paper focuses on our recent work understanding the dynamics of many-body systems according to the physics-based hydrodynamic model of lattice gas automata. Three design features are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve standard hydrodynamic flow. Two, adaptability, defined by the swarm's rate of deformation, can be controlled through the hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent nonlinearity of the dynamical equations describing large ensembles, stability criteria ensuring convergence to equilibrium states is developed by scaling information flow rates relative to a swarm's hydrodynamic flow rate. An initial test case simulates a swarm of twenty-five robots maneuvering past an obstacle while following a moving target. A genetic algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain. Armed with

  3. Inverse problem and uncertainty quantification: application to compressible gas dynamics

    International Nuclear Information System (INIS)

    Birolleau, Alexandre

    2014-01-01

    This thesis deals with uncertainty propagation and the resolution of inverse problems together with their respective acceleration via Polynomial Chaos. The object of this work is to present a state of the art and a numerical analysis of this stochastic spectral method, in order to understand its pros and cons when tackling the probabilistic study of hydrodynamical instabilities in Richtmyer-Meshkov shock tube experiments. The first chapter is introductory and allows understanding the stakes of being able to accurately take into account uncertainties in compressible gas dynamics simulations. The second chapter is both an illustrative state of the art on generalized Polynomial Chaos and a full numerical analysis of the method keeping in mind the final application on hydrodynamical problems developing shocks and discontinuous solutions. In this chapter, we introduce a new method, naming iterative generalized Polynomial Chaos, which ensures a gain with respect to generalized Polynomial Chaos, especially with non smooth solutions. Chapter three is closely related to an accepted publication in Communication in Computational Physics. It deals with stochastic inverse problems and introduces bayesian inference. It also emphasizes the possibility of accelerating the bayesian inference thanks to iterative generalized Polynomial Chaos described in the previous chapter. Theoretical convergence is established and illustrated on several test-cases. The last chapter consists in the application of the above materials to a complex and ambitious compressible gas dynamics problem (Richtmyer-Meshkov shock tube configuration) together with a deepened study of the physico-numerical phenomenon at stake. Finally, in the appendix, we also present some interesting research paths we quickly tackled during this thesis. (author) [fr

  4. Waste Gas And Particulate Control Measures For Laser Cutters In The Automotive Cloth Industry

    Science.gov (United States)

    Ball, R. D.; Kulik, B. F.; Stoncel, R. J.; Tan, S. L.

    1986-11-01

    Demands for greater flexibility and accuracy in the manufacture of automobile trim parts has made single-ply laser cutting an attractive proposition. Lasers are able to cut a large variety of cloth types, from vinyls to velours. Unlike mechanically cut parts, which in the case of velours produce rough edges and dust problems, laster cutting of parts produces smooth edges, fumes and fine particulate. A detailed study of the nature of the laser effluent from a cross section of typical synthetic cloth found in an automotive trim plant was undertaken. Most samples were cut by a fast axial flow, 500 Watt, continuous wave CO2 laser. A 254 mm (10-inch) focussing optics package was used. The width of the kerf varied with the material, and values were determined at between 0.2 and 0.7 mm. Particle size distribution analysis and rates of particulate emission for each cloth were determined. Gases were collected in gas sample bags and analyzed using Fourier transform infrared analysis. Low boiling point organics were collected on activated charcoal tubes, identified on a gas chromatograph mass spectrometer, and quantified on a gas chromatograph. Inorganic contaminants were collected on filter paper and analysed on an inductively coupled plasma atomic emission spectrometer. A number of different effluent control systems were evaluated. Due to the very fine and sticky nature of the particulate, filters capable of removing particulate sizes in the 10 μm or lower range, tend to clog rapidly. Laboratory scale models of wet scrubbers, and electrostatic precipitators were built and tested. The most effective dust and effluent gas control was given by a wet electrostatic precipitator. This system, in conjunction with a scrubber, should maintain emission levels within environmental standards.

  5. Route to Soft X-ray Laser Pumped by Gas-Filled-Capillary Discharge

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Prukner, Václav; Řípa, Milan; Frolov, Oleksandr; Štraus, Jaroslav; Vrba, Pavel

    2004-01-01

    Roč. 34, - (2004), s. 154-157 ISSN 1433-5581. [First Cairo Conference on Plasma Physics & Applications. Cairo, 11.10.2003-15.10.2003] R&D Projects: GA ČR(CZ) GA202/03/0711 Grant - others:GA MŠk1(CZ) LA 235 Keywords : fast capillary discharge * soft x-Ray laser Subject RIV: BL - Plasma and Gas Discharge Physics

  6. Design of the energy storage system for the High Energy Gas Laser Facility at LASL

    International Nuclear Information System (INIS)

    Riepe, K.B.; Kircher, M.J.

    1977-01-01

    The Antares laser is being built in the High Energy Gas Laser Facility (HEGLF) at Los Alamos to continue laser fusion experiments at very high power. The laser medium will be pumped by an electrical discharge, which requires an energy input of about 5 MJ in a few microseconds at about 500 kV. The energy storage system which will provide the pulsed power will be a bank of high-voltage pulse-forming networks. Tradeoff studies have been performed comparing the performance of multi-mesh networks with single-mesh networks. The single-mesh network requires about 20% more energy than a two-mesh network, but will tolerate three times the inductance of a two-mesh network. Analysis also shows that amplifier gain is not sensitive to impedance mismatch among the pulse-forming network, the transmission cables, and the gas discharge. A prototype pulse-forming network is being built to test components and trigger performance. It is a Marx generator storing 300 kJ at 1.2 MV open circuit, with 3 μH internal inductance

  7. Numerical investigation of the threshold intensity dependence on gas pressure in the breakdown of xenon by different laser wavelengths

    Science.gov (United States)

    Gamal, Yosr E. E.-D.; Abd El Hameid Mahmoud, Mohamed; Dawood, Nagia D. A.

    2014-07-01

    We report a theoretical analysis of the measurements that carried out to study the breakdown of xenon gas over a wide pressure range induced by laser source operating at different wavelengths. The study provided an investigation of the effect of laser wavelength as well as gas pressure on the physical processes associated with this phenomenon. To this aim a modified electron cascade model is applied. The model based on the numerical solution of the time dependent Boltzmann equation for the electron energy distribution function (EEDF) simultaneously with a set of rate equations which describe the rate of change of the formed excited states population. Comparison between the calculated and measured threshold intensities for the experimentally tested laser wavelengths and gas pressure range is obtained. Furthermore computations of the EEDF and its parameters showed the actual correlation between the gain and loss processes which determine the threshold breakdown intensity of xenon and the two experimentally tested parameters; laser wavelength and gas pressure.

  8. Diode Laser Sensor for Gas Temperature and H2O Concentration in a Scramjet Combustor Using Wavelength Modulation Spectroscopy (Postprint)

    National Research Council Canada - National Science Library

    Rieker, Gregory B; Li, Jonathan T; Jeffries, Jay B; Mathur, Tarun; Gruber, Mark R; Carter, Campbell D

    2005-01-01

    A diode laser absorption sensor which probes three spectral features of water vapor in the near infrared region to infer gas temperature and water vapor concentration near the exit of a scramjet combustor is presented...

  9. Trace-gas sensing using the compliance voltage of an external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Taubman, Matthew S.

    2013-06-04

    Quantum cascade lasers (QCLs) are increasingly being used to detect, identify, and measure levels of trace gases in the air. External cavity QCLs (ECQCLs) provide a broadly-tunable infrared source to measure absorption spectra of chemicals and provide high detection sensitivity and identification confidence. Applications include detecting chemical warfare agents and toxic industrial chemicals, monitoring building air quality, measuring greenhouse gases for atmospheric research, monitoring and controlling industrial processes, analyzing chemicals in exhaled breath for medical diagnostics, and many more. Compact, portable trace gas sensors enable in-field operation in a wide range of platforms, including handheld units for use by first responders, fixed installations for monitoring air quality, and lightweight sensors for deployment in unmanned aerial vehicles (UAVs). We present experimental demonstration of a new chemical sensing technique based on intracavity absorption in an external cavity quantum cascade laser (ECQCL). This new technique eliminates the need for an infrared photodetector and gas cell by detecting the intracavity absorption spectrum in the compliance voltage of the laser device itself. To demonstrate and characterize the technique, we measure infrared absorption spectra of chemicals including water vapor and Freon-134a. Sub-ppm detection limits in one second are achieved, with the potential for increased sensitivity after further optimization. The technique enables development of handheld, high-sensitivity, and high-accuracy trace gas sensors for in-field use.

  10. Controlling residual hydrogen gas in mass spectra during pulsed laser atom probe tomography.

    Science.gov (United States)

    Kolli, R Prakash

    2017-01-01

    Residual hydrogen (H 2 ) gas in the analysis chamber of an atom probe instrument limits the ability to measure H concentration in metals and alloys. Measuring H concentration would permit quantification of important physical phenomena, such as hydrogen embrittlement, corrosion, hydrogen trapping, and grain boundary segregation. Increased insight into the behavior of residual H 2 gas on the specimen tip surface in atom probe instruments could help reduce these limitations. The influence of user-selected experimental parameters on the field adsorption and desorption of residual H 2 gas on nominally pure copper (Cu) was studied during ultraviolet pulsed laser atom probe tomography. The results indicate that the total residual hydrogen concentration, H TOT , in the mass spectra exhibits a generally decreasing trend with increasing laser pulse energy and increasing laser pulse frequency. Second-order interaction effects are also important. The pulse energy has the greatest influence on the quantity H TOT , which is consistently less than 0.1 at.% at a value of 80 pJ.

  11. Dynamical modelling of measured time series from a Q-switched CO sub 2 laser

    CERN Document Server

    Horbelt, W; Bünner, M J; Meucci, R; Ciofini, M

    2003-01-01

    The transient dynamics of a Q-switched CO sub 2 laser is modelled quantitatively on the base of the four level model, a five dimensional nonlinear system of ordinary differential equations. Using the multiple shooting technique, internal parameters of the laser are estimated and the unobserved time courses of the population densities are constructed. For excitations barely above the laser threshold large pulse variations are identified as an effect of small variations of the pump parameter.

  12. Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers

    OpenAIRE

    Soriano, Miguel C.; Garcia-Ojalvo, Jordi; Mirasso, Claudio R.; Fischer, Ingo

    2013-01-01

    Complex phenomena in photonics, in particular, dynamical properties of semiconductor lasers due to delayed coupling, are reviewed. Although considered a nuisance for a long time, these phenomena now open interesting perspectives. Semiconductor laser systems represent excellent test beds for the study of nonlinear delay-coupled systems, which are of fundamental relevance in various areas. At the same time delay-coupled lasers provide opportunities for photonic applications. In this review an i...

  13. A Laser Spark Plug Ignition System for a Stationary Lean-Burn Natural Gas Reciprocating Engine

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, D. L. [West Virginia Univ., Morgantown, WV (United States)

    2007-05-01

    To meet the ignition system needs of large bore, high pressure, lean burn, natural gas engines a side pumped, passively Q-switched, Nd:YAG laser was developed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn, high compression engine. The laser and associated optics were designed with a passive Q-switch to eliminate the need for high voltage signaling and associated equipment. The laser was diode pumped to eliminate the need for high voltage flash lamps which have poor pumping efficiency. The independent and dependent parameters of the laser were identified and explored in specific combinations that produced consistent robust sparks in laboratory air. Prior research has shown that increasing gas pressure lowers the breakdown threshold for laser initiated ignition. The laser has an overall geometry of 57x57x152 mm with an output beam diameter of approximately 3 mm. The experimentation used a wide range of optical and electrical input parameters that when combined produced ignition in laboratory air. The results show a strong dependence of the output parameters on the output coupler reflectivity, Q-switch initial transmission, and gain media dopant concentration. As these three parameters were lowered the output performance of the laser increased leading to larger more brilliant sparks. The results show peak power levels of up to 3MW and peak focal intensities of up to 560 GW/cm2. Engine testing was performed on a Ricardo Proteus single cylinder research engine. The goal of the engine testing was to show that the test laser performs identically to the commercially available flashlamp pumped actively Q-switched laser used in previous laser ignition testing. The engine testing consisted of a comparison of the in-cylinder, and emissions behavior of the engine using each of the lasers as an ignition system. All engine parameters were kept as constant as possilbe while the equivalence ratio (fueling

  14. Cooling dynamics of a granular gas of elongated particles

    International Nuclear Information System (INIS)

    Kanzaki, Takeichi; Hidalgo, Raúl Cruz; Maza, Diego; Pagonabarraga, Ignacio

    2010-01-01

    The cooling dynamics of a 2D granular gas of elongated particles is analyzed. We perform simulations on the temporal evolution of soft particles, using a molecular dynamics algorithm. For weakly dissipative particles, we found a homogeneous cooling process where the overall translational kinetic energy decreases analogously to viscoelastic circular particles. In contrast, for strongly dissipative particles we observed an inhomogeneous cooling process where the diminishing of translational kinetic energy notably slows down. The rotational kinetic energy, however, always decays in agreement with Haff's prediction for the homogeneous cooling state of inelastic particles. We mainly found that the cooling kinetics of the system is controlled by the mechanisms that determine the local energy dissipation (collisions). However, we detected a strong influence of particle shape and inelasticity on the structure of the clusters which develop in the inhomogeneous cooling regimes. Our numerical outcomes suggest that strong dissipation and particle anisotropy induce the formation of ordered cluster structures that retards the relaxation to the final asymptotic regime

  15. Widely tunable Sampled Grating Distributed Bragg Reflector Quantum Cascade laser for gas spectroscopy applications

    Science.gov (United States)

    Diba, Abdou Salam

    Since the advent of semiconductor lasers, the development of tunable laser sources has been subject of many efforts in industry and academia arenas. This interest towards broadly tunable lasers is mainly due to the great promise they have in many applications ranging from telecommunication, to environmental science and homeland security, just to name a few. After the first demonstration of quantum cascade laser (QCL) in the early nineties, QCL has experienced a rapid development, so much so that QCLs are now the most reliable and efficient laser source in the Mid-IR range covering between 3 microm to 30 microm region of the electromagnetic spectrum. QCLs have almost all the desirable characteristics of a laser for spectroscopy applications such as narrow spectral linewidth ideal for high selectivity measurement, high power enabling high sensitivity sensing and more importantly they emit in the finger-print region of most of the trace gases and large molecules. The need for widely tunable QCLs is now more pressing than ever before. A single mode quantum cascade laser (QCL) such as a distributed feedback (DFB) QCL, is an ideal light source for gas sensing in the MIR wavelength range. Despite their performance and reliability, DFB QCLs are limited by their relatively narrow wavelength tuning range determined by the thermal rollover of the laser. An external cavity (EC) QCL, on the other hand, is a widely tunable laser source, and so far is the choice mid-infrared single frequency light sources for detecting multiple species/large molecules. However, EC QCLs can be complex, bulky and expensive. In the quest for finding alternative broadly wavelength tunable sources in the mid-infrared, many monolithic tunable QCLs are recently proposed and fabricated, including SG-DBR, DFB-Arrays, Slot-hole etc. and they are all of potentially of interest as a candidate for multi-gas sensing and monitoring applications, due to their large tuning range (>50 cm-1), and potentially low

  16. Self-Starting Solid-State Laser with Dynamic Self-Adaptive Cavity

    National Research Council Canada - National Science Library

    Antipov, Oleg

    2002-01-01

    ...: The present project is directed at the development of physical principles of creation of solid-state lasers of a new class with cavity completed by dynamic holographic gratings induced in nonlinear...

  17. Dynamic trapping of a polarization rotation vector soliton in a fiber laser.

    Science.gov (United States)

    Liu, Meng; Luo, Ai-Ping; Luo, Zhi-Chao; Xu, Wen-Cheng

    2017-01-15

    Ultrafast fiber laser, as a dissipative nonlinear optical system, plays an important role in investigating various nonlinear phenomena and soliton dynamics. Vector features of solitons, including polarization locked and polarization rotation vector solitons (PRVSs), are interesting nonlinear dynamics in ultrafast fiber lasers. Herein, we experimentally reveal the trapping characteristics of PRVSs for the first time, to the best of our best knowledge. We show that, for the conventional soliton trapping in the ultrafast fiber laser, the soliton central wavelengths of the two polarization components are constant at the laser output port. However, it is found that the dynamic trapping can be observed for the PRVS. That is, the peak frequencies along the two orthogonal polarization directions are dynamically alternating, depending on the relative intensities of the two polarization components. The obtained results would further unveil the physical mechanism of PRVSs.

  18. Self-tuning method for monitoring the density of a gas vapor component using a tunable laser

    Science.gov (United States)

    Hagans, K.; Berzins, L.; Galkowski, J.; Seng, R.

    1996-08-27

    The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer`s law. 6 figs.

  19. Laser-based data acquisition in gas centrifuge environments using optical fibers

    International Nuclear Information System (INIS)

    Cates, M.R.; Allison, S.W.; Marshall, B.; Davies, T.J.; Franks, L.A.; Nelson, M.A.; Noel, B.W.

    1984-01-01

    The operating environment of gas centrifuges poses three basic experimental problems: rotating reference frame, corrosive effects of UF 6 gas, and vacuum coupling. Diagnostic experiments in this environment effectively use fiber optics as laser transport systems and data extraction channels. Access to the interior of rotating centrifuges is only from a central nonrotating column assembly. Optical paths are often long and difficult to measure in static conditions with precision necessary in operating conditions. Residual traces of HF gas, from UF 6 , damage exposed optical components over time. Diagnostic measurements requiring pulsed laser sources and analysis of fluorescence emissions, both from UF 6 gas and from temperature-sensitive phosphor are described, with emphasis on optical fiber components and experimental design configurations. The studies were done at Oak Ridge Gaseous Diffusion Plant through the Centrifuge Physics Department of the Centrifuge Division. The advantages of fiber optics methods include: optical path flexibility, small and adaptable size of components, utility in connection with moveable assemblies, and relative ease of vacuum isolation. 3 references, 6 figures

  20. Estimation of vessel diameter and blood flow dynamics from laser speckle images

    DEFF Research Database (Denmark)

    Postnov, Dmitry D.; Tuchin, Valery V.; Sosnovtseva, Olga

    2016-01-01

    Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical...... masking of a vessel position and measurements of it's diameter from laser speckle images. This approach demonstrates high reliability and stability....

  1. A System Dynamics Analysis of Investment, Technology and Policy that Affect Natural Gas Exploration and Exploitation in China

    OpenAIRE

    Xiao, Jianzhong; Cheng, Jinhua; Shen, Jun; Wang, Xiaolin

    2017-01-01

    Natural gas has an increasing role in Chinese energy transformation. We present a system dynamics model of the natural gas industry in China. A new system dynamics model for natural gas companies based on reserve exploration and well construction as well as investment dynamics is proposed. The contribution of the paper is to analyze the influence of technology, investment and policy factors on the natural gas industry. We found that the dynamics of the main variables, including gas policy, co...

  2. First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing

    Science.gov (United States)

    Zhang, Zhongyang; Nian, Qiong; Doumanidis, Charalabos C.; Liao, Yiliang

    2018-02-01

    Nanosecond pulsed laser shock processing (LSP) techniques, including laser shock peening, laser peen forming, and laser shock imprinting, have been employed for widespread industrial applications. In these processes, the main beneficial characteristic is the laser-induced shockwave with a high pressure (in the order of GPa), which leads to the plastic deformation with an ultrahigh strain rate (105-106/s) on the surface of target materials. Although LSP processes have been extensively studied by experiments, few efforts have been put on elucidating underlying process mechanisms through developing a physics-based process model. In particular, development of a first-principles model is critical for process optimization and novel process design. This work aims at introducing such a theoretical model for a fundamental understanding of process mechanisms in LSP. Emphasis is placed on the laser-matter interaction and plasma dynamics. This model is found to offer capabilities in predicting key parameters including electron and ion temperatures, plasma state variables (temperature, density, and pressure), and the propagation of the laser shockwave. The modeling results were validated by experimental data.

  3. Analytic Characterization of the Dynamic Regimes of Quantum-Dot Lasers

    Directory of Open Access Journals (Sweden)

    Benjamin Lingnau

    2015-04-01

    Full Text Available We present analytic treatment of the three different dynamic regimes found in quantum-dot laser turn-on and modulation dynamics. A dynamic coupling, and thus density-dependent scattering lifetimes between dots and reservoir, are identified to be crucial for a realistic modeling. We derive a minimal model for the quantum-dot laser dynamics that can be seeded with experimentally accessible parameters, and give explicit analytic equations that are able to predict relaxation-oscillation frequency and damping rate.

  4. Three-dimensional simulation of beam propagation and heat transfer in static gas Cs DPALs using wave optics and fluid dynamics models

    Science.gov (United States)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-10-01

    Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.

  5. Influence of Carrier Cooling on the Emission Dynamics of Semiconductor Microcavity Lasers

    Science.gov (United States)

    Hilpert, M.; Hofmann, M.; Ellmers, C.; Oestreich, M.; Schneider, H. C.; Jahnke, F.; Koch, S. W.; Rühle, W. W.; Wolf, H. D.; Bernklau, D.; Riechert, H.

    1997-11-01

    We investigate the influence of carrier relaxation on the emission dynamics of a semiconductor microcavity laser. The structure is optically excited with energies of 1.477 down to 1.346 eV (resonant excitation). The stimulated emission dynamics clearly becomes faster for decreasing excitation energy and the influence of the light hole on the emission dynamics is demonstrated. Theoretical calculations reproduce the results only if the nonequilibrium carrier dynamics is treated on the basis of a microscopic model.

  6. Laser Pulse Production for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar

    Science.gov (United States)

    Stysley, Paul R.; Coyle, D. Barry; Clarke, Greg B.; Frese, Erich; Blalock, Gordon; Morey, Peter; Kay, Richard B.; Poulios, Demetrios; Hersh, Michael

    2016-01-01

    The Lasers and Electro-Optics Branch at Goddard Space Flight Center has been tasked with building the Lasers for the Global Ecosystems Dynamics Investigation (GEDI) Lidar Mission, to be installed on the Japanese Experiment Module (JEM) on the International Space Station (ISS)1. GEDI will use three NASA-developed lasers, each coupled with a Beam Dithering Unit (BDU) to produce three sets of staggered footprints on the Earth's surface to accurately measure global biomass. We will report on the design, assembly progress, test results, and delivery process of this laser system.

  7. Laser Pulse Production for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar

    Science.gov (United States)

    Stysley, Paul R.; Coyle, D. Barry; Clarke, Greg B.; Frese, Erich; Blalock, Gordon; Morey, Peter; Kay, Richard B.; Poulios, Demetrios; Hersh, Michael

    2016-01-01

    The Lasers and Electro-Optics Branch at Goddard Space Flight Center has been tasked with building the Lasers for the Global Ecosystems Dynamics Investigation (GEDI) Lidar Mission, to be installed on the Japanese Experiment Module (JEM) on the International Space Station (ISS). GEDI will use three NASA-developed lasers, each coupled with a Beam Dithering Unit (BDU) to produce three sets of staggered footprints on the Earth's surface to accurately measure global biomass. We will report on the design, assembly progress, test results, and delivery process of this laser system.

  8. Dynamics of bad-cavity-enhanced interaction with cold Sr atoms for laser stabilization

    DEFF Research Database (Denmark)

    Schäffer, S. A.; Christensen, B. T.R.; Henriksen, M. R.

    2017-01-01

    Hybrid systems of cold atoms and optical cavities are promising systems for increasing the stability of laser oscillators used in quantum metrology and atomic clocks. In this paper we map out the atom-cavity dynamics in such a system and demonstrate limitations as well as robustness of the approa...... transfer function relating input field to output field. The cavity dynamics is shown to have only little influence on the prospects for laser stabilization, making the system robust towards cavity fluctuations and ideal for the improvement of future narrow linewidth lasers....

  9. Theoretical estimation and experimental studies on gas dissociation in TEA CO2 laser for long term arc free operation

    Science.gov (United States)

    Kumar, Manoj; Biswas, A. K.; Bhargav, Pankaj; Reghu, T.; Sahu, Shashikiran; Pakhare, J. S.; Bhagat, M. S.; Kukreja, L. M.

    2013-11-01

    Gas dissociation in a high energy, high repetition rate Transversely Excited Atmospheric (TEA) CO2 laser in both sealed-off and gas replenishment modes were studied for nitrogen lean gas mixture. A comprehensive theoretical model based on the Boltzmann transport equation and the discharge excitation circuit equations was adopted to calculate the amount of CO2 dissociated during a single discharge pulse. Theoretically it is shown that inclusion of superelastic collisions in the Boltzmann transport equation is necessary for precise estimation of dissociation per pulse, particularly at high discharge energy loadings and for nitrogen rich gas mixtures. Gas lifetime for repetitively pulsed operations was found experimentally by measuring the amount of CO formed when frequent arcing sets in under sealed off operation. Using this model, the optimum replenishment rate of CO2 either by gas purging and/or by catalytic regeneration needed for arc free long term operation of the laser was estimated. The measured saturation values of CO concentration in the laser chamber agreed well with the calculated values for various operating conditions. Arc free, long term repetitively pulsed operation of the laser was achieved in the gas replenishment mode with gas purging and/or catalytic regeneration.

  10. [Experimental investigation of laser plasma soft X-ray source with gas target].

    Science.gov (United States)

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  11. Wettability modification of electrospun poly(ε-caprolactone) fibers by femtosecond laser irradiation in different gas atmospheres

    International Nuclear Information System (INIS)

    He Lingna; Chen Jian; Farson, Dave F.; Lannutti, John J.; Rokhlin, Stan I.

    2011-01-01

    The effect of femtosecond laser irradiation in air and in O 2 and CF 4 gas flows on the wettability of electrospun poly(ε-caprolactone) fiber tissue scaffolds was studied. Laser power, focus spot size, raster scan spacing and gas atmosphere were varied in experiments. SEM imaging showed the average fiber diameter and surface porosity sizes were both altered by ablation. The micro-scale surface roughness measured by scanning laser profilometry was found to have a non-monotonic relationship to the surface wettability measured by the contact angle of sessile water droplets. In contrast, surface water contact angle continuously decreased with increased oxygen atomic percentage and oxygen-containing group fraction as measured by XPS. Further, the oxygen content was larger for more extensively ablated fiber surfaces, regardless of whether the increased ablation was caused by high laser power, smaller scanning space or smaller defocusing distance. Of the three gas atmospheres, O 2 gas flow was the most favorable environment for increasing surface oxidization, resulting in the largest water contact angle decrease for given laser power. For CF 4 gas flow, the least oxidization occurred, and the magnitude of water contact angle decrease was smallest for treatment at a given laser power.

  12. Wettability modification of electrospun poly(ɛ-caprolactone) fibers by femtosecond laser irradiation in different gas atmospheres

    Science.gov (United States)

    He, Lingna; Chen, Jian; Farson, Dave F.; Lannutti, John J.; Rokhlin, Stan I.

    2011-02-01

    The effect of femtosecond laser irradiation in air and in O2 and CF4 gas flows on the wettability of electrospun poly(ɛ-caprolactone) fiber tissue scaffolds was studied. Laser power, focus spot size, raster scan spacing and gas atmosphere were varied in experiments. SEM imaging showed the average fiber diameter and surface porosity sizes were both altered by ablation. The micro-scale surface roughness measured by scanning laser profilometry was found to have a non-monotonic relationship to the surface wettability measured by the contact angle of sessile water droplets. In contrast, surface water contact angle continuously decreased with increased oxygen atomic percentage and oxygen-containing group fraction as measured by XPS. Further, the oxygen content was larger for more extensively ablated fiber surfaces, regardless of whether the increased ablation was caused by high laser power, smaller scanning space or smaller defocusing distance. Of the three gas atmospheres, O2 gas flow was the most favorable environment for increasing surface oxidization, resulting in the largest water contact angle decrease for given laser power. For CF4 gas flow, the least oxidization occurred, and the magnitude of water contact angle decrease was smallest for treatment at a given laser power.

  13. Role of arc mode in laser-metal active gas arc hybrid welding of mild steel

    International Nuclear Information System (INIS)

    Li, Geng; Zhang, Chen; Gao, Ming; Zeng, Xiaoyan

    2014-01-01

    Highlights: • Pulsed arc is more effective to improve the stability of laser-arc hybrid welding. • LCHW has the highest fraction of acicular ferrite and high-angle grain boundaries. • Grain refinement depends on effective current of the arc. • LSHW has the most apparent vestige of texture components. • The microstructure and microtexture formation mechanisms were summarized. - Abstract: Arc mode plays an important role in joint characterizations of arc welding, but it has been seldom considered in laser-arc hybrid welding. This paper investigated the role of arc mode on laser-metal active gas (MAG) arc hybrid welding of mild steel. Three arc modes were employed, which were cold metal transfer (CMT), pulsed spray arc and standard short circuiting arc. Microtexture of the joints were observed and measured via electron back scattering diffraction (EBSD) system to reveal the effect of arc mode on microstructure. Mechanical properties of the joints were evaluated by tensile and Charpy V-notch impact tests. It was found that both the stability and mechanical properties of laser-CMT hybrid welding (LCHW) is the best, while those of laser-standard short circuiting arc welding (LSHW) is the worst. OM and EBSD results showed that the fraction of acicular ferrite and high-angle grain boundaries in fusion zone decreases gradually in the sequence of LCHW, laser-pulsed spray arc welding and LSHW, while the mean grain size increases gradually. Finally, the microstructure formation mechanisms and the relationship between microstructure and mechanical properties were summarized by the loss of alloying element and the stirring effect in molten pool

  14. Optimizing Natural Gas Networks through Dynamic Manifold Theory and a Decentralized Algorithm: Belgium Case Study

    Science.gov (United States)

    Koch, Caleb; Winfrey, Leigh

    2014-10-01

    Natural Gas is a major energy source in Europe, yet political instabilities have the potential to disrupt access and supply. Energy resilience is an increasingly essential construct and begins with transmission network design. This study proposes a new way of thinking about modelling natural gas flow. Rather than relying on classical economic models, this problem is cast into a time-dependent Hamiltonian dynamics discussion. Traditional Natural Gas constraints, including inelastic demand and maximum/minimum pipe flows, are portrayed as energy functions and built into the dynamics of each pipe flow. Doing so allows the constraints to be built into the dynamics of each pipeline. As time progresses in the model, natural gas flow rates find the minimum energy, thus the optimal gas flow rates. The most important result of this study is using dynamical principles to ensure the output of natural gas at demand nodes remains constant, which is important for country to country natural gas transmission. Another important step in this study is building the dynamics of each flow in a decentralized algorithm format. Decentralized regulation has solved congestion problems for internet data flow, traffic flow, epidemiology, and as demonstrated in this study can solve the problem of Natural Gas congestion. A mathematical description is provided for how decentralized regulation leads to globally optimized network flow. Furthermore, the dynamical principles and decentralized algorithm are applied to a case study of the Fluxys Belgium Natural Gas Network.

  15. Dissociation dynamics of CH3I in electric spark induced breakdown revealed by time-resolved laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Wang, Yang; Liu, Wei-long; Song, Yun-fei; Duo, Li-ping; Liu, Yu-qiang; Yang, Yan-qiang

    2015-01-01

    Highlights: • Emission of electric spark dissociation of CH 3 I is similar to its fs LIBS. • We use fs laser induced breakdown as a simulation for electric spark dissociation. • The I 2 molecule formation is directly observed in the time-resolved LIBS. • Bimolecular collision of I ∗ and CH 3 I is responsible for the formation of I 2 . - Abstract: The electric discharge spark dissociation of gas CH 3 I is found to be similar to its femtosecond laser photodissociation. The almost identical spectra of the two processes show that their initial ionization conditions are very similar. The initial ionization followed by molecular fragmentation is proposed as the dissociation mechanism, in which the characteristic emissions of I + , CH 3 , CH 2 , CH, H, and I 2 are identified as the dissociation products. The emission band of 505 nm I 2 is clearly observed in the time-resolved laser induced breakdown spectroscopy (LIBS). The dynamic curve indicates that I 2 ∗ molecules are formed after the delay time of ∼4.7 ns. The formation of I 2 ∗ molecule results from the bimolecular collision of the highly excited iodine atom I ∗ ( 4 P) and CH 3 I molecule. This dynamical information can help understand the process of electric discharge spark dissociation of CH 3 I

  16. Ultrafast Laser Induced Magnetization Dynamics in High Magnetic Fields

    NARCIS (Netherlands)

    Becker, J.J.

    2016-01-01

    In dit proefschrift combineer ik hoge magneetvelden tot 37.5 T met ultrakorte laser pulsen in een unieke opstelling, om de magnetische eigenschappen van nanometer-dunne lagen te onderzoeken. Ik laat zien, dat femtoseconde laser pulsen gebruikt kunnen worden om magnetisme in materialen voor de

  17. Optimization of the electron beam properties from intense laser pulses interacting with structured gas jets

    Science.gov (United States)

    Swanson, K. K.; Tsai, H.-E.; Barber, S. K.; Lehe, R.; Mao, H.-S.; Steinke, S.; van Tilborg, J.; Nakamura, K.; Geddes, C. G. R.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2017-05-01

    Laser plasma acceleration has been intensely investigated for its ability to produce energetic, ultrashort electron bunches in a compact distance. A high intensity laser pulse propagating through a plasma expels the electrons from the optical axis via the ponderomotive force, leaving behind a column of ions and driving a density wake. The accelerating electric fields present in the wake can reach several orders of magnitude greater than those found in radio-frequency cavities, allowing for compact systems much smaller than those using conventional accelerators. This compact source can provide electrons for various applications including stages for a high energy collider or for production of x-ray pulses from coherent undulator radiation. However, these applications require tunable, stable and high-quality electron beams. We report on a study of controlled injection along a shock-induced density downramp of laser-plasma- accelerated electrons through precision tailoring of the density profile produced from a mm-scale gas jet. Using BELLA Center's TREX Ti:Sapphire laser, the effects of the plasma density profile and the tilt of the shock front on the beam spatial profile, steering, and energy were investigated experimentally. To explain these rela- tionships, we propose simple models which agree well with experimental results. Using this technique, electron beam quality was tailored, allowing for the production of high-quality electron beams with percent-level energy spreads over a range of energies.

  18. Numerical investigation of the prospects of high energy laser in drilling oil and gas wells

    International Nuclear Information System (INIS)

    Agha, K.R.; Belhaj, H.A.; Mustafiz, S.; Islam, M.R.; Bjorndalen, N.

    2004-01-01

    Rotary drilling is the primary method used to reach oil and gas formations that was developed over a century ago. Many problems persist with this method, including downtime due to dull bits, the lack of precise vertical or horizontal wells and formation fluid leakage during drilling due to the lack of a seal around the hole. Laser drilling is a new technology that has been proposed as a method to eliminate the current problems while drilling and provide a less expensive alternative to conventional methods. This paper discussed the development of a numerical model based on the fundamental heat transfer and fluid flow phenomena including conduction, melting and vaporization responsible for material removal by laser drilling process. The paper addressed the thermal process involved in laser drilling of sandstone and limestone rocks as well as aluminum and mild steel. The paper outlined the parametric study and discussed the design considerations for a field application. Economical and environmental impacts were also included. It was concluded that more experimental investigation is needed to fully understand the laser operation and to enhance the integrity of the numerical models. In addition, it was concluded that field equipment must be designed to meet the changes in drilling requirements. 19 refs., 10 figs

  19. Modeled occupational exposures to gas-phase medical laser-generated air contaminants.

    Science.gov (United States)

    Lippert, Julia F; Lacey, Steven E; Jones, Rachael M

    2014-01-01

    Exposure monitoring data indicate the potential for substantive exposure to laser-generated air contaminants (LGAC); however the diversity of medical lasers and their applications limit generalization from direct workplace monitoring. Emission rates of seven previously reported gas-phase constituents of medical laser-generated air contaminants (LGAC) were determined experimentally and used in a semi-empirical two-zone model to estimate a range of plausible occupational exposures to health care staff. Single-source emission rates were generated in an emission chamber as a one-compartment mass balance model at steady-state. Clinical facility parameters such as room size and ventilation rate were based on standard ventilation and environmental conditions required for a laser surgical facility in compliance with regulatory agencies. All input variables in the model including point source emission rates were varied over an appropriate distribution in a Monte Carlo simulation to generate a range of time-weighted average (TWA) concentrations in the near and far field zones of the room in a conservative approach inclusive of all contributing factors to inform future predictive models. The concentrations were assessed for risk and the highest values were shown to be at least three orders of magnitude lower than the relevant occupational exposure limits (OELs). Estimated values do not appear to present a significant exposure hazard within the conditions of our emission rate estimates.

  20. Dynamic model of thermal reaction of biological tissues to laser-induced fluorescence and photodynamic therapy.

    Science.gov (United States)

    Seteikin, Alexey Yu; Krasnikov, Ilya V; Drakaki, Eleni; Makropoulou, Mersini

    2013-07-01

    The aim of this work was to evaluate the temperature fields and the dynamics of heat conduction into the skin tissue under several laser irradiation conditions with both a pulsed ultraviolet (UV) laser (λ=337  nm) and a continuous-wave (cw) visible laser beam (λ=632.8  nm) using Monte Carlo modeling. Finite-element methodology was used for heat transfer simulation. The analysis of the results showed that heat is not localized on the surface, but is collected inside the tissue in lower skin layers. The simulation was made with the pulsed UV laser beam (used as excitation source in laser-induced fluorescence) and the cw visible laser (used in photodynamic therapy treatments), in order to study the possible thermal effects.

  1. Creation of Pure Frozen Gas Targets for Ion Acceleration using Short Pulse Lasers

    Science.gov (United States)

    McCary, Edward; Stehr, Florian; Jiao, Xuejing; Quevedo, Hernan; Franke, Philip; Agustsson, Ronald; Oshea, Finn; Berry, Robert; Chao, Dennis; Woods, Kayley; Gautier, Donald; Letzring, Sam; Hegelich, Bjorn

    2015-11-01

    A system for shooting interchangeable frozen gas targets was developed at the University of Texas and will be tested at Los Alamos National Lab. A target holder which can hold up to five substrates used for target growing was cryogenically cooled to temperatures below 14 K. The target substrates consist of holes with diameters ranging from 15 μm-500 μm and TEM grids with micron scale spacing, across which films of ice are frozen by releasing small amounts of pure gas molecules directly into the vacuum target chamber. Frozen gas targets comprised of simple molecules like methane and single element gasses like hydrogen and deuterium will provide novel target configuations that will be compared with laser plasma interaction simulations. The targets will be shot with the ultra-intense short-pulse Trident laser. Accelerated ion spectra will be characterized using a Thomson Parabola with magnetic field strength of 0.92T and electric field strength of 30kV. Hydrogen targets will be additionally characterized using stacks of copper which become activated upon exposure to energetic protons resulting in a beta decay signal which be imaged on electron sensitive imaging plates to provide an energy spectrum and spacial profile of the proton beam. Details of target creation and pre-shot characterization will be presented.

  2. Gold nanoparticles and films produced by a laser ablation/gas deposition (LAGD) method

    International Nuclear Information System (INIS)

    Kawakami, Yuji; Seto, Takafumi; Yoshida, Toshinobu; Ozawa, Eiichi

    2002-01-01

    Gold nanoparticles have great potential for various nanoelectronic applications such as single electron transistors, an infrared absorption sensor and so on. It is very important to understand and control the size distribution of the particles for such a variety of applications. In this paper, we report the size distribution of gold nanoparticles and the relationship between the nanoparticle-films and the electrical property produced by a laser ablation method. Gold nanoparticle-films were prepared by a technique, which sprays nanoparticles on the substrate through a nozzle. We call it a gas deposition method. The nanoparticles were generated by the nanosecond pulsed Nd:YAG laser ablation of a gold substrate under a low-pressure inert gas atmosphere. The ambient pressure was changed to control the average size and their distribution. The particles produced in the generation chamber were transported by a helium carrier gas to the deposition chamber and deposited on a substrate to form the films composed of gold nanoparticles. The electrical resistivity of the generated gold nanoparticle-films on the glass substrates was measured using a four-probe method. The size distribution of the nanoparticles was examined using transmission electron microscopy (TEM) and a low-pressure differential mobility analyzer (LP-DMA). The relationship between the particle size and the electrical properties of each film made by the different synthesis conditions were analyzed. The electrical resistivity changed from the order of 10 -5 to 10 -1 Ω cm depending on the ambient pressure and the size distribution

  3. Nonlinear dynamics of a soliton gas: Modified Korteweg–de Vries equation framework

    Energy Technology Data Exchange (ETDEWEB)

    Shurgalina, E.G., E-mail: eshurgalina@mail.ru [Department of Nonlinear Geophysical Processes, Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Pelinovsky, E.N. [Department of Nonlinear Geophysical Processes, Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Department of Applied Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod (Russian Federation)

    2016-05-27

    Dynamics of random multi-soliton fields within the framework of the modified Korteweg–de Vries equation is considered. Statistical characteristics of a soliton gas (distribution functions and moments) are calculated. It is demonstrated that the results sufficiently depend on the soliton gas properties, i.e., whether it is unipolar or bipolar. It is shown that the properties of a unipolar gas are qualitatively similar to the properties of a KdV gas [Dutykh and Pelinovsky (2014) [1

  4. Dynamic prediction technology for gas based on data fusion theory

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Liang-shan; Fu, Gui-xiang [Liaoning Technical University, Fuxin (China). Institute of System Engineering

    2008-05-15

    A new method was presented based on the fusion method, using Bayesian analysis and self-adapting weighted data to process information and fuse data. It used the Dempster-Shafer evidence theory to deal with the uncertainty produced in gas prediction. It comprehensively considered the gas concentration and other related parameters and realized the optimization and integration of gas measurement and predicted parameters. This method improves the accuracy of gas detection systems for coal mines. 15 refs., 1 fig., 1 tab.

  5. Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion.

    Science.gov (United States)

    Ferrer, R; Barzakh, A; Bastin, B; Beerwerth, R; Block, M; Creemers, P; Grawe, H; de Groote, R; Delahaye, P; Fléchard, X; Franchoo, S; Fritzsche, S; Gaffney, L P; Ghys, L; Gins, W; Granados, C; Heinke, R; Hijazi, L; Huyse, M; Kron, T; Kudryavtsev, Yu; Laatiaoui, M; Lecesne, N; Loiselet, M; Lutton, F; Moore, I D; Martínez, Y; Mogilevskiy, E; Naubereit, P; Piot, J; Raeder, S; Rothe, S; Savajols, H; Sels, S; Sonnenschein, V; Thomas, J-C; Traykov, E; Van Beveren, C; Van den Bergh, P; Van Duppen, P; Wendt, K; Zadvornaya, A

    2017-02-22

    Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A significant improvement in the spectral resolution by more than one order of magnitude is achieved in these experiments without loss in efficiency.

  6. Energy spread of ultracold electron bunches extracted from a laser cooled gas

    Science.gov (United States)

    Franssen, J. G. H.; Kromwijk, J. M.; Vredenbregt, E. J. D.; Luiten, O. J.

    2018-02-01

    Ultrashort and ultracold electron bunches created by near-threshold femtosecond photoionization of a laser cooled gas hold great promise for single-shot ultrafast diffraction experiments. In previous publications the transverse beam quality and the bunch length have been determined. Here the longitudinal energy spread of the generated bunches is measured for the first time, using a specially developed Wien filter. The Wien filter has been calibrated by determining the average deflection of the electron bunch as a function of magnetic field. The measured relative energy spread \\tfrac{{σ }U}{U}=0.64+/- 0.09 % agrees well with the theoretical model which states that it is governed by the width of the ionization laser and the acceleration length.

  7. New semiconductor laser technology for gas sensing applications in the 1650nm range

    Science.gov (United States)

    Morrison, Gordon B.; Sherman, Jes; Estrella, Steven; Moreira, Renan L.; Leisher, Paul O.; Mashanovitch, Milan L.; Stephen, Mark; Numata, Kenji; Wu, Stewart; Riris, Haris

    2017-08-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. CH4 also contributes to pollution in the lower atmosphere through chemical reactions leading to ozone production. Recent developments of LIDAR measurement technology for CH4 have been previously reported by Goddard Space Flight Center (GSFC). In this paper, we report on a novel, high-performance tunable semiconductor laser technology developed by Freedom Photonics for the 1650nm wavelength range operation, and for LIDAR detection of CH4. Devices described are monolithic, with simple control, and compatible with low-cost fabrication techniques. We present 3 different types of tunable lasers implemented for this application.

  8. Prediction onset and dynamic behaviour of liquid loading gas wells

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Schiferli, W.; Alberts, G.J.N.; Veeken, C.A.M.; Biezen, E.

    2008-01-01

    As reservoir pressures decrease in maturing gas wells, liquid drop-out forms an increasing restriction on gas production. Even though virtually all of the world's gas wells are either at risk of or suffering from liquid loading, the modeling of liquid loading behavior is still quite immature and the

  9. Applications of a Mid-IR Quantum Cascade Laser in Gas Sensing Research

    KAUST Repository

    Sajid, Muhammad Bilal

    2015-05-01

    Laser absorption based sensors are extensively used in a variety of gas sensing areas such as combustion, atmospheric research, human breath analysis, and high resolution infrared spectroscopy. Quantum cascade lasers have recently emerged as high resolution, high power laser sources operating in mid infrared region and can have wide tunability range. These devices provide an opportunity to access stronger fundamental and combination vibrational bands located in mid infrared region than previously accessible weaker overtone vibrational bands located in near infrared region. Spectroscopic region near 8 µm contains strong vibrational bands of methane, acetylene, hydrogen peroxide, water vapor and nitrous oxide. These molecules have important applications in a wide range of applications. This thesis presents studies pertaining to spectroscopy and combustion applications. Advancements in combustion research are imperative to achieve lower emissions and higher efficiency in practical combustion devices such as gas turbines and engines. Accurate chemical kinetic models are critical to achieve predictive models which contain several thousand reactions and hundreds of species. These models need highly reliable experimental data for validation and improvements. Shock tubes are ideal devices to obtain such information. A shock tube is a homogenous, nearly constant volume, constant pressure, adiabatic and 0-D reactor. In combination with laser absorption sensors, shock tubes can be used to measure reaction rates and species time histories of several intermediates and products formed during pyrolysis and oxidation of fuels. This work describes measurement of the decomposition rate of hydrogen peroxide which is an important intermediate species controlling reactivity of combustion system in the intermediate temperature range. Spectroscopic parameters (linestrengths, broadening coefficients and temperature dependent coefficients) are determined for various transitions of

  10. Dynamics of effusive and diffusive gas separation on pillared graphene.

    Science.gov (United States)

    Wesołowski, Radosław P; Terzyk, Artur P

    2016-06-22

    Pillared graphene structures, from a practical viewpoint, are very interesting novel carbon materials. Combining the properties of graphene and nanotubes, such as durability, chemical purity and a controlled structure, they were proven to be effective membranes for noble gas separation processes. Here, we examine their possible use for other, more commercially useful gas mixture separation, i.e. air and coal gas. The mechanism of air gas transport through the pillar channels is studied, and the prospective application of 2-D pillared membranes in effusion-like processes provided. The separative abilities of hybrid systems consisting of membranes with different channel diameters in relation to coal gas are proven to be promising.

  11. Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion.

    Science.gov (United States)

    Chen, Hong-Jie; Liu, Meng; Yao, Jian; Hu, Song; He, Jian-Bo; Luo, Ai-Ping; Xu, Wen-Cheng; Luo, Zhi-Chao

    2018-02-05

    Taking advantage of technology of spatio-temporal reconstruction and dispersive Fourier transform (DFT), we experimentally observed the buildup dynamics of dissipative soliton in an ultrafast fiber laser in the net-normal dispersion regime. The soliton buildup dynamics were analyzed in both the spectral and temporal domains. We firstly revealed that the appearing of the spectral sharp peaks with oscillation structures during the mode-locking transition is caused by the formation of structural dissipative soliton. The experimental results were explained by the numerical simulations. These findings would give some new insights into the dissipative soliton buildup dynamics in ultrafast fiber lasers.

  12. Computational dynamics of laser alloyed metallic materials for improved corrosion performance: computational dynamics of laser alloyed metallic materials

    CSIR Research Space (South Africa)

    Fatoba, OS

    2016-04-01

    Full Text Available Laser alloying is a material processing method which utilizes the high power density available from defocused laser beam to melt both metal coatings and a part of the underlying substrate. Since melting occur solitary at the surface, large...

  13. [Use of gas laser LG-55 to determine the optical density of biological objects].

    Science.gov (United States)

    Zakruta, M P; Zlupko, V N

    1978-12-01

    In order to registrate optic density of such subjects as vessels, tissues, roentgenogram and electrophoregram images, a universal device is suggested. It consists of a) a gas laser lg-55 supplying a parallel bundle of light with small angular deflection and wave length of 0,6328 mc; b) mounting for attachment the reversive motor pd-9 with transmission to change the speed of the subject table, photo resistance fCK-1, focussing lens triple-edged prism and diaphragm, c) double coordinative recorder (endim 620.01). Repeatedly performed registration of the same arterioroentgenogram (or any other investigated) has demonstrated a high accuracy of the registered curves.

  14. Monitoring and Control of the Hybrid Laser-Gas Metal-Arc Welding Process

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D. C.; McJunkin, T. R.; Nichol, C. I.; Clark, D.; Todorov, E.; Couch, R. D.; Yu, F.

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  15. Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2014-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).

  16. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  17. Microsecond fiber laser pumped, single-frequency optical parametric oscillator for trace gas detection.

    Science.gov (United States)

    Barria, Jessica Barrientos; Roux, Sophie; Dherbecourt, Jean-Baptiste; Raybaut, Myriam; Melkonian, Jean-Michel; Godard, Antoine; Lefebvre, Michel

    2013-07-01

    We report on the first microsecond doubly resonant optical parametric oscillator (OPO). It is based on a nested cavity OPO architecture allowing single longitudinal mode operation and low oscillation threshold (few microjoule). The combination with a master oscillator-power amplifier fiber pump laser provides a versatile optical source widely tunable in the 3.3-3.5 μm range with an adjustable pulse repetition rate (from 40 to 100 kHz), high duty cycle (~10(-2)) and mean power (up to 25 mW in the idler beam). The potential for trace gas sensing applications is demonstrated through photoacoustic detection of atmospheric methane.

  18. Effect of Laser Power and Gas Flow Rate on Properties of Directed Energy Deposition of Titanium Alloy

    Science.gov (United States)

    Mahamood, Rasheedat M.

    2018-01-01

    Laser metal deposition (LMD) process belongs to the directed energy deposition class of additive manufacturing processes. It is an important manufacturing technology with lots of potentials especially for the automobile and aerospace industries. The laser metal deposition process is fairly new, and the process is very sensitive to the processing parameters. There is a high level of interactions among these process parameters. The surface finish of part produced using the laser metal deposition process is dependent on the processing parameters. Also, the economy of the LMD process depends largely on steps taken to eliminate or reduce the need for secondary finishing operations. In this study, the influence of laser power and gas flow rate on the microstructure, microhardness and surface finish produced during the laser metal deposition of Ti6Al4V was investigated. The laser power was varied between 1.8 kW and 3.0 kW, while the gas flow rate was varied between 2 l/min and 4 l/min. The microstructure was studied under an optical microscope, the microhardness was studied using a Metkon microhardness indenter, while the surface roughness was studied using a Jenoptik stylus surface analyzer. The results showed that better surface finish was produced at a laser power of 3.0 kW and a gas flow rate of 4 l/min.

  19. Laser ablation dynamics and production of thin films of lysozyme

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Matei, Andreea

    Lysozyme is a well-known protein, which is used in food processing because of its bacteriocidal properties. The mass (14307 u) is in the range, in which it easily can be controlled by mass spectrometric methods, for example by MALDI (Matrix assisted laser desorption ionisation). We have recently......, there was a considerable ablation weight loss of lysozyme from each shot. This is the first time the ablation by fs-lasers of a protein has been recorded quantitatively. Films of lysozyme produced by fs-laser irradiation will be analysed by MALDI in order to explore if there also is a significant amount of intact...... these experiments at CNR-SPIN, Napoli, to explore the excitation mechanics by laser impact. Samples of pressed lysozyme prepared in the same manner as in DTU have been irradiated at 523 nm with 300-fs pulses and a fluence of the same order of magnitude as in DYU. Even though the pulse energy was much smaller...

  20. Laser ablation dynamics and production of thin films of lysozyme

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Amoruso, S.

    Lysozyme is a well-known protein, which is used in food processing because of its bactericidal properties. The mass (14307 amu) is in the range in which it easily can be monitored by mass spectrometric methods, for example by MALDI (Matrix assisted laser desorption ionization). We have recently....... This is the first time the ablation by fs-lasers of a protein has been recorded quantitatively. Films of lysozyme produced by fs-laser irradiation were analyzed by MALDI and a significant number of intact molecules in the films with fs-laser deposition was found as well....... impact. Samples of pressed lysozyme prepared in the same manner as in ns-experiments have been irradiated at 527 nm with 300-fs pulses and at at similar fluence as in ns ablation. Even though the pulse energy was much smaller, there was a considerable ablation weight loss of lysozyme from each shot...

  1. Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback

    Science.gov (United States)

    Jaurigue, Lina; Krauskopf, Bernd; Lüdge, Kathy

    2017-11-01

    Passively mode-locked semiconductor lasers are compact, inexpensive sources of short light pulses of high repetition rates. In this work, we investigate the dynamics and bifurcations arising in such a device under the influence of time delayed optical feedback. This laser system is modelled by a system of delay differential equations, which includes delay terms associated with the laser cavity and feedback loop. We make use of specialised path continuation software for delay differential equations to analyse the regime of short feedback delays. Specifically, we consider how the dynamics and bifurcations depend on the pump current of the laser, the feedback strength, and the feedback delay time. We show that an important role is played by resonances between the mode-locking frequencies and the feedback delay time. We find feedback-induced harmonic mode locking and show that a mismatch between the fundamental frequency of the laser and that of the feedback cavity can lead to multi-pulse or quasiperiodic dynamics. The quasiperiodic dynamics exhibit a slow modulation, on the time scale of the gain recovery rate, which results from a beating with the frequency introduced in the associated torus bifurcations and leads to gain competition between multiple pulse trains within the laser cavity. Our results also have implications for the case of large feedback delay times, where a complete bifurcation analysis is not practical. Namely, for increasing delay, there is an ever-increasing degree of multistability between mode-locked solutions due to the frequency pulling effect.

  2. Optical design of multi-multiple expander structure of laser gas analysis and measurement device

    Science.gov (United States)

    Fu, Xiang; Wei, Biao

    2018-03-01

    The installation and debugging of optical circuit structure in the application of carbon monoxide distributed laser gas analysis and measurement, there are difficult key technical problems. Based on the three-component expansion theory, multi-multiple expander structure with expansion ratio of 4, 5, 6 and 7 is adopted in the absorption chamber to enhance the adaptability of the installation environment of the gas analysis and measurement device. According to the basic theory of aberration, the optimal design of multi-multiple beam expander structure is carried out. By using image quality evaluation method, the difference of image quality under different magnifications is analyzed. The results show that the optical quality of the optical system with the expanded beam structure is the best when the expansion ratio is 5-7.

  3. Resonant third harmonic generation of KrF laser in Ar gas.

    Science.gov (United States)

    Rakowski, R; Barna, A; Suta, T; Bohus, J; Földes, I B; Szatmári, S; Mikołajczyk, J; Bartnik, A; Fiedorowicz, H; Verona, C; Verona Rinati, G; Margarone, D; Nowak, T; Rosiński, M; Ryć, L

    2014-12-01

    Investigations of emission of harmonics from argon gas jet irradiated by 700 fs, 5 mJ pulses from a KrF laser are presented. Harmonics conversion was optimized by varying the experimental geometry and the nozzle size. For the collection of the harmonic radiation silicon and solar-blind diamond semiconductor detectors equipped with charge preamplifiers were applied. The possibility of using a single-crystal CVD diamond detector for separate measurement of the 3rd harmonic in the presence of a strong pumping radiation was explored. Our experiments show that the earlier suggested 0.7% conversion efficiency can really be obtained, but only in the case when phase matching is optimized with an elongated gas target length corresponding to the length of coherence.

  4. High pressure laser plasma studies. [energy pathways in He-Ar gas mixtures at low pressure

    Science.gov (United States)

    Wells, W. E.

    1980-01-01

    The operation of a nuclear pumped laser, operating at a wavelength of 1.79 micron m on the 3d(1/2-4p(3/2) transition in argon with helium-3 as the majority gas is discussed. The energy pathways in He-Ar gas were investigated by observing the effects of varying partial pressures on the emissions of levels lying above the 4p level in argon during a pulsed afterglow. An attempt is made to determine the population mechanisms of the 3d level in pure argon by observing emission from the same transition in a high pressure plasma excited by a high energy electron beam. Both collisional radiative and dissociative recombination are discussed.

  5. Influence of shielding gas pressure on welding characteristics in CO2 laser-MIG hybrid welding process

    Science.gov (United States)

    Chen, Yanbin; Lei, Zhenglong; Li, Liqun; Wu, Lin

    2006-01-01

    The droplet transfer behavior and weld characteristics have been investigated under different pressures of shielding gas in CO2 laser and metal inert/active gas (laser-MIG) hybrid welding process. The experimental results indicate that the inherent droplet transfer frequency and stable welding range of conventional MIG arc are changed due to the interaction between CO2 laser beam and MIG arc in laser-MIG hybrid welding process, and the shielding gas pressure has a crucial effect on welding characteristics. When the pressure of shielding gas is low in comparison with MIG welding, the frequency of droplet transfer decreases, and the droplet transfer becomes unstable in laser-MIG hybrid welding. So the penetration depth decreases, which shows the characteristic of unstable hybrid welding. However, when the pressure of shielding gas increases to a critical value, the hybrid welding characteristic is changed from unstable hybrid welding to stable hybrid welding, and the frequency of droplet transfer and the penetration depth increase significantly.

  6. Incidence and Outcomes of Anterior Chamber Gas Bubble during Femtosecond Flap Creation for Laser-Assisted In Situ Keratomileusis

    Directory of Open Access Journals (Sweden)

    Sloan W. Rush

    2015-01-01

    Full Text Available Purpose. To report the incidence and outcomes of anterior chamber gas bubble formation during femtosecond laser flap creation for laser-assisted in situ keratomileusis (LASIK. Methods. The charts of 2,886 consecutive eyes that underwent femtosecond LASIK from May 2011 through August 2014 were retrospectively reviewed. The incidence, preoperative characteristics, intraoperative details, and postoperative outcomes were analyzed in subjects developing anterior chamber gas bubble formation during the procedure. Results. A total of 4 cases (0.14% developed anterior chamber gas bubble formation during femtosecond laser flap creation. In all four cases, the excimer laser was unable to successfully track the pupil immediately following the anterior chamber bubble formation, temporarily postponing the completion of the procedure. There was an ethnicity predilection of anterior chamber gas formation toward Asians (p=0.0055. An uncorrected visual acuity of 20/20 was ultimately achieved in all four cases without further complications. Conclusions. Anterior chamber gas bubble formation during femtosecond laser flap creation for LASIK is an uncommon event that typically results in a delay in treatment completion; nevertheless, it does influence final positive visual outcome.

  7. Materials processing issues for non-destructive laser gas sampling (NDLGS)

    Energy Technology Data Exchange (ETDEWEB)

    Lienert, Thomas J [Los Alamos National Laboratory

    2010-12-09

    The Non-Destructive Laser Gas Sampling (NDLGS) process essentially involves three steps: (1) laser drilling through the top of a crimped tube made of 304L stainles steel (Hammar and Svennson Cr{sub eq}/Ni{sub eq} = 1.55, produced in 1985); (2) gas sampling; and (3) laser re-welding of the crimp. All three steps are performed in a sealed chamber with a fused silica window under controlled vacuum conditions. Quality requirements for successful processing call for a hermetic re-weld with no cracks or other defects in the fusion zone or HAZ. It has been well established that austenitic stainless steels ({gamma}-SS), such as 304L, can suffer from solidification cracking if their Cr{sub eq}/Ni{sub eq} is below a critical value that causes solidification to occur as austenite (fcc structure) and their combined impurity level (%P+%S) is above {approx}0.02%. Conversely, for Cr{sub eq}/Ni{sub eq} values above the critical level, solidification occurs as ferrite (bcc structure), and cracking propensity is greatly reduced at all combined impurity levels. The consensus of results from studies of several researchers starting in the late 1970's indicates that the critical Cr{sub eq}/Ni{sub eq} value is {approx}1.5 for arc welds. However, more recent studies by the author and others show that the critical Cr{sub eq}/Ni{sub eq} value increases to {approx}1 .6 for weld processes with very rapid thermal cycles, such as the pulsed Nd:YAG laser beam welding (LBW) process used here. Initial attempts at NDLGS using pulsed LBW resulted in considerable solidification cracking, consistent with the results of work discussed above. After a brief introduction to the welding metallurgy of {gamma}-SS, this presentation will review the results of a study aimed at developing a production-ready process that eliminates cracking. The solution to the cracking issue, developed at LANL, involved locally augmenting the Cr content by applying either Cr or a Cr-rich stainless steel (ER 312) to the top

  8. Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report

    Science.gov (United States)

    Lewis, Pattie

    2011-01-01

    The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  9. Laser induced temperature jump investigations of fast protein folding dynamics

    Science.gov (United States)

    Qiu, Linlin

    Protein folding has a large parameter space, diverse mechanism, and multipath kinetics. However, there are some common features many proteins share in their folding processes: all seem to fold at the rates much faster than the random conformation search, and all fold into the structures which have the highly regular motifs like alpha-helices, beta-sheets and turns. Understanding how fast proteins can fold is one of the central issues in solving the protein folding problem. Ultrafast folding kinetics had not been accessible until a few sub-millisecond probes were invented and applied lately. We constructed a laser induced temperature jump spectrometer which is a great utility in identifying the local structure and tertiary contact formation of proteins on the time scale from 10 -8 to 10-3 s with time resolution of 10 -9 s. With this spectrometer we studied the fast folding mini-protein, TrpCage and a few short stable beta-hairpins, the TrpZip series. Studying TrpCage was a major breakthrough it was a pioneer protein model which brought experiment and simulation very close: its structures measured by NMR and predicted by the molecular dynamics were amazingly alike. Our kinetic results showed that it folds in 4 mus at room temperature which turned out to be the fastest ever known for protein-like molecules. Also this folding time constant is consistent with what was later on simulated by distributed computation. TrpZips are among the smallest and stablest polypeptide chains which form secondary structures. They are slightly different from each other based on structural stability and by forming various types of beta-hairpins which are the minimum units of beta tertiary structure. The beta-hairpins form in the time range of 1--10 mus that confirms the theory that loop formation is controlled by the diffusion process (˜mus). We also investigated the kinetics of the protein chain collapse, a very controversial problem. By comparing the collapse of the foldable 104

  10. High-quality laser cutting of stainless steel in inert gas atmosphere by ytterbium fibre and CO2 lasers

    International Nuclear Information System (INIS)

    Golyshev, A A; Malikov, A G; Orishich, A M; Shulyat'ev, V B

    2014-01-01

    Processes of cutting stainless steel by ytterbium fibre and CO 2 lasers have been experimentally compared. The cut surface roughnesses for 3- and 5-mm-thick stainless steel sheets are determined. The absorption coefficient of laser radiation during cutting is measured. It is established that the power absorbed by metal during cutting by the CO 2 laser exceeds that for the ytterbium laser (provided that the cutting speed remains the same). The fact that the maximum cutting speed of the CO 2 laser is lower than that of the ytterbium fibre laser is explained. (laser technologies)

  11. Control of electron beam by using high-Z gas target in the laser-plasma acceleration

    International Nuclear Information System (INIS)

    Mori, Michiaki

    2012-01-01

    We investigate the pointing stability and the divergence of a quasi-monoenergetic electron beam generated in a self-injected laser-plasma acceleration regime using high-Z gas-jet target. Gas-jet targets have been irradiated with focused 40 fs laser pulses at the 4-TW peak power. A pointing stability and a beam divergence of electron beam were improved using argon target. These values were about three times smaller than at the optimum condition using helium. This stabilization method is available for another gas material such as nitrogen. At nitrogen gas-jet target, the pointing stability is more improved to two times smaller than that in argon gas-jet target and the peak energy is increased to >30 MeV. These results prove that this method not only stabilizes the e-beam but also allows controlling the electron energy. (author)

  12. Canadian natural gas market dynamics and pricing : an update

    International Nuclear Information System (INIS)

    2002-10-01

    This energy market assessment (EMA) report discusses natural gas price formation and describes the current functioning of regional gas markets in Canada. This EMA also describes the factors affecting the price of natural gas in Canada and examines natural gas markets on a region-by region basis. It is shown that as part of an integrated North American market, prices of natural gas in Canada reflect supply and demand factors in both Canada and the United States. During the low oil price period of 1997/1998, high demand for natural gas outpaced the supply because of low drilling and production activity by producers. In response to the increased demand and lower levels of supply, the price of natural gas increased significantly in 1999 and 2000. This was followed by a period of market adjustment. The importance of electronic trading systems for enhancing price discovery was also discussed with reference to how spot and futures markets allow market participants to manage price volatility. It was determined that Canadians have had access to natural gas on terms and conditions equal to export customers, and at equal pricing. In early November 2000, natural gas prices in North American began to rise due to low levels of natural gas in storage. The price shocks were felt unevenly across the North American market. In response to the high prices, consumers conserved energy use, and many industrial users switched to cheaper fuels. By the spring 2001, demand continued to decrease at a time when production was high. These factors contributed to the downward pressure on gas prices. This EMA discusses the structure of market transactions and market adjustment mechanisms. It is presented in the context of the approaching 2002/2003 winter season where the tightening between natural gas supply and demand is expected to result in price volatility. 28 figs

  13. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics.

    Science.gov (United States)

    Kubelka, Jan

    2009-04-01

    Many important biochemical processes occur on the time-scales of nanoseconds and microseconds. The introduction of the laser temperature-jump (T-jump) to biophysics more than a decade ago opened these previously inaccessible time regimes up to direct experimental observation. Since then, laser T-jump methodology has evolved into one of the most versatile and generally applicable methods for studying fast biomolecular kinetics. This perspective is a review of the principles and applications of the laser T-jump technique in biophysics. A brief overview of the T-jump relaxation kinetics and the historical development of laser T-jump methodology is presented. The physical principles and practical experimental considerations that are important for the design of the laser T-jump experiments are summarized. These include the Raman conversion for generating heating pulses, considerations of size, duration and uniformity of the temperature jump, as well as potential adverse effects due to photo-acoustic waves, cavitation and thermal lensing, and their elimination. The laser T-jump apparatus developed at the NIH Laboratory of Chemical Physics is described in detail along with a brief survey of other laser T-jump designs in use today. Finally, applications of the laser T-jump in biophysics are reviewed, with an emphasis on the broad range of problems where the laser T-jump methodology has provided important new results and insights into the dynamics of the biomolecular processes.

  14. Structural, dynamical, electronic, and bonding properties of laser-heated silicon: An ab initio molecular-dynamics study

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1997-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to simulate laser heating of crystalline silicon. We found that a high concentration of excited electrons dramatically weakens the covalent bonding. As a result the system undergoes a melting

  15. Radiation power control of the industrial CO2 lasers excited by a nonself-sustained glow discharge with regard to dissociation in a working gas mixture

    Science.gov (United States)

    Shemyakin, Andrey N.; Rachkov, Michael Yu.; Solovyov, Nikolay G.; Yakimov, Mikhail Yu.

    2018-01-01

    The action of a working gas mixture degradation related to the plasma chemical reactions in a glow discharge on the laser output power of the molecular laser excited by a nonself-sustained glow discharge has been studied by the example of an industrial laser of ;Lantan; CO2 laser series. It was found that the laser power overshoot when operating on a fresh gas mixture may exceed 3 times power level set in a steady-state regime. The working algorithm for the control system was proposed and developed setting standard fresh CO2/N2/He laser gas mixture to plasma chemical equilibrium composition during the laser turn-on procedure after full refill of a working gas mixture.

  16. Wavepacket dynamics of a Rydberg atom monitored by a pair of time-delayed laser pulses

    Science.gov (United States)

    Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Liu, HongPing

    2018-02-01

    We have investigated the Rydberg state population of an argon atom by an intense laser pulse and its wavepacket dynamics monitored by another successive laser pulse in the tunneling regime. A wavepacket comprising a superposition of close high-lying Rydberg states is irradiated by a multicycle laser pulse, where the sub-wave components in the wavepacket have fixed relative phases. A time-delayed second laser pulse is employed to apply on the excited Rydberg atom. If the time is properly chosen, one of the sub-wave components will be guided towards the ionization area while the rest remains intact. By means of this pump–probe technique, we could control and monitor the Rydberg wavepacket dynamics and reveal some interesting phenomenon such as the survival rate of individual Rydberg states related to the classical orbital period of electron.

  17. Adaptive Pulsed Laser Line Extraction for Terrain Reconstruction using a Dynamic Vision Sensor

    Directory of Open Access Journals (Sweden)

    Christian eBrandli

    2014-01-01

    Full Text Available Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor’s ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500Hz were achieved using a line laser of 3mW at a distance of 45cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2mm.

  18. Transient localized electron dynamics simulation during femtosecond laser tunnel ionization of diamond

    International Nuclear Information System (INIS)

    Wang, C.; Jiang, L.; Wang, F.; Li, X.; Yuan, Y.P.; Qu, L.T.; Lu, Y.F.

    2012-01-01

    Highlights: ► A first-principles calculation of nonlinear electron–photon interactions when tunnel ionization dominates is presented. ► TDDFT is applied for the description of transient localized electrons dynamics. ► The relationships among average absorbed energy, Keldysh parameter and laser intensity are revealed. -- Abstract: A real-time and real-space time-dependent density-functional theory (TDDFT) is applied to simulate the nonlinear electron–photon interactions during femtosecond laser processing of diamond when tunnel ionization dominates. The transient localized electron dynamics including the electron excitation, energy absorption and electron density evolution are described in this Letter. In addition, the relationships among average absorbed energy, Keldysh parameter and laser intensity are revealed when the laser frequency is fixed.

  19. A multilevel particle method for gas dynamics: application to multi-fluids simulation

    International Nuclear Information System (INIS)

    Weynans, Lisl

    2006-12-01

    In inertial confinement fusion, laser implosions require to know hydrodynamic flow in presence of shocks. This work is devoted to the evaluation of the ability of a particle-mesh method, inspired from Vortex-In-Cell methods, to simulate gas dynamics, especially multi-fluids. First, we develop a particle method, associated with a conservative re-meshing step, which is performed with high order interpolating kernels. We study theoretically and numerically this method. This analysis gives evidence of a strong relationship between the particle method and high order Lax-Wendroff-like finite difference schemes. We introduce a new scheme for the advection of particles. Then we implement a multilevel technique, inspired from AMR, which allows us to increase locally the accuracy of the computations. Finally we develop a level set-like technique, discretized on the particles, to simulate the interface between compressible flows. We use the multilevel technique to improve the interface resolution and the conservation of partial masses. (author)

  20. New GasB-based single-mode diode lasers in the NIR and MIR spectral regime for sensor applications

    Science.gov (United States)

    Milde, Tobias; Hoppe, Morten; Tatenguem, Herve; Honsberg, Martin; Mordmüller, Mario; O'Gorman, James; Schade, Wolfgang; Sacher, Joachim

    2018-02-01

    The NIR/MIR region between 1.8μm and 3.5μm contains important absorption lines for gas detection. State of the art are InP laser based setups, which show poor gain above 1.8μm and cannot be applied beyond 2.1μm. GaSb laser show a significantly higher output power (100mW for Fabry-Perot, 30mW for DFB). The laser design is presented with simulation and actual performance data. The superior performance of the GaSb lasers is verified in gas sensing applications. TDLAS and QEPAS measurements at trace gases like CH4, CO2 and N2O are shown to prove the spectroscopy performance.

  1. Heat-transfer regimes in nuclear-reactor-pumped gas lasers

    Energy Technology Data Exchange (ETDEWEB)

    Torczynski, J.R.

    1990-01-01

    The flow induced in nuclear-reactor-pumped gas lasers by the competing effects of spatially nonuniform fission-fragment heating (pumping) and heat transfer to the walls is examined. The equations of motion are acoustically filtered (low Mach number approximation), and the resulting equations are seen to have three timescales: the duration of the heating, the time required by the heating to produce a pressure rise comparable to the initial pressure, and the time for the thermal boundary layer to grow into the center of the laser cell. Three distinct regimes emerge from consideration of the relative magnitudes of these timescales. In the negligible-conduction regime, thermal-conduction effects are small, and the motion is determined by the spatial nonuniformity of the heating. In the dominant-conduction regime, thermal-conduction effects govern the motion. In the mixed regime, the effects of thermal conduction and heating nonuniformity are comparable, but since they are oppositely directed, a complex gas motion results. Analytical solutions to the equations of motion are presented for the negligible-conduction and dominant-conduction regimes, and examples are given for all three regimes. Plots of the second spatial derivative of the density field (a quantity often used in optical analyses) are given for the negligible-conduction and the dominant-conduction regimes as functions of the appropriate similarity parameters. 26 refs., 14 figs.

  2. Ion Acceleration from Pure Frozen Gas Targets using Short Pulse Lasers

    Science.gov (United States)

    McCary, Edward; Stehr, Florian; O'Shea, Finn; Jiao, Xuejing; Agustsson, Ronald; Berry, Robert; Chao, Dennis; Gautier, Donald; Letzring, Samuel; Quevedo, Hernan; Woods, Kaley; Hegelich, Bjorn

    2014-10-01

    A system for shooting interchangeable frozen gas ice targets was developed and tested on the Trident laser system at Los Alamos National Lab. A target holder which could hold up to five substrates used for target growing was cryogenically cooled to temperatures below 14 K. The target substrates consisted of holes with diameters ranging from 15 μm-500 μm and TEM grids with micron scale spacing, across which films of ice were frozen by releasing small amounts of pure gas molecules directly into the vacuum target chamber. The thickness of the ice targets was determined by using alpha spectroscopy. Accelerated ion spectra were characterized using a Thomson Parabola with magnetic field strength of 0.92 T and electric field strength of 30kV and radio-chromic film stacks. Hydrogen targets were additionally characterized using stacks of copper which became activated upon exposure to energetic protons resulting in a beta decay signal. The beta decay was imaged on electron sensitive imaging plates to provide an energy spectrum and spacial profile of the proton beam. Results of the interchangeable, laser-based ion accelerator will be presented. Work Supported by NIH grant.

  3. Models of WO x films growth during pulsed laser deposition at elevated pressures of reactive gas

    Science.gov (United States)

    Gnedovets, A. G.; Fominski, V. Y.; Nevolin, V. N.; Romanov, R. I.; Fominski, D. V.; Soloviev, A. A.

    2017-12-01

    The films of tungsten oxides were prepared by pulsed laser ablation of W target in a reactive gas atmosphere (air of laboratory humidity). Optical analysis and ion signal measurements for the laser plume allowed to recognise a threshold gas pressure that suppresses the deposition of non-scattered atomic flux from the plume. When the pressure exceeds about 40 Pa, the films grow due to the deposition of species that could be formed in collisions of W atoms with reactive molecules (e.g., O2). Kinetic Monte Carlo method was used for modelling film growth. Comparison of the model structures with the experimentally prepared films has shown that the growth mechanism of ballistic deposition at a pressure of 40 Pa could be changed on the diffusion limited aggregation at a pressure of ~100 Pa. Thus, a cauliflower structure of the film transformed to a web-like structure. For good correlation of experimental and model structures of WO x , a dimension of structural elements in the model should coincide with W-O cluster size.

  4. Non-invasive gas monitoring in newborn infants using diode laser absorption spectroscopy: a case study

    Science.gov (United States)

    Lundin, Patrik; Svanberg, Emilie K.; Cocola, Lorenzo; Lewander, Märta; Andersson-Engels, Stefan; Jahr, John; Fellman, Vineta; Svanberg, Katarina; Svanberg, Sune

    2012-03-01

    Non-invasive diode laser spectroscopy was, for the first time, used to assess gas content in the intestines and the lungs of a new-born, 4 kg, baby. Two gases, water vapor and oxygen, were studied with two low-power tunable diode lasers, illuminating the surface skin tissue and detecting the diffusely emerging light a few centimeters away. The light, having penetrated into the tissue, had experienced absorption by gas located in the lungs and in the intestines. Very distinct water vapor signals were obtained from the intestines while imprint from oxygen was lacking, as expected. Detectable, but minor, signals of water vapor were also obtained from the lungs, illuminating the armpit area and detecting below the collar bone. Water vapor signals were seen but again oxygen signals were lacking, now due to the difficulties of penetration of the oxygen probing light into the lungs of this full-term baby. Ultra-sound images were obtained both from the lungs and from the stomach of the baby. Based on dimensions and our experimental findings, we conclude, that for early pre-term babies, also oxygen should be detectable in the lungs, in addition to intestine and lung detection of water vapor. The present paper focuses on the studies of the intestines while the lung studies will be covered in a forthcoming paper.

  5. Optical Properties Dependence with Gas Pressure in AlN Films Deposited by Pulsed Laser Ablation

    International Nuclear Information System (INIS)

    Perez, J A; Riascos, H; Caicedo, J C; Cabrera, G; Yate, L

    2011-01-01

    AlN films were deposited by pulsed laser deposition technique (PLD) using an Nd: YAG laser (λ = 1064 nm). The films were deposited in a nitrogen atmosphere as working gas; the target was an aluminum high purity (99.99%). The films were deposited with a laser fluence of 7 J/cm2 for 10 minutes on silicon (100) substrates. The substrate temperature was 300 deg. C and the working pressure was varied from 3 mtorr to 11 mtorr. The thickness measured by profilometer was 150 nm for all films. The crystallinity was observed via XRD pattern, the morphology and composition of the films were studied using scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), respectively. The optical reflectance spectra and color coordinates of the films were obtained by optical spectral reflectometry technique in the range of 400 cm-1- 900 cm-1 by an Ocean Optics 2000 spectrophotometer. In this work, a clear dependence of the reflectance, dominant wavelength and color purity was found in terms of the applied pressure to the AlN films. A reduction in reflectance of about 55% when the pressure was increased from 3 mtorr to 11 mtorr was observed. This paper deals with the formation of AlN thin films as promising materials for the integration of SAW devices on Si substrates due to their good piezoelectric properties and the possibility of deposition at low temperature compatible with the manufacturing of Si integrated circuits.

  6. Optical Properties Dependence with Gas Pressure in AlN Films Deposited by Pulsed Laser Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J A; Riascos, H [Departamento de Fisica, Universidad Tecnologica de Pereira, Grupo plasma Laser y Aplicaciones A.A 097 (Colombia); Caicedo, J C [Grupo pelIculas delgadas, Universidad del Valle, Cali (Colombia); Cabrera, G; Yate, L, E-mail: jcaicedoangulo@gmail.com [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain)

    2011-01-01

    AlN films were deposited by pulsed laser deposition technique (PLD) using an Nd: YAG laser ({lambda} = 1064 nm). The films were deposited in a nitrogen atmosphere as working gas; the target was an aluminum high purity (99.99%). The films were deposited with a laser fluence of 7 J/cm2 for 10 minutes on silicon (100) substrates. The substrate temperature was 300 deg. C and the working pressure was varied from 3 mtorr to 11 mtorr. The thickness measured by profilometer was 150 nm for all films. The crystallinity was observed via XRD pattern, the morphology and composition of the films were studied using scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), respectively. The optical reflectance spectra and color coordinates of the films were obtained by optical spectral reflectometry technique in the range of 400 cm-1- 900 cm-1 by an Ocean Optics 2000 spectrophotometer. In this work, a clear dependence of the reflectance, dominant wavelength and color purity was found in terms of the applied pressure to the AlN films. A reduction in reflectance of about 55% when the pressure was increased from 3 mtorr to 11 mtorr was observed. This paper deals with the formation of AlN thin films as promising materials for the integration of SAW devices on Si substrates due to their good piezoelectric properties and the possibility of deposition at low temperature compatible with the manufacturing of Si integrated circuits.

  7. Laser dynamics in transversely inhomogeneous plasma and its relevance to wakefield acceleration

    Science.gov (United States)

    Pathak, V. B.; Vieira, J.; Silva, L. O.; Nam, Chang Hee

    2018-05-01

    We present full set of coupled equations describing the weakly relativistic dynamics of a laser in a plasma with transverse inhomogeneity. We apply variational principle approach to obtain these coupled equations governing laser spot-size, transverse wavenumber, curvature, transverse centroid, etc. We observe that such plasma inhomogeneity can lead to stronger self-focusing. We further discuss the guiding conditions of laser in parabolic plasma channels. With the help of multi-dimensional particle in cell simulations the study is extended to the blowout regime of laser wakefield acceleration to show laser as well as self-injected electron bunch steering in plasma to generate unconventional particle trajectories. Our simulation results demonstrate that such transverse inhomogeneities due to asymmetric self focusing lead to asymmetric bubble excitation, thus inducing off-axis self-injection.

  8. Scaling up and controlling beam quality of flowing-gas diode pumped potassium laser with different pumping geometries: 3D CFD modeling

    Science.gov (United States)

    Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-10-01

    Comprehensive analysis of the performance and beam quality of subsonic flowing-gas K diode-pumped alkali lasers (DPALs) with different pumping geometries, using 3D computational fluid dynamics model, is reported. The model is first applied to a K DPAL with transverse pumping and parameters similar to those of the 1.5 kW K DPAL [Pitz et al, Proc. SPIE 9729, 972902 (2016)] and the calculated results are in satisfactory agreement with the measurements. To study the possibility of scaling up the K DPAL the model is then applied to 100-kW class device with transverse and end pumping geometry. Dependence of the output power on the flow velocity and the pumping geometry is studied. Comparison between end and transverse pumping schemes shows that the output power is almost unaffected by the pumping geometry. However, the spatial intensity distribution of the output laser beam depends on the pumping geometry: it is uniform for the end pumping, whereas for the transverse pumping it is strongly non-uniform at high gas temperature (corresponding to large density of K atoms), becoming more uniform with temperature reduction. The model is applied to evaluation of the beam quality of flowing-gas K DPALs which strongly depends on the refractive index distribution in the gain medium. The beam divergence and the width of the intensity profile in the far field for the end pumping appear to be much smaller than for the transverse pumping. Wave front corrections of the transversely pumped device using cylindrical lens results in substantial reduction of the laser beam divergence and improvement of its quality which becomes comparable with that of the end pumped laser.

  9. Laser Processing and Chemistry

    CERN Document Server

    Bäuerle, Dieter

    2011-01-01

    This book gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of lasers in “standard” laser machining and laser chemical processing (LCP), including the patterning, coating, and modification of material surfaces. This fourth edition has been enlarged to cover the rapid advances in the understanding of the dynamics of materials under the action of ultrashort laser pulses, and to include a number of new topics, in particular the increasing importance of lasers in various different fields of surface functionalizations and nanotechnology. In two additional chapters, recent developments in biotechnology, medicine, art conservation and restoration are summarized. Graduate students, physicists, chemists, engineers, a...

  10. Comparison of particle size measurements of some aqueous suspensions by laser polarimetry and dynamic light scattering

    International Nuclear Information System (INIS)

    Chirikov, S N

    2016-01-01

    The results of the size distributions measurements of the particles of aqueous suspensions of ZnO, CuO, TiO 2 , and BaTiO 3 by methods of laser polarimetry and dynamic light scattering are considered. These measurements are compared with the results obtained by electron microscopy. It is shown that a laser polarimetry method gives more accurate results for size parameter values more than 1-2. (paper)

  11. Some fundamental considerations on the dynamics of class B laser threshold crossing

    OpenAIRE

    Puccioni, G. P.; Wang, T.; Lippi, G. L.

    2016-01-01

    With the help of a simple rate equation model, we analyze the intrinsic dynamics of threshold crossing for Class B lasers. A thorough discussion of the characteristics and the limitations of this very commonly employed model, which provides excellent qualitative predictions on the laser behaviour, is offered. Approximate solutions for the population inversion and for the field intensity, up to the point where the latter reaches macroscopic levels, are found and discussed, together with the as...

  12. Dynamic safety assessment of natural gas stations using Bayesian network

    NARCIS (Netherlands)

    Zarei, Esmaeil; Azadeh, Ali; Khakzad Rostami, N.; Mirzaei Aliabadi, Mostafa; Mohammadfam, Iraj

    2017-01-01

    Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been

  13. Fluid dynamics of gas-liquid bubble columns

    NARCIS (Netherlands)

    Delnoij, E.

    1999-01-01

    Gas-liquid bubble columns are used extensively in the process industries. The gas-liquid twophase flow prevailing in this type of process equipment is extremely complex, inherently unsteady and dominated by phenomena with widely varying time- and length-scales. it is for this reason that many

  14. Anterior chamber gas bubbles during femtosecond laser flap creation in LASIK: video evidence of entry via trabecular meshwork.

    Science.gov (United States)

    Soong, H Kaz; de Melo Franco, Rafael

    2012-12-01

    Femtosecond laser photodisruption of corneal stroma during laser in situ keratomileusis flap creation is accompanied by the formation of cavitation gas bubbles consisting of carbon dioxide and water vapor. Entry of these bubbles into the anterior chamber is an infrequent complication. We present video evidence that these bubbles enter via the trabecular meshwork. Neither author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. New continuous wave infrared Ar-Xe laser at intermediate gas pressures pumped by a transverse RF discharge

    NARCIS (Netherlands)

    Udalov, Yu.B.; Peters, P.J.M.; Ilieva, M.B.; Heeman-Ilieva, M.B.; Ernst, F.H.J.; Ochkin, V.N.; Witteman, W.J.

    1993-01-01

    An atomic Xe laser with a transverse rf excitation has been operated in a cw mode in the intermediate pressure regime. The laser output spectrum consisted of 5 Xe lines with wavelengths of 2.03, 2.63, 2.65, 3.37, and 3.51 μm. The unoptimized total output power of 330 mW was obtained for a gas

  16. Influence of Gas Sort on the Nucleation Region Width of Si Nanocrystal Grains Prepared by Pulsed Laser Ablation

    Directory of Open Access Journals (Sweden)

    Zechao Deng

    2014-01-01

    Full Text Available We have calculated the nucleation region (NR location of Si nanocrystal grains prepared by pulsed laser ablation (PLA with fluence of 4 J/cm2 in 10 Pa gas at room temperature, and ambient gases were He, Ne, and Ar, respectively. Results of calculation indicated that NR width in Ne gas was narrowest, while it was widest in He gas. Maximum mean size of grains deposited on substrates under ablated spot, which were placed horizontally, was the smallest in Ne gas. It would be attribute to more effective energy transfer during the process of collision when atomic mass of Si and ambient gas Ne are more close to each other. In this work, an additional gas flow with the same element as ambient gas was introduced, which is vertical to the plume axis at different lateral positions above ablated spot.

  17. The ROSELEND-Gas Project: Research On Solicitation Effects in a Large-scale Experiment under Natural Dynamics with Gas

    Science.gov (United States)

    Pili, E.; Richon, P.; Moreira, M.; Agrinier, P.; Sabroux, J.; Adler, P. M.; Queisser, M.

    2008-12-01

    project in the Roselend URL focuses on gases. It aims at understanding the origin and dynamics of natural gas sources, as well as the transfer mechanisms of gases from the tunnel toward the atmosphere through the unsaturated fractured rocks. This research program is of interest for the understanding natural emissions of greenhouse gases, the design of surface monitoring technologies for baseline determination and leakage detection in the framework of CO2 sequestration, as well as for improving tools for detection of concealed nuclear tests in the framework of the CTBT. At the Roselend site, CO2 is naturally produced in soils by plant and microbiological activity and in rocks by carbonate dissolution promoted by protons gained from pyrite oxidation upon water infiltration. Radon is emitted from rocks and transported through fractures. Naturally occurring CO2 and radon will be used as tracers in addition with an artificial mixture of noble gases. Tracers will be injected from an isolated section of the tunnel. High-frequency sampling will be followed by classical laboratory gas analyses (elemental and isotopic), and will be completed with high-resolution field monitoring, including the determination of the carbon isotope ratio in CO2 by diode-laser spectrometry.

  18. Optical emission spectroscopy study of the expansion dynamics of a laser generated plasma during the deposition of thin films by laser ablation

    Directory of Open Access Journals (Sweden)

    Fazio, Enza

    2007-09-01

    Full Text Available The dynamics of the expanding plasma produced by excimer laser ablation of different materials such as silicon, silicon carbide, graphite and tin powder were studied by means of time integrated, spatially resolved emission spectroscopy and fast photography imaging of the expanding plasma. Experiments were performed both in vacuum and in different pure background atmosphere (i.e. oxygen or nitrogen and, finally, in gaseous mixtures (i.e. in O2/Ar and N2/Ar mixtures. These investigations were performed to gather information on the nature of the chemical species present in the plasma and on the occurrence of chemical reactions during the interaction between the plasma and the background gas. Then, we tried to correlate the plasma expansion dynamics to the structural and physical properties of the deposited materials. Experimental results clearly indicate that there is a strong correlation between the plasma expansion dynamics and the structural properties of the deposited thin films. In this respect, the investigations performed by means of fast photography and of optical emission spectroscopy revealed themselves as powerful tools for an efficient control of the deposition process itself.

  19. Dynamic graphene filters for selective gas-water-oil separation.

    Science.gov (United States)

    Bong, Jihye; Lim, Taekyung; Seo, Keumyoung; Kwon, Cho-Ah; Park, Ju Hyun; Kwak, Sang Kyu; Ju, Sanghyun

    2015-09-23

    Selective filtration of gas, water, and liquid or gaseous oil is essential to prevent possible environmental pollution and machine/facility malfunction in oil-based industries. Novel materials and structures able to selectively and efficiently filter liquid and vapor in various types of solutions are therefore in continuous demand. Here, we investigate selective gas-water-oil filtration using three-dimensional graphene structures. The proposed approach is based on the adjustable wettability of three-dimensional graphene foams. Three such structures are developed in this study; the first allows gas, oil, and water to pass, the second blocks water only, and the third is exclusively permeable to gas. In addition, the ability of three-dimensional graphene structures with a self-assembled monolayer to selectively filter oil is demonstrated. This methodology has numerous potential practical applications as gas, water, and/or oil filtration is an essential component of many industries.

  20. Longitudinal dynamics of laser-cooled fast ion beams

    DEFF Research Database (Denmark)

    Weidemüller, M.; Eike, B.; Eisenbarth, U.

    1999-01-01

    -transverse coupling mechanisms. Laser cooling in novel bunch forms consisting of square-well buckets leads to longitudinally space-charge dominated beams. The observed longitudinal ion density distributions can be well described by a self-consistent mean-field model based on a thermodynamic Debye-Huckel approach......We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal....... When applying laser cooling in square-well buckets over long time intervals, hard Coulomb collisions suddenly disappear and the longitudinal temperature drops by about a factor of three. The observed longitudinal behaviour of the beam shows strong resemblance with the transition to an Coulomb...

  1. Longitudinal dynamics of laser-cooled fast ion beams

    DEFF Research Database (Denmark)

    Weidemüller, M.; Eike, B.; Eisenbarth, U.

    1999-01-01

    We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal-transverse co......We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal....... When applying laser cooling in square-well buckets over long time intervals, hard Coulomb collisions suddenly disappear and the longitudinal temperature drops by about a factor of three. The observed longitudinal behaviour of the beam shows strong resemblance with the transition to an Coulomb...

  2. Computational fluid-dynamic model of laser-induced breakdown in air

    International Nuclear Information System (INIS)

    Dors, Ivan G.; Parigger, Christian G.

    2003-01-01

    Temperature and pressure profiles are computed by the use of a two-dimensional, axially symmetric, time-accurate computational fluid-dynamic model for nominal 10-ns optical breakdown laser pulses. The computational model includes a kinetics mechanism that implements plasma equilibrium kinetics in ionized regions and nonequilibrium, multistep, finite-rate reactions in nonionized regions. Fluid-physics phenomena following laser-induced breakdown are recorded with high-speed shadowgraph techniques. The predicted fluid phenomena are shown by direct comparison with experimental records to agree with the flow patterns that are characteristic of laser spark decay

  3. Generation of nanoclusters by ultrafast laser ablation of Al: Molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Miloshevsky, Alexander; Phillips, Mark C.; Harilal, Sivanandan S.; Dressman, Phillip; Miloshevsky, Gennady

    2017-11-01

    The laser ablation of materials induced by an ultrashort femtosecond pulse is a complex phenomenon, which depends on both the material properties and the properties of the laser pulse. The unique capability of a combination of molecular dynamics (MD) and Momentum Scaling Model (MSM) methods is developed and applied to a large atomic system for studying the process of ultrafast laser-material interactions, behavior of matter in a highly non-equilibrium state, material disintegration, and formation of nanoparticles (NPs). Laser pulses with several fluences in the range from 500 J/m2 to 5000 J/m2 interacting with a large system of aluminum atoms are simulated. The response of Al material to the laser energy deposition is investigated within the finite-size laser spot. It is found that the shape of the plasma plume is dynamically changing during an expansion process. At several tens of picoseconds it can be characterized as a long hollow ellipsoid surrounded by atomized and nano-clustered particles. The time evolution of NP clusters in the plume is investigated. The collisions between the single Al atoms and generated NPs and fragmentation of large NPs determine the fractions of different-size NP clusters in the plume. The MD-MSM simulations show that laser fluence greatly affects the size distribution of NPs, their polar angles, magnitude and direction vectors of NP velocities. These results and predictions are supported by the experimental data and previous MD simulations.

  4. Dynamics expansion of laser produced plasma with different materials in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rabia Qindeel; Noriah Bte Bidin; Yaacob Mat daud [Laser Technology Laboratory, Physics Department, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)], E-mail: plasmaqindeel@yahoo.com

    2008-12-01

    The dynamics expansion of the plasma generated by laser ablation of different materials has been investigated. The dynamics and confinement of laser generated plasma plumes are expanding across variable magnetic fields. A Q-switched neodymium-doped yttrium aluminum garnet laser with 1064 nm, 8 ns pulse width and 0.125 J laser energy was used to generate plasma that was allowed to expand across variable magnetic within 0.1 - 0.8 T. The expansions of laser-produced plasma of different materials are characterized by using constant laser power. CCD video camera was used to visualize and record the activities in the focal region. The plasma plume length, width and area were measured by using Matrox Inpector 2.1 and video Test 0.5 software. Spectrums of plasma beam from different materials are studied via spectrometer. The results show that the plasma generated by aluminum target is the largest than Brass and copper. The optical radiation from laser generated plasma beam spectrums are obtained in the range of UV to visible light.

  5. Influence of carrier relaxation on the dynamics of stimulated emission in microcavity lasers

    Science.gov (United States)

    Hilpert, M.; Klann, H.; Hofmann, M.; Ellmers, C.; Oestreich, M.; Schneider, H. C.; Jahnke, F.; Koch, S. W.; Rühle, W. W.; Wolf, H. D.; Bernklau, D.; Riechert, H.

    1997-12-01

    The influence of carrier relaxation on the emission dynamics of a semiconductor microcavity laser is investigated using femtosecond optical excitation. For moderate excitation intensities, the dynamics of the output laser pulse becomes significantly slower when the photon energy of the pump laser is tuned from the quantum well band-gap energy towards higher energies. Theoretical calculations reproduce this trend only if the interaction-induced dephasing of the polarization driven by the pump pulse, the formation, and relaxation of the nonequilibrium carrier distribution as well as the chirp of the excitation pulse are taken into account. Additionally, band-structure effects such as excitation of light holes influence the thermalization dynamics and lead to discontinuities in the general trend.

  6. TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback

    International Nuclear Information System (INIS)

    Heil, T.; Uchida, A.; Davis, P.; Aida, T.

    2003-01-01

    We present a comprehensive experimental characterization of the dynamics of semiconductor lasers subject to polarization-rotated optical feedback. We find oscillatory instabilities appearing for large feedback levels and disappearing at large injection currents, which we classify in contrast to the well-known conventional optical-feedback-induced dynamics. In addition, we compare our experiments to theoretical results of a single-mode model assuming incoherence of the optical feedback, and we identify differences concerning the average power of the laser. Hence, we develop an alternative model accounting for both polarizations, where the emission of the dominant TE mode is injected with delay into the TM mode of the laser. Numerical simulations using this model show good qualitative agreement with our experimental results, correctly reproducing the parameter dependences of the dynamics. Finally, we discuss the application of polarization-rotated-feedback induced instabilities in chaotic carrier communication systems

  7. Nonlinear dynamic effects in a two-wave CO2 laser

    International Nuclear Information System (INIS)

    Gorobets, V A; Kozlov, K V; Kuntsevich, B F; Petukhov, V O

    1999-01-01

    Theoretical and experimental investigations were made of nonlinear dynamic regimes of the operation of a two-wave CO 2 laser with cw excitation in an electric discharge and loss modulation in one of the channels. Nonlinear amplitude - frequency characteristics of each of the laser channels have two low-frequency resonance spikes, associated with forced linear oscillations of two coupled oscillators, and high-frequency spikes, corresponding to doubling of the period of the output radiation oscillations. At low loss-modulation frequencies the intensity oscillations of the output radiation in the coupled channels are in antiphase, whereas at high modulation frequencies the dynamics is cophasal. Nonlinear dynamic effects, such as doubling of the period and of the repetition frequency of the pulses and chaotic oscillations of the output radiation intensity, are observed for certain system parameters. (control of laser radiation parameters)

  8. A Computation Fluid Dynamic Model for Gas Lift Process Simulation in a Vertical Oil Well

    Directory of Open Access Journals (Sweden)

    Kadivar Arash

    2017-03-01

    Full Text Available Continuous gas-lift in a typical oil well was simulated using computational fluid dynamic (CFD technique. A multi fluid model based on the momentum transfer between liquid and gas bubbles was employed to simulate two-phase flow in a vertical pipe. The accuracy of the model was investigated through comparison of numerical predictions with experimental data. The model then was used to study the dynamic behaviour of the two-phase flow around injection point in details. The predictions by the model were compared with other empirical correlations, as well. To obtain an optimum condition of gas-lift, the influence of the effective parameters including the quantity of injected gas, tubing diameter and bubble size distribution were investigated. The results revealed that increasing tubing diameter, the injected gas rate and decreasing bubble diameter improve gas-lift performance.

  9. A Computation Fluid Dynamic Model for Gas Lift Process Simulation in a Vertical Oil Well

    Science.gov (United States)

    Kadivar, Arash; Lay, Ebrahim Nemati

    2017-03-01

    Continuous gas-lift in a typical oil well was simulated using computational fluid dynamic (CFD) technique. A multi fluid model based on the momentum transfer between liquid and gas bubbles was employed to simulate two-phase flow in a vertical pipe. The accuracy of the model was investigated through comparison of numerical predictions with experimental data. The model then was used to study the dynamic behaviour of the two-phase flow around injection point in details. The predictions by the model were compared with other empirical correlations, as well. To obtain an optimum condition of gas-lift, the influence of the effective parameters including the quantity of injected gas, tubing diameter and bubble size distribution were investigated. The results revealed that increasing tubing diameter, the injected gas rate and decreasing bubble diameter improve gas-lift performance.

  10. Cold Flow Testing of a Modified Subscale Model Exhaust System for a Space Based Laser

    National Research Council Canada - National Science Library

    Jarrett, David

    2004-01-01

    .... The arrangement of the stacked nozzles was a modified version of a 1/5th scale-model of one quadrant of the conceptual Space Based Laser Integrated Flight Experiment (SBL IFX) gas dynamic laser...

  11. Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror

    Science.gov (United States)

    Fotiadi, Andrei A.; Mégret, Patrice; Blondel, Michel

    2004-05-01

    Backward light scattering can cause passive Q switching in fiber lasers. We propose a self-consistent description of the laser dynamics. Our model quantitatively reproduces the temporal structure of pulsation and is also attractive for analysis of laser stability and statistics. The validity of the model is directly verified in an experiment.

  12. Bremsstrahlung γ-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

    International Nuclear Information System (INIS)

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi

    2012-01-01

    Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free γ-ray imaging systems. The calculated yield of γ-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on γ-ray imaging is also discussed.

  13. FIBER LASER CONSTRUCTION AND THEORY INCLUDING FIBER BRAGG GRATINGS Photonic Crystal Fibers (PCFs) and applications of gas filled PCFs

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Jacob O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-08

    The principles used in fiber lasers have been around for a while but it is only within the past few years that fiber lasers have become commercially available and used in high power laser applications. This paper will focus on the basic design principles of fiber lasers, including fiber Bragg gratings, principles of operation, and forms of non-linear effects. It will describe the type and associated doping of the fiber used and difficult designs used to guide energy from the pump to the active medium. Topics covered include fiber laser design, fiber Bragg gratings, materials used, differences in quantum energy loss, thermo-optical effects, stimulated Raman scattering, Brillouin scattering, photonic crystal fibers and applications of gas filled Photonic Crystal Fibers (PCFs). Thanks to fiber lasers, the energy required to produce high power lasers has greatly dropped and as such we can now produce kW power using a standard 120V 15A circuit. High power laser applications are always requiring more power. The fiber laser can now deliver the greater power that these applications demand. Future applications requiring more power than can be combined using standard materials or configurations will need to be developed to overcome the high energy density and high non-linear optical scattering effects present during high power operations.

  14. Study on the dynamics of charged particles in a rarefied gas of thermonuclear reactor injector

    International Nuclear Information System (INIS)

    Afanas'ev, P.N.; Svistunov, Yu.A.; Sidorov, V.P.; Udovichenko, S.Yu.

    1987-01-01

    The motion of an ion beam directly beyond the source is considered in the assumption of homogeneous density of rarefied gas along the injector. Using numerical simulation the dynamics of fast particles in plasma electric field, created by the beam as a result of gas neutral atom ionization, is investigated. It is shown that stationary ambipolar electric field of ''plasma lens'' can affect considerably the beam transverse dynamics

  15. Wide-field laser ophthalmoscopy for imaging of gas-filled eyes after macular hole surgery

    Directory of Open Access Journals (Sweden)

    Nakao S

    2016-08-01

    Full Text Available Shintaro Nakao,1 Ryoichi Arita,1 Yuki Sato,2 Hiroshi Enaida,3 Akifumi Ueno,2 Takaaki Matsui,2 Hani Salehi-Had,4 Tatsuro Ishibashi,1 Koh-hei Sonoda1 1Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 2Ohshima Hospital of Ophthalmology, Fukuoka, 3Department of Ophthalmology, Faculty of Medicine, Saga University, Saga, Japan; 4Atlantis Eyecare, Huntington Beach, CA, USA Background and objective: Existing ophthalmoscopy methods are unable to obtain clear fundus autofluorescence (FAF images in gas-filled eyes. The purpose of this study was to evaluate the capability of wide-field laser ophthalmoscopy (Optos in obtaining FAF images in gas-filled eyes for the assessment of macular hole (MH closure after surgery. Methods: This was an interventional case series. Eighteen consecutive patients with unilateral MH underwent vitrectomy with internal limiting membrane peeling and 20% sulfur hexafluoride gas tamponade. FAF images using Optos were recorded preoperatively and postoperatively (days 1, 2, and 7. Results: On postoperative days 1, 2, and 7, FAF images were obtained from 11/18 (61.1%, 9/18 (50.0%, and 17/18 eyes (94.4%, respectively, using Optos. The quality of FAF images using Optos was sufficient to determine MH closure in 9/18 (50.0% of gas-filled eyes postoperatively. Quantitative analysis of FAF images was helpful in determining complete or partial closure of the MH. Conclusion: FAF imaging using Optos might be a useful adjunct to optical coherence tomography as a supportive method to guide the release from facedown posturing in some cases of MH. Keywords: Optos, fundus autofluorescence, facedown, gas, vitrectomy

  16. Laser Spectroscopy Multi-Gas Monitor: Results of Technology Demonstration on ISS

    Science.gov (United States)

    Mudgett, Paul D.; Pilgrim, Jeffrey S.

    2015-01-01

    Tunable diode laser spectroscopy (TDLS) is an up and coming trace and major gas monitoring technology with unmatched selectivity, range and stability. The technology demonstration of the 4 gas Multi-Gas Monitor (MGM), reported at the 2014 ICES conference, operated continuously on the International Space Station (ISS) for nearly a year. The MGM is designed to measure oxygen, carbon dioxide, ammonia and water vapor in ambient cabin air in a low power, relatively compact device. While on board, the MGM experienced a number of challenges, unplanned and planned, including a test of the ammonia channel using a commercial medical ammonia inhalant. Data from the unit was downlinked once per week and compared with other analytical resources on board, notably the Major Constituent Analyzer (MCA), a magnetic sector mass spectrometer. MGM spent the majority of the time installed in the Nanoracks Frame 2 payload facility in front breathing mode (sampling the ambient environment of the Japanese Experiment Module), but was also used to analyze recirculated rack air. The capability of the MGM to be operated in portable mode (via internal rechargeable lithium ion polymer batteries or by plugging into any Express Rack 28VDC connector) was a part of the usability demonstration. Results to date show unprecedented stability and accuracy of the MGM vs. the MCA for oxygen and carbon dioxide. The ammonia challenge (approx. 75 ppm) was successful as well, showing very rapid response time in both directions. Work on an expansion of capability in a next generation MGM has just begun. Combustion products and hydrazine are being added to the measurable target analytes. An 8 to 10 gas monitor (aka Gas Tricorder 1.0) is envisioned for use on ISS, Orion and Exploration missions.

  17. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics

    DEFF Research Database (Denmark)

    Csatho, Beata M.; Schenk, Anton F.; van der Veen, Cornelis J.

    2014-01-01

    Significance We present the first detailed reconstruction of surface elevation changes of the Greenland Ice Sheet from NASA’s laser altimetry data. Time series at nearly 100,000 locations allow the characterization of ice sheet changes at scales ranging from individual outlet glaciers to larger...

  18. Dynamic imaging and hydrodynamics study of high velocity, laser ...

    Indian Academy of Sciences (India)

    Abstract. The main aim of the study of thin target foil–laser interaction experiments is to under- stand the physics of hydrodynamics of the foil acceleration, which is highly relevant to inertial confinement fusion (ICF). This paper discusses a simple, inexpensive multiframe optical shadow- graphy diagnostics developed for ...

  19. Experimental investigation of laser-induced bubble dynamics near elastic/soft material in distilled water

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, S; Yamamoto, Y [Graduate Student, Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Ota, M; Maeno, K, E-mail: maeno@faculty.chiba-u.j [Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan)

    2009-02-01

    This study deals with an experimental investigation of the dynamics of laser-induced single bubble near the rigid material plate and near the elastic/soft material plate in the distilled water at room temperature under atmospheric pressure. A pulsed Nd:YAG laser was focused into the distilled water to make plasma and single bubble. The bubble repeated expanding and shrinking motion several times, and then collapsed. This behavior occurred on the sub-millisecond timescale. The solid wall near the bubble makes an asymmetric flow field. Many experiments on the behavior of laser-induced bubble near the rigid material have been reported. The bubble near the solid wall moves toward the rigid wall during its shrinking and rebounding process. The behavior of laser-induced bubble near the soft material, however, has not been well clarified. The soft material such as body tissue can deform and influence the behavior of the laser-induced bubble. Since the high peak power laser has been applied in the field of bioengineering and medical treatment, it is of great importance to clarify the effect of the soft material near the laser-induced cavitation bubble. In this research the behavior of laser-induced bubble near the elastic/soft material was visualized with schlieren method and investigated.

  20. Dynamic laser speckle to detect motile bacterial response of Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Sendra, H; Murialdo, S; Passoni, L

    2007-01-01

    This proposal deals with the technique for detection of motile response of Pseudomonas aeruginosa using dynamic laser speckle or biospeckle as an alternative method. The study of bacterial displacement plays an essential role in biocatalysts processes and biodegradation. Hence, some biodegrading enzymes are benign catalytic that could be used for the production of industrially useful compounds as well as in wastewater treatments. This work presents an experimental set up and a computational process using frame sequences of dynamic laser speckle as a novel application. The objective was the detection of different levels of motility in bacteria. The encouraging results were achieved through a direct and non invasive observation method of the phenomenon

  1. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting

    International Nuclear Information System (INIS)

    Panwisawas, C.; Qiu, C.L.; Sovani, Y.; Brooks, J.W.; Attallah, M.M.; Basoalto, H.C.

    2015-01-01

    Thermal fluid dynamics and experiments have been used to study the evolution of pores during selective laser melting of Ti-6Al-4V. Scanning electron micrographs show that the morphology of pores changed from near-spherical to elongated shape as the laser scan speed increased. Computational fluid dynamics suggests that this is caused by the change of flow pattern in the melt pool which is dictated by forces such as vapour pressure, gravitational force, capillary and thermal capillary forces exerted on the metallic/gaseous interface

  2. Mathematical aspects of subsonic and transonic gas dynamics

    CERN Document Server

    Bers, Lipman

    2016-01-01

    Concise treatment by prominent mathematician covers differential equations of potential gas flow, mathematical background of subsonic flow theory, behavior of flow at infinity, flows in channels and with free boundary, more. 1958 edition.

  3. Investigation of Gas Seeding for Planar Laser-Induced Fluorescence in Hypersonic Boundary Layers

    Science.gov (United States)

    Arisman, C. J.; Johansen, C. T.; Bathel, B. F.; Danehy, P. M.

    2015-01-01

    Numerical simulations of the gas-seeding strategies required for planar laser-induced fluorescence in a Mach 10 (approximately Mach 8.2 postshock) airflow were performed. The work was performed to understand and quantify the adverse effects associated with gas seeding and to assess various types of seed gas that could potentially be used in future experiments. In prior experiments, NO and NO2 were injected through a slot near the leading edge of a flatplate wedge model used in NASA Langley Research Center's 31 in. Mach 10 air tunnel facility. In this paper, nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulations showing the deflection of the velocity boundary layer for each of the cases are presented. Streamwise distributions of velocity and concentration boundary-layer thicknesses, as well as vertical distributions of velocity, temperature, and mass distributions, are presented for each of the cases. A comparison between simulated streamwise velocity profiles and experimentally obtained molecular tagging velocimetry profiles using a nitric oxide seeding strategy is performed to verify the influence of such a strategy on the boundary layer. The relative merits of the different seeding strategies are discussed. The results from a custom solver based on OpenFOAM version 2.2.1 are compared against results obtained from ANSYS® Fluent version 6.3.

  4. Laser-Plasma Interaction Experiments in Gas-Filled Hohlraums at the LIL Facility

    Science.gov (United States)

    Masson-Laborde, Paul-Edouard; Loiseau, Pascal; Casanova, Michel; Rousseaux, Christophe; Teychenne, Denis; Laffite, Stephane; Huser, Gael

    2009-11-01

    The first laser-plasma interaction campaign conducted at the LIL facility, using gas-filled hohlraums, ended in spring 09. Two different gas-filled hohlraums have been designed in order to mimic plasma conditions expected along two particular beam paths in ignition hohlraums. The targets consist of 3- or 4-millimeters long, 1 atm neo-pentane gas-filled gold hohlraums. The LIL quadruplet is aligned with the hohlraum's axis and delivers a 6-ns long pulse with 15 kJ at 3φ. Optical smoothing is achieved by longitudinal dispersion and a phase plate giving a near 10^15 W/cm^2 mean intensity on the focal spot at maximum power. Plasma conditions from hydrodynamic calculations allow to calcule SBS and SRS linear gain with the PIRANAH code. The calculated spectra are compared to experimental results. We use the paraxial code HERA to investigate the propagation of the LIL quad. Finally, 1D and 2D PIC simulations based on the plasma conditions of the cavity will be discussed in order to understand experimental SRS spectrum.

  5. Dynamic graphene filters for selective gas-water-oil separation

    OpenAIRE

    Jihye Bong; Taekyung Lim; Keumyoung Seo; Cho-Ah Kwon; Ju Hyun Park; Sang Kyu Kwak; Sanghyun Ju

    2015-01-01

    Selective filtration of gas, water, and liquid or gaseous oil is essential to prevent possible environmental pollution and machine/facility malfunction in oil-based industries. Novel materials and structures able to selectively and efficiently filter liquid and vapor in various types of solutions are therefore in continuous demand. Here, we investigate selective gas-water-oil filtration using three-dimensional graphene structures. The proposed approach is based on the adjustable wettability o...

  6. SOFIA Observations of S106: Dynamics of the Warm Gas

    Science.gov (United States)

    Simon, R.; Schneider, N.; Stutzki, J.; Gusten, R.; Graf, U. U.; Hartogh, P.; Guan, X.; Staguhn, J. G.; Benford, D. J.

    2012-01-01

    Context The H II region/PDR/molecular cloud complex S106 is excited by a single O-star. The full extent of the warm and dense gas close to the star has not been mapped in spectrally resolved high-J CO or [C II] lines, so the kinematics of the warm. partially ionized gas, are unknown. Whether the prominent dark lane bisecting the hourglass-shaped nebula is due solely to the shadow cast by a small disk around the exciting star or also to extinction in high column foreground gas was an open question until now. Aims. To disentangle the morphology and kinematics of warm neutral and ionized gas close to the star, study their relation to the bulk of the molecular gas. and to investigate the nature of the dark lane. Methods. We use the heterodyne receiver GREAT on board SOFIA to observe velocity resolved spectral lines of [C II] and CO 11 yields 10 in comparison with so far unpublished submm continuum data at 350 micron (8HARC-Il) and complementary molecular line data. Results. The high angular and spectral resolution observations show a very complex morphology and kinematics of the inner S106 region, with many different components at different excitation conditions contributing to the observed emission. The [C II] lines are found to be bright and very broad. tracing high velocity gas close to the interface of molecular cloud and H II region. CO 11 yields 10 emission is more confined.. both spatially and in velocity, to the immediate surroundings of S 106 IR showing the presence of warm, high density (clumpy) gas. Our high angular resolution submm continuum observations rule out the scenario where the dark lane separating the two lobes is due solely to the shadow cast by a small disk close to the star. The lane is clearly seen also as warm, high column density gas at the boundary of the molecular cloud and H II region.

  7. The dynamic linkages between crude oil and natural gas markets

    International Nuclear Information System (INIS)

    Batten, Jonathan A.; Ciner, Cetin; Lucey, Brian M.

    2017-01-01

    The time varying price spillovers between natural gas and crude oil markets for the period 1994 to 2014 are investigated. Contrary to earlier research, we show that in a large part of our sample the natural gas price leads the price of crude oil with price spillover effects lasting up to two weeks. This result is robust to a battery of tests including out-of-sample forecasting exercises. However, after 2006, we detect little price dependencies between these two energy commodities. These findings arise due to a conjunction of both demand and supply-side shocks arising from both natural and economic events, including Hurricane Katrina, the Tohoku earthquake and the Global Financial Crisis, as well as infrastructure and technological improvements. The increased use of new technologies such as hydraulic fracking for the extraction of gas and oil in particular affected supply in the latter part of the study. We conclude that the long term relation present in the early part of the sample has decoupled, such that price determination of these two energy sources is now independent. - Highlights: • Contrary to earlier research we find natural gas may lead crude oil prices over a long sample. • This finding holds in forecasting out of sample. • There may be a break in the relationship between oil and gas in 2006. • We suggest that new technologies and financial conditions have led to a decoupling of these markets. • Oil and natural gas prices may now be determined independently.

  8. Relativistic classical and quantum dynamics in intense crossed laser beams of various polarizations

    Directory of Open Access Journals (Sweden)

    M. Verschl

    2007-02-01

    Full Text Available The dynamics of an electron in crossed laser fields is investigated analytically. Two different standing wave configurations are compared. The counterpropagating laser waves are either linearly or circularly polarized. Both configurations have in common that there are one-dimensional trajectories on which the electron can oscillate with vanishing Lorentz force. The dynamics is analyzed for the situations when the electron moves in the vicinity of these ideal axes. If the laser intensities imply nonrelativistic electron dynamics, the system is described quantum mechanically. A semiclassical treatment renders the strongly relativistic regime accessible as well. To describe relativistic wave packets, the results of the classical analysis are employed for a Monte Carlo ensemble. This allows for a comparison of the wave packet dynamics for both configurations in the strongly relativistic regime. It is found for certain cases that relativity slows down the dynamics, i.e., for higher laser intensities, wave packet spreading and the drift away from the ideal axis of vanishing Lorentz force are shown to be increasingly suppressed.

  9. Tin oxide thin films prepared by laser-assisted metal-organic CVD: Structural and gas sensing properties

    Czech Academy of Sciences Publication Activity Database

    Lančok, Ján; Santoni, A.; Penza, M.; Loreti, S.; Menicucci, I.; Minarini, C.; Jelínek, Miroslav

    2005-01-01

    Roč. 200, - (2005), s. 1057-1060 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GP106/01/D017; GA MŠk(CZ) LN00A015 Institutional research plan: CEZ:AV0Z10100522 Keywords : tin dioxide * laser-assisted MOCVD * XPS * gas sensor Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.646, year: 2005

  10. Dynamics and transport of laser-accelerated particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Stefan

    2010-04-19

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  11. Dynamics and transport of laser-accelerated particle beams

    International Nuclear Information System (INIS)

    Becker, Stefan

    2010-01-01

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  12. Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems

    DEFF Research Database (Denmark)

    Fang, Jiakun; Zeng, Qing; Ai, Xiaomeng

    2018-01-01

    . Simulation on the test case illustrates the success of the modelling and the beneficial roles of the power-to-gas are analyzed. The proposed model can be used in the decision support for both planning and operation of the coordinated natural gas and electrical power systems.......This work focuses on the optimal operation of the integrated gas and electrical power system with bi-directional energy conversion. Considering the different response times of the gas and power systems, the transient gas flow and steady- state power flow are combined to formulate the dynamic...... optimal energy flow in the integrated gas and power systems. With proper assumptions and simplifications, the problem is transformed into a single stage linear programming. And only a single stage linear programming is needed to obtain the optimal operation strategy for both gas and power systems...

  13. Gas-phase thermal dissociation of uranium hexafluoride: Investigation by the technique of laser-powered homogeneous pyrolysis

    International Nuclear Information System (INIS)

    Bostick, W.D.; McCulla, W.H.; Trowbridge, L.D.

    1987-04-01

    In the gas-phase, uranium hexafluoride decomposes thermally in a quasi-unimolecular reaction to yield uranium pentafluoride and atomic fluorine. We have investigated this reaction using the relatively new technique of laser-powered homogeneous pyrolysis, in which a megawatt infrared laser is used to generate short pulses of high gas temperatures under strictly homogeneous conditions. In our investigation, SiF 4 is used as the sensitizer to absorb energy from a pulsed CO 2 laser and to transfer this energy by collisions with the reactant gas. Ethyl chloride is used as an external standard ''thermometer'' gas to permit estimation of the unimolecular reaction rate constants by a relative rate approach. When UF 6 is the reactant, CF 3 Cl is used as reagent to trap atomic fluorine reaction product, forming CF 4 as a stable indicator which is easily detected by infrared spectroscopy. Using these techniques, we estimate the UF 6 unimolecular reaction rate constant near the high-pressure limit. In the Appendix, we describe a computer program, written for the IBM PC, which predicts unimolecular rate constants based on the Rice-Ramsperger-Kassel theory. Parameterization of the theoretical model is discussed, and recommendations are made for ''appropriate'' input parameters for use in predicting the gas-phase unimolecular reaction rate for UF 6 as a function of temperature and gas composition and total pressure. 85 refs., 17 figs., 14 tabs

  14. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-01-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes

  15. Physico-Chemical Dynamics of Nanoparticle Formation during Laser Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, M.D.

    2005-06-01

    Laser-ablation based decontamination is a new and effective approach for simultaneous removal and characterization of contaminants from surfaces (e.g., building interior and exterior walls, ground floors, etc.). The scientific objectives of this research are to: (1) characterize particulate matter generated during the laser-ablation based decontamination, (2) develop a technique for simultaneous cleaning and spectroscopic verification, and (3) develop an empirical model for predicting particle generation for the size range from 10 nm to tens of micrometers. This research project provides fundamental data obtained through a systematic study on the particle generation mechanism, and also provides a working model for prediction of particle generation such that an effective operational strategy can be devised to facilitate worker protection.

  16. Dynamic exposure model analysis of continuous laser direct writing in Polar-coordinate

    Science.gov (United States)

    Zhang, Shan; Lv, Yingjun; Mao, Wenjie

    2018-01-01

    In order to exactly predict the continuous laser direct writing quality in Polar-coordinate, we take into consideration the effect of the photoresist absorbing beam energy, the Gaussian attribute of the writing beam and the dynamic exposure process, and establish a dynamic exposure model to describe the influence of the tangential velocity of the normal incident facular center and laser power on the line width and sidewall angle. Numerical simulation results indicate that while writing velocity remains unchanged, the line width and sidewall angle are all increased as the laser power increases; while laser power remains unchanged, the line width and sidewall angle are all decreased as the writing velocity increases; at the same time the line profile in the exposure section is asymmetry and the center of the line has tiny excursion toward the Polar-coordinate origin compared with the facular center. Then it is necessary to choose the right writing velocity and laser power to obtain the ideal line profile. The model makes up the shortcomings of traditional models that can only predict line width or estimate the profile of the writing line in the absence of photoresist absorption, and can be considered as an effect analysis method for optimizing the parameters of fabrication technique of laser direct writing.

  17. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay.

    Science.gov (United States)

    Liu, Dong; Sun, Changzheng; Xiong, Bing; Luo, Yi

    2014-03-10

    We report rich nonlinear dynamics in integrated coupled lasers with ultra-short coupling delay. Mutually stable locking, period-1 oscillation, frequency locking, quasi-periodicity and chaos are observed experimentally. The dynamic behaviors are reproduced numerically by solving coupled delay differential equations that take the variation of both frequency detuning and coupling phase into account. Moreover, it is pointed out that the round-trip frequency is not involved in the above nonlinear dynamical behaviors. Instead, the relationship between the frequency detuning Δν and the relaxation oscillation frequency νr under mutual injection are found to be critical for the various observed dynamics in mutually coupled lasers with very short delay.

  18. Role of Gas Dynamical Friction in the Evolution of Embedded Stellar ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Gas dynamical friction has been considered before as a mechanism for contracting embedded stellar clusters, by dissipating their energy. This would locally raise the SFE which might then allow bound clusters to form. Noticing that dynamical friction is inherently capable of producing mass segregation, ...

  19. Toward the optimization of double-pulse LIBS underwater: effects of experimental parameters on the reproducibility and dynamics of laser-induced cavitation bubble.

    Science.gov (United States)

    Cristoforetti, Gabriele; Tiberi, Marco; Simonelli, Andrea; Marsili, Paolo; Giammanco, Francesco

    2012-03-01

    Double-pulse laser-induced breakdown spectroscopy (LIBS) was recently proposed for the analysis of underwater samples, since it overcomes the drawbacks of rapid plasma quenching and of large continuum emission, typical of single-pulse ablation. Despite the attractiveness of the method, this approach suffers nevertheless from a poor spectroscopic reproducibility, which is partially due to the scarce reproducibility of the cavitation bubble induced by the first laser pulse, since pressure and dimensions of the bubble strongly affect plasma emission. In this work, we investigated the reproducibility and the dynamics of the cavitation bubble induced on a solid target in water, and how they depend on pulse duration, energy, and wavelength, as well as on target composition. Results are discussed in terms of the effects on the laser ablation process produced by the crater formation and by the interaction of the laser pulse with floating particles and gas bubbles. This work, preliminary to the optimization of the spectroscopic signal, provides an insight of the phenomena occurring during laser ablation in water, together with useful information for the choice of the laser source to be used in the apparatus. © 2012 Optical Society of America

  20. Simulation of condensed matter dynamics in strong femtosecond laser pulses

    International Nuclear Information System (INIS)

    Wachter, G.

    2014-01-01

    Ultrashort custom-tailored laser pulses can be employed to observe and control the motion of electrons in atoms and small molecules on the (sub-) femtosecond time scale. Very recently, efforts are underway to extend these concepts to solid matter. This monograph theoretically explores first applications of electron control by ultrashort laser pulses in three paradigmatic systems of solid-state density: a metal nano-structure (nanometric metal tip), a bulk dielectric (quartz glass), and the buckminsterfullerene molecule (C60) as arguably the smallest possible nano-particle. The electron motion is resolved on the atomic length and time scale by ab-initio simulations based on time-dependent density functional theory. Our quantum simulations are complemented by classical and semi-classical models elucidating the underlying mechanisms. We compare our results to experiments where already available and find good agreement. With increasing laser intensity, we find a transition from vertical photoexcitation to tunneling-like excitation. For nanostructures, that leads to temporally confined electron photoemission and thereby to quantum interferences in the energy spectra of emitted electrons. Similarly, tunneling can be induced between neighboring atoms inside an insulator. This provides a mechanism for ultrafast light-field controlled currents and modification of the optical properties of the solid, promising to eventually realize light-field electronic devices operating on the femtosecond time scale and nanometer length scale. Electron-electron interaction leads to near field enhancement and spatial localization of the non-linear response and is investigated both classically by solving the Maxwell equations near a nanostructure as well as quantum mechanically for the fullerene molecule. For the latter, we discuss scrutiny of the molecular near-field by the attosecond streaking technique. Our results demonstrate that ultrashort laser pulses can be employed to steer the

  1. Dynamics of colliding aluminium plasmas produced by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Gambino, N., E-mail: gambino@lec.mavt.ethz.ch [INFN-Laboratori Nazionali del Sud, Via S.Sofia, 62, I95123 Catania (Italy); IET-Institute of Energy Technology, LEC-Laboratory for Energy Conversion, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich (Switzerland); Hayden, P. [School of Physical Sciences and National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland); Mascali, D. [INFN-Laboratori Nazionali del Sud, Via S.Sofia, 62, I95123 Catania (Italy); Costello, J.; Fallon, C.; Hough, P.; Yeates, P. [School of Physical Sciences and National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland); Anzalone, A.; Musumeci, F.; Tudisco, S. [INFN-Laboratori Nazionali del Sud, Via S.Sofia, 62, I95123 Catania (Italy)

    2013-05-01

    The collision of two aluminium plasmas was investigated by combining both time and space resolved spectroscopy and Langmuir probe measurements. Plasma plumes were produced by a Continuum™ Surelite Nd:YAG Laser System with pulse duration of FWHM of 6 ns and wavelength of 1064 nm, at a laser irradiance of 10{sup 11} W/cm{sup 2} on slab Al targets. By analyzing the emission spectra, the temporally and spatially resolved electron density and electron temperature at the stagnation layer were extracted, with a time resolution of 10 ns. Data analysis confirms that the electron density of the stagnation layer evolves over a longer timescale than in the single plume case. On the other hand, the temperature trends show that the electron temperature decreases much more rapidly at the stagnation layer than in the case for the single expanding plasma. In addition, a Langmuir probe was used to investigate the properties of the collisional front evolution. The overall experimental results show that colliding laser produced plasmas could be useful in the design of experiments devoted to fusion reaction rate measurements in a low energy domain by including the effect of the electron screening (ES).

  2. PHYSICO-CHEMICAL DYNAMICS OF NANOPARTICLE FORMATION DURING LASER DECONTAMINATION AND CHARACTERIZATION

    International Nuclear Information System (INIS)

    Cheng, Meng-Dawn

    2003-01-01

    Acceleration of decommission and deactivation (D and D) activities of US Department of Energy (DOE) requires improved understandings of nanoparticle production and transformation during laser decontamination. Many material researchers have explored particle formation during laser energy-material interaction, but there are little data relevant to D and D work while laser energy is used to remove materials from contaminated surfaces. Fine particles are harmful to D and D workers and the environment. The focus of this research is to investigate the effects of the laser parameters and the chemistry of target samples on the dynamics and properties of produced particles. Data will facilitate better design of decontamination and deactivation strategies. There are three goals associated with achieving the required understanding of nanoparticle dynamics. (1) To develop baseline property data of laser-produced nanoparticles from samples of different bulk chemical composition and surface morphology. The data would include properties of particles such as the size from a few nanometers to a few micrometers, shape, distribution, and chemical composition. (2) To develop advanced particle instrumentation (for sizing and chemistry measurement) enabling higher resolution and shorter interval measurement, and (3) To develop computer simulation model to analyze and predict the dynamics of particles produced

  3. Theoretical aspects of gas-phase molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Muckerman, J.T. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    Research in this program is focused on the development and application of time-dependent quantum mechanical and semiclassical methods for treating inelastic and reactive molecular collisions, and the photochemistry and photophysics of atoms and molecules in laser fields. Particular emphasis is placed on the development and application of grid methods based on discrete variable representations, on time-propagation methods, and, in systems with more that a few degrees of freedom, on the combined use of quantal wavepackets and classical trajectories.

  4. Dynamics of an Ultracold Bose Gas in Funnel-Shaped Potential

    International Nuclear Information System (INIS)

    Yan Li; Xu Guangyuan; Wang Yongjun; Liu Xianfeng; Han Jiurong

    2009-01-01

    In this paper we develop a variational theory to study the dynamic properties of ultracold Bose gas in a funnel external potential. We obtain one-dimensional nonlinear equation which describes the dynamics of transverse tight confined bosonic gas from three-dimension to one-dimension, and find one-dimensional s-wave scattering length which depends on the shape of transverse confining potential. If the funnel trapping potential is strong enough at zero temperature, all transverse excitations are frozen. We find the dynamic equation which describes the Tonks-Girardeau gas and present a qualitative analysis of the experimental accessibility of the Tonks-Girardeau gas with funnel-trapped alkalic atoms.

  5. Improvement of Dynamic Performance of Hybrid Gas Bearings via Adjustable Lubrication

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar

    2013-01-01

    In modern turbo-machinery gas journal bearings have been increasingly adopted, because they can operate at higher speed than most bearing designs. The main disadvantage of gas bearings is their low dynamic stability range. One solution to improve this and their performance is to combine the aerod......In modern turbo-machinery gas journal bearings have been increasingly adopted, because they can operate at higher speed than most bearing designs. The main disadvantage of gas bearings is their low dynamic stability range. One solution to improve this and their performance is to combine...... form of Reynolds Equation. To include the effect of the injection, an extra term is added to the Reynolds Equation, considering the fully developed Hagen-Poeiseuille flow in the injection pipeline. In order to verify this assumption, a Computational Fluid Dynamics (CFD) model is developed...

  6. A new in-gas-laser ionization and spectroscopy laboratory for off-line studies at KU Leuven

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, Yu., E-mail: Yuri.Kudryavtsev@fys.kuleuven.be; Creemers, P.; Ferrer, R.; Granados, C.; Gaffney, L.P.; Huyse, M.; Mogilevskiy, E.; Raeder, S.; Sels, S.; Van den Bergh, P.; Van Duppen, P.; Zadvornaya, A.

    2016-06-01

    The in-gas laser ionization and spectroscopy (IGLIS) technique is used to produce and to investigate short-lived radioactive isotopes at on-line ion beam facilities. In this technique, the nuclear reaction products recoiling out of a thin target are thermalized and neutralized in a high-pressure noble gas, resonantly ionized by the laser beams in a two-step process, and then extracted from the ion source to be finally accelerated and mass separated. Resonant ionization of radioactive species in the supersonic gas jet ensures very high spectral resolution because of essential reduction of broadening mechanisms. To obtain the maximum efficiency and the best spectral resolution, properties of the supersonic jet and the laser beams must be optimized. To perform these studies a new off-line IGLIS laboratory, including a new high-repetition-rate laser system and a dedicated off-line mass separator, has been commissioned. In this article, the specifications of the different components necessary to achieve optimum conditions in laser-spectroscopy studies of radioactive beams using IGLIS are discussed and the results of simulations are presented.

  7. Population inversion and laser effect in gas flows due to explosion or detonation

    Science.gov (United States)

    Korobeinikov, V. P.; Podduev, M. I.

    The influence of the gas flow behind blast and detonation waves on population inversion of the vibrational levels of CO2 in a CO2-N2-He-H2O mixture was studied by the numerical solution of nonequilibrium gasdynamic equations. The following cases were examined: (1) the propagation of a cylindrical blast wave (generated by the explosion of cylindrically confined RDX or acetylene-oxygen mixture charges) in an active medium, (2) detonation wave propagation in a nozzle filled with a combustible mixture, and (3) expansion of acetylene-air mixture detonation products into vacuum. The optimization questions of gasdynamic processes and emission radiation in pulse gasdynamic lasers were discussed as well. The results suggest that the potential for a population inversion is influenced by the finite dimensions of the charge, the variations in density of the explosive mixture, and the opportunity for expansion of the active medium after shock heating.

  8. Creation of a Bose-condensed gas of87Rb by laser cooling.

    Science.gov (United States)

    Hu, Jiazhong; Urvoy, Alban; Vendeiro, Zachary; Crépel, Valentin; Chen, Wenlan; Vuletić, Vladan

    2017-11-24

    Protocols for attaining quantum degeneracy in atomic gases almost exclusively rely on evaporative cooling, a time-consuming final step associated with substantial atom loss. We demonstrate direct laser cooling of a gas of rubidium-87 ( 87 Rb) atoms to quantum degeneracy. The method is fast and induces little atom loss. The atoms are trapped in a two-dimensional optical lattice that enables cycles of compression to increase the density, followed by Raman sideband cooling to decrease the temperature. From a starting number of 2000 atoms, 1400 atoms reach quantum degeneracy in 300 milliseconds, as confirmed by a bimodal velocity distribution. The method should be broadly applicable to many bosonic and fermionic species and to systems where evaporative cooling is not possible. Copyright © 2017, American Association for the Advancement of Science.

  9. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part II Dynamic Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2016-01-01

    Full Text Available The second part of the article describes the technology of marine engine diagnostics making use of dynamic measurements of the exhaust gas temperature. Little-known achievements of Prof. S. Rutkowski of the Naval College in Gdynia (now: Polish Naval Academy in this area are presented. A novel approach is proposed which consists in the use of the measured exhaust gas temperature dynamics for qualitative and quantitative assessment of the enthalpy flux of successive pressure pulses of the exhaust gas supplying the marine engine turbocompressor. General design assumptions are presented for the measuring and diagnostic system which makes use of a sheathed thermocouple installed in the engine exhaust gas manifold. The corrected thermal inertia of the thermocouple enables to reproduce a real time-history of exhaust gas temperature changes.

  10. Population dynamics of graphene driven by a few-cycle laser pulse

    Science.gov (United States)

    Ding, Chunling; Yu, Rong; Hao, Xiangying; Zhang, Duo; Zu, Fengxia

    2017-06-01

    We study the time evolution of the populations in a two-dimensional (2D) graphene system by employing a few-cycle laser pulse with a linear polarization. Specifically, we present a comparative numerical analysis of the population dynamics of graphene in three different model configurations. Our results show that the Rabi-like oscillations and intraband population inversion can be observed in the population spectrum, which originated from the periodicity of a few-cycle laser pulse and the intraband Coulomb scattering. Also, coherent population oscillations are produced across the Dirac point when the Rabi frequency of the laser field which is used to couple the interband transition is much larger than that couples the intraband transition, and vice versa. These investigations may be helpful to enhance the performance of graphene-based ultrafast electronic and optoelectronic devices, including light-emitting devices, touch screens, photodetectors, and ultrafast lasers.

  11. Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics

    International Nuclear Information System (INIS)

    Torcini, Alessandro; Barland, Stephane; Giacomelli, Giovanni; Marin, Francesco

    2006-01-01

    The limits of applicability of the Lang-Kobayashi (LK) model for a semiconductor laser with optical feedback are analyzed. The model equations, equipped with realistic values of the parameters, are investigated below the solitary laser threshold where low-frequency fluctuations (LFF's) are usually observed. The numerical findings are compared with experimental data obtained for the selected polarization mode from a vertical cavity surface emitting laser (VCSEL) subject to polarization selective external feedback. The comparison reveals the bounds within which the dynamics of the LK model can be considered as realistic. In particular, it clearly demonstrates that the deterministic LK model, for realistic values of the linewidth enhancement factor α, reproduces the LFF's only as a transient dynamics towards one of the stationary modes with maximal gain. A reasonable reproduction of real data from VCSEL's can be obtained only by considering the noisy LK or alternatively deterministic LK model for extremely high α values

  12. Effect of preionization, fluorine concentration, and current density on the discharge uniformity in F2 excimer laser gas mixtures

    NARCIS (Netherlands)

    Mathew, D.; Bastiaens, Hubertus M.J.; Boller, Klaus J.; Peters, P.J.M.

    2007-01-01

    The discharge homogeneity in F2-based excimer laser gas mixtures and its dependence on various key parameters, such as the degree of preionization, preionization delay time, F2 concentration and current density, is investigated in a small x-ray preionized discharge chamber. The spatial and temporal

  13. TECHNOLOGICAL ADVANCEMENT OF DEPOSIT WELDING AND GAS LASER CUTTING TO INCREASE THE EFFICIENCY OF THE BIMETALLIC TOOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Burlachenko Oleg Vasil’evich

    2017-08-01

    Full Text Available Deposit welding is the application of a layer of metal on the surface of a product using fusion welding. In this paper, we consider the method of improving the technology of gas laser cutting, which makes it possible to achieve a high productivity of manufacturing a bimetallic tool. The present paper is concerned with the advantages of gas laser cutting which allows to consider this particular process of separating materials as highly-productive, low-waste, and advanced method of removing allowances of weld-deposit high-speed steel on the working surfaces of bimetallic tool. Urgency of the use of deposit welding and gas laser cutting to improve the efficiency of production of bimetallic tool is shown. The comparative analysis of gas-laser cutting and other cutting methods is given according to the geometrical parameters of cutting and surface quality. Analysis of the results of experimental studies has confirmed the high technological attractiveness and economic efficiency of manufacturing composite structures of punches and matrices when applying deposit welding of cutting parts with high-speed steels. The cost of dimensional processing of the welded cutting part is reduced by 4 to 6 times, while the manufacturing time is reduced by 6 to 12 times.

  14. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy

    Science.gov (United States)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-01

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12CO2 and 13CO2 were mixed with N2 at various molar fraction ratios to obtain Raman quantification factors (F12CO2 and F13CO2), which provide a theoretical basis for calculating the δ13C value. And the corresponding values were 0.523 (0 CO2/CN2 CO2/CN2 CO2/12CO2 binary mixtures when F12CO2/F13CO2 is 0.466972625. In addition, measurement of δ13C values by Micro-Laser Raman analysis were carried out on natural CO2 gas from Shengli Oil-field at room temperature under different pressures. The δ13C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ13C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ13C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ13C values in natural CO2 gas reservoirs.

  15. Study of spatio-temporal dynamics of laser-hole boring in near critical plasma

    Science.gov (United States)

    Tochitsky, Sergei; Gong, Chao; Fiuza, Frederico; Pigeon, Jeremy; Joshi, Chan

    2015-11-01

    At high-intensities of light, radiation pressure becomes one of the dominant mechanisms in laser-plasma interaction. The radiation pressure of an intense laser pulse can steepen and push the critical density region of an overdense plasma creating a cavity or a hole. This hole boring phenomenon is of importance in fast-ignition fusion, high-gradient laser-plasma ion acceleration, and formation of collisionless shocks. Here multi-frame picosecond optical interferometry is used for the first direct measurements of space and time dynamics of the density cavity as it is pushed forward by a train of CO2 laser pulses in a helium plasma. The measured values of the hole boring velocity into an overdense plasma as a function of laser intensity are consistent with a theory based on energy and momentum balance between the heated plasma and the laser and with two-dimensional numerical simulations. We show possibility to extract a relative plasma electron temperature within the laser pulse by applying an analytical theory to the measured hole boring velocities. This work was supported by DOE grant DE-SC0010064.

  16. Gas-phase laser synthesis of aggregation-free, size-controlled hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Bapat, Parimal V.; Kraft, Rebecca; Camata, Renato P.

    2012-01-01

    Nanophase hydroxyapatite (HA) is finding applications in many areas of biomedical research, including bone tissue engineering, drug delivery, and intracellular imaging. Details in chemical composition, crystal phase makeup, size, and shape of HA nanoparticles play important roles in achieving the favorable biological responses required in these applications. Most of the nanophase HA synthesis techniques involve solution-based methods that exhibit substantial aggregation of particles upon precipitation. Typically these methods also have limited control over the particle size and crystal phase composition. In this study, we describe the gas-phase synthesis of aggregation-free, size-controlled HA nanoparticles with mean size in the 20–70 nm range using laser ablation followed by aerosol electrical mobility classification. Nanoparticle deposits with adjustable number concentration were obtained on solid substrates. Particles were characterized by transmission electron microscopy, atomic force microscopy, and X-ray diffraction. Samples are well represented by log-normal size distributions with geometric standard deviation σ g ≈ 1.2. The most suitable conditions for HA nanoparticle formation at a laser fluence of 5 J/cm 2 were found to be a temperature of 800 °C and a partial pressure of water of 160 mbar.

  17. High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy.

    Science.gov (United States)

    Kranendonk, Laura A; An, Xinliang; Caswell, Andrew W; Herold, Randy E; Sanders, Scott T; Huber, Robert; Fujimoto, James G; Okura, Yasuhiro; Urata, Yasuhiro

    2007-11-12

    We present a novel method for low noise, high-speed, real-time spectroscopy to monitor molecular absorption spectra. The system is based on a rapidly swept, narrowband CW Fourier-domain mode-locked (FDML) laser source for spectral encoding in time and an optically time-multiplexed split-pulse data acquisition system for improved noise performance and sensitivity. An acquisition speed of ~100 kHz, a spectral resolution better than 0.1 nm over a wavelength range of ~1335-1373 nm and a relative noise level of ~5 mOD (~1% minimum detectable base-e absorbance) are achieved. The system is applied for crank-angle-resolved gas thermometry by H(2)O absorption spectroscopy in an engine motoring at 600 and 900 rpm with a precision of ~1%. Influences of various noise sources such as laser phase and intensity noise, trigger and synchronization jitter in the electronic detection system, and the accuracy of available H(2)O absorption databases are discussed.

  18. Surface patterning of Zr-based metallic glass by laser irradiation induced selective thermoplastic extrusion in nitrogen gas

    Science.gov (United States)

    Huang, Hu; Yan, Jiwang

    2017-07-01

    Hierarchical surface structures on metallic glass (MG) are useful for enhancing the material’s functions. In this paper, surface patterning of Zr-based MG was realized by nanosecond pulsed laser irradiation in nitrogen gas. Experimental results showed that three kinds of surface structures, namely, micro grooves, cross-shaped protrusions, and nanoparticles, were generated on the MG surface under specific laser scanning speeds and various laser power intensities and pulse overlap rates. In particular, the formation of cross-shaped protrusions has never been reported in the literature before. The formation mechanism for each kind of surface structure was investigated. In a nitrogen gas environment, cracks are easily generated and the cracked regions have higher laser absorption and localized thermal resistivity than those of the bulk material. Accordingly, the cross-shaped protrusions were ascribed to the selective thermoplastic extrusion of MG material out of the cracks and the laser pulse tracks formed by the preceding laser scans. It was found that the hierarchical surface structures significantly improved the surface hydrophobicity.

  19. Bifurcation and nonlinear dynamic analysis of a flexible rotor supported by relative short gas journal bearings

    International Nuclear Information System (INIS)

    Wang, C.-C.; Jang, M.-J.; Yeh, Y.-L.

    2007-01-01

    This paper studies the bifurcation and nonlinear behaviors of a flexible rotor supported by relative short gas film bearings. A time-dependent mathematical model for gas journal bearings is presented. The finite difference method with successive over relation method is employed to solve the Reynolds' equation. The system state trajectory, Poincare maps, power spectra, and bifurcation diagrams are used to analyze the dynamic behavior of the rotor and journal center in the horizontal and vertical directions under different operating conditions. The analysis reveals a complex dynamic behavior comprising periodic and subharmonic response of the rotor and journal center. This paper shows how the dynamic behavior of this type of system varies with changes in rotor mass and rotational velocity. The results of this study contribute to a further understanding of the nonlinear dynamics of gas film rotor-bearing systems

  20. Interring Gas Dynamic Analysis of Piston in a Diesel Engine considering the Thermal Effect

    Directory of Open Access Journals (Sweden)

    Wanyou Li

    2015-01-01

    Full Text Available Understanding the interaction between ring dynamics and gas transport in ring pack systems is crucial and needs to be imperatively studied. The present work features detailed interring gas dynamics of piston ring pack behavior in internal combustion engines. The model is developed for a ring pack with four rings. The dynamics of ring pack are simulated. Due to the fact that small changes in geometry of the grooves and lands would have a significant impact on the interring gas dynamics, the thermal deformation of piston has been considered during the ring pack motion analysis in this study. In order to get the temperature distribution of piston head more quickly and accurately, an efficient method utilizing the concept of inverse heat conduction is presented. Moreover, a sensitive analysis based on the analysis of partial regression coefficients is presented to investigate the effect of groove parameters on blowby.

  1. Dynamic experimentation on the confocal laser scanning microscope : application to soft-solid, composite food materials

    NARCIS (Netherlands)

    Plucknett, K.P.; Pomfret, S.J.; Normand, V.; Ferdinando, D.; Veerman, C.; Frith, W.J.; Norton, I.T.

    2001-01-01

    Confocal laser scanning microscopy (CLSM) is used to follow the dynamic structural evolution of several phase-separated mixed biopolymer gel composites. Two protein/polysaccharide mixed gel systems were examined: gelatin/maltodextrin and gelatin/agarose. These materials exhibit 'emulsion-like'

  2. High resolution temperature mapping of gas turbine combustor simulator exhaust with femtosecond laser induced fiber Bragg gratings

    Science.gov (United States)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan

    2017-04-01

    Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.

  3. Ultrafast dynamic ellipsometry and spectroscopies of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Laboratory; Bolme, Cindy B [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2010-01-01

    Ultrafast ellipsometry and transient absorption spectroscopies are used to measure material dynamics under extreme conditions of temperature, pressure, and volumetric compression induced by shock wave loading with a chirped, spectrally clipped shock drive pulse.

  4. Laser coherent control of quantum dynamics at the CSIR: NLC

    CSIR Research Space (South Africa)

    Botha, L

    2010-09-01

    Full Text Available Coherent control of quantum dynamics in optical, molecular and biological systems is a rapidly advancing field with many possible applications. This field of study was originally motivated by the goal of steering photoreactions into specific...

  5. Dynamics of plasma expansion in the pulsed laser material interaction

    Indian Academy of Sciences (India)

    at different ambient gas pressures using an adiabatic expansion model. The rate of the plasma expansion for various Ar. + ion energies was derived from numeri- cal calculations. A numerical definition of this plasma includes events like colli- sional/radiative, excitation/de-excitation and ionization/recombination processes.

  6. Description of the Gas Transport through Dynamic Liquid Membrane.

    Czech Academy of Sciences Publication Activity Database

    Uchytil, Petr; Setničková, Kateřina; Tseng, H.-H.; Šíma, Vladimír; Petričkovič, Roman

    2017-01-01

    Roč. 184, AUG 31 (2017), s. 152-157 ISSN 1383-5866 Grant - others:AV ČR(CZ) MOST-16-04 Program:Bilaterální spolupráce Institutional support: RVO:67985858 Keywords : gas separation * liquid membrane * solurion-diffusion model Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  7. Demand for seasonal gas storage in northwest Europe until 2030. Simulation results with a dynamic model

    International Nuclear Information System (INIS)

    De Joode, J.; Oezdemir, Oe.

    2010-01-01

    The fact that depletion of indigenous gas production increases gas import dependency is widely known and accepted. However, there is considerable less attention for the implications of indigenous resource depletion for the provision of seasonal flexibility. The traditionally largest source of seasonal flexibility in Europe is indigenous gas production, mainly based in the Netherlands and the United Kingdom. With the depletion of indigenous sources the market increasingly needs to rely on other sources for seasonal flexibility, such as gas storage facilities. We investigate the future need for gas storage as a source for seasonal flexibility provision using a dynamic gas market model (GASTALE) in which different potential sources for seasonal flexibility - gas production, imports via pipeline, LNG imports and storage facilities - compete with each other in a market-based environment. The inclusion of seasonal flexibility properties in a gas market model allows a more complex analysis of seasonal flexibility issues than previously documented in literature. This is demonstrated in an analysis of the future demand for gas storage in northwestern Europe until 2030. Our results indicate that there is substantial need for additional gas storage facilities and thus supports current project proposals for new investment in gas storage facilities. (author)

  8. Study on the Characteristics of Gas Molecular Mean Free Pathin Nanopores by Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Qixin Liu

    2014-07-01

    Full Text Available This paper presents studies on the characteristics of gas molecular mean freepath in nanopores by molecular dynamics simulation. Our study results indicate that themean free path of all molecules in nanopores depend on both the radius of the nanoporeand the gas-solid interaction strength. Besides mean free path of all molecules in thenanopore, this paper highlights the gas molecular mean free path at different positions ofthe nanopore and the anisotropy of the gas molecular mean free path at nanopores. Themolecular mean free path varies with the molecule’s distance from the center of thenanopore. The least value of the mean free path occurs at the wall surface of the nanopore.The present paper found that the gas molecular mean free path is anisotropic when gas isconfined in nanopores. The radial gas molecular mean free path is much smaller than themean free path including all molecular collisions occuring in three directions. Our studyresults also indicate that when gas is confined in nanopores the gas molecule number densitydoes not affect the gas molecular mean free path in the same way as it does for the gas inunbounded space. These study results may bring new insights into understanding the gasflow’s characteristic at nanoscale.

  9. Magnetic resonance imaging of convection in laser-polarized xenon

    Science.gov (United States)

    Mair, R. W.; Tseng, C. H.; Wong, G. P.; Cory, D. G.; Walsworth, R. L.

    2000-01-01

    We demonstrate nuclear magnetic resonance (NMR) imaging of the flow and diffusion of laser-polarized xenon (129Xe) gas undergoing convection above evaporating laser-polarized liquid xenon. The large xenon NMR signal provided by the laser-polarization technique allows more rapid imaging than one can achieve with thermally polarized gas-liquid systems, permitting shorter time-scale events such as rapid gas flow and gas-liquid dynamics to be observed. Two-dimensional velocity-encoded imaging shows convective gas flow above the evaporating liquid xenon, and also permits the measurement of enhanced gas diffusion near regions of large velocity variation.

  10. Subrecoil laser cooling dynamics: a fractional derivative approach

    International Nuclear Information System (INIS)

    Uchaikin, Vladimir V; Sibatov, Renat T

    2009-01-01

    The subrecoil laser cooling process is considered in the framework of a model with two states (trapping and recycling), with instantaneous transitions between them. The key point of the work is the use of a fractional exponential function for waiting time distributions. This allows us to derive a general master equation covering both important cases: those with exponential and power type tails. Their solutions are expressed through fractionally stable distributions. The pdfs of the total trapping time of an atom and the proportion of trapped atoms are found. Analytical relationships show a good agreement with numerical results from Monte Carlo simulation

  11. Effect of laser fluence and ambient gas pressure on surface morphology and chemical composition of hydroxyapatite thin films deposited using pulsed laser deposition

    Science.gov (United States)

    Nishikawa, Hiroaki; Hasegawa, Tsukasa; Miyake, Akiko; Tashiro, Yuichiro; Komasa, Satoshi; Hashimoto, Yoshiya

    2018-01-01

    The dependence of the surface morphology and chemical composition of hydroxyapatite (HA) thin films on the laser fluence and ambient gas pressure during their formation by pulsed laser deposition was studied as the first step to investigate the effect of physical and chemical interactions between the ablated chemical species and ambient gas molecules on HA film formation. It was found that a higher fluence could decrease the number of large protrusions on the surface of HA thin films. However, too high a fluence caused a phosphorus deficiency from the stoichiometric value, particularly in the case of lower ambient gas pressure. It was also found that for lower fluences, the atomic species among the ablated chemical species were easily scattered by collision processes with ambient gas molecules. This was caused by the lower velocity of the ablated chemical species and higher ambient gas pressure, which induced a shorter mean free path. In addition, these collision processes played an important role in the adsorption, migration, and re-evaporation of the ablated chemical species on the substrate via chemical reactions.

  12. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration.

    Science.gov (United States)

    Brandi, F; Giammanco, F; Conti, F; Sylla, F; Lambert, G; Gizzi, L A

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10(19) cm(-3) range well suited for LWFA.

  13. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration

    Science.gov (United States)

    Brandi, F.; Giammanco, F.; Conti, F.; Sylla, F.; Lambert, G.; Gizzi, L. A.

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 1019 cm-3 range well suited for LWFA.

  14. Comparison of Plasma, Metal Inactive Gas (MIG) and Tungsten Inactive Gas (TIG) Processes for Laser Hybrid Welding (302)

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    2003-01-01

    source, ignition and running torch stability, weld phase transformation and change in ductility and overall weld quality are described. The results show that all three processes can successfully be integrated with a CO2 laser beam for hybrid welding. Due to the pilot arc in plasma welding, this process......, the MIG process is more difficult to control than laser/plasma and laser/TIG processes. All three types of secondary heat sources enable an increased ductility of the weld as compared to pure laser welding when welding 1.8 mm GA 260 with a TIG torch and 2.13 mm CMn steel with a plasma arc or MIG...

  15. Application of additive laser technologies in the gas turbine blades design process

    Science.gov (United States)

    Shevchenko, I. V.; Rogalev, A. N.; Osipov, S. K.; Bychkov, N. M.; Komarov, I. I.

    2017-11-01

    An emergence of modern innovative technologies requires delivering new and modernization existing design and production processes. It is especially relevant for designing the high-temperature turbines of gas turbine engines, development of which is characterized by a transition to higher parameters of working medium in order to improve their efficient performance. A design technique for gas turbine blades based on predictive verification of thermal and hydraulic models of their cooling systems by testing of a blade prototype fabricated using the selective laser melting technology was presented in this article. Technique was proven at the time of development of the first stage blade cooling system for the high-pressure turbine. An experimental procedure for verification of a thermal model of the blades with convective cooling systems based on the comparison of heat-flux density obtained from the numerical simulation data and results of tests in a liquid-metal thermostat was developed. The techniques makes it possible to obtain an experimentally tested blade version and to exclude its experimental adjustment after the start of mass production.

  16. Description of the Gas Transport through Dynamic Liquid Membrane.

    Czech Academy of Sciences Publication Activity Database

    Uchytil, Petr; Setničková, Kateřina; Tseng, H.-H.; Šíma, Vladimír; Petričkovič, Roman

    2017-01-01

    Roč. 184, AUG 31 (2017), s. 152-157 ISSN 1383-5866 Grant - others:AV ČR(CZ) MOST-16-04 Program:Bilaterální spolupráce Institutional support: RVO:67985858 Keywords : gas separation * liquid membrane * solurion-diffusion model Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 3.359, year: 2016

  17. Electron kinetics dependence on gas pressure in laser-induced oxygen plasma experiment: Theoretical analysis

    Science.gov (United States)

    Gamal, Yosr E. E.-D.; Abdellatif, Galila

    2017-08-01

    A study is performed to investigate the dependency of threshold intensity on gas pressure observed in the measurements of the breakdown of molecular oxygen that carried out by Phuoc (2000) [1]. In this experiment, the breakdown was induced by 532 nm laser radiation of pulse width 5.5 ns and spot size of 8.5 μm, in oxygen over a wide pressure range (190-3000 Torr). The analysis aimed to explore the electron kinetic reliance on gas pressure for the separate contribution of each of the gain and loss processes encountered in this study. The investigation is based on an electron cascade model applied previously in Gamal and Omar (2001) [2] and Gaabour et al. (2013) [3]. This model solves numerically a differential equation designates the time evolution of the electron energy distribution, and a set of rate equations that describe the change of excited states population. The numerical examination of the electron energy distribution function and its parameters revealed that photo-ionization of the excited molecules plays a significant role in enhancing the electron density growth rate over the whole tested gas pressure range. This process is off set by diffusion of electrons out of the focal volume in the low-pressure regime. At atmospheric pressure electron, collisional processes dominate and act mainly to populate the excited states. Hence photo-ionization becomes efficient and compete with the encountered loss processes (electron diffusion, vibrational excitation of the ground state molecules as well as two body attachments). At high pressures ( 3000 Torr) three body attachments are found to be the primary cause of losses which deplete the electron density and hence results in the slow decrease of the threshold intensity.

  18. A dynamic optical measurement system for cryogenic fluids using laser interferometry

    International Nuclear Information System (INIS)

    Zhang, J H; Bao, S R; Zhang, R P; Qiu, L M

    2015-01-01

    Dynamic visualization is of great significance in the research of flow conditions and mass transfer process of cryogenic fluids. In this paper, two common ways to measure the concentration of cryogenic fluids are introduced and compared. To improve the real-time monitoring of cryogenic fluid, a non-contact dynamic optical measurement system using laser interferometry is designed, which is sensitive to subtle changes of fluid concentration. A precise and dynamic interference pattern can be obtained using this system. Two-dimensional concentration distribution of the fluid can be calculated from the interference pattern. Detailed calculation process is presented in the paper. (paper)

  19. Fluid simulation of plume head-on collision dynamics during pulsed laser ablation

    International Nuclear Information System (INIS)

    Fujii, R; Doi, K; Yokoyama, Y; Sugimura, A; Tominaga, N; Susa, H; Umezu, I; Fukuoka, H

    2013-01-01

    Expansion dynamics of plume after irradiation of the target material is essential to prepare nanoparticles by pulsed laser ablation and it can be modified by collision of two plumes. In the present paper, effect of head-on collision on the expansion dynamics is discussed by numerical simulation based on the fluid dynamics and compared with the experimental results of plume emission. Suppression of plumes by collision with counter plume observed by experiment is reproduced by numerical simulation. Results of the numerical calculation indicate that shockwave induced by the irradiation of the opposite target suppress vapor expansion. The vapors do not mix around the center of the targets when the two targets are irradiated simultaneously and unstable flow is seen when delay between laser pulses was applied for irradiation of two targets. The results of the numerical simulation suggest that formation of combined and alloy nanoparticles are expected for former and latter cases

  20. Kinematics and dynamics of molecular gas in galactic centers

    Science.gov (United States)

    Sakamoto, K.

    2014-05-01

    The central molecular zone (CMZ) in the central half kpc of the Milky Way is a massive concentration of molecular gas in the center of a barred spiral galaxy. Current and past activities in the Galactic center include the formation of massive stars/clusters, AGN feeding, and feedback. At the same time, observations of molecular gas in external galaxies show that many disk galaxies have similar condensations of molecular gas in their central kpc or so. They also have CMZs, or nuclear molecular rings or concentrations in more common terms among extragalactic observers. The formation of the CMZs are often, but not always, related to stellar bars. The centers of nearby galaxies can provide valuable information on the general properties of galactic centers and CMZs through comparative studies of multiple galactic centers of different characteristics from various viewing angles. Linear resolutions achieved toward nearby extragalactic CMZs with modern radio interferometers are now comparable to those achieved toward the Galactic CMZ with small single-dish telescopes. I review and present work on the formation mechanism and properties of the CMZs in external galaxies with some comparisons with the CMZ of our Galaxy.