WorldWideScience

Sample records for gas condensate reservoirs

  1. Development of gas and gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.

  2. Liquid oil production from shale gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, James J.

    2018-04-03

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  3. Calculation of hydrocarbon-in-place in gas and gas-condensate reservoirs - Carbon dioxide sequestration

    Science.gov (United States)

    Verma, Mahendra K.

    2012-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2), requiring estimation of hydrocarbon-in-place volumes and formation volume factors for all the oil, gas, and gas-condensate reservoirs within the U.S. sedimentary basins. The procedures to calculate in-place volumes for oil and gas reservoirs have already been presented by Verma and Bird (2005) to help with the USGS assessment of the undiscovered resources in the National Petroleum Reserve, Alaska, but there is no straightforward procedure available for calculating in-place volumes for gas-condensate reservoirs for the carbon sequestration project. The objective of the present study is to propose a simple procedure for calculating the hydrocarbon-in-place volume of a condensate reservoir to help estimate the hydrocarbon pore volume for potential CO2 sequestration.

  4. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    Science.gov (United States)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery

  5. EOS simulation and GRNN modeling of the constant volume depletion behavior of gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Elsharkawy, A.M.; Foda, S.G. [Kuwait University, Safat (Kuwait). Petroleum Engineering Dept.

    1998-03-01

    Currently, two approaches are being used to predict the changes in retrograde gas condensate composition and estimate the pressure depletion behavior of gas condensate reservoirs. The first approach uses the equation of states whereas the second uses empirical correlations. Equations of states (EOS) are poor predictive tools for complex hydrocarbon systems. The EOS needs adjustment against phase behavior data of reservoir fluid of known composition. The empirical correlation does not involve numerous numerical computations but their accuracy is limited. This study presents two general regression neural network (GRNN) models. The first model, GRNNM1, is developed to predict dew point pressure and gas compressibility at dew point using initial composition of numerous samples while the second model, GRNNM2, is developed to predict the changes in well stream effluent composition at any stages of pressure depletion. GRNNM2 can also be used to determine the initial reservoir fluid composition using dew point pressure, gas compressibility at dew point, and reservoir temperature. These models are based on analysis of 142 sample of laboratory studies of constant volume depletion (CVD) for gas condensate systems forming a total of 1082 depletion stages. The database represents a wide range of gas condensate systems obtained worldwide. The performance of the GRNN models has been compared to simulation results of the equation of state. The study shows that the proposed general regression neural network models are accurate, valid, and reliable. These models can be used to forecast CVD data needed for many reservoir engineering calculations in case laboratory data is unavailable. The GRNN models save computer time involved in EOS calculations. The study also show that once these models are properly trained they can be used to cut expenses of frequent sampling and laborious experimental CVD tests required for gas condensate reservoirs. 55 refs., 13 figs., 6 tabs.

  6. Effect of retrograde gas condensate in low permeability natural gas reservoir; Efeito da condensacao retrograda em reservatorios de gas natural com baixa permeabilidade

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Paulo Lee K.C. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica; Ligero, Eliana L.; Schiozer, Denis J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2008-07-01

    Most of Brazilian gas fields are low-permeability or tight sandstone reservoirs and some of them should be gas condensate reservoir. In this type of natural gas reservoir, part of the gaseous hydrocarbon mixture is condensate and the liquid hydrocarbon accumulates near the well bore that causes the loss of productivity. The liquid hydrocarbon formation inside the reservoir should be well understood such as the knowledge of the variables that causes the condensate formation and its importance in the natural gas production. This work had as goal to better understanding the effect of condensate accumulation near a producer well. The influence of the porosity and the absolute permeability in the gas production was studied in three distinct gas reservoirs: a dry gas reservoir and two gas condensate reservoirs. The refinement of the simulation grid near the producer well was also investigated. The choice of simulation model was shown to be very important in the simulation of gas condensate reservoirs. The porosity was the little relevance in the gas production and in the liquid hydrocarbon formation; otherwise the permeability was very relevant. (author)

  7. Maximize Liquid Oil Production from Shale Oil and Gas Condensate Reservoirs by Cyclic Gas Injection

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, James

    2017-11-17

    The current technology to produce shale oil reservoirs is the primary depletion using fractured wells (generally horizontal wells). The oil recovery is less than 10%. The prize to enhance oil recovery (EOR) is big. Based on our earlier simulation study, huff-n-puff gas injection has the highest EOR potential. This project was to explore the potential extensively and from broader aspects. The huff-n-puff gas injection was compared with gas flooding, water huff-n-puff and waterflooding. The potential to mitigate liquid blockage was also studied and the gas huff-n-puff method was compared with other solvent methods. Field pilot tests were initiated but terminated owing to the low oil price and the operator’s budget cut. To meet the original project objectives, efforts were made to review existing and relevant field projects in shale and tight reservoirs. The fundamental flow in nanopores was also studied.

  8. Evaluation of gas condensate reservoir behavior using velocity dependent relative permeability during the numerical well test analysis

    Directory of Open Access Journals (Sweden)

    Arash Azamifard

    2016-06-01

    Full Text Available Gas condensate is one of the most different fluids in reservoir simulation due to retrograde condensation in case of pressure reduction. In this kind of fluids, two phenomena named negative inertia and positive coupling, become significant in the high velocity zone around the wellbore. In this study, a modified black oil simulator is developed that take into account the velocity dependent relative permeability. Against the industrial simulator that assumes linear variation of transmissibilities by pressure, modified black oil nonlinear equations are solved directly without linearization. The developed code is validated by ECLIPSE simulator. The behavior of two real gas condensate fluids, a lean and a rich one, are compared with each other. For each fluid, simulations of PVT experiments are carried out to calculate black oil property applying Coats approach for gas condensate fluids. For both fluids, the proposed models for gas condensate velocity dependent relative permeability show different influence of velocity on relative permeability in the same conditions. Moreover, it is observed that higher flow rate of gas production leads to more condensate production during constant rate well testing.

  9. The use of contained nuclear explosions to create underground reservoirs, and experience of operating these for gas condensate storage

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Myasnikov, K.V.; Leonov, E.A.; Romadin, N.M.; Dorodnov, V.F.; Nikiforov, G.A.

    1975-01-01

    Investigations on the creation of underground reservoirs by means of nuclear explosions have been going on in the Soviet Union for many years. In this paper the authors consider three main kinds of sites or formations that can be used for constructing reservoirs by this method, namely, low-permeable rocks, worked-out mines and rock salt formations. Formulae are given for predicting the mechanical effect of an explosion in rocks, taking their strength characteristics into account. Engineering procedures are described for sealing and restoring the emplacement holes, so that they can be used for operating the underground reservoir. Experience with the contruction and operation of a 50 000 m 3 gas-condensate reservoir in a rock salt formation is described. In the appendix to the paper a method is presented for calculating the stability of spherical cavities created by nuclear explosions in rock salt, allowing for the development of elasto-plastic deformations and creep

  10. Determination of the vertical distribution and areal of the composition in volatile oil and/or gas condensate reservoirs

    International Nuclear Information System (INIS)

    Santos Santos, Nicolas; Ortiz Cancino, Olga Patricia; Barrios Ortiz, Wilson

    2005-01-01

    The compositional variation in vertical and areal direction due to gravitational and thermal effects plays an important role in the determination of the original reserves in-situ and in the selection of the operation scheme for volatile oil and/or gas condensate reservoirs. In this work we presented the mathematical formulation of the thermodynamic behavior experienced by compositional fluids, such as volatile oil and/or gas condensate, under the influence of the mentioned effects (gravitational and thermal), which was implemented in a software tool, this tool determine the compositional variation in vertical direction and, in addition, it allows to know the saturation pressure variation in the hydrocarbon column and the location of the gas-oil contact. With the obtained results, product of the use of this tool, was developed a methodology to obtain one first approach of the compositional variation in areal direction to obtain compositional spatial distribution (iso composition maps) in the reservoir, for components like the methane, which experiences the greater variations. These iso composition maps allow to determine the location of the hydrocarbon deposits, in such a way that the production strategies can be selected and be applied to maximize the recovery, such as in fill wells, perforation of new zones, EOR processes, etc

  11. Prediction of Interfacial Tensions of Reservoir Crude Oil and Gas Condensate Systems

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1998-01-01

    . Correlations of the model parameters were presented for pseudocomponents. The characterization procedures of Pedersen et al. and the SRK equation of state (EOS) were used to calculate vapor-liquid equilibria (VLE). To the exclusion of the near-critical region, the IFT’s calculated by all the models except...... the CS correlation were in good agreement with the measured IFT data for several crude oil and CO2/oil systems. The SLGT model and the parachor model perform better than the LGT model and the CS correlation. For N 2 volatile oil systems, the performance of the LGT model is better than that of the SLGT...... model and the parachor model. For gas condensate systems, the predictions by use of the SLGT model are in good agreement with the measured IFT data. In the near-critical region, a correlation was proposed for estimations of IFT’s for CO2/oil systems, and satisfactory correlated results were obtained....

  12. Optimization of gas condensate Field A development on the basis of ''reservoir - gathering facilities system'' integrated model

    International Nuclear Information System (INIS)

    Demidova, E A; Maksyutina, O V

    2015-01-01

    It is known that many gas condensate fields are challenged with liquid loading and condensate banking problems. Therefore, gas production is declining with time. In this paper hydraulic fracturing treatment was considered as a method to improve the productivity of wells and consequently to exclude the factors that lead to production decline. This paper presents the analysis of gas condensate Field A development optimization with the purpose of maintaining constant gas production at the 2013 level for 8 years taking into account mentioned factors . To optimize the development of the filed, an integrated model was created. The integrated model of the field implies constructing the uniform model of the field consisting of the coupling models of the reservoir, wells and surface facilities. This model allowed optimizing each of the elements of the model separately and also taking into account the mutual influence of these elements. Using the integrated model, five development scenarios were analyzed and an optimal scenario was chosen. The NPV of this scenario equals 7,277 mln RUR, cumulative gas production - 12,160.6 mln m 3 , cumulative condensate production - 1.8 mln tons

  13. Recovery enhancement at the later stage of supercritical condensate gas reservoir development via CO2 injection: A case study on Lian 4 fault block in the Fushan sag, Beibuwan Basin

    Directory of Open Access Journals (Sweden)

    Wenyan Feng

    2016-11-01

    Full Text Available Lian 4 fault block is located in the northwest of Fushan sag, Beibuwan Basin. It is a high-saturated condensate gas reservoir with rich condensate oil held by three faults. In order to seek an enhanced condensate oil recovery technology that is suitable for this condensate gas reservoir at its later development stage, it is necessary to analyze its reserve producing degree and remaining development potential after depletion production, depending on the supercritical fluid phase behavior and depletion production performance characteristics. The supercritical fluid theories and multiple reservoir engineering dynamic analysis methods were adopted comprehensively, such as dynamic reserves, production decline, liquid-carrying capacity of a production well, and remaining development potential analysis. It is shown that, at its early development stage, the condensate in Lian 4 fault block presented the features of supercritical fluid, and the reservoir pressure was lower than the dew point pressure, so retrograde condensate loss was significant. Owing to the retrograde condensate effect and the fast release of elastic energy, the reserve producing degree of depletion production is low in Lian 4 fault block, and 80% of condensate oil still remains in the reservoir. So, the remaining development potential is great. The supercritical condensate in Lian 4 fault block is of high density. Based on the optimization design by numerical simulation of compositional model, it is proposed to inject CO2 at the top and build up pressure by alternating production and injection, so that the secondary gas cap is formed while the gravity-stable miscible displacement is realized. In this way, the recovery factor of condensate reservoirs can be improved by means of the secondary development technology.

  14. Application of fluorinated nanofluid for production enhancement of a carbonate gas-condensate reservoir through wettability alteration

    Science.gov (United States)

    Sakhaei, Zahra; Azin, Reza; Naghizadeh, Arefeh; Osfouri, Shahriar; Saboori, Rahmatollah; Vahdani, Hosein

    2018-03-01

    Condensate blockage phenomenon in near-wellbore region decreases gas production rate remarkably. Wettability alteration using fluorinated chemicals is an efficacious way to vanquish this problem. In this study, new synthesized fluorinated silica nanoparticles with an optimized condition and mean diameter of 50 nm is employed to modify carbonate rock surface wettability. Rock characterization tests consisting Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive x-ray Spectroscopy (EDX) were utilized to assess the nanofluid adsorption on rock surface after treatment. Contact angle, spontaneous imbibition and core flooding experiments were performed to investigate the effect of synthesized nanofluid adsorption on wettability of rock surface and liquid mobility. Results of contact angle experiments revealed that wettability of rock could alter from strongly oil-wetting to the intermediate gas-wetting even at elevated temperature. Imbibition rates of oil and brine were diminished noticeably after treatment. 60% and 30% enhancement in pressure drop of condensate and brine floods after wettability alteration with modified nanofluid were observed which confirm successful field applicability of this chemical.

  15. unconventional natural gas reservoirs

    International Nuclear Information System (INIS)

    Correa G, Tomas F; Osorio, Nelson; Restrepo R, Dora P

    2009-01-01

    This work is an exploration about different unconventional gas reservoirs worldwide: coal bed methane, tight gas, shale gas and gas hydrate? describing aspects such as definition, reserves, production methods, environmental issues and economics. The overview also mentioned preliminary studies about these sources in Colombia.

  16. Gas Accretion via Condensation and Fountains

    Science.gov (United States)

    Fraternali, Filippo

    For most of their lives, galaxies are surrounded by large and massive coronae of hot gas, which constitute vast reservoirs for gas accretion. This chapter describes a mechanism that allows star-forming disc galaxies to extract gas from their coronae. Stellar feedback powers a continuous circulation (galactic fountain) of gas from the disc into the halo, producing mixing between metal-rich disc material and metal-poor coronal gas. This mixing causes a dramatic reduction of the cooling time of the corona making it condense and accrete onto the disc. This fountain-driven accretion model makes clear predictions for the kinematics of the extraplanar cold/warm gas in disc galaxies, which are in good agreement with a number of independent observations. The amount of gas accretion predicted by the model is of the order of what is needed to sustain star formation. Accretion is expected to occur preferentially in the outer parts of discs and its efficiency drops for higher coronal temperatures. Thus galaxies are able to gather new gas as long as they do not become too massive nor fall into large halos and they maintain their star-forming gaseous discs.

  17. Well testing in gas hydrate reservoirs

    OpenAIRE

    Kome, Melvin Njumbe

    2015-01-01

    Reservoir testing and analysis are fundamental tools in understanding reservoir hydraulics and hence forecasting reservoir responses. The quality of the analysis is very dependent on the conceptual model used in investigating the responses under different flowing conditions. The use of reservoir testing in the characterization and derivation of reservoir parameters is widely established, especially in conventional oil and gas reservoirs. However, with depleting conventional reserves, the ...

  18. Condensate formation in a Bose gas

    NARCIS (Netherlands)

    Stoof, H.T.C.

    1995-01-01

    Using magnetically trapped atomic hydrogen as an example, we investigate the prospects of achieving Bose-Einstein condensation in a dilute Bose gas. We show that, if gas is quenched sufficiently far into the critical region of the phase transition, the typical time scale for the nucleation of the

  19. A superheated Bose-condensed gas

    Science.gov (United States)

    Gaunt, Alexander L.; Fletcher, Richard J.; Smith, Robert P.; Hadzibabic, Zoran

    2013-05-01

    Our understanding of various states of matter usually relies on the assumption of thermodynamic equilibrium. However, the transitions between different phases of matter can be strongly affected by non-equilibrium phenomena. Here we demonstrate and explain an example of non-equilibrium stalling of a continuous, second-order phase transition. We create a superheated atomic Bose gas, in which a Bose-Einstein condensate (BEC) persists above the equilibrium critical temperature, Tc, if its coupling to the surrounding thermal bath is reduced by tuning interatomic interactions. For vanishing interactions the BEC persists in the superheated regime for a minute. However, if strong interactions are suddenly turned on, it rapidly boils away. Our observations can be understood within a two-fluid picture, treating the condensed and thermal components of the gas as separate equilibrium systems with a tunable inter-component coupling. We experimentally reconstruct a non-equilibrium phase diagram of our gas, and theoretically reproduce its main features.

  20. Direct hydrocarbon exploration and gas reservoir development technology

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Hoon; Oh, Jae Ho; Jeong, Tae Jin [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)] [and others

    1995-12-01

    In order to enhance the capability of petroleum exploration and development techniques, three year project (1994 - 1997) was initiated on the research of direct hydrocarbon exploration and gas reservoir development. This project consists of four sub-projects. (1) Oil(Gas) - source rock correlation technique: The overview of bio-marker parameters which are applicable to hydrocarbon exploration has been illustrated. Experimental analysis of saturated hydrocarbon and bio-markers of the Pohang E and F core samples has been carried out. (2) Study on surface geochemistry and microbiology for hydrocarbon exploration: the test results of the experimental device for extraction of dissolved gases from water show that the device can be utilized for the gas geochemistry of water. (3) Development of gas and gas condensate reservoirs: There are two types of reservoir characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. (4) Numerical modeling of seismic wave propagation and full waveform inversion: Three individual sections are presented. The first one is devoted to the inversion theory in general sense. The second and the third sections deal with the frequency domain pseudo waveform inversion of seismic reflection data and refraction data respectively. (author). 180 refs., 91 figs., 60 tabs.

  1. Stream conversion technology and gas condensate field development

    Energy Technology Data Exchange (ETDEWEB)

    Kuntadi, Arif

    2012-07-01

    depletion PVT experiments using a detailed-EOS model. Delumping is performed phase-wise at the well-connection level, for each time step of the reservoir simulator. For gas injection processes, the amount of injection gas is estimated from stream information and, accordingly, removed from the stream before applying the phase-specific pressure-dependent split factors. We propose another conversion procedure to convert one fluid model stream to another fluid model stream in which the heaviest fractions have different component grouping. This procedure is called the two-step gamma distribution conversion. It consists of two steps: (1) splitting the heavy component into single carbon number (SCN) characterization and (2) lumping from the SCN characterization model to the destination fluid model stream. SCN characterization has been proposed as a generic accounting characterization that contains a SCN component up to C80 for a normal reservoir fluid and C200 for a heavy reservoir fluid. To obtain the best result, it is recommended that this conversion be performed phase-wise at the well-connection level. The implementation of the three proposed conversion methods has been demonstrated using a hypothetical integrated petroleum asset model. We believe that the combination of our proposed methods will provide important advances in the integrated asset modeling. The second section of this thesis addresses some key reservoir and production issues related to gas and condensate recovery from Khuff reservoirs in the Middle East - namely Ghawar Khuff, North Field and South Pars. These fields represent somewhere between 1,000 and 2,000 Tcf initial gas in place, with 30 to 70 billion barrels of condensate in place. We apply engineering methods and reservoir simulation to quantify the expected performance of Khuff gas condensate fields for a realistic range of geologic description, petrophysical and fluid properties, and production facilities based on published information. We review key

  2. Possibility of removing condensate and scattered oil from gas-condensate field during bed flooding

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, N.A.; Yagubov, M.S.

    1984-01-01

    The problem is set of evaluating the possible removal from the bed of scattered oil and condensate during flooding of the bed. For this purpose, an experimental study was made of the displacement by water from the porous medium of the oil and condensate saturating it. The obtained experimental results permit evaluation of the possible removal from the gas-condensate bed of scattered oil and condensate during flooding of the bed.

  3. Greenhouse gas emissions from hydroelectric reservoirs

    International Nuclear Information System (INIS)

    Rosa, L.P.; Schaeffer, R.

    1994-01-01

    In a recent paper, Rudd et al. have suggested that, per unit of electrical energy produced, greenhouse-gas emissions from some hydroelectric reservoirs in northern Canada may be comparable to emissions from fossil-fuelled power plants. The purpose of this comment is to elaborate these issues further so as to understand the potential contribution of hydroelectric reservoirs to the greenhouse effect. More than focusing on the total budget of carbon emissions (be they in the form of CH 4 or be they in the form of CO 2 ), this requires an evaluation of the accumulated greenhouse effect of gas emissions from hydroelectric reservoirs and fossil-fuelled power plants. Two issues will be considered: (a) global warming potential (GWP) for CH 4 ; and (b) how greenhouse-gas emissions from hydroelectric power plants stand against emissions from fossil-fuelled power plants with respect to global warming

  4. Constructing a unique two-phase compressibility factor model for lean gas condensates

    Energy Technology Data Exchange (ETDEWEB)

    Moayyedi, Mahmood; Gharesheikhlou, Aliashghar [Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of); Azamifard, Arash; Mosaferi, Emadoddin [Amirkabir University of Technology (AUT), Tehran (Iran, Islamic Republic of)

    2015-02-15

    Generating a reliable experimental model for two-phase compressibility factor in lean gas condensate reservoirs has always been demanding, but it was neglected due to lack of required experimental data. This study presents the main results of constructing the first two-phase compressibility factor model that is completely valid for Iranian lean gas condensate reservoirs. Based on a wide range of experimental data bank for Iranian lean gas condensate reservoirs, a unique two-phase compressibility factor model was generated using design of experiments (DOE) method and neural network technique (ANN). Using DOE, a swift cubic response surface model was generated for two-phase compressibility factor as a function of some selected fluid parameters for lean gas condensate fluids. The proposed DOE and ANN models were finally validated using four new independent data series. The results showed that there is a good agreement between experimental data and the proposed models. In the end, a detailed comparison was made between the results of proposed models.

  5. Constructing a unique two-phase compressibility factor model for lean gas condensates

    International Nuclear Information System (INIS)

    Moayyedi, Mahmood; Gharesheikhlou, Aliashghar; Azamifard, Arash; Mosaferi, Emadoddin

    2015-01-01

    Generating a reliable experimental model for two-phase compressibility factor in lean gas condensate reservoirs has always been demanding, but it was neglected due to lack of required experimental data. This study presents the main results of constructing the first two-phase compressibility factor model that is completely valid for Iranian lean gas condensate reservoirs. Based on a wide range of experimental data bank for Iranian lean gas condensate reservoirs, a unique two-phase compressibility factor model was generated using design of experiments (DOE) method and neural network technique (ANN). Using DOE, a swift cubic response surface model was generated for two-phase compressibility factor as a function of some selected fluid parameters for lean gas condensate fluids. The proposed DOE and ANN models were finally validated using four new independent data series. The results showed that there is a good agreement between experimental data and the proposed models. In the end, a detailed comparison was made between the results of proposed models

  6. Mn nanoparticles produced by inert gas condensation

    International Nuclear Information System (INIS)

    Ward, M B; Brydson, R; Cochrane, R F

    2006-01-01

    The results from experiments using the inert gas condensation method to produce nanoparticles of manganese are presented. Structural and compositional data have been collected through electron diffraction, EDX (energy dispersive X-ray) and EELS (electron energy loss spectroscopy). Both Mn 3 O 4 and pure Mn particles have been produced. Moisture in untreated helium gas causes the particles to oxidize, whereas running the helium through a liquid nitrogen trap removes the moisture and produces β-Mn particles in a metastable state. The particle sizes and the size distribution have been determined. Particle sizes range from 2nm to above 100 nm, however the majority of particles lie in the range below 20 nm with a modal particle size of 6 nm. As well as the modal particle size of 6 nm, there is another peak in the frequency curve at 16 nm that represents another group particles that lie in the range 12 to 20 nm. The smaller particles are single crystals, but the larger particles appear to have a dense region around their edge with a less dense centre. Determination of their exact nature is ongoing

  7. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens

    2016-08-25

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman-filter-based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time-lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state-parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil-gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%-40% better than those from the joint estimation scheme, but require about a 30% increase in

  8. Conditions for maximum isolation of stable condensate during separation in gas-condensate systems

    Energy Technology Data Exchange (ETDEWEB)

    Trivus, N.A.; Belkina, N.A.

    1969-02-01

    A thermodynamic analysis is made of the gas-liquid separation process in order to determine the relationship between conditions of maximum stable condensate separation and physico-chemical nature and composition of condensate. The analysis was made by considering the multicomponent gas-condensate fluid produced from Zyrya field as a ternary system, composed of methane, an intermediate component (propane and butane) and a heavy residue, C/sub 6+/. Composition of 5 ternary systems was calculated for a wide variation in separator conditions. At each separator pressure there is maximum condensate production at a certain temperature. This occurs because solubility of condensate components changes with temperature. Results of all calculations are shown graphically. The graphs show conditions of maximum stable condensate separation.

  9. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Franklin M. Orr, Jr.

    2003-06-30

    This report presents a detailed analysis of the development of miscibility during gas cycling in condensates and the formation of condensate banks at the leading edge of the displacement front. Dispersion-free, semi-analytical one-dimensional (1D) calculations are presented for enhanced condensate recovery by gas injection. The semi-analytical approach allows investigation of the possible formation of condensate banks (often at saturations that exceed the residual liquid saturation) and also allows fast screening of optimal injection gas compositions. We describe construction of the semi-analytical solutions, a process which differs in some ways from related displacements for oil systems. We use an analysis of key equilibrium tie lines that are part of the displacement composition path to demonstrate that the mechanism controlling the development of miscibility in gas condensates may vary from first-contact miscible drives to pure vaporizing and combined vaporizing/condensing drives. Depending on the compositions of the condensate and the injected gas, multicontact miscibility can develop at the dew point pressure, or below the dew point pressure of the reservoir fluid mixture. Finally, we discuss the possible impact on performance prediction of the formation of a mobile condensate bank at the displacement front in near-miscible gas cycling/injection schemes.

  10. Accounting for Greenhouse Gas Emissions from Reservoirs ...

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane em

  11. TDT monitors gas saturation in heterogeneous reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, G.M.; Al-Awad, M.N.J. [King Saud Univ., Riyadh (Saudi Arabia)

    1998-05-25

    Thermal decay time (TDT) logs were used for determining the gas/oil contact in wells in the Zeit Bay field in Egypt. Gas/oil contact in the field was revised using the results from the model that was developed. The analysis followed the Polyachenko model of functional relationship between count rates and gas saturation. Several crossplots were made for the same range of porosity and connate water saturation. These crossplots included: formation capture cross section; total selected near detector counts; total selected far detector counts; capture cross section of the borehole; and inelastic far detector counts. Each crossplot gave a definite diagnostic shape around the depth of the gas/oil contact. By using these crossplots, it is possible to calculate gas saturation from a stand-alone run. The model was validated by RFT (reservoir formation tester) and open hole log data from infill wells. Also, the analysis was successfully applied in wells without an ambiguous gas/oil contact.

  12. Exploitation of subsea gas hydrate reservoirs

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  13. Condensation of an ideal gas obeying non-Abelian statistics.

    Science.gov (United States)

    Mirza, Behrouz; Mohammadzadeh, Hosein

    2011-09-01

    We consider the thermodynamic geometry of an ideal non-Abelian gas. We show that, for a certain value of the fractional parameter and at the relevant maximum value of fugacity, the thermodynamic curvature has a singular point. This indicates a condensation such as Bose-Einstein condensation for non-Abelian statistics and we work out the phase transition temperature in various dimensions.

  14. A case study to optimum selection of deliquification method for gas condensate well design: South Pars gas field

    Directory of Open Access Journals (Sweden)

    Ehsan Khamehchi

    2016-06-01

    Today, the most effective liquid-removal devices are pumping, the combination of liquid-diverter with gas lift and velocity string. Considering mentioned complexities, the most efficient method of liquid removal is different from one well to the others. This paper discusses a multi-criteria decision making (MCDM strategy for ranking these methods based on ELECTRE and TOPSIS techniques in a gas condensate reservoir. The most efficient model in this case, regarding its high efficiency and level of reliability is continuous gas lift. These procedures can be extended to other cases easily by changing the comparison matrix and user defined weights.

  15. Recent study of nanomaterials prepared by inert gas condensation ...

    Indian Academy of Sciences (India)

    Ultra high vacuum chamber; inert gas condensation technique; nanocrystalline materials; lead fluoride; Mn2+-doped lead fluoride; indium tin oxide; zinc oxide; tin oxide; copper oxide; PMN-PT; high resolution transmission electron microscopy; nuclear magnetic resonance; electron paramagnetic resonance.

  16. Monitoring gas reservoirs by seismic interferometry

    Science.gov (United States)

    Grigoli, Francesco; Cesca, Simone; Sens-Schoenfelder, Christoph; Priolo, Enrico

    2014-05-01

    Ambient seismic noise can be used to image spatial anomalies in the subsurface, without the need of recordings from seismic sources, such as earthquakes or explosions. Furthermore, the temporal variation of ambient seismic noise's can be used to infer temporal changes of the seismic velocities in the investigated medium. Such temporal variations can reflect changes of several physical properties/conditions in the medium. For example, they may be consequence of stress changes, variation of hydrogeological parameters, pore pressure and saturation changes due to fluid injection or extraction. Passive image interferometry allows to continuously monitor small temporal changes of seismic velocities in the subsurface, making it a suitable tool to monitor time-variant systems such as oil and gas reservoirs or volcanic environments. The technique does not require recordings from seismic sources in the classical sense, but is based on the processing of noise records. Moreover, it requires only data from one or two seismic stations, their locations constraining the sampled target area. Here we apply passive image interferometry to monitor a gas storage reservoir in northern Italy. The Collalto field (Northern Italy) is a depleted gas reservoir located at 1500 m depth, now used as a gas storage facility. The reservoir experience a significant temporal variation in the amount of stored gas: the injection phases mainly occur in the summer, while the extraction take place mostly in winter. In order to monitor induced seismicity related to gas storage operations, a seismic network (the Collalto Seismic Network) has been deployed in 2011. The Collalto Seismic Network is composed by 10 broadband stations, deployed within an area of about 20 km x 20 km, and provides high-quality continuous data since January 1st, 2012. In this work we present preliminary results from ambient noise interferometry using a two-months sample of continuous seismic data, i.e. from October 1st, 2012, to the

  17. Flue gas condensation cleaning technology; Reningsteknik vid roekgaskondensering

    Energy Technology Data Exchange (ETDEWEB)

    Westermark, M. [Vattenfall Utveckling AB, Stockholm (Sweden)

    1996-08-01

    Flue gas condensation has become established as an economical and environmentally attractive method for heat recovery and flue gas cleaning. Effective capture is wanted for dust and flue gas components. This also leads to more advanced treatment of the condensate. Important aspects for present plants are removal of heavy metals, sulfur oxides and ammonia. Future areas are condensation in biofuel driers, small-scale oil- and natural gas boilers and boilers using Salix. High concentrations of heavy metals are reported in refuse boilers, where sulphide precipitation and filtration are used to minimize outlet concentrations in the condensate. For simple dust cleaning (multicyclones) filtration of condensate is normally demanded. The pH value should be increased (to {approx} 7,5-9) for precipitation of heavy metals; zinc and cadmium being the most relevant from environmental point of view. Salix contains considerably higher amounts of cadmium, and may need sulphide precipitation. Addition of sodium hydroxide to the condensate film gives 90-95% absorption of sulfur dioxide. The pH value 6-6,5 is optimal for good removal of sulfur compounds and ammonias, and minimizes carbon dioxide absorption. For avoiding corrosion on concrete pipes the outlet condensate has to be neutralized. Ammonia is formed during combustion of fuels containing nitrogen and can be found in flue gases from e.g. biofuels. For SNCR extra ammonia is added. The main part ({approx} 60-95%) of the ammonia in flue gas is absorbed as ammonia ions in the condensate. Normal ammonium concentration in condensate is about 30-50 g/m{sup 3} without SNCR and 50-150 g/m{sup 3} with SNCR. Removal of ammonia from condensates can become necessary and methods are under development for stripping of ammonia with air or steam. 27 refs, 5 figs, 3 tabs, 14 appendices

  18. Naturally fractured tight gas reservoir detection optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

  19. RADIATION SAFETY JUSTIFICATION FOR THE LONG-TERM STORAGE OF GAS CONDENSATE IN THE UNDERGROUND RESERVOURS FORMED BY THE NUCLEAR EXPLOSION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    I. K. Romanovich

    2010-01-01

    Full Text Available The paper presents approaches to the safety justification of the gas condensate and brine long-term storage in the underground reservoirs formed by the nuclear explosion technology. Gas condensate and brine are the intermediate level liquid radioactive waste containing isotopes: 3Н, 137Cs and 90Sr, in traces - 239Pu, 235U, 241Am.Safety of the gas condensate and brine long-term storage in the underground reservoirs is assessed on the base of the multi-barrier principle implementation, used during radioactive waste disposal. It is shown that the gas condensate and brine long-term storage in the sealed underground reservoirs formed by nuclear explosion technologies in salt domes does not lead to the surface radioactive contamination and population exposure.

  20. Evaporation and Condensation Flows of a Vapor-Gas Mixture from or onto the Condensed Phase with an Internal Structure

    National Research Council Canada - National Science Library

    Onishi, Yoshimoto; Yamada, Ken

    2005-01-01

    Transient motions of a vapor-gas mixture due to the evaporation and condensation processes from or onto the plane condensed phase, with a temperature field as its internal structure, have been studied...

  1. Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dilley, Lorie M. [Hattenburg Dilley & Linnell, LLC, Anchorage, AL (United States)

    2015-04-13

    The purpose of this project was to: 1) evaluate the relationship between geothermal fluid processes and the compositions of the fluid inclusion gases trapped in the reservoir rocks; and 2) develop methodologies for interpreting fluid inclusion gas data in terms of the chemical, thermal and hydrological properties of geothermal reservoirs. Phase 1 of this project was designed to conduct the following: 1) model the effects of boiling, condensation, conductive cooling and mixing on selected gaseous species; using fluid compositions obtained from geothermal wells, 2) evaluate, using quantitative analyses provided by New Mexico Tech (NMT), how these processes are recorded by fluid inclusions trapped in individual crystals; and 3) determine if the results obtained on individual crystals can be applied to the bulk fluid inclusion analyses determined by Fluid Inclusion Technology (FIT). Our initial studies however, suggested that numerical modeling of the data would be premature. We observed that the gas compositions, determined on bulk and individual samples were not the same as those discharged by the geothermal wells. Gases discharged from geothermal wells are CO2-rich and contain low concentrations of light gases (i.e. H2, He, N, Ar, CH4). In contrast many of our samples displayed enrichments in these light gases. Efforts were initiated to evaluate the reasons for the observed gas distributions. As a first step, we examined the potential importance of different reservoir processes using a variety of commonly employed gas ratios (e.g. Giggenbach plots). The second technical target was the development of interpretational methodologies. We have develop methodologies for the interpretation of fluid inclusion gas data, based on the results of Phase 1, geologic interpretation of fluid inclusion data, and integration of the data. These methodologies can be used in conjunction with the relevant geological and hydrological information on the system to

  2. Reservoir architecture and tough gas reservoir potential of fluvial crevasse-splay deposits

    NARCIS (Netherlands)

    Van Toorenenburg, K.A.; Donselaar, M.E.; Weltje, G.J.

    2015-01-01

    Unconventional tough gas reservoirs in low-net-to-gross fluvial stratigraphic intervals may constitute a secondary source of fossil energy to prolong the gas supply in the future. To date, however, production from these thin-bedded, fine-grained reservoirs has been hampered by the economic risks

  3. Stepwise Bose-Einstein Condensation in a Spinor Gas.

    Science.gov (United States)

    Frapolli, C; Zibold, T; Invernizzi, A; Jiménez-García, K; Dalibard, J; Gerbier, F

    2017-08-04

    We observe multistep condensation of sodium atoms with spin F=1, where the different Zeeman components m_{F}=0,±1 condense sequentially as the temperature decreases. The precise sequence changes drastically depending on the magnetization m_{z} and on the quadratic Zeeman energy q (QZE) in an applied magnetic field. For large QZE, the overall structure of the phase diagram is the same as for an ideal spin-1 gas, although the precise locations of the phase boundaries are significantly shifted by interactions. For small QZE, antiferromagnetic interactions qualitatively change the phase diagram with respect to the ideal case, leading, for instance, to condensation in m_{F}=±1, a phenomenon that cannot occur for an ideal gas with q>0.

  4. Calorimetry of a Bose-Einstein-condensed photon gas

    Science.gov (United States)

    Damm, Tobias; Schmitt, Julian; Liang, Qi; Dung, David; Vewinger, Frank; Weitz, Martin; Klaers, Jan

    2016-04-01

    Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level.

  5. Condensed phase decomposition and gas phase combustion of hydrazinium nitroformate

    NARCIS (Netherlands)

    Dragomir, O.E.; Tummers, M.J.; Veen, E.H. van; Heijden, A.E.D.M. van der; Roekaerts, D.J.E.M.

    2009-01-01

    This paper presents the results of a series of experiments on the condensed phase decomposition and the gas phase combustion of hydrazinium nitroformate (HNF). The experiments include SEM analysis of quenched samples that showed evidence of the formation of a foam layer. FTIR spectrometry and mass

  6. Formation of the condensate in a dilute Bose gas

    NARCIS (Netherlands)

    Stoof, H.T.C.

    1991-01-01

    We examine the time evolution of a weakly interacting Bose gas in the course of the Bose-Einstein phase transition and show that, in contrast with previous claims in the literature, the relevant time scale for the appearance of the condensate is finite and, under the conditions we consider, of

  7. Performance Analysis of Depleted Oil Reservoirs for Underground Gas Storage

    Directory of Open Access Journals (Sweden)

    Dr. C.I.C. Anyadiegwu

    2014-02-01

    Full Text Available The performance of underground gas storage in depleted oil reservoir was analysed with reservoir Y-19, a depleted oil reservoir in Southern region of the Niger Delta. Information on the geologic and production history of the reservoir were obtained from the available field data of the reservoir. The verification of inventory was done to establish the storage capacity of the reservoir. The plot of the well flowing pressure (Pwf against the flow rate (Q, gives the deliverability of the reservoir at various pressures. Results of the estimated properties signified that reservoir Y-19 is a good candidate due to its storage capacity and its flow rate (Q of 287.61 MMscf/d at a flowing pressure of 3900 psig

  8. Naturally fractured tight gas reservoir detection optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-30

    The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and

  9. Bose-Einstein condensation in the relativistic ideal Bose gas.

    Science.gov (United States)

    Grether, M; de Llano, M; Baker, George A

    2007-11-16

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state.

  10. Reactive gas condensation synthesis of aluminum nitride nanoparticles.

    Science.gov (United States)

    Baker, Colin C; Ceylan, Abdullah; Shah, S Ismat

    2006-01-01

    Aluminum Nitride (AIN) nanoparticles were synthesized using a Reactive Gas Condensation (RGC) technique in which a mixture of ammonia (NH3) and nitrogen (N2) gases were used for the nitridation of aluminum. NH3 served as the reactive gas, while N2 served as both a carrier gas and the inert source for particle condensation. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses revealed that at reactive gas compositions greater than 10% NH3 in N2, samples were composed entirely of hexagonal AIN nanoparticles. Electron diffraction patterns showed single crystal hexagonal AIN structure. The particle size was controlled by varying the pressure of the gas mixture. AIN nanoparticles were dispersed in a liquid matrix to enhance thermal conductivity. Results showed that a minimal addition of AIN increased the thermal conductivity of hydrocarbon pump oil by approximately 27%. The thermal conductivity became constant after reaching a maximum above 0.01 wt% AIN. Temporal stability of AIN was studied by XRD. Samples exposed to air for extended periods of time and analyzed by XRD show no degradation of crystalline AIN nanoparticles.

  11. US production of natural gas from tight reservoirs

    International Nuclear Information System (INIS)

    1993-01-01

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission's (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ''legally tight'' reservoirs. Additional production from ''geologically tight'' reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA's tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government's regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs

  12. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  13. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    Science.gov (United States)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  14. Estimation of Uncertainles in Gas-Condensate Systems Reserves by Monte Carlo Simulation

    OpenAIRE

    Nagy Stanislaw; Siemek Jakub

    2004-01-01

    In the paper, an impact of improper condensate sampling on calculation of gas and condensate reserves of gas-condensate system is presented. The paper discusses probabilistic methods in reserves estimation (proven, possible, probable). The Peng-Robinson equation of state (EOS) has been used to calculations of phase properties. Sensitivity of CGR during recombination of stream process on liquid and gas reserves has been shown. The large error in estimation of condensate reserve has been obtain...

  15. Condensers

    International Nuclear Information System (INIS)

    Andrieux, M.B.

    1984-01-01

    Characteristics of the condenser cooling waters of various French 900 MW nuclear power plants. Design and description of various types of condensers: condensers feeded directly with river water, condensers feeded by cooling towers, condensers feeded with sea water of brackish water. Presentation of the main problems encountered with the brass bundles (ammoniacal corrosion, erosion of the peripheral tubes, vibrations of the tubes), with the titanium bundles, with the tubular plates, the tubes-tubular plates assemblies, the coatings of the condenser water chamber (sea water), the vapor by-pass and with the air inlet. Analysis of the in service performances such as condensation pressure, oxygen content and availability [fr

  16. Gas geochemistry for the Los Azufres (Michoacán geothermal reservoir, México

    Directory of Open Access Journals (Sweden)

    N. Segovia

    2005-06-01

    Full Text Available Gas data of the Los Azufres geothermal field were analyzed using a method based on equilibrium of the Fischer- Tropsch (FT reaction: CH4 + 2H2O = 4H2 +CO2 and on the combined pyrite-hematite-magnetite (HSH2 reactions: 5/4 H2 +3/2 FeS2 +3/4 Fe2O3 + 7/4 H2O = 3 H2S +Fe3O4 in order to estimate reservoir temperature and excess steam. The solution of equilibrium equations produces a grid (FT-HSH2. This method is suitable for reservoirs with relatively high H2S but low H2 and NH3 concentrations in the fluid as is the case of the Los Azufres well discharges. Reservoir temperature and reservoir excess steam values were estimated for initial and present conditions in representative wells of the field to study the evolution of fluids, because of exploitation and waste fluids reinjection. This method was very useful in estimating reservoir temperatures in vapor wells, while in two-phase wells it was found that as the well produces a smaller fraction of water, the reservoir temperature estimation agrees qualitatively with results from cationic or silica geothermometers. For liquid-dominated wells the reservoir temperature estimations agree with temperatures obtained from the well simulator WELFLO. This indicates that FT-HSH2 results provide the temperature of the fluid entering the well where the last equilibrium occurs. Results show a decrease in reservoir temperatures in the southern zone of the field where intensive reinjection takes place. With exploitation, it was also noted that the deep liquid phase in the reservoir is changing to two-phase increasing the reservoir steam fraction and the non-condensable gases in well discharges.

  17. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  18. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  19. Microbial Life in an Underground Gas Storage Reservoir

    Science.gov (United States)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  20. Successful flow testing of a gas reservoir in 3,500 feet of water

    International Nuclear Information System (INIS)

    Shaughnessy, J.M.; Carpenter, R.S.; Coleman, R.A.; Jackson, C.W.

    1992-01-01

    The test of Viosca Knoll Block 957 Well No. 1 Sidetrack No. 2 was Amoco Production Co.'s deepest test from a floating rig. Viosca Knoll 957 is 115 miles southeast of New Orleans in 3,500 ft of water. The test, at a record water depth for the Gulf of Mexico, also set a world water-depth record for testing a gas reservoir. Safety to crew and the environmental were top priorities during the planning. A team consisting of drilling, completion, reservoir, and facilities engineers and a foreman were assigned to plan and implement the test. Early planning involved field, service company, and engineering groups. Every effort was made to identify potential problems and to design the system to handle them. This paper reports that the goals of the test were to determine reservoir properties and reservoir limits. Several significant challenges were involved in the well test. The reservoir was gas with a potentially significant condensate yield. The ability to dispose of the large volumes of produced fluids safely without polluting was critical to maintaining uninterrupted flow. Potential shut-in surface pressure was 6,500 psi. Seafloor temperature in 3,500 ft of water was 39 degrees F

  1. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    Science.gov (United States)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  2. Accounting for Greenhouse Gas Emissions from Reservoirs

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes ...

  3. Materials in flue gas condensation plants; Materialval vid roekgaskondensering

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara; Nordling Magnus

    2003-02-01

    This project is the first part of a larger project. In the part reported here, materials for flue gas condensers have been investigated by contact with plant owners and suppliers and by a literature review of reported failures. If it is decided to continue with another part of the project, a number of materials will be long term tested on site. The project is complementary to an earlier project, which investigated the operating experiences from flue gas condensers in biomass fired cogeneration plants. In the project materials (steel and polymeric) suitable for long term testing in existing plants are discussed. It is proposed that testing in the second part of the project is made with material coupons in one plant fired with only biomass and one plant where biomass is co fired with other fuels. In the biomass fired plant a number of steel materials should be tested. In the co fired plant, with its harsher operating conditions, the same steel materials plus a number of polymeric materials should be tested. Materials suitable for testing are summarised in the report.

  4. Standardized surface engineering design of shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Guangchuan Liang

    2016-01-01

    Full Text Available Due to the special physical properties of shale gas reservoirs, it is necessary to adopt unconventional and standardized technologies for its surface engineering construction. In addition, the surface engineering design of shale gas reservoirs in China faces many difficulties, such as high uncertainty of the gathering and transportation scale, poor adaptability of pipe network and station layout, difficult matching of the process equipments, and boosting production at the late stage. In view of these problems, the surface engineering construction of shale gas reservoirs should follow the principles of “standardized design, modularized construction and skid mounted equipment”. In this paper, standardized surface engineering design technologies for shale gas reservoirs were developed with the “standardized well station layout, universal process, modular function zoning, skid mounted equipment selection, intensive site design, digitized production management” as the core, after literature analysis and technology exploration were carried out. Then its application background and surface technology route were discussed with a typical shale gas field in Sichuan–Chongqing area as an example. Its surface gathering system was designed in a standardized way, including standardized process, the modularized gathering and transportation station, serialized dehydration unit and intensive layout, and remarkable effects were achieved. A flexible, practical and reliable ground production system was built, and a series of standardized technology and modularized design were completed, including cluster well platform, set station, supporting projects. In this way, a system applicable to domestic shale gas surface engineering construction is developed.

  5. Tracing the External Origin of the AGN Gas Fueling Reservoir

    Directory of Open Access Journals (Sweden)

    Sandra I. Raimundo

    2018-01-01

    Full Text Available Near-infrared observations of the active galaxy MCG–6-30-15 provide strong evidence that its molecular gas fueling reservoir is of external origin. MCG–6-30-15 has a counter-rotating core of stars within its central 400 pc and a counter-rotating disc of molecular gas that extends as close as ~50–100 pc from the central black hole. The gas counter-rotation establishes that the gas reservoir in the center of the galaxy originates from a past external accretion event. In this contribution we discuss the gas and stellar properties of MCG–6-30-15, its past history and how the findings on this galaxy can be used to understand AGN fueling in S0 galaxies with counter-rotating structures.

  6. Producing Gas-Oil Ratio Performance of Conventional and Unconventional Reservoirs

    OpenAIRE

    Lei, Guowen

    2012-01-01

    This study presents a detailed analysis of producing gas-oil ratio performance characteristics from conventional reservoir to unconventional reservoir. Numerical simulations of various reservoir fluid systems are included for comparison. In a wide sense of the word, the term of unconventional reservoir is including tight gas sand, coal bed methane, gas hydrate deposits, heavy oil gas shale and etc. In this study we specify the unconventional reservoir to only mean the low and ultra low permea...

  7. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    OpenAIRE

    Lekov, Alex

    2010-01-01

    Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certificati...

  8. Exploring the thermodynamics of Bose-Einstein condensation in a homogeneous atomic gas

    Science.gov (United States)

    Schmidutz, Tobias; Gotlibovych, Igor; Gaunt, Alexander; Smith, Robert; Hadzibabic, Zoran

    2013-05-01

    Atomic Bose-Einstein condensates have traditionally been produced in harmonic traps and only very recently it became possible to attain condensation in a homogeneous gas [A.L. Gaunt et al., arXiv:1212.4453]. In this talk we will present our new experimental results on the thermodynamics of condensation in a homogeneous weakly interacting Bose gas. We perform a systematic study of the tuning of the critical temperature with system parameters, the saturation of the thermal components in a partially condensed sample, and the total energy of the gas. We also study the dynamics of cooling in a uniform gas.

  9. CO2 storage in depleted gas reservoirs: A study on the effect of residual gas saturation

    Directory of Open Access Journals (Sweden)

    Arshad Raza

    2018-03-01

    Full Text Available Depleted gas reservoirs are recognized as the most promising candidate for carbon dioxide storage. Primary gas production followed by injection of carbon dioxide after depletion is the strategy adopted for secondary gas recovery and storage practices. This strategy, however, depends on the injection strategy, reservoir characteristics and operational parameters. There have been many studies to-date discussing critical factors influencing the storage performance in depleted gas reservoirs while little attention was given to the effect of residual gas. In this paper, an attempt was made to highlight the importance of residual gas on the capacity, injectivity, reservoir pressurization, and trapping mechanisms of storage sites through the use of numerical simulation. The results obtained indicated that the storage performance is proportionally linked to the amount of residual gas in the medium and reservoirs with low residual fluids are a better choice for storage purposes. Therefore, it would be wise to perform the secondary recovery before storage in order to have the least amount of residual gas in the medium. Although the results of this study are useful to screen depleted gas reservoirs for the storage purpose, more studies are required to confirm the finding presented in this paper.

  10. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Blunt, Martin J.; Orr, Jr., Franklin M.

    1999-12-20

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1998 - September 1998 under the third year of a three-year Department of Energy (DOE) grant on the ''Prediction of Gas Injection Performance for Heterogeneous Reservoirs''. The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments and numerical simulation. The research is divided into four main areas: (1) Pore scale modeling of three-phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three-phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator.

  11. Pore-scale mechanisms of gas flow in tight sand reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the

  12. Control systems for condensing flue-gas coolers related to natural-gas-fired heating plants

    International Nuclear Information System (INIS)

    Krighaar, M.; Paulsen, O.

    1992-01-01

    A theoretical study is made of the enthalpy-efficiency for a water-cooled heat exchanger added to a natural gas-fired boiler. Under varying conditions of both water flow and temperature and flue-gas flow and temperature, both in condensing and non-condensing mode, the efficiency seems to be constant. The result is very useful for comparison between two different working conditions. The efficiency is used to calculate the savings achieved for a district heating plant by using a heat exchanger. The energy economic calculations are also helpful for estimating the most appropriate size of heat exchanger. The annual savings are calculated by means of data regarding heat production, flue gas temperature and water return temperature. The savings achieved by using different connection principles such as bypass, reheating and controlled water temperature are also calculated. (author)

  13. Numerical Simulation of Natural Gas Flow in Anisotropic Shale Reservoirs

    KAUST Repository

    Negara, Ardiansyah

    2015-11-09

    Shale gas resources have received great attention in the last decade due to the decline of the conventional gas resources. Unlike conventional gas reservoirs, the gas flow in shale formations involves complex processes with many mechanisms such as Knudsen diffusion, slip flow (Klinkenberg effect), gas adsorption and desorption, strong rock-fluid interaction, etc. Shale formations are characterized by the tiny porosity and extremely low-permeability such that the Darcy equation may no longer be valid. Therefore, the Darcy equation needs to be revised through the permeability factor by introducing the apparent permeability. With respect to the rock formations, several studies have shown the existence of anisotropy in shale reservoirs, which is an essential feature that has been established as a consequence of the different geological processes over long period of time. Anisotropy of hydraulic properties of subsurface rock formations plays a significant role in dictating the direction of fluid flow. The direction of fluid flow is not only dependent on the direction of pressure gradient, but it also depends on the principal directions of anisotropy. Therefore, it is very important to take into consideration anisotropy when modeling gas flow in shale reservoirs. In this work, the gas flow mechanisms as mentioned earlier together with anisotropy are incorporated into the dual-porosity dual-permeability model through the full-tensor apparent permeability. We employ the multipoint flux approximation (MPFA) method to handle the full-tensor apparent permeability. We combine MPFA method with the experimenting pressure field approach, i.e., a newly developed technique that enables us to solve the global problem by breaking it into a multitude of local problems. This approach generates a set of predefined pressure fields in the solution domain in such a way that the undetermined coefficients are calculated from these pressure fields. In other words, the matrix of coefficients

  14. Estimation of Uncertainles in Gas-Condensate Systems Reserves by Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Nagy Stanislaw

    2004-09-01

    Full Text Available In the paper, an impact of improper condensate sampling on calculation of gas and condensate reserves of gas-condensate system is presented. The paper discusses probabilistic methods in reserves estimation (proven, possible, probable. The Peng-Robinson equation of state (EOS has been used to calculations of phase properties. Sensitivity of CGR during recombination of stream process on liquid and gas reserves has been shown. The large error in estimation of condensate reserve has been obtained. The impact of CGR error on the vapor phase reserve is small.

  15. Effects of gas types and models on optimized gas fuelling station reservoir's pressure

    Directory of Open Access Journals (Sweden)

    M. Farzaneh-Gord

    2013-06-01

    Full Text Available There are similar algorithms and infrastructure for storing gas fuels at CNG (Compressed Natural Gas and CHG (Compressed Hydrogen Gas fuelling stations. In these stations, the fuels are usually stored in the cascade storage system to utilize the stations more efficiently. The cascade storage system generally divides into three reservoirs, commonly termed low, medium and high-pressure reservoirs. The pressures within these reservoirs have huge effects on performance of the stations. In the current study, based on the laws of thermodynamics, conservation of mass and real/ideal gas assumptions, a theoretical analysis has been constructed to study the effects of gas types and models on performance of the stations. It is intended to determine the optimized reservoir pressures for these stations. The results reveal that the optimized pressure differs between the gas types. For ideal and real gas models in both stations (CNG and CHG, the optimized non-dimensional low pressure-reservoir pressure is found to be 0.22. The optimized non-dimensional medium-pressure reservoir pressure is the same for the stations, and equal to 0.58.

  16. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-07-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed.

  17. Molecular simulation of steady-state evaporation and condensation in the presence of a non-condensable gas

    Science.gov (United States)

    Liang, Zhi; Keblinski, Pawel

    2018-02-01

    Using molecular dynamics simulations, we study evaporation and condensation of fluid Ar in the presence of a non-condensable Ne gas in a nanochannel. The evaporation and condensation are driven by the temperature difference, ΔTL, between the evaporating and condensing liquid surfaces. The steady-state evaporation and condensation fluxes (JMD) are also affected by the Ne concentration, ρNe, and the nanochannel length. We find that across a wide range of ΔTL and ρNe, JMD is in good agreement with the prediction from Stefan's law and from Schrage relationships. Furthermore, for ΔTL less than ˜20% of the absolute average temperature, we find that both steady-state heat and mass fluxes are proportional to ΔTL. This allows us to determine the interfacial resistance to the heat and mass transfer and compare it with the corresponding resistances in the gas phase. In this context, we derive an analytical expression for the effective thermal conductivity of the gas region in the nanochannel and the mass transport interfacial resistance equivalent length, i.e., the length of the nanochannel for which the resistance to the mass flow is the same as the interfacial resistance to the mass flow.

  18. Analysis of sulphur compounds in underground reservoirs of natural gas and town gas by gas chromatography and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Triska, J.; Kuras, M.; Zachar, P.; Vodicka, L. (Institute of Chemical Technology, Prague (Czechoslovakia). Lab. of Synthetic Fuels)

    1990-09-01

    This paper deals with mass spectrometry and gas chromatography of the sulphur compounds in waste waters from the natural gas underground reservoirs, in extracts of activated charcoal used for purification of town gas, and in the oils from compressors of natural gas. (orig.).

  19. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  20. Gas-Water Flow Behavior in Water-Bearing Tight Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Renyi Cao

    2017-01-01

    Full Text Available Some tight sandstone gas reservoirs contain mobile water, and the mobile water generally has a significant impact on the gas flowing in tight pores. The flow behavior of gas and water in tight pores is different than in conventional formations, yet there is a lack of adequate models to predict the gas production and describe the gas-water flow behaviors in water-bearing tight gas reservoirs. Based on the experimental results, this paper presents mathematical models to describe flow behaviors of gas and water in tight gas formations; the threshold pressure gradient, stress sensitivity, and relative permeability are all considered in our models. A numerical simulator using these models has been developed to improve the flow simulation accuracy for water-bearing tight gas reservoirs. The results show that the effect of stress sensitivity becomes larger as water saturation increases, leading to a fast decline of gas production; in addition, the nonlinear flow of gas phase is aggravated with the increase of water saturation and the decrease of permeability. The gas recovery decreases when the threshold pressure gradient (TPG and stress sensitivity are taken into account. Therefore, a reasonable drawdown pressure should be set to minimize the damage of nonlinear factors to gas recovery.

  1. Policy Considerations for Greenhouse Gas Emissions from Freshwater Reservoirs

    Directory of Open Access Journals (Sweden)

    Kirsi Mäkinen

    2010-06-01

    Full Text Available Emerging concern over greenhouse gas (GHG emissions from wetlands has prompted calls to address the climate impact of dams in climate policy frameworks. Existing studies indicate that reservoirs can be significant sources of emissions, particularly in tropical areas. However, knowledge on the role of dams in overall national emission levels and abatement targets is limited, which is often cited as a key reason for political inaction and delays in formulating appropriate policies. Against this backdrop, this paper discusses the current role of reservoir emissions in existing climate policy frameworks. The distance between a global impact on climate and a need for local mitigation measures creates a challenge for designing appropriate mechanisms to combat reservoir emissions. This paper presents a range of possible policy interventions at different scales that could help address the climate impact of reservoirs. Reservoir emissions need to be treated like other anthropogenic greenhouse gases. A rational treatment of the issue requires applying commonly accepted climate change policy principles as well as promoting participatory water management plans through integrated water resource management frameworks. An independent global body such as the UN system may be called upon to assess scientific information and develop GHG emissions policy at appropriate levels.

  2. Reservoir structure and geological setting of the shallow PEON gas reservoir

    OpenAIRE

    Mikalsen, Håkon

    2015-01-01

    In recent years, the petroleum industry started to look for new, unconventional energy resources. Peon, a shallow gas discovery in the northern North Sea, are being assessed as a possible energy resource. However, there are challenges related to reservoir pressure, sealing mechanism, and fluid migration. In this regard, geophysical and well log analyses is figured out to get a better understanding of the depositional regime and stratigraphy in the Peon area, as well as the structure of Peon a...

  3. Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    C. Cooper; M. Ye; J. Chapman

    2008-04-01

    The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to

  4. A new method for calculating gas saturation of low-resistivity shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Jinyan Zhang

    2017-09-01

    Full Text Available The Jiaoshiba shale gas field is located in the Fuling area of the Sichuan Basin, with the Upper Ordovician Wufeng–Lower Silurian Longmaxi Fm as the pay zone. At the bottom of the pay zone, a high-quality shale gas reservoir about 20 m thick is generally developed with high organic contents and gas abundance, but its resistivity is relatively low. Accordingly, the gas saturation calculated by formulas (e.g. Archie using electric logging data is often much lower than the experiment-derived value. In this paper, a new method was presented for calculating gas saturation more accurately based on non-electric logging data. Firstly, the causes for the low resistivity of shale gas reservoirs in this area were analyzed. Then, the limitation of traditional methods for calculating gas saturation based on electric logging data was diagnosed, and the feasibility of the neutron–density porosity overlay method was illustrated. According to the response characteristics of neutron, density and other porosity logging in shale gas reservoirs, a model for calculating gas saturation of shale gas was established by core experimental calibration based on the density logging value, the density porosity and the difference between density porosity and neutron porosity, by means of multiple methods (e.g. the dual-porosity overlay method by optimizing the best overlay coefficient. This new method avoids the effect of low resistivity, and thus can provide normal calculated gas saturation of high-quality shale gas reservoirs. It works well in practical application. This new method provides a technical support for the calculation of shale gas reserves in this area. Keywords: Shale gas, Gas saturation, Low resistivity, Non-electric logging, Volume density, Compensated neutron, Overlay method, Reserves calculation, Sichuan Basin, Jiaoshiba shale gas field

  5. PREDICTION OF GAS INJECTION PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Martin J. Blunt; Franklin M. Orr Jr

    2000-06-01

    This final report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1996--May 2000 under a three-year grant from the Department of Energy on the ''Prediction of Gas Injection Performance for Heterogeneous Reservoirs''. The advances from the research include: new tools for streamline-based simulation including the effects of gravity, changing well conditions, and compositional displacements; analytical solutions to 1D compositional displacements which can speed-up gas injection simulation still further; and modeling and experiments that delineate the physics that is unique to three-phase flow.

  6. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Franklin M. Orr, Jr; Martin J. Blunt

    1998-03-31

    This project performs research in four main areas: laboratory experiments to measure three-phase relative permeability; network modeling to predict three-phase relative perme- ability; benchmark simulations of gas injection and waterfl ooding at the field scale; and the development of fast streamline techniques to study field-scale oil. The aim of the work is to achieve a comprehensive description of gas injection processes from the pore to the core to the reservoir scale. In this report we provide a detailed description of our measurements of three-phase relative permeability.

  7. The Noble Gas Fingerprint in a UK Unconventional Gas Reservoir

    Science.gov (United States)

    McKavney, Rory; Gilfillan, Stuart; Györe, Domokos; Stuart, Fin

    2016-04-01

    In the last decade, there has been an unprecedented expansion in the development of unconventional hydrocarbon resources. Concerns have arisen about the effect of this new industry on groundwater quality, particularly focussing on hydraulic fracturing, the technique used to increase the permeability of the targeted tight shale formations. Methane contamination of groundwater has been documented in areas of gas production1 but conclusively linking this to fugitive emissions from unconventional hydrocarbon production has been controversial2. A lack of baseline measurements taken before drilling, and the equivocal interpretation of geochemical data hamper the determination of possible contamination. Common techniques for "fingerprinting" gas from discrete sources rely on gas composition and isotopic ratios of elements within hydrocarbons (e.g. δ13CCH4), but the original signatures can be masked by biological and gas transport processes. The noble gases (He, Ne, Ar, Kr, Xe) are inert and controlled only by their physical properties. They exist in trace quantities in natural gases and are sourced from 3 isotopically distinct environments (atmosphere, crust and mantle)3. They are decoupled from the biosphere, and provide a separate toolbox to investigate the numerous sources and migration pathways of natural gases, and have found recent utility in the CCS4 and unconventional gas5 industries. Here we present a brief overview of noble gas data obtained from a new coal bed methane (CBM) field, Central Scotland. We show that the high concentration of helium is an ideal fingerprint for tracing fugitive gas migration to a shallow groundwater. The wells show variation in the noble gas signatures that can be attributed to differences in formation water pumping from the coal seams as the field has been explored for future commercial development. Dewatering the seams alters the gas/water ratio and the degree to which noble gases degas from the formation water. Additionally the

  8. Naturally fractured tight gas reservoir detection optimization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-19

    This DOE-funded research into seismic detection of natural fractures is one of six projects within the DOE`s Detection and Analysis of Naturally Fractured Gas Reservoirs Program, a multidisciplinary research initiative to develop technology for prediction, detection, and mapping of naturally fractured gas reservoirs. The demonstration of successful seismic techniques to locate subsurface zones of high fracture density and to guide drilling orientation for enhanced fracture permeability will enable better returns on investments in the development of the vast gas reserves held in tight formations beneath the Rocky Mountains. The seismic techniques used in this project were designed to capture the azimuthal anisotropy within the seismic response. This seismic anisotropy is the result of the symmetry in the rock fabric created by aligned fractures and/or unequal horizontal stresses. These results may be compared and related to other lines of evidence to provide cross-validation. The authors undertook investigations along the following lines: Characterization of the seismic anisotropy in three-dimensional, P-wave seismic data; Characterization of the seismic anisotropy in a nine-component (P- and S-sources, three-component receivers) vertical seismic profile; Characterization of the seismic anisotropy in three-dimensional, P-to-S converted wave seismic data (P-wave source, three-component receivers); and Description of geological and reservoir-engineering data that corroborate the anisotropy: natural fractures observed at the target level and at the surface, estimation of the maximum horizontal stress in situ, and examination of the flow characteristics of the reservoir.

  9. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Blunt, Michael J.; Orr, Franklin M.

    1999-05-26

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1996 - September 1997 under the first year of a three-year Department of Energy grant on the Prediction of Gas Injection Performance for Heterogeneous Reservoirs. The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments and numerical simulation. The original proposal described research in four main areas; (1) Pore scale modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator. Each stage of the research is planned to provide input and insight into the next stage, such that at the end we should have an integrated understanding of the key factors affecting field scale displacements.

  10. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Blunt, Martin J.; Orr, Franklin M.

    1999-05-17

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1997 - September 1998 under the second year of a three-year grant from the Department of Energy on the "Prediction of Gas Injection Performance for Heterogeneous Reservoirs." The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments, and numerical simulation. The original proposal described research in four areas: (1) Pore scale modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator. Each state of the research is planned to provide input and insight into the next stage, such that at the end we should have an integrated understanding of the key factors affecting field scale displacements.

  11. Crossover Temperature of Bose-Einstein Condensation in an Atomic Fermi Gas

    NARCIS (Netherlands)

    Falco, G.M.; Stoof, H.T.C.

    2004-01-01

    We show that in an atomic Fermi gas near a Feshbach resonance the crossover between a Bose-Einstein condensate of diatomic molecules and a Bose-Einstein condensate of Cooper pairs occurs at positive detuning, i.e., when the molecular energy level lies in the two-atom continuum. We determine the

  12. Part played by ions in condensation centers formation by gas radiolysis

    International Nuclear Information System (INIS)

    Ollion, Pierre.

    1977-01-01

    Study of the part played by ions in the production of condensation centers by α or β irradiation of a gas mixture. An electrostatic device allows to change lifetime of created ions and to count the number of condensation centers produced. Experiments were carried out with air, argon, nitrogen and oxygen. The influence of impurities, sulfur dioxide or water was examined [fr

  13. Production Decline Analysis for Two-Phase Flow in Multifractured Horizontal Well in Shale Gas Reservoirs

    OpenAIRE

    Xie, Wei-Yang; Li, Xiao-Ping; Zhang, Lie-Hui; Tan, Xiao-Hua; Wang, Jun-Chao; Wang, Hai-Tao

    2015-01-01

    After multistage fracturing, the flowback of fracturing fluid will cause two-phase flow through hydraulic fractures in shale gas reservoirs. With the consideration of two-phase flow and desorbed gas transient diffusion in shale gas reservoirs, a two-phase transient flow model of multistage fractured horizontal well in shale gas reservoirs was created. Accurate solution to this flow model is obtained by the use of source function theory, Laplace transform, three-dimensional eigenvalue method, ...

  14. Experimental study of Iranian heavy crude oil viscosity reduction by diluting with heptane, methanol, toluene, gas condensate and naphtha

    Directory of Open Access Journals (Sweden)

    Amir Hossein Saeedi Dehaghani

    2016-12-01

    Full Text Available Due to the high viscosity of heavy crude oils, production from these reservoirs is a demanding task. To tackle this problem, reducing oil viscosity is a promising approach. There are various methods to reduce viscosity of heavy oil: heating, diluting, emulsification, and core annular flow. In this study, dilution approach was employed, using industrial solvents and gas condensate. The viscosity of two Iranian heavy crude oils was measured by mixing with solvents at different temperatures. Dilution of both oil samples with toluene and heptane, resulted in viscosity reduction. However, their effect became less significant at higher concentrations of diluent. Because of forming hydrogen bonds, adding methanol to heavy crude oil resulted in higher viscosity. By adding condensate, viscosity of each sample reduced. Gas condensate had a greater impact on heavier oil; however, at higher temperatures its effect was reduced. Diluting with naphtha decreased heavy oil viscosity in the same way as n-heptane and toluene. Besides experimental investigation, different viscosity models were evaluated for prediction of heavy oil/solvent viscosity. It was recognized that Lederer' model is the best one.

  15. Production Characteristics of Oceanic Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Max, M. D.; Johnson, A. H.

    2014-12-01

    Oceanic natural gas hydrate (NGH) accumulations form when natural gas is trapped thermodynamically within the gas hydrate stability zone (GHSZ), which extends downward from the seafloor in open ocean depths greater than about 500 metres. As water depths increase, the thickness of the GHSZ thickens, but economic NGH deposits probably occur no deeper than 1 km below the seafloor. Natural gas (mostly methane) appears to emanate mostly from deeper sources and migrates into the GHSZ. The natural gas crystallizes as NGH when the pressure - temperature conditions within the GHSZ are reached and when the chemical condition of dissolved gas concentration in pore water is high enough to favor crystallization. Although NGH can form in both primary and secondary porosity, the principal economic target appears to be turbidite sands on deep continental margins. Because these are very similar to the hosts of more deeply buried conventional gas and oil deposits, industry knows how to explore for them. Recent improvements in a seismic geotechnical approach to NGH identification and valuation have been confirmed by drilling in the northern Gulf of Mexico and allow for widespread exploration for NGH deposits to begin. NGH concentrations occur in the same semi-consolidated sediments in GHSZs worldwide. This provides for a narrow exploration window with low acoustic attenuation. These sediments present the same range of relatively easy drilling conditions and formation pressures that are only slightly greater than at the seafloor and are essentially equalized by water in wellbores. Expensive conventional drilling equipment is not required. NGH is the only hydrocarbon that is stable at its formation pressures and incapable of converting to gas without artificial stimulation. We suggest that specialized, NGH-specific drilling capability will offer opportunities for much less expensive drilling, more complex wellbore layouts that improve reservoir connectivity and in which gas

  16. Bose-Einstein condensation in an ultra-hot gas of pumped magnons.

    Science.gov (United States)

    Serga, Alexander A; Tiberkevich, Vasil S; Sandweg, Christian W; Vasyuchka, Vitaliy I; Bozhko, Dmytro A; Chumak, Andrii V; Neumann, Timo; Obry, Björn; Melkov, Gennadii A; Slavin, Andrei N; Hillebrands, Burkard

    2014-03-11

    Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.

  17. Production Decline Analysis for Two-Phase Flow in Multifractured Horizontal Well in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Wei-Yang Xie

    2015-01-01

    Full Text Available After multistage fracturing, the flowback of fracturing fluid will cause two-phase flow through hydraulic fractures in shale gas reservoirs. With the consideration of two-phase flow and desorbed gas transient diffusion in shale gas reservoirs, a two-phase transient flow model of multistage fractured horizontal well in shale gas reservoirs was created. Accurate solution to this flow model is obtained by the use of source function theory, Laplace transform, three-dimensional eigenvalue method, and orthogonal transformation. According to the model’s solution, the bilogarithmic type curves of the two-phase model are illustrated, and the production decline performance under the effects of hydraulic fractures and shale gas reservoir properties are discussed. The result obtained in this paper has important significance to understand pressure response characteristics and production decline law of two-phase flow in shale gas reservoirs. Moreover, it provides the theoretical basis for exploiting this reservoir efficiently.

  18. Gas coning control for smart wells using a dynamic coupled well-reservoir simulator

    NARCIS (Netherlands)

    Leemhuis, A.P.; Nennie, E.D.; Belfroid, S.P.C.; Alberts, G.J.N.; Peters, E.; Joosten, G.J.P.

    2008-01-01

    A strong increase in gas inflow due to gas coning and the resulting bean-back because of Gas to Oil Ratio (GOR) constraints can severely limit oil production and reservoir drive energy. In this paper we will use a coupled reservoir-well model to demonstrate that oil production can be increased by

  19. Reservoir characteristics and control factors of Carboniferous volcanic gas reservoirs in the Dixi area of Junggar Basin, China

    Directory of Open Access Journals (Sweden)

    Ji'an Shi

    2017-02-01

    Full Text Available Field outcrop observation, drilling core description, thin-section analysis, SEM analysis, and geochemistry, indicate that Dixi area of Carboniferous volcanic rock gas reservoir belongs to the volcanic rock oil reservoir of the authigenic gas reservoir. The source rocks make contact with volcanic rock reservoir directly or by fault, and having the characteristics of near source accumulation. The volcanic rock reservoir rocks mainly consist of acidic rhyolite and dacite, intermediate andesite, basic basalt and volcanic breccia: (1 Acidic rhyolite and dacite reservoirs are developed in the middle-lower part of the structure, have suffered strong denudation effect, and the secondary pores have formed in the weathering and tectonic burial stages, but primary pores are not developed within the early diagenesis stage. Average porosity is only at 8%, and the maximum porosity is at 13.5%, with oil and gas accumulation showing poor performance. (2 Intermediate andesite and basic basalt reservoirs are mainly distributed near the crater, which resembles the size of and suggests a volcanic eruption. Primary pores are formed in the early diagenetic stage, secondary pores developed in weathering and erosion transformation stage, and secondary fractures formed in the tectonic burial stage. The average porosity is at 9.2%, and the maximum porosity is at 21.9%: it is of the high-quality reservoir types in Dixi area. (3 The volcanic breccia reservoir has the same diagenetic features with sedimentary rocks, but also has the same mineral composition with volcanic rock; rigid components can keep the primary porosity without being affected by compaction during the burial process. At the same time, the brittleness of volcanic breccia reservoir makes it easily fracture under the stress; internal fracture was developmental. Volcanic breccia developed in the structural high part and suffered a long-term leaching effect. The original pore-fracture combination also made

  20. Gas accumulations in Oligocene-Miocene reservoirs in the Alpine Foreland Basin (Austria): evidence for gas mixing and gas degradation

    Science.gov (United States)

    Pytlak, L.; Gross, D.; Sachsenhofer, R. F.; Bechtel, A.; Linzer, H.-G.

    2017-09-01

    Two petroleum systems are present in the eastern (Austrian) sector of the Alpine Foreland Basin. Whereas oil and thermogenic gas in Mesozoic and Eocene reservoir rocks have been generated beneath the Alps in Lower Oligocene source rocks, relative dry gas in Oligocene-Miocene clastic rocks deposited in the deep marine basin-axial channel system (Puchkirchen Channel) is interpreted as microbial in origin. Detailed investigations of the molecular and isotope composition of 87 gas samples from 86 wells, representing all producing fields with Oligocene and Miocene reservoir rocks, suggest that the presence of pure microbial gas is rare and limited mainly to the northern basin flank (e.g., KK field). All other fields contain varying amounts of thermogenic gas, which has been generated from a source rock with oil-window maturity. A relation with the underlying thermogenic petroleum system is obvious. Upward migration occurred along discrete fault zones (e.g., H field) or through low-permeability caprocks. Local erosion of Lower Oligocene sediments, the principal seal for the thermogenic petroleum system, as well as a high percentage of permeable rocks within the Puchkirchen Channel favored upward migration and mixing of thermogenic and microbial gas. All gas samples in Oligocene-Miocene reservoirs are biodegraded. Biodegradation and the formation of secondary microbial gas resulted in gas drying. Therefore, the gas samples analyzed in this study are relative dry, despite significant contributions of thermogenic hydrocarbons. Biodegradation probably continues at present time. The degree of biodegradation, however, decreases with depth.

  1. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical

  2. Effects of Formation Damage on Productivity of Underground Gas Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    C.I.C. Anyadiegwu

    2013-12-01

    Full Text Available Analysis of the effects of formation damage on the productivity of gas storage reservoirs was performed with depleted oil reservoir (OB-02, located onshore, Niger Delta, Nigeria. Information on the reservoir and the fluids from OB-02 were collected and used to evaluate the deliverabilities of the gas storage reservoir over a 10-year period of operation. The results obtained were used to plot graphs of deliverability against permeability and skin respectively. The graphs revealed that as the permeability decreased, the skin increased, and hence a decrease in deliverability of gas from the reservoir during gas withdrawal. Over the ten years of operating the reservoir for gas storage, the deliverability and permeability which were initially 2.7 MMscf/d and 50 mD, with a skin of 0.2, changed to new values of 0.88 MMscf/d and 24 mD with the skin as 4.1 at the tenth year.

  3. Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler

    Science.gov (United States)

    Cao, Weixue; Liu, Fengguo; You, Xue-yi

    2018-01-01

    Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.

  4. Fault assessment for basement reservoir compartmentalization: Case study at Northeast Betara gas field, South Sumatra Basin

    Science.gov (United States)

    Risyad, M.; Suta, I. N.; Haris, A.

    2017-07-01

    Northeast Betara field is situated on the northern part of prolific South Sumatra Basin. It has produced gas from Lower Talang Akar Formation sandstone and over 90 wells have been drilled. A 3D seismic data was acquired in 2000 and reprocessed in 2012 to enhance the subsurface image. In 2013 an exploratory well NEB Base-1 was drilled and made gas and condensate discovery from the subsequent pre-tertiary basement which is confirmed as granite. The well proved fractured basement reservoir play on paleo high of the structure. The absence of full-diameter conventional core prompts well logs and seismic data analysis by using a workstation. Main methods for fracture prediction have been seismic attributes extraction and structural geology studies of basement provided by image logs on a few exploration wells. Ant tracking attribute is widely employed to image seismic event discontinuities due to extensive faults which generated the natural fractures. Delineations well NEB Base-2 was drilled on second paleo high and unfortunately, it did not find any gas indication from pre-tertiary basement target. Seismic structural interpretation and seismic attributes are conducted to image distribution of event discontinuities related to faults or fracture. We found that compartmentalization on basement involved old faults and both paleo high have undergone different structural history and stress character which resulted in separated fractures distribution.

  5. CO2 Capture by Injection of Flue Gas or CO2-N2 Mixtures into Hydrate Reservoirs: Dependence of CO2 Capture Efficiency on Gas Hydrate Reservoir Conditions.

    Science.gov (United States)

    Hassanpouryouzband, Aliakbar; Yang, Jinhai; Tohidi, Bahman; Chuvilin, Evgeny; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey

    2018-04-03

    Injection of flue gas or CO 2 -N 2 mixtures into gas hydrate reservoirs has been considered as a promising option for geological storage of CO 2 . However, the thermodynamic process in which the CO 2 present in flue gas or a CO 2 -N 2 mixture is captured as hydrate has not been well understood. In this work, a series of experiments were conducted to investigate the dependence of CO 2 capture efficiency on reservoir conditions. The CO 2 capture efficiency was investigated at different injection pressures from 2.6 to 23.8 MPa and hydrate reservoir temperatures from 273.2 to 283.2 K in the presence of two different saturations of methane hydrate. The results showed that more than 60% of the CO 2 in the flue gas was captured and stored as CO 2 hydrate or CO 2 -mixed hydrates, while methane-rich gas was produced. The efficiency of CO 2 capture depends on the reservoir conditions including temperature, pressure, and hydrate saturation. For a certain reservoir temperature, there is an optimum reservoir pressure at which the maximum amount of CO 2 can be captured from the injected flue gas or CO 2 -N 2 mixtures. This finding suggests that it is essential to control the injection pressure to enhance CO 2 capture efficiency by flue gas or CO 2 -N 2 mixtures injection.

  6. New progresses in safe, clean and efficient development technologies for high-sulfur gas reservoirs

    Directory of Open Access Journals (Sweden)

    Liming Huang

    2015-10-01

    Full Text Available In China, there are a lot of high-sulfur gas reservoirs with total proved reserves of over 1 trillion m3, most of which were discovered in the Sichuan Basin. Most high-sulfur gas reservoirs in China, distributed in marine carbonate zones, are characterized by great buried depths, complex geologic conditions, high temperatures, high pressures, high H2S and CO2 content, presenting various challenges in gas field development engineering and production safety. Since the development of Sinian high-sulfur gas reservoirs in the Weiyuan area of the Sichuan Basin started in the 1960s, Wolonghe, Zhongba and other medium to small-scale gas reservoirs with medium to low sulfur content have been developed. Ever since 2009, successful production of Longgang and Puguang in the Sichuan Basin, together with some other high-sulfur gas reservoirs highlighted the breakthroughs in development technologies for high-sulfur gas reservoirs in China. This paper reviews the progress made in gas reservoir engineering, drilling and completion engineering, gas production, pipeline transportation, corrosion control, natural gas purification, HSE and other aspects with consideration of specific requirements related to safe, clean and high-efficient development of high-sulfur gas reservoirs since the “12th Five-Year Plan” period. Finally, considering the challenges in the development of high-sulfur gas reservoirs in China, we summarized the trend in future technological development with the following goals of reducing risks, minimizing environmental damages, and enhancing the efficiency of high-sulfur gas reservoir development.

  7. The influence of surface-active agents in gas mixture on the intensity of jet condensation

    Science.gov (United States)

    Yezhov, YV; Okhotin, VS

    2017-11-01

    The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and

  8. Reservoir controls on the occurrence and production of gas hydrates in nature

    Science.gov (United States)

    Collett, Timothy Scott

    2014-01-01

    Gas hydrates in both arctic permafrost regions and deep marine settings can occur at high concentrations in sand-dominated reservoirs, which have been the focus of gas hydrate exploration and production studies in

  9. Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration

    International Nuclear Information System (INIS)

    Yang, Jinhai; Okwananke, Anthony; Tohidi, Bahman; Chuvilin, Evgeny; Maerle, Kirill; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey

    2017-01-01

    Highlights: • Flue gas was injected for both methane recovery and carbon dioxide sequestration. • Kinetics of methane recovery and carbon dioxide sequestration was investigated. • Methane-rich gas mixtures can be produced inside methane hydrate stability zones. • Up to 70 mol% of carbon dioxide in the flue gas was sequestered as hydrates. - Abstract: Flue gas injection into methane hydrate-bearing sediments was experimentally investigated to explore the potential both for methane recovery from gas hydrate reservoirs and for direct capture and sequestration of carbon dioxide from flue gas as carbon dioxide hydrate. A simulated flue gas from coal-fired power plants composed of 14.6 mol% carbon dioxide and 85.4 mol% nitrogen was injected into a silica sand pack containing different saturations of methane hydrate. The experiments were conducted at typical gas hydrate reservoir conditions from 273.3 to 284.2 K and from 4.2 to 13.8 MPa. Results of the experiments show that injection of the flue gas leads to significant dissociation of the methane hydrate by shifting the methane hydrate stability zone, resulting in around 50 mol% methane in the vapour phase at the experimental conditions. Further depressurisation of the system to pressures well above the methane hydrate dissociation pressure generated methane-rich gas mixtures with up to 80 mol% methane. Meanwhile, carbon dioxide hydrate and carbon dioxide-mixed hydrates were formed while the methane hydrate was dissociating. Up to 70% of the carbon dioxide in the flue gas was converted into hydrates and retained in the silica sand pack.

  10. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  11. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  12. Flue gas moisture capacity calculation at the outlet of the condensation heat recovery unit

    OpenAIRE

    Galashov Nikolay; Tsibulskiy Svyatoslav; Mel’nikov Denis; Kiselev Alexandr; Gabdullina Al’bina

    2017-01-01

    As a result, study equation has been obtained which determine the flue gas moisture capacity at the outlet of the condensation heat recovery unit with an error of less than 1%. It possible to at the temperature of the flue gas below the dew point and the known air-fuel ratio efficient. The equation can be used to calculate plants operating on products of gas combustion without Use of tables and programs for calculating the water-vapor saturation pressure.

  13. Introduction to the appropriate-stimulation degree of hydraulic fracture networks in shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Yuzhang Liu

    2018-02-01

    Full Text Available Due to the limitation of actual shale gas reservoir conditions and fracturing technologies, artificial fracture networks are different greatly even in the same or similar stimulated reservoir volume. Deviations and even faults occur in evaluation and cognition if only the stimulated reservoir volume (SRV is used to characterize and evaluate the effect of stimulation. In this paper, the spatial distribution of artificial fractures and natural fractures and the internal pressure state and degree of reserve recovery of stimulated shale gas reservoirs were studied by means of artificial fracture propagation numerical simulation and production numerical simulation. And three concepts were proposed, i.e., shale gas fracture network, ideal fracture network and appropriate-stimulation degree of fracture network. The study results indicate that, at the end of reservoir development, target zones can be classified into three types (i.e., relatively appropriate stimulation zone, transitional stimulation zone, and uncompleted stimulation zone according to the recovery degree and production time of stimulated reservoirs; and that the final morphologic parameter of fracture networks and the reservoir characteristic are two main factors affecting the appropriate-stimulation degree of fracture networks. As for a specific gas reservoir, the orientation, length, conduction, height and spatial location of its fracture network are the main factors influencing its appropriate-stimulation degree if the well trajectory is set. The proposal of the theory on the appropriate-stimulation degree of hydraulic fracture networks in shale gas reservoir enriches the theoretical system of shale reservoir stimulation technology, and it can be used as the reference for characterizing the fracture systems in other unconventional reservoirs, such as tight oil and gas reservoirs. Keywords: Shale gas, Reservoir stimulation, Ideal fracture network, Appropriate-stimulation degree of

  14. Waste heat recovery system including a mechanism for collection, detection and removal of non-condensable gas

    Science.gov (United States)

    Ernst, Timothy C.; Zigan, James A.

    2017-06-20

    The disclosure describes a non-condensable gas collection, detection, and removal system for a WHR system that helps to maintain cycle efficiency of the WHR system across the life of an engine system associated with the WHR system. A storage volume is configured to collect non-condensable gas received from the working fluid circuit, and a release valve is configured to selectively release non-condensable gas contained within the storage volume.

  15. Formation and migration of Natural Gases: gas composition and isotopes as monitors between source, reservoir and seep

    Science.gov (United States)

    Schoell, M.; Etiope, G.

    2015-12-01

    Natural gases form in tight source rocks at temperatures between 120ºC up to 200ºC over a time of 40 to 50my depending on the heating rate of the gas kitchen. Inferring from pyrolysis experiments, gases after primary migration, a pressure driven process, are rich in C2+ hydrocarbons (C2 to C5). This is consistent with gas compositions of oil-associated gases such as in the Bakken Shale which occur in immediate vicinity of the source with little migration distances. However, migration of gases along porous rocks over long distances (up to 200km in the case of the Troll field offshore Norway) changes the gas composition drastically as C2+ hydrocarbons tend to be retained/sequestered during migration of gas as case histories from Virginia and the North Sea will demonstrate. Similar "molecular fractionation" is observed between reservoirs and surface seeps. In contrast to gas composition, stable isotopes in gases are, in general, not affected by the migration process suggesting that gas migration is a steady state process. Changes in isotopic composition, from source to reservoir to surface seeps, is often the result of mixing of gases of different origins. Examples from various gas provinces will support this notion. Natural gas basins provide little opportunity of tracking and identifying gas phase separation. Future research on experimental phase separation and monitoring of gas composition and gas ratio changes e.g. various C2+ compound ratios over C1 or isomer ratios such as iso/n ratios in butane and pentane may be an avenue to develop tracers for phase separation that could possibly be applied to natural systems of retrograde natural condensate fields.

  16. Investigation of the Corrosion Behavior of Electroless Ni-P Coating in Flue Gas Condensate

    Directory of Open Access Journals (Sweden)

    Hejie Yang

    2017-01-01

    Full Text Available The corrosion behavior of Ni-P coating deposited on 3003 aluminum alloy in flue gas condensate was investigated by electrochemical approaches. The results indicated that nitrite acted as a corrosion inhibitor. The inhibiting effect of nitrite was reduced in solutions containing sulfate or nitrate. Chloride and sulfate accelerated the corrosion of Ni-P coatings greatly. This can provide important information for the researchers to develop special Ni-P coatings with high corrosion resistance in the flue gas condensate.

  17. Condensation and critical exponents of an ideal non-Abelian gas

    Science.gov (United States)

    Talaei, Zahra; Mirza, Behrouz; Mohammadzadeh, Hosein

    2017-11-01

    We investigate an ideal gas obeying non-Abelian statistics and derive the expressions for some thermodynamic quantities. It is found that thermodynamic quantities are finite at the condensation point where their derivatives diverge and, near this point, they behave as \\vert T-Tc\\vert^{-ρ} in which Tc denotes the condensation temperature and ρ is a critical exponent. The critical exponents related to the heat capacity and compressibility are obtained by fitting numerical results and others are obtained using the scaling law hypothesis for a three-dimensional non-Abelian ideal gas. This set of critical exponents introduces a new universality class.

  18. Discovery and reservoir-forming geological characteristics of the Shenmu Gas Field in the Ordos Basin

    Directory of Open Access Journals (Sweden)

    Hua Yang

    2015-10-01

    Full Text Available By the end of 2014, the giant Shenmu Gas Field had been found in the Ordos Basin with an explored gas-bearing area of 4069 km2 and the proved geological gas reserves of 333.4 billion m3. This paper aims to review the exploration history of this field and discusses its reservoir-forming mechanism and geological characteristics, which may guide the further discovery and exploration of such similar gas fields in this basin and other basins. The following research findings were concluded. (1 There are typical tight sand gas reservoirs in this field primarily with the pay zones of the Upper Paleozoic Taiyuan Fm, and secondly with those of the Shanxi and Shihezi Fms. (2 Gas types are dominated by coal gas with an average methane content of 88% and no H2S content. (3 The gas reservoirs were buried 1700–2800 m deep underneath with multiple pressure systems and an average pressure coefficient of 0.87. (4 The reservoir strata are composed of fluvial delta facies sandstones with an average porosity of 7.8% and permeability of 0.63 mD, having high pressure sensibility and a strong water-locking effect because the pore throat radius are mostly less than 1 μm. (5 There are different dynamics at various stages in the gas reservoir-forming process. The abnormal well-developed strata pressure was the main reservoir-forming force at the Early Cretaceous setting stage while the fluid expansibility became the main gas-migrating force at the uplift and denudation stage after the Early Cretaceous period. (6 Gas reservoirs with ultra-low water saturation are mainly controlled by many factors such as changes of high temperature and high pressure fields in the Late Jurassic and Early Cretaceous periods, the charging of dry gas at the highly-mature stage, and the gas escape and dissipation at the post-reservoir-forming periods. (7 Natural gas migrated and accumulated vertically in a shortcutting path to form gas reservoirs. At such areas near the source rocks

  19. Feasibility study on application of volume acid fracturing technology to tight gas carbonate reservoir development

    Directory of Open Access Journals (Sweden)

    Nianyin Li

    2015-09-01

    Full Text Available How to effectively develop tight-gas carbonate reservoir and achieve high recovery is always a problem for the oil and gas industry. To solve this problem, domestic petroleum engineers use the combination of the successful experiences of North American shale gas pools development by stimulated reservoir volume (SRV fracturing with the research achievements of Chinese tight gas development by acid fracturing to propose volume acid fracturing technology for fractured tight-gas carbonate reservoir, which has achieved a good stimulation effect in the pilot tests. To determine what reservoir conditions are suitable to carry out volume acid fracturing, this paper firstly introduces volume acid fracturing technology by giving the stimulation mechanism and technical ideas, and initially analyzes the feasibility by the comparison of reservoir characteristics of shale gas with tight-gas carbonate. Then, this paper analyzes the validity and limitation of the volume acid fracturing technology via the analyses of control conditions for volume acid fracturing in reservoir fracturing performance, natural fracture, horizontal principal stress difference, orientation of in-situ stress and natural fracture, and gives the solution for the limitation. The study results show that the volume acid fracturing process can be used to greatly improve the flow environment of tight-gas carbonate reservoir and increase production; the incremental or stimulation response is closely related with reservoir fracturing performance, the degree of development of natural fracture, the small intersection angle between hydraulic fracture and natural fracture, the large horizontal principal stress difference is easy to form a narrow fracture zone, and it is disadvantageous to create fracture network, but the degradable fiber diversion technology may largely weaken the disadvantage. The practices indicate that the application of volume acid fracturing process to the tight-gas carbonate

  20. Simulation of Gas Transport in Tight/Shale Gas Reservoirs by a Multicomponent Model Based on PEBI Grid

    Directory of Open Access Journals (Sweden)

    Longjun Zhang

    2015-01-01

    Full Text Available The ultra-low permeability and nanosize pores of tight/shale gas reservoir would lead to non-Darcy flow including slip flow, transition flow, and free molecular flow, which cannot be described by traditional Darcy’s law. The organic content often adsorbs some gas content, while the adsorbed amount for different gas species is different. Based on these facts, we develop a new compositional model based on unstructured PEBI (perpendicular bisection grid, which is able to characterize non-Darcy flow including slip flow, transition flow, and free molecular flow and the multicomponent adsorption in tight/shale gas reservoirs. With the proposed model, we study the effect of non-Darcy flow, length of the hydraulic fracture, and initial gas composition on gas production. The results show both non-Darcy flow and fracture length have significant influence on gas production. Ignoring non-Darcy flow would underestimate 67% cumulative gas production in lower permeable gas reservoirs. Gas production increases with fracture length. In lower permeable reservoirs, gas production increases almost linearly with the hydraulic fracture length. However, in higher permeable reservoirs, the increment of the former gradually decreases with the increase in the latter. The results also show that the presence of CO2 in the formation would lower down gas production.

  1. Thermodynamics and Dynamics of Bose condensation in a quasi-homogeneous gas

    Science.gov (United States)

    Navon, Nir; Schmidutz, Tobias; Gotlibovych, Igor; Gaunt, Alexander; Robert-de-Saint-Vincent, Martin; Smith, Robert; Hadzibabic, Zoran

    2014-05-01

    We present an experimental study of the thermodynamics and dynamics of Bose-Einstein condensation (BEC) in an optical-box trap. We first characterize the critical point for BEC, and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einstein's textbook picture of a purely statistical phase transition. We also observed the quantum Joule-Thomson effect, namely isoenthalpic cooling of a non-interacting gas. We then investigate the dynamics of Bose condensation in the box potential following a rapid temperature quench through the phase transition, and focus on the time-evolution of the condensed fraction, the coherence length and the mean-field shift, that we probe via Bragg spectroscopy.

  2. Analysis of the Influencing Factors on the Well Performance in Shale Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Cheng Dai

    2017-01-01

    Full Text Available Due to the ultralow permeability of shale gas reservoirs, stimulating the reservoir formation by using hydraulic fracturing technique and horizontal well is required to create the pathway of gas flow so that the shale gas can be recovered in an economically viable manner. The hydraulic fractured formations can be divided into two regions, stimulated reservoir volume (SRV region and non-SRV region, and the produced shale gas may exist as free gas or adsorbed gas under the initial formation condition. Investigating the recovery factor of different types of shale gas in different region may assist us to make more reasonable development strategies. In this paper, we build a numerical simulation model, which has the ability to take the unique shale gas flow mechanisms into account, to quantitatively describe the gas production characteristics in each region based on the field data collected from a shale gas reservoir in Sichuan Basin in China. The contribution of the free gas and adsorbed gas to the total production is analyzed dynamically through the entire life of the shale gas production by adopting a component subdivision method. The effects of the key reservoir properties, such as shale matrix, secondary natural fracture network, and primary hydraulic fractures, on the recovery factor are also investigated.

  3. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, R Y [Taiwan Power Company, Taipei (Taiwan, Province of China); Schrock, V E [Univ. of California, Berkeley, CA (United States); Chen, Xiang

    1995-09-01

    Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation {kappa}-{epsilon} model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena.

  4. State of the Art Report On Condensation Phenomena Within Tubes in the Presence of Noncondensable Gas

    International Nuclear Information System (INIS)

    Polo, J.

    1998-01-01

    Condensation phenomena play an important role in many industrial applications; in particular; the nuclear industry uses such processes in different systems for both operation and safety aspects. Thus most of the engineering safety features in the current Light Water Reactor (LWR) plants as well as in the new advanced/passive type design are based on the condensation phenomena inside tubes to reduce the system pressure and to remove the decay heat released under accidental conditions. Regarding the new advanced/passive plant designs such a systems must ensure their capabilities under severe accident conditions, that means, under the presence of non-condensable gas an even aerosol particles. The presence of even a small quantity of non condensable gas in liquid-vapour has profound influence on the resistance to heat transfer at the liquid-vapour interface leading to reduce in the heat transfer rate. In consequence, the safety analysis of the Simplified Boiling Water Reactor (SBWR) promoted in increase in the modelling, model development and experimental research on the gas mixtures condensing inside vertical tubes. This report summarises the last models developed as well as the experimental findings on such processes. (Author) 51 refs

  5. Three types of gas hydrate reservoirs in the Gulf of Mexico identified in LWD data

    Science.gov (United States)

    Lee, Myung Woong; Collett, Timothy S.

    2011-01-01

    High quality logging-while-drilling (LWD) well logs were acquired in seven wells drilled during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II in the spring of 2009. These data help to identify three distinct types of gas hydrate reservoirs: isotropic reservoirs in sands, vertical fractured reservoirs in shale, and horizontally layered reservoirs in silty shale. In general, most gas hydratebearing sand reservoirs exhibit isotropic elastic velocities and formation resistivities, and gas hydrate saturations estimated from the P-wave velocity agree well with those from the resistivity. However, in highly gas hydrate-saturated sands, resistivity-derived gas hydrate-saturation estimates appear to be systematically higher by about 5% over those estimated by P-wave velocity, possibly because of the uncertainty associated with the consolidation state of gas hydrate-bearing sands. Small quantities of gas hydrate were observed in vertical fractures in shale. These occurrences are characterized by high formation resistivities with P-wave velocities close to those of water-saturated sediment. Because the formation factor varies significantly with respect to the gas hydrate saturation for vertical fractures at low saturations, an isotropic analysis of formation factor highly overestimates the gas hydrate saturation. Small quantities of gas hydrate in horizontal layers in shale are characterized by moderate increase in P-wave velocities and formation resistivities and either measurement can be used to estimate gas hydrate saturations.

  6. Mercury removal from natural gas and associated condensates

    Energy Technology Data Exchange (ETDEWEB)

    Hennico, A.; Barthel, Y.; Courty, P. (Institut Francais du Petrole, 31 - Rueil-Malmaison (France). Direction Industrielle)

    1990-01-01

    IFP mercury trapping systems are based on CMG 273, the recently developed Procatalyse product which is the heart of IFP's gas phase and liquid phase mercury removal technology. This material, made of highly macroporous alumina supporting a metal sulfide, presents a very high reactivity towards mecury within a broad range of operating conditions, including those operating in the liquid phase. Characteristics of CMG 273 are presented. (orig.).

  7. Simulation of Flow Behavior of Gas Condensate at Low Interfacial Tension

    DEFF Research Database (Denmark)

    Wang, Peng; Stenby, Erling Halfdan; Pope, Gary A.

    1996-01-01

    A vertical, long-core experiment of natural depletion of a gas condensate that was conducted by Elf Aquitaine is simulated by an equation-of-state (EOS) compositional simulator, UTCOMP. The Peng-Robinson (PR) EOS is used for phase-behavior calculation. Because of low interfactial tension (IFT) in...

  8. Two-step condensation of the ideal Bose gas in highly anisotropic traps

    NARCIS (Netherlands)

    van Druten, N.J.; Ketterle, W.

    1997-01-01

    The ideal Bose gas in a highly anisotropic harmonic potential is studied. It is found that Bose-Einstein condensation occurs in two distinct steps as the temperature is lowered. In the first step the specific heat shows a sharp feature, but the system still occupies many one-dimensional quantum

  9. Thermodynamic Characterization of Undefined Petroleum Fractions of Gas Condensate using Group Contribution

    Directory of Open Access Journals (Sweden)

    Uribe-Vargas Veronica

    2016-01-01

    Full Text Available A methodology proposed in a previous paper [Carreón-Calderón et al. (2012 Ind. Eng. Chem. Res. 51, 14188-14198] for thermodynamic characterization of undefined petroleum fractions was applied to gas-condensate fluids. Using this methodology, input parameters of cubic equations of state and their mixing rules, critical properties and chemical pseudostructures are determined for undefined fractions by minimizing their Gibbs free energy. The results show the feasibility of applying this approach to gas-condensate fluids without making use of either cubic equations of state or mixing rules with specific adjusted parameters for petroleum fluids. Besides, it is shown that the phase equilibrium envelopes of gas-condensate fluids are highly dependent on the critical properties assigned to the undefined petroleum fractions of such fluid fractions and less dependent on the equation used for modeling gas-condensate fluids as a whole. The Absolute Average Error (AAE considering the best arrangement is 1.79% in predicting the dew point.

  10. Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands

    NARCIS (Netherlands)

    Weiss, M.; Dittmar, L.; Junginger, H.M.; Patel, M.K.; Blok, K.

    2009-01-01

    High costs often prevent the market diffusion of novel and efficient energy technologies. Monitoring cost and price decline for these technologies is thus important in order to establish effective energy policy. Here, we present experience curves and cost-benefit analyses for condensing gas boilers

  11. Operando Spectroscopy of the Gas-Phase Aldol Condensation of Propanal over Solid Base Catalysts

    NARCIS (Netherlands)

    Hernández-giménez, Ana M.; Ruiz-martínez, Javier; Puértolas, Begoña; Pérez-ramírez, Javier; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2017-01-01

    The gas-phase aldol condensation of propanal, taken as model for the aldehyde components in bio-oils, has been studied with a combined operando set-up allowing to perform FT-IR & UV–Vis diffuse reflectance spectroscopy (DRS) with on-line mass spectrometry (MS). The selected solid base catalysts, a

  12. Preparation of tunable-sized iron nanoparticles based on magnetic manipulation in inert gas condensation (IGC)

    NARCIS (Netherlands)

    Xing, Lijuan; ten Brink, Gert H.; Kooi, Bart J.; Palasantzas, George

    2017-01-01

    Iron nanoparticles (NPs) prepared by inert gas condensation were studied using high resolution transmission electron microscopy and Wulff construction shape analysis. The NP size and shape show strong dependence on the magnetic field above the target surface. The effect of the magnetic field could

  13. Noncondensable gas effect on film condensation of boundary layer flow in the entire mixed convection regime

    International Nuclear Information System (INIS)

    Liao, Y.; Guentay, S.

    2009-01-01

    The mixed convection regime for film condensation is enveloped by free convection at one end and forced convection at the other. At both ends, the noncondensable gas effect on film condensation was established in the pioneering work by Sparrow and Minkowycz. But most practical flows are in the mixed convection regime, where it was observed in recent experiments that the pioneering work could not be applied satisfactorily. The current work tries to bridge the gap by presenting a generic boundary layer formulation of the noncondensable gas effect in the entire mixed convection regime. The current formulation is reduced to two specific cases which mathematically coincide with the pioneering work at two ends. In between, the current work fills the gap by presenting solution for the full spectrum of the mixed convection regime. The presented mixed convection solution intermediates between Minkowycz's prediction on the free convection flow and Sparrow's prediction on the forced convection flow, and is in fair agreement with the recent experiments performed in the mixed convection regime. It is found that although a slight vapor flow imposed on free convection has little effect on film condensation in the absence of noncondensable gases, a slight gas flow imposed on condensation in the presence of noncondensable gases can drastically affect the mass transfer boundary and reduce the accumulation of gas at the interface due to a strong coupling between hydrodynamics and convective mass diffusion. (author)

  14. Effect of condensed tannins on forage nutritive value and greenhouse gas output of an orchardgrass diet

    Science.gov (United States)

    Greenhouse gas (GHG) emissions from livestock account for 43%, 29%, and 27% of CH4, N2O and CO2, respectively, of global GHG emissions from livestock. Legumes containing condensed tannins (CT) have been shown to decrease enteric CH4 in ruminants; however, research is lacking on how increased CT leve...

  15. Photon recoil momentum in a Bose–Einstein condensate of a dilute gas

    NARCIS (Netherlands)

    Avetisyan, Yu. A.; Malyshev, V.A.; Trifonov, E. D.

    We develop a ‘minimal’ microscopic model to describe a two-pulse-Ramsey-interferometerbased scheme of measurement of the photon recoil momentum in a Bose–Einstein condensate of a dilute gas (Campbell et al 2005 Phys. Rev. Lett. 94 170403). We exploit the truncated coupled Maxwell–Schrödinger

  16. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  17. Effects of non-condensable gas on the dynamic oscillations of cavitation bubbles

    Science.gov (United States)

    Zhang, Yuning

    2016-11-01

    Cavitation is an essential topic of multiphase flow with a broad range of applications. Generally, there exists non-condensable gas in the liquid and a complex vapor/gas mixture bubble will be formed. A rigorous prediction of the dynamic behavior of the aforementioned mixture bubble is essential for the development of a complete cavitation model. In the present paper, effects of non-condensable gas on the dynamic oscillations of the vapor/gas mixture bubble are numerically investigated in great detail. For the completeness, a large parameter zone (e.g. bubble radius, frequency and ratio between gas and vapor) is investigated with many demonstrating examples. The mechanisms of mass diffusion are categorized into different groups with their characteristics and dominated regions given. Influences of non-condensable gas on the wave propagation (e.g. wave speed and attenuation) in the bubbly liquids are also briefly discussed. Specifically, the minimum wave speed is quantitatively predicted in order to close the pressure-density coupling relationship usually employed for the cavitation modelling. Finally, the application of the present finding on the development of cavitation model is demonstrated with a brief discussion of its influence on the cavitation dynamics. This work was financially supported by the National Natural Science Foundation of China (Project No.: 51506051).

  18. The Dynamics of Partial Cavities and Effect of Non-Condensable Gas

    Science.gov (United States)

    Makiharju, Simo A.; Ganesh, Harish; Ceccio, Steven L.

    2015-11-01

    Partial cavitation is encountered in a variety of common applications, from fuel injectors to lifting surfaces, and in general it has detrimental effects on the system wear and performance. Partial cavities undergoing auto-oscillation can cause large pressure oscillations, unsteady hydrodynamic loading, and significant noise. In the present study, experiments were conducted focusing on the dynamics of shedding cavities forming in a canonical geometry (downstream of a wedge apex). The inlet cavitation number was fixed at 2.0 and the Reynolds number based on the hydraulic diameter was 6x105. The effects of dissolved gas content and of non-condensable gas injection into the cavity were carefully studied utilizing dynamic pressure transducers and x-ray densitometry. Gas was injected either immediately downstream of the wedge's apex or further downstream into mid-cavity. The gas injected near the wedge apex was found to end up in the separated shear layer, and relatively miniscule amounts of gas were enough to significantly reduce the vapor production rate and dampen the cavity's auto-oscillations. In addition, the results suggest that non-condensable gas injection can cause the shedding mechanism to switch from one dominated by condensation shock to one dominated by re-entrant liquid jet. Work supported by the Office of Naval Research Grant N00014-14-1-0292, program manager Dr. Ki-Han Kim.

  19. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions.

    Science.gov (United States)

    Miller, Benjamin L; Arntzen, Evan V; Goldman, Amy E; Richmond, Marshall C

    2017-10-01

    The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.

  20. The method of predicting the process of condensation of moisture and hydrate formation in the gas pipeline

    OpenAIRE

    Хвостова, Олена Вікторівна

    2014-01-01

    The problem of ensuring the required value of one of the natural gas quality indicators during its transportation to the consumer - moisture content is considered in the paper. The method for predicting possible moisture condensation and hydrate formation processes in gas pipelines considering mixing gas flows with different moisture content was developed.Predicting the moisture condensation and hydrate formation in gas pipelines is an actual task since a timely prevention of these processes ...

  1. A condensation experiment in the accumulated conditions of noncondensable gas in a vertical tube

    International Nuclear Information System (INIS)

    Lee, Kwon Yeong; Kim, Moo Hwan

    2005-01-01

    Full text of publication follows: It has been well known that the presence of noncondensable gases in vapors can greatly inhibit the condensation process. Many analytical and experimental studies were conducted to investigate the effect of noncondensable gases on steam condensation for both stagnant and forced-convective situations either over a plate or outside a horizontal tube. Recently, several researches have been performed for the condensation in the presence of noncondensable gases taken place inside the vertical tube in order to give the information to design the passive containment cooling system (PCCS) in Simplified Boiling Water Reactor (SBWR). Generally, the experimental results showed that the heat transfer coefficient depends on inlet noncondensable gas mass fraction, inlet saturated steam temperature related with system pressure and inlet mixture Reynolds number. This research was performed for the System-integrated Modular Advanced ReacTor-Pilot (SMART-P), in which the remaining heat is removed from the core passively by Passive Residual Heat Removal System (PRHRS) condenser in a period of serious accident. The PRHRS is separated from working fluid loop, and pressurized by a nitrogen gas during the normal operation of SMART-P. But when the PRHRS starts operating, the nitrogen gas acts as a noncondensable gas and affects the heat transfer characteristics of the PRHRS. The experimental conditions of this study were almost similar with those of previous researches except the noncondensable gas was accumulated and remained inside the vertical tube. In the previous researches, the noncondensable gas was flowing with constant flow rate. Because of the condensate inside condenser tube, the accumulation of noncondensable gas could be developed inside the vertical tube. At steady-state condition the local temperatures and system pressure were measured to obtain heat transfer characteristics. This study also gave the information about the distribution of the

  2. High-efficiency condenser of steam from a steam-gas mixture

    Science.gov (United States)

    Milman, O. O.; Krylov, V. S.; Ptakhin, A. V.; Kondratev, A. V.; Yankov, G. G.

    2017-12-01

    The design of a module for a high-efficiency condenser of steam with a high content (up to 15%) of noncondensable gases (NCGs) with a nearly constant steam-gas mixture (SGM) velocity during the condensation of steam has been developed. This module provides the possibility to estimate the operational efficiency of six condenser zones during the motion of steam from the inlet to the SGM suction point. Some results of the experimental tests of the pilot high-efficiency condenser module are presented. The dependence of the average heat transfer coefficient k¯ on the volumetric NCG concentration v¯ has been derived. It is shown that the high-efficiency condenser module can provide a moderate decrease in k¯ from 4400-4600 to 2600-2800 W/(m2 K) at v¯ ≈ 0.5-9.0%. The heat transfer coefficient distribution over different module zones at a heat duty close to its nominal value has been obtained. From this distribution, it can be seen that the average heat transfer coefficient decreases to 2600 W/(m2 K) at an NCG concentration v¯ = 7.5%, but the first condenser sections ( 1- 3) retain high values of k¯ at a level of no lower than 3200 W/(m2 K), and the last sections operate less well, having k¯ at a level of 1700 W/(m2 K). The dependence of the average heat transfer coefficient on the water velocity in condenser tubes has been obtained at a nearly nominal duty such that the extrapolation of this dependence to the water velocity of 2 m/s may be expected to give k¯ = 5000 W/(m2 K) for relatively pure steam, but an increase in k¯ at v¯ = 8% will be smaller. The effect of the gas removal device characteristic on the operation of the high-efficiency condenser module is described. The design developed for the steam condenser of a gas-turbine plant with a power of 25 MW, a steam flow rate of 40.2 t/h, and a CO2 concentration of up to 12% with consideration for the results of performed studies is presented.

  3. Gas dynamics, optics and chemistry of an aircraft condensable wake

    Energy Technology Data Exchange (ETDEWEB)

    Grinats, E.S.; Kashevarov, A.V.; Stasenko, A.L. [Central Aerohydrodynamic Inst., Zhukovsky (Russian Federation)

    1997-12-31

    Prediction of the properties of a jet-and-vortex wake from an individual airplane is of great interest as the first step to assessment of the possible global changes in the atmosphere due to the world civil aviation. Several mathematical models of the different regions of an aircraft wake and corresponding numerical results are presented. The axisymmetric exhaust jet was simulated on the base of the well-known k-{epsilon} model of turbulence. Jet chemistry was investigated on the base of kinetic scheme of the gas phase reactions of enriched by including chemisorption by water droplets of several species and by taking into account of the photochemical processes. In the 3D far wake model, the numerical results for distribution of species exhausted by the engines and entrapped by the velocity field of two parallel vortices are shown. (R.P.) 7 refs.

  4. Temperature Dependence of the Thermal Conductivity of a Trapped Dipolar Bose-Condensed Gas

    Science.gov (United States)

    Yavari, H.

    2018-02-01

    The thermal conductivity of a trapped dipolar Bose condensed gas is calculated as a function of temperature in the framework of linear response theory. The contributions of the interactions between condensed and noncondensed atoms and between noncondensed atoms in the presence of both contact and dipole-dipole interactions are taken into account to the thermal relaxation time, by evaluating the self-energies of the system in the Beliaev approximation. We will show that above the Bose-Einstein condensation temperature ( T > T BEC ) in the absence of dipole-dipole interaction, the temperature dependence of the thermal conductivity reduces to that of an ideal Bose gas. In a trapped Bose-condensed gas for temperature interval k B T > k B T, since the relaxation rate {τ}_{c12}^{-1} is independent of temperature and the relaxation rate due to dipolar interaction goes to zero exponentially, the T 2 temperature behavior for the thermal conductivity comes from the thermal mean velocity of the particles. We will also show that in the high-temperature limit ( k B T > n 0 g B ) and low momenta, the relaxation rates {τ}_{c12}^{-1} and {τ}_{dd12}^{-1} change linearly with temperature for both dipolar and contact interactions and the thermal conductivity scales linearly with temperature.

  5. An analysis of the thermodynamic efficiency for exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB)

    International Nuclear Information System (INIS)

    Lee, Chang-Eon; Yu, Byeonghun; Lee, Seungro

    2015-01-01

    This study presents fundamental research on the development of a new boiler that is expected to have a higher efficiency and lower emissions than existing boilers. The thermodynamic efficiency of exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB) was calculated using thermodynamic analysis and was compared with other boilers. The results show the possibility of obtaining a high efficiency when the temperature of the exhaust gas is controlled within 50–60 °C because water in the exhaust gas is condensed within this temperature range. In addition, the enthalpy emitted by the exhaust gas for the new boiler is smaller because the amount of condensed water is increased by the high dew-point temperature and the low exhaust gas temperature. Thus, the new boiler can obtain a higher efficiency than can older boilers. The efficiency of the EGR-CWR-WHR CB proposed in this study is 93.91%, which is 7.04% higher than that of existing CB that is currently used frequently. - Highlights: • The study presents the development of a new boiler expected to have a high efficiency. • Thermodynamic efficiency of EGR-CWR-WHR condensing boiler was calculated. • Efficiency of EGR-CWR-WHR CB is 93.91%, which is 7.04% higher than existing CB

  6. Experimental investigation of condensation and mixing during venting of a steam / non-condensable gas mixture into a pressure suppression pool

    Energy Technology Data Exchange (ETDEWEB)

    De Walsche, C.; Cachard, F. de

    2000-07-01

    Experiments have been performed in the LINX facility to investigate condensation and mixing phenomena in pressure Suppression Pools (SPs), in the context of the European Simplified Boiling Water Reactor (ESBWR) study. As a contribution to the TEPSS project of the 4th European Framework Programme, eight medium-scale, separate-effect tests were carried out in which constant steam/air flow rates were injected below the surface of a two-metre diameter water pool, maintained at constant pressure, through a large downward vent. The vessel pressure was regulated, the pool temperature rising until equilibrium conditions with the incoming gas were reached. The SP temperature distribution was measured, as well as the inlet and outlet gas flow rates, and the overall condensation rate was estimated using mass and heat balances. The test matrix was based on steam mass floret and air mass fraction of the injected gas, the vent immersion depth, and the vessel pressure. Overall, the condensation was shown to be efficient for all tests performed, even for high non-condensable gas concentrations of the injected gas. Thermal stratification above the vent outlet was shown to be moderate. The tests performed allowed a better understanding to be gained of the mechanisms of condensation and mixing in the SP and Wetwell, and results were incorporated into an ORACLE database, to be used for further model development. (authors)

  7. Geological Characterisation of Depleted Oil and Gas Reservoirs for ...

    African Journals Online (AJOL)

    Comparison of the derived reservoir and seal properties such as porosity, permeability, thickness and depth with the minimum recommended site selection criteria shows that the reservoirs are potential candidates for carbon geosequestration with a total theoretical storage capacity of 147MM tons. © JASEM ...

  8. pressure distribution in a layered reservoir with gas-cap and bottom

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... pressure derivatives, interlayer cross flow, heterogeneity, reservoir characterization, pressure distribution, dimensionless pressure. 1. Introduction. Oil production from a layered reservoir with a top gas cap and bottom water acting simultaneously poses serious challenges of rate and pressure monitoring.

  9. Application of the new Gassmann theory in seismic modeling of selected gas reservoirs, offshore Netherlands

    NARCIS (Netherlands)

    Auduson, A.E.

    2013-01-01

    In the Southern North Sea, Buntsandstein reservoirs which, can be gas- or water-bearing, frequently contain solid (salt) in the pores spaces. Recent literatures on extension of the Gassmann equation investigate the substitution of fluids and solids in the pore space of reservoir rock. Conventional

  10. Flue gas moisture capacity calculation at the outlet of the condensation heat recovery unit

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2017-01-01

    Full Text Available As a result, study equation has been obtained which determine the flue gas moisture capacity at the outlet of the condensation heat recovery unit with an error of less than 1%. It possible to at the temperature of the flue gas below the dew point and the known air-fuel ratio efficient. The equation can be used to calculate plants operating on products of gas combustion without Use of tables and programs for calculating the water-vapor saturation pressure.

  11. A carbon dioxide partial condensation direct cycle for advanced gas cooled fast and thermal reactors

    International Nuclear Information System (INIS)

    Yasuyoshi, Kato; Takeshi, NItawaki; Yoshio, Yoshizawa

    2001-01-01

    A carbon dioxide partial condensation direct cycle concept has been proposed for gas cooled fast and thermal reactors. The fast reactor with the concept are evaluated to be a potential alternative option to liquid metal cooled fast reactors, providing comparable cycle efficiency at the same core outlet temperature, eliminating the safety problems, simplifying the heat transport system and making easier plant maintenance. The thermal reactor with the concept is expected to be an alternative solution to current high temperature gas cooled reactors (HTGRs) with helium gas turbines, allowing comparable cycle efficiency at the moderate temperature of 650 C instead of 800 C in HTGRs. (author)

  12. Underground natural gas storage reservoir management: Phase 2. Final report, June 1, 1995--March 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, I.; Anthony, R.V.

    1996-12-31

    Gas storage operators are facing increased and more complex responsibilities for managing storage operations under Order 636 which requires unbundling of storage from other pipeline services. Low cost methods that improve the accuracy of inventory verification are needed to optimally manage this stored natural gas. Migration of injected gas out of the storage reservoir has not been well documented by industry. The first portion of this study addressed the scope of unaccounted for gas which may have been due to migration. The volume range was estimated from available databases and reported on an aggregate basis. Information on working gas, base gas, operating capacity, injection and withdrawal volumes, current and non-current revenues, gas losses, storage field demographics and reservoir types is contained among the FERC Form 2, EIA Form 191, AGA and FERC Jurisdictional databases. The key elements of this study show that gas migration can result if reservoir limits have not been properly identified, gas migration can occur in formation with extremely low permeability (0.001 md), horizontal wellbores can reduce gas migration losses and over-pressuring (unintentionally) storage reservoirs by reinjecting working gas over a shorter time period may increase gas migration effects.

  13. Terahertz Active Photonic Crystals for Condensed Gas Sensing

    Directory of Open Access Journals (Sweden)

    Karl Unterrainer

    2011-06-01

    Full Text Available The terahertz (THz spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection scheme. Here, we present an optical sensor based on active photonic crystals (PhCs, i.e., the pillars are fabricated directly from an active THz quantum-cascade laser medium. The individual pillars are pumped electrically leading to laser emission at cryogenic temperatures. There is no need to couple light into the resonant structure because the PhC itself is used as the light source. An injected gas changes the resonance condition of the PhC and thereby the laser emission frequency. We achieve an experimental frequency shift of 10−3 times the center lasing frequency. The minimum detectable refractive index change is 1.6 × 10−5 RIU.

  14. Shale Gas Geomechanics for Development and Performance of Unconventional Reservoirs

    Science.gov (United States)

    Domonik, Andrzej; Łukaszewski, Paweł; Wilczyński, Przemysław; Dziedzic, Artur; Łukasiak, Dominik; Bobrowska, Alicja

    2017-04-01

    Mechanical properties of individual shale formations are predominantly determined by their lithology, which reflects sedimentary facies distribution, and subsequent diagenetic and tectonic alterations. Shale rocks may exhibit complex elasto-viscoplastic deformation mechanisms depending on the rate of deformation and the amount of clay minerals, also bearing implications for subcritical crack growth and heterogeneous fracture network development. Thus, geomechanics for unconventional resources differs from conventional reservoirs due to inelastic matrix behavior, stress sensitivity, rock anisotropy and low matrix permeability. Effective horizontal drilling and hydraulic fracturing technologies are required to obtain and maintain high performance. Success of these techniques strongly depends on the geomechanical investigations of shales. An inelastic behavior of shales draws increasing attention of investigators [1], due to its role in stress relaxation between fracturing phases. A strong mechanical anisotropy in the vertical plane and a lower and more variable one in the horizontal plane are characteristic for shale rocks. The horizontal anisotropy plays an important role in determining the direction and effectiveness of propagation of technological hydraulic fractures. Non-standard rock mechanics laboratory experiments are being applied in order to obtain the mechanical properties of shales that have not been previously studied in Poland. Novel laboratory investigations were carried out to assess the creep parameters and to determine time-dependent viscoplastic deformation of shale samples, which can provide a limiting factor to tectonic stresses and control stress change caused by hydraulic fracturing. The study was supported by grant no.: 13-03-00-501-90-472946 "An integrated geomechanical investigation to enhance gas extraction from the Pomeranian shale formations", funded by the National Centre for Research and Development (NCBiR). References: Ch. Chang M. D

  15. Natural-Fracture Reactivation in Shale Gas Reservoir and Resulting Microseismicity

    NARCIS (Netherlands)

    Shahid, A.S.A.; Wassing, B.B.T.; Fokker, P.A.; Verga, F.

    2015-01-01

    A geomechanical and fluid-flow coupled model was developed to simulate natural-fracture-network reactivation during hydraulicfracturing treatments in shale gas reservoirs. The fractures were modelled using the continuum approach in a commercial finitedifference code, labeled the "softening

  16. Gas hydrate saturations estimated from pore-and fracture-filling gas hydrate reservoirs in the Qilian Mountain permafrost, China.

    Science.gov (United States)

    Xiao, Kun; Zou, Changchun; Lu, Zhenquan; Deng, Juzhi

    2017-11-24

    Accurate calculation of gas hydrate saturation is an important aspect of gas hydrate resource evaluation. The effective medium theory (EMT model), the velocity model based on two-phase medium theory (TPT model), and the two component laminated media model (TCLM model), are adopted to investigate the characteristics of acoustic velocity and gas hydrate saturation of pore- and fracture-filling reservoirs in the Qilian Mountain permafrost, China. The compressional wave (P-wave) velocity simulated by the EMT model is more consistent with actual log data than the TPT model in the pore-filling reservoir. The range of the gas hydrate saturation of the typical pore-filling reservoir in hole DKXX-13 is 13.0~85.0%, and the average value of the gas hydrate saturation is 61.9%, which is in accordance with the results by the standard Archie equation and actual core test. The P-wave phase velocity simulated by the TCLM model can be transformed directly into the P-wave transverse velocity in a fracture-filling reservoir. The range of the gas hydrate saturation of the typical fracture-filling reservoir in hole DKXX-19 is 14.1~89.9%, and the average value of the gas hydrate saturation is 69.4%, which is in accordance with actual core test results.

  17. Net greenhouse gas emissions at Eastmain-1 reservoir, Quebec, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, Alain; Bastien, Julie; Bonneville, Marie-Claude; del Giorgio, Paul; Demarty, Maud; Garneau, Michelle; Helie, Jean-Francois; Pelletier, Luc; Prairie, Yves; Roulet, Nigel; Strachan, Ian; Teodoru, Cristian

    2010-09-15

    The growing concern regarding the long-term contribution of freshwater reservoirs to atmospheric greenhouse gases (GHG), led Hydro-Quebec, to study net GHG emissions from Eastmain 1 reservoir, which are the emissions related to the creation of a reservoir minus those that would have been emitted or absorbed by the natural systems over a 100-year period. This large study was realized in collaboration with University du Quebec a Montreal, McGill University and Environnement IIlimite Inc. This is a world premiere and the net GHG emissions of EM-1 will be presented in details.

  18. Influence of oil/gas reservoir driving conditions on reserves estimation using computer simulation

    Directory of Open Access Journals (Sweden)

    Stanisław Rychlicki

    2006-10-01

    Full Text Available One of the methods of assessing reserves is a calibration of a numerical model of a field with assumed driving conditions of the field. The influence of various energy systems assumed for the calculation on the calibration results are presented in the paper. A light oil field was selected for verification of resources on the basis of an analysis of driving conditions. At the first stage of calculations, a „Black Oil” type numerical model was used. The results of a classical „Black – Oil” model made the authors search for an alternative description of energy conditions in the reservoir. Therefore, a modified „Black-Oil” model with „vaporized oil” option, assuming that initially, after evaporation, the condensate in the reservoir was in a gaseous phase was used. The obtained simulation results for the analyzed reservoir prove the accuracy of energy conditions in the reservoir.

  19. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs :

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  20. Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Maria Cecilia Bravo

    2006-06-30

    This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

  1. Critical behavior of the ideal-gas Bose-Einstein condensation in the Apollonian network.

    Science.gov (United States)

    de Oliveira, I N; dos Santos, T B; de Moura, F A B F; Lyra, M L; Serva, M

    2013-08-01

    We show that the ideal Boson gas displays a finite-temperature Bose-Einstein condensation transition in the complex Apollonian network exhibiting scale-free, small-world, and hierarchical properties. The single-particle tight-binding Hamiltonian with properly rescaled hopping amplitudes has a fractal-like energy spectrum. The energy spectrum is analytically demonstrated to be generated by a nonlinear mapping transformation. A finite-size scaling analysis over several orders of magnitudes of network sizes is shown to provide precise estimates for the exponents characterizing the condensed fraction, correlation size, and specific heat. The critical exponents, as well as the power-law behavior of the density of states at the bottom of the band, are similar to those of the ideal Boson gas in lattices with spectral dimension d(s)=2ln(3)/ln(9/5)~/=3.74.

  2. Synthesis of Fe Nanoparticles Functionalized with Oleic Acid Synthesized by Inert Gas Condensation

    Directory of Open Access Journals (Sweden)

    L. G. Silva

    2014-01-01

    Full Text Available In this work, we study the synthesis of monodispersed Fe nanoparticles (Fe-NPs in situ functionalized with oleic acid. The nanoparticles were self-assembled by inert gas condensation (IGC technique by using magnetron-sputtering process. Structural characterization of Fe-NPs was performed by transmission electron microscopy (TEM. Particle size control was carried out through the following parameters: (i condensation zone length, (ii magnetron power, and (iii gas flow (Ar and He. Typically the nanoparticles generated by IGC showed diameters which ranged from ~0.7 to 20 nm. Mass spectroscopy of Fe-NPs in the deposition system allowed the study of in situ nanoparticle formation, through a quadrupole mass filter (QMF that one can use together with a mass filter. When the deposition system works without quadrupole mass filter, the particle diameter distribution is around +/−20%. When the quadrupole is in line, then the distribution can be reduced to around +/−2%.

  3. Gap and screening in Raman scattering of a Bose condensed gas

    OpenAIRE

    Navez, Patrick; Bongs, Kai

    2009-01-01

    We propose different spectroscopic methods to explore the nature of the thermal excitations of a trapped Bose condensed gas: 1) a four photon process to probe the uniform region in the trap center: 2) a stimulated Raman process in order to analyze the influence of a momentum transfer in the resulting scattered atom momentum distribution. We apply these methods to address specifically the energy spectrum and the scattering amplitude of these excitations in a transition between two hyperfine le...

  4. Influence of heat exchange of reservoir with rocks on hot gas injection via a single well

    Science.gov (United States)

    Nikolaev, Vladimir E.; Ivanov, Gavril I.

    2017-11-01

    In the computational experiment the influence of heat exchange through top and bottom of the gas-bearing reservoir on the dynamics of temperature and pressure fields during hot gas injection via a single well is investigated. The experiment was carried out within the framework of modified mathematical model of non-isothermal real gas filtration, obtained from the energy and mass conservation laws and the Darcy law. The physical and caloric equations of state together with the Newton-Riemann law of heat exchange of gas reservoir with surrounding rocks, are used as closing relations. It is shown that the influence of the heat exchange with environment on temperature field of the gas-bearing reservoir is localized in a narrow zone near its top and bottom, though the size of this zone is increased with time.

  5. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gardner, William Payton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of Montana, Missoula, MT (United States)

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

  6. Effect of capillary condensation on gas transport properties in porous media

    Science.gov (United States)

    Yoshimoto, Yuta; Hori, Takuma; Kinefuchi, Ikuya; Takagi, Shu

    2017-10-01

    We investigate the effect of capillary condensation on gas diffusivity in porous media composed of randomly packed spheres with moderate wettability. To simulate capillary phenomena at the pore scale while retaining complex pore networks of the porous media, we employ density functional theory (DFT) for coarse-grained lattice gas models. The lattice DFT simulations reveal that capillary condensations preferentially occur at confined pores surrounded by solid walls, leading to the occlusion of narrow pores. Consequently, the characteristic lengths of the partially wet structures are larger than those of the corresponding dry structures with the same porosities. Subsequent gas diffusion simulations exploiting the mean-square displacement method indicate that while the effective diffusion coefficients significantly decrease in the presence of partially condensed liquids, they are larger than those in the dry structures with the same porosities. Moreover, we find that the ratio of the porosity to the tortuosity factor, which is a crucial parameter that determines an effective diffusion coefficient, can be reasonably related to the porosity even for the partially wet porous media.

  7. Effect of capillary condensation on gas transport properties in porous media.

    Science.gov (United States)

    Yoshimoto, Yuta; Hori, Takuma; Kinefuchi, Ikuya; Takagi, Shu

    2017-10-01

    We investigate the effect of capillary condensation on gas diffusivity in porous media composed of randomly packed spheres with moderate wettability. To simulate capillary phenomena at the pore scale while retaining complex pore networks of the porous media, we employ density functional theory (DFT) for coarse-grained lattice gas models. The lattice DFT simulations reveal that capillary condensations preferentially occur at confined pores surrounded by solid walls, leading to the occlusion of narrow pores. Consequently, the characteristic lengths of the partially wet structures are larger than those of the corresponding dry structures with the same porosities. Subsequent gas diffusion simulations exploiting the mean-square displacement method indicate that while the effective diffusion coefficients significantly decrease in the presence of partially condensed liquids, they are larger than those in the dry structures with the same porosities. Moreover, we find that the ratio of the porosity to the tortuosity factor, which is a crucial parameter that determines an effective diffusion coefficient, can be reasonably related to the porosity even for the partially wet porous media.

  8. The influence of non condensible gas on two phase critical flow

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.; D'Annibale, F.; Farello, G.E.

    1987-01-01

    With reference to Loss-of-Coolant Accidents in Pressurized Water Reactors and in the frame of the wide scientific landscape of blowdown experiments aiming to the improvement of two-phase critical flows knowledge, it is of interest the analysis of non condensible gas influence on the critical flow (radiolytic gases,metal-water reactions products etc.). The present paper deals with an experiment referring to two-phase steam-water critical flows from long tubes, in which known air flowrates are injected in the stagnation region. The aim of the experiment is to detect the influence of non-condensible gas on the two-phase critical flow behaviour (critical mass flow rate, pressure and temperature profiles along the discharge channel etc.) as well as to individuate the limit, in terms of air concentration, beyond which the critical flow is affected by the presence of the gas. The employed test section is a vertical, circular duct channel with an inner diameter of 4.6 mm and a length of 1500 mm (L/D = 325). Results of initially subcooled liquid experiments (together with some data of satured liquid discharges), up to 15 bars are reported with the analysis of non-condensible effects in the different stagnation conditions

  9. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  10. Gas Condensates onto a LHC Type Cryogenic Vacuum System Subjected to Electron Cloud

    CERN Multimedia

    Baglin, V

    2004-01-01

    In the Large Hadron Collider (LHC), the gas desorbed via photon stimulated molecular desorption or electron stimulated molecular desorption will be physisorbed onto the beam screen held between 5 and 20 K. Studies of the effects of the electron cloud onto a LHC type cryogenic vacuum chamber have been done with the cold bore experiment (COLDEX) installed in the CERN Super Proton Synchrotron (SPS). Experiments performed with gas condensates such as H2, H2O, CO and CO2 are described. Implications for the LHC design and operation are discussed.

  11. Capacity expansion analysis of UGSs rebuilt from low-permeability fractured gas reservoirs with CO2 as cushion gas

    Directory of Open Access Journals (Sweden)

    Yufei Tan

    2016-11-01

    Full Text Available The techniques of pressurized mining and hydraulic fracturing are often used to improve gas well productivity at the later development stage of low-permeability carbonate gas reservoirs, but reservoirs are watered out and a great number of micro fractures are produced. Therefore, one of the key factors for underground gas storages (UGS rebuilt from low-permeability fractured gas reservoirs with CO2 as the cushion gas is how to expand storage capacity effectively by injecting CO2 to displace water and to develop control strategies for the stable migration of gas–water interface. In this paper, a mathematical model was established to simulate the gas–water flow when CO2 was injected into dual porosity reservoirs to displace water. Then, the gas–water interface migration rules while CO2 was injected in the peripheral gas wells for water displacement were analyzed with one domestic UGS rebuilt from fractured gas reservoirs as the research object. And finally, discussion was made on how CO2 dissolution, bottom hole flowing pressure (BHFP, CO2 injection rate and micro fracture parameters affect the stability of gas–water interface in the process of storage capacity expansion. It is shown that the speed of capacity expansion reaches the maximum value at the fifth cycle and then decreases gradually when UGS capacity is expanded in the pattern of more injection and less withdrawal. Gas–water interface during UGS capacity expansion is made stable due to that the solubility of CO2 in water varies with the reservoir pressure. When the UGS capacity is expanded at constant BHFP and the flow rate, the expansion speed can be increased effectively by increasing the BHFP and the injection flow rate of gas wells in the central areas appropriately. In the reservoir areas with high permeability and fracture-matrix permeability ratio, the injection flow rate should be reduced properly to prevent gas–water interface fingering caused by a high-speed flow

  12. Experimental study on cooling performance and energy saving of gas engine-driven heat pump system with evaporative condenser

    International Nuclear Information System (INIS)

    Liu, Huanwei; Zhou, Qiushu; Zhao, Haibo

    2016-01-01

    Highlights: • GEHP air conditioning system with evaporative condenser was proposed. • Cooling performances under different conditions were investigated. • PER increased with increasing of evaporative condenser air velocity. • The maximum value of PER was 1.55. • The economical amount of GEHP with evaporative condenser was 28.1%. - Abstract: The gas engine-driven heat pump (GEHP) is widely utilized to the process of cooling, heating or food drying. Aiming at improving the coefficient of performance (COP), primary energy ratio (PER) and energy saving of GEHP, a GEHP system with evaporative condenser was developed and the cooling performances were experimented over a wide range of ambient air temperature (30–36 °C), evaporative condenser air velocity (2.2–3.9 m/s) and gas engine speeds (1200–2200 rpm). Experimental results showed that the cooling capacity and PER of the GEHP system with evaporative condenser increased as the increasing of evaporative condenser air velocity and decreasing of ambient air temperature. The increasing and decreasing extents of cooling capacity and PER were 12.1%, 4.8% and 8.2%, 9.0%, respectively. However, the gas engine energy consumption and gas engine waste heat decreased with the increasing of evaporative air velocity and decreasing of ambient air temperature. Meanwhile, the cooling capacity, gas engine energy consumption, gas engine waste heat increased with increasing of gas engine speed, and the increase amplitude was 75.64%, 153.2% and 153.3%, respectively. The maximum value of PER of GEHP system with evaporative condenser was 1.55, and the waste heat recovered from gas engine was more than 55% of gas engine energy consumption. The energy saving and emission saving of the GEHP with evaporative condenser were also analyzed, the PER savings of GEHP system with evaporative condenser compared to conventional air-cooled condenser were 28.1%. Furthermore, compared to the GEHP with air-cooled condenser, the primary energy

  13. Characterization of oil and gas reservoir heterogeneity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a ``heterogeneity matrix`` based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  14. Simulation of Gas Transport in Tight/Shale Gas Reservoirs by a Multicomponent Model Based on PEBI Grid

    OpenAIRE

    Zhang, Longjun; Li, Daolun; Wang, Lei; Lu, Detang

    2015-01-01

    The ultra-low permeability and nanosize pores of tight/shale gas reservoir would lead to non-Darcy flow including slip flow, transition flow, and free molecular flow, which cannot be described by traditional Darcy’s law. The organic content often adsorbs some gas content, while the adsorbed amount for different gas species is different. Based on these facts, we develop a new compositional model based on unstructured PEBI (perpendicular bisection) grid, which is able to characterize non-Darcy ...

  15. Effect of Permeability Anisotropy on the Production of Multi-Scale Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Ting Huang

    2017-10-01

    Full Text Available Shales or mudstones are fine grained and layered reservoirs, which leads to strong shale permeability anisotropy. Shale has a wide pore-size distribution, and pores with different diameters contribute differently to the apparent permeability of shales. Therefore, understanding the anisotropy of multiscale shale gas reservoirs is an important aspect to model and evaluate gas production from shales. In this paper, a novel model of permeability anisotropy for shale gas reservoirs is presented to calculate the permeability in an arbitrary direction in three dimensional space. A numerical model which is valid for the entire Knudsen’s range (continuum flow, slip flow, transition flow and free molecular flow in shale gas reservoirs was developed, and the effect of gas-water flow and the simulation of hydraulic fracturing cracks were taken into consideration as well. The simulation result of the developed model was validated with field data. Effects of critical factors such as permeability anisotropy, relative permeability curves with different nanopore radii and initial water saturation in formation on the gas production rate of multi-stage fractured horizontal well were discussed. Besides, flow regimes of gas flow in shales were classified by Knudsen number, and the effect of various flow regimes on both apparent permeability of shales and then the gas production has been analyzed thoroughly.

  16. Study of flue gas condensing for biofuel fired heat and power plants; Studie av roekgaskondensering foer biobraensleeldade kraftvaermeanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik; Gustafsson, J.O.; Nystroem, Johan; Johansson, Kent

    2000-11-01

    This report considers questions regarding flue gas condensing plants connected to bio-fuelled heat and power plants. The report consists of two parts, one where nine existing plants are described regarding technical issues and regarding the experience from the different plants. Part two is a theoretical study where heat balance calculations are made to show the technical and economical performance in different plant configurations and operating conditions. Initially the different parts in the flue gas condensing plant are described. Tube, plate and scrubber condensers are described briefly. The different types of humidifiers are also described, rotor, cross-stream plate heat exchanger and scrubber. Nine flue gas-condensing plants have been visited. The plants where chosen considering it should be bio-fuel fired plant primarily heat and power plants. Furthermore we tried to get a good dissemination considering plant configuration, supplier, geographical position, operating situation and plant size. The description of the different plants focuses on the flue gas condenser and the belonging components. The fuel, flue gas and condensate composition is described as well as which materials are used in the different parts of the plant. The experience from operating the plants and the reasons of why they decided to chose the actual condenser supplier are reported.

  17. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation

    NARCIS (Netherlands)

    Xing, Lijuan; ten Brink, Gert H.; Chen, Bin; Schmidt, Franz P.; Haberfehlner, Georg; Hofer, Ferdinand; Kooi, Bart J.; Palasantzas, Georgios

    2016-01-01

    Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction

  18. Use of modified nanoparticles in oil and gas reservoir management

    NARCIS (Netherlands)

    Turkenburg, D.H.; Chin, P.T.K.; Fischer, H.R.

    2012-01-01

    We describe a water dispersed nano sensor cocktail based on InP/ZnS quantum dots (QDs) and atomic silver clusters with a bright and visible luminescence combined with optimized sensor functionalities for the water flooding process. The QDs and Ag nano sensors were tested in simulated reservoir

  19. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  20. Mesozoic (Upper Jurassic-Lower Cretaceous) deep gas reservoir play, central and eastern Gulf coastal plain

    Science.gov (United States)

    Mancini, E.A.; Li, P.; Goddard, D.A.; Ramirez, V.O.; Talukdar, S.C.

    2008-01-01

    The Mesozoic (Upper Jurassic-Lower Cretaceous) deeply buried gas reservoir play in the central and eastern Gulf coastal plain of the United States has high potential for significant gas resources. Sequence-stratigraphic study, petroleum system analysis, and resource assessment were used to characterize this developing play and to identify areas in the North Louisiana and Mississippi Interior salt basins with potential for deeply buried gas reservoirs. These reservoir facies accumulated in Upper Jurassic to Lower Cretaceous Norphlet, Haynesville, Cotton Valley, and Hosston continental, coastal, and marine siliciclastic environments and Smackover and Sligo nearshore marine shelf, ramp, and reef carbonate environments. These Mesozoic strata are associated with transgressive and regressive systems tracts. In the North Louisiana salt basin, the estimate of secondary, nonassociated thermogenic gas generated from thermal cracking of oil to gas in the Upper Jurassic Smackover source rocks from depths below 3658 m (12,000 ft) is 4800 tcf of gas as determined using software applications. Assuming a gas expulsion, migration, and trapping efficiency of 2-3%, 96-144 tcf of gas is potentially available in this basin. With some 29 tcf of gas being produced from the North Louisiana salt basin, 67-115 tcf of in-place gas remains. Assuming a gas recovery factor of 65%, 44-75 tcf of gas is potentially recoverable. The expelled thermogenic gas migrated laterally and vertically from the southern part of this basin to the updip northern part into shallower reservoirs to depths of up to 610 m (2000 ft). Copyright ?? 2008. The American Association of Petroleum Geologists. All rights reserved.

  1. Application of PLT (Production Loggin Tool) surveys to select a vertical grid refinement in gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Pablo Julian [Petrosynergy Ltda., Sao Paulo, SP (Brazil); Schiozer, Denis Jose [Universidade Estadual de Campinas (UNISIM/UNICAMP), SP (Brazil). Dept. de Engenharia de Petroleo. Pesquisa em Simulacao e Gerenciamento de Reservatorios

    2012-07-01

    Most of the time, the fluid segregation in porous media between gas and water makes water breakthrough reach a well structurally from the bottom, even when coning effect is present. In this paper we describe a real case of a gas reservoir when water breakthrough reach the vertical well from the middle of the perforation, above gas phase. We also expose how to upgrade the geological model to represent the high permeability channels in the numerical simulation model. (author)

  2. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.

    Science.gov (United States)

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production.

  3. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.

    Directory of Open Access Journals (Sweden)

    Chaohua Guo

    Full Text Available Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production.

  4. Results of high resolution seismic imaging experiments for defining permeable pathways in fractured gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Majer, E.L.; Peterson, J.E.; Daley, T. [and others

    1997-10-01

    As part of its Department of Energy (DOE) Industry cooperative program in oil and gas, Berkeley Lab has an ongoing effort in cooperation with Industry partners to develop equipment, field techniques, and interpretational methods to further the practice of characterizing fractured heterogeneous reservoirs. The goal of this work is to demonstrate the combined use of state-of-the-art technology in fluid flow modeling and geophysical imaging into an interdisciplinary approach for predicting the behavior of heterogeneous fractured gas reservoirs. The efforts in this program have mainly focused on using seismic methods linked with geologic and reservoir engineering analysis for the detection and characterization of fracture systems in tight gas formations, i.e., where and how to detect the fractures, what are the characteristics of the fractures, and how the fractures interact with the natural stresses, lithology, and their effect on reservoir performance. The project has also integrated advanced reservoir engineering methods for analyzing flow in fractured systems such that reservoir management strategies can be optimized. The work at Berkeley Lab focuses on integrating high resolution seismic imaging, (VSP, crosswell, and single well imaging), geologic information and well test data to invert for flow paths in fractured systems.

  5. Asphalt features and gas accumulation mechanism of Sinian reservoirs in the Tongwan Palaeo-uplift, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-10-01

    Full Text Available Breakthroughs have been made in natural gas exploration in Sinian reservoirs in the Tongwan Palaeo-uplift, Sichuan Basin, recently. However, there are disputes with regard to the genetic mechanisms of natural gas reservoirs. The development law of asphalts in the Sinian reservoirs may play an extremely important role in the study of the relationships between palaeo oil and gas reservoirs. Accordingly, researches were conducted on the features and development patterns of asphalts in the Sinian reservoirs in this area. The following research results were obtained. (1 Asphalts in the Sinian reservoirs were developed after the important hydrothermal event in the Sichuan Basin, namely the well-known Emei Taphrogeny in the mid-late Permian Period. (2 Distribution of asphalts is related to palaeo oil reservoirs under the control of palaeo-structures of Indosinian-Yanshanian Period, when the palaeo-structures contained high content of asphalts in the high positions of the palaeo-uplift. (3 Large-scale oil and gas accumulations in the Sinian reservoirs occurred in the Indosinian-Yanshanian Period to generate the Leshan-Ziyang and Gaoshiti-Moxi-Guang'an palaeo oil reservoirs. Cracking of crude oil in the major parts of these palaeo oil reservoirs controlled the development of the present natural gas reservoirs. (4 The development of asphalts in the Sinian reservoirs indicates that hydrocarbons in the Dengying Formation originated from Cambrian source rocks and natural gas accumulated in the Sinian reservoirs are products of late-stage cracking of the Sinian reservoirs. (5 The Sinian palaeo-structures of Indosinian-Yanshanian Period in the Sichuan Basin are favorable regions for the development of the Sinian reservoirs, where discoveries and exploration practices will play an important role in the era of Sinian natural gas development in China.

  6. Characterization of Tight Gas Reservoir Pore Structure Using USANS/SANS and Gas Adsorption Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, Christopher R [ORNL; He, Lilin [ORNL; Agamalian, Michael [ORNL; Melnichenko, Yuri B [ORNL; Mastalerz, Maria [Indiana Geological Survey; Bustin, Mark [University of British Columbia, Vancouver; Radlinski, Andrzej Pawell [ORNL; Blach, Tomasz P [ORNL

    2012-01-01

    Small-angle and ultra-small-angle neutron scattering (SANS and USANS) measurements were performed on samples from the Triassic Montney tight gas reservoir in Western Canada in order to determine the applicability of these techniques for characterizing the full pore size spectrum and to gain insight into the nature of the pore structure and its control on permeability. The subject tight gas reservoir consists of a finely laminated siltstone sequence; extensive cementation and moderate clay content are the primary causes of low permeability. SANS/USANS experiments run at ambient pressure and temperature conditions on lithologically-diverse sub-samples of three core plugs demonstrated that a broad pore size distribution could be interpreted from the data. Two interpretation methods were used to evaluate total porosity, pore size distribution and surface area and the results were compared to independent estimates derived from helium porosimetry (connected porosity) and low-pressure N{sub 2} and CO{sub 2} adsorption (accessible surface area and pore size distribution). The pore structure of the three samples as interpreted from SANS/USANS is fairly uniform, with small differences in the small-pore range (< 2000 {angstrom}), possibly related to differences in degree of cementation, and mineralogy, in particular clay content. Total porosity interpreted from USANS/SANS is similar to (but systematically higher than) helium porosities measured on the whole core plug. Both methods were used to estimate the percentage of open porosity expressed here as a ratio of connected porosity, as established from helium adsorption, to the total porosity, as estimated from SANS/USANS techniques. Open porosity appears to control permeability (determined using pressure and pulse-decay techniques), with the highest permeability sample also having the highest percentage of open porosity. Surface area, as calculated from low-pressure N{sub 2} and CO{sub 2} adsorption, is significantly less

  7. Cross-fault pressure depletion, Zechstein carbonate reservoir, Weser-Ems area, Northern German Gas Basin

    Energy Technology Data Exchange (ETDEWEB)

    Corona, F.V.; Brauckmann, F.; Beckmann, H.; Gobi, A.; Grassmann, S.; Neble, J.; Roettgen, K. [ExxonMobil Production Deutschland GmbH (EMPG), Hannover (Germany)

    2013-08-01

    A cross-fault pressure depletion study in Upper Permian Zechstein Ca2 carbonate reservoir was undertaken in the Weser-Ems area of the Northern German Gas Basin. The primary objectives are to develop a practical workflow to define cross-fault pressures scenarios for Zechstein Ca2 reservoir drillwells, to determine the key factors of cross-fault pressure behavior in this platform carbonate reservoir, and to translate the observed cross-fault pressure depletion to fault transmissibility for reservoir simulation models. Analysis of Zechstein Ca2 cross-fault pressures indicates that most Zechstein-cutting faults appear to act as fluid-flow baffles with some local occurrences of fault seal. Moreover, there appears to be distinct cross-fault baffling or pressure depletion trends that may be related to the extent of the separating fault or fault system, degree of reservoir flow-path tortuosity, and quality of reservoir juxtaposition. Based on the above observations, a three-part workflow was developed consisting of (1) careful interpretation and mapping of faults and fault networks, (2) analysis of reservoir juxtaposition and reservoir juxtaposition quality, and (3) application of the observed cross-fault pressure depletion trends. This approach is field-analog based, is practical, and is being used currently to provide reliable and supportable pressure prediction scenarios for subsequent Zechstein fault-bounded drill-well opportunities.

  8. Radon in unconventional natural gas from gulf coast geopressured-geothermal reservoirs

    Science.gov (United States)

    Kraemer, T.F.

    1986-01-01

    Radon-222 has been measured in natural gas produced from experimental geopressured-geothermal test wells. Comparison with published data suggests that while radon activity of this unconventional natural gas resource is higher than conventional gas produced in the gulf coast, it is within the range found for conventional gas produced throughout the U.S. A method of predicting the likely radon activity of this unconventional gas is described on the basis of the data presented, methane solubility, and known or assumed reservoir conditions of temperature, fluid pressure, and formation water salinity.

  9. Pilon field : characterization of heavy crude oil reservoir with gas cap

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.; Rodriguez, R.; Urdaneta, R.; Sanchez, J. [PDVSA Petroleos de Venezuela SA, Caracas (Venezuela, Bolivarian Republic of); Bague, O. [Beicip-Franlab, Rueil-Malmaison (France)

    2009-07-01

    The Pilon mature oilfield covers a surface area of 100 square kilometres in the region of the Orinoco oil belt in eastern Venezuela. A study was undertaken regarding 3 reservoirs, of which 2 show a gas cap, contrary to previous studies which established that only 1 reservoir had a gas cap. This paper presented a 3D structural model that was created by defining fault planes and stratigraphic horizons. Stratigraphy, sedimentology, petrophysics, and geostatistics were also discussed. The geostatistic model was developed using the following techniques: facies simulation bias; rock type modeling; and petrophysical inputs. Production analysis and reservoir pressure analysis were also presented. Fluids distribution was discussed in terms of oil water contact and gas oil contact. Material balance was also addressed in the paper. It was concluded that the stratigraphic model underlines the existence of 6 distinct geological units spanning the whole field. 5 refs., 5 tabs., 27 figs.

  10. Half-space problem of unsteady evaporation and condensation of polyatomic gas

    Science.gov (United States)

    Inaba, Masashi; Yano, Takeru

    2016-11-01

    On the basis of polyatomic version of the ellipsoidal-statistical Bhatnager-Gross-Krook (ES-BGK) model, we consider time-periodic gas flows in a semi-infinite expanse of an initially equilibrium polyatomic gas (methanol) bounded by its planar condensed phase. The kinetic boundary condition at the vapor-liquid interface is assumed to be the complete condensation condition with periodically time-varying macroscopic variables (temperature, saturated vapor density and velocity of the interface), and the boundary condition at infinity is the local equilibrium distribution function. The time scale of variation of macroscopic variables is assumed to be much larger than the mean free time of gas molecules, and the variations of those from a reference state are assumed to be sufficiently small. We numerically investigate thus formulated time-dependent half-space problem for the polyatomic version of linearized ES-BGK model equation with the finite difference method for the case of the Strouhal number Sh=0.01 and 0.1. It is shown that the amplitude of the mass flux at the interface is the maximum, and the phase difference in time between the mass flux and v∞ - vℓ (v∞: vapor velocity at infinity, vℓ: velocity of the vapor-liquid interface) is the minimum absolute value, when the phase difference in time between the liquid surface temperature (the saturated vapor density) and the velocity of interface is close to zero.

  11. Characterization of the vadose zone above a shallow aquifer contaminated with gas condensate hydrocarbons

    International Nuclear Information System (INIS)

    Sublette, K.; Duncan, K.; Thoma, G.; Todd, T.

    2002-01-01

    A gas production site in the Denver Basin near Ft. Lupton, Colorado has leaked gas condensate hydrocarbons from an underground concrete tank used to store produced water. The leak has contaminated a shallow aquifer. Although the source of pollution has been removed, a plume of hydrocarbon contamination still remains for nearly 46 m from the original source. An extensive monitoring program was conducted in 1993 of the groundwater and saturated sediments. The objective was to determine if intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurred at the site at a rate that would support remediation. Geochemical indicators of hydrogen biodegradation by microorganisms in the saturated zone included oxygen depletion, increased alkalinity, sulfate depletion, methane production and Fe2+ production associated with hydrogen contamination. The presence of sulfate-reducing bacteria and methanogens was also much higher in the contaminated sediments. Degraded hydrocarbon metabolites were found in contaminated groundwater. An extensive characterization of the vadose zone was conducted in which the vadose zone was sample in increments of 15 cm from the surface to the water table at contaminated and non contaminated sites. The samples were tested for individual C3+ hydrocarbons, methane, CO2, total organic carbon, total inorganic carbon, and total petroleum hydrocarbons. The vadose zone consisted of an active and aerobic bioreactor fueled by condensate hydrocarbons transported into the unsaturated zone by evaporation of hydrocarbons at the water table. It was concluded that the unsaturated zone makes an important contribution to the natural attenuation of gas condensate hydrocarbons in the area. 17 refs., 2 tabs., 28 figs

  12. Vortices in atomic Bose-Einstein condensates in the large-gas-parameter region

    International Nuclear Information System (INIS)

    Nilsen, J.K.; Mur-Petit, J.; Guilleumas, M.; Polls, A.; Hjorth-Jensen, M.

    2005-01-01

    In this work we compare the results of the Gross-Pitaevskii and modified Gross-Pitaevskii equations with ab initio variational Monte Carlo calculations for Bose-Einstein condensates of atoms in axially symmetric traps. We examine both the ground state and excited states having a vortex line along the z axis at high values of the gas parameter and demonstrate an excellent agreement between the modified Gross-Pitaevskii and ab initio Monte Carlo methods, both for the ground and vortex states

  13. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    International Nuclear Information System (INIS)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  14. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  15. Effect of Non-Condensable Gas on Cavity Dynamics and Sheet to Cloud Transition

    Science.gov (United States)

    Makiharju, Simo; Ganesh, Harish; Ceccio, Steven

    2014-11-01

    Partial cavitation occurs in numerous industrial and naval applications. Cavities on lifting surfaces, in cryogenic rocket motors or in fuel injectors can damage equipment and in general be detrimental to the system performance, especially as partial cavities can undergo auto-oscillation causing large pressure pulsations, unsteady loading of machinery and generate significant noise. In the current experiments incipient, intermittent cloud shedding and fully shedding cavities forming in the separated flow region downstream of a wedge were investigated. The Reynolds number based on hydraulic diameter was of the order of one million. Gas was injected directly into the cavitation region downstream of the wedge's apex or into the recirculating region such that with the same amount of injected gas less ended up in the shear layer. The cavity dynamics were studied with and without gas injection. The hypothesis to be tested were that i) relatively miniscule amounts of gas introduced into the shear layer at the cavity interface can reduce vapor production and ii) gas introduced into the separated region can dampen the auto oscillations. The authors also examined whether the presence of gas can switch the shedding mechanism from one dominated by condensation shock to one dominantly by re-entrant jet. The work was supported by ONR Grant Number N00014-11-1-0449.

  16. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface ground water: background, base cases, shallow reservoirs, short-term gas and water transport

    Science.gov (United States)

    Researchers examined gas and water transport between a deep tight shale gas reservoir and a shallow overlying aquifer in the two years following hydraulic fracturing, assuming a pre-existing connecting pathway.

  17. Temperature Prediction for High Pressure High Temperature Condensate Gas Flow Through Chokes

    Directory of Open Access Journals (Sweden)

    Changjun Li

    2012-03-01

    Full Text Available This study developed a theoretical model for predicting the downstream temperatures of high pressure high temperature condensate gas flowing through chokes. The model is composed of three parts: the iso-enthalpy choke model derived from continuity equation and energy conservation equation; the liquid-vapor equilibrium model based on the SRK equation of state (EoS; and the enthalpy model based on the Lee-Kesler EoS. Pseudocritical properties of mixtures, which are obtained by mixing rules, are very important in the enthalpy model, so the Lee-Kesler, Plocker-Knapp, Wong-Sandler and Prausnitz-Gunn mixing rules were all researched, and the combination mixing rules with satisfactory accuracy for high pressure high temperature condensate gases were proposed. The temperature prediction model is valid for both the critical and subcritical flows through different kinds of choke valves. The applications show the model is reliable for predicting the downstream temperatures of condensate gases with upstream pressures up to 85.54 MPa and temperatures up to 93.23 °C. The average absolute errors between the measured and calculated temperatures are expected for less than 2 °C by using the model.

  18. Modelling of steam condensation in the primary flow channel of a gas-heated steam generator

    International Nuclear Information System (INIS)

    Kawamura, H.; Meister, G.

    1982-10-01

    A new simulation code has been developed for the analysis of steam ingress accidents in high temperatures reactors which evaluates the heat transfer in a steam generator headed by a mixture of helium and water steam. Special emphasis is laid on the analysis of steam condensation in the primary circuit of the steam generator. The code takes wall and bulk condensation into account. A new method is proposed to describe the entrainment of water droplets in the primary gas flow. Some typical results are given. Steam condensation in the primary channel may have a significant effect on temperature distributions. The effect on the heat transferred by the steam generator, however, is found to be not so prominent as might be expected. The reason is discussed. A simplified code will also be described, which gives results with reasonable accuracy within much shorter execution times. This code may be used as a program module in a program simulating the total primary circuit of a high temperature reactor. (orig.) [de

  19. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport.

    Science.gov (United States)

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-04-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces.

  20. Fault features and enrichment laws of narrow-channel distal tight sandstone gas reservoirs: A case study of the Jurassic Shaximiao Fm gas reservoir in the Zhongjiang Gas Field, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Zhongping Li

    2016-11-01

    Full Text Available The Jurassic Shaximiao Fm gas reservoir in the Zhongjiang Gas Field, Sichuan Basin, is the main base of Sinopec Southwest Oil & Gas Company for gas reserves and production increase during the 12th Five-Year Plan. However, its natural gas exploration and development process was restricted severely, since the exploration wells cannot be deployed effectively in this area based on the previous gas accumulation and enrichment pattern of “hydrocarbon source fault + channel sand body + local structure”. In this paper, the regional fault features and the gas accumulation and enrichment laws were discussed by analyzing the factors like fault evolution, fault elements, fault-sand body configuration (the configuration relationship between hydrocarbon source faults and channel sand bodies, trap types, and reservoir anatomy. It is concluded that the accumulation and enrichment of the Shaximiao Fm gas reservoir in this area is controlled by three factors, i.e., hydrocarbon source, sedimentary facies and structural position. It follows the accumulation laws of source controlling region, facies controlling zone and position controlling reservoir, which means deep source and shallow accumulation, fault-sand body conductivity, multiphase channel, differential accumulation, adjusted enrichment and gas enrichment at sweet spots. A good configuration relationship between hydrocarbon source faults and channel sand bodies is the basic condition for the formation of gas reservoirs. Natural gas accumulated preferentially in the structures or positions with good fault-sand body configuration. Gas reservoirs can also be formed in the monoclinal structures which were formed after the late structural adjustment. In the zones supported by multiple faults or near the crush zones, no gas accumulation occurs, but water is dominantly produced. The gas-bearing potential is low in the area with undeveloped faults or being 30 km away from the hydrocarbon source faults. So

  1. Physical simulation of gas reservoir formation in the Liwan 3-1 deep-water gas field in the Baiyun sag, Pearl River Mouth Basin

    Directory of Open Access Journals (Sweden)

    Gang Gao

    2015-01-01

    Full Text Available To figure out the process and controlling factors of gas reservoir formation in deep-waters, based on an analysis of geological features, source of natural gas and process of reservoir formation in the Liwan 3-1 gas field, physical simulation experiment of the gas reservoir formation process has been performed, consequently, pattern and features of gas reservoir formation in the Baiyun sag has been found out. The results of the experiment show that: ① the formation of the Liwan 3-1 faulted anticline gas field is closely related to the longstanding active large faults, where natural gas is composed of a high proportion of hydrocarbons, a small amount of non-hydrocarbons, and the wet gas generated during highly mature stage shows obvious vertical migration signs; ② liquid hydrocarbons associated with natural gas there are derived from source rock of the Enping & Zhuhai Formation, whereas natural gas comes mainly from source rock of the Enping Formation, and source rock of the Wenchang Formation made a little contribution during the early Eocene period as well; ③ although there was gas migration and accumulation, yet most of the natural gas mainly scattered and dispersed due to the stronger activity of faults in the early period; later as fault activity gradually weakened, gas started to accumulate into reservoirs in the Baiyun sag; ④ there is stronger vertical migration of oil and gas than lateral migration, and the places where fault links effective source rocks with reservoirs are most likely for gas accumulation; ⑤ effective temporal-spatial coupling of source-fault-reservoir in late stage is the key to gas reservoir formation in the Baiyun sag; ⑥ the nearer the distance from a trap to a large-scale fault and hydrocarbon source kitchen, the more likely gas may accumulate in the trap in late stage, therefore gas accumulation efficiency is much lower for the traps which are far away from large-scale faults and hydrocarbon source

  2. A Fully Three Dimensional Semianalytical Model for Shale Gas Reservoirs with Hydraulic Fractures

    Directory of Open Access Journals (Sweden)

    Yuwei Li

    2018-02-01

    Full Text Available Two challenges exist for modeling gas transport in shale. One is the existence of complex gas transport mechanisms, and the other is the impact of hydraulic fracture networks. In this study, a truly three dimensional semianalytical model was developed for shale gas reservoirs with hydraulic fractures of various shapes. Using the instantaneous point source solution, the pressure are solved for a bounded reservoir with fully 3D, partially penetrated hydraulic fractures of different strike angles and dip angles. The fractures could have various shapes such as rectangles, disks and ellipses. The shale gas diffusion equations considers complex transport mechanism such as gas slippage and gas diffusion. This semianalytical model is verified with a commercial software and an analytical method for single fully penetrated rectangle fracture, and the production results of shale gas are consistent. The impacts of fracture height and strike angles are investigated by five systematically constructed models. The comparison shows that the production increases proportionally with the fracture height, and decreases with the increase of strike angles. The method proposed in this study could also be applied in well testing to analyze the reservoir properties and used to forecast the production for tight oil and conventional resources.

  3. Simulation of Flow Behavior of Gas Condensate at Low Interfacial Tension

    DEFF Research Database (Denmark)

    Wang, Peng; Stenby, Erling Halfdan; Pope, Gary A.

    1996-01-01

    ) in the measurement, more attention is paid to the influence of IFT on gas/oil flow behavior. Two different types of model are used to compute the relative permeability. Model I is a Corey-type model combined with the capillary number concept. Model II is a modified form of the model proposed by Coats.The simulation...... results indicate that the effect of low IFT on relative permeability can be reasonably described by the two models selected, although the producing gas-oil ratio (GOR) obtained using Model I deviates somewhat from the experimental values in later depletion stages. The condensed liquid can be a mobile...... phase at very low liquid saturation, since the IFT is so low that the capillary force can be neglected. The liquid flows through the porous medium under the control of gra vity in this case....

  4. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Benjamin L.; Arntzen, Evan V.; Goldman, Amy E.; Richmond, Marshall C.

    2017-07-21

    The United States is home to more than 87,000 dams, 2,198 of which are actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change’s Paris Agreement, it is imperative for the U.S. to accurately quantify greenhouse gas fluxes from its hydropower reservoirs. Methane ebullition, or methane bubbles originating from river or lake sediments, can account for nearly all of a reservoir’s methane emissions to the atmosphere. However, methane ebullition in hydropower reservoirs has been studied in only three temperate locations, none of which are in the United States. This study measures high ebullitive methane fluxes from two hydropower reservoirs in eastern Washington, synthesizes the known information about methane ebullition from tropical, boreal, and temperate hydropower reservoirs, and investigates the implications for U.S. hydropower management and growth.

  5. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Marcos Dantus

    2008-09-23

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 10^16 W/cm^2. In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  6. Mechanism of collisionless sound damping in dilute Bose gas with condensate

    Directory of Open Access Journals (Sweden)

    Yu. Slyusarenko

    2013-06-01

    Full Text Available We develop a microscopic theory of sound damping due to Landau mechanism in dilute gas with Bose condensate. It is based on the coupled evolution equations of the parameters describing the system. These equations have been derived in earlier works within a microscopic approach which employs the Peletminskii-Yatsenko reduced description method for quantum many-particle systems and Bogoliubov model for a weakly nonideal Bose gas with a separated condensate. The dispersion equations for sound oscillations were obtained by linearization of the mentioned evolution equations in the collisionless approximation. They were analyzed both analytically and numerically. The expressions for sound speed and decrement rate were obtained in high and low temperature limiting cases. We have shown that at low temperature the dependence of obtained quantities on temperature varies significantly from those one obtained by other authors in the semi-phenomenological approaches. Possible effects connected with non-analytic temperature dependence of dispersion characteristics of the system were also indicated.

  7. Mixed convection heat transfer between a steam / non-condensable gas mixture and an inclined finned tube bundle

    Energy Technology Data Exchange (ETDEWEB)

    Cachard, F. de; Lomperski, S.; Monauni, G.R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. for Thermal-Hydraulics

    1999-07-01

    An experimental and analytical program was performed at PSI to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned-tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. The finned-tubes condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less than 10 % standard deviation between experimental and predicted results. (authors)

  8. Numerical modeling of fracking fluid and methane migration through fault zones in shale gas reservoirs

    Science.gov (United States)

    Taherdangkoo, Reza; Tatomir, Alexandru; Sauter, Martin

    2017-04-01

    Hydraulic fracturing operation in shale gas reservoir has gained growing interest over the last few years. Groundwater contamination is one of the most important environmental concerns that have emerged surrounding shale gas development (Reagan et al., 2015). The potential impacts of hydraulic fracturing could be studied through the possible pathways for subsurface migration of contaminants towards overlying aquifers (Kissinger et al., 2013; Myers, 2012). The intent of this study is to investigate, by means of numerical simulation, two failure scenarios which are based on the presence of a fault zone that penetrates the full thickness of overburden and connect shale gas reservoir to aquifer. Scenario 1 addresses the potential transport of fracturing fluid from the shale into the subsurface. This scenario was modeled with COMSOL Multiphysics software. Scenario 2 deals with the leakage of methane from the reservoir into the overburden. The numerical modeling of this scenario was implemented in DuMux (free and open-source software), discrete fracture model (DFM) simulator (Tatomir, 2012). The modeling results are used to evaluate the influence of several important parameters (reservoir pressure, aquifer-reservoir separation thickness, fault zone inclination, porosity, permeability, etc.) that could affect the fluid transport through the fault zone. Furthermore, we determined the main transport mechanisms and circumstances in which would allow frack fluid or methane migrate through the fault zone into geological layers. The results show that presence of a conductive fault could reduce the contaminant travel time and a significant contaminant leakage, under certain hydraulic conditions, is most likely to occur. Bibliography Kissinger, A., Helmig, R., Ebigbo, A., Class, H., Lange, T., Sauter, M., Heitfeld, M., Klünker, J., Jahnke, W., 2013. Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system, part 2. Environ Earth Sci 70, 3855

  9. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms

    OpenAIRE

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hyd...

  10. A Reduced Order Model for Fast Production Prediction from an Oil Reservoir with a Gas Cap

    OpenAIRE

    Yang, Yichen

    2016-01-01

    Master's thesis in Petroleum geosciences engineering Economic evaluations are essential inputs for oil and gas field development decisions. These evaluations are critically dependent on the unbiased assessment of uncertainty in the future oil and gas production from wells. However, many production prediction techniques come at significant computational costs as they often require a very large number of highly detailed grid based reservoir simulations. In this study, we present an alter...

  11. Naturally fractured tight gas reservoir detection optimization. Quarterly report, January 1, 1997--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This document contains the quarterly report dated January 1-March 31, 1997 for the Naturally Fractured Tight Gas Reservoir Detection Optimization project. Topics covered in this report include AVOA modeling using paraxial ray tracing, AVOA modeling for gas- and water-filled fractures, 3-D and 3-C processing, and technology transfer material. Several presentations from a Geophysical Applications Workshop workbook, workshop schedule, and list of workshop attendees are also included.

  12. Delaying the effect of an aluminum carbide drying agent in a tight gas reservoir

    Directory of Open Access Journals (Sweden)

    Liehui Zhang

    2018-03-01

    Full Text Available Water block damage is the core problem in damage to tight gas reservoirs, and the main obstacle to developing these reservoirs. When an ionic carbide (aluminum carbide: Al4C3 drying agent is injected into the reservoir, the water is quickly gasified through a drying treatment to improve the seepage capacity of the gas and the recovery rate of the reservoir. However, under high temperatures and high pressure (HTHP conditions, it is easy to lose the reactivity due to the high activity of the drying agent, thus preventing the drying effect. In this paper, in order to delay the reaction starting time of the Al4C3 in HTHP conditions with water-cut, a surface modification of aluminum carbide was carried out by using absolute ethyl as the reaction media and polyvinylpyrrolidone (PVP as a modifier under the reaction of an initiator AIBN. The modified Al4C3 was characterized by SEM, TEM, FTIR, and other detection methods. In addition, a gas evolution experiment compared the starting time of the reaction between unmodified aluminum carbide and formation water to the starting time of the reaction between modified aluminum carbide and formation water. Results show that this method can successfully modify the drying agent and effectively block the reaction activity of the drying agent. Meanwhile, gas production in the process of drying and the consumption of formation water are obviously reduced, which can effectively delay the reaction starting time by 6-8 minutes.

  13. Mixed convection heat transfer between a steam/non-condensable gas mixture and an inclined finned tube bundle

    Energy Technology Data Exchange (ETDEWEB)

    De Cachard, F.; Lompersky, S.; Monauni, G.R. [Paul Scherrer Institute, Villigen (Switzerland). Thermal Hydraulic Lab.

    1999-07-01

    An experimental and analytical program was performed at PSI (Paul Scherrer Institute) to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. On the gas, heat transfer correlations are used, and the condensation rate is calculated using the heat/mass transfer analogy. A combination of various available correlations for forced convection in staggered finned tube bundles is used, together with a correction accounting for superimposed natural convection. For the condensate heat transfer resistance, the beatty and Katz model for gravity driven liquid films on the tubes is used. The fine efficiency is accounted for using classical iterative calculations. Evaporative heat transfer inside the tubes is predicted using the Chen correlation. The finned tube condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less then 10% standard deviation between experimental and predicted results.

  14. Investigation of Bose Condensation in Ideal Bose Gas Trapped under Generic Power Law Potential in d Dimension

    Science.gov (United States)

    Mehedi Faruk, Mir; Sazzad Hossain, Md.; Muktadir Rahman, Md.

    2016-02-01

    The changes in characteristics of Bose condensation of ideal Bose gas due to an external generic power law potential U=\\sumi=1dci\\vert xi/ai\\vertni are studied carefully. Detailed calculation of Kim et al. (J. Phys. Condens. Matter 11 (1999) 10269) yielded the hierarchy of condensation transitions with changing fractional dimensionality. In this manuscript, some theorems regarding specific heat at constant volume CV are presented. Careful examination of these theorems reveal the existence of hidden hierarchy of the condensation transition in trapped systems as well.

  15. Supersaturation of Nitrogen Gas caused by Artificial Aeration in Reservoirs.

    Science.gov (United States)

    1982-09-01

    John L. Cannon, CE, COL Nelson P. Conover, CE, and COL Tilford C. Creel, CE. Technical Director was Mr. Fred R. Brown . This report should be cited as...artificially aerated) N2 Wm/11 NP ( STURATION ) t0 12 14 16 90 95 100 105 I0 15- W 25- 30- 35- 40- 45.- CACHLJMA Figure 27. Dissolved nitrogen gas

  16. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Blunt, M.J.; Orr, F.M. Jr.

    2001-03-26

    This report was an integrated study of the physics and chemistry affecting gas injection, from the pore scale to the field scale, and involved theoretical analysis, laboratory experiments and numerical simulation. Specifically, advances were made on streamline-based simulation, analytical solutions to 1D compositional displacements, and modeling and experimental measures of three-phase flow.

  17. Quantitative monitoring of gas flooding in oil-bearing reservoirs using a pulsed neutron tool

    International Nuclear Information System (INIS)

    Ruhovets, N.; Wyatt, D.F. Jr.

    1991-01-01

    This paper reports on quantitative monitoring of gas flooding in oil bearing reservoirs which is unique in that saturations of three fluids (gas, oil and water) in the effective pore space have to be determined, while in most other applications saturation behind casing is determined only for two fluids: hydrocarbons and water. A new method has been developed to monitor gas flooding of oil reservoirs. The method is based on computing two porosities: true effective (base) porosity determined before gas flooding, and apparent effective (monitor) porosity determined after gas flooding. The base porosity is determined from open and/or cased hole porosity logs run before the flooding. When open hole logs are available, the cased hole porosity logs are calibrated against open hole log. The monitor porosity is determined from one of the cased hole porosity logs, such as a neutron log or count rate ratio curve from a pulsed neutron log run after the gas flooding. The base and monitor porosities provide determination of the hydrogen index of the reservoir fluid after the flooding. This hydrogen index is then used to determine saturation of the flood agent after flooding. Water saturation after flooding can be determined from the equation which relates neutron total cross section (Σm) to volumetric constituent cross sections, using Σm values from a monitor run (after flooding)

  18. Investigation of water/gas coning in natural fractured hydrocarbon reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Shadizadeh, S.R. [University of Petroleum Industry (Iran, Islamic Republic of); Ghorbani, D. [National Iranian Oil Co. (Iran, Islamic Republic of)

    2001-06-01

    A study was conducted in which actual field data from two different naturally fractured reservoir in south western Iran was used to study the mechanism of coning. Coning is generally associated with production from oil reservoirs with overlying gas or underlying water or from a gas reservoir with underlying water. Water/gas coning is a major concern in terms of productivity, increased water disposal and environmental effects. Coning can be avoided if the well is produced below its critical rate which is the maximum water-free or gas-free production rates. The study showed that water/gas coning is caused by an imbalance between the gravitational and viscous forces around the completion interval, leading to lower revenues and increased operating costs. In this study, allowable critical flow rate was calculated using conservative models such as the open tank model and Birk's model with zero angle of vertical fracture. It was concluded that coning is also affected by other pressure drawdown related to some other mechanism resulting in premature water and gas production. 14 refs., 8 figs.

  19. Size-controlled, magnetic, and core-shell nanoparticles synthesized by inert-gas condensation

    Science.gov (United States)

    Koten, Mark A.

    Interest in nanoparticles (2 to 100 nm in diameter) and clusters of atoms (0.5 to 2 nm in diameter) has heightened over the past two and a half decades on both fundamental and functional levels. Nanoparticles and clusters of atoms are an exciting branch of materials science because they do not behave like normal bulk matter, nor do they act like molecules. They can have shockingly different physical, chemical, optical, or magnetic properties from the same material at a larger scale. In the case of nanoparticles, the surface-to-volume ratio can change fundamental properties like melting temperature, binding energy, or electron affinity. The definitions of markers used to distinguish between metallic, semiconducting, and insulating bulk condensed matter, such as the band gap and polarizability, can even be blurred or confused on the nanoscale. Similarly, clusters of atoms can form in structures that are only stable at finite sizes, and do not translate to bulk condensed matter. Thermodynamics of finite systems changes dramatically in nanovolumes such as wires, rods, cubes, and spheres, which can lead to complex core-shell and onion-like nanostructures. Consequently, these changes in properties and structure have led to many new possibilities in the field of materials engineering. Inert-gas condensation (IGC) is a well-established method of producing nanoparticles that condense from the gas phase. Its first use dates back to the early 1990s, and it has been used to fabricate nanoparticles both commercially and in research and development for applications in magnetism, biomedicine, and catalysts. In this dissertation, IGC was used to produce a wide variety of nanoparticles. First, control over the size distributions of Cu nanoparticles and how it relates to the plasma properties inside the nucleation chamber was investigated. Next, the formation of phase pure WFe2 nanoparticles revealed that this Laves phase is ferromagnetic instead of non-magnetic. Finally, core

  20. Flue gas condensation in oxyfuel power plants. Heat- and mass transfer measurements and experimental validation of an efficient condensation concept; Rauchgaskondensation in Oxyfuel-Kraftwerken. Waerme- und Stoffuebergangsmessungen sowie experimentelle Validierung eines effizienten Kondensationskonzepts

    Energy Technology Data Exchange (ETDEWEB)

    Raindl, Markus

    2010-12-06

    Condensation of a steam-inert gas mixture in an Oxyfuel condenser differs significantly from condensation of pure steam: condenser pressure and rest gas content increase dramatically, heat- and mass transfer coefficients are lower and oversaturation of the steam-inert gas mixture yields to fog formation. In the context of this thesis, therefore, at first the optimal ranges of working parameters for Oxyfuel processes calculated. In the following some heat flux measurements were carried out on a horizontal, crossflow pipe to validate various heat- and mass transfer theories. Building on these results a new, efficient condensation concept was developed to reduce fog formation. The final results of the measurements with a laboratory model show great performance regarding fog reduction and condensation efficiency. (orig.)

  1. The Coupling Effect Research of Ash Deposition and Condensation in Low Temperature Flue Gas

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-01-01

    Full Text Available Ash deposition is a key factor that deteriorates the heat transfer performance and leads to higher energy consumption of low pressure economizer working in low temperature flue gas. In order to study the ash deposition of heat exchange tubes in low temperature flue gas, two experiments are carried out with different types of heat exchange tubes in different flue gas environments. In this paper, Nusselt Number Nu and fouling factor ε are calculated to describe the heat transfer characteristics so as to study the ash deposition condition. The scanning electron microscope (SEM is used for the analysis of ash samples obtained from the outer wall of heat exchange tubes. The dynamic process of ash deposition is studied under different temperatures of outer wall. The results showed that ash deposition of heat exchanger will achieve a stable state in constant flue gas environment. According to the condition of condensation of acid vapor and water vapor, the process of ash deposition can be distinguished as mere ash deposition, acid-ash coupling deposition, and acid-water-ash coupling deposition.

  2. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation

    KAUST Repository

    Du, Naiying

    2011-03-11

    Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O 2/N 2 and CO 2/N 2 gas pairs, as well as for condensable gases, such as CO 2/CH 4, propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO 2 plasticization up to 20 atm pressure of pure CO 2 and CO 2/CH 4 mixtures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation.

    Science.gov (United States)

    Du, Naiying; Cin, Mauro M Dal-; Pinnau, Ingo; Nicalek, Andrzej; Robertson, Gilles P; Guiver, Michael D

    2011-04-19

    Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O(2) /N(2) and CO(2) /N(2) gas pairs, as well as for condensable gases, such as CO(2) /CH(4) , propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO(2) plasticization up to 20 atm pressure of pure CO(2) and CO(2) /CH(4) mixtures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Carbon Dioxide Gas Turbine Direct Cycle with Partial Condensation for Nuclear Reactors

    International Nuclear Information System (INIS)

    Yasuyoshi Kato; Takeshi Nitawaki; Yoshio Yoshizawa

    2002-01-01

    A carbon dioxide gas turbine power generation system with a partial condensation cycle has been proposed for thermal and fast nuclear reactors, in which compression is done partly in the liquid phase and partly in the gas phase. This cycle achieves higher cycle efficiency than a He direct cycle mainly due to reduced compressor work of the liquid phase and of the carbon dioxide real gas effect, especially in the vicinity of the critical point. If this cycle is applied to a thermal reactor, efficiency of this cycle is about 55% at a reactor outlet temperature of 900 deg. C and pressure of 12.5 MPa, which is higher by about 10% than a typical helium direct gas turbine cycle plant (PBMR) at 900 deg. C and 8.4 MPa; this cycle also provides comparable cycle efficiency at the moderate core outlet temperature of 600 deg. C with that of the helium cycle at 900 deg. C. If this cycle is applied to a fast reactor, it is anticipated to be an alternative to liquid metal cooled fast reactors that can provide slightly higher cycle efficiency at the same core outlet temperature; it would eliminate safety problems, simplify the heat transport system and simplify plant maintenance. A passive decay heat removal system is realized by connecting a liquid carbon dioxide storage tank with the reactor vessel and by supplying carbon dioxide gasified from the tank to the core in case of depressurization event. (authors)

  5. Stimulation technologies for Longwangmiao Fm gas reservoirs in the Sichuan Basin and their application results

    Directory of Open Access Journals (Sweden)

    Fu Yongqiang

    2014-10-01

    Full Text Available The Longwangmiao Fm group gas reservoirs in the Moxi structure in central Sichuan Basin feature high temperature, high pressure and high H2S content. The thickness of such high permeable reservoirs with great homogeneity is a geologic basis for a high-productivity gas well, and good match of natural fractures and vugs is the key factor to high well productivity. Overbalance drilling is likely to cause the opening-up of natural fractures, which will lead to the leakage of drilling fluid and severe damage to the reservoir. Experimental evaluation results show that the damage rate of the drilling fluid to the rock sample is between 82.2% and 89.2%, which severely restricts the productivity of gas wells. Therefore, it is necessary to deepen the experimental evaluation technologies and methods to promote the design pertinence of technical parameters. The study shows: first, the optimized gelling acid and steering acid are effective in slowing down speed and removing blockage, forming acidizing wormholes and effectively eliminating the blockage effect caused by drilling liquid pollution; second, the self-developed fiber steering agent and soluble temporary blocking ball can divert the acid, increasing the processing pressure at the well bottom by 5–15 MPa, realizing the even stimulation of heterogeneous reservoirs; third, based on experimental evaluation such as the acid penetration and acid rock reaction, it is recommended that the pumping rate be 3.0–3.5 m3/min in acidizing treatment and the acid intensity for blockage removal be 3.0–5.0 m3/m; fourth, the established blockage removal and steering acidizing technology have been applied in more than 20 wells with a remarkable productivity-increase effect, which gives full play to the natural productivity of gas wells and decreases the acid application scale. All these technologies and measures effectively enhance the development quality and profit of the gas reservoir.

  6. Impact of Petrophysical Properties on Hydraulic Fracturing and Development in Tight Volcanic Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Yinghao Shen

    2017-01-01

    Full Text Available The volcanic reservoir is an important kind of unconventional reservoir. The aqueous phase trapping (APT appears because of fracturing fluids filtration. However, APT can be autoremoved for some wells after certain shut-in time. But there is significant distinction for different reservoirs. Experiments were performed to study the petrophysical properties of a volcanic reservoir and the spontaneous imbibition is monitored by nuclear magnetic resonance (NMR and pulse-decay permeability. Results showed that natural cracks appear in the samples as well as high irreducible water saturation. There is a quick decrease of rock permeability once the rock contacts water. The pores filled during spontaneous imbibition are mainly the nanopores from NMR spectra. Full understanding of the mineralogical effect and sample heterogeneity benefits the selection of segments to fracturing. The fast flow-back scheme is applicable in this reservoir to minimize the damage. Because lots of water imbibed into the nanopores, the main flow channels become larger, which are beneficial to the permeability recovery after flow-back of hydraulic fracturing. This is helpful in understanding the APT autoremoval after certain shut-in time. Also, Keeping the appropriate production differential pressure is very important in achieving the long term efficient development of volcanic gas reservoirs.

  7. Geochemical and isotopic approach to maturity/source/mixing estimations for natural gas and associated condensates in the Thrace Basin, NW Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Guergey, Kadir [University of Pamukkale, Geological Engineering Department, Kinikli Campus, 20070 Denizli (Turkey)]. E-mail: kgurgey@pamukkale.edu.tr; Philp, R. Paul [Geology and Geophysics, University of Oklahoma, Norman, OK 73019 (United States); Clayton, Chris [High Bank House, Eardiston, Tenbury Wells, Worcestershire, WR15 8JJ (United Kingdom); Emiroglu, Hasan [Turkish Petroleum Corporation, Exploration Group, Soeguetoezue, Ankara (Turkey); Siyako, Muzaffer [Turkish Petroleum Corporation, Exploration Group, Soeguetoezue, Ankara (Turkey)

    2005-11-15

    The Tertiary Thrace Basin located in NW Turkey comprises 9 km of clastic-sedimentary column ranging in age from Early Eocene to Recent in age. Fifteen natural gas and 10 associated condensate samples collected from the 11 different gas fields along the NW-SE extending zone of the northern portion of the basin were evaluated on the basis of their chemical and individual C isotopic compositions. For the purpose of the study, the genesis of CH{sub 4}, thermogenic C{sub 2+} gases, and associated condensates were evaluated separately. Methane appears to have 3 origins: Group-1 CH{sub 4} is bacteriogenic (Calculated {delta} {sup 13}C{sub C1-C} = -61.48%o; Silivri Field) and found in Oligocene reservoirs and mixed with the thermogenic Group-2 CH{sub 4}. They probably formed in the Upper Oligocene coal and shales deposited in a marshy-swamp environment of fluvio-deltaic settings. Group-2 ({delta} {sup 13}C{sub C1-C} = -35.80%o; Hamitabat Field) and Group-3 ({delta} {sup 13}C{sub 1-C} = -49.10%o; Degirmenkoey Field) methanes are thermogenic and share the same origin with the Group-2 and Group-3 C{sub 2+} gases. The Group-2 C{sub 2+} gases include 63% of the gas fields. They are produced from both Eocene (overwhelmingly) and Oligocene reservoirs. These gases were almost certainly generated from isotopically heavy terrestrial kerogen ({delta} {sup 13}C = -21%o) present in the Eocene deltaic Hamitabat shales. The Group-3 C{sub 2+} gases, produced from one field, were generated from isotopically light marine kerogen ({delta} {sup 13}C = -29%o). Lower Oligoce ne Mezardere shales deposited in pro-deltaic settings are believed to be the source of these gases. The bulk and individual n-alkane isotopic relationships between the rock extracts, gases, condensates and oils from the basin differentiated two Groups of condensates, which can be genetically linked to the Group-2 and -3 thermogenic C{sub 2+} gases. However, it is crucial to note that condensates do not necessarily correlate

  8. Molecular Gas Reservoirs in Cluster Galaxies at z = 1.46

    Science.gov (United States)

    Hayashi, Masao; Tadaki, Ken-ichi; Kodama, Tadayuki; Kohno, Kotaro; Yamaguchi, Yuki; Hatsukade, Bunyo; Koyama, Yusei; Shimakawa, Rhythm; Tamura, Yoichi; Suzuki, Tomoko L.

    2018-04-01

    We present molecular gas reservoirs of 18 galaxies associated with the XMMXCS J2215.9–1738 cluster at z = 1.46. From Band 7 and Band 3 data of the Atacama Large Millimeter/submillimeter Array, we detect dust continuum emission at 870 μm and the CO J = 2–1 emission line from 8 and 17 member galaxies, respectively, within a clustercentric radius of R 200. The molecular gas masses derived from the CO and/or dust continuum luminosities show that the fraction of molecular gas mass and the depletion timescale for the cluster galaxies are larger than expected from the scaling relations of molecular gas on stellar mass and offset from the main sequence of star-forming galaxies in general fields. The galaxies closer to the cluster center in terms of both projected position and accretion phase seem to show a larger deviation from the scaling relations. We speculate that the environment of the galaxy cluster helps feed the gas through inflow to the member galaxies and reduce the efficiency of star formation. The stacked Band 3 spectrum of 12 quiescent galaxies with M stellar ∼ 1011 M ⊙ within 0.5R 200 shows no detection of a CO emission line, giving the upper limit of molecular gas mass and molecular gas fraction to be ≲1010 M ⊙ and ≲10%, respectively. Therefore, the massive galaxies in the cluster core quench the star formation activity while consuming most of the gas reservoirs.

  9. Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants

    International Nuclear Information System (INIS)

    Santos, Marco Aurelio dos; Pinguelli Rosa, Luiz; Sikar, Bohdan; Sikar, Elizabeth; Santos, Ednaldo Oliveira dos

    2006-01-01

    This paper presents the findings of gross carbon dioxide and methane emissions measurements in several Brazilian hydro-reservoirs, compared to thermo power generation. The term 'gross emissions' means gas flux measurements from the reservoir surface without natural pre-impoundment emissions by natural bodies such as the river channel, seasonal flooding and terrestrial ecosystems. The net emissions result from deducting pre-existing emissions by the reservoir. A power dam emits biogenic gases such as CO 2 and CH 4 . However, studies comparing gas emissions (gross emissions) from the reservoir surface with emissions by thermo-power generation technologies show that the hydro-based option presents better results in most cases analyzed. In this study, measurements were carried in the Miranda, Barra Bonita, Segredo, Tres Marias, Xingo, and Samuel and Tucurui reservoirs, located in two different climatological regimes. Additional data were used here from measurements taken at the Itaipu and Serra da Mesa reservoirs. Comparisons were also made between emissions from hydro-power plants and their thermo-based equivalents. Bearing in mind that the estimated values for hydro-power plants include emissions that are not totally anthropogenic, the hydro-power plants studied generally posted lower emissions than their equivalent thermo-based counterparts. Hydro-power complexes with greater power densities (capacity/area flooded-W/m 2 ), such as Itaipu, Xingo, Segredo and Miranda, have the best performance, well above thermo-power plants using state-of-the-art technology: combined cycle fueled by natural gas, with 50% efficiency. On the other hand, some hydro-power complexes with low-power density perform only slightly better or even worse than their thermo-power counterparts

  10. Characterizing hydraulic fractures in shale gas reservoirs using transient pressure tests

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2015-06-01

    This work presents an unconventional gas reservoir simulator and its application to quantify hydraulic fractures in shale gas reservoirs using transient pressure data. The numerical model incorporates most known physical processes for gas production from unconventional reservoirs, including two-phase flow of liquid and gas, Klinkenberg effect, non-Darcy flow, and nonlinear adsorption. In addition, the model is able to handle various types and scales of fractures or heterogeneity using continuum, discrete or hybrid modeling approaches under different well production conditions of varying rate or pressure. Our modeling studies indicate that the most sensitive parameter of hydraulic fractures to early transient gas flow through extremely low permeability rock is actually the fracture-matrix contacting area, generated by fracturing stimulation. Based on this observation, it is possible to use transient pressure testing data to estimate the area of fractures generated from fracturing operations. We will conduct a series of modeling studies and present a methodology using typical transient pressure responses, simulated by the numerical model, to estimate fracture areas created or to quantity hydraulic fractures with traditional well testing technology. The type curves of pressure transients from this study can be used to quantify hydraulic fractures in field application.

  11. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    Science.gov (United States)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given

  12. Innovation-driven efficient development of the Longwangmiao Fm large-scale sulfur gas reservoir in Moxi block, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Xinhua Ma

    2016-03-01

    Full Text Available The Lower Cambrian Longwangmiao Fm gas reservoir in Moxi block of the Anyue Gas field, Sichuan Basin, is the largest single-sandbody integrated carbonate gas reservoir proved so far in China. Notwithstanding this reservoir's advantages like large-scale reserves and high single-well productivity, there are multiple complicated factors restricting its efficient development, such as a median content of hydrogen sulfide, low porosity and strong heterogeneity of fracture–cave formation, various modes of gas–water occurrences, and close relation between overpressure and stress sensitivity. Up till now, since only a few Cambrian large-scale carbonate gas reservoirs have ever been developed in the world, there still exists some blind spots especially about its exploration and production rules. Besides, as for large-scale sulfur gas reservoirs, the exploration and construction is costly, and production test in the early evaluation stage is severely limited, all of which will bring about great challenges in productivity construction and high potential risks. In this regard, combining with Chinese strategic demand of strengthening clean energy supply security, the PetroChina Southwest Oil & Gas Field Company has carried out researches and field tests for the purpose of providing high-production wells, optimizing development design, rapidly constructing high-quality productivity and upgrading HSE security in the Longwangmiao Fm gas reservoir in Moxi block. Through the innovations of technology and management mode within 3 years, this gas reservoir has been built into a modern large-scale gas field with high quality, high efficiency and high benefit, and its annual capacity is now up to over 100 × 108 m3, with a desirable production capacity and development indexes gained as originally anticipated. It has become a new model of large-scale gas reservoirs with efficient development, providing a reference for other types of gas reservoirs in China.

  13. Effect of shale-water recharge on brine and gas recovery from geopressured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Riney, T.D.; Garg, S.K.; Wallace, R.H. Jr.

    1985-01-01

    The concept of shale-water recharge has often been discussed and preliminary assessments of its significance in the recovery of geopressured fluids have been given previously. The present study uses the Pleasant Bayou Reservoir data as a base case and varies the shale formation properties to investigate their impact on brine and gas recovery. The parametric calculations, based on semi-analytic solutions and finite-difference techniques, show that for vertical shale permeabilities which are at least of the order of 10/sup -5/ md, shale recharge will constitute an important reservoir drive mechanism and will result in much larger fluid recovery than that possible in the absence of shale dewatering.

  14. Condensing gas boilers for energy efficiency and reduction of CO2 and NOx

    International Nuclear Information System (INIS)

    Stewardson, E.

    1994-01-01

    The objectives of the study are: 1) to demonstrate the effectiveness of condensing gas boiler hot water system in reducing energy costs and pollution; 2) to illustrate the importance of marketing this technology to uninformed end users. The development of condensing boilers in the European Community, the materials used, product designs, key performance measures, and the types of applications suited to these products are outlined. Using calculations from a body of work produced by the Chartered Institute of Building Service Engineers in Britain, it is demonstrated how seasonal efficiency differs from combustion efficiency, and how the added capital cost for these boilers may be recovered within an acceptable commercial pay back period from fuel cost savings. Applying current NO x and CO 2 information from a body of the CE Technical Committees, the author show how these products can reduce pollution levels both from CO 2 and NO x . An example of marketing these products to a largely uninformed end user customer market is cited. 2 refs., 3 tabs., 12 figs. (orig.)

  15. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  16. Study of different factors affecting the electrical properties of natural gas reservoir rocks based on digital cores

    International Nuclear Information System (INIS)

    Jiang, Liming; Sun, Jianmeng; Wang, Haitao; Liu, Xuefeng

    2011-01-01

    The effects of the wettability and solubility of natural gas in formation water on the electrical properties of natural gas reservoir rocks are studied using the finite element method based on digital cores. The results show that the resistivity index of gas-wet reservoir rocks is significantly higher than that of water-wet reservoir rocks in the entire range of water saturation. The difference between them increases with decreasing water saturation. The resistivity index of natural gas reservoir rocks decreases with increasing additional conduction of water film. The solubility of natural gas in formation water has a dramatic effect on the electrical properties of reservoir rocks. The resistivity index of reservoir rocks increases as the solubility of natural gas increases. The effect of the solubility of natural gas on the resistivity index is very obvious under conditions of low water saturation, and it becomes weaker with increasing water saturation. Therefore, the reservoir wettability and the solubility of natural gas in formation water should be considered in defining the saturation exponent

  17. Application of oil gas-chromatography in reservoir compartmentalization in a mature Venezuelan oil field

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, N.G.; Mompart, L. [Maraven, Caracas (Venezuela); Talukdar, S.C.

    1996-08-01

    Gas chromatographic oil {open_quotes}fingerprinting{close_quotes} was successfully applied in a multidisciplinary production geology project by Maraven, S.A. to define the extent of vertical and lateral continuity of Eocene and Miocene sandstone reservoirs in the highly faulted Bloque I field, Maracaibo Basin, Venezuela. Seventy-five non-biodegraded oils (20{degrees}-37.4{degrees} API) were analyzed with gas chromatography. Fifty were produced from the Eocene Misoa C-4, C-5, C-6 or C-7 horizons, fifteen from the Miocene basal La Rosa and ten from multizone completions. Gas chromatographic and terpane and sterane biomarker data show that all of the oils are genetically related. They were expelled from a type II, Upper Cretaceous marine La Luna source rock at about 0.80-0.90% R{sub o} maturity. Alteration in the reservoir by gas stripping with or without subsequent light hydrocarbons mixing was observed in some oils. Detailed chromatographic comparisons among the oils shown by star plots and cluster analysis utilizing several naphthenic and aromatic peak height ratios, resulted in oil pool groupings. This led to finding previously unknown lateral and vertical reservoir communication and also helped in checking and updating the scaling character of faults. In the commingled oils, percentages of each contributing zone in the mixture were also determined giving Maraven engineers a proven, rapid and inexpensive tool for production allocation and reservoir management The oil pool compartmentalization defined by the geochemical fingerprinting is in very good agreement with the sequence stratigraphic interpretation of the reservoirs and helped evaluate the influence of structure in oil migration and trapping.

  18. Gap and screening in Raman scattering of a Bose condensed gas

    Science.gov (United States)

    Navez, P.; Bongs, K.

    2009-12-01

    We propose different spectroscopic methods to explore the nature of the thermal excitations of a trapped Bose condensed gas: 1) a four photon process to probe the uniform region in the trap center: 2) a stimulated Raman process in order to analyze the influence of a momentum transfer in the resulting scattered atom momentum distribution. We apply these methods to address specifically the energy spectrum and the scattering amplitude of these excitations in a transition between two hyperfine levels of the gas atoms. In particular, we exemplify the potential offered by these proposed techniques by contrasting the spectrum expected from the non-conserving Bogoliubov approximation, valid for weak depletion, to the spectrum of the finite-temperature extensions like the conserving generalized random phase approximation (GRPA). Both predict the existence of the Bogoliubov collective excitations but the GRPA approximation distinguishes them from the single-atom excitations with a gapped and parabolic dispersion relation and accounts for the dynamical screening of any external perturbation applied to the gas. We present two feasible experiments, one concerns the observation of the gap associated to this second branch of excitations and the other deals with this screening effect.

  19. Gas chromatographic determination of residual hydrazine and morpholine in boiler feed water and steam condensates

    International Nuclear Information System (INIS)

    Vatsala, S.; Bansal, V.; Tuli, D.K.; Rai, M.M.; Jain, S.K.; Srivastava, S.P.; Bhatnagar, A.K.

    1994-01-01

    Hydrazine, an oxygen scavenger in boiler water, was derivatised to the corresponding acetone azine and determined at the ng ml -1 level by gas chromatography. Morpholine, a corrosion inhibitor used in steam boilers, was estimated either directly (if >2.0 μg ml -1 ) or by quantitative preconcentration (0.1 ng-2.0 μg ml -1 ). To obtain symmetrical peaks for these amines, the column packing was coated with KOH. Use of a nitrogen-specific detector improved accuracy of estimation of hydrazine and morpholine, giving a RSD of 1.9-3.6%. Chromatographic analysis of these amines in boiler feed water and steam condensate samples collected from boilers servicing a pertroleum refinery is described. Environmental safety regulations calls for monitoring of hydrazine and the methods developed can easily be adapted for this purpose. (orig.)

  20. Synthesis and Magnetic Properties of Ni and Carbon Coated Ni by Levitational Gas Condensation (LGC

    Directory of Open Access Journals (Sweden)

    Young Rang Uhm

    2013-01-01

    Full Text Available The nickel (Ni, and carbon coated nickel (Ni@C nanoparticles were synthesized by levitaional gas condensation (LGC methods using a micron powder feeding (MPF system. Both metal and carbon coated metal nano powders include a magnetic ordered phase. The synthesis by LGC yields spherical particles with a large coercivity. The abnormal initial magnetization curve for Ni indicates a non-collinear magnetic structure between the core and surface layer of the particles. The carbon coated particles had a core structure diameter at and below 10 nm and were covered by 2-3 nm thin carbon layers. The hysteresis loop of the as-prepared Ni@Cs materials with unsaturated magnetization shows a superparamagnetic state at room temperature.

  1. Heat transfer during condensation of steam from steam-gas mixtures in the passive safety systems of nuclear power plants

    Science.gov (United States)

    Portnova, N. M.; Smirnov, Yu B.

    2017-11-01

    A theoretical model for calculation of heat transfer during condensation of multicomponent vapor-gas mixtures on vertical surfaces, based on film theory and heat and mass transfer analogy is proposed. Calculations were performed for the conditions implemented in experimental studies of heat transfer during condensation of steam-gas mixtures in the passive safety systems of PWR-type reactors of different designs. Calculated values of heat transfer coefficients for condensation of steam-air, steam-air-helium and steam-air-hydrogen mixtures at pressures of 0.2 to 0.6 MPa and of steam-nitrogen mixture at the pressures of 0.4 to 2.6 MPa were obtained. The composition of mixtures and vapor-to-surface temperature difference were varied within wide limits. Tube length ranged from 0.65 to 9.79m. The condensation of all steam-gas mixtures took place in a laminar-wave flow mode of condensate film and turbulent free convection in the diffusion boundary layer. The heat transfer coefficients obtained by calculation using the proposed model are in good agreement with the considered experimental data for both the binary and ternary mixtures.

  2. Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies.

    Science.gov (United States)

    Falgarone, E; Zwaan, M A; Godard, B; Bergin, E; Ivison, R J; Andreani, P M; Bournaud, F; Bussmann, R S; Elbaz, D; Omont, A; Oteo, I; Walter, F

    2017-08-24

    Starburst galaxies at the peak of cosmic star formation are among the most extreme star-forming engines in the Universe, producing stars over about 100 million years (ref. 2). The star-formation rates of these galaxies, which exceed 100 solar masses per year, require large reservoirs of cold molecular gas to be delivered to their cores, despite strong feedback from stars or active galactic nuclei. Consequently, starburst galaxies are ideal for studying the interplay between this feedback and the growth of a galaxy. The methylidyne cation, CH + , is a most useful molecule for such studies because it cannot form in cold gas without suprathermal energy input, so its presence indicates dissipation of mechanical energy or strong ultraviolet irradiation. Here we report the detection of CH + (J = 1-0) emission and absorption lines in the spectra of six lensed starburst galaxies at redshifts near 2.5. This line has such a high critical density for excitation that it is emitted only in very dense gas, and is absorbed in low-density gas. We find that the CH + emission lines, which are broader than 1,000 kilometres per second, originate in dense shock waves powered by hot galactic winds. The CH + absorption lines reveal highly turbulent reservoirs of cool (about 100 kelvin), low-density gas, extending far (more than 10 kiloparsecs) outside the starburst galaxies (which have radii of less than 1 kiloparsec). We show that the galactic winds sustain turbulence in the 10-kiloparsec-scale environments of the galaxies, processing these environments into multiphase, gravitationally bound reservoirs. However, the mass outflow rates are found to be insufficient to balance the star-formation rates. Another mass input is therefore required for these reservoirs, which could be provided by ongoing mergers or cold-stream accretion. Our results suggest that galactic feedback, coupled jointly to turbulence and gravity, extends the starburst phase of a galaxy instead of quenching it.

  3. System-level modeling for economic evaluation of geological CO2 storage in gas reservoirs

    International Nuclear Information System (INIS)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2007-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO 2 ) from industrial sources into deep geological formations such as brine aquifers or depleted oil or gas reservoirs. Research is being conducted to improve understanding of factors affecting particular aspects of geological CO 2 storage (such as storage performance, storage capacity, and health, safety and environmental (HSE) issues) as well as to lower the cost of CO 2 capture and related processes. However, there has been less emphasis to date on system-level analyses of geological CO 2 storage that consider geological, economic, and environmental issues by linking detailed process models to representations of engineering components and associated economic models. The objective of this study is to develop a system-level model for geological CO 2 storage, including CO 2 capture and separation, compression, pipeline transportation to the storage site, and CO 2 injection. Within our system model we are incorporating detailed reservoir simulations of CO 2 injection into a gas reservoir and related enhanced production of methane. Potential leakage and associated environmental impacts are also considered. The platform for the system-level model is GoldSim [GoldSim User's Guide. GoldSim Technology Group; 2006, http://www.goldsim.com]. The application of the system model focuses on evaluating the feasibility of carbon sequestration with enhanced gas recovery (CSEGR) in the Rio Vista region of California. The reservoir simulations are performed using a special module of the TOUGH2 simulator, EOS7C, for multicomponent gas mixtures of methane and CO 2 . Using a system-level modeling approach, the economic benefits of enhanced gas recovery can be directly weighed against the costs and benefits of CO 2 injection

  4. Numerical simulation of gas hydrate exploitation from subsea reservoirs in the Black Sea

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2017-04-01

    Natural gas (methane) is the most environmental friendly source of fossil energy. When coal is replace by natural gas in power production the emission of carbon dioxide is reduced by 50 %. The vast amount of methane assumed in gas hydrate deposits can help to overcome a shortage of fossil energy resources in the future. To increase their potential for energy applications new technological approaches are being discussed and developed worldwide. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e. g. depressurization and/or carbon dioxide injection) is numerically studied in the frame of the German research project »SUGAR - Submarine Gas Hydrate Reservoirs«. In order to simulate the exploitation of hydrate-bearing sediments in the subsea, an in-house simulation model HyReS which is implemented in the general-purpose software COMSOL Multiphysics is used. This tool turned out to be especially suited for the flexible implementation of non-standard correlations concerning heat transfer, fluid flow, hydrate kinetics, and other relevant model data. Partially based on the simulation results, the development of a technical concept and its evaluation are the subject of ongoing investigations, whereby geological and ecological criteria are to be considered. The results illustrate the processes and effects occurring during the gas production from a subsea gas hydrate deposit by depressurization. The simulation results from a case study for a deposit located in the Black Sea reveal that the production of natural gas by simple depressurization is possible but with quite low rates. It can be shown that the hydrate decomposition and thus the gas production strongly depend on the geophysical properties of the reservoir, the mass and heat transport within the reservoir, and

  5. Estimating Deliverability in Multi-Layered Gas Reservoirs Using Artificial Intelligence

    Science.gov (United States)

    Al-Arfaj, Malik Khalid

    In this research, an artificial intelligence (AI) model has been created to estimate the production rate of each layer in a multi-layered gas reservoir using static properties such as those obtained from well logging, in addition to dynamic properties such as pressure. This approach will be helpful in several reservoir engineering applications, such as understanding layers' depletion, or targeting specific layers for workover. It could also be used for PLT analysis where the measured PLT values are compared to the expected values and a variance analysis could be performed. Data were collected from more than 100 wells in a certain reservoir spanning over four fields. They were combined in related input variables and fed to the AI model for learning purposes. To compare different AI methods, the data were fed to 5 methods, namely ANFIS, MLP, RBF, SVM, and GRNN, and results were optimized for each method. Between the tested AI methods, SVM and GRNN performed best as shown by a low mean absolute percentage error and a very high correlation coefficient. This research shows promising use for AI methods in estimating production rate from each layer in a multi-layered gas reservoir.

  6. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  7. Electrical Conductive Mechanism of Gas Hydrate-Bearing Reservoirs in the Permafrost Region of Qilian Mountain

    Science.gov (United States)

    Peng, C.; Zou, C.; Tang, Y.; Liu, A.; Hu, X.

    2017-12-01

    In the Qilian Mountain, gas hydrates not only occur in pore spaces of sandstones, but also fill in fractures of mudstones. This leads to the difficulty in identification and evaluation of gas hydrate reservoir from resistivity and velocity logs. Understanding electrical conductive mechanism is the basis for log interpretation. However, the research is insufficient in this area. We have collected well logs from 30 wells in this area. Well logs and rock samples from DK-9, DK-11 and DK-12 wells were used in this study. The experiments including SEM, thin section, NMR, XRD, synthesis of gas hydrate in consolidated rock cores under low temperature and measurement of their resistivity and others were performed for understanding the effects of pore structure, rock composition, temperature and gas hydrate on conductivity. The results show that the porosity of reservoir of pore filling type is less than 10% and its clay mineral content is high. As good conductive passages, fractures can reduce resistivity of water-saturated rock. If fractures in the mudstone are filled by calcite, resistivity increases significantly. The resistivity of water-saturated rock at 2°C is twice of that at 18°C. The gas hydrate formation process in the sandstone was studied by resistivity recorded in real time. In the early stage of gas hydrate formation, the increase of residual water salinity may lead to the decrease of resistivity. In the late stage of gas hydrate formation, the continuity decrease of water leads to continuity increase of resistivity. In summary, fractures, rock composition, temperature and gas hydrate are important factors influencing resistivity of formation. This study is helpful for more accurate evaluation of gas hydrate from resistivity log. Acknowledgment: We acknowledge the financial support of the National Special Program for Gas Hydrate Exploration and Test-production (GZH201400302).

  8. Deep microbial life in the Altmark natural gas reservoir: baseline characterization prior CO2 injection

    Science.gov (United States)

    Morozova, Daria; Shaheed, Mina; Vieth, Andrea; Krüger, Martin; Kock, Dagmar; Würdemann, Hilke

    2010-05-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of about 3500m, is characterised by high salinity fluid and temperatures up to 127° C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery) the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results of the baseline survey indicate the presence of microorganisms similar to representatives from other saline, hot, anoxic, deep environments. However, due to the hypersaline and hyperthermophilic reservoir conditions, cell numbers are low, so that

  9. Analytical modeling of coupled flow and geomechanics for vertical fractured well in tight gas reservoirs

    Directory of Open Access Journals (Sweden)

    Wang Ruifei

    2017-12-01

    Full Text Available The mathematical model of coupled flow and geomechanics for a vertical fractured well in tight gas reservoirs was established. The analytical modeling of unidirectional flow and radial flow was achieved by Laplace transforms and integral transforms. The results show that uncoupled flow would lead to an overestimate in performance of a vertical fractured well, especially in the later stage. The production rate decreases with elastic modulus because porosity and permeability decrease accordingly. Drawdown pressure should be optimized to lower the impact of coupled flow and geomechanics as a result of permeability decreasing. Production rate increases with fracture half-length significantly in the initial stage and becomes stable gradually. This study could provide a theoretical basis for effective development of tight gas reservoirs.

  10. Analytical modeling of coupled flow and geomechanics for vertical fractured well in tight gas reservoirs

    Science.gov (United States)

    Wang, Ruifei; Gao, Xuhua; Song, Hongqing; Shang, Xinchun

    2017-12-01

    The mathematical model of coupled flow and geomechanics for a vertical fractured well in tight gas reservoirs was established. The analytical modeling of unidirectional flow and radial flow was achieved by Laplace transforms and integral transforms. The results show that uncoupled flow would lead to an overestimate in performance of a vertical fractured well, especially in the later stage. The production rate decreases with elastic modulus because porosity and permeability decrease accordingly. Drawdown pressure should be optimized to lower the impact of coupled flow and geomechanics as a result of permeability decreasing. Production rate increases with fracture half-length significantly in the initial stage and becomes stable gradually. This study could provide a theoretical basis for effective development of tight gas reservoirs.

  11. OPTIMAL SYSNTHESIS PROCESSES OF LOW-TEMPERATURE CONDENSATION ASSOCIATED OIL GAS PLANT REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    O. Ostapenko

    2015-10-01

    Full Text Available Design of modern high-efficient systems is a key priority for the Energy Sector of Ukraine. The cooling technological streams of gas and oil refineries, including air coolers, water cooling and refrigeration systems for specific refrigerants are the objectives of the present study. Improvement of the refrigeration unit with refrigerant separation into fractions is mandatory in order to increase cooling capacity, lowering the boiling point of coolant and increasing the coefficient of target hydrocarbons extraction from the associated gas flow. In this paper it is shown that cooling temperature plays significant role in low-temperature condensation process. Two operation modes for refrigeration unit were proposed: permanent, in which the concentration of the refrigerant mixture does not change and dynamic, in which the concentration of refrigerant mixtures depends on the ambient temperature. Based on the analysis of exergy losses the optimal concentration of refrigerant mixtures propane/ethane for both modes of operation of the refrigeration unit has been determined. On the basis of the conducted pinch-analysis the modification of refrigeration unit with refrigerant separation into fractions was developed. Additional recuperative heat exchangers for utilization heat were added to the scheme. Several important measures to increase the mass flow rate of refrigerant through the second section of the refrigeration centrifugal compressor from 22.5 to 25 kg/s without violating the agreed operational mode of the compressor sections were implemented.

  12. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  13. The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production

    Science.gov (United States)

    Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven

    2013-04-01

    Simulating natural scenarios on lab scale is a common technique to gain insight into geological processes with moderate effort and expenses. Due to the remote occurrence of gas hydrates, their behavior in sedimentary deposits is largely investigated on experimental set ups in the laboratory. In the framework of the submarine gas hydrate research project (SUGAR) a large reservoir simulator (LARS) with an internal volume of 425 liter has been designed, built and tested. To our knowledge this is presently a word-wide unique set up. Because of its large volume it is suitable for pilot plant scale tests on hydrate behavior in sediments. That includes not only the option of systematic tests on gas hydrate formation in various sedimentary settings but also the possibility to mimic scenarios for the hydrate decomposition and subsequent natural gas extraction. Based on these experimental results various numerical simulations can be realized. Here, we present the design and the experimental set up of LARS. The prerequisites for the simulation of a natural gas hydrate reservoir are porous sediments, methane, water, low temperature and high pressure. The reservoir is supplied by methane-saturated and pre-cooled water. For its preparation an external gas-water mixing stage is available. The methane-loaded water is continuously flushed into LARS as finely dispersed fluid via bottom-and-top-located sparger. The LARS is equipped with a mantle cooling system and can be kept at a chosen set temperature. The temperature distribution is monitored at 14 reasonable locations throughout the reservoir by Pt100 sensors. Pressure needs are realized using syringe pump stands. A tomographic system, consisting of a 375-electrode-configuration is attached to the mantle for the monitoring of hydrate distribution throughout the entire reservoir volume. Two sets of tubular polydimethylsiloxan-membranes are applied to determine gas-water ratio within the reservoir using the effect of permeability

  14. Compression set in gas-blown condensation-cured polysiloxane elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Mogon; Chinn, Sarah; Maxwell, Robert S.; Wilson, Thomas S.; Birdsell, Stephen A.

    2010-12-01

    Accelerated thermal ageing studies on foamed condensation cured polysiloxane materials have been performed in support of life assessment and material replacement programmes. Two different types of filled hydrogen-blown and condensation cured polysiloxane foams were tested; commercial (RTV S5370), and an in-house formulated polysiloxane elastomer (Silfoam). Compression set properties were investigated using Thermomechanical (TMA) studies and compared against two separate longer term ageing trials carried out in air and in dry inert gas atmospheres using compression jigs. Isotherms measured from these studies were assessed using time-temperature (T/t) superposition. Acceleration factors were determined and fitted to Arrhenius kinetics. For both materials, the thermo-mechanical results were found to closely follow the longer term accelerated ageing trials. Comparison of the accelerated ageing data in dry nitrogen atmospheres against field trial results showed the accelerated ageing trends over predict, however the comparison is difficult as the field data suffer from significant component to component variability. Of the long term ageing trials reported here, those carried out in air deviate more significantly from field trials data compared to those carried out in dry nitrogen atmospheres. For field return samples, there is evidence for residual post-curing reactions influencing mechanical performance, which would accelerate compression set. Multiple quantum-NMR studies suggest that compression set is not associated with significant changes in net crosslink density, but that some degree of network rearrangement has occurred due to viscoelastic relaxation as well as bond breaking and forming processes, with possible post-curing reactions at early times.

  15. Effect of reactive surface area of minerals on mineralization and carbon dioxide trapping in a depleted gas reservoir

    NARCIS (Netherlands)

    Bolourinejad, P.; Shoeibi Omrani, P.; Herber, R.

    2014-01-01

    In this study, a long-term (up to 1000 years) geochemical modelling of subsurface CO2 storage was carried out on sandstone reservoirs of depleted gas fields in northeast Netherlands. It was found that mineral dissolution/precipitation has only a minor effect on reservoir porosity. In order to

  16. Effect of reactive surface area of minerals on mineralization and carbon dioxide trapping in a depleted gas reservoir

    NARCIS (Netherlands)

    Bolourinejad, Panteha; Omrani, Pejman Shoeibi; Herber, Rien

    In this study, a long-term (up to 1000 years) geochemical modelling of subsurface CO2 storage was carried out on sandstone reservoirs of depleted gas fields in northeast Netherlands. It was found that mineral dissolution/precipitation has only a minor effect on reservoir porosity. In order to

  17. Water Saturation Relations and Their Diffusion-Limited Equilibration in Gas Shale: Implications for Gas Flow in Unconventional Reservoirs

    Science.gov (United States)

    Tokunaga, Tetsu K.; Shen, Weijun; Wan, Jiamin; Kim, Yongman; Cihan, Abdullah; Zhang, Yingqi; Finsterle, Stefan

    2017-11-01

    Large volumes of water are used for hydraulic fracturing of low permeability shale reservoirs to stimulate gas production, with most of the water remaining unrecovered and distributed in a poorly understood manner within stimulated regions. Because water partitioning into shale pores controls gas release, we measured the water saturation dependence on relative humidity (rh) and capillary pressure (Pc) for imbibition (adsorption) as well as drainage (desorption) on samples of Woodford Shale. Experiments and modeling of water vapor adsorption into shale laminae at rh = 0.31 demonstrated that long times are needed to characterize equilibrium in larger (5 mm thick) pieces of shales, and yielded effective diffusion coefficients from 9 × 10-9 to 3 × 10-8 m2 s-1, similar in magnitude to the literature values for typical low porosity and low permeability rocks. Most of the experiments, conducted at 50°C on crushed shale grains in order to facilitate rapid equilibration, showed significant saturation hysteresis, and that very large Pc (˜1 MPa) are required to drain the shales. These results quantify the severity of the water blocking problem, and suggest that gas production from unconventional reservoirs is largely associated with stimulated regions that have had little or no exposure to injected water. Gravity drainage of water from fractures residing above horizontal wells reconciles gas production in the presence of largely unrecovered injected water, and is discussed in the broader context of unsaturated flow in fractures.

  18. An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, S.Z.; Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    Previous experiments have been carried out by Vierow, Ogg, Kageyama and Siddique for condensation from steam/gas mixtures in vertical tubes. In each case the data scatter relative to the correlation was large and there was not close agreement among the three investigations. A new apparatus has been designed and built using the lessons learned from the earlier studies. Using the new apparatus, an extensive new data base has been obtained for pure steam, steam-air mixtures and steam-helium mixtures. Three different correlations, one implementing the degradation method initially proposed by Vierow and Schrock, a second diffusion layer theory initially proposed by Peterson, and third mass transfer conductance model are presented in this paper. The correlation using the simple degradation factor method has been shown, with some modification, to give satisfactory engineering accuracy when applied to the new data. However, this method is based on very simplified arguments that do not fully represent the complex physical phenomena involved. Better representation of the data has been found possible using modifications of the more complex and phenomenologically based method which treats the heat transfer conductance of the liquid film in series with the conductance on the vapor-gas side with the latter comprised of mass transfer and sensible heat transfer conductance acting in parallel. The mechanistic models, based on the modified diffusion layer theory or classical mass transfer theory for mass transfer conductance with transpiration successfully correlate the data for the heat transfer of vapor-gas side. Combined with the heat transfer of liquid film model proposed by Blangetti, the overall heat transfer coefficients predicted by the correlations from mechanistic models are in close agreement with experimental values.

  19. Imaging pore space in tight gas sandstone reservoir: insights from broad ion beam cross-sectioning

    Directory of Open Access Journals (Sweden)

    Konstanty J.

    2010-06-01

    Full Text Available Monetization of tight gas reservoirs, which contain significant gas reserves world-wide, represents a challenge for the entire oil and gas industry. The development of new technologies to enhance tight gas reservoir productivity is strongly dependent on an improved understanding of the rock properties and especially the pore framework. Numerous methods are now available to characterize sandstone cores. However, the pore space characterization at pore scale remains difficult due to the fine pore size and delicate sample preparation, and has thus been mostly indirectly inferred until now. Here we propose a new method of ultra high-resolution petrography combining high resolution SEM and argon ion beam cross sectioning (BIB, Broad Ion Beam which prepares smooth and damage free surfaces. We demonstrate this method using the example of Permian (Rotliegend age tight gas sandstone core samples. The combination of Ar-beam cross-sectioning facility and high-resolution SEM imaging has the potential to result in a step change in the understanding of pore geometries, in terms of its morphology, spatial distribution and evolution based on the generation of unprecedented image quality and resolution enhancing the predictive reliability of image analysis.

  20. Sensitivity Analysis of Parameters Governing the Recovery of Methane from Natural Gas Hydrate Reservoirs

    Directory of Open Access Journals (Sweden)

    Carlos Giraldo

    2014-04-01

    Full Text Available Naturally occurring gas hydrates are regarded as an important future source of energy and considerable efforts are currently being invested to develop methods for an economically viable recovery of this resource. The recovery of natural gas from gas hydrate deposits has been studied by a number of researchers. Depressurization of the reservoir is seen as a favorable method because of its relatively low energy requirements. While lowering the pressure in the production well seems to be a straight forward approach to destabilize methane hydrates, the intrinsic kinetics of CH4-hydrate decomposition and fluid flow lead to complex processes of mass and heat transfer within the deposit. In order to develop a better understanding of the processes and conditions governing the production of methane from methane hydrates it is necessary to study the sensitivity of gas production to the effects of factors such as pressure, temperature, thermal conductivity, permeability, porosity on methane recovery from naturally occurring gas hydrates. A simplified model is the base for an ensemble of reservoir simulations to study which parameters govern productivity and how these factors might interact.

  1. A Mathematical Pressure Transient Analysis Model for Multiple Fractured Horizontal Wells in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Yan Zeng

    2018-01-01

    Full Text Available Multistage fractured horizontal wells (MFHWs have become the main technology for shale gas exploration. However, the existing models have neglected the percolation mechanism in nanopores of organic matter and failed to consider the differences among the reservoir properties in different areas. On that account, in this study, a modified apparent permeability model was proposed describing gas flow in shale gas reservoirs by integrating bulk gas flow in nanopores and gas desorption from nanopores. The apparent permeability was introduced into the macroseepage model to establish a dynamic pressure analysis model for MFHWs dual-porosity formations. The Laplace transformation and the regular perturbation method were used to obtain an analytical solution. The influences of fracture half-length, fracture permeability, Langmuir volume, matrix radius, matrix permeability, and induced fracture permeability on pressure and production were discussed. Results show that fracture half-length, fracture permeability, and induced fracture permeability exert a significant influence on production. A larger Langmuir volume results in a smaller pressure and pressure derivative. An increase in matrix permeability increases the production rate. Besides, this model fits the actual field data relatively well. It has a reliable theoretical foundation and can preferably describe the dynamic changes of pressure in the exploration process.

  2. Carboniferous and older carbonate rocks: Lithofacies, extent, and reservoir quality: Chapter CC in The oil and gas resource potential of the Arctic National Wildlife Refuge 1002 area, Alaska

    Science.gov (United States)

    Dumoulin, Julie A.

    1999-01-01

    -stem tests found locally reasonable flow rates (4,220-4,800 bpd) and, in the Flaxman Island area, recovered gas and condensate from these rocks. The Lisburne Group has produced up to 50,000 bbl of oil/ day from the Lisburne field at Prudhoe Bay. Reservoir parameters of the Lisburne in northeastern Alaska range from low (porosities ≤ 5% in most limestones) to good (porosities average 6.5-10% in some dolostones). Reservoir quality in Carboniferous and older carbonate strata in the 1002 area should be greatest where these rocks are highly fractured and (or) truncated by the Lower Cretaceous Unconformity.

  3. Evaluation of the condensation potential of hydrocarbon fluids in the national gas pipeline system; establishing of adequate operational schemes

    International Nuclear Information System (INIS)

    Pineda Gomez, Cesar Augusto; Arenas Mantilla, Oscar Armando; Santos Santos, Nicolas

    2007-01-01

    For transporting industry of natural gas by pipeline systems, it's vital to guarantee the integrity of their lines, in order to decrease operational costs and prevent accidents that may damaging against people's safety, the environment or the infrastructure itself. in this paper it's presented the principal compounds from o technical study about principal net and its distribution branches to municipalities of the National System Transport of Natural Gas pointed by the Colombian Natural Gas Company - ECOGAS, (specifically the Cusiana - Porvenir - La Belleza, La Belleza - Cogua, La Belleza - Vasconia, Vasconia - Neiva and Vasconia - Cali gas lines, (see Figure 1). The principal objective is evaluate the possible condensation of hydrocarbons fluids inside gas lines, due to compositional characteristics of the gas, the different topographical conditions along the gas line route and the actual and future operational conditions to be implemented in the system. The evaluation performed over this gas streams, generates transcendental information in the creation of safe operational limits that minimizing the existence of obstacle problems and damages over pipeline systems and process equipment, due to the presence of liquid hydrocarbons inside these flow lines. This article has been prepared in four sections in order to guarantee easy access to each one of the steps involved in the study. Section one presents the compositional and thermodynamic analysis of feeding gas streams; in section two, its presented the required information for modeling gas lines with definition of the gas pipeline numerical simulation model in stable state; section three presents the sensitivity analysis for gas variation upon loading gas composition at the inlet point of the system, variation of the operational conditions (flow, pressure and gas temperature) and environment temperatures for the different inlet points (branches) with verification of compliance of the Unique Transport Regulation

  4. DEVELOPMENT OF MORE-EFFICIENT GAS FLOODING APPLICABLE TO SHALLOW RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    William R. Rossen; Russell T. Johns; Gary A. Pope

    2003-08-21

    The objective of this research is to widen the applicability of gas flooding to shallow oil reservoirs by reducing the pressure required for miscibility using gas enrichment and increasing sweep efficiency with foam. Task 1 examines the potential for improved oil recovery with enriched gases. Subtask 1.1 examines the effect of dispersion processes on oil recovery and the extent of enrichment needed in the presence of dispersion. Subtask 1.2 develops a fast, efficient method to predict the extent of enrichment needed for crude oils at a given pressure. Task 2 develops improved foam processes to increase sweep efficiency in gas flooding. Subtask 2.1 comprises mechanistic experimental studies of foams with N2 gas. Subtask 2.2 conducts experiments with CO{sub 2} foam. Subtask 2.3 develops and applies a simulator for foam processes in field application.

  5. Coupling relationship between reservoir diagenesis and gas accumulation in Xujiahe Formation of Yuanba–Tongnanba area, Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Jun Li

    2016-10-01

    Full Text Available The relationship between reservoir tightening time and gas charge period are the key subjects that have not been well solved considering the studies on the tight sand gas accumulation mechanism and enrichment regularity. The diagenetic evolution history, interaction sequence of organic–inorganic in aquiferous rock, gas charge history, the tightening mechanism of tight sandstone reservoir and the relationship between reservoir tightening time and gas accumulation period of the Xujiahe Formation have been analyzed in the Yuanba–Tongnanba area of the Sichuan Basin. It has been confirmed that the main reason for the tight sandstone reservoir formation is the intensive mechanical compaction which has dramatically reduced the sandstone reservoir quality, and it resulted to a semi-closed to a closed diagenetic fluid system formation at the early diagenetic stage. In the semi-closed to a closed diagenetic fluid system, at the later part of the diagenetic stage, the fluid circulation is not smooth, and the migration of the dissolution products are blocked, hence, the dissolution products mainly undergo the in situ precipitation and cementation. Such dissolution products block the dissolution pores and the residual primary pores; and the stronger the dissolution is, the higher the cement content is, which makes the reservoir further tightened. The hydrocarbon generation and expulsion history of source rocks and reservoir fluid inclusion characteristics in the Xujiahe Formation show that the charge of natural gas occurs in the Middle Jurassic–Early Cretaceous (mainly Early Cretaceous. A comprehensive analysis of the reservoir tightening history, gas charge history, and interaction sequence of organic–inorganic aquiferous in rock indicate that the sandstone reservoir experienced a tightening process when gas charging took place in the Xujiahe Formation in the Yuanba–Tongnanba area of the Sichuan Basin.

  6. Reconciling longwall gob gas reservoirs and venthole production performances using multiple rate drawdown well test analysis

    Energy Technology Data Exchange (ETDEWEB)

    Karacan, C. Oezgen [National Institute for Occupational Safety and Health (NIOSH), Pittsburgh Research Laboratory, Pittsburgh 15236, PA (United States)

    2009-12-01

    Longwall mining is an underground mining method during which a mechanical shearer progressively mines a large block of coal, called a panel, in an extensive area. During this operation the roof of the coal seam is supported only temporarily with hydraulic supports that protect the workers and the equipment on the coal face. As the coal is extracted, the supports automatically advance and the roof strata cave behind the supports. Caving results in fracturing and relaxation of the overlying strata, which is called ''gob.'' Due its highly fractured nature, gob contains many flow paths for gas migration. Thus, if the overlying strata contain gassy sandstones or sandstone channels, gas shales or thinner coal seams which are not suitable for mining, then the mining-induced changes can cause unexpected or uncontrolled gas migration into the underground workplace. Vertical gob gas ventholes (GGV) are drilled into each longwall panel to capture the methane within the overlying fractured strata before it enters the work environment. Thus, it is important, first to understand the properties of the gas reservoir created by mining disturbances and, second, to optimize the well parameters and placement accordingly. In this paper, the production rate-pressure behaviors of six GGVs drilled over three adjacent panels were analyzed by using conventional multi-rate drawdown analysis techniques. The analyses were performed for infinite acting and pseudo-steady state flow models, which may be applicable during panel mining (DM) and after mining (AM) production periods of GGVs. These phases were analyzed separately since the reservoir properties, due to dynamic subsidence, boundary conditions and gas capacity of the gob reservoir may change between these two stages. The results suggest that conventional well test analysis techniques can be applicable to highly complex gob reservoirs and GGVs to determine parameters such as skin, permeability, radius of investigation

  7. Well-Production Data and Gas-Reservoir Heterogeneity -- Reserve Growth Applications

    Science.gov (United States)

    Dyman, Thaddeus S.; Schmoker, James W.

    2003-01-01

    Oil and gas well production parameters, including peakmonthly production (PMP), peak-consecutive-twelve month production (PYP), and cumulative production (CP), are tested as tools to quantify and understand the heterogeneity of reservoirs in fields where current monthly production is 10 percent or less of PMP. Variation coefficients, defined as VC= (F5-F95)/F50, where F5, F95, and F50 are the 5th, 95th, and 50th (median) fractiles of a probability distribution, are calculated for peak and cumulative production and examined with respect to internal consistency, type of production parameter, conventional versus unconventional accumulations, and reservoir depth. Well-production data for this study were compiled for 69 oil and gas fields in the Lower Pennsylvanian Morrow Formation of the Anadarko Basin, Oklahoma. Of these, 47 fields represent production from marine clastic facies. The Morrow data were supplemented by data from the Upper Cambrian and Lower Ordovician Arbuckle Group, Middle Ordovician Simpson Group, Middle Pennsylvanian Atoka Formation, and Silurian and Lower Devonian Hunton Group of the Anadarko Basin, one large gas field in Upper Cretaceous reservoirs of north-central Montana (Bowdoin field), and three areas of the Upper Devonian and Lower Mississippian Bakken Formation continuous-type (unconventional) oil accumulation in the Williston Basin, North Dakota and Montana. Production parameters (PMP, PYP, and CP) measure the net result of complex geologic, engineering, and economic processes. Our fundamental hypothesis is that well-production data provide information about subsurface heterogeneity in older fields that would be impossible to obtain using geologic techniques with smaller measurement scales such as petrographic, core, and well-log analysis. Results such as these indicate that quantitative measures of production rates and production volumes of wells, expressed as dimensionless variation coefficients, are potentially valuable tools for

  8. Impacts of bedding directions of shale gas reservoirs on hydraulically induced crack propagation

    Directory of Open Access Journals (Sweden)

    Keming Sun

    2016-03-01

    Full Text Available Shale gas reservoirs are different from conventional ones in terms of their bedding architectures, so their hydraulic fracturing rules are somewhat different. In this paper, shale hydraulic fracturing tests were carried out by using the triaxial hydraulic fracturing test system to identify the effects of natural bedding directions on the crack propagation in the process of hydraulic fracturing. Then, the fracture initiation criterion of hydraulic fracturing was prepared using the extended finite element method. On this basis, a 3D hydraulic fracturing computation model was established for shale gas reservoirs. And finally, a series of studies were performed about the effects of bedding directions on the crack propagation created by hydraulic fracturing in shale reservoirs. It is shown that the propagation rules of hydraulically induced fractures in shale gas reservoirs are jointly controlled by the in-situ stress and the bedding plane architecture and strength, with the bedding direction as the main factor controlling the crack propagation directions. If the normal tensile stress of bedding surface reaches its tensile strength after the fracturing, cracks will propagate along the bedding direction, and otherwise vertical to the minimum in-situ stress direction. With the propagating of cracks along bedding surfaces, the included angle between the bedding normal direction and the minimum in-situ stress direction increases, the fracture initiation and propagation pressures increase and the crack areas decrease. Generally, cracks propagate in the form of non-plane ellipsoids. With the injection of fracturing fluids, crack areas and total formation filtration increase and crack propagation velocity decreases. The test results agree well with the calculated crack propagation rules, which demonstrate the validity of the above-mentioned model.

  9. A New Tree-Type Fracturing Method for Stimulating Coal Seam Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-09-01

    Full Text Available Hydraulic fracturing is used widely to stimulate coalbed methane production in coal mines. However, some factors associated with conventional hydraulic fracturing, such as the simple morphology of the fractures it generates and inhomogeneous stress relief, limit its scope of application in coal mines. These problems mean that gas extraction efficiency is low. Conventional fracturing may leave hidden pockets of gas, which will be safety hazards for subsequent coal mining operations. Based on a new drilling technique applicable to drilling boreholes in coal seams, this paper proposes a tree-type fracturing technique for stimulating reservoir volumes. Tree-type fracturing simulation experiments using a large-scale triaxial testing apparatus were conducted in the laboratory. In contrast to the single hole drilled for conventional hydraulic fracturing, the tree-type sub-boreholes induce radial and tangential fractures that form complex fracture networks. These fracture networks can eliminate the “blank area” that may host dangerous gas pockets. Gas seepage in tree-type fractures was analyzed, and gas seepage tests after tree-type fracturing showed that permeability was greatly enhanced. The equipment developed for tree-type fracturing was tested in the Fengchun underground coal mine in China. After implementing tree-type fracturing, the gas extraction rate was around 2.3 times greater than that for traditional fracturing, and the extraction rate remained high for a long time during a 30-day test. This shortened the gas drainage time and improved gas extraction efficiency.

  10. Reservoir creep and induced seismicity: inferences from geomechanical modeling of gas depletion in the Groningen field

    Science.gov (United States)

    van Wees, Jan-Diederik; Osinga, Sander; Van Thienen-Visser, Karin; Fokker, Peter A.

    2018-03-01

    The Groningen gas field in the Netherlands experienced an immediate reduction in seismic events in the year following a massive cut in production. This reduction is inconsistent with existing models of seismicity predictions adopting compaction strains as proxy, since reservoir creep would then result in a more gradual reduction of seismic events after a production stop. We argue that the discontinuity in seismic response relates to a physical discontinuity in stress loading rate on faults upon the arrest of pressure change. The stresses originate from a combination of the direct poroelastic effect through the pressure changes and the delayed effect of ongoing compaction after cessation of reservoir production. Both mechanisms need to be taken into account. To this end, we employed finite-element models in a workflow that couples Kelvin-Chain reservoir creep with a semi-analytical approach for the solution of slip and seismic moment from the predicted stress change. For ratios of final creep and elastic compaction up to 5, the model predicts that the cumulative seismic moment evolution after a production stop is subject to a very moderate increase, 2-10 times less than the values predicted by the alternative approaches using reservoir compaction strain as proxy. This is in agreement with the low seismicity in the central area of the Groningen field immediately after reduction in production. The geomechanical model findings support scope for mitigating induced seismicity through adjusting rates of pressure change by cutting down production.

  11. Characterization of oil and gas reservoir heterogeneity; Final report, November 1, 1989--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.D.

    1993-09-01

    The Alaskan North Slope comprises one of the Nation`s and the world`s most prolific oil province. Original oil in place (OOIP) is estimated at nearly 70 BBL (Kamath and Sharma, 1986). Generalized reservoir descriptions have been completed by the University of Alaska`s Petroleum Development Laboratory over North Slope`s major fields. These fields include West Sak (20 BBL OOIP), Ugnu (15 BBL OOIP), Prudhoe Bay (23 BBL OOIP), Kuparuk (5.5 BBL OOIP), Milne Point (3 BBL OOIP), and Endicott (1 BBL OOIP). Reservoir description has included the acquisition of open hole log data from the Alaska Oil and Gas Conservation Commission (AOGCC), computerized well log analysis using state-of-the-art computers, and integration of geologic and logging data. The studies pertaining to fluid characterization described in this report include: experimental study of asphaltene precipitation for enriched gases, CO{sup 2} and West Sak crude system, modeling of asphaltene equilibria including homogeneous as well as polydispersed thermodynamic models, effect of asphaltene deposition on rock-fluid properties, fluid properties of some Alaskan north slope reservoirs. Finally, the last chapter summarizes the reservoir heterogeneity classification system for TORIS and TORIS database.

  12. Optimization of Multiple Hydraulically Fractured Horizontal Wells in Unconventional Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2013-01-01

    Full Text Available Accurate placement of multiple horizontal wells drilled from the same well pad plays a critical role in the successful economical production from unconventional gas reservoirs. However, there are high cost and uncertainty due to many inestimable and uncertain parameters such as reservoir permeability, porosity, fracture spacing, fracture half-length, fracture conductivity, gas desorption, and well spacing. In this paper, we employ response surface methodology to optimize multiple horizontal well placement to maximize Net Present Value (NPV with numerically modeling multistage hydraulic fractures in combination with economic analysis. This paper demonstrates the accuracy of numerical modeling of multistage hydraulic fractures for actual Barnett Shale production data by considering the gas desorption effect. Six uncertain parameters, such as permeability, porosity, fracture spacing, fracture half-length, fracture conductivity, and distance between two neighboring wells with a reasonable range based on Barnett Shale information, are used to fit a response surface of NPV as the objective function and to finally identify the optimum design under conditions of different gas prices based on NPV maximization. This integrated approach can contribute to obtaining the optimal drainage area around the wells by optimizing well placement and hydraulic fracturing treatment design and provide insight into hydraulic fracture interference between single well and neighboring wells.

  13. Condensing of steam in flue gas using a heat pump system in relation to a wood chip fired boiler. Roeggaskondensering med varmepumpe paa flisfyrede kedelanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, B.; Evald, A.; Vogel, G.; Bisgaard, C.

    1989-10-15

    The aim of this report is to describe existing methods for condensing steam water in flue gas in relation to combustion of forest biomas, and to describe the implementation of a plant for condensing of water in flue gas on an existing installation for combustion of wood chips. Condensing of water in flue gas, is specially interesting, because of the high content of water in forest biomas. The actual installation for the condensing of water is special, because it include a heat pump system. In this system the inlet air is humidified and heated in a heat exchanger by the flue gas. This system makes it possible to condense approximately all the water in the flue gas. It is shown, that an installation for condensing of steam water in flue gas is an advantage from an economic point of view; the pay back period for the investment will be about three years. Measurements on the installation has shown that the implementation of a plant for condensing the water in the flue gas reduces the pollution from the flue gas of approximately 85% for the emission of particles and approximately 25% for the emission of Co{sub 2} and NO{sub x}. (author).

  14. Emissions from hydroelectric reservoirs and comparison of hydroelectricity, natural gas and oil

    International Nuclear Information System (INIS)

    Gagnon, L.; Chamberland, A.

    1993-01-01

    When reservoirs are created, a small fraction of the flooded organic matter decomposes into humic acids, carbon dioxide (CO 2 ), methane (CH 4 ), nitrogen, phosphorus, and other elements. The major greenhouse gases produced are CO 2 and CH 4 . For northern projects, Canadian studies on emissions from hydroelectric reservoirs have reached similar conclusions: Emissions, including methane, are less than 35 kg CO 2 equivalent per MWh. Using a typical project in northern Quebec as the basis for analysis, none of the studies dispute the considerable advantages of hydroelectricity regarding greenhouse gas emissions. Taking into account all components of energy systems, emissions of greenhouse gases from natural-gas power plants are 24 to 26 times greater than emissions from hydroelectric plants. The Freshwater Institute, in an article published in Ambio suggests that emissions from hydroelectric plants could be a significant source of greenhouse gases. This conclusion does not apply to most hydroelectric projects for two reasons: First, the Freshwater Institute's studies concerned flooded peatlands and shallow reservoirs that are not typical of most hydro projects; and second, the Institute analyzed a hydro project with a ratio of flooded area to energy production that is 6 to 10 times higher than typical projects in Canada. 7 refs, 4 tabs

  15. Fracture detection, mapping, and analysis of naturally fractured gas reservoirs using seismic technology. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Many basins in the Rocky Mountains contain naturally fractured gas reservoirs. Production from these reservoirs is controlled primarily by the shape, orientation and concentration of the natural fractures. The detection of gas filled fractures prior to drilling can, therefore, greatly benefit the field development of the reservoirs. The objective of this project was to test and verify specific seismic methods to detect and characterize fractures in a naturally fractured reservoir. The Upper Green River tight gas reservoir in the Uinta Basin, Northeast Utah was chosen for the project as a suitable reservoir to test the seismic technologies. Knowledge of the structural and stratigraphic geologic setting, the fracture azimuths, and estimates of the local in-situ stress field, were used to guide the acquisition and processing of approximately ten miles of nine-component seismic reflection data and a nine-component Vertical Seismic Profile (VSP). Three sources (compressional P-wave, inline shear S-wave, and cross-line, shear S-wave) were each recorded by 3-component (3C) geophones, to yield a nine-component data set. Evidence of fractures from cores, borehole image logs, outcrop studies, and production data, were integrated with the geophysical data to develop an understanding of how the seismic data relate to the fracture network, individual well production, and ultimately the preferred flow direction in the reservoir. The multi-disciplinary approach employed in this project is viewed as essential to the overall reservoir characterization, due to the interdependency of the above factors.

  16. Study of the mobility activation in ZnSe thin films deposited using inert gas condensation

    Directory of Open Access Journals (Sweden)

    Jeewan Sharma

    2017-12-01

    Full Text Available ZnSe thin films were synthesized on glass substrates using the inert gas condensation technique at substrate temperature ranging from 25 °C to 100 °C. The hexagonal structure and average crystallite size (6.1–8.4 nm were determined from X-ray diffraction data. The transient photoconductivity was investigated using white light of intensity 8450 lx to deduce the effective density of states (Neff in the order of 1.02 × 1010–13.90 × 1010 cm−3, the frequency factor (S in the range 2.5 × 105–24.6 × 105 s−1 and the trap depth (E ranging between 0.37–0.64 eV of these films. The trap depth study revealed three different types of levels with quasi-continuous distribution below the conduction band. An increase in the photoconductivity was observed as a result of the formation of potential barriers (Vb and of the increase of carrier mobility at the crystallite boundaries. The study of the dependence of various mobility activation parameters on the deposition temperature and the crystallite size has provided better understanding of the mobility activation mechanism.

  17. Multiparameter Analysis of Gas Transport Phenomena in Shale Gas Reservoirs: Apparent Permeability Characterization.

    Science.gov (United States)

    Shen, Yinghao; Pang, Yu; Shen, Ziqi; Tian, Yuanyuan; Ge, Hongkui

    2018-02-08

    The large amount of nanoscale pores in shale results in the inability to apply Darcy's law. Moreover, the gas adsorption of shale increases the complexity of pore size characterization and thus decreases the accuracy of flow regime estimation. In this study, an apparent permeability model, which describes the adsorptive gas flow behavior in shale by considering the effects of gas adsorption, stress dependence, and non-Darcy flow, is proposed. The pore size distribution, methane adsorption capacity, pore compressibility, and matrix permeability of the Barnett and Eagle Ford shales are measured in the laboratory to determine the critical parameters of gas transport phenomena. The slip coefficients, tortuosity, and surface diffusivity are predicted via the regression analysis of the permeability data. The results indicate that the apparent permeability model, which considers second-order gas slippage, Knudsen diffusion, and surface diffusion, could describe the gas flow behavior in the transition flow regime for nanoporous shale. Second-order gas slippage and surface diffusion play key roles in the gas flow in nanopores for Knudsen numbers ranging from 0.18 to 0.5. Therefore, the gas adsorption and non-Darcy flow effects, which involve gas slippage, Knudsen diffusion, and surface diffusion, are indispensable parameters of the permeability model for shale.

  18. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Franklin M. Orr, Jr.

    2001-12-31

    This report outlines progress in the first quarter of the second year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs''. The application of the analytical theory for gas injection processes, including the effects of volume change on mixing, has up to now been limited to fully self-sharpening systems, systems where all solution segments that connect the key tie lines present in the displacement are shock fronts. In the following report, we describe the extension of the analytical theory to include systems with rarefactions (continuous composition and saturation variations) between key tie lines. With the completion of this analysis, a completely general procedure has been developed for finding solutions for problems in which a multicomponent gas displaces a multicomponent oil.

  19. Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs.

    Science.gov (United States)

    Al Hagrey, Said Attia; Köhn, Daniel; Rabbel, Wolfgang

    2014-01-01

    Renewable energy resources can indisputably minimize the threat of global warming and climate change. However, they are intermittent and need buffer storage to bridge the time-gap between production (off peak) and demand peaks. Based on geologic and geochemical reasons, the North German Basin has a very large capacity for compressed air/gas energy storage CAES in porous saltwater aquifers and salt cavities. Replacing pore reservoir brine with CAES causes changes in physical properties (elastic moduli, density and electrical properties) and justify applications of integrative geophysical methods for monitoring this energy storage. Here we apply techniques of the elastic full waveform inversion FWI, electric resistivity tomography ERT and gravity to map and quantify a gradually saturated gas plume injected in a thin deep saline aquifer within the North German Basin. For this subsurface model scenario we generated different synthetic data sets without and with adding random noise in order to robust the applied techniques for the real field applications. Datasets are inverted by posing different constraints on the initial model. Results reveal principally the capability of the applied integrative geophysical approach to resolve the CAES targets (plume, host reservoir, and cap rock). Constrained inversion models of elastic FWI and ERT are even able to recover well the gradual gas desaturation with depth. The spatial parameters accurately recovered from each technique are applied in the adequate petrophysical equations to yield precise quantifications of gas saturations. Resulting models of gas saturations independently determined from elastic FWI and ERT techniques are in accordance with each other and with the input (true) saturation model. Moreover, the gravity technique show high sensitivity to the mass deficit resulting from the gas storage and can resolve saturations and temporal saturation changes down to ±3% after reducing any shallow fluctuation such as that of

  20. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Franklin M. Orr, Jr.

    2004-05-01

    This final technical report describes and summarizes results of a research effort to investigate physical mechanisms that control the performance of gas injection processes in heterogeneous reservoirs and to represent those physical effects in an efficient way in simulations of gas injection processes. The research effort included four main lines of research: (1) Efficient compositional streamline methods for 3D flow; (2) Analytical methods for one-dimensional displacements; (3) Physics of multiphase flow; and (4) Limitations of streamline methods. In the first area, results are reported that show how the streamline simulation approach can be applied to simulation of gas injection processes that include significant effects of transfer of components between phases. In the second area, the one-dimensional theory of multicomponent gas injection processes is extended to include the effects of volume change as components change phase. In addition an automatic algorithm for solving such problems is described. In the third area, results on an extensive experimental investigation of three-phase flow are reported. The experimental results demonstrate the impact on displacement performance of the low interfacial tensions between the gas and oil phases that can arise in multicontact miscible or near-miscible displacement processes. In the fourth area, the limitations of the streamline approach were explored. Results of an experimental investigation of the scaling of the interplay of viscous, capillary, and gravity forces are described. In addition results of a computational investigation of the limitations of the streamline approach are reported. The results presented in this report establish that it is possible to use the compositional streamline approach in many reservoir settings to predict performance of gas injection processes. When that approach can be used, it requires substantially less (often orders of magnitude) computation time than conventional finite difference

  1. Experiences of membrane technique in flue gas condensate treatment applications; Utvaerdering av erfarenheter av membranteknik foer rening av roekgaskondensat

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara; Ekdahl, Emma; Hellman, Mats

    2009-07-01

    Investing in a flue gas condensate treatment plant often turns out to be very profitable. The profitability comes from savings in energy and water consumption when treated waste water is recirculated, and also from savings in the NO{sub x} fee as condensate treatment allows for higher ammonia injection rates in the SNCR (NO{sub x} reduction) system. The membrane based technologies for flue gas treatment, which were investigated in this report, have proven to be successful and are operating well. However, they require that the project management is committed and acquaint themselves with the technology to avoid problems during commissioning and operation. In this project, experience with membrane based flue gas condensate treatment at ten different plants was investigated and evaluated. The ten plants are either biomass fired plants or co-combustion plants using a mixture of biomass and industrial waste. Membrane based flue gas condensate treatment is used by circa ten Swedish plants (Ultra Filtration membranes and/or Reverse Osmosis membranes, and at some plants also membranes for ammonia and carbon dioxide removal). All plants are biomass fired plants or co-combustion plants using a mixture of biomass and industrial waste. In Sweden, no plant firing municipal waste has yet been equipped with membrane based flue gas condensate treatment. These plants usually use precipitation and filtration technologies instead. Also the purpose of the condensation step is primarily to operate as a wet flue gas cleaning step. The heat recovery is of subordinate importance. Typical for these plants is also that they use condensation in several steps. The condensates from the different steps are often treated separately, as they may be of very different qualities. The RO unit is the main equipment in a membrane based water treatment plant. Pre-treatment and post-treatment of the RO water is adjusted to the incoming condensate quality, and to the requirements on the effluent. The

  2. Characterization and Prediction of the Gas Hydrate Reservoir at the Second Offshore Gas Production Test Site in the Eastern Nankai Trough, Japan

    Directory of Open Access Journals (Sweden)

    Machiko Tamaki

    2017-10-01

    Full Text Available Following the world’s first offshore production test that was conducted from a gas hydrate reservoir by a depressurization technique in 2013, the second offshore production test has been planned in the eastern Nankai Trough. In 2016, the drilling survey was performed ahead of the production test, and logging data that covers the reservoir interval were newly obtained from three wells around the test site: one well for geological survey, and two wells for monitoring surveys, during the production test. The formation evaluation using the well log data suggested that our target reservoir has a more significant heterogeneity in the gas hydrate saturation distribution than we expected, although lateral continuity of sand layers is relatively good. To evaluate the spatial distribution of gas hydrate, the integration analysis using well and seismic data was performed. The seismic amplitude analysis supports the lateral reservoir heterogeneity that has a significant positive correlation with the resistivity log data at the well locations. The spatial distribution of the apparent low-resistivity interval within the reservoir observed from log data was investigated by the P-velocity volume derived from seismic inversion. The integrated results were utilized for the pre-drill prediction of the reservoir quality at the producing wells. These approaches will reduce the risk of future commercial production from the gas hydrate reservoir.

  3. Studies on the characteristics of the separated heat pipe system with non-condensible gas for the use of the passive decay heat removal in reactor systems

    International Nuclear Information System (INIS)

    Hayashi, Takao; Ishi, Takayuki; Hayakawa, Hitoshi; Ohashi, Kazutaka

    1997-01-01

    Experiments on the separated heat pipe system of variable conductance type, which enclose non-condensible gas, have been carried out with intention of applying such system to passive decay heat removal of the modular reactors such as HTR plant. Basic experiments have been carried out on the experimental apparatus consisting of evaporator, vapor transfer tube, condenser tube and return tube which returns the condensed liquid back to the evaporator. Water and methanol were examined as the working fluids and nitrogen gas was enclosed as the non-condensible gas. The behaviors of the system were examined for the parametric changes of the heat input under the various pressures of nitrogen gas initially enclosed, including the case without enclosing N 2 gas for the comparison. The results of the experiments shows very clear features of self control characteristics. The self control mechanism was made clear, that is, in such system in which the condensing area in the condenser expands automatically in accordance with the increase of the heat input to keep the system temperature nearly constant. The working temperature of the system are clearly dependent on the pressure of the non-condensable gas initially enclosed, with higher system working temperature with higher initial gas pressure enclosed. The analyses were done on water and methanol as the working fluids, which show very good agreement with the experimental results. A lot of attractive applications are expected including the self switching feature with minimum heat loss during normal operation with maintaining the sufficient heat removal at accidents. (author)

  4. Manure ammonia and greenhouse gas emissions from beef cattle fed condensed tannins

    Science.gov (United States)

    A study was conducted to determine the effects of three levels of condensed tannins fed to 27 beef feed yard steers on ammonia and GHG emissions from manure. Condensed tannins were fed at rates of 0, 0.5 and 1.0 percent on a dry matter basis. Manure and urine were collected from two periods over 6 d...

  5. Seismic fracture detection of shale gas reservoir in Longmaxi formation, Sichuan Basin, China

    Science.gov (United States)

    Lu, Yujia; Cao, Junxing; Jiang, Xudong

    2017-11-01

    In the shale reservoirs, fractures play an important role, which not only provide space for the oil and gas, but also offer favorable petroleum migration channel. Therefore, it is of great significance to study the fractures characteristics in shale reservoirs for the exploration and development of shale gas. In this paper, four analysis technologies involving coherence, curvature attribute, structural stress field simulation and pre-stack P-wave azimuthal anisotropy have been applied to predict the fractures distribution in the Longmaxi formation, Silurian, southeast of Sichuan Basin, China. By using the coherence and curvature attribute, we got the spatial distribution characteristics of fractures in the study area. Structural stress field simulation can help us obtain distribution characteristics of structural fractures. And using the azimuth P-wave fracture detection technology, we got the characteristics about the fracture orientation and density of this region. Application results show that there are NW and NE fractures in the study block, which is basically consistent with the result of log interpretation. The results also provide reliable geological basis for shale gas sweet spots prediction.

  6. The optimized log interpretation method and sweet-spot prediction of gas-bearing shale reservoirs

    Science.gov (United States)

    Tan, Maojin; Bai, Ze; Xu, Jingjing

    2017-04-01

    Shale gas is one of the most important unconventional oil and gas resources, and its lithology and reservoir type are both different from conventional reservoirs [1,2]. "Where are shale reservoirs" "How to determine the hydrocarbon potential" "How to evaluate the reservoir quality", these are some key problems in front of geophysicists. These are sweet spots prediction and quantitative evaluation. As we known, sweet spots of organic shale include geological sweet spot and engineering sweet spot. Geophysical well logging can provide a lot of in-site formation information along the borehole, and all parameters describing the sweet spots of organic shale are attained by geophysical log interpretation[2]. Based on geological and petrophysical characteristics of gas shale, the log response characteristics of gas shales are summarized. Geological sweet spot includes hydrocarbon potential, porosity, fracture, water saturation and total gas content, which can be calculated by using wireline logs[3]. Firstly, the based-logging hydrocarbon potential evaluation is carried out, and the RBF neural network method is developed to estimate the total organic carbon content (TOC), which was proved more effective and suitable than empirical formula and ΔlogR methods [4]. Next, the optimized log interpretation is achieved by using model-searching, and the mineral concentrations of kerogen, clay, feldspar and pyrite and porosity are calculated. On the other hand, engineering sweet spot of shale refers to the rock physical properties and rock mechanism parameters. Some elastic properties including volume module, shear modulus and Poisson's ratio are correspondingly determined from log interpretation, and the brittleness index (BI), effective stress and pore pressure are also estimated. BI is one of the most important engineering sweet spot parameters. A large number of instances show that the summarized log responses can accurately identify the gas-bearing shale, and the proposed RBF

  7. Synthesis and characterization of Cu-doped TiO2 thin films produced by the inert gas condensation technique

    Science.gov (United States)

    Ahmed, H. A.; Abu-Eishah, S. I.; Ayesh, A. I.; Mahmoud, S. T.

    2017-07-01

    The bandgap of thin films Cu-doped TiO2 nanoclusters prepared using the inert gas condensation (IGC) technique have been investigated at various Cu contents. The samples were characterized using XRD, SEM/EDS and UV-visible spectrophotometer. It was found that doping of TiO2 thin film nanoclusters with Cu enhance its optical activity and shift it to the visible region; which makes it useful in photocatalytic applications.

  8. Maxwell-Schroedinger equations for a dilute gas Bose-Einstein condensate coupled to an electromagnetic field

    International Nuclear Information System (INIS)

    Avetisyan, Yu. A.; Trifonov, E. D.

    2008-01-01

    We give a general formulation of the semiclassical approach to solving the problem of interaction between a Bose-Einstein condensate of dilute gas and electromagnetic radiation without using the commonly applied mean-field approximation. We suggest variants of the systems of Maxwell-Schroedinger equations whose solution describes such effects as superradiant light scattering, light beam amplification, atomic wave (atomic laser) amplification, induced transparency, and reduction in the group velocity of light

  9. Elements and gas enrichment laws of sweet spots in shale gas reservoir: A case study of the Longmaxi Fm in Changning block, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Renfang Pan

    2016-05-01

    Full Text Available Identification of sweet spot is of great significance in confirming shale gas prospects to realize large-scale economic shale gas development. In this paper, geological characteristics of shale gas reservoirs were compared and analyzed based on abundant data of domestic and foreign shale gas reservoirs. Key elements of sweet spots were illustrated, including net thickness of gas shale, total organic carbon (TOC content, types and maturity (Ro of organic matters, rock matrix and its physical properties (porosity and permeability, and development characteristics of natural fractures. After the data in Changning and Weiyuan blocks, the Sichuan Basin, were analyzed, the geologic laws of shale gas enrichment were summarized based on the economic exploitation characteristics of shale gas and the correlation between the elements. The elements of favorable “sweet spots” of marine shale gas reservoirs in the Changning block and their distribution characteristics were confirmed. Firstly, the quality of gas source rocks is ensured with the continuous thickness of effective gas shale larger than 30 m, TOC > 2.0% and Ro = 2.4–3.5%. Secondly, the quality of reservoir is ensured with the brittle minerals content being 30–69%, the clay mineral content lower than 30% and a single lamination thickness being 0.1–1.0 m. And thirdly, the porosity is higher than 2.0%, the permeability is larger than 50 nD, gas content is higher than 1.45 m3/t, and formation is under normal pressure–overpressure system, which ensures the production modes and capacities. Finally, the primary and secondary elements that control the “sweet spots” of shale gas reservoirs were further analyzed and their restrictive relationships with each other were also discussed.

  10. Characterization of the deep microbial life in the Altmark natural gas reservoir

    Science.gov (United States)

    Morozova, D.; Alawi, M.; Vieth-Hillebrand, A.; Kock, D.; Krüger, M.; Wuerdemann, H.; Shaheed, M.

    2010-12-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of approximately 3500 m, is characterised by high salinity (420 g/l) and temperatures up to 127°C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery), the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism), DGGE (Denaturing Gradient Gel Electrophoresis) and 16S rRNA cloning. First results of the baseline survey indicate the presence of microorganisms similar to representatives from other deep environments. The sequence analyses revealed the presence of several H2-oxidising bacteria (Hydrogenophaga sp

  11. Hydrocarbons in sediments adjacent to a gas and condensate development and production platform in northwestern Australia

    International Nuclear Information System (INIS)

    Fischer, S.J.; Alexander, R.; Kagi, R.I.

    1994-01-01

    In northwestern Australia during the period of 1983 to 1991, 23 wells were drilled from a gas/condensate production platform to the producing formation approximately 3000 m below the sea bed. Low toxicity water-based drilling muds formulated with hydrogenated kerosenes were used, with the resultant formation cuttings being legally discharged into the ocean. To study the fate of hydrocarbons associated with the cuttings, sea-floor samples were collected along two perpendicular transects from the platform. The first extended 10 km in the prevailing direction of the current and the other to 1.2 km. Subsequently, samples have been collected from one of these sites on two occasions, first one year and secondly two years after the initial collection. Samples collected from directly under the platform cuttings chute contained the highest hydrocarbon concentrations, determined gravimetrically, of 75000 mg/kg, decreasing to approximately 40 mg/kg within 800 m in the direction of the prevailing current. Concentrations in the more remote samples were determined by GC and decreased gradually to be barely discernible above background at less than 0.01 mg/kg at 10 km from the platform. This suite of samples provided an excellent opportunity to study the progress of hydrocarbon biodegradation as it occurs in the marine environment. Analysis by GC-FID, GC-MS and GC-FTIR revealed a number of features. For example, the extent of biodegradation and weathering with increasing distance from the platform, and the half life for biodegradation of total hydrocarbons appears to be approximately one year. The hydrocarbon components of the sediments are mainly from the drilling mud with minor contributions from the formation fluids

  12. Gravimetric monitoring of water influx into a gas reservoir: A numerical study based on the ensemble kalman filter

    NARCIS (Netherlands)

    Glegola, M.; Ditmar, P.; Hanea, R.G.; Vossepoel, F.C.; Arts, R.; Klees, R.

    2012-01-01

    Water influx into gas fields can reduce recovery factors by 10-40%. Therefore, information about the magnitude and spatial distribution of water influx is essential for efficient management of waterdrive gas reservoirs. Modern geophysical techniques such as gravimetry may provide a direct measure of

  13. Fundamental Study of Disposition and Release of Methane in a Shale Gas Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Nuclear Waste Disposal Research and Analysis; Xiong, Yongliang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Repository Performance; Criscenti, Louise J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Geochemistry; Ho, Tuan Ahn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Geochemistry; Weck, Philippe F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Storage and Transportation Technology; Ilgen, Anastasia G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Geochemistry; Matteo, Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Nuclear Waste Disposal Research and Analysis; Kruichak, Jessica N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Nuclear Waste Disposal Research and Analysis; Mills, Melissa M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Nuclear Waste Disposal Research and Analysis; Dewers, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Geomechanics; Gordon, Margaret E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Materials, Devices and Energy Technologies; Akkutlu, Yucel [Texas A & M Univ., College Station, TX (United States). Dept. of Petroleum Engineering

    2016-09-01

    simulations also indicate that a significant fraction (3 - 35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. We have successfully established experimental capabilities for measuring gas sorption and desorption on shale and model materials under a wide range of physical and chemical conditions. Both low and high pressure measurements show significant sorption of CH4 and CO2 onto clays, implying that methane adsorbed on clay minerals could contribute a significant portion of gas-in-place in an unconventional reservoir. We have also studied the potential impact of the interaction of shale with hydrofracking fluid on gas sorption. We have found that the CH4-CO2 sorption capacity for the reacted sample is systematically lower (by a factor of ~2) than that for the unreacted (raw) sample. This difference in sorption capacity may result from a mineralogical or surface chemistry change of the shale sample induced by fluid-rock interaction. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs.

  14. Global mass conservation method for dual-continuum gas reservoir simulation

    KAUST Repository

    Wang, Yi

    2018-03-17

    In this paper, we find that the numerical simulation of gas flow in dual-continuum porous media may generate unphysical or non-robust results using regular finite difference method. The reason is the unphysical mass loss caused by the gas compressibility and the non-diagonal dominance of the discretized equations caused by the non-linear well term. The well term contains the product of density and pressure. For oil flow, density is independent of pressure so that the well term is linear. For gas flow, density is related to pressure by the gas law so that the well term is non-linear. To avoid these two problems, numerical methods are proposed using the mass balance relation and the local linearization of the non-linear source term to ensure the global mass conservation and the diagonal dominance of discretized equations in the computation. The proposed numerical methods are successfully applied to dual-continuum gas reservoir simulation. Mass conservation is satisfied while the computation becomes robust. Numerical results show that the location of the production well relative to the large-permeability region is very sensitive to the production efficiency. It decreases apparently when the production well is moved from the large-permeability region to the small-permeability region, even though the well is very close to the interface of the two regions. The production well is suggested to be placed inside the large-permeability region regardless of the specific position.

  15. Controlling effect of fractures on gas accumulation and production within the tight sandstone: A case study on the Jurassic Dibei gas reservoir in the eastern part of the Kuqa foreland basin, China

    OpenAIRE

    Lu, Hui; Lu, Xuesong; Fan, Junjia; Zhao, Mengjun; Wei, Hongxing; Zhang, Baoshou; Lu, Yuhong

    2016-01-01

    Using Dibei tight sandstone gas reservoir in the eastern part of the Kuqa foreland basin as an example, this paper discusses tight sandstone reservoir fractures characterization, its effect on storage space and gas flow capacity, and its contribution to gas accumulation, enrichment and production in tight sandstone reservoir by using laser scanning confocal microscope (LSCM) observation, mercury intrusion capillary pressure (MICP) testing, and gas-water two-phase relative permeability testing...

  16. Challenges to and countermeasures for the production stabilization of tight sandstone gas reservoirs of the Sulige Gasfield, Ordos Basin

    Directory of Open Access Journals (Sweden)

    Tao Lu

    2015-10-01

    Full Text Available With the grade of hydrocarbon resources becoming poorer, tight sandstone gas reservoirs may serve as the key to the enhancement of both reserves and productivity. Accordingly, high efficient and sustainable development of the large and over-large tight sandstone reservoirs is very important. However, currently, there is no effective method available for macro-analysis. Based on the latest research findings from the Sulige Gasfield, the largest onshore tight sandstone gas reservoir in China, studies were conducted in five aspects, i.e. reserve scale, development scale, dynamic reserve evaluation, rules in production declines of gasfields and undeveloped resource evaluation, to identify challenges to the production stabilization of gas reservoirs. In addition, key evidences and constraints for the solutions to the difficulties in production stabilization were proposed to provide necessary technical supports for high-efficient development in later stages. Research results show that the major challenges to production stabilization include seven aspects, such as low development induced by improper allocation of well patterns, uneven declines in productivity induced by specific features of reservoir formations and fluids, difficulties in the development of some reserves due to complex gas/water correlation, and differences in production performances by using different production techniques. Finally, guided by the development principles of “promoting productivity by using innovative technologies in different spaces and time”, 13 key technologies, such as comprehensive optimization of development well patterns, multi-dimensional matrix for gas well management and “positive” water discharging and gas production technologies, were proposed to further prolong peak production time and enhance the recovery rates of tight gas reservoirs.

  17. A thermodynamics model for morphology prediction of aluminum nano crystals fabricated by the inert gas condensation method

    Science.gov (United States)

    Wen, Yu; Xia, Dehong

    2018-03-01

    The purpose of this study is to provide scientific guidance for the morphological control of nanoparticle synthesis using the gas phase method. A universal thermodynamics model is developed to predict the morphology of nanoparticles fabricated using the inert gas condensation method. By using this model, the morphologies of aluminum nanocrystals are predicted under various preparation conditions. There are two types of energy that jointly determine the formation of nanoparticle morphology—Gibbs free energy for nanoparticles and energy variation during the process. The results show that energy variation dominates morphology formation when the cooling rate is less than 2 × 1011 K s-1 in the aluminum nanocrystal production process. At the beginning of the nanoparticle growth, the most stable morphology is predicted to be spherical, but the energetically preferred morphology becomes cubic as the particle grows. The turning point in the particle size at which spherical morphology is no longer the most stable morphology is exhibited as a function of pressure in a condensation chamber for different cooling rates. In this paper, we focus on the need for morphology prediction based on preparation conditions. It is concluded that nanoparticles with various morphologies could be obtained by adjusting the cooling rate and pressure in the condensation chamber.

  18. Impact of Reservoir Fluid Saturation on Seismic Parameters: Endrod Gas Field, Hungary

    Science.gov (United States)

    El Sayed, Abdel Moktader A.; El Sayed, Nahla A.

    2017-12-01

    Outlining the reservoir fluid types and saturation is the main object of the present research work. 37 core samples were collected from three different gas bearing zones in the Endrod gas field in Hungary. These samples are belonging to the Miocene and the Upper - Lower Pliocene. These samples were prepared and laboratory measurements were conducted. Compression and shear wave velocity were measured using the Sonic Viewer-170-OYO. The sonic velocities were measured at the frequencies of 63 and 33 kHz for compressional and shear wave respectively. All samples were subjected to complete petrophysical investigations. Sonic velocities and mechanical parameters such as young’s modulus, rigidity, and bulk modulus were measured when samples were saturated by 100%-75%-0% brine water. Several plots have been performed to show the relationship between seismic parameters and saturation percentages. Robust relationships were obtained, showing the impact of fluid saturation on seismic parameters. Seismic velocity, Poisson’s ratio, bulk modulus and rigidity prove to be applicable during hydrocarbon exploration or production stages. Relationships among the measured seismic parameters in gas/water fully and partially saturated samples are useful to outline the fluid type and saturation percentage especially in gas/water transitional zones.

  19. Pore characteristics of shale gas reservoirs from the Lower Paleozoic in the southern Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Xianqing Li

    2016-06-01

    Full Text Available Data was acquired from both the drillings and core samples of the Lower Paleozoic Qiongzhusi and Longmaxi Formations' marine shale gas reservoirs in the southern Sichuan Basin by means of numerous specific experimental methods such as organic geochemistry, organic petrology, and pore analyses. Findings helped determine the characteristics of organic matter, total porosity, microscopic pore, and pore structure. The results show that the Lower Paleozoic marine shale in the south of the Sichuan Basin are characterized by high total organic carbon content (most TOC>2.0%, high thermal maturity level (RO = 2.3%–3.8%, and low total porosity (1.16%–6.87%. The total organic carbon content and thermal maturity level of the Qiongzhusi Formation shale are higher than those of the Longmaxi Formation shale, while the total porosity of the Qiongzhusi Formation shale is lower than that of the Longmaxi Formation shale. There exists intergranular pore, dissolved pore, crystal particle pore, particle edge pore, and organic matter pore in the Lower Paleozoic Qiongzhusi Formation and Longmaxi Formation shale. There are more micro-nano pores developed in the Longmaxi Formation shales than those in the Qiongzhusi Formation shales. Intergranular pores, dissolved pores, as well as organic matter pores, are the most abundant, these are primary storage spaces for shale gas. The microscopic pores in the Lower Paleozoic shales are mainly composed of micropores, mesopores, and a small amount of macropores. The micropore and mesopore in the Qiongzhusi Formation shale account for 83.92% of the total pore volume. The micropore and mesopore in the Longmaxi Formation shale accounts for 78.17% of the total pore volume. Thus, the micropores and mesopores are the chief components of microscopic pores in the Lower Paleozoic shale gas reservoirs in the southern Sichuan Basin.

  20. Forecasting of reservoir pressures of oil and gas bearing complexes in northern part of West Siberia for safety oil and gas deposits exploration and development

    Science.gov (United States)

    Gorbunov, P. A.; Vorobyov, S. V.

    2017-10-01

    In the paper the features of reservoir pressures changes in the northern part of West Siberian oil-and gas province are described. This research is based on the results of hydrodynamic studies in prospecting and explorating wells in Yamal-Nenets Autonomous District. In the Cenomanian, Albian, Aptian and in the top of Neocomian deposits, according to the research, reservoir pressure is usually equal to hydrostatic pressure. At the bottom of the Neocomian and Jurassic deposits zones with abnormally high reservoir pressures (AHRP) are distinguished within Gydan and Yamal Peninsula and in the Nadym-Pur-Taz interfluve. Authors performed the unique zoning of the territory of the Yamal-Nenets Autonomous District according to the patterns of changes of reservoir pressures in the section of the sedimentary cover. The performed zoning and structural modeling allow authors to create a set of the initial reservoir pressures maps for the main oil and gas bearing complexes of the northern part of West Siberia. The results of the survey should improve the efficiency of exploration drilling by preventing complications and accidents during this operation in zones with abnormally high reservoir pressures. In addition, the results of the study can be used to estimate gas resources within prospective areas of Yamal-Nenets Autonomous District.

  1. Archie’s saturation exponent for natural gas hydrate in coarse-grained reservoirs

    Science.gov (United States)

    Cook, Ann E.; Waite, William F.

    2018-01-01

    Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice‐bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate‐bearing sands. In this work, we calibrate n for hydrate‐bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L‐38, by establishing an independent downhole Sh profile based on compressional‐wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L‐38 well, we also apply this method to two marine, coarse‐grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313‐H and Green Canyon 955‐H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse‐grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.

  2. Water recovery and air humidification by condensing the moisture in the outlet gas of a proton exchange membrane fuel cell stack

    International Nuclear Information System (INIS)

    Wan, Z.M.; Wan, J.H.; Liu, J.; Tu, Z.K.; Pan, M.; Liu, Z.C.; Liu, W.

    2012-01-01

    Humidification is one of the most important factors for the operation of proton exchange membrane fuel cell (PEMFC). To maintain the membrane at hydrated state, plenty of water is needed for the state-of-the-art of PEMFC technology, especially in large power applications or long time operation. A condenser is introduced to separate liquid water from the air outlet for air self-sufficient in water of the stack in this study. The condensed temperature at the outlet of the condenser and water recovered amount for air self-sufficient in water are investigated theoretically and experimentally. It is shown that the condensed temperature for air self-sufficient in water is irrelevant with the working current of the stack. When the condenser outlet temperature was above the theoretical line, recovery water was not sufficient for the air humidification. On the contrary, it is sufficient while the temperature was below the theoretical line. It is also shown that when the moisture is sufficiently cooled, large amount water can be separated from the outlet gas, and it increased almost linearly with the time. With the introduction of the condenser, the recovered amount of water can easily satisfy the air self-sufficient in water by condensing the outlet gas to a proper temperature. - Highlights: ► We introduce a condenser to separate liquid water from the air outlet in the stack. ► The mechanism of air self-sufficient in water by condensing gas is presented. ► The condensed temperature and water recovered amount are investigated. ► An experiment is present to validate simplicity and feasibility of the criterion. ► The criterion for air humidification is used for choosing the condenser.

  3. Naturally fractured tight gas: Gas reservoir detection optimization. Quarterly report, January 1--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Economically viable natural gas production from the low permeability Mesaverde Formation in the Piceance Basin, Colorado requires the presence of an intense set of open natural fractures. Establishing the regional presence and specific location of such natural fractures is the highest priority exploration goal in the Piceance and other western US tight, gas-centered basins. Recently, Advanced Resources International, Inc. (ARI) completed a field program at Rulison Field, Piceance Basin, to test and demonstrate the use of advanced seismic methods to locate and characterize natural fractures. This project began with a comprehensive review of the tectonic history, state of stress and fracture genesis of the basin. A high resolution aeromagnetic survey, interpreted satellite and SLAR imagery, and 400 line miles of 2-D seismic provided the foundation for the structural interpretation. The central feature of the program was the 4.5 square mile multi-azimuth 3-D seismic P-wave survey to locate natural fracture anomalies. The interpreted seismic attributes are being tested against a control data set of 27 wells. Additional wells are currently being drilled at Rulison, on close 40 acre spacings, to establish the productivity from the seismically observed fracture anomalies. A similar regional prospecting and seismic program is being considered for another part of the basin. The preliminary results indicate that detailed mapping of fault geometries and use of azimuthally defined seismic attributes exhibit close correlation with high productivity gas wells. The performance of the ten new wells, being drilled in the seismic grid in late 1996 and early 1997, will help demonstrate the reliability of this natural fracture detection and mapping technology.

  4. Non-equilibrium simulation of CH4 production through the depressurization method from gas hydrate reservoirs

    Science.gov (United States)

    Qorbani, Khadijeh; Kvamme, Bjørn

    2016-04-01

    Natural gas hydrates (NGHs) in nature are formed from various hydrate formers (i.e. aqueous, gas, and adsorbed phases). As a result, due to Gibbs phase rule and the combined first and second laws of thermodynamics CH4-hydrate cannot reach thermodynamic equilibrium in real reservoir conditions. CH4 is the dominant component in NGH reservoirs. It is formed as a result of biogenic degradation of biological material in the upper few hundred meters of subsurface. It has been estimated that the amount of fuel-gas reserve in NGHs exceed the total amount of fossil fuel explored until today. Thus, these reservoirs have the potential to satisfy the energy requirements of the future. However, released CH4 from dissociated NGHs could find its way to the atmosphere and it is a far more aggressive greenhouse gas than CO2, even though its life-time is shorter. Lack of reliable field data makes it difficult to predict the production potential, as well as safety of CH4 production from NGHs. Computer simulations can be used as a tool to investigate CH4 production through different scenarios. Most hydrate simulators within academia and industry treat hydrate phase transitions as an equilibrium process and those which employ the kinetic approach utilize simple laboratory data in their models. Furthermore, it is typical to utilize a limited thermodynamic description where only temperature and pressure projections are considered. Another widely used simplification is to assume only a single route for the hydrate phase transitions. The non-equilibrium nature of hydrate indicates a need for proper kinetic models to describe hydrate dissociation and reformation in the reservoir with respect to thermodynamics variables, CH4 mole-fraction, pressure and temperature. The RetrasoCodeBright (RCB) hydrate simulator has previously been extended to model CH4-hydrate dissociation towards CH4 gas and water. CH4-hydrate is added to the RCB data-base as a pseudo mineral. Phase transitions are treated

  5. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  6. Numerical simulations of depressurization-induced gas production from gas hydrate reservoirs at the Walker Ridge 312 site, northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Myshakin, Evgeniy M.; Gaddipati, Manohar; Rose, Kelly; Anderson, Brian J.

    2012-06-01

    In 2009, the Gulf of Mexico (GOM) Gas Hydrates Joint-Industry-Project (JIP) Leg II drilling program confirmed that gas hydrate occurs at high saturations within reservoir-quality sands in the GOM. A comprehensive logging-while-drilling dataset was collected from seven wells at three sites, including two wells at the Walker Ridge 313 site. By constraining the saturations and thicknesses of hydrate-bearing sands using logging-while-drilling data, two-dimensional (2D), cylindrical, r-z and three-dimensional (3D) reservoir models were simulated. The gas hydrate occurrences inferred from seismic analysis are used to delineate the areal extent of the 3D reservoir models. Numerical simulations of gas production from the Walker Ridge reservoirs were conducted using the depressurization method at a constant bottomhole pressure. Results of these simulations indicate that these hydrate deposits are readily produced, owing to high intrinsic reservoir-quality and their proximity to the base of hydrate stability. The elevated in situ reservoir temperatures contribute to high (5–40 MMscf/day) predicted production rates. The production rates obtained from the 2D and 3D models are in close agreement. To evaluate the effect of spatial dimensions, the 2D reservoir domains were simulated at two outer radii. The results showed increased potential for formation of secondary hydrate and appearance of lag time for production rates as reservoir size increases. Similar phenomena were observed in the 3D reservoir models. The results also suggest that interbedded gas hydrate accumulations might be preferable targets for gas production in comparison with massive deposits. Hydrate in such accumulations can be readily dissociated due to heat supply from surrounding hydrate-free zones. Special cases were considered to evaluate the effect of overburden and underburden permeability on production. The obtained data show that production can be significantly degraded in comparison with a case using

  7. Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico

    Science.gov (United States)

    Cook, Anne E.; Anderson, Barbara I.; Rasmus, John; Sun, Keli; Li, Qiming; Collett, Timothy S.; Goldberg, David S.

    2012-01-01

    We present new results and interpretations of the electricalanisotropy and reservoir architecture in gashydrate-bearingsands using logging data collected during the Gulf of MexicoGasHydrate Joint Industry Project Leg II. We focus specifically on sandreservoirs in Hole Alaminos Canyon 21 A (AC21-A), Hole Green Canyon 955 H (GC955-H) and Hole Walker Ridge 313 H (WR313-H). Using a new logging-while-drilling directional resistivity tool and a one-dimensional inversion developed by Schlumberger, we resolve the resistivity of the current flowing parallel to the bedding, R| and the resistivity of the current flowing perpendicular to the bedding, R|. We find the sandreservoir in Hole AC21-A to be relatively isotropic, with R| and R| values close to 2 Ω m. In contrast, the gashydrate-bearingsandreservoirs in Holes GC955-H and WR313-H are highly anisotropic. In these reservoirs, R| is between 2 and 30 Ω m, and R| is generally an order of magnitude higher. Using Schlumberger's WebMI models, we were able to replicate multiple resistivity measurements and determine the formation resistivity the gashydrate-bearingsandreservoir in Hole WR313-H. The results showed that gashydrate saturations within a single reservoir unit are highly variable. For example, the sand units in Hole WR313-H contain thin layers (on the order of 10-100 cm) with varying gashydrate saturations between 15 and 95%. Our combined modeling results clearly indicate that the gashydrate-bearingsandreservoirs in Holes GC955-H and WR313-H are highly anisotropic due to varying saturations of gashydrate forming in thin layers within larger sand units.

  8. Stability of Fluorosurfactant Adsorption on Mineral Surface for Water Removal in Tight Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Lijun You

    2015-01-01

    Full Text Available Long-term effectiveness of rock wettability alteration for water removal during gas production from tight reservoir depends on the surfactant adsorption on the pore surface of a reservoir. This paper selected typical cationic fluorosurfactant FW-134 as an example and took advantage of Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and atomic force microscope (AFM to investigate its adsorption stability on the rock mineral surface under the oscillation condition at high temperature for a long time. The experimental results indicate that the F element content on the sample surface increases obviously, the surface structure of fluorine-carbonization also undergoes a significant change, and the fluorine surfactant exhibits a good interfacial modification and wettability alteration ability due to its adsorption on the pore surface transforming the chemical structure of the original surface. The adsorption increases indistinctly with the concentration of over 0.05% due to a single layer adsorption structure and is mainly electrostatic adsorption because the chemical bonding between the fluorosurfactant and the rock mineral surface, the hydrogen bonding, is weak and inconspicuous.

  9. Relationships between water and gas chemistry in mature coalbed methane reservoirs of the Black Warrior Basin

    Science.gov (United States)

    Pashin, Jack C.; McIntyre-Redden, Marcella R.; Mann, Steven D.; Kopaska-Merkel, David C.; Varonka, Matthew S.; Orem, William H.

    2014-01-01

    Water and gas chemistry in coalbed methane reservoirs of the Black Warrior Basin reflects a complex interplay among burial processes, basin hydrodynamics, thermogenesis, and late-stage microbial methanogenesis. These factors are all important considerations for developing production and water management strategies. Produced water ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride brine. The hydrodynamic framework of the basin is dominated by structurally controlled fresh-water plumes that formed by meteoric recharge along the southeastern margin of the basin. The produced water contains significant quantities of hydrocarbons and nitrogen compounds, and the produced gas appears to be of mixed thermogenic-biogenic origin.Late-stage microbial methanogenesis began following unroofing of the basin, and stable isotopes in the produced gas and in mineral cements indicate that late-stage methanogenesis occurred along a CO2-reduction metabolic pathway. Hydrocarbons, as well as small amounts of nitrate in the formation water, probably helped nourish the microbial consortia, which were apparently active in fresh to hypersaline water. The produced water contains NH4+ and NH3, which correlate strongly with brine concentration and are interpreted to be derived from silicate minerals. Denitrification reactions may have generated some N2, which is the only major impurity in the coalbed gas. Carbon dioxide is a minor component of the produced gas, but significant quantities are dissolved in the formation water. Degradation of organic compounds, augmented by deionization of NH4+, may have been the principal sources of hydrogen facilitating late-stage CO2 reduction.

  10. Phase field theory modeling of methane fluxes from exposed natural gas hydrate reservoirs

    Science.gov (United States)

    Kivelä, Pilvi-Helinä; Baig, Khuram; Qasim, Muhammad; Kvamme, Bjørn

    2012-12-01

    Fluxes of methane from offshore natural gas hydrate into the oceans vary in intensity from massive bubble columns of natural gas all the way down to fluxes which are not visible within human eye resolution. The driving force for these fluxes is that methane hydrate is not stable towards nether minerals nor towards under saturated water. As such fluxes of methane from deep below hydrates zones may diffuse through fluid channels separating the hydrates from minerals surfaces and reach the seafloor. Additional hydrate fluxes from hydrates dissociating towards under saturated water will have different characteristics depending on the level of dynamics in the actual reservoirs. If the kinetic rate of hydrate dissociation is smaller than the mass transport rate of distributing released gas into the surrounding water through diffusion then hydrodynamics of bubble formation is not an issue and Phase Field Theory (PFT) simulations without hydrodynamics is expected to be adequate [1, 2]. In this work we present simulated results corresponding to thermodynamic conditions from a hydrate field offshore Norway and discuss these results with in situ observations. Observed fluxes are lower than what can be expected from hydrate dissociating and molecularly diffusing into the surrounding water. The PFT model was modified to account for the hydrodynamics. The modified model gave higher fluxes, but still lower than the observed in situ fluxes.

  11. Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems

    Science.gov (United States)

    Winters, William J.; Wilcox-Cline, R.W.; Long, P.; Dewri, S.K.; Kumar, P.; Stern, Laura A.; Kerr, Laura A.

    2014-01-01

    The sediment characteristics of hydrate-bearing reservoirs profoundly affect the formation, distribution, and morphology of gas hydrate. The presence and type of gas, porewater chemistry, fluid migration, and subbottom temperature may govern the hydrate formation process, but it is the host sediment that commonly dictates final hydrate habit, and whether hydrate may be economically developed.In this paper, the physical properties of hydrate-bearing regions offshore eastern India (Krishna-Godavari and Mahanadi Basins) and the Andaman Islands, determined from Expedition NGHP-01 cores, are compared to each other, well logs, and published results of other hydrate reservoirs. Properties from the hydrate-free Kerala-Konkan basin off the west coast of India are also presented. Coarser-grained reservoirs (permafrost-related and marine) may contain high gas-hydrate-pore saturations, while finer-grained reservoirs may contain low-saturation disseminated or more complex gas-hydrates, including nodules, layers, and high-angle planar and rotational veins. However, even in these fine-grained sediments, gas hydrate preferentially forms in coarser sediment or fractures, when present. The presence of hydrate in conjunction with other geologic processes may be responsible for sediment porosity being nearly uniform for almost 500 m off the Andaman Islands.Properties of individual NGHP-01 wells and regional trends are discussed in detail. However, comparison of marine and permafrost-related Arctic reservoirs provides insight into the inter-relationships and common traits between physical properties and the morphology of gas-hydrate reservoirs regardless of location. Extrapolation of properties from one location to another also enhances our understanding of gas-hydrate reservoir systems. Grain size and porosity effects on permeability are critical, both locally to trap gas and regionally to provide fluid flow to hydrate reservoirs. Index properties corroborate more advanced

  12. Geochemical analysis of atlantic rim water, carbon county, wyoming: New applications for characterizing coalbed natural gas reservoirs

    Science.gov (United States)

    McLaughlin, J.F.; Frost, C.D.; Sharma, Shruti

    2011-01-01

    Coalbed natural gas (CBNG) production typically requires the extraction of large volumes of water from target formations, thereby influencing any associated reservoir systems. We describe isotopic tracers that provide immediate data on the presence or absence of biogenic natural gas and the identify methane-containing reservoirs are hydrologically confined. Isotopes of dissolved inorganic carbon and strontium, along with water quality data, were used to characterize the CBNG reservoirs and hydrogeologic systems of Wyoming's Atlantic Rim. Water was analyzed from a stream, springs, and CBNG wells. Strontium isotopic composition and major ion geochemistry identify two groups of surface water samples. Muddy Creek and Mesaverde Group spring samples are Ca-Mg-S04-type water with higher 87Sr/86Sr, reflecting relatively young groundwater recharged from precipitation in the Sierra Madre. Groundwaters emitted from the Lewis Shale springs are Na-HCO3-type waters with lower 87Sr/86Sr, reflecting sulfate reduction and more extensive water-rock interaction. To distinguish coalbed waters, methanogenically enriched ??13CDIC wasused from other natural waters. Enriched ??13CDIC, between -3.6 and +13.3???, identified spring water that likely originates from Mesaverde coalbed reservoirs. Strongly positive ??13CDIC, between +12.6 and +22.8???, identified those coalbed reservoirs that are confined, whereas lower ??13CDIC, between +0.0 and +9.9???, identified wells within unconfined reservoir systems. Copyright ?? 2011. The American Association of Petroleum Geologists. All rights reserved.

  13. Key seismic exploration technology for the Longwangmiao Fm gas reservoir in Gaoshiti–Moxi area, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guangrong Zhang

    2016-10-01

    Full Text Available The dolomite reservoirs of the Lower Cambrian Longwangmiao Fm in the Gaoshiti–Moxi area, Sichuan Basin, are deeply buried (generally 4400–4900 m, with high heterogeneity, making reservoir prediction difficult. In this regard, key seismic exploration technologies were developed through researches. Firstly, through in-depth analysis on the existing geologic, drilling, seismic data and available research findings, basic surface and subsurface structures and geologic conditions within the study area were clarified. Secondly, digital seismic data acquisition technologies with wide azimuth, wide frequency band and minor bins were adopted to ensure even distribution of coverage of target formations through optimization of the 3D seismic geometry. In this way, high-accuracy 3D seismic data can be acquired through shallow, middle and deep formations. Thirdly, well-control seismic data processing technologies were applied to enhance the signal-to-noise ratio (SNR of seismic data for deep formations. Fourthly, a seismic response model was established specifically for the Longwangmiao Fm reservoir. Quantitative prediction of the reservoir was performed through pre-stack geo-statistics. In this way, plan distribution of reservoir thicknesses was mapped. Fifthly, core tests and logging data analysis were conducted to determine gas-sensitive elastic parameters, which were then used in pre-stack hydrocarbon detection to eliminate the multiple solutions in seismic data interpretation. It is concluded that application of the above-mentioned key technologies effectively promote the discovery of largescale marine carbonate gas reservoirs of the Longwangmiao Fm.

  14. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Franklin M. Orr, Jr.

    2002-06-30

    This report outlines progress in the third quarter of the second year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs''. High order finite difference schemes for one-dimensional, two-phase, multicomponent displacements are investigated. Numerical tests are run using a three component fluid description for a case when the interaction between phase behavior and flow is strong. Some currently used total variation diminishing (TVD) methods produce unstable results. A third order essentially non-oscillatory (ENO) method captures the effects of phase behavior for this test case. Possible modifications to ensure stability are discussed along with plans to incorporate higher order schemes into the 3DSL streamline simulator.

  15. Conversion of straight-run gas-condensate benzenes into high- octane gasolines based on modified ZSM-5 zeolites

    International Nuclear Information System (INIS)

    Erofeev, V; Reschetilowski, V; Khomajakov, I; Egorova, L; Volgina, T; Tatarkina, A

    2014-01-01

    This paper describes the conversion of straight-run benzene of gas condensate into high-octane gasoline based on zeolite catalyst ZSM-5, modified in binary system oxide- based Sn (III) and Bi (III). It was defined that the introduction of the binary system oxide-based Sn(III) and Bi (III) into the basic zeolite results in the 2-fold increase of its catalytic activity.High-octane gasoline converted from straight-run benzene is characterized by a low benzol content in comparison to the high-octane benzenes produced during the catalytic reforming

  16. Investigation of gas hydrate-bearing sandstone reservoirs at the Mount Elbert stratigraphic test well, Milne Point, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Hunter, R. [ASRC Energy Services, Anchorage, AK (United States); Collett, T. [United States Geological Survey, Denver, CO (United States); Digert, S.; Weeks, M. [BP Exploration Alaska Inc., Anchorage, AK (United States); Hancock, S. [RPS Energy Canada, Calgary, AB (Canada)

    2008-07-01

    Gas hydrates occur within the shallow sand reservoirs on the Alaska North Slope (ANS). The mean estimate for gas hydrate in-place resources on the ANS is 16.7 trillion cubic metres. In the past, they were viewed primarily as a drilling hazard to be managed during the development of deeper oil resources. In 2002, a cooperative research program was launched to help determine the potential for environmentally-sound and economically-viable production of methane from gas hydrates. Additional objectives were to refine ANS gas hydrate resource potential, improve the geologic and geophysical methods used to locate and asses gas hydrate resources, and develop numerical modeling capabilities that are essential in both planning and evaluating gas hydrate field programs. This paper reviewed the results of the an extensive data collection effort conducted at the Mount Elbert number 1 gas hydrates stratigraphic test well on the ANS. The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. The logging program confirmed the existence of approximately 30 m of gas hydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60 to 75 per cent. Continuous wire-line coring operations achieved 85 per cent recovery. The Mount Elbert field program also involved gas and water sample collection. It demonstrated the ability to safely and efficiently conduct a research-level open-hole data acquisition program in shallow, sub-permafrost sediments and increased confidence in gas hydrate resource assessment methodologies for the ANS. 10 refs., 9 figs.

  17. Studies of cluster-assembled materials: From gas phase to condensed phase

    Science.gov (United States)

    Gao, Lin

    Clusters, defined as "a number of similar things that occur together" in Webster's dictionary, has different meanings depending on the given subject. To physicists and chemists, the word cluster means "a group of atoms or molecules formed by interactions ranging from very weak van der Waals interactions to strong ionic bonds." Unlike molecules, which are made by nature and are stable under ambient conditions, clusters discovered in a laboratory are often metastable. Molecules have specific stoichiometry, whereas the cluster's composition can usually be altered atom by atom. Thus, clusters can be taken as intrinsically "artificial molecules" with considerably more tunabilities in their properties. Research into the relative stability and instability of clusters has in recent years become a very active research area, especially following the study by Khanna and Castleman that first suggested that by varying size and composition, clusters can expand the periodic table to the 3 rd-dimension; that is, clusters can mimic the chemistry of atoms and may, therefore, be used as the building blocks of new materials. The discovery of Met-Cars has drawn worldwide interests and has been actively investigated by researchers from a variety of fields, including physics, chemistry and material science. However, the unsuccessful search for a solvent capable of isolating Met-Cars has impeded progress in characterizing the material in the condensed state and, hence, limited its potential applications as a novel nanoscale material. An alternative method involving the deposition of mass-gated species and the subsequent structural investigation via Transmission Electron Microscopy (TEM) has been employed. With particularly interesting results, soft-landed deposits of zirconium Met-Cars were found to form a face-centered-cubic (FCC) structure with a lattice parameter ˜ 15A. The production of Met-Cars is conducted with the direct laser vaporization (DLV) of metal/graphite composite pellets

  18. Field-analysis of condensing gas and oil-fired heating installations in the refurbishment area (FAGO); Feldanalyse von kondensierenden Gas- und Oelfeuerungsanlagen im Sanierungsbereich (FAGO)

    Energy Technology Data Exchange (ETDEWEB)

    Erb, M. [Dr. Eicher und Pauli AG, Liestal (Switzerland)

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined the performance of twelve condensing heating systems fired by natural gas or heating-oil in real-life situations. The objective of the project - to examine the overall performance and the efficiency of the systems - is discussed. Figures are presented on the measurements made with respect to efficiency of the units. Values are presented for both the lower heating value of the fuels and for the proportion of heating energy obtained from the condensation of water in the flue gases. The over-dimensioning of the systems is commented on. The electricity consumption of the units is also looked at.

  19. Application of Evaporative Cooling for the Condensation of Water Vapors from a Flue Gas Waste Heat Boilers CCP

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2016-01-01

    Full Text Available The object of the study are boilers that burn organic fuel and the recovery boilers (RB of the combined cycle plant (CCP, which are al-so working on the products of the combustion of hydrocarbon fuels. The purpose of research is to find technologies that increase efficiency of the thermal power plant (TPP and technologies that reduce the environmental impact on the environment by burning fossil fuels. The paper deals with the technology of the boilers burning hydrocarbon fuel with condensation of water vapor from the exhaust flue gases. Considered the problems caused by using of this technology. Research shows that the main problem of this technology in the boilers is the lack of reliable methods of calculation of heat exchangers, condensers. Particular attention is paid to the application of this technology in the recovery boilers combined-cycle plants, which are currently gaining increasing use in the generation of electricity from the combustion of gas in power plants. It is shown that the application of technology of condensation of water vapor in RB CCP, the temperature decreases of exhaust gases from 100 to 40 °С, allows increasing the effi-ciency of the RB with 86.2 % to 99.5 %, i.e. at 12.3 %, and increase the ef-ficiency of the CCP at 2.8 %.

  20. Inert-Gas Condensed Co-W Nanoclusters: Formation, Structure and Magnetic Properties

    Science.gov (United States)

    Golkar-Fard, Farhad Reza

    Rare-earth permanent magnets are used extensively in numerous technical applications, e.g. wind turbines, audio speakers, and hybrid/electric vehicles. The demand and production of rare-earth permanent magnets in the world has in the past decades increased significantly. However, the decrease in export of rare-earth elements from China in recent time has led to a renewed interest in developing rare-earth free permanent magnets. Elements such as Fe and Co have potential, due to their high magnetization, to be used as hosts in rare-earth free permanent magnets but a major challenge is to increase their magnetocrystalline anisotropy constant, K1, which largely drives the coercivity. Theoretical calculations indicate that dissolving the 5d transition metal W in Fe or Co increases the magnetocrystalline anisotropy. The challenge, though, is in creating a solid solution in hcp Co or bcc Fe, which under equilibrium conditions have negligible solubility. In this dissertation, the formation, structure, and magnetic properties of sub-10 nm Co-W clusters with W content ranging from 4 to 24 atomic percent were studied. Co-W alloy clusters with extended solubility of W in hcp Co were produced by inert gas condensation. The different processing conditions such as the cooling scheme and sputtering power were found to control the structural state of the as-deposited Co-W clusters. For clusters formed in the water-cooled formation chamber, the mean size and the fraction crystalline clusters increased with increasing power, while the fraction of crystalline clusters formed in the liquid nitrogen-cooled formation chamber was not as affected by the sputtering power. For the low W content clusters, the structural characterization revealed clusters predominantly single crystalline hcp Co(W) structure, a significant extension of W solubility when compared to the equilibrium solubility, but fcc Co(W) and Co3W structures were observed in very small and large clusters, respectively. At high

  1. DOE THREE-DIMENSIONAL STRUCTURE AND PHYSICAL PROPERTIES OF A METHANE HYDRATE DEPOSIT AND GAS RESERVOIR, BLAKE RIDGE

    Energy Technology Data Exchange (ETDEWEB)

    W. Steven Holbrook

    2004-11-11

    This report contains a summary of work conducted and results produced under the auspices of award DE-FC26-00NT40921, ''DOE Three-Dimensional Structure and Physical Properties of a Methane Hydrate Deposit and Gas Reservoir, Blake Ridge.'' This award supported acquisition, processing, and interpretation of two- and three-dimensional seismic reflection data over a large methane hydrate reservoir on the Blake Ridge, offshore South Carolina. The work supported by this project has led to important new conclusions regarding (1) the use of seismic reflection data to directly detect methane hydrate, (2) the migration and possible escape of free gas through the hydrate stability zone, and (3) the mechanical controls on the maximum thickness of the free gas zone and gas escape.

  2. A fast complex domain-matching pursuit algorithm and its application to deep-water gas reservoir detection

    Science.gov (United States)

    Zeng, Jing; Huang, Handong; Li, Huijie; Miao, Yuxin; Wen, Junxiang; Zhou, Fei

    2017-12-01

    The main emphasis of exploration and development is shifting from simple structural reservoirs to complex reservoirs, which all have the characteristics of complex structure, thin reservoir thickness and large buried depth. Faced with these complex geological features, hydrocarbon detection technology is a direct indication of changes in hydrocarbon reservoirs and a good approach for delimiting the distribution of underground reservoirs. It is common to utilize the time-frequency (TF) features of seismic data in detecting hydrocarbon reservoirs. Therefore, we research the complex domain-matching pursuit (CDMP) method and propose some improvements. First is the introduction of a scale parameter, which corrects the defect that atomic waveforms only change with the frequency parameter. Its introduction not only decomposes seismic signal with high accuracy and high efficiency but also reduces iterations. We also integrate jumping search with ergodic search to improve computational efficiency while maintaining the reasonable accuracy. Then we combine the improved CDMP with the Wigner-Ville distribution to obtain a high-resolution TF spectrum. A one-dimensional modeling experiment has proved the validity of our method. Basing on the low-frequency domain reflection coefficient in fluid-saturated porous media, we finally get an approximation formula for the mobility attributes of reservoir fluid. This approximation formula is used as a hydrocarbon identification factor to predict deep-water gas-bearing sand of the M oil field in the South China Sea. The results are consistent with the actual well test results and our method can help inform the future exploration of deep-water gas reservoirs.

  3. High Pressure Behavior of Hydrocarbons. Joule-Thomson Expansion of Gas Condensates Comportement des hydrocarbures à haute pression. Détente de Joule-Thomson de gaz à condensats

    Directory of Open Access Journals (Sweden)

    Kortekaas W. G.

    2006-12-01

    Full Text Available This paper presents calculations of Joule-Thomson inversion effects in high-pressure-high-temperature gas condensates. Isenthalpic expansions were modeled for several gas condensate mixtures reported in literature using the Soave-Redlich-Kwong and the Peng-Robinson equations of state. The calculations confirmed qualitatively the heating of gas condensates at expansion. Although reservoir temperatures are in the region where cooling occurs, i. e. , inside the inversion curve, it was shown that reservoir pressures lie outside this region, and that the temperature will increase until the inversion curve is reached. The calculated temperature increases are not very large. Although exact values depend on fluid composition, reservoir conditions, and pressure drop, typical calculated temperature increases are in the range of 10-30°C for reservoir pressures of 1000 bar. A sensitivity study showed that both reservoir pressure and fluid composition greatly affect the temperature increase. With increasing pressures and increasing amounts of heavy constituents present in gas condensate mixtures, the maximum possible temperature effect will also increase. Unfortunately, due to lack of experimental information, the reliability of the calculated results could not be verified. Cet article présente des calculs de l'effet d'inversion de Joule-Thomson pour des gaz à condensats à haute température et haute pression. La détente isenthalpique a été modélisée pour plusieurs compositions de gaz à condensats trouvées dans la littérature, en utilisant les équations d'état de Soave-Redlich-Kwong et de Peng-Robinson. Ces calculs confirment qualitativement le réchauffement des gaz à condensat lors de la détente. Bien que les températures de gisement se trouvent dans la région où un refroidissement s'observe, c'est-à-dire à l'intérieur de la courbe d'inversion, on a montré que les pressions de gisement correspondent à l'extérieur de cette r

  4. Multiple Nebular Gas Reservoirs Recorded by Oxygen Isotope Variation in a Spinel-rich CAI in CO3 MIL 090019

    Science.gov (United States)

    Simon, J. I.; Simon, S. B.; Nguyen, A. N.; Ross, D. K.; Messenger, S.

    2017-01-01

    We conducted NanoSIMS O-isotopic imaging of a primitive spinel-rich CAI spherule (27-2) from the MIL 090019 CO3 chondrite. Inclusions such as 27-2 are proposed to record inner nebula processes during an epoch of rapid solar nebula evolution. Mineralogical and textural analyses suggest that this CAI formed by high temperature reactions, partial melting, and condensation. This CAI exhibits radial O-isotopic heterogeneity among multiple occurrences of the same mineral, reflecting interactions with distinct nebular O-isotopic reservoirs.

  5. Basic design of the test facility for the two-phase critical flow with non-condensable gas

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Kim, Chang Hwe; Chung, Chang Hwan

    2000-12-01

    The two-phase critical flow test with non-condensible gas is for the simulation of the critical flow phenomena which can be occurred during SB-LOCA on SMART reactor. The basic design of the test facility for the actual installation is performed from the basis of the previous conceptual design according to the test requirements. The 1.3m 3 pressure vessel has the circulation pipeline which contains pump(5m 3 /hr), main heater(150KW) and cooler for heating the working fluid to the test temperature within 6 hours. The N2 gas, water supply line are attached to the upper part and test section, flowmeter and various sensors are installed at the lower part of the pressure vessel. The suppression tank is for the storage and cooling of the discharged water. The N2 gas storage tank provides the system pressure to the pressure vessel during the test. The 0.7m 3 N2 gas injection tank supplies the required N2 gas to the entrance of the test section. Since these N2 supply systems require much amount of gas during short period, multistage valve systems and optimal control logics are needed and applied. For the filling of the N2 gas to the N2 storage tank, 5m 3 LN2 tank and related gas converting system were designed. The operating mode of the test facility can be classified to the starting, steady, main test and cooling modes and the proper monitoring and control logics are developed for each operating mode. The operation of the test facility is performed through the PLC and the acquisition of the test data is done with DAS

  6. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms.

    Directory of Open Access Journals (Sweden)

    Chaohua Guo

    Full Text Available Development of unconventional shale gas reservoirs (SGRs has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs' production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic

  7. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms.

    Science.gov (United States)

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs' production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture

  8. Theory of a condensed charged-Bose, charged Fermi gas and Ginzburg--Landau studies of superfluid 3He

    International Nuclear Information System (INIS)

    Dahl, D.A.

    1976-01-01

    Two independent topics in the field of condensed matter physics are examined: the condensed charged-Bose, charged Fermi gas and superfluid 3 He. Green's function (field theoretic) methods are used to derive the low-temperature properties of a dense, neutral gas of condensed charged bosons and degenerate charged fermions. Restriction is made to the case where the fermion mass is much lighter than the boson mass. Linear response and the density-density correlation function are examined and shown to exhibit two collective modes: a plasmon branch and a phonon branch with speed equal to that of ionic sound in solids. Comparison with a possible astrophysical application (white dwarf stars) is made. The behavior near the superfluid transition temperature (Ginzburg--Landau regime) of 3 He is then studied. Gorkov equations are derived and studied in the weak-coupling limit. In this way the form and order of magnitude estimates of coefficients appearing in the Ginzburg--Landau theory are obtained. Weak-coupling particle and spin currents are derived. Various perturbations break the large degeneracy of the states and have experimental implications. The electric contribution to the Ginzburg--Landau free energy is studied for the proposed A and B phases. Imposition of an electric field orients the axial state, but does not give rise to shifts in the NMR resonances. Shifts and discontinuous jumps in the longitudinal and transverse signals are predicted for the Balian--Werthamer state, the details depending on the relative strengths of the fields, as well as the angle between them

  9. Acute ecotoxicology of natural oil and gas condensate to coral reef larvae

    Science.gov (United States)

    Negri, Andrew P.; Brinkman, Diane L.; Flores, Florita; Botté, Emmanuelle S.; Jones, Ross J.; Webster, Nicole S.

    2016-02-01

    Risks posed by oil spills to coral reefs are difficult to evaluate, partially due to the absence of studies that adequately assess toxicity to relevant coral reef species. Here we experimentally tested the acute toxicity of condensate, representing a fraction of light crude oil, to coral (Acropora tenuis) and sponge (Rhopaloeides odorabile) larvae. The metamorphosis of coral larvae was inhibited at total petroleum aromatic hydrocarbon (TPAH) concentrations of water accommodated fractions (WAF) as low as 103 μg l-1, similar to concentrations detected in seawater following large spills. The sensitivity of coral larvae increased by 40% when co-exposed to UV light that they might encounter in shallow reefal systems. Condensate WAF was more toxic to coral larvae than predicted by summing the toxicity of its main components (benzene, toluene, p-xylene and napthalene). In contrast, the sensitivity of sponge larvae to condensate WAF (>10,000 μg l-1 TPAH) was far less than coral in the presence and absence of UV, but similar to that of other marine invertebrates. While these results highlight the relative sensitivity of coral larvae to oil, further research is needed to better understand and predict the impacts and risks posed by hydrocarbons to tropical reef systems.

  10. Acute ecotoxicology of natural oil and gas condensate to coral reef larvae.

    Science.gov (United States)

    Negri, Andrew P; Brinkman, Diane L; Flores, Florita; Botté, Emmanuelle S; Jones, Ross J; Webster, Nicole S

    2016-02-19

    Risks posed by oil spills to coral reefs are difficult to evaluate, partially due to the absence of studies that adequately assess toxicity to relevant coral reef species. Here we experimentally tested the acute toxicity of condensate, representing a fraction of light crude oil, to coral (Acropora tenuis) and sponge (Rhopaloeides odorabile) larvae. The metamorphosis of coral larvae was inhibited at total petroleum aromatic hydrocarbon (TPAH) concentrations of water accommodated fractions (WAF) as low as 103 μg l(-1), similar to concentrations detected in seawater following large spills. The sensitivity of coral larvae increased by 40% when co-exposed to UV light that they might encounter in shallow reefal systems. Condensate WAF was more toxic to coral larvae than predicted by summing the toxicity of its main components (benzene, toluene, p-xylene and napthalene). In contrast, the sensitivity of sponge larvae to condensate WAF (>10,000 μg l(-1) TPAH) was far less than coral in the presence and absence of UV, but similar to that of other marine invertebrates. While these results highlight the relative sensitivity of coral larvae to oil, further research is needed to better understand and predict the impacts and risks posed by hydrocarbons to tropical reef systems.

  11. Design philosophy and practice of asymmetrical 3D fracturing and random fracturing: A case study of tight sand gas reservoirs in western Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2015-03-01

    Full Text Available At present two technical models are commonly taken in tight gas reservoir stimulation: conventional massive fracturing and SRV fracturing, but how to select a suitable fracturing model suitable for reservoir characteristics is still a question waiting to be answered. In this paper, based on the analysis of geological characteristics and seepage mechanism of tight gas and shale gas reservoirs, the differences between stimulation philosophy of tight gas reservoirs and shale reservoirs are elucidated, and the concept that a suitable stimulation model should be selected based on reservoir geological characteristics and seepage mechanism aiming at maximally improving the seepage capability of a reservoir. Based on this concept, two fracturing design methods were proposed for two tight gas reservoirs in western Sichuan Basin: asymmetrical 3D fracturing design (A3DF for the middle-shallow Upper Jurassic Penglaizhen Fm stacked reservoirs in which the hydraulic fractures can well match the sand spatial distribution and seepage capability of the reservoirs; SRV fracturing design which can increase fracture randomness in the sandstone and shale laminated reservoirs for the 5th Member of middle-deep Upper Triassic Xujiahe Fm. Compared with that by conventional fracturing, the average production of horizontal wells fractured by A3DF increased by 41%, indicating that A3DF is appropriate for gas reservoir development in the Penglaizhen Fm; meanwhile, the average production per well of the 5th Member of the Xujiahe Fm was 2.25 × 104 m3/d after SRV fracturing, showing that the SRV fracturing is a robust technical means for the development of this reservoir.

  12. Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.

    Science.gov (United States)

    Chevallier, Maguelonne; Krauth, Werner

    2007-11-01

    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.

  13. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  14. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  15. H2NG (hydrogen-natural gas mixtures) effects on energy performances of a condensing micro-CHP (combined heat and power) for residential applications: An expeditious assessment of water condensation and experimental analysis

    International Nuclear Information System (INIS)

    Lo Basso, Gianluigi; Santoli, Livio de; Albo, Angelo; Nastasi, Benedetto

    2015-01-01

    In order to accomplish significant primary energy saving and GHG (greenhouse gas) emissions reduction, CHP (combined heat and power) technology can be adopted largely for industrial and civil sectors. Waiting for the cutting-edge appliances (i.e. Fuel Cell) wide deployment, ICEs (internal combustion engines) fuelled with an environmentally-friendly fuel, such as H 2 NG (hydrogen-natural gas mixtures) could represent the bridge technology towards the forthcoming pure hydrogen economy. This paper deals with the results of an experimental campaign carried out on a Single Cylinder ICE, fuelled with NG (natural gas) and H 2 NG @ 15% vol. In detail, energy performances were assessed at rated and partial loads. From data analysis, it emerged that the electrical efficiency increased up to 2.28%, at the expense of the heat recovery one, having added hydrogen. Additionally, due to the higher water content in exhaust gas when H 2 NG is burned, it was investigated on how heat recovery efficiency has been affected by condensing operating conditions. Finally, to estimate this benefit, an expeditious procedure was developed building three maps for H 2 NG blends condensing properties from 0% up to 30% vol. of H 2 . Their outputs provided the condensation efficiency value and the absolute gain of heat recovery one with varying exhaust gas temperatures and hydrogen fraction in the mixture. - Highlights: • H 2 NG mixture effects on a commercial technology μCHP for residential applications. • Experimental analysis and methodology for H 2 NG condensing properties assessment. • CO 2 specific emissions calculation accounting for electrical and thermal outputs. • Uncertainty analysis on the μCHP energy performances and methodology validation. • H 2 addition coupling a condensing heat exchanger enhance CHP First Law efficiency

  16. Productivity model for gas reservoirs with open-hole multi-fracturing horizontal wells and optimization of hydraulic fracture parameters

    Directory of Open Access Journals (Sweden)

    Jianqiang Xue

    2017-12-01

    Full Text Available Multi-fractured horizontal wells are commonly employed to improve the productivity of low and ultra-low permeability gas reservoirs. However, conventional productivity models for open-hole multi-fractured horizontal wells do not consider the interferences between hydraulic fractures and the open-hole segments, resulting in significant errors in calculation results. In this article, a novel productivity prediction model for gas reservoirs with open-hole multi-fractured horizontal wells was proposed based on complex potential theories, potential superimposition, and numerical analysis. Herein, an open-hole segment between two adjacent fractures was regarded as an equivalent fracture, which was discretized as in cases of artificial fractures. The proposed model was then applied to investigate the effects of various parameters, such as the angle between the fracture and horizontal shaft, fracture quantity, fracture length, diversion capacity of fractures, horizontal well length, and inter-fracture distance, on the productivity of low permeability gas reservoirs with multi-fractured horizontal wells. Simulation results revealed that the quantity, length, and distribution of fractures had significant effects on the productivity of low permeability gas reservoirs while the effects of the diversion capacity of fractures and the angle between the fracture and horizontal shaft were negligible. Additionally, a U-shaped distribution of fracture lengths was preferential as the quantity of fractures at shaft ends was twice that in the middle area. Keywords: Low permeability gas reservoir, Multi-fractured horizontal well, Productivity prediction, Open-hole completion, Unsteady-state flow, Fracture parameters optimization

  17. Key technologies for well drilling and completion in ultra-deep sour gas reservoirs, Yuanba Gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jiaxiang Xia

    2016-12-01

    Full Text Available The Yuanba Gasfield is a large gas field discovered by Sinopec in the Sichuan Basin in recent years, and another main exploration area for natural gas reserves and production increase after the Puguang Gasfield. The ultra-deep sour gas reservoir in the Yuanba Gasfield is characterized by complicated geologic structure, deep reservoirs and complex drilled formation, especially in the continental deep strata which are highly abrasive with low ROP (rate of penetration and long drilling period. After many years of drilling practice and technical research, the following six key drilling and completion technologies for this type reservoir are established by introducing new tools and technologies, developing specialized drill bits and optimizing drilling design. They are: casing program optimization technology for ROP increasing and safe well completion; gas drilling technology for shallow continental strata and high-efficiency drilling technology for deep high-abrasion continental strata; drilling fluid support technologies of gas–liquid conversion, ultra-deep highly-deviated wells and horizontal-well lubrication and drag reduction, hole stability control and sour gas contamination prevention; well cementing technologies for gas medium, deep-well long cementing intervals and ultra-high pressure small space; horizontal-well trajectory control technologies for measuring instrument, downhole motor optimization and bottom hole assembly design; and liner completion modes and completion string optimization technologies suitable for this gas reservoir. Field application shows that these key technologies are contributive to ROP increase and efficiency improvement of 7000 m deep horizontal wells and to significant operational cycle shortening.

  18. Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis - journal

    Science.gov (United States)

    Collectively, reservoirs are an important anthropogenic source of greenhouse gases (GHGs) to the atmosphere. Attempts to model reservoir GHG fluxes, however, have been limited by inconsistencies in methodological approaches and data availability. An increase in the number of pu...

  19. Mineral Reactions in Shale Gas Reservoirs: Barite Scale Formation from Reusing Produced Water As Hydraulic Fracturing Fluid.

    Science.gov (United States)

    Paukert Vankeuren, Amelia N; Hakala, J Alexandra; Jarvis, Karl; Moore, Johnathan E

    2017-08-15

    Hydraulic fracturing for gas production is now ubiquitous in shale plays, but relatively little is known about shale-hydraulic fracturing fluid (HFF) reactions within the reservoir. To investigate reactions during the shut-in period of hydraulic fracturing, experiments were conducted flowing different HFFs through fractured Marcellus shale cores at reservoir temperature and pressure (66 °C, 20 MPa) for one week. Results indicate HFFs with hydrochloric acid cause substantial dissolution of carbonate minerals, as expected, increasing effective fracture volume (fracture volume + near-fracture matrix porosity) by 56-65%. HFFs with reused produced water composition cause precipitation of secondary minerals, particularly barite, decreasing effective fracture volume by 1-3%. Barite precipitation occurs despite the presence of antiscalants in experiments with and without shale contact and is driven in part by addition of dissolved sulfate from the decomposition of persulfate breakers in HFF at reservoir conditions. The overall effect of mineral changes on the reservoir has yet to be quantified, but the significant amount of barite scale formed by HFFs with reused produced water composition could reduce effective fracture volume. Further study is required to extrapolate experimental results to reservoir-scale and to explore the effect that mineral changes from HFF interaction with shale might have on gas production.

  20. FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    1999-06-11

    different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

  1. Influence of environmental variables on diffusive greenhouse gas fluxes at hydroelectric reservoirs in Brazil

    Directory of Open Access Journals (Sweden)

    JP. Rogério

    Full Text Available For almost two decades, studies have been under way in Brazil, showing how hydroelectric reservoirs produce biogenic gases, mainly methane (CH4 and carbon dioxide (CO2, through the organic decomposition of flooded biomass. This somewhat complex phenomenon is due to a set of variables with differing levels of interdependence that directly or indirectly affect greenhouse gas (GHG emissions. The purpose of this paper is to determine, through a statistical data analysis, the relation between CO2, CH4 diffusive fluxes and environmental variables at the Furnas, Itumbiara and Serra da Mesa hydroelectric reservoirs, located in the Cerrado biome on Brazil's high central plateau. The choice of this region was prompted by its importance in the national context, covering an area of some two million square kilometers, encompassing two major river basins (Paraná and Tocantins-Araguaia, with the largest installed power generation capacity in Brazil, together accounting for around 23% of Brazilian territory. This study shows that CH4 presented a moderate negative correlation between CO2 and depth. Additionally, a moderate positive correlation was noted for pH, water temperature and wind. The CO2 presented a moderate negative correlation for pH, wind speed, water temperature and air temperature. Additionally, a moderate positive correlation was noted for CO2 and water temperature. The complexity of the emission phenomenon is unlikely to occur through a simultaneous understanding of all the factors, due to difficulties in accessing and analyzing all the variables that have real, direct effects on GHG production and emission.

  2. CO2 Storage Capacity for Multi-Well Pads Scheme in Depleted Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Zhan Meng

    2017-10-01

    Full Text Available As a promising technology to improve shale gas (SG recovery and CO2 storage capacity, the multi-well pads (MWPs scheme has gained more and more attention. The semi-analytical pressure-buildup method has been used to estimate CO2 storage capacity. It focuses on single multi-fractured horizontal wells (SMFHWs and does not consider multi-well pressure interference (MWPI induced by the MWPs scheme. This severely limits the application of this method as incidences of multi-well pressure interference have been widely reported. This paper proposed a new methodology to optimize the injection strategy of the MWPs scheme and maximize CO2 storage capacity. The new method implements numerical discretization, the superposition theory, Gauss elimination, and the Stehfest numerical algorithm to obtain pressure-buildup solutions for the MWPs scheme. The solution by the new method was validated with numerical simulation and pressure-buildup curves were generated to identify MWPI. Using the new method, we observed that the fracture number and fracture half-length have a positive influence on CO2 storage capacity. Both can be approximately related to the CO2 storage capacity by a linear correlation. For a given injection pressure, there is an optimal fracture number; the bigger the limited injection pressure, the smaller the optimal fracture number. Stress sensitivity has positive influences on CO2 storage capacity, thus extending the injection period would improve CO2 storage capacity. This work gains some insights into the CO2 storage capacity of the MWPs scheme in depleted SG reservoirs, and provides considerable guidance on injection strategies to maximize CO2 storage capacity in depleted SG reservoirs.

  3. Influence of environmental variables on diffusive greenhouse gas fluxes at hydroelectric reservoirs in Brazil.

    Science.gov (United States)

    Rogério, J P; Santos, M A; Santos, E O

    2013-11-01

    For almost two decades, studies have been under way in Brazil, showing how hydroelectric reservoirs produce biogenic gases, mainly methane (CH4) and carbon dioxide (CO2), through the organic decomposition of flooded biomass. This somewhat complex phenomenon is due to a set of variables with differing levels of interdependence that directly or indirectly affect greenhouse gas (GHG) emissions. The purpose of this paper is to determine, through a statistical data analysis, the relation between CO2, CH4 diffusive fluxes and environmental variables at the Furnas, Itumbiara and Serra da Mesa hydroelectric reservoirs, located in the Cerrado biome on Brazil's high central plateau. The choice of this region was prompted by its importance in the national context, covering an area of some two million square kilometers, encompassing two major river basins (Paraná and Tocantins-Araguaia), with the largest installed power generation capacity in Brazil, together accounting for around 23% of Brazilian territory. This study shows that CH4 presented a moderate negative correlation between CO2 and depth. Additionally, a moderate positive correlation was noted for pH, water temperature and wind. The CO2 presented a moderate negative correlation for pH, wind speed, water temperature and air temperature. Additionally, a moderate positive correlation was noted for CO2 and water temperature. The complexity of the emission phenomenon is unlikely to occur through a simultaneous understanding of all the factors, due to difficulties in accessing and analyzing all the variables that have real, direct effects on GHG production and emission.

  4. Condensation Mechanism of Hydrocarbon Field Formation.

    Science.gov (United States)

    Batalin, Oleg; Vafina, Nailya

    2017-08-31

    Petroleum geology explains how hydrocarbon fluids are generated, but there is a lack of understanding regarding how oil is expelled from source rocks and migrates to a reservoir. To clarify the process, the multi-layer Urengoy field in Western Siberia was investigated. Based on this example, we have identified an alternative mechanism of hydrocarbon field formation, in which oil and gas accumulations result from the phase separation of an upward hydrocarbon flow. There is evidence that the flow is generated by the gases released by secondary kerogen destruction. This study demonstrates that oil components are carried by the gas flow and that when the flow reaches a low-pressure zone, it condenses into a liquid with real oil properties. The transportation of oil components in the gas flow provides a natural explanation for the unresolved issues of petroleum geology concerning the migration process. The condensation mechanism can be considered as the main process of oil field formation.

  5. Turbulent condensation on a cold wall in the presence of a noncondensable gas

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1984-01-01

    A condensation model for forced and natural convection is derived by extending the Reynolds-Colburn analogy for heat and momentum transfer to mass and momentum transfer. The model is compared to the steady-state data of Uchida and Tagami and found to be in reasonable agreement with the forced convection data when an imposed velocity of 2 m/s is assumed. The natural convection model has the same functional dependence on Grashof number (h /SUB tot/ aboutGr /SUP -0.37/ ) as the data of Akers

  6. Investigation of gas hydrate-bearing sandstone reservoirs at the "Mount Elbert" stratigraphic test well, Milne Point, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R.M.; Hunter, R. (ASRC Energy Services, Anchorage, AK); Collett, T. (USGS, Denver, CO); Digert, S. (BP Exploration (Alaska) Inc., Anchorage, AK); Hancock, S. (RPS Energy Canada, Calgary, Alberta, Canada); Weeks, M. (BP Exploration (Alaska) Inc., Anchorage, AK); Mt. Elbert Science Team

    2008-01-01

    In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), Inc., and the U.S. Geological Survey conducted an extensive data collection effort at the "Mount Elbert #1" gas hydrates stratigraphic test well on the Alaska North Slope (ANS). The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a full suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. Hole conditions, and therefore log data quality, were excellent due largely to the use of chilled oil-based drilling fluids. The logging program confirmed the existence of approximately 30 m of gashydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60% to 75% largely as a function of reservoir quality. Continuous wire-line coring operations (the first conducted on the ANS) achieved 85% recovery through 153 meters of section, providing more than 250 subsamples for analysis. The "Mount Elbert" data collection program culminated with open-hole tests of reservoir flow and pressure responses, as well as gas and water sample collection, using Schlumberger's Modular Formation Dynamics Tester (MDT) wireline tool. Four such tests, ranging from six to twelve hours duration, were conducted. This field program demonstrated the ability to safely and efficiently conduct a research-level openhole data acquisition program in shallow, sub-permafrost sediments. The program also demonstrated the soundness of the program's pre-drill gas hydrate characterization methods and increased confidence in gas hydrate resource assessment methodologies for the ANS.

  7. The specifics of operating minor deposits (as given by the examples of gas condensate deposits of the Northern Caucasus

    Directory of Open Access Journals (Sweden)

    Р. А. Гасумов

    2016-08-01

    Full Text Available One of the most important directions in upgrading well productivity in the process of mining hydrocarbons consists in fighting with salt formation and salt deposition. Solving that problem becomes especially actual when operating deposits that are in their final stage of exploitation in complex mining and geological conditions accompanied by deposition of salts in the well foot area of oil bed and their sedimentation on the sub-surface and surface equipment. It provokes a drop in well productivity and results in off-schedule repair works. Specifics are considered of exploiting minor gas condensate deposits of the Northern Caucasus that are operated under complicated mining and geological conditions of anomalously high bed pressures, high temperatures, strong depressions on the beds and inflow of mineralized water from water saturated seams.Processes are studied of salt deposition from heavy hydrocarbons in the well foot and the bed area surrounding it. Water sample analyses data from different wells have demonstrated that the main salts carrier is the associated water, and the principal sedimenting agents are corrosion products, as confirmed by the results of microscopic studies. The dynamics is presented of salt deposition in the “well foot – wellhead – separator” system retrieved from the results of studies of reaction products in the well foot zone of oil bed.It is demonstrated that the efficiency of struggling with salt deposition in the course of mining hydrocarbons depends on comprehensive approach to the problem, the principal thrust lying with prevention of such deposition.Possible ways are considered to prevent precipitation of ferric compounds in the course of operating gas condensate wells, a way is suggested to intensify gas inflow.

  8. Noble gas composition of subcontinental lithospheric mantle: An extensively degassed reservoir beneath Southern Patagonia

    Science.gov (United States)

    Jalowitzki, Tiago; Sumino, Hirochika; Conceição, Rommulo V.; Orihashi, Yuji; Nagao, Keisuke; Bertotto, Gustavo W.; Balbinot, Eduardo; Schilling, Manuel E.; Gervasoni, Fernanda

    2016-09-01

    Patagonia, in the Southern Andes, is one of the few locations where interactions between the oceanic and continental lithosphere can be studied due to subduction of an active spreading ridge beneath the continent. In order to characterize the noble gas composition of Patagonian subcontinental lithospheric mantle (SCLM), we present the first noble gas data alongside new lithophile (Sr-Nd-Pb) isotopic data for mantle xenoliths from Pali-Aike Volcanic Field and Gobernador Gregores, Southern Patagonia. Based on noble gas isotopic compositions, Pali-Aike mantle xenoliths represent intrinsic SCLM with higher (U + Th + K)/(3He, 22Ne, 36Ar) ratios than the mid-ocean ridge basalt (MORB) source. This reservoir shows slightly radiogenic helium (3He/4He = 6.84-6.90 RA), coupled with a strongly nucleogenic neon signature (mantle source 21Ne/22Ne = 0.085-0.094). The 40Ar/36Ar ratios vary from a near-atmospheric ratio of 510 up to 17700, with mantle source 40Ar/36Ar between 31100-6800+9400 and 54000-9600+14200. In addition, the 3He/22Ne ratios for the local SCLM endmember, at 12.03 ± 0.15 to 13.66 ± 0.37, are higher than depleted MORBs, at 3He/22Ne = 8.31-9.75. Although asthenospheric mantle upwelling through the Patagonian slab window would result in a MORB-like metasomatism after collision of the South Chile Ridge with the Chile trench ca. 14 Ma, this mantle reservoir could have remained unhomogenized after rapid passage and northward migration of the Chile Triple Junction. The mantle endmember xenon isotopic ratios of Pali-Aike mantle xenoliths, which is first defined for any SCLM-derived samples, show values indistinguishable from the MORB source (129Xe/132Xe =1.0833-0.0053+0.0216 and 136Xe/132Xe =0.3761-0.0034+0.0246). The noble gas component observed in Gobernador Gregores mantle xenoliths is characterized by isotopic compositions in the MORB range in terms of helium (3He/4He = 7.17-7.37 RA), but with slightly nucleogenic neon (mantle source 21Ne/22Ne = 0.065-0.079). We

  9. Visual Investigation of Retrograde Phenomena and Gas Condensate Flow in Porous Media Étude visuelle des phénomènes rétrogrades et de l'écoulement des gaz de condensat en milieux poreux

    Directory of Open Access Journals (Sweden)

    Danesh A.

    2006-11-01

    Full Text Available The mechanism of retrograde condensation and the flow of gas-condensate in horizontal porous media under simulated reservoir conditions were visually studied. Two-dimensional glass micromodels with homogeneous pore structures, as well as heterogeneous patterns, reproduced from real rock micrographs were employed in this study. Depletion tests were carried out using synthetic multicomponent hydrocarbon gas mixtures and also a North Sea gas condensate. The multiphase flow behaviour of the tested systems, as observed and recorded on video, is presented here along with the measured data. In water-wet pores, condensate was observed to be formed as a continuous thin film on connate water, which was the preferred site for condensation. Pressure reduction below the system cricondenbar resulted in the growth of the condensate almost exclusively on water rings at pore throats and dead end pores. The condensate was observed to flow through thin films even at low saturations, with little contribution to the condensate recovery. The rate of pressure depletion influenced the gas flow shear and was found to strongly affect the condensate propagation. Local instabilities could promote significant condensate movement in pore sections which would only be retarded further downstream by capillary effects diminishing the condensate recovery. Relative permeability-saturation relation-ships for gas-condensate flow should not be expected to take the same form as the oil-gas relative permeability for solution gas or external gas drive. Le mécanisme de la condensation rétrograde et l'écoulement des gaz de condensat en milieu poreux horizontal dans une simulation des conditions naturelles ont fait l'objet d'études visuelles. Des micromodèles en verre bi-dimensionnels à structure poreuse homogène, et des éléments hétérogènes reproduisant des micrographies de roches réelles, ont été utilisés pour cette étude. Des essais d'épuisement ont été effectu

  10. Conceptual design of the test facility for the two-phase critical flow with non-condensable gas

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Chung, Chang Hwan

    2000-12-01

    The two-phase critical flow test with non-condensible gas is for the simulation of the critical flow phenomena which can be occurred during SB-LOCA on SMART reactor. The requirements of the critical flow test are 7∼20mm pipe break dia., 7∼12MPa stagnation pressure, 0∼60 deg C subcooling degree and 0∼0.5kg/s N2 gas flow rate. For the satisfaction of these requirements on the test facility, critical flow rates were calculated with various models. With the selected reference pressure vessel(1.3m 3 ), the conceptual design of the test facility was performed. The important components of the test facility are the pressure vessel which has main circulation line, the test section attached to the bottom of the pressure vessel, suppression tank, the N2 gas supply tanks for maintaining the system pressure and N2 gas flow rate at test section and the auxiliary N2 gas converting system. For the measurements of the critical flow rate, flowmeter and level gauge is installed at the upstream of the test section and the pressure vessel, respectively. The realtime pressure control system is installed at the entrance of the pressure vessel for maintaining the system pressure and the N2 gas flow regulating system is also installed at the upstream of the test section. The design of the control and monitoring system for the operation of the test facility and the DAS for acquiring the test data were also performed. The conceptual operating process of the test facility was determined

  11. Problems of the protection of bioresources development ofthe Bovanenkovo gas condensate field

    Directory of Open Access Journals (Sweden)

    Vladimir Dmitrievich Bogdanov

    2012-12-01

    Full Text Available The data on the fish fauna and fish food resources in the Bovanenkovo gas field are presented. The estimation of fishery and fishery potential of water bodies, hydrobiological characteristics of water bodies in the studied area are given. It is shown that the arrangement of the gas field leads to overfishing BGKM fish and change the state of aquatic ecosystems associated with the violation of runoff, backfilling flood waters, crossing streams communications, water diversion, pollution, sand mining. Thehydrobionts reaction to anthropogenic influence in the area of the gas field developmentis identified and recommendations to reduce the impact on aquatic ecosystems in the period of construction are given

  12. Defect formation in fluoropolymer films at their condensation from a gas phase

    Science.gov (United States)

    Luchnikov, P. A.

    2018-01-01

    The questions of radiation defects, factors of influence of electronic high-frequency discharge plasma components on the molecular structure and properties of the fluoropolymer vacuum films synthesized on a substrate from a gas phase are considered. It is established that at sedimentation of fluoropolymer coverings from a gas phase in high-frequency discharge plasma in films there are radiation defects in molecular and supramolecular structure because of the influence of active plasma components which significantly influence their main properties.

  13. Coupled Thermo-Hydro-Mechanical-Chemical Modeling of Water Leak-Off Process during Hydraulic Fracturing in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-11-01

    Full Text Available The water leak-off during hydraulic fracturing in shale gas reservoirs is a complicated transport behavior involving thermal (T, hydrodynamic (H, mechanical (M and chemical (C processes. Although many leak-off models have been published, none of the models fully coupled the transient fluid flow modeling with heat transfer, chemical-potential equilibrium and natural-fracture dilation phenomena. In this paper, a coupled thermo-hydro-mechanical-chemical (THMC model based on non-equilibrium thermodynamics, hydrodynamics, thermo-poroelastic rock mechanics, and non-isothermal chemical-potential equations is presented to simulate the water leak-off process in shale gas reservoirs. The THMC model takes into account a triple-porosity medium, which includes hydraulic fractures, natural fractures and shale matrix. The leak-off simulation with the THMC model involves all the important processes in this triple-porosity medium, including: (1 water transport driven by hydraulic, capillary, chemical and thermal osmotic convections; (2 gas transport induced by both hydraulic pressure driven convection and adsorption; (3 heat transport driven by thermal convection and conduction; and (4 natural-fracture dilation considered as a thermo-poroelastic rock deformation. The fluid and heat transport, coupled with rock deformation, are described by a set of partial differential equations resulting from the conservation of mass, momentum, and energy. The semi-implicit finite-difference algorithm is proposed to solve these equations. The evolution of pressure, temperature, saturation and salinity profiles of hydraulic fractures, natural fractures and matrix is calculated, revealing the multi-field coupled water leak-off process in shale gas reservoirs. The influences of hydraulic pressure, natural-fracture dilation, chemical osmosis and thermal osmosis on water leak-off are investigated. Results from this study are expected to provide a better understanding of the

  14. Laboratory Optimization Tests of Decontamination of Cs, Sr, and Actinides from Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-06

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also substantially decrease the LAW vitrification mission duration and quantity of glass waste.

  15. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  16. Transient characteristics of integrated non-condensable gas-steam pressurizer

    International Nuclear Information System (INIS)

    Wu Lei; Jia Haijun; Liu Yang; Ma Xizhen

    2014-01-01

    NHR-Ⅱ (Nuclear Heating Reactor-Ⅱ) developed by Tsinghua University uses the integrated gas-steam pressurizer. A calculation model of the gas-steam pressurizer was developed and validated by comparing with experiment data about the pressure behavior of gas-steam pressurizer during the in-surge period. The results indicate that this calculation model can predict the transient behavior of the gas-steam pressurizer well. Then the transient characteristics of the integrated gas-steam pressurizer in NHR-Ⅱ were studied by this model. It is founded that in the power regulation of NHR-Ⅱ, the change of pressure and temperature in the system lags behind the power change in natural circulation loop with the integrated gas-steam pressurizer, and there is a sharp decline in the subcooled temperature of the core outlet. The core outlet subcooled temperature of NHR-Ⅱ is within the safety range and the system is safe in the power step regulation. (authors)

  17. Performance evaluation on water-producing gas wells based on gas & water relative permeability curves: A case study of tight sandstone gas reservoirs in the Sulige gas field, Ordos Basin

    Directory of Open Access Journals (Sweden)

    Yuegang Li

    2016-01-01

    Full Text Available An outstanding issue in the oil and gas industry is how to evaluate quantitatively the influences of water production on production performance of gas wells. Based on gas–water flow theories, therefore, a new method was proposed in this paper to evaluate quantitatively the production performance of water-producing gas wells by using gas & water relative permeability curves after a comparative study was conducted thoroughly. In this way, quantitative evaluation was performed on production capacity, gas production, ultimate cumulative gas production and recovery factor of water-producing gas wells. Then, a case study was carried out of the tight sandstone gas reservoirs with strong heterogeneity in the Sulige gas field, Ordos Basin. This method was verified in terms of practicability and reliability through a large amount of calculation based on the actual production performance data of various gas wells with different volumes of water produced. Finally, empirical formula and charts were established for water-producing gas wells in this field to quantitatively evaluate their production capacity, gas production, ultimate cumulative gas production and recovery factor in the conditions of different water–gas ratios. These formula and charts provide technical support for the field application and dissemination of the method. Study results show that water production is serious in the west of this field with water–gas ratio varying in a large range. If the average water–gas ratio is 1.0 (or 2.0 m3/104 m3, production capacity, cumulative gas production and recovery factor of gas wells will be respectively 24.4% (or 40.2%, 24.4% (or 40.2% and 17.4% (or 33.2%.

  18. Application of a New Wavelet Threshold Method in Unconventional Oil and Gas Reservoir Seismic Data Denoising

    Directory of Open Access Journals (Sweden)

    Guxi Wang

    2015-01-01

    Full Text Available Seismic data processing is an important aspect to improve the signal to noise ratio. The main work of this paper is to combine the characteristics of seismic data, using wavelet transform method, to eliminate and control such random noise, aiming to improve the signal to noise ratio and the technical methods used in large data systems, so that there can be better promotion and application. In recent years, prestack data denoising of all-digital three-dimensional seismic data is the key to data processing. Contrapose the characteristics of all-digital three-dimensional seismic data, and, on the basis of previous studies, a new threshold function is proposed. Comparing between conventional hard threshold and soft threshold, this function not only is easy to compute, but also has excellent mathematical properties and a clear physical meaning. The simulation results proved that this method can well remove the random noise. Using this threshold function in actual seismic processing of unconventional lithologic gas reservoir with low porosity, low permeability, low abundance, and strong heterogeneity, the results show that the denoising method can availably improve seismic processing effects and enhance the signal to noise ratio (SNR.

  19. P and S Velocity Structure in the Groningen Gas Reservoir From Noise Interferometry

    Science.gov (United States)

    Zhou, Wen; Paulssen, Hanneke

    2017-12-01

    Noise interferometry has proven to be a powerful tool to image seismic structure. In this study we used data from 10 geophones located in a borehole at ˜3 km depth within the Groningen gas reservoir in the Netherlands. The continuous data cross correlations show that noise predominantly comes in from above. The observed daily and weekly variations further indicate that the noise has an anthropogenic origin. The direct P wave emerges from the stacked vertical component cross correlations with frequencies up to 80 Hz and the direct S wave is retrieved from the horizontal components with frequencies up to 50 Hz. The measured intergeophone travel times were used to retrieve the P and S velocity structure along the borehole, and a good agreement was found with well log data. In addition, from the S wave polarizations, we determined azimuthal anisotropy with a fast direction of N65°W±18° and an estimated magnitude of (4±2)%. The fast polarization direction corresponds to the present direction of maximum horizontal stress measured at nearby boreholes but is also similar to the estimated paleostress direction.

  20. Controlling effect of fractures on gas accumulation and production within the tight sandstone: A case study on the Jurassic Dibei gas reservoir in the eastern part of the Kuqa foreland basin, China

    Directory of Open Access Journals (Sweden)

    Hui Lu

    2016-02-01

    Full Text Available Using Dibei tight sandstone gas reservoir in the eastern part of the Kuqa foreland basin as an example, this paper discusses tight sandstone reservoir fractures characterization, its effect on storage space and gas flow capacity, and its contribution to gas accumulation, enrichment and production in tight sandstone reservoir by using laser scanning confocal microscope (LSCM observation, mercury intrusion capillary pressure (MICP testing, and gas-water two-phase relative permeability testing. The statistics of laser scanning confocal microscopy observation showed that the microstructural fractures width in the Dibei gas reservoir was mainly 8–25 μm, and the associated micro-fractures width was mainly 4–10 μm. Additionally, the throat radius was mainly 1–4 μm. The fractures width was significantly wider than the throat radius that served as the main channel of in gas flow. In addition, it illustrated that the samples with developed fractures became easier for gas to flow under equal porosity condition, because of lower expulsion pressure, higher mercury injection saturation, and increased gas relative permeability based on the physical simulation experiment of gas charging into core samples with saturated water, mercury injection and gas-water two-phase permeability experiments. Furthermore, it had been concluded that the fractures control tight gas in the following aspects: (1 Fractures play a significant role in reservoir property improvement. The isolated pores were linked by the fractures to form connective reservoir spaces, and dissolution is prone to occur along the fractures forming new pores. The fractures with bigger width are reservoir space as well. (2 Fractures increased fluid flow capacity because it decreased the starting pressure gradient, and it increased gas effective permeability. Thus, fractures improved the gas injection efficiency as well as gas production. (3 Fractures that developed in different time and spatial

  1. Effect of scenedesmus acuminatus green algae extracts on the development of Candida lipolytic yeast in gas condensate-containing media

    Science.gov (United States)

    Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.

    1980-01-01

    Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.

  2. Soil-air greenhouse gas fluxes influenced by farming practices in reservoir drawdown area: A case at the Three Gorges Reservoir in China.

    Science.gov (United States)

    Li, Zhe; Zhang, Zengyu; Lin, Chuxue; Chen, Yongbo; Wen, Anbang; Fang, Fang

    2016-10-01

    The Three Gorges Reservoir (TGR) in China has large water level variations, creating about 393 km(2) of drawdown area seasonally. Farming practices in drawdown area during the low water level period is common in the TGR. Field experiments on soil-air greenhouse gas (GHG) emissions in fallow grassland, peanut field and corn field in reservoir drawdown area at Lijiaba Bay of the Pengxi River, a tributary of the Yangtze River in the TGR were carried out from March through September 2011. Experimental fields in drawdown area had the same land use history. They were adjacent to each other horizontally at a narrow range of elevation i.e. 167-169 m, which assured that they had the same duration of reservoir inundation. Unflooded grassland with the same land-use history was selected as control for study. Results showed that mean value of soil CO2 emissions in drawdown area was 10.38 ± 0.97 mmol m(-2) h(-1). The corresponding CH4 fluxes and N2O fluxes were -8.61 ± 2.15 μmol m(-2) h(-1) and 3.42 ± 0.80 μmol m(-2) h(-1). Significant differences and monthly variations among land uses in treatments of drawdown area and unflooded grassland were evident. These were impacted by the change in soil physiochemical properties which were alerted by reservoir operation and farming. Particularly, N-fertilization in corn field stimulated N2O emissions from March to May. In terms of global warming potentials (GWP), corn field in drawdown area had the maximum GWP mainly due to N-fertilization. Gross GWP in peanut field in drawdown area was about 7% lower than that in fallow grassland. Compared to unflooded grassland, reservoir operation created positive net effect on GHG emissions and GWPs in drawdown area. However, selection of crop species, e.g. peanut, and best practices in farming, e.g. prohibiting N-fertilization, could potentially mitigate GWPs in drawdown area. In the net GHG emissions evaluation in the TGR, farming practices in the drawdown area shall be taken

  3. Visual Investigation of the Occurrence Characteristics of Multi-Type Formation Water in a Fracture–Cavity Carbonate Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2018-03-01

    Full Text Available It is difficult to investigate the formation process and occurrence states of water in multi-type reservoirs, due to the strong heterogeneity and complex microstructure of the fracture–cavity carbonate gas reservoirs. To date, there is no systematic study on the occurrence characteristics of multi-type formation water, especially through visual observation experiments. In this paper, a new creation method for visual micromodels based on CT scan images and microelectronic photolithography techniques was described. Subsequently, a gas–drive–water visual experiment was conducted to intuitively study the formation mechanism and the occurrence states of formation water. Then, the ImageJ gray analysis method was utilized to quantitatively investigate the gas-water saturation and the proportion of residual water film. Finally, the occurrence characteristics of formation water and its effects on gas seepage flow were comprehensively analyzed. Visual experimental results showed that: the migration processes of natural gas in different types of reservoirs are different; the water in multiple media consists of native movable water and residual water, and residual water is composed of secondary movable water and irreducible water; the residual water mainly occurs in different locations of different reservoirs with the forms of “water film”, “water mass”, “water column” and “water droplets”; the main influencing factors are capillary force, surface tension, displacement pressure and channel connectivity. Quantitative results reflect that the saturation of movable water and residual water are the parameters related directly to reservoir physical properties, pore structure and displacement pressure—the smaller the size of flow channel, the larger the space occupied by water film; the thickness proportion of water film is increasing exponentially with the channel size; the thickness proportion of water film decreases as the increase of

  4. Multi-Objective History Matching with a Proxy Model for the Characterization of Production Performances at the Shale Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jaejun Kim

    2017-04-01

    Full Text Available This paper presents a fast, reliable multi-objective history-matching method based on proxy modeling to forecast the production performances of shale gas reservoirs for which all available post-hydraulic-fracturing production data, i.e., the daily gas rate and cumulative-production volume until the given date, are honored. The developed workflow consists of distance-based generalized sensitivity analysis (DGSA to determine the spatiotemporal-parameter significance, fast marching method (FMM as a proxy model, and a multi-objective evolutionary algorithm to integrate the dynamic data. The model validation confirms that the FMM is a sound surrogate model working within an error of approximately 2% for the estimated ultimate recovery (EUR, and it is 11 times faster than a full-reservoir simulation. The predictive accuracy on future production after matching 1.5-year production histories is assessed to examine the applicability of the proposed method. The DGSA determines the effective parameters with respect to the gas rate and the cumulative volume, including fracture permeability, fracture half-length, enhanced permeability in the stimulated reservoir volume, and average post-fracturing porosity. A comparison of the prediction accuracy for single-objective optimization shows that the proposed method accurately estimates the recoverable volume as well as the production profiles to within an error of 0.5%, while the single-objective consideration reveals the scale-dependency problem with lesser accuracy. The results of this study are useful to overcome the time-consuming effort of using a multi-objective evolutionary algorithm and full-scale reservoir simulation as well as to conduct a more-realistic prediction of the shale gas reserves and the corresponding production performances.

  5. Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity

    International Nuclear Information System (INIS)

    Nozieres, P.; Schmitt-Rink, S.

    1985-01-01

    We consider a gas of fermions interacting via an attractive potential. We study the ground state of that system and calculate the critical temperature for the onset of superconductivity as a function of the coupling strength. We compare the behavior of continuum and lattice models and show that the evolution from weak to strong coupling superconductivity is smooth

  6. Role of reservoir engineering in the assessment of undiscovered oil and gas resources in the National Petroleum Reserve, Alaska

    Science.gov (United States)

    Verma, M.K.; Bird, K.J.

    2005-01-01

    The geology and reservoir-engineering data were integrated in the 2002 U.S. Geological Survey assessment of the National Petroleum Reserve in Alaska (NPRA). VVhereas geology defined the analog pools and fields and provided the basic information on sizes and numbers of hypothesized petroleum accumulations, reservoir engineering helped develop necessary equations and correlations, which allowed the determination of reservoir parameters for better quantification of in-place petroleum volumes and recoverable reserves. Seismic- and sequence-stratigraphic study of the NPRA resulted in identification of 24 plays. Depth ranges in these 24 plays, however, were typically greater than depth ranges of analog plays for which there were available data, necessitating the need for establishing correlations. The basic parameters required were pressure, temperature, oil and gas formation volume factors, liquid/gas ratios for the associated and nonassociated gas, and recovery factors. Finally, the re sults of U.S. Geological Survey deposit simulation were used in carrying out an economic evaluation, which has been separately published. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  7. Performance testing of cross flow heat exchanger operating in the atmosphere of flue gas particulate with vapor condensation

    Directory of Open Access Journals (Sweden)

    Nuntaphan, A.

    2006-05-01

    Full Text Available Performance testing of a cross flow heat exchanger operating under the atmosphere of flue gas particulate from combustion was carried out in this work. This heat exchanger exchanges heat between flue gas from the fuel oil combustion and cold water. The heat exchanger is composed of a spiral finned tube bank having 3 rows and 8 tubes per row with a staggered arrangement. The fin spacings considered are 2.85 and 6.10 mm. The theories of thermodynamics and heat transfer are used for analyzing the performance of this system.In this experiment, the flue gas temperature of 200ºC from combustion having 0.35 kg/s mass flow rate flows along outside surface of the heat exchanger and transfers heat to the 25ºC cooling water having 0.15 kg/s mass flow rate flowing in the tube side. Each experiment uses 750 hr for testing. During the testing, part of flue gas condenses on the heat transfer surface.From the experiment, it was found that the heat transfer rate of both heat exchangers tended to decrease with time while the airside pressure drop increased. These results come from the fouling on the heat transfer surface. Moreover, it is found that the heat exchanger having 2.85 mm fin spacing has an approximately 4 times higher fouling resistance than that of the 6.10 mm fin spacing.In this work a model for calculating the fouling resistance is also developed as a the function of time. The model is developed from that of Kern and Seaton and the mean deviation of the model is 0.789.

  8. Using underground gas storage to replace the swing capacity of the giant natural gas field of Groningen in the Netherlands. A reservoir performance feasibility study.

    Science.gov (United States)

    Juez-Larre, Joaquim; Remmelts, Gijs; Breunese, Jaap; Van Gessel, Serge; Leeuwenburgh, Olwijn

    2017-04-01

    In this study we probe the ultimate potential Underground Gas Storage (UGS) capacity of the Netherlands by carrying out a detailed feasibility study on inflow performances of all available onshore natural gas reservoirs. The Netherlands is one of the largest natural gas producers in Western Europe. The current decline of its national production and looming production restrictions on its largest field of Groningen -owing to its induced seismicity- have recently made necessary to upgrade the two largest UGS of Norg and Grijpskerk. The joined working volume of these two UGS is expected to replace the swing capacity of the Groningen field to continue guaranteeing the security of supply of low calorific natural gas. The question is whether the current UGS configuration will provide the expected working storage capacity unrestricted by issues on reservoir performances and/or induced seismicity. This matter will be of paramount importance in the near future when production restrictions and/or the advance state of depletion of the Groningen field will turn the Netherlands into a net importer of high calorific natural gas. By then, the question will be whether the current UGS will still be economically attractive to continue operating, or if additional/alternative types of UGS will be needed?. Hence the characterization and ranking of the best potential reservoirs available today is of paramount importance for future UGS developments. We built an in-house automated module based on the application of the traditional inflow performance relationship analysis to screen the performances of 156 natural gas reservoirs in onshore Netherlands. Results enable identifying the 72 best candidates with an ultimate total working volume capacity of 122±30 billion Sm3. A detailed sensitivity analysis shows the impact of variations in the reservoir properties or wellbore/tubing configurations on withdrawal performances and storage capacity. We validate our predictions by comparing them to

  9. Cleaning of condensate from flue gas condensing plants at co-combustion of waste fuels. Follow-up of emissions; Rening av kondensat fraan roekgaskondenseringsanlaeggningar vid samfoerbraenning av avfallsbraenslen. Uppfoeljning av utslaepp

    Energy Technology Data Exchange (ETDEWEB)

    Sundquist, Lena; Dejfors, Charlotte; Wrangensten, Lars [AaF Energikonsult AB, Stockholm (Sweden)

    2002-03-01

    Limits of discharges in waste water at flue gas cleaning are one of the fields included in the EC-directive (2000/76/EG) regarding combustion of waste from December 28th, 2000. The pollutants included in the limits are suspended material, Hg, Cd, Tl, As, Pb, Cr, Cu, Ni, Zn as well as dioxins and furans. The limits of the directive applies generally for plants with combustion of waste, regardless of type of waste fraction, the degree of admixture or if it is a so called co-combustion plant or not. For new plants, the limits shall be fulfilled within two years after the date of the directive whereas existing plants have another three years to meet the new demands. In this project, the condensate from the flue gas has been analysed at five different combustion plants. Samples of the fuel have also been analysed as a reference at the evaluation of the results. The results from the analysed condensate have then been compared and evaluated with regards to the limit values in the EC-directive. However, one exception is dioxins and furans that are not included in this study. The analysis of the pure condensate show that at most plants the content of pollutants is below, or in some cases well below, the limits of the EC-directive. At plants with co-combustion of recovered biofuels, even the contents of pollutants in the non-purified raw condensate are below the limits of the directive. This means that plants with co-combustion of recovered wood waste and biofuels most likely will meet the requirements for emissions to waste water in the EC-directive. The water treatment process in these plants normally consists of a pH-adjustment stage followed by adding of chemicals before the condensate enters into a sand filter. The cleaned condensate from the sand filter is normally released to a recipient whereas the dirty condensate goes through a lamell separator in order to separate rest sludge. The most polluted raw condensate was found at a plant with 100 % combustion of municipal

  10. Accumulation conditions and enrichment patterns of natural gas in the Lower Cambrian Longwangmiao Fm reservoirs of the Leshan-Longnǚsi Palaeohigh, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Xu Chunchun

    2014-10-01

    Full Text Available As several major new gas discoveries have been made recently in the Lower Cambrian Longwangmiao Fm reservoirs in the Leshan-Longnǚsi Palaeohigh of the Sichuan Basin, a super-huge gas reservoir group with multiple gas pay zones vertically and cluster reservoirs laterally is unfolding in the east segment of the palaeohigh. Study shows that the large-scale enrichment and accumulation of natural gas benefits from the good reservoir-forming conditions, including: (1 multiple sets of source rocks vertically, among which, the high-quality Lower Paleozoic source rocks are widespread, and have a hydrocarbon kitchen at the structural high of the Palaeohigh, providing favorable conditions for gas accumulation near the source; (2 three sets of good-quality reservoirs, namely, the porous-vuggy dolomite reservoirs of mound-shoal facies in the 2nd and 4th members of the Sinian Dengying Fm as well as the porous dolomite reservoirs of arene-shoal facies in the Lower Cambrian Longwangmiao Fm, are thick and wide in distribution; (3 structural, lithological and compound traps developed in the setting of large nose-like uplift provide favorable space for hydrocarbon accumulation. It is concluded that the inheritance development of the Palaeohigh and its favorable timing configuration with source rock evolution are critical factors for the extensive enrichment of gas in the Lower Cambrian Longwangmiao Fm reservoirs. The structural high of the Palaeohigh is the favorable area for gas accumulation. The inherited structural, stratigraphic and lithological traps are the favorable sites for gas enrichment. The areas where present structures and ancient structures overlap are the sweet-spots of gas accumulation.

  11. Oil and gas reservoir exploration based on hyperspectral remote sensing and super-low-frequency electromagnetic detection

    Science.gov (United States)

    Qin, Qiming; Zhang, Zili; Chen, Li; Wang, Nan; Zhang, Chengye

    2016-01-01

    This paper proposes a method that combined hyperspectral remote sensing with super-low-frequency (SLF) electromagnetic detection to extract oil and gas reservoir characteristics from surface to underground, for the purpose of determining oil and gas exploration target regions. The study area in Xinjiang Karamay oil-gas field, China, was investigated. First, a Hyperion dataset was used to extract altered minerals (montmorillonite, chlorite, and siderite), which were comparatively verified by field survey and spectral measurement. Second, the SLF electromagnetic datasets were then acquired where the altered minerals were distributed. An inverse distance weighting method was utilized to acquire two-dimensional profiles of the electrical feature distribution of different formations on the subsurface. Finally, existing geological data, field work, and the results derived from Hyperion images and SLF electromagnetic datasets were comprehensively analyzed to confirm the oil and gas exploration target region. The results of both hyperspectral remote sensing and SLF electromagnetic detection had a good consistency with the geological materials in this study. This paper demonstrates that the combination of hyperspectral remote sensing and SLF electromagnetic detection is suitable for the early exploration of oil and gas reservoirs, which is characterized by low exploration costs, large exploration areas, and a high working efficiency.

  12. Mutual Solubility of MEG, Water and Reservoir Fluid: Experimental Measurements and Modeling using the CPA Equation of State

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    This work presents new experimental phase equilibrium data of binary MEG-reservoir fluid and ternary MEG-water-reservoir fluid systems at temperatures 275-326 K and at atmospheric pressure. The reservoir fluid consists of a natural gas condensate from a Statoil operated gas field in the North Sea...... fluid and polar compounds such as water and MEG. Satisfactory results are obtained for mutual solubility of MEG and gas condensate whereas some deviations are observed for the ternary system of MEG-water-gas condensate........ Prediction of mutual solubility of water, MEG and hydrocarbon fluids is important for the oil industry to ensure production and processing as well as to satisfy environmental regulations. The CPA equation of state has been successfully applied in the past to well defined systems containing associating...

  13. Petrophysical Analysis and Geographic Information System for San Juan Basin Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Martha Cather; Robert Lee; Robert Balch; Tom Engler; Roger Ruan; Shaojie Ma

    2008-10-01

    The primary goal of this project is to increase the availability and ease of access to critical data on the Mesaverde and Dakota tight gas reservoirs of the San Juan Basin. Secondary goals include tuning well log interpretations through integration of core, water chemistry and production analysis data to help identify bypassed pay zones; increased knowledge of permeability ratios and how they affect well drainage and thus infill drilling plans; improved time-depth correlations through regional mapping of sonic logs; and improved understanding of the variability of formation waters within the basin through spatial analysis of water chemistry data. The project will collect, integrate, and analyze a variety of petrophysical and well data concerning the Mesaverde and Dakota reservoirs of the San Juan Basin, with particular emphasis on data available in the areas defined as tight gas areas for purpose of FERC. A relational, geo-referenced database (a geographic information system, or GIS) will be created to archive this data. The information will be analyzed using neural networks, kriging, and other statistical interpolation/extrapolation techniques to fine-tune regional well log interpretations, improve pay zone recognition from old logs or cased-hole logs, determine permeability ratios, and also to analyze water chemistries and compatibilities within the study area. This single-phase project will be accomplished through four major tasks: Data Collection, Data Integration, Data Analysis, and User Interface Design. Data will be extracted from existing databases as well as paper records, then cleaned and integrated into a single GIS database. Once the data warehouse is built, several methods of data analysis will be used both to improve pay zone recognition in single wells, and to extrapolate a variety of petrophysical properties on a regional basis. A user interface will provide tools to make the data and results of the study accessible and useful. The final deliverable

  14. Relaxation dynamics of a driven two-level system coupled to a Bose–Einstein condensate: application to quantum dot-dipolar exciton gas hybrid systems

    Science.gov (United States)

    Kovalev, Vadim M.; Tse, Wang-Kong

    2017-11-01

    We develop a microscopic theory for the relaxation dynamics of an optically pumped two-level system (TLS) coupled to a bath of weakly interacting Bose gas. Using Keldysh formalism and diagrammatic perturbation theory, expressions for the relaxation times of the TLS Rabi oscillations are derived when the boson bath is in the normal state and the Bose–Einstein condensate (BEC) state. We apply our general theory to consider an irradiated quantum dot coupled with a boson bath consisting of a two-dimensional dipolar exciton gas. When the bath is in the BEC regime, relaxation of the Rabi oscillations is due to both condensate and non-condensate fractions of the bath bosons for weak TLS-light coupling and pre dominantly due to the non-condensate fraction for strong TLS-light coupling. Our theory also shows that a phase transition of the bath from the normal to the BEC state strongly influences the relaxation rate of the TLS Rabi oscillations. The TLS relaxation rate is approximately independent of the pump field frequency and monotonically dependent on the field strength when the bath is in the low-temperature regime of the normal phase. Phase transition of the dipolar exciton gas leads to a non-monotonic dependence of the TLS relaxation rate on both the pump field frequency and field strength, providing a characteristic signature for the detection of BEC phase transition of the coupled dipolar exciton gas.

  15. Dynamics and Evolution of SO2 Gas Condensation Around Prometheus-like Volcanic Plumes on Io as Seen by the Near Infrared Mapping Spectrometer

    Science.gov (United States)

    Doute, S.; Lopes-Gautier, R.; Smythe, W. D.; Kamp, L. W.; Carlson, R.

    2001-01-01

    Near Infrared Mapping Spectrometer data acquired during the I24, 25, and 27 Io's Fly-bys by Galileo are analyzed to map the SO2 frost abundance and granularity. This allows a better understanding of the dynamics and evolution of gas condensation around volcanic plumes. Additional information is contained in the original extended abstract.

  16. Forced convection film condensation along a flat plate in the presence of noncondensable gas and of liquid droplets

    International Nuclear Information System (INIS)

    Matuszkiewicz, A.; Vernier, P.; Gentil, O.

    1989-10-01

    The current assumption of metastable state in the gas-vapor mixture is replaced by a hypothesis of saturated state at equilibrium. This enables us to determine the droplet mass fraction profile in the laminar boundary layer. The basic equations are the two-phase, two-component balance equations in the homogeneous approximation. As a consequence new formulations result for the gas-phase diffusion equation, and for the mixture, bulk and interfacial, thermal energy equations. Using a similarity transformation the equations to be solved are reduced to non linear ordinary differential equations with boundary conditions. For small temperature differences between the mixture and the wall, an analytical relation was found between the profiles of droplet mass fraction and temperature. Such a relation shows that for some mixtures, e.g. air and steam, the droplets evaporate i.e. the droplet mass fraction decreases toward the wall, as temperature does (positive gradient). On the contrary, for other mixtures, e.g. air-alcohol, the mass fraction increases. For high temperature differences, numerical calculations for an air-steam mixture give nonmonotonic profiles displaying a steep negative gradient near the interface. For temperature differences up to 40 K, the heat flux across the condensation film is found to be only slightly influenced by the droplets growth [fr

  17. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation.

    Science.gov (United States)

    Xing, Lijuan; Ten Brink, Gert H; Chen, Bin; Schmidt, Franz P; Haberfehlner, Georg; Hofer, Ferdinand; Kooi, Bart J; Palasantzas, George

    2016-05-27

    Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction analysis. The core-shell structure, which is composed of an Fe core surrounded by a maghemite (γ-Fe2O3) and/or magnetite (Fe3O4) shell, was confirmed by fast Fourier transform (FFT) analysis combined with EELS. It was found that the particle size and shape strongly depend on the gas environment. Moreover, extensive analysis showed that NPs with a size between 10-20 nm possess a truncated cubic morphology, which is confined by the 6 {100} planes that are truncated by the 12 {110} planes at different degrees. For NPs larger than 20 nm, the rhombic dodecahedron defined by the 12 {110} planes is the predominant crystal shape, while truncated rhombic dodecahedrons, as well as non-truncated and truncated cubic NPs, were also observed. The NPs without truncation showed a characteristic inward relaxation indicating that besides thermodynamics kinetics also plays a crucial role during particle growth.

  18. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, B.A.; Carr, D.L.; Finley, R.J.; Tyler, N.; Lancaster, D.E.; Elphick, R.Y.; Ballard, J.R.

    1995-07-01

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing so using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.

  19. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    Science.gov (United States)

    LBNL, in consultation with the EPA, expanded upon a previous study by injecting directly into a 3D representation of a hypothetical fault zone located in the geologic units between the shale-gas reservoir and the drinking water aquifer.

  20. Determining the explosion effects on the Gasbuggy reservoir from computer simulation of the postshot gas production history

    International Nuclear Information System (INIS)

    Rogers, Leo A.

    1970-01-01

    Analysis of the gas production data from Gasbuggy to deduce reservoir properties outside the chimney is complicated by the large gas storage volume in the chimney because the gas flow from the surrounding reservoir into the chimney cannot be directly measured. This problem was overcome by developing a chimney volume factor F (M 2 CF/PSI) based upon analysis of rapid drawdowns during the production tests. The chimney volume factor was in turn used to construct the time history of the required influx of gas into the chimney from the surrounding reservoir. The most probable value of F to describe the chimney is found to be 0.150 M 2 CF/PSI. Postulated models of the reservoir properties outside the chimney are examined by calculating the pressure distribution and flow of gas through the reservoir with the experimentally observed chimney pressure history applied to the cavity wall. The calculated influx from the reservoir into the chimney is then compared to the required influx and the calculated pressure at a radius of 300 feet is compared to the observed pressures in a shut-in satellite well (GB-2RS) which intersects the gas-bearing formation 300 feet from the center of the chimney. A description of the mathematics in the computer program used to perform the calculations is given. Gas flow for a radial model wherein permeability and porosity are uniform through the gas producing sand outside the chimney was calculated for several values of permeability. These calculations indicated that for the first drawdown test (July 1968) the permeability-producing height product (kh) was in the region of 15 to 30 millidarcy-feet (md-ft) and that after several months of testing, the effective kh had dropped to less than 8 md-ft. Calculations wherein (1) the permeability decreases from the chimney out to the 'fracture' radius, and (2) an increased production height is used near the chimney, match the data better than the simple radial model. Reasonable fits to the data for the

  1. New perspectives for underground storage of surplus LPG within the framework of a strategy to optimize the production rate of a gas condensate field; Perspectives nouvelles de stockage souterrain du GPL en surplus dans le cadre d'une strategie d'optimisation de la production d'un champ de gaz a condensat

    Energy Technology Data Exchange (ETDEWEB)

    Terkmani, M. [Sonatrach, Direction Production, Hydra (Algeria)

    2000-07-01

    Most of the algerian natural gas reserves, as well as those of many other countries, are made up of gas - condensate which needs to be processed in surface facilities where it is split into three different fluids: dry gas, LPG and condensate. The relative proportion of each fluid is fixed and cannot be altered. Therefore any disturbance due to technical, commercial or conjuncture reasons that would reduce or block the dispatching of one of them will have a negative impact on the producing performance of the field. In case circumstances would lead to the necessity of reducing or totally suppressing the dispatching of LPG, then one one of the following unpleasant decisions would have to be taken: - Flare surplus LPG in order to avoid reducing or suppressing condensate and dry gas production. - Reduce or suppress condensate and dry gas production in order to avoid producing any surplus LPG. The alternative to avoid either decision lies in the availability of a sufficient storage capacity for the surplus LPG. Among conventional technics for underground or surface storage none seems fit for LPG because of an almost certain risk of economic failure in the context of the problem to be solved. The aim of this paper is to present a possible solution to solve this problem through a new underground storage concept that would offer enough flexibility to store the required volume of LPG whatever its importance, at a very low investment cost whatever the size of the volumes to be stored, with the possibility to start immediately the production of stored LPG as soon as the disturbance is over. This solution lies in the possibility to inject LPG into the gas reservoir from which it is produced by means of one or several producers temporarily converted into LPG injection wells. (author)

  2. Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea

    Science.gov (United States)

    Bahk, J.-J.; Kim, G.-Y.; Chun, J.-H.; Kim, J.-H.; Lee, J.Y.; Ryu, B.-J.; Lee, J.-H.; Son, B.-K.; Collett, Timothy S.

    2013-01-01

    Examinations of core and well-log data from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) drill sites suggest that Sites UBGH2-2_2 and UBGH2-6 have relatively good gas hydrate reservoir quality in terms of individual and total cumulative thicknesses of gas-hydrate-bearing sand (HYBS) beds. In both of the sites, core sediments are generally dominated by hemipelagic muds which are intercalated with turbidite sands. The turbidite sands are usually thin-to-medium bedded and mainly consist of well sorted coarse silt to fine sand. Anomalies in infrared core temperatures and porewater chlorinity data and pressure core measurements indicate that “gas hydrate occurrence zones” (GHOZ) are present about 68–155 mbsf at Site UBGH2-2_2 and 110–155 mbsf at Site UBGH2-6. In both the GHOZ, gas hydrates are preferentially associated with many of the turbidite sands as “pore-filling” type hydrates. The HYBS identified in the cores from Site UBGH2-6 are medium-to-thick bedded particularly in the lower part of the GHOZ and well coincident with significant high excursions in all of the resistivity, density, and velocity logs. Gas-hydrate saturations in the HYBS range from 12% to 79% with an average of 52% based on pore-water chlorinity. In contrast, the HYBS from Site UBGH2-2_2 are usually thin-bedded and show poor correlations with both of the resistivity and velocity logs owing to volume averaging effects of the logging tools on the thin HYBS beds. Gas-hydrate saturations in the HYBS range from 15% to 65% with an average of 37% based on pore-water chlorinity. In both of the sites, large fluctuations in biogenic opal contents have significant effects on the sediment physical properties, resulting in limited usage of gamma ray and density logs in discriminating sand reservoirs.

  3. Multi-zone coupling productivity of horizontal well fracturing with complex fracture networks in shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Weiyao Zhu

    2018-02-01

    Full Text Available In this paper, a series of specific studies were carried out to investigate the complex form of fracture networks and figure out the multi-scale flowing laws of nano/micro pores–complex fracture networks–wellbore during the development of shale reservoirs by means of horizontal well fracturing. First, hydraulic fractures were induced by means of Brazilian splitting tests. Second, the forms of the hydraulic fractures inside the rock samples were observed by means of X-ray CT scanning to measure the opening of hydraulic fractures. Third, based on the multi-scale unified flowing model, morphological description of fractures and gas flowing mechanism in the matrix–complex fracture network–wellbore, the productivity equation of single-stage horizontal well fracturing which includes diffusion, slipping and desorption was established. And fourthly, a productivity prediction model of horizontal well multi-stage fracturing in the shale reservoir was established considering the interference between the multi-stage fracturing zones and the pressure drop in the horizontal wellbore. The following results were obtained. First, hydraulic fractures are in the form of a complex network. Second, the measured opening of hydraulic fractures is in the range of 4.25–453 μm, averaging 112 μm. Third, shale gas flowing in different shapes of fracture networks follows different nonlinear flowing laws. Forth, as the fracture density in the strongly stimulated zones rises and the distribution range of the hydraulic fractures in strongly/weakly stimulated zones enlarges, gas production increases gradually. As the interference occurs in the flowing zones of fracture networks between fractured sections, the increasing amplitude of gas production rates decreases. Fifth, when the length of a simulated horizontal well is 1500 m and the half length of a fracture network in the strongly stimulated zone is 100 m, the productivity effect of stage 10 fracturing is the

  4. Greenhouse gas emissions from reservoir water surfaces: A new global synthesis

    Science.gov (United States)

    Collectively, reservoirs created by dams are thought to be an important source ofgreenhouse gases (GHGs) to the atmosphere. So far, efforts to quantify, model, andmanage these emissions have been limited by data availability and inconsistenciesin methodological approach. Here we ...

  5. Creation of a Bose-condensed gas of87Rb by laser cooling.

    Science.gov (United States)

    Hu, Jiazhong; Urvoy, Alban; Vendeiro, Zachary; Crépel, Valentin; Chen, Wenlan; Vuletić, Vladan

    2017-11-24

    Protocols for attaining quantum degeneracy in atomic gases almost exclusively rely on evaporative cooling, a time-consuming final step associated with substantial atom loss. We demonstrate direct laser cooling of a gas of rubidium-87 ( 87 Rb) atoms to quantum degeneracy. The method is fast and induces little atom loss. The atoms are trapped in a two-dimensional optical lattice that enables cycles of compression to increase the density, followed by Raman sideband cooling to decrease the temperature. From a starting number of 2000 atoms, 1400 atoms reach quantum degeneracy in 300 milliseconds, as confirmed by a bimodal velocity distribution. The method should be broadly applicable to many bosonic and fermionic species and to systems where evaporative cooling is not possible. Copyright © 2017, American Association for the Advancement of Science.

  6. Separation of submicron particles from biofuel combustion with flue gas condensation or wet condensing electrostatic precipitator. Analysis of possibilities; Avskiljning av submikrona partiklar vid biobraenslefoerbraenning med roekgaskondensering eller kondenserande vaata elfilter. Analys av moejligheterna

    Energy Technology Data Exchange (ETDEWEB)

    Roennbaeck, Marie; Gustavsson, Lennart [Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-11-15

    Dust particles in flue gas larger than 1 {mu}m are well separated by conventional techniques, while submicron particles are poorly separated. As the use of biofuels with high ash content is increasing, as well as knowledge about negative health effects from inhalation of submicron particles, the interest for reduction of emissions of submicron particles will probably increase. The aim of this project is to investigate possible techniques for separation of submicron particles during flue gas condensation through modification of conventional technique, or with available techniques not usually used with combustion of biofuels, e.g. a wet electrostatic precipitator. Mechanisms for separation of dust particles are briefly described. Cyclones separates particles larger than about 1 {mu}m. Fabric filters separates all particles sizes, but the efficiency reduces as the size reduces. In flue gas condensers and scrubbers the speed and size of water droplets are important for the reduction efficiency. Dry electrostatic precipitators work for all particle sizes, but with reduced efficiency for sizes between 0.1 and 3 {mu}m. Wet electrostatic precipitators separates submicron particles much better. One reason for this is that the potential between the electrodes can be higher. Among conventional flue gas condensers and scrubbers there are two types that, properly designed, can separate submicron particles, namely 'type venturi scrubbers', i.e. a scrubber where a high flue gas velocity is used to form many, small water droplets by friction forces in a nozzle, and 'type scrubber with nozzles', i.e. a scrubber where nozzles supply droplets to the flue gas. For a scrubber with nozzles, the falling velocity of the droplets must be lower and the size smaller than is common today. Also the wet electrostatic precipitator separates submicron particles with high efficiency. They are used today mainly for problematic particles, e.g. sticky or corrosive ones, or for

  7. TSR versus non-TSR processes and their impact on gas geochemistry and carbon stable isotopes in Carboniferous, Permian and Lower Triassic marine carbonate gas reservoirs in the Eastern Sichuan Basin, China

    Science.gov (United States)

    Liu, Q. Y.; Worden, R. H.; Jin, Z. J.; Liu, W. H.; Li, J.; Gao, B.; Zhang, D. W.; Hu, A. P.; Yang, C.

    2013-01-01

    The Palaeozoic and lowermost Mesozoic marine carbonate reservoirs of the Sichuan Basin in China contain variably sour and very dry gas. The source of the gas in the Carboniferous, Permian and Lower Triassic reservoirs is not known for certain and it has proved difficult to discriminate and differentiate the effects of thermal cracking- and TSR-related processes for these gases. Sixty-three gas samples were collected and analysed for their composition and carbon stable isotope values. The gases are all typically very dry (alkane gases being >97.5% methane), with low (kerogen-derived oil and primary gas and is highly mature. Carboniferous (and non-sour Triassic and Permian) gas has unusual carbon isotopes with methane and propane being isotopically heavier than ethane (a reversal of typical low- to moderate-maturity patterns). The gas in the non-sour Triassic and Permian reservoirs has the same geochemical and isotopic characteristics (and therefore the same source) as the Carboniferous gas. TSR in the deepest Triassic reservoirs altered the gas composition reaching 100% dryness in the deepest, most sour reservoirs showing that ethane and propane react faster than methane during TSR. Ethane evolves to heavier carbon isotope values than methane during TSR leading to removal of the reversed alkane gas isotope trend found in the Carboniferous and non-sour Triassic and Permian reservoirs. However, methane was directly involved in TSR as shown by the progressive increase in its carbon isotope ratio as gas souring proceeded. CO2 increased in concentration as gas souring proceeded, but typical CO2 carbon isotope ratios in sour gases remained about -4‰ V-PDB showing that it was not solely derived from the oxidation of alkanes. Instead CO2 may partly result from reaction of sour gas with carbonate reservoir minerals, such as Fe-rich dolomite or calcite, resulting in pyrite growth as well as CO2-generation.

  8. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  9. Geochemical characteristics of natural gas in the hydrocarbon accumulation history, and its difference among gas reservoirs in the Upper Triassic formation of Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2016-08-01

    Full Text Available The analysis of hydrocarbon generation, trap formation, inclusion homogenization temperature, authigenic illite dating, and ESR dating were used to understand the history of hydrocarbon accumulation and its difference among gas reservoirs in the Upper Triassic formation of Sichuan Basin. The results show the hydrocarbon accumulation mainly occurred during the Jurassic and Cretaceous periods; they could also be classified into three stages: (1 early hydrocarbon generation accumulation stage, (2 mass hydrocarbon generation accumulation stage before the Himalayan Epoch, (3 and parts of hydrocarbon adjustment and re-accumulation during Himalayan Epoch. The second stage is more important than the other two. The Hydrocarbon accumulation histories are obviously dissimilar in different regions. In western Sichuan Basin, the gas accumulation began at the deposition period of member 5 of Xujiahe Formation, and mass accumulation occurred during the early Middle Jurassic up to the end of the Late Cretaceous. In central Sichuan Basin, the accumulation began at the early Late Jurassic, and the mass accumulation occurred from the middle Early Cretaceous till the end of the Late Cretaceous. In southern Sichuan Basin, the accumulation began at the middle Late Jurassic, and the mass accumulation occurred from the middle of the Late Cretaceous to the end of the Later Cretaceous. The accumulation history of the western Sichuan Basin is the earliest, and the southern Sichuan Basin is the latest. This paper will help to understand the accumulation process, accumulation mechanism, and gas reservoir distribution of the Triassic gas reservoirs in the Sichuan Basin better. Meanwhile, it is found that the authigenic illite in the Upper Triassic formation of Sichuan Basin origin of deep-burial and its dating is a record of the later accumulation. This suggests that the illite dating needs to fully consider illite origin; otherwise the dating results may not accurately

  10. Greenhouse Gas Emissions from U.S. Hydropower Reservoirs: FY2011 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Arthur J [ORNL; Mosher, Jennifer J [ORNL; Mulholland, Patrick J [ORNL; Fortner, Allison M [ORNL; Phillips, Jana Randolph [ORNL; Bevelhimer, Mark S [ORNL

    2012-05-01

    The primary objective of this study is to quantify the net emissions of key greenhouse gases (GHG) - notably, CO{sub 2} and CH{sub 4} - from hydropower reservoirs in moist temperate areas within the U.S. The rationale for this objective is straightforward: if net emissions of GHG can be determined, it would be possible to directly compare hydropower to other power-producing methods on a carbon-emissions basis. Studies of GHG emissions from hydropower reservoirs elsewhere suggest that net emissions can be moderately high in tropical areas. In such areas, warm temperatures and relatively high supply rates of labile organic matter can encourage high rates of decomposition, which (depending upon local conditions) can result in elevated releases of CO{sub 2} and CH{sub 4}. CO{sub 2} and CH{sub 4} emissions also tend to be higher for younger reservoirs than for older reservoirs, because vegetation and labile soil organic matter that is inundated when a reservoir is created can continue to decompose for several years (Galy-Lacaux et al. 1997, Barros et al. 2011). Water bodies located in climatically cooler areas, such as in boreal forests, could be expected to have lower net emissions of CO{sub 2} and CH{sub 4} because their organic carbon supplies tend to be relatively recalcitrant to microbial action and because cooler water temperatures are less conducive to decomposition.

  11. Irreversibility of Gas-Condensate Flow in Gas Cycling Projects: Kinetically Stable Saturation Patterns Irréversibilité des écoulements de gaz à condensat dans les projets de recyclage de gaz : profils stationnaires de saturation

    Directory of Open Access Journals (Sweden)

    Mitlin V.

    2006-12-01

    Full Text Available The dynamics of a two-phase multicomponent reservoir system which is approaching the steady-state flow regime are studied. First, the compositional model is analyzed in the linear approximation, for the case of a small initial deviation from the steady-state regime. An analytical expression is obtained for the characteristic relaxation time. Next, numerical simulations are performed for situations where there is a substantial deviation from the steady-state regime. The linear injection of an enriched gas into a gas-condensate reservoir, followed by the extraction regime, is simulated. It is shown that the change in phase compositions and pressure on the way to equilibrium proceeds with characteristic times of the order of the injection time. However, the change in the saturation and overall composition takes approximately 200 times longer than the injection time. Thus, the reservoir system manifests a spatially inhomogeneous saturation distribution for an abnormally long time. Similar kinetically stable patterns have been also discovered in the nonlinear dynamics of phase transitions, plasma, and thin films. The question of the existence of discontinuous steady states for this multicomponent flow is considered. In the case of a binary mixture, it is shown that such solutions do not exist. Cet article présente une étude de la dynamique d'un réservoir biphasique multiconstituant approchant le régime d'écoulement stationnaire. En premier lieu, nous procédons à une approximation linéaire du modèle compositionnel dans le cas des petites fluctuations autour du régime permanent. Une expression analytique est ainsi obtenue pour le temps caractéristique de transition. Des simulations numériques sont ensuite effectuées pour les déviations importantes par rapport au régime permanent. Nous avons ainsi pu étudier le déplacement linéaire d'un mélange gaz/condensat par un gaz enrichi suivi d'un régime de production. On montre alors que le

  12. Method and apparatus for maintaining condensable constituents of a gas in a vapor phase during sample transport

    Science.gov (United States)

    Felix, Larry Gordon; Farthing, William Earl; Irvin, James Hodges; Snyder, Todd Robert

    2010-05-18

    A system for fluid transport at elevated temperatures having a conduit having a fluid inlet end and a fluid outlet end and at least one heating element disposed within the conduit providing direct heating of a fluid flowing through the conduit. The system is particularly suited for preventing condensable constituents of a high temperature fluid from condensing out of the fluid prior to analysis of the fluid. In addition, operation of the system so as to prevent the condensable constituents from condensing out of the fluid surprisingly does not alter the composition of the fluid.

  13. ALMA Shows that Gas Reservoirs of Star-forming Disks over the Past 3 Billion Years Are Not Predominantly Molecular

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, Luca; Catinella, Barbara; Janowiecki, Steven, E-mail: luca.cortese@uwa.edu.au [International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2017-10-10

    Cold hydrogen gas is the raw fuel for star formation in galaxies, and its partition into atomic and molecular phases is a key quantity for galaxy evolution. In this Letter, we combine Atacama Large Millimeter/submillimeter Array and Arecibo single-dish observations to estimate the molecular-to-atomic hydrogen mass ratio for massive star-forming galaxies at z ∼ 0.2 extracted from the HIGHz survey, i.e., some of the most massive gas-rich systems currently known. We show that the balance between atomic and molecular hydrogen in these galaxies is similar to that of local main-sequence disks, implying that atomic hydrogen has been dominating the cold gas mass budget of star-forming galaxies for at least the past three billion years. In addition, despite harboring gas reservoirs that are more typical of objects at the cosmic noon, HIGHz galaxies host regular rotating disks with low gas velocity dispersions suggesting that high total gas fractions do not necessarily drive high turbulence in the interstellar medium.

  14. Utilizing Non-Equilibrium Thermodynamics and Reactive Transport to Model CH4 Production from the Nankai Trough Gas Hydrate Reservoir

    Directory of Open Access Journals (Sweden)

    Khadijeh Qorbani

    2017-07-01

    Full Text Available The ongoing search for new sources of energy has brought natural gas hydrate (NGH reservoirs to the forefront of attention in both academia and the industry. The amount of gas reserves trapped within these reservoirs surpasses all of the conventional fossil fuel sources explored so far, which makes it of utmost importance to predict their production potential and safety. One of the challenges facing those attempting to analyse their behaviour is that the large number of involved phases make NGHs unable to ever reach equilibrium in nature. Field-scale experiments are expensive and time consuming. However, computer simulations have now become capable of modelling different gas production scenarios, as well as production optimization analyses. In addition to temperature and pressure, independent thermodynamic parameters for hydrate stabilization include the hydrate composition and concentrations for all co-existing phases. It is therefore necessary to develop and implement realistic kinetic models accounting for all significant routes for dissociation and reformation. The reactive transport simulator makes it easy to deploy nonequilibrium thermodynamics for the study of CH4 production from hydrate-bearing sediments by considering each hydrate-related transition as a separate pseudo reaction. In this work, we have used the expanded version of the RetrasoCodeBright (RCB reactive transport simulator to model exploitation of the methane hydrate (MH reservoir located in the Nankai Trough, Japan. Our results showed that higher permeabilities in the horizontal direction dominated the pressure drop propagation throughout the hydrate layers and affected their hydrate dissociation rates. Additionally, the comparison of the vertical well versus the horizontal well pattern indicated that hydrate dissociation was slightly higher in the vertical well scenario compared to the horizontal.

  15. An experimental study of tracers for labelling of injection gas in oil reservoirs

    International Nuclear Information System (INIS)

    Dugstad, Oe.

    1992-01-01

    This work demonstrates the feasibility of the PMCP and PMCH as tracers in field experiments. These compounds have properties which make them as well suited for well to well studies as the more common tracers CH 3 T and 85 Kr. In an injection project carried out at the Gullfaks field in the North Sea the two PFCs verified communication between wells. This implies communication between different geological layers in the reservoir and also communication across faults within the same layers. Laboratory studies carried out have focused on the retention of the tracers in dynamic flooding experiments under conditions comparable with those in the petroleum reservoirs. Simultaneous injection of a variety of tracers has shown individual variations in tracer retention which are caused by important reservoir parameters as fluid saturation and rock properties. By proper design of field injection programs the tracers response may therefore be used to estimate fluid saturation if actual rock properties are known. 45 refs., 20 figs., 13 tabs

  16. A new method in predicting productivity of multi-stage fractured horizontal well in tight gas reservoirs

    Directory of Open Access Journals (Sweden)

    Yunsheng Wei

    2016-10-01

    Full Text Available The generally accomplished technique for horizontal wells in tight gas reservoirs is by multi-stage hydraulic fracturing, not to mention, the flow characteristics of a horizontal well with multiple transverse fractures are very intricate. Conventional methods, well as an evaluation unit, are difficult to accurately predict production capacity of each fracture and productivity differences between wells with a different number of fractures. Thus, a single fracture sets the minimum evaluation unit, matrix, fractures, and lateral wellbore model that are then combined integrally to approximate horizontal well with multiple transverse hydraulic fractures in tight gas reservoirs. This paper presents a new semi-analytical methodology for predicting the production capacity of a horizontal well with multiple transverse hydraulic fractures in tight gas reservoirs. Firstly, a mathematical flow model used as a medium, which is disturbed by finite conductivity vertical fractures and rectangular shaped boundaries, is established and explained by the Fourier integral transform. Then the idea of a single stage fracture analysis is incorporated to establish linear flow model within a single fracture with a variable rate. The Fredholm integral numerical solution is applicable for the fracture conductivity function. Finally, the pipe flow model along the lateral wellbore is adapted to couple multi-stages fracture mathematical models, and the equation group of predicting productivity of a multi-stage fractured horizontal well. The whole flow process from the matrix to bottom-hole and production interference between adjacent fractures is also established. Meanwhile, the corresponding iterative algorithm of the equations is given. In this case analysis, the productions of each well and fracture are calculated under the different bottom-hole flowing pressure, and this method also contributes to obtaining the distribution of pressure drop and production for every

  17. Characterization of oil and gas reservoir heterogeneity. Annual report, November 1, 1990--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  18. Integrated techniques for rapid and highly-efficient development and production of ultra-deep tight sand gas reservoirs of Keshen 8 Block in the Tarim Basin

    Directory of Open Access Journals (Sweden)

    Tongwen Jiang

    2017-01-01

    Full Text Available The unusually ultra-deep and ultra-high-pressure gas reservoirs in the Keshen 8 Block on the Kelasu structural belt of the Tarim Basin are also featured by high temperature, well-developed fault fissures, huge thickness, tight matrix, complex oil–water distribution, etc., which brings about great difficulties to reserves evaluation and further development. In view of this, an overall study was made on the fine description of reservoir fractures and their seepage mechanism, technical problems were being tackled on seismic data processing and interpretation of complex and high & steep structural zones, optimal development design, safe & rapid drilling and completion wells, reservoir stimulation, dynamic monitoring, etc. to promote the development level of such ultra-deep tight gas reservoirs, and 22 complete sets of specific techniques were formulated in the fields of high-efficiency well spacing, safe and fast drilling, recovery enhancement by well completion transformation, efficient development of optimization design, and so on. Through the technical progress and innovative management of integrated exploration & development, reserves evaluation and productivity construction have been completed on the Keshen 8 Block in the last three years of the 12th Five-Year Plan period (2011–2015, as a result, rapid and high-efficiency productivity construction is realized, and a new area is explored in the development of ultra-deep and ultra-high-pressure fractured tight sand gas reservoirs. This study is of great reference to the development of similar gas reservoirs at home and abroad.

  19. High-Precision Spectral Decomposition Method Based on VMD/CWT/FWEO for Hydrocarbon Detection in Tight Sandstone Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2017-07-01

    Full Text Available Seismic time-frequency analysis methods can be used for hydrocarbon detection because of the phenomena of energy and abnormal attenuation of frequency when the seismic waves travel across reservoirs. A high-resolution method based on variational mode decomposition (VMD, continuous-wavelet transform (CWT and frequency-weighted energy operator (FWEO is proposed for hydrocarbon detection in tight sandstone gas reservoirs. VMD can decompose seismic signals into a set of intrinsic mode functions (IMF in the frequency domain. In order to avoid meaningful frequency loss, the CWT method is used to obtain the time-frequency spectra of the selected IMFs. The energy separation algorithm based on FWEO can improve the resolution of time-frequency spectra and highlight abnormal energy, which is applied to track the instantaneous energy in the time-frequency spectra. The difference between the high-frequency section and low-frequency section acquired by applying the proposed method is utilized to detect hydrocarbons. Applications using the model and field data further demonstrate that the proposed method can effectively detect hydrocarbons in tight sandstone reservoirs, with good anti-noise performance. The newly-proposed method can be used as an analysis tool to detect hydrocarbons.

  20. Multidisciplinary approach for detailed characterization of shale gas reservoirs, a Netherlands showcase

    NARCIS (Netherlands)

    Zijp, M.H.A.A.; Nelskamp, S.; Schavemaker, Y.A.; Veen, J.H. ten; Heege, J.H. ter

    2013-01-01

    The success of shale gas exploration and production in the United States has triggered other countries around the world to look into possibilities of producing gas from different shales. As it turns out, one of the main difficulties when looking for shale gas is obtaining an in depth understanding

  1. Electrofacies vs. lithofacies sandstone reservoir characterization Campanian sequence, Arshad gas/oil field, Central Sirt Basin, Libya

    Science.gov (United States)

    Burki, Milad; Darwish, Mohamed

    2017-06-01

    The present study focuses on the vertically stacked sandstones of the Arshad Sandstone in Arshad gas/oil field, Central Sirt Basin, Libya, and is based on the conventional cores analysis and wireline log interpretation. Six lithofacies types (F1 to F6) were identified based on the lithology, sedimentary structures and biogenic features, and are supported by wireline log calibration. From which four types (F1-F4) represent the main Campanian sandstone reservoirs in the Arshad gas/oil field. Lithofacies F5 is the basal conglomerates at the lower part of the Arshad sandstones. The Paleozoic Gargaf Formation is represented by lithofacies F6 which is the source provenance for the above lithofacies types. Arshad sediments are interpreted to be deposited in shallow marginal and nearshore marine environment influenced by waves and storms representing interactive shelf to fluvio-marine conditions. The main seal rocks are the Campanian Sirte shale deposited in a major flooding events during sea level rise. It is contended that the syn-depositional tectonics controlled the distribution of the reservoir facies in time and space. In addition, the post-depositional changes controlled the reservoir quality and performance. Petrophysical interpretation from the porosity log values were confirmed by the conventional core measurements of the different sandstone lithofacies types. Porosity ranges from 5 to 20% and permeability is between 0 and 20 mD. Petrophysical cut-off summary of the lower part of the clastic dominated sequence (i. e. Arshad Sandstone) calculated from six wells includes net pay sand ranging from 19.5‧ to 202.05‧, average porosity from 7.7 to 15% and water saturation from 19 to 58%.

  2. Fault seal analysis to predict the compartmentalization of gas reservoir: Case study of Steenkool formation Bintuni Basin

    Science.gov (United States)

    Ginanjar, W. C. B.; Haris, A.; Riyanto, A.

    2017-07-01

    This study is aimed to analyze the mechanism of hydrocarbons trapping in the field on a relatively new play in the Bintuni basin particularly Steenkool formation. The first well in this field has been drilled with a shallow target in the Steenkool formation and the drilling is managed to find new gas reserves in the shale-sandstone layer. In the structure of this gas discovery, there is the potential barrier for compartmentalization that draws attention to analyze how the patterns of structural of fault become a part of reservoir compartment. In order to measure the risk associated with prospects on a field bounded by faults, it is important to understand the processes that contribute to fault seal. The method of Fault Seal Analysis (FSA) is one of the methods used for the analysis of the nature of a fault whether the fault is sealing or leaking the fluid flow in the reservoir. Trapping systems that are limited by faults play an important role in creating a trap of hydrocarbon. The ability of a fault to seal fluid is quantitatively reflected by the value of Shale Gouge Ratio (SGR). SGR is the calculation of the amount of fine-grained material that fills fault plane (fault gouge) as a result of the movement mechanism of fault. The result of this study is a valuable resource for the systematic evaluation of the analysis of hydrocarbon prospects in the field.

  3. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  4. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided

  5. The genetic source and timing of hydrocarbon formation in gas hydrate reservoirs in Green Canyon, Block GC955

    Science.gov (United States)

    Moore, M. T.; Darrah, T.; Cook, A.; Sawyer, D.; Phillips, S.; Whyte, C. J.; Lary, B. A.

    2017-12-01

    Although large volumes of gas hydrates are known to exist along continental slopes and below permafrost, their role in the energy sector and the global carbon cycle remains uncertain. Investigations regarding the genetic source(s) (i.e., biogenic, thermogenic, mixed sources of hydrocarbon gases), the location of hydrocarbon generation, (whether hydrocarbons formed within the current reservoir formations or underwent migration), rates of clathrate formation, and the timing of natural gas formation/accumulation within clathrates are vital to evaluate economic potential and enhance our understanding of geologic processes. Previous studies addressed some of these questions through analysis of conventional hydrocarbon molecular (C1/C2+) and stable isotopic (e.g., δ13C-CH4, δ2H-CH4, δ13C-CO2) composition of gases, water chemistry and isotopes (e.g., major and trace elements, δ2H-H2O, δ18O-H2O), and dissolved inorganic carbon (δ13C-DIC) of natural gas hydrate systems to determine proportions of biogenic and thermogenic gas. However, the effects from contributions of mixing, transport/migration, methanogenesis, and oxidation in the subsurface can complicate the first-order application of these techniques. Because the original noble gas composition of a fluid is preserved independent of microbial activity, chemical reactions, or changes in oxygen fugacity, the integration of noble gas data can provide both a geochemical fingerprint for sources of fluids and an additional insight as to the uncertainty between effects of mixing versus post-genetic modification. Here, we integrate inert noble gases (He, Ne, Ar, and associated isotopes) with these conventional approaches to better constrain the source of gas hydrate formation and the residence time of fluids (porewaters and natural gases) using radiogenic 4He ingrowth techniques in cores from two boreholes collected as part of the University of Texas led UT-GOM2-01 drilling project. Pressurized cores were extracted from

  6. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  7. Exploratory Simulation Studies of Caprock Alteration Induced byStorage of CO2 in Depleted Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Gherardi, Fabrizio; Xu, Tianfu; Pruess, Karsten

    2005-11-23

    This report presents numerical simulations of isothermalreactive flows which might be induced in the caprock of an Italiandepleted gas reservoir by the geological sequestration of carbon dioxide.Our objective is to verify that CO2 geological disposal activitiesalready planned for the study area are safe and do not induce anyundesired environmental impact.Gas-water-rock interactions have beenmodelled under two different intial conditions, i.e., assuming that i)caprock is perfectly sealed, or ii) partially fractured. Field conditionsare better approximated in terms of the "sealed caprock model". Thefractured caprock model has been implemented because it permits toexplore the geochemical beahvior of the system under particularly severeconditions which are not currently encountered in the field, and then todelineate a sort of hypothetical maximum risk scenario.Major evidencessupporting the assumption of a sealed caprock stem from the fact that nogas leakages have been detected during the exploitation phase, subsequentreservoir repressurization due to the ingression of a lateral aquifer,and during several cycles of gas storage in the latest life of reservoirmanagement.An extensive program of multidisciplinary laboratory tests onrock properties, geochemical and microseismic monitoring, and reservoirsimulation studies is underway to better characterize the reservoir andcap-rock behavior before the performance of a planned CO2 sequestrationpilot test.In our models, fluid flow and mineral alteration are inducedin the caprock by penetration of high CO2 concentrations from theunderlying reservoir, i.e., it was assumed that large amounts of CO2 havebeen already injected at depth. The main focus is on the potential effectof these geochemical transformations on the sealing efficiency of caprockformations. Batch and multi-dimensional 1D and 2D modeling has been usedto investigate multicomponent geochemical processes. Our simulationsaccount for fracture-matrix interactions, gas

  8. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy

    Science.gov (United States)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-01

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12CO2 and 13CO2 were mixed with N2 at various molar fraction ratios to obtain Raman quantification factors (F12CO2 and F13CO2), which provide a theoretical basis for calculating the δ13C value. And the corresponding values were 0.523 (0 CO2/CN2 CO2/CN2 CO2/12CO2 binary mixtures when F12CO2/F13CO2 is 0.466972625. In addition, measurement of δ13C values by Micro-Laser Raman analysis were carried out on natural CO2 gas from Shengli Oil-field at room temperature under different pressures. The δ13C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ13C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ13C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ13C values in natural CO2 gas reservoirs.

  9. Effect of Channel Geometry and Properties of a Vapor-Gas Mixture on Volume Condensation in a Flow through a Nozzle

    Science.gov (United States)

    Sidorov, A. A.; Yastrebov, A. K.

    2018-01-01

    A method of direct numerical solution of the kinetic equation for the droplet size distribution function was used for the numerical investigation of volume condensation in a supersonic vapor-gas flow. Distributions of temperature for the gas phase and droplets, degree of supersaturation, pressure, fraction of droplets by weight, the number of droplets per unit mass, and of the nucleation rate along the channel were determined. The influence of nozzle geometry, mixture composition, and temperature dependence of the mixture properties on the investigated process was evaluated. It has been found that the nozzle divergence angle determines the vapor-gas mixture expansion rate: an increase in the divergence angle enhances the temperature decrease rate and the supersaturation degree raise rate. With an increase or decrease in the partial pressure of incondensable gas, the droplet temperature approaches the gas phase temperature or the saturation temperature at the partial gas pressure, respectively. A considerable effect of the temperature dependence of the liquid surface tension and properties on gas phase parameters and the integral characteristics of condensation aerosol was revealed. However, the difference in results obtained with or without considering the temperature dependence of evaporation heat is negligible. The predictions are compared with experimental data of other investigations for two mixtures: a mixture of heavy water vapor with nitrogen (incondensable gas) or n-nonane vapor with nitrogen. The predictions agree quite well qualitatively and quantitatively with the experiment. The comparison of the predictions with numerical results from other publications obtained using the method of moments demonstrates the usefulness of the direct numerical solution method and the method of moments in a wide range of input data.

  10. Modelling of stress development and fault slip in and around a producing gas reservoir

    NARCIS (Netherlands)

    Mulders, F.M.M.

    2003-01-01

    Many gas fields are currently being produced in the northern Netherlands. Induced seismicity related to gas production has become a growing problem in the Netherlands in the past two decades. To date, a few hundred induced seismic events occurred. Induced seismicity is generally assumed to be the

  11. Well Integrity for Natural Gas Storage in Depleted Reservoirs and Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curtis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jordan, Preston [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perfect, Scott [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morris, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bauer, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bromhal, Grant [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Glosser, Deborah [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Wyatt, Douglas [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Rose, Kelly [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-09-01

    The 2015-2016 Aliso Canyon/Porter Ranch natural gas well blowout emitted approximately 100,000 tonnes of natural gas (mostly methane, CH4) over four months. The blowout impacted thousands of nearby residents, who were displaced from their homes. The high visibility of the event has led to increased scrutiny of the safety of natural gas storage at the Aliso Canyon facility, as well as broader concern for natural gas storage integrity throughout the country. This report presents the findings of the DOE National Laboratories Well Integrity Work Group efforts in the four tasks. In addition to documenting the work of the Work Group, this report presents high priority recommendations to improve well integrity and reduce the likelihood and consequences of subsurface natural gas leaks.

  12. The Effect of Process Parameters on the Synthesis of Ti and TiO2 Nanoparticles Producted by Electromagnetic Levitational Gas Condensation

    Directory of Open Access Journals (Sweden)

    Maryam Moazeni

    2012-10-01

    Full Text Available The nanoparticles of Ti and TiO2 have attracted extensive research interest because of their diverse applications in, for instance, catalysis, energy conversion, pigment and cosmetic manufacturing and biomedical engineering. Through this project, a one-step bulk synthesis method of electromagnetic levitational gas condensation (ELGC was utilized for the synthesis of monodispersed and crystalline Ti and TiO2 nanoparticles. Within the process, the Ti vapours ascending from the high temperature levitated droplet were condensed by an argon gas stream under atmospheric pressure. The TiO2 nanoparticles were produced by simultaneous injection of argon and oxygen into the reactor. The effects of flow rate of the condensing and oxidizing gases on the size and the size distribution of the nanoparticles were investigated. The particles were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and image analysis. The process parameters for the synthesis of the crystalline Ti and TiO2 nanoparticles were determined.

  13. Quantification of pore size distribution in reservoir rocks using MRI logging: A case study of South Pars Gas Field.

    Science.gov (United States)

    Ghojogh, Jalal Neshat; Esmaili, Mohammad; Noruzi-Masir, Behrooz; Bakhshi, Puyan

    2017-12-01

    Pore size distribution (PSD) is an important factor for controlling fluid transport through porous media. The study of PSD can be applicable in areas such as hydrocarbon storage, contaminant transport, prediction of multiphase flow, and analysis of the formation damage by mud infiltration. Nitrogen adsorption, centrifugation method, mercury injection, and X-ray computed tomography are commonly used to measure the distribution of pores. A core sample is occasionally not available because of the unconsolidated nature of reservoirs, high cost of coring operation, and program limitations. Magnetic resonance imaging logging (MRIL) is a proper logging technique that allows the direct measurement of the relaxation time of protons in pore fluids and correlating T 2 distribution to PSD using proper mathematical equations. It is nondestructive and fast and does not require core samples. In this paper, 8 core samples collected from the Dalan reservoir in South Pars Gas Field were studied by processing MRIL data and comparing them by PSD determined in the laboratory. By using the MRIL method, variation in PSD corresponding to the depth for the entire logged interval was determined. Moreover, a detailed mineralogical composition of the reservoir samples related to T 2 distribution was obtained. A good correlation between MRIL and mercury injection data was observed. High degree of similarity was also observed between T 2 distribution and PSD (R 2 = 0.85 to 0.91). Based on the findings from the MRIL method, the obtained values for clay bond water varied between 1E-6 and 1E-3µm, a range that is comprehended from an extra peak on the PSD curve. The frequent pore radius was determined to be 1µm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Relation between biomarkers in exhaled breath condensate and internal exposure to metals from gas metal arc welding.

    Science.gov (United States)

    Hoffmeyer, Frank; Raulf-Heimsoth, Monika; Weiss, Tobias; Lehnert, Martin; Gawrych, Katarzyna; Kendzia, Benjamin; Harth, Volker; Henry, Jana; Pesch, Beate; Brüning, Thomas

    2012-06-01

    Concerning possible harmful components of welding fumes, besides gases and quantitative aspects of the respirable welding fumes, particle-inherent metal toxicity has to be considered.The objective of this study was to investigate the effect markers leukotriene B4 (LTB4),prostaglandin E2 (PGE2) and 8-isoprostane (8-Iso PGF2α) as well as the acid–base balance(pH) in exhaled breath condensate (EBC) of 43 full-time gas metal arc welders (20 smokers) in relation to welding fume exposure. We observed different patterns of iron, chromium and nickel in respirable welding fumes and EBC. Welders with undetectable chromium in EBC(group A, n = 24) presented high iron and nickel concentrations. In this group, higher 8-isoPGF2α and LTB4 concentrations could be revealed compared to welders with detectable chromium and low levels of both iron and nickel in EBC (group B): 8-iso PGF2α443.3 pg mL−1 versus 247.2 pg mL−1; p = 0.001 and LTB4 30.5 pg mL−1 versus 17.3 pgmL−1; p = 0.016. EBC-pH was more acid in samples of group B (6.52 versus 6.82; p = 0.011).Overall, effect markers in welders were associated with iron concentrations in EBC according to smoking habits--non-smokers/smokers: LTB4 (rs = 0.48; p = 0.02/rs = 0.21; p = 0.37),PGE2 (rs = 0.15; p = 0.59/rs = 0.47; p = 0.07), 8-iso PGF2α (rs = 0.18; p = 0.54/rs = 0.59;p = 0.06). Sampling of EBC in occupational research provides a matrix for the simultaneous monitoring of metal exposure and effects on target level. Our results suggest irritative effects in the airways of healthy welders. Further studies are necessary to assess whether these individual results might be used to identify welders at elevated risk for developing a respiratory disease.

  15. Study of flue gas condensers with reference to corrosion risks, biofuel quality, techniques and choice of material; Kartlaeggning av roekgaskondenseringsanlaeggningar med avseende paa korrosionsrisker, biobraenslekvaliteter, teknik och materialval

    Energy Technology Data Exchange (ETDEWEB)

    Stenqvist, Per-Aake

    2012-02-15

    Corrosion in flue gas appliances installed in small and medium sized biomass fired boiler plants has become a problem in an increasing number of sites around Sweden. A trend seems to be that the problems are greater in those plants that use so called terminal chips than those that utilize more homogeneous fuels. In pace with the increasing number of biomass power plants in the country, the demand for cheaper fuel is increased. Through the increasing number of fuel terminals the market is provided even with biofuel mixes in the form of traditional wood chips mixed with bark, forest residue, sawdust, willow, returned wood, etc. Both users and suppliers of boiler and flue gas systems, and fuel suppliers have currently no clear rules or guidelines for relationships between different chemical properties of fuels, technologies, operating data and material. In this report has experience in the form of questionnaires completed by field visits, interviews of operational personnel and literature studies been compiled from a number of plants using different types of flue gas condensers for increased energy output from various types of bio fuels. The purpose of this assignment is to survey the flue gas condensation plant in biomass fired boiler plants for the presence of corrosion damage made in relation to the use of technologies and fuel qualities. A milestone is that the report will be able to be used to support the selection of materials and appropriate techniques for both new facilities and for the repair and improvement of existing ones. Another objective is to compile existing experience and assessment criteria which are reported in the literature. This report describes some typical construction techniques, whenever applicable harmful images and links to various substances present in fuels, ash and condensate

  16. Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics, oxidants and water

    Science.gov (United States)

    Shiraiwa, M.; Pfrang, C.; Koop, T.; Pöschl, U.

    2012-03-01

    We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system and the computational constraints, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at ~270 K is close to unity (Winkler et al., 2006). Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol

  17. Non-equilibrium Properties of a Pumped-Decaying Bose-Condensed Electron–Hole Gas in the BCS–BEC Crossover Region

    Energy Technology Data Exchange (ETDEWEB)

    Hanai, R.; Littlewood, P. B.; Ohashi, Y.

    2016-03-01

    We theoretically investigate a Bose-condensed exciton gas out of equilibrium. Within the framework of the combined BCS-Leggett strong-coupling theory with the non-equilibrium Keldysh formalism, we show how the Bose-Einstein condensation (BEC) of excitons is suppressed to eventually disappear, when the system is in the non-equilibrium steady state. The supply of electrons and holes from the bath is shown to induce quasi-particle excitations, leading to the partial occupation of the upper branch of Bogoliubov single-particle excitation spectrum. We also discuss how this quasi-particle induction is related to the suppression of exciton BEC, as well as the stability of the steady state.

  18. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  19. A new method for calculation of water saturation in shale gas reservoirs using V P -to-V S ratio and porosity

    Science.gov (United States)

    Liu, Kun; Sun, Jianmeng; Zhang, Hongpan; Liu, Haitao; Chen, Xiangyang

    2018-02-01

    Total water saturation is an important parameter for calculating the free gas content of shale gas reservoirs. Owing to the limitations of the Archie formula and its extended solutions in zones rich in organic or conductive minerals, a new method was proposed to estimate total water saturation according to the relationship between total water saturation, V P -to-V S ratio and total porosity. Firstly, the ranges of the relevant parameters in the viscoelastic BISQ model in shale gas reservoirs were estimated. Then, the effects of relevant parameters on the V P -to-V S ratio were simulated based on the partially saturated viscoelastic BISQ model. These parameters were total water saturation, total porosity, permeability, characteristic squirt-flow length, fluid viscosity and sonic frequency. The simulation results showed that the main factors influencing V P -to-V S ratio were total porosity and total water saturation. When the permeability and the characteristic squirt-flow length changed slightly for a particular shale gas reservoir, their influences could be neglected. Then an empirical equation for total water saturation with respect to total porosity and V P -to-V S ratio was obtained according to the experimental data. Finally, the new method was successfully applied to estimate total water saturation in a sequence formation of shale gas reservoirs. Practical applications have shown good agreement with the results calculated by the Archie model.

  20. Study on the lower limits of petrophysical parameters of the Upper Paleozoic tight sandstone gas reservoirs in the Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Huiying Cui

    2017-02-01

    Full Text Available There hasn't been a clear understanding of the lower limits of petrophysical parameters of tight sandstone gas reservoirs so far. However, it is an important question directly related to exploration and development strategies. Research methods of the lower limits of petrophysical parameters are reviewed. The new minimum flow pore throat radius method is used to determine the lower limit of flow pore throat radius. The relative permeability curve method, irreducible water saturation method, and testing method, are used to determine the lower limits of porosity, permeability, and gas saturation. After the comprehensive analysis, the lower limits of petrophysical parameters of the Upper Paleozoic tight sandstone gas reservoirs in Ordos Basin are thought as follows: the minimum flow pore throat radius is 0.02 μm, the lower limits of porosity are 3%, the permeability is 0.02 × 10−3 μm2 and the gas saturation is 20%. Besides, the influence of formation pressure on porosity and permeability, the tight sandstone gas filling mechanism, and reservoir characterization petrophysical parameters of tight sandstone reservoirs are further discussed.

  1. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    Science.gov (United States)

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned toward conditions usually encountered in the Marce...

  2. The impact of azimuthal anisotropy on seismic AVO and petrophysical response in a fractured Wabamun gas reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Rex, B.; Goodway, B.; Martin, C.; Uswak, G. [EnCana Corp., Calgary, AB (Canada)

    2003-07-01

    A reliable method for determining fracture density and orientation is needed to properly evaluate fractured carbonate reservoirs. This paper examines the potential of using the azimuthal information contained in seismic amplitude versus offset (AVO) analysis at a gas well drilled in the Resthaven prospect in the Smokey sub-basin of north-west Alberta. A low angle fault is present in Wabamun limestone, and near vertical fractures create strong anisotropic horizontal transverse isotropy (HTI) intervals in the footwall of the thrust. The AVO method was used to define the extent of the HTI interval. A method was proposed to map the boundary of the fractured reservoir. The study also examined the potential for LMR analysis which is commonly used in isotropic environments. Applying LMR to the Resthaven prospect required some reevaluation of local relationships between LMR and the in-situ HTI environment. LMR was shown to be a powerful tool if the interpreter understands the limitations of the model on which it is based. 6 refs., 13 figs.

  3. A Combined Micro-CT Imaging/Microfluidic Approach for Understating Methane Recovery in Coal Seam Gas Reservoirs

    Science.gov (United States)

    Mostaghimi, P.; Armstrong, R. T.; Gerami, A.; Lamei Ramandi, H.; Ebrahimi Warkiani, M.

    2015-12-01

    Coal seam methane is a form of natural gas stored in coal beds and is one of the most important unconventional resources of energy. The flow and transport in coal beds occur in a well-developed system of natural fractures that are also known as cleats. We use micro-Computed Tomography (CT) imaging at both dry and wet conditions to resolve the cleats below the resolution of the image. Scanning Electron Microscopy (SEM) is used for calibration of micro-CT data. Using soft lithography technique, the cleat system is duplicated on a silicon mould. We fabricate a microfluidic chip using Polydimethylsiloxane (PDMS) to study both imbibition and drainage in generated coal structures for understating gas and water transport in coal seam reservoirs. First, we use simple patterns observed on coal images to analyse the effects of wettability, cleat size and distribution on flow behaviour. Then, we study transport in a coal by injecting both distilled water and decane with a rate of 1 microliter/ min into the fabricated cleat structure (Figure 1), initially saturated with air. We repeat the experiment for different contact angles by plasma treating the microfluidic chip, and results show significant effects of wettability on the displacement efficiency. The breakthrough time in the imbibition setup is significantly longer than in the drainage. Using rapid video capturing, and high resolution microscopy, we measure the saturation of displacing fluid with respect to time. By measuring gas and liquid recovery in the outlet at different saturation, we predict relative permeability of coal. This work has important applications for optimising gas recovery and our results can serve as a benchmark in the verification of multiphase numerical models used in coal seam gas industry.

  4. Radionuclide Migration at the Rio Blanco Site, A Nuclear-stimulated Low-permeability Natural Gas Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Clay A. Cooper; Ming Ye; Jenny Chapman; Craig Shirley

    2005-10-01

    The U.S. Department of Energy and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability gas reservoirs. The third and final project in the program, Project Rio Blanco, was conducted in Rio Blanco County, in northwestern Colorado. In this experiment, three 33-kiloton nuclear explosives were simultaneously detonated in a single emplacement well in the Mesaverde Group and Fort Union Formation, at depths of 1,780, 1,899, and 2,039 m below land surface on May 17, 1973. The objective of this work is to estimate lateral distances that tritium released from the detonations may have traveled in the subsurface and evaluate the possible effect of postulated natural-gas development on radionuclide migration. Other radionuclides were considered in the analysis, but the majority occur in relatively immobile forms (such as nuclear melt glass). Of the radionuclides present in the gas phase, tritium dominates in terms of quantity of radioactivity in the long term and contribution to possible whole body exposure. One simulation is performed for {sup 85}Kr, the second most abundant gaseous radionuclide produced after tritium.

  5. Geologic, geochemical, and geographic controls on NORM in produced water from Texas oil, gas, and geothermal reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.

    1995-08-01

    Water from Texas oil, gas, and geothermal wells contains natural radioactivity that ranges from several hundred to several thousand Picocuries per liter (pCi/L). This natural radioactivity in produced fluids and the scale that forms in producing and processing equipment can lead to increased concerns for worker safety and additional costs for handling and disposing of water and scale. Naturally occurring radioactive materials (NORM) in oil and gas operations are mainly caused by concentrations of radium-226 ({sup 226}Ra) and radium-228 ({sup 228}Ra), daughter products of uranium-238 ({sup 238}U) and thorium-232 ({sup 232}Th), respectively, in barite scale. We examined (1) the geographic distribution of high NORM levels in oil-producing and gas-processing equipment, (2) geologic controls on uranium (U), thorium (Th), and radium (Ra) in sedimentary basins and reservoirs, (3) mineralogy of NORM scale, (4) chemical variability and potential to form barite scale in Texas formation waters, (5) Ra activity in Texas formation waters, and (6) geochemical controls on Ra isotopes in formation water and barite scale to explore natural controls on radioactivity. Our approach combined extensive compilations of published data, collection and analyses of new water samples and scale material, and geochemical modeling of scale Precipitation and Ra incorporation in barite.

  6. Condensing Unit with a Scroll Compressor (UB series)

    Energy Technology Data Exchange (ETDEWEB)

    Editor [Korea Energy Management Corporation, Yongin (Korea)

    2002-05-01

    Condensing unit, which is selected as a heat reservoir of grocery store or refrigerating warehouse, has increased its electricity consumption due to high annual operating ratio and large-sized stores. As the requirement of temperature management on freezing and storage has become strict for maintenance of food quality, the number of companies that import HACCP has increased for a few years. Accordingly, the requirement of high performance and reliability on a condensing unit has also risen more than it did. To meet the requirement, Mitsubishi Electric developed and sold condensing unit UB series, which has high reliability in energy saving. The company also has a plan to sell UPB series for the substitute refrigerant gas from fall of 2001. 5 figs., 2 tabs.

  7. Laboratory Investigation to Assess the Impact of Pore Pressure Decline and Confining Stress on Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    khalil Rehman Memon

    2018-01-01

    Full Text Available Four core samples of outcrop type shale from Mancos, Marcellus, Eagle Ford, and Barnett shale formations were studied to evaluate the productivity performance and reservoir connectivity at elevated temperature and pressure. These laboratory experiments were conducted using hydrostatic permeability system with helium as test gas primarily to avoid potential significant effects of adsorption and/or associated swelling that might affect permeability. It was found that the permeability reduction was observed due to increasing confining stress and permeability improvement was observed related to Knudsen flow and molecular slippage related to Klinkenberg effect. Through the effective permeability of rock is improved at lower pore pressures, as 1000 psi. The effective stress with relatively high flow path was identified, as 100-200 nm, in Eagle Ford core sample. However other three samples showed low marginal flow paths in low connectivity.

  8. Effect of condensed tannin extract supplementation on growth performance, nitrogen balance, gas emissions, and energetic losses of beef steers.

    Science.gov (United States)

    Ebert, P J; Bailey, E A; Shreck, A L; Jennings, J S; Cole, N A

    2017-03-01

    Condensed tannins (CT) may decrease greenhouse gas emissions and alter the site of N excreted by ruminants. We evaluated the effect of top-dressing a steam-flaked corn-based finishing diet (14.4% CP and NEg 1.47 Mcal/kg) for beef cattle with a commercially available CT extract at 3 levels (0, 0.5, and 1.0% of diet, DM basis). Angus-crossbred steers ( = 27; 350 ± 32 kg initial BW) were individually fed via Calan gates for 126 d. Diet digestibility and N balance were estimated after 34 and 95 d on feed (Phase 1 and Phase 2, respectively) using titanium dioxide as a marker of fecal output and the creatinine:BW ratio as a marker for urine output. Ruminal CH and metabolic CO fluxes were measured using a GreenFeed system (C-Lock Inc., Rapid City, SD) for 2 sampling periods that coincided with fecal and urine sampling. Urine energy loss was estimated from urine N excretion, assuming all excreted N was urea. Oxygen consumption was estimated from CO production assuming a respiratory quotient of 1.05. Average daily gain (2.08, 2.14, and 2.08 kg/d for 0, 0.5, and 1.0% CT, respectively) and G:F did not differ ( = 0.88) among treatments. Starch intake and OM intake did not differ ( ≥ 0.42) among treatments during each phase. Apparent total tract starch digestibility during Phase 1 linearly decreased ( = 0.04) with inclusion of CT. Apparent total tract digestibility of OM and starch were not different among treatments ( ≥ 0.13) during Phase 2. Nitrogen intake did not differ ( ≥ 0.16) among treatments during each phase, but fecal N excretion linearly increased ( = 0.05) with inclusion of CT during Phase 1. Urinary N excretion was not different ( ≥ 0.39) among treatments during both phases, but urinary N as a proportion of total N excretion linearly decreased ( = 0.01) when CT was included in the diet during Phase 1. Retained N was not different ( ≥ 0.27) among treatments during each phase. Fluxes of CO were similar ( ≥ 0.37) among treatments during both phases. No

  9. Damage evaluation on oil-based drill-in fluids for ultra-deep fractured tight sandstone gas reservoirs

    Directory of Open Access Journals (Sweden)

    Jinzhi Zhu

    2017-07-01

    Full Text Available In order to explore the damage mechanisms and improve the method to evaluate and optimize the performance of formation damage control of oil-based drill-in fluids, this paper took an ultra-deep fractured tight gas reservoir in piedmont configuration, located in the Cretaceous Bashijiqike Fm of the Tarim Basin, as an example. First, evaluation experiments were conducted on the filtrate invasion, the dynamic damage of oil-based drill-in fluids and the loading capacity of filter cakes. Meanwhile, the evaluating methods were optimized for the formation damage control effect of oil-based drill-in fluids in laboratory: pre-processing drill-in fluids before grading analysis; using the dynamic damage method to simulate the damage process for evaluating the percentage of regained permeability; and evaluating the loading capacity of filter cakes. The experimental results show that (1 oil phase trapping damage and solid phase invasion are the main formation damage types; (2 the damage degree of filtrate is the strongest on the matrix; and (3 the dynamic damage degree of oil-based drill-in fluids reaches medium strong to strong on fractures and filter cakes show a good sealing capacity for the fractures less than 100 μm. In conclusion, the filter cakes' loading capacity should be first guaranteed, and both percentage of regained permeability and liquid trapping damage degree should be both considered in the oil-based drill-in fluids prepared for those ultra-deep fractured tight sandstone gas reservoirs.

  10. Petrophysical Characterization and Reservoir Simulator for Methane Gas Production from Gulf of Mexico Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kishore Mohanty; Bill Cook; Mustafa Hakimuddin; Ramanan Pitchumani; Damiola Ogunlana; Jon Burger; John Shillinglaw

    2006-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Estimates of the amounts of methane sequestered in gas hydrates worldwide are speculative and range from about 100,000 to 270,000,000 trillion cubic feet (modified from Kvenvolden, 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In this project novel techniques were developed to form and dissociate methane hydrates in porous media, to measure acoustic properties and CT properties during hydrate dissociation in the presence of a porous medium. Hydrate depressurization experiments in cores were simulated with the use of TOUGHFx/HYDRATE simulator. Input/output software was developed to simulate variable pressure boundary condition and improve the ease of use of the simulator. A series of simulations needed to be run to mimic the variable pressure condition at the production well. The experiments can be matched qualitatively by the hydrate simulator. The temperature of the core falls during hydrate dissociation; the temperature drop is higher if the fluid withdrawal rate is higher. The pressure and temperature gradients are small within the core. The sodium iodide concentration affects the dissociation pressure and rate. This procedure and data will be useful in designing future hydrate studies.

  11. Testing of fractured carbonate oil and gas reservoirs in Western Latvia

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtin, V.V.; Sliznikov, N.I.; Chechetkin, S.I.

    1970-01-01

    A description is given of fractured carbonate reservoirs in Upper and Middle Ordovician, which have high oil saturation, but do not produce at commercial rates. Low production rates were basically caused by low porosity (4 to 6%) and an integranular permeability of less than 0.1 md. The oil is present in the secondary porosity while oil flow is through a system of microfractures. Low productivity also is caused by use of too dense drilling fuid whose clay reduces formation permeability. A new well completion procedure is suggested, in which the formation is perforated by a sand jet and hydraulically fractured by acid. The acid should be 6% in concentration and should contain 0.1% surfactant DME-15. The cost of fracturing can be reduced by using locally available sand.

  12. Controlling particle properties in {{YBa}}_{2}{{Cu}}_{3}{{\\rm{O}}}_{7-\\delta } nanocomposites by combining PLD with an inert gas condensation system

    Science.gov (United States)

    Sparing, M.; Reich, E.; Hänisch, J.; Gottschall, T.; Hühne, R.; Fähler, S.; Rellinghaus, B.; Schultz, L.; Holzapfel, B.

    2017-10-01

    The critical current density {J}{{c}} in {{YBa}}2{{Cu}}3{{{O}}}7-δ thin films, which limits their application in external magnetic fields, can be enhanced by the introduction of artificial pinning centers such as non-superconducting nanoparticles inducing additional defects and local strain in the superconducting matrix. To understand the correlation between superconductivity, defect structures and particles, a controlled integration of particles with adjustable properties is essential. A powerful technique for the growth of isolated nanoparticles in the range of 10 nm is dc-magnetron sputtering in an inert gas flow. The inert gas condensation (IGC) of particles allows for an independent control of both the particle diameter distribution and the areal density. We report on the integration of such gas-phase-condensed {{HfO}}2 nanoparticles into pulsed laser deposited (PLD) {{YBa}}2{{Cu}}3{{{O}}}7-δ thin film multilayers with a combined PLD-IGC system. The particles and the structure of the multilayers are analyzed by transmission electron microscopy on cross-sectional FIB lamellae. As a result of the IGC particle implementation, randomly as well as biaxially oriented {{BaHfO}}3 precipitates are formed in the {{YBa}}2{{Cu}}3{{{O}}}7-δ thin films. With as few as three interlayers of nanoparticles, the pinning force density is enhanced in the low-field region.

  13. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  14. Quantitative measurement of carbon isotopic composition in CO2gas reservoir by Micro-Laser Raman spectroscopy.

    Science.gov (United States)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-15

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12 CO 2 and 13 CO 2 were mixed with N 2 at various molar fraction ratios to obtain Raman quantification factors (F 12CO2 and F 13CO2 ), which provide a theoretical basis for calculating the δ 13 C value. And the corresponding values were 0.523 (0gas from Shengli Oil-field at room temperature under different pressures. The δ 13 C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ 13 C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ 13 C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ 13 C values in natural CO 2 gas reservoirs. Copyright © 2018. Published by Elsevier B.V.

  15. Large Mass Flux Differences for Opposite Flow Directions of a Condensable Gas through an Asymmetric Porous Membrane

    Czech Academy of Sciences Publication Activity Database

    Uchytil, Petr; Loimer, T.

    2014-01-01

    Roč. 470, NOV 15 (2014), s. 451-457 ISSN 0376-7388 R&D Projects: GA MŠk 7AMB12AT010; GA MŠk(CZ) 7AMB14AT011 Institutional support: RVO:67985858 Keywords : condensation * vapor permeation * asymmetric membranes Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 5.056, year: 2014

  16. Effect of condensed tannin extract supplementation of performance, nitrogen, balance, gas emissions, and energetic losses of beef steers

    Science.gov (United States)

    Nitrogen emissions from concentrated animal feeding operations are of increasing concern to regulatory agencies and consumers. We evaluated the effect of top-dressing a finishing diet (14.4% crude protein) for beef steers with a commercially-available condensed tannin extract (CT) at three levels (0...

  17. Effect of matrix wettability CO2 assisted gas-oil garvity drainage in naturally fractured reservoirs

    NARCIS (Netherlands)

    Amerighasrodashti, A.; Farajzadeh, R.; Shojai Kaveh, N.; Suicmez, S.; Wolf, K.H.A.A.; Bruining, J.

    2015-01-01

    The wettability behavior of the matrix block is one of the major factors controlling the effectiveness of the employed EOR methods in NFRs. Water injection in NFRs with mixed-wet or effectively oil-wet matrix blocks usually results in low oil recoveries. In this case, gas injection is considered to

  18. Well Integrity for Natural Gas Storage in Depleted Reservoirs and Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jordan, Preston [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perfect, Scott [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morris, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bauer, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bromhal, Grant [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Glosser, Deborah [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Wyatt, Douglas [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Rose, Kelly [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-09-02

    Introduction Motivation The 2015-2016 Aliso Canyon/Porter Ranch natural gas well blowout emitted approximately 100,000 tonnes of natural gas (mostly methane, CH4) over four months. The blowout impacted thousands of nearby residents, who were displaced from their homes. The high visibility of the event has led to increased scrutiny of the safety of natural gas storage at the Aliso Canyon facility, as well as broader concern for natural gas storage integrity throughout the country. Federal Review of Well Integrity In April of 2016, the U.S. Department of Energy (DOE), in conjunction with the U.S. Department of Transportation (DOT) through the Pipeline and Hazardous Materials Safety Administration (PHMSA), announced the formation of a new Interagency Task Force on Natural Gas Storage Safety. The Task Force enlisted a group of scientists and engineers at the DOE National Laboratories to review the state of well integrity in natural gas storage in the U.S. The overarching objective of the review is to gather, analyze, catalogue, and disseminate information and findings that can lead to improved natural gas storage safety and security and thus reduce the risk of future events. The “Protecting our Infrastructure of Pipelines and Enhancing Safety Act of 2016’’ or the ‘‘PIPES Act of 2016,’’which was signed into law on June 22, 2016, created an Aliso Canyon Natural Gas Leak Task Force led by the Secretary of Energy and consisting of representatives from the DOT, Environmental Protection Agency (EPA), Department of Health and Human Services, Federal Energy Regulatory Commission (FERC), Department of Commerce and the Department of Interior. The Task Force was asked to perform an analysis of the Aliso Canyon event and make recommendations on preventing similar incidents in the future. The PIPES Act also required that DOT/PHMSA promulgate minimum safety standards for underground storage that would take effect within two years. Background on the DOE

  19. Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery

    International Nuclear Information System (INIS)

    Li, Yuzhong; Yan, Min; Zhang, Liqiang; Chen, Guifang; Cui, Lin; Song, Zhanlong; Chang, Jingcai; Ma, Chunyuan

    2016-01-01

    Highlights: • A method is developed for deep cooling of flue gas in coal-fired boilers. • The method can recover both latent heat and water from flue gas. • The method utilizes FGD scrubber as a deep cooling exchanger. • The method adopts the direct heat exchange mode to avoid the corrosion problem. - Abstract: Flue gas waste heat recovery and utilization is an efficient means to improve the energy efficiency of coal-fired power plants. At present, the surface corrosion and fouling problems of heat exchanger hinder the development of flue gas deep cooling. In this study, a novel flue gas deep cooling method that can reduce flue gas temperature below the dew point of vapor to recover latent heat and obtain clean water simultaneously is proposed to achieve improved energy efficiency. The heat transfer mode of this method is the direct contact mode, which takes the scrubber, e.g. the flue gas desulfurization (FGD) scrubber, as the deep cooling exchanger. The flash evaporation and condensation (FEC) device and heat pump (HP) are utilized to provide low-temperature medium, such as FGD slurry or water, for washing and deep cooling flue gas, to collect recovered water, and to absorb recovered waste heat. This method is called as the FEC–HP method. This paper elaborated on two optional models of the proposed method. The mechanism for recovering heat and water was also analyzed using the customized flue gas humidity chart, and the method to quantitate recovered heat and water, as well as the results of the case of a 300 MW coal-fired generator set were provided. Net present value calculations showed that this method is profitable in the scenario of burning high-water-content coals. Several potential advantages of this method and suggestions for practical application were also discussed.

  20. Increasing Production from Low-Permeability Gas Reservoirs by Optimizing Zone Isolation for Successful Stimulation Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2005-03-31

    Maximizing production from wells drilled in low-permeability reservoirs, such as the Barnett Shale, is determined by cementing, stimulation, and production techniques employed. Studies show that cementing can be effective in terms of improving fracture effectiveness by 'focusing' the frac in the desired zone and improving penetration. Additionally, a method is presented for determining the required properties of the set cement at various places in the well, with the surprising result that uphole cement properties in wells destined for multiple-zone fracturing is more critical than those applied to downhole zones. Stimulation studies show that measuring pressure profiles and response during Pre-Frac Injection Test procedures prior to the frac job are critical in determining if a frac is indicated at all, as well as the type and size of the frac job. This result is contrary to current industry practice, in which frac jobs are designed well before the execution, and carried out as designed on location. Finally, studies show that most wells in the Barnett Shale are production limited by liquid invasion into the wellbore, and determinants are presented for when rod or downhole pumps are indicated.

  1. Study to determine the feasibility of obtaining true samples of oil and gas reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ward, C.E.; Sinclair, A.R.

    1977-10-01

    The study concludes that a feasible solution is possible which would provide up to about 90 percent information accuracy under many operating conditions, well within the economic range for most oil and gas operations. The study also concludes that there is potential feasibility for the development of systems to approach 100 percent information accuracy under many operating situations. However, the cost of such a system is far beyond those considered practical within the economics of the competitive oil and gas industry. The justification of such a system has been likened to that of a ''moon shot'' approach and would take several years of development before true feasibility and probability of success could be assessed.

  2. Two-phase flow in volatile oil reservoir using two-phase pseudo-pressure well test method

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, M.; Ahmadi, M. [Calgary Univ., AB (Canada)

    2009-09-15

    A study was conducted to better understand the behaviour of volatile oil reservoirs. Retrograde condensation occurs in gas-condensate reservoirs when the flowing bottomhole pressure (BHP) lowers below the dewpoint pressure, thus creating 4 regions in the reservoir with different liquid saturations. Similarly, when the BHP of volatile oil reservoirs falls below the bubblepoint pressure, two phases are created in the region around the wellbore, and a single phase (oil) appears in regions away from the well. In turn, higher gas saturation causes the oil relative permeability to decrease towards the near-wellbore region. Reservoir compositional simulations were used in this study to predict the fluid behaviour below the bubblepoint. The flowing bottomhole pressure was then exported to a well test package to diagnose the occurrence of different mobility regions. The study also investigated the use of a two-phase pseudo-pressure method on volatile and highly volatile oil reservoirs. It was concluded that this method can successfully predict the true permeability and mechanical skin. It can also distinguish between mechanical skin and condensate bank skin. As such, the two-phase pseudo-pressure method is particularly useful for developing after-drilling well treatment and enhanced oil recovery process designs. However, accurate relative permeability and PVT data must be available for reliable interpretation of the well test in volatile oil reservoirs. 18 refs., 3 tabs., 9 figs.

  3. Why are brittleness and fracability not equivalent in designing hydraulic fracturing in tight shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Mao Bai

    2016-03-01

    With the objective review and sensible definition of brittleness used in the present petro-physical field to identify the desirable fracturing intervals, the paper presents the ambiguities of using the brittleness to define the formation fracability and points out that the formation brittleness can be unrelated to the formation fracability. As an alternative approach, the paper provides an effective method to define the most fracable formation intervals in designing the hydraulic fracturing in tight shale gas formations.

  4. The Iġnik Sikumi Field Experiment, Alaska North Slope: Design, operations, and implications for CO2−CH4 exchange in gas hydrate reservoirs

    Science.gov (United States)

    Boswell, Ray; Schoderbek, David; Collett, Timothy S.; Ohtsuki, Satoshi; White, Mark; Anderson, Brian J.

    2017-01-01

    The Iġnik Sikumi Gas Hydrate Exchange Field Experiment was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope during 2011 and 2012. The primary goals of the program were to (1) determine the feasibility of gas injection into hydrate-bearing sand reservoirs and (2) observe reservoir response upon subsequent flowback in order to assess the potential for CO2 exchange for CH4 in naturally occurring gas hydrate reservoirs. Initial modeling determined that no feasible means of injection of pure CO2 was likely, given the presence of free water in the reservoir. Laboratory and numerical modeling studies indicated that the injection of a mixture of CO2 and N2 offered the best potential for gas injection and exchange. The test featured the following primary operational phases: (1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; (2) flowback conducted at downhole pressures above the stability threshold for native CH4 hydrate; and (3) an extended (30-days) flowback at pressures near, and then below, the stability threshold of native CH4 hydrate. The test findings indicate that the formation of a range of mixed-gas hydrates resulted in a net exchange of CO2 for CH4 in the reservoir, although the complexity of the subsurface environment renders the nature, extent, and efficiency of the exchange reaction uncertain. The next steps in the evaluation of exchange technology should feature multiple well applications; however, such field test programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization. Additional insights gained from the field program include the following: (1) gas hydrate destabilization is self-limiting, dispelling any notion of the potential for

  5. A new, fully coupled, reaction-transport-mechanical approach to modeling the evolution of natural gas reservoirs in the Piceance Basin

    Science.gov (United States)

    Payne, Dorothy Frances

    The Piceance Basin is highly compartmented, and predicting the location and characteristics of producible reservoirs is difficult. Gas generation is an important consideration in quality and size of natural gas reserves, but it also may contribute to fracturing, and hence the creation of the reservoirs in which it is contained. The purpose of this dissertation is to use numerical modeling to study the evolution of these unconventional natural gas reservoirs in the Piceance Basin. In order to characterize the scale and structure of compartmentation in the Piceance Basin, a set of in-situ fluid pressure data were interpolated across the basin and the resulting fluid pressure distribution was analyzed. Results show complex basin- and field-scale compartmentation in the Upper Cretaceous units. There are no simple correlations between compartment location and such factors as stratigraphy, basin structure, or coal thickness and maturity. To account for gas generation in the Piceance Basin, a new chemical kinetic approach to modeling lignin maturation is developed, based primarily on structural transformations of the lignin molecule observed in naturally matured samples. This model calculates mole fractions of all species, functional group fractions, and elemental weight percents. Results show reasonable prediction of maturities at other sites in the Piceance Basin for vitrinite reflectance up to about 1.7 %Ro. The flexible design of the model allows it to be modified to account for compositionally heterogeneous source material. To evaluate the role of gas generation in this dynamical system, one-dimensional simulations have been performed using the CIRFB reaction-transport-mechanical (RTM) simulator. CIRFB accounts for compaction, fracturing, hydrocarbon generation, and multi-phase flow. These results suggest that by contributing to overpressure, gas generation has two important implications: (1) gas saturation in one unit affects fracturing in other units, thereby

  6. Simulation of complex fracture networks influenced by natural fractures in shale gas reservoir

    Directory of Open Access Journals (Sweden)

    Zhao Jinzhou

    2014-10-01

    Full Text Available When hydraulic fractures intersect with natural fractures, the geometry and complexity of a fracture network are determined by the initiation and propagation pattern which is affected by a number of factors. Based on the fracture mechanics, the criterion for initiation and propagation of a fracture was introduced to analyze the tendency of a propagating angle and factors affecting propagating pressure. On this basis, a mathematic model with a complex fracture network was established to investigate how the fracture network form changes with different parameters, including rock mechanics, in-situ stress distribution, fracture properties, and frac treatment parameters. The solving process of this model was accelerated by classifying the calculation nodes on the extending direction of the fracture by equal pressure gradients, and solving the geometrical parameters prior to the iteration fitting flow distribution. With the initiation and propagation criterion as the bases for the propagation of branch fractures, this method decreased the iteration times through eliminating the fitting of the fracture length in conventional 3D fracture simulation. The simulation results indicated that the formation with abundant natural fractures and smaller in-situ stress difference is sufficient conditions for fracture network development. If the pressure in the hydraulic fractures can be kept at a high level by temporary sealing or diversion, the branch fractures will propagate further with minor curvature radius, thus enlarging the reservoir stimulation area. The simulated shape of fracture network can be well matched with the field microseismic mapping in data point range and distribution density, validating the accuracy of this model.

  7. Sn and Cu oxide nanoparticles deposited on TiO{sub 2} nanoflower 3D substrates by Inert Gas Condensation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kusior, A., E-mail: akusior@agh.edu.pl [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kollbek, K. [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kowalski, K. [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Borysiewicz, M. [Institute of Electron Technology, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Wojciechowski, T. [Institute of Physics Polish Academy of Science, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M. [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Zakrzewska, K. [Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2016-09-01

    Graphical abstract: - Highlights: • Inert Gas Condensation method yields non-agglomerated nanoparticles. • The growth of nanoparticles is controllable at the level of deposition. • Electrical conductivity increases with respect to pure nanostructured TiO{sub 2}. - Abstract: Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO{sub 2} 3D substrates obtained in the oxidation process of Ti-foil in 30% H{sub 2}O{sub 2}. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity.

  8. Water Condensation

    DEFF Research Database (Denmark)

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund

    2014-01-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics......, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address...

  9. The applicability of C-14 measurements in the soil gas for the assessment of leakage out of underground carbon dioxide reservoirs

    Directory of Open Access Journals (Sweden)

    Chałupnik Stanisław

    2014-03-01

    Full Text Available Poland, due to the ratification of the Kioto Protocol, is obliged to diminish the emission of greenhouse gases. One of the possible solutions of this problem is CO2 sequestration (CCS - carbon capture and storage. Such an option is a priority in the European Union. On the other hand, CO2 sequestration may be potentially risky in the case of gas leakage from underground reservoirs. The most dangerous event may be a sudden release of the gas onto the surface. Therefore, it is very important to know if there is any escape of CO2 from underground gas reservoirs, created as a result of sequestration. Such information is crucial to ensure safety of the population in areas located above geological reservoirs. It is possible to assess the origin of carbon dioxide, if the measurement of radiocarbon 14C concentration in this gas is done. If CO2 contains no 14C, it means, that the origin of the gas is either geological or the gas has been produced as a result of combustion of fossil fuels, like coal. A lot of efforts are focused on the development of monitoring methods to ensure safety of CO2 sequestration in geological formations. A radiometric method has been tested for such a purpose. The main goal of the investigations was to check the application possibility of such a method. The technique is based on the liquid scintillation counting of samples. The gas sample is at first bubbled through the carbon dioxide adsorbent, afterwards the adsorbent is mixed with a dedicated cocktail and measured in a low-background liquid scintillation spectrometer Quantulus. The described method enables measurements of 14C in mine and soil gas samples.

  10. Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP: linking condensation, evaporation and chemical reactions of organics, oxidants and water

    Directory of Open Access Journals (Sweden)

    M. Shiraiwa

    2012-03-01

    Full Text Available We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007, and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system and the computational constraints, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds.

    In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at ~270 K is close to unity (Winkler et al., 2006. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative

  11. Time-resolved study of electron-hole plasmas near the liquid-gas critical point in Si: Evidence for a second condensed phase

    Science.gov (United States)

    Smith, L. M.; Wolfe, J. P.

    1995-03-01

    remarkably independent of temperature and particle density, providing evidence for a second condensed phase of electron-hole plasma. The condensed liquid has a density of about one-tenth that of the ground-state electron-hole liquid and is observed both above and below the EHL critical temperature. An excitonic phase diagram for silicon is described which includes two condensed plasmas. A triple point at 18.5 K is observed where the electron-hole liquid coexists with the lower-density condensed plasma (CP) and excitonic gas. Above th