WorldWideScience

Sample records for gas condensate producing

  1. Mn nanoparticles produced by inert gas condensation

    International Nuclear Information System (INIS)

    Ward, M B; Brydson, R; Cochrane, R F

    2006-01-01

    The results from experiments using the inert gas condensation method to produce nanoparticles of manganese are presented. Structural and compositional data have been collected through electron diffraction, EDX (energy dispersive X-ray) and EELS (electron energy loss spectroscopy). Both Mn 3 O 4 and pure Mn particles have been produced. Moisture in untreated helium gas causes the particles to oxidize, whereas running the helium through a liquid nitrogen trap removes the moisture and produces β-Mn particles in a metastable state. The particle sizes and the size distribution have been determined. Particle sizes range from 2nm to above 100 nm, however the majority of particles lie in the range below 20 nm with a modal particle size of 6 nm. As well as the modal particle size of 6 nm, there is another peak in the frequency curve at 16 nm that represents another group particles that lie in the range 12 to 20 nm. The smaller particles are single crystals, but the larger particles appear to have a dense region around their edge with a less dense centre. Determination of their exact nature is ongoing

  2. Gas condensate--raw material for producing liquid paraffin hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Aliyeva, R.B.; Alikishi-Zade, G.Yu.; Kuliyev, A.M.; Leonidov, A.N.; Pereverzev, A.N.

    1980-01-01

    The problem of efficient utilization of gas condensates as raw material for removal of a valuable product, liquid paraffins, is examined. A classification of gas condensates is given which is used as raw material for removing these hydrocarbons: gas condensate with high content of n-alkanes (25-40 mass percent), with average content (18-25 mass percent), with low content (12-18 mass percent), light weight fractions compositions, which do not contain fractions up to 200/sup 0/, and also, content ofless than 12% n-alkanes. Gas condensate I-III groups are 30% of the total reserve of gas condensate. Liquid paraffins hydrocarbons, produced from fractions of diesel fuel, which has been removed from Shatlyk gas condensate under conditions which simulate virtual processes of caramide deparaffinization meet all requirements without additional refining.

  3. Compositional simulations of producing oil-gas ratio behaviour in low permeable gas condensate reservoir

    OpenAIRE

    Gundersen, Pål Lee

    2013-01-01

    Master's thesis in Petroleum engineering Gas condensate flow behaviour below the dew point in low permeable formations can make accurate fluid sampling a difficult challenge. The objective of this study was to investigate the producing oil-gas ratio behaviour in the infinite-acting period for a low permeable gas condensate reservoir. Compositional isothermal flow simulations were performed using a single-layer, radial and two-dimensional, gas condensate reservoir model with low permeabili...

  4. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation

    NARCIS (Netherlands)

    Xing, Lijuan; ten Brink, Gert H.; Chen, Bin; Schmidt, Franz P.; Haberfehlner, Georg; Hofer, Ferdinand; Kooi, Bart J.; Palasantzas, Georgios

    2016-01-01

    Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction

  5. Secondary ions produced from condensed rare gas targets under highly charged MeV/amu heavy ion bombardment

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Kumagai, H.; Matsuo, T.

    1994-01-01

    Secondary ions produced from condensed rare gas targets are observed under MeV/amu, highly charged, heavy ion impact. The intensities of the observed cluster ions decrease smoothly as the cluster sizes become large but show some discontinuities at particular sizes of cluster ions. This seems to be closely related to the stabilities of cluster ion structures. It is also noted that very few doubly charged or practically no triply/higher charged ions have been observed, in sharp contrast to that of some condensed molecular targets. (orig.)

  6. Off gas condenser performance modelling

    International Nuclear Information System (INIS)

    Cains, P.W.; Hills, K.M.; Waring, S.; Pratchett, A.G.

    1989-12-01

    A suite of three programmes has been developed to model the ruthenium decontamination performance of a vitrification plant off-gas condenser. The stages of the model are: condensation of water vapour, NO x absorption in the condensate, RuO 4 absorption in the condensate. Juxtaposition of these stages gives a package that may be run on an IBM-compatible desktop PC. Experimental work indicates that the criterion [HNO 2 ] > 10 [RuO 4 ] used to determine RuO 4 destruction in solution is probably realistic under condenser conditions. Vapour pressures of RuO 4 over aqueous solutions at 70 o -90 o C are slightly lower than the values given by extrapolating the ln K p vs. T -1 relation derived from lower temperature data. (author)

  7. Gas manufacture, processes for: condensers

    Energy Technology Data Exchange (ETDEWEB)

    Young, W

    1876-11-29

    In the production of illuminating gas from coal, shale, hydrocarbon oil, or other substance used in the production of gas, the volatile products inside the retort are agitated by means of moving pistons or jets of compressed gas, steam, or vapor in order to decompose them into permanent gases, and in some cases to increase the volume of gas by the decomposition of the injected gas, etc. or by blending or carburetting this gas with the decomposition products of the volatile matters. To separate the condensible hydrocarbons from the crude gas it is passed through heated narrow tortuous passages or is caused to impinge on surfaces. If the crude gases are cold these surfaces are heated and vice versa.

  8. Liquid oil production from shale gas condensate reservoirs

    Science.gov (United States)

    Sheng, James J.

    2018-04-03

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  9. Conditions for maximum isolation of stable condensate during separation in gas-condensate systems

    Energy Technology Data Exchange (ETDEWEB)

    Trivus, N.A.; Belkina, N.A.

    1969-02-01

    A thermodynamic analysis is made of the gas-liquid separation process in order to determine the relationship between conditions of maximum stable condensate separation and physico-chemical nature and composition of condensate. The analysis was made by considering the multicomponent gas-condensate fluid produced from Zyrya field as a ternary system, composed of methane, an intermediate component (propane and butane) and a heavy residue, C/sub 6+/. Composition of 5 ternary systems was calculated for a wide variation in separator conditions. At each separator pressure there is maximum condensate production at a certain temperature. This occurs because solubility of condensate components changes with temperature. Results of all calculations are shown graphically. The graphs show conditions of maximum stable condensate separation.

  10. Millstone 3 condensate dissolved gas monitoring

    International Nuclear Information System (INIS)

    Burns, T.F.; Grondahl, E.E.; Snyder, D.T.

    1988-01-01

    Condensate dissolved oxygen problems at Millstone Point Unit 3 (MP3) were investigated using the Dissolved Gas Monitoring System developed by Radiological and Chemical Technology, Inc. under EPRI sponsorship. Argon was injected into the turbine exhaust basket tips to perform a dissolved gas transport analysis and determine steam jet air ejector gas removal efficiency. The operating configuration of the steam jet air ejector system was varied to determine the effect on gas removal efficiency. Following circulating water chlorination, the gas removal efficiency was determined to evaluate the effect of condenser tube fouling on steam jet air ejector performance

  11. Design Of The Canal System Of KLA-60 Condensation Produce

    International Nuclear Information System (INIS)

    Sriawan; Wiranto, Slamet

    2000-01-01

    The RSG-GAS reactor pool ventilation system (KLA-60) which be used to avoid circulation of contamination air in the reactor hall, flow the 60% air from the pool surface to stack through the various filters. In case the isolation building the air from the pool surface is flooded back to the operation hall after exceed the heat exchanger, cooler and the various filters. One of the weakness of this system and must be solved by RSG is handing of the condensation water because in the canal system of the KLA-60 condensation produce is to be found some soiled like algae and to go the reactor pool. To solve this problem should be carried out research about the canal system of KLA-60 condensation produce and design the new canal system to find the good function. At the first design is carried out study about the function of the old of canal system of KLA-60 condensation produce. Base on this study have been carried out design of the canal system KLA-60 condensation produce, with can prevent the soiled to go to the reactor pool

  12. Hysteresis phenomenon during operation of gas condensate fields

    Energy Technology Data Exchange (ETDEWEB)

    Sadykh-Zade, E S; Karakashev, V K; Ismailov, D Kh

    1966-01-01

    Hysteresis behavior of gas-condensate mixtures was studied with a PVT apparatus. The study was conducted at 26 and 80/sup 0/C, with recombined samples having gas factors of 3,000, 6,500, and 10,000 cu meters per ton. Pressure on samples was decreased or increased at rates of 0.2; 0.1; 0.05; and 0.025 atm per sec. Composition of gas- condensate is given. It is reported that different amounts of liquid were produced by condensation and evaporation processes, i.e., results depended on whether pressure was being increased or decreased. It is suggested that the effect of hysteresis should be considered in operation of gas-condensate fields.

  13. Using helical compressors for coke gas condensation

    Energy Technology Data Exchange (ETDEWEB)

    Privalov, V E; Rezunenko, Yu I; Lelyanov, N V; Zarnitzkii, G Eh; Gordienko, A A; Derebenko, I F; Venzhega, A G; Leonov, N P; Gorokhov, N N

    1982-08-01

    Coke oven gas compression is discussed. Presently used multilevel piston compressors are criticized. The paper recommends using helical machines which combine advantages of using volume condensing compressors and compact high-efficiency centrifugal machines. Two kinds of helical compressors are evaluated: dry and oil-filled; their productivities and coke oven gas chemical composition are analyzed. Experiments using helical compressors were undertaken at the Yasinovskii plant. Flowsheet of the installation is shown. Performance results are given in a table. For all operating conditions content of insolubles in oil compounds is found to be lower than the acceptable value (0.08%). Compressor productivity measurements with variable manifold pressure are evaluated. Figures obtained show that efficient condensation of raw coke oven gas is possible. Increasing oil-filled compressor productivity is recommended by decreasing amount of oil injected and simultaneously increasing rotation speed. The dry helical compressor with water seal is found to be most promising for raw coke oven gas condensation. (10 refs.)

  14. Disposal of aqueous condensate from high efficiency gas boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hardwick, G J; Pattison, J R

    1984-01-01

    If highly efficient gas-fired condensing heating appliances are installed in Britain, the aqueous condensate produced can be conveniently run into existing sewage drains. The part of the drainage system that is most vulnerable to corrosion from the mildly acid condensate is that portion adjacent to the domestic premises. The tests described indicate that this is not at risk and the only precaution that might be considered necessary is to avoid running the condensate over galvanized drain covers in order to prevent unsightly staining. Water authorities in Britain and detailed studies in the US and Holland confirm that the condensate - after dilution by domestic waste, sewage, and rainwater - would be harmless to municipal sewage systems and would not, either in volume or chemical composition, affect the working of existing sewage treatment plants.

  15. Problems in operation of gas-oil condensate fields

    Energy Technology Data Exchange (ETDEWEB)

    Zheltov, Yu V; Martos, V N

    1966-12-01

    This is a review of various methods used to deplete gas-oil condensate reservoirs. Four depletion techniques are discussed: (1) natural depletion without injection of fluids into the reservoir; (2) depletion accompanied by gas cycling; (3) depletion in which the gas cap is separated from the oil by water injected into the reservoir, a method in which each part of the reservoir is produced essentially independently of the other; and (4) depletion in which reservoir temperature is raised above the cricondentherm point by in-situ combustion, so that gas and oil form a single phase. This method is prospective, and has not been tried in the field. Advantages and disadvantages of each method are discussed. It is concluded that a gas condensate reservoir can be depleted most economically only if some secondary energy is added. (13 refs.)

  16. Drilling of gas and condensed gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Geranin, M P; Chao, P L; Lomonosov, V V

    1981-01-01

    Cementing of boreholes drilled into underground gas fields and the requirements imposed on the grouting mortar are reviewed. Results are set forth from a study of the insulation capacity of cementing mortar used to increase the quality of reinforcements of boreholes at PKhG. Data are presented on the properties of different grouting mortars for boreholes at PKhG, including those that may be used at low temperatures. Information is also provided on the use of light mortar containing a CaCl/sub 2/ additive, grouting mortar with furfuryl alcohol added, and expanding grouting mortars.

  17. Development of gas and gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.

  18. The Effect of Capillary Number on a Condensate Blockage in Gas Condensate Reservoirs

    OpenAIRE

    Saifon DAUNGKAEW; Alain C GRINGARTEN

    2004-01-01

    In the petroleum industry, gas condensate reservoirs are becoming more common as exploration targets. However, there is a lack of knowledge of the reservoir behaviour mainly due to its complexity in the near wellbore region, where two phases, i.e. reservoir gas and condensate coexist when the wellbore pressure drops below the dew point pressure. The condensation process causes a reduction of the gas productivity (1). It has been reported in the literature that there is an increasing gas mobil...

  19. Flue gas condensing with heat pump; Roekgaskondensering med vaermepump

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik; Pettersson, Camilla [Carl Bro Energikonsult AB, Malmoe (Sweden)

    2004-11-01

    increase in total efficiency at Amagerforbraending by the installation of a heat pump and a flue gas condenser is about 15 %. The cost for production of heat is 111 kr/MWh and the straight time for pay-off is 2,7 year at the same heat credits and basic price for electricity as above. The increase in total efficiency at Staffanstorp by the installation of a heat pump and a flue gas condenser is about 21 % at a fuel moisture content of 40 % and 32 % at a fuel moisture content of 55 % independent of plant size. The cost for production of heat is just below 130 kr/MWh and the straight time for pay-off is less than 3 years for the fuels with high moisture content. For the dryer fuels the cost for production of heat is around 170 kr/MWh and the straight time for pay-off is under 4 years at the same heat credits and basic price for electricity as above. This system will be highly interesting at 55 deg C in return water in the district heating system, interesting at 50 deg C dependent of the alternative cost and might be interesting at 45 deg C, but in this case is very dependent of the alternative cost for heat production. You can produce more usable heat with the same amount of fuel if you install a heat pump with a flue gas condenser. If the plant produces electricity the output will decrease slightly but the total output and efficiency will increase. For most systems the straight time for pay-off is so short that it is a good investment for many plants.

  20. Gas condensate reservoir performance : part 1 : fluid characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, F.B.; Bennion, D.B. [Hycal Energy Research Laboratories Ltd., Calgary, AB (Canada); Andersen, G. [ChevronTexaco, Calgary, AB (Canada)

    2006-07-01

    Phase behaviour in gas condensate reservoirs is sensitive to changes in pressure and temperature, which can lead to significant errors in fluid characterization. The challenging task of characterizing in situ fluids in gas condensate reservoirs was discussed with reference to the errors that occur as a result of the complex coupling between phase behavior and geology. This paper presented techniques for reservoir sampling and characterization and proposed methods for minimizing errors. Errors are often made in the classification of dew point systems because engineering criteria does not accurately represent the phase behavior of the reservoir. For example, the fluid of a certain condensate yield may be categorized as a wet gas rather than a retrograde condensate fluid. It was noted that the liquid yield does not dictate whether the fluid is condensate or wet gas, but rather where the reservoir temperature is situated in the pressure temperature phase loop. In order to proceed with a viable field development plan and optimization, the reservoir fluid must be understood. Given that gas productivity decreases with liquid drop out in the near wellbore region, capillary pressure plays a significant role in retrograde reservoirs. It was noted that well understood parameters will lead to a better assessment of the amount of hydrocarbon in place, the rate at which the resource can be produced and optimization strategies as the reservoir matures. It was concluded that multi-rate sampling is the best method to use in sampling fluids since the liquid yield changes as a function of rate. Although bottom-hole sampling in gas condensate reservoirs may be problematic, it should always be performed to address any concerns for liquid-solid separation. Produced fluids typically reveal a specific signature that informs the operator of in situ properties. This paper presented examples that pertain to wet versus retrograde condensate behavior and the presence of an oil zone. The

  1. Bose-Einstein condensation in the relativistic ideal Bose gas.

    Science.gov (United States)

    Grether, M; de Llano, M; Baker, George A

    2007-11-16

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state.

  2. Bose-Einstein Condensation in the Relativistic Ideal Bose Gas

    International Nuclear Information System (INIS)

    Grether, M.; Llano, M. de; Baker, George A. Jr.

    2007-01-01

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state

  3. Boiling, condensation, and gas-liquid flow

    International Nuclear Information System (INIS)

    Whalley, P.B.

    1987-01-01

    Heat transfer phenomena involving boiling and condensation are an important aspect of engineering in the power and process industries. This book, aimed at advanced first-degree and graduate students in mechanical and chemical engineering, deals with these phenomena in detail. The first part of the book describes gas-liquid two-phase flow, as a necessary preliminary to the later discussion of heat transfer and change of phase. A detailed section on calculation methods shows how theory can be put to practical use, and there are also descriptions of some of the equipment and plant used in the process and power industries

  4. Study of condensate composition during field processing of gas of the Shatlyk field

    Energy Technology Data Exchange (ETDEWEB)

    Kuldzhayev, B.A.; Annamukhamedov, M.B.; Makarov, V.V.; Serbnenko, S.R.; Talalayev, Ye.I.

    1983-01-01

    Studies were made of the composition and properties of condensates from field separators of the East Shatlyk field. The expediency is shown of separate collection of the condensates into a separate container and used for local needs as the diesel fuel. The condensates from the UNTS separators are used as chemical raw material to produce the lowest olephins by pyrolysis of gas-oil fraction and normal paraffins from kerosene-gas-oil part to obtain the protein-vitamin concentrates.

  5. Modeling the Phase Composition of Gas Condensate in Pipelines

    Science.gov (United States)

    Dudin, S. M.; Zemenkov, Yu D.; Shabarov, A. B.

    2016-10-01

    Gas condensate fields demonstrate a number of thermodynamic characteristics to be considered when they are developed, as well as when gas condensate is transported and processed. A complicated phase behavior of the gas condensate system, as well as the dependence of the extracted raw materials on the phase state of the deposit other conditions being equal, is a key aspect. Therefore, when designing gas condensate lines the crucial task is to select the most appropriate methods of calculating thermophysical properties and phase equilibrium of the transported gas condensate. The paper describes a physical-mathematical model of a gas-liquid flow in the gas condensate line. It was developed based on balance equations of conservation of mass, impulse and energy of the transported medium within the framework of a quasi-1D approach. Constitutive relationships are given separately, and practical recommendations on how to apply the research results are provided as well.

  6. Importance of water Influx and waterflooding in Gas condensate reservoir

    OpenAIRE

    Ali, Faizan

    2014-01-01

    The possibility of losing valuable liquid and lower gas well deliverability have made gas condensate reservoirs very important and extra emphasizes are made to optimize hydrocarbon recovery from a gas condensate reservoir. Methods like methanol treatments, wettability alteration and hydraulic fracturing are done to restore the well deliverability by removing or by passing the condensate blockage region. The above mentioned methods are applied in the near wellbore region and only improve the w...

  7. Possibility of removing condensate and scattered oil from gas-condensate field during bed flooding

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, N.A.; Yagubov, M.S.

    1984-01-01

    The problem is set of evaluating the possible removal from the bed of scattered oil and condensate during flooding of the bed. For this purpose, an experimental study was made of the displacement by water from the porous medium of the oil and condensate saturating it. The obtained experimental results permit evaluation of the possible removal from the gas-condensate bed of scattered oil and condensate during flooding of the bed.

  8. Mathematical simulation of the process of condensing natural gas

    OpenAIRE

    Tastandieva G.M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the...

  9. The shear viscosity of a trapped Bose-condensed gas

    International Nuclear Information System (INIS)

    Shahzamanian, M.A.; Yavary, H.

    2006-01-01

    By obtaining Kubo formula type and using nonequilibrium Green's functions, we calculate the shear viscosity of a trapped Bose-condensed gas below and above the Bose-Einstein condensation temperature (T BEC ). The contributions of the interactions between condensate and noncondensate atoms and between noncondensate atoms take into account to the viscous relaxation time, by evaluating second order self-energies in Beliaev approximation

  10. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    OpenAIRE

    Shams Bilal; Yao Jun; Zhang Kai; Zhang Lei

    2017-01-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large...

  11. Measurement and calculation of gas compressibility factor for condensate gas and natural gas under pressure up to 116 MPa

    International Nuclear Information System (INIS)

    Yan, Ke-Le; Liu, Huang; Sun, Chang-Yu; Ma, Qing-Lan; Chen, Guang-Jin; Shen, De-Ji; Xiao, Xiang-Jiao; Wang, Hai-Ying

    2013-01-01

    Highlights: • Volumetric properties of two reservoir fluid samples were measured with pressure up to 116 MPa. • Dew point pressures at four temperatures for condensate gas sample are obtained. • Correlations and thermodynamic model for describing gas compressibility factor under high pressure were compared. • The thermodynamic model recommended is most suitable for fluids produced from reservoirs with a wide pressure range. -- Abstract: The volumetric properties of two reservoir fluid samples collected from one condensate gas well and one natural gas well were measured under four groups of temperatures, respectively, with pressure up to 116 MPa. For the two samples examined, the experimental results show that the gas compressibility factor increases with the increase of pressure. But the influence of the temperature is related to the range of the experimental pressure. It approximately decreases with the increase of temperature when the pressure is larger than (45 to 50) MPa, while there is the opposite trend when the pressure is lower than (45 to 50) MPa. The dew point pressure was also determined for the condensate gas sample, which decreases with the increase of temperature. The capabilities of four empirical correlations and a thermodynamic model based on equation of state for describing gas compressibility factor of reservoir fluids under high pressure were investigated. The comparison results show that the thermodynamic model recommended is the most suitable for fluids whatever produced from high-pressure reservoirs or conventional mild-pressure reservoirs

  12. Condensation of an ideal gas obeying non-Abelian statistics.

    Science.gov (United States)

    Mirza, Behrouz; Mohammadzadeh, Hosein

    2011-09-01

    We consider the thermodynamic geometry of an ideal non-Abelian gas. We show that, for a certain value of the fractional parameter and at the relevant maximum value of fugacity, the thermodynamic curvature has a singular point. This indicates a condensation such as Bose-Einstein condensation for non-Abelian statistics and we work out the phase transition temperature in various dimensions.

  13. Mathematical simulation of the process of condensing natural gas

    Science.gov (United States)

    Tastandieva, G. M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.

  14. Mathematical simulation of the process of condensing natural gas

    Directory of Open Access Journals (Sweden)

    Tastandieva G.M.

    2015-01-01

    Full Text Available Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of “cooling down” liquefied natural gas in terms of its partial evaporation with low cost energy.

  15. Use of nuclear explosions to create gas condensate storage in the USSR. LLL Treaty Verification Program

    International Nuclear Information System (INIS)

    Borg, I.Y.

    1982-01-01

    The Soviet Union has described industrial use of nuclear explosions to produce underground hydrocarbon storage. To examples are in the giant Orenburg gas condensate field. There is good reason to believe that three additional cavities were created in bedded salt in the yet to be fully developed giant Astrakhan gas condensate field in the region of the lower Volga. Although contrary to usual western practice, the cavities are believed to be used to store H 2 S-rich, unstable gas condensate prior to processing in the main gas plants located tens of kilometers from the producing fields. Detonations at Orenburg and Astrakhan preceded plant construction. The use of nuclear explosions at several sites to create underground storage of highly corrosive liquid hydrocarbons suggests that the Soviets consider this time and cost effective. The possible benefits from such a plan include degasification and stabilization of the condensate before final processing, providing storage of condensate during periods of abnormally high natural gas production or during periods when condensate but not gas processing facilities are undergoing maintenance. Judging from information provided by Soviet specialists, the individual cavities have a maximum capacity on the order of 50,000 m 3

  16. Effect of retrograde gas condensate in low permeability natural gas reservoir; Efeito da condensacao retrograda em reservatorios de gas natural com baixa permeabilidade

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Paulo Lee K.C. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica; Ligero, Eliana L.; Schiozer, Denis J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2008-07-01

    Most of Brazilian gas fields are low-permeability or tight sandstone reservoirs and some of them should be gas condensate reservoir. In this type of natural gas reservoir, part of the gaseous hydrocarbon mixture is condensate and the liquid hydrocarbon accumulates near the well bore that causes the loss of productivity. The liquid hydrocarbon formation inside the reservoir should be well understood such as the knowledge of the variables that causes the condensate formation and its importance in the natural gas production. This work had as goal to better understanding the effect of condensate accumulation near a producer well. The influence of the porosity and the absolute permeability in the gas production was studied in three distinct gas reservoirs: a dry gas reservoir and two gas condensate reservoirs. The refinement of the simulation grid near the producer well was also investigated. The choice of simulation model was shown to be very important in the simulation of gas condensate reservoirs. The porosity was the little relevance in the gas production and in the liquid hydrocarbon formation; otherwise the permeability was very relevant. (author)

  17. Evaporation and condensation heat transfer with a noncondensable gas present

    International Nuclear Information System (INIS)

    Murase, M.; Kataoka, Y.; Fujii, T.

    1993-01-01

    To evaluate the system pressure of an external water wall type containment vessel, which is one of the passive systems for containment cooling, the evaporation and condensation behavior under a noncondensable gas presence has been experimentally examined. In the system, steam evaporated from the suppression pool surface into the wetwell, filled with noncondensable gas, and condensed on the containment vessel wall. The system pressure was the sum of the noncondensable gas pressure and saturated steam pressure in the wetwell. The wetwell temperature was, however, lower than the suppression pool temperature and depended on the thermal resistance on the suppression pool surface. The evaporation and condensation heat transfer coefficients in the presence of air as noncondensable gas were measured and expressed by functions of steam/air mass ratio. The evaporation heat transfer coefficients were one order higher than the condensation heat transfer coefficients because the local noncondensable gas pressure was much lower on the evaporating pool surface than on the condensing liquid surface. Using logal properties of the heat transfer surfaces, there was a similar trend between evaporation and condensation even with a noncondensable gas present. (orig.)

  18. Bose-Einstein condensation in an ultra-hot gas of pumped magnons.

    Science.gov (United States)

    Serga, Alexander A; Tiberkevich, Vasil S; Sandweg, Christian W; Vasyuchka, Vitaliy I; Bozhko, Dmytro A; Chumak, Andrii V; Neumann, Timo; Obry, Björn; Melkov, Gennadii A; Slavin, Andrei N; Hillebrands, Burkard

    2014-03-11

    Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.

  19. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    Directory of Open Access Journals (Sweden)

    Shams Bilal

    2017-08-01

    Full Text Available Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources.

  20. Evaporation and Condensation Flows of a Vapor-Gas Mixture from or onto the Condensed Phase with an Internal Structure

    National Research Council Canada - National Science Library

    Onishi, Yoshimoto; Yamada, Ken

    2005-01-01

    Transient motions of a vapor-gas mixture due to the evaporation and condensation processes from or onto the plane condensed phase, with a temperature field as its internal structure, have been studied...

  1. Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands

    International Nuclear Information System (INIS)

    Weiss, Martin; Dittmar, Lars; Junginger, Martin; Patel, Martin K.; Blok, Kornelis

    2009-01-01

    High costs often prevent the market diffusion of novel and efficient energy technologies. Monitoring cost and price decline for these technologies is thus important in order to establish effective energy policy. Here, we present experience curves and cost-benefit analyses for condensing gas boilers produced and sold in the Netherlands between 1981 and 2006. For the most dominant boiler type on the Dutch market, i.e., condensing gas combi boilers, we identify learning rates of 14±1% for the average price and 16±8% for the additional price relative to non-condensing devices. Economies of scale, competitive sourcing of boiler components, and improvements in boiler assembly are among the main drivers behind the observed price decline. The net present value of condensing gas combi boilers shows an overall increasing trend. Purchasing in 2006 a gas boiler of this type instead of a non-condensing device generates a net present value of 970 EUR (Euro) and realizes CO 2 (carbon dioxide) emission savings at negative costs of -120 EUR per tonne CO 2 . We attribute two-thirds of the improvements in the cost-benefit performance of condensing gas combi boilers to technological learning and one-third to a combination of external effects and governmental policies.

  2. On the Bose-Einstein condensation of an ideal gas

    International Nuclear Information System (INIS)

    Landau, L.J.; Wilde, I.F.

    1979-01-01

    A mathematically precise treatment is given of the well-known Bose-Einstein condensation of an ideal gas in the grand canonical ensemble at fixed density. The method works equally well for any of the standard boundary conditions and it is shown that the finite volume activity converges and that in three dimensions condensation occurs for Dirichlet, Neumann, periodic, and repulsive walls. (orig.) 891 HJ/orig. 892 CKA

  3. Effect on non-condensable gas on steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Abe, Y.; Iwaki, C.; Narabayashi, T.; Mori, M.; Ohmori, S.

    2004-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. Although non-condensable gases are well known for reducing heat transfer, the effect of the non-condensable gas on the condensation of supersonic steam on high-speed water jet has not been cleared. The present paper presents an experimental study of condensation of supersonic steam around turbulent water jet with model steam injector made by transparent plastic. The experimental apparatus is described. The visual observation was carried out by using high-speed camera. The non-condensable gas effect on the pump performance and flow characteristics are clarified by the image processing technique for the jet shape and gas-liquid interface behavior. (authors)

  4. Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler

    Science.gov (United States)

    Cao, Weixue; Liu, Fengguo; You, Xue-yi

    2018-01-01

    Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.

  5. Condensed Rotational Separation to upgrade sour gas

    NARCIS (Netherlands)

    Brouwers, J.J.H.; Kemenade, van H.P.

    2010-01-01

    A steadily increasing amount of newly located natural gas fields is severely contaminated with CO2 and/or H2S. Percentages of 30 % CO2/H2S or even larger are not uncommon. Fields with such high degrees of contaminant can not be economically exploited by conventional techniques based on amine

  6. Stepwise Bose-Einstein Condensation in a Spinor Gas.

    Science.gov (United States)

    Frapolli, C; Zibold, T; Invernizzi, A; Jiménez-García, K; Dalibard, J; Gerbier, F

    2017-08-04

    We observe multistep condensation of sodium atoms with spin F=1, where the different Zeeman components m_{F}=0,±1 condense sequentially as the temperature decreases. The precise sequence changes drastically depending on the magnetization m_{z} and on the quadratic Zeeman energy q (QZE) in an applied magnetic field. For large QZE, the overall structure of the phase diagram is the same as for an ideal spin-1 gas, although the precise locations of the phase boundaries are significantly shifted by interactions. For small QZE, antiferromagnetic interactions qualitatively change the phase diagram with respect to the ideal case, leading, for instance, to condensation in m_{F}=±1, a phenomenon that cannot occur for an ideal gas with q>0.

  7. Produced water management - clean and safe oil and gas production

    International Nuclear Information System (INIS)

    2006-01-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  8. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  9. Beryllium armour produced by evaporation-condensation technique

    International Nuclear Information System (INIS)

    Anisimov, A.; Frolov, V.; Moszherin, S.; Pepekin, G.; Pirogov, A.; Komarov, V.; Mazul, I.

    1997-01-01

    Beryllium, as armour material for ITER plasma facing components, has a limited erosion lifetime. In order to repair the surface of eroded tiles in-situ, Be-deposition technologies are under consideration. One of them uses the physical vapour deposition of beryllium on copper or beryllium substrate produced by a hot Be-target placed in the vicinity of this substrate. Three different options for using this technology for ITER Be-armour application are considered. The first option is the repair in-situ of eroded Be-tiles. The second option suggests the use of this technology to provide the joining of Be to Cu-substrate. The third option assumes the use of evaporated-condensed beryllium as a bulk tile material bonded to copper substrate by conventional joining (Brazing et al.) techniques. The first results and prospects of these approaches are presented below. (orig.)

  10. The influence of surface-active agents in gas mixture on the intensity of jet condensation

    Science.gov (United States)

    Yezhov, YV; Okhotin, VS

    2017-11-01

    The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and

  11. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  12. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  13. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    Science.gov (United States)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery

  14. Gas adsorption and capillary condensation in nanoporous alumina films

    Energy Technology Data Exchange (ETDEWEB)

    Casanova, Felix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Schuller, Ivan K [Physics Department, University of California-San Diego, La Jolla, CA 92093 (United States); Ruminski, Anne M; Sailor, Michael J [Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093 (United States)], E-mail: casanova@physics.ucsd.edu

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  15. Gas adsorption and capillary condensation in nanoporous alumina films

    International Nuclear Information System (INIS)

    Casanova, Felix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Schuller, Ivan K; Ruminski, Anne M; Sailor, Michael J

    2008-01-01

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation

  16. Gas adsorption and capillary condensation in nanoporous alumina films.

    Science.gov (United States)

    Casanova, Fèlix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  17. Effect of non-condensable gas on heat transfer in steam turbine condenser and modelling of ejector pump system by controlling the gas extraction rate through extraction tubes

    International Nuclear Information System (INIS)

    Strušnik, Dušan; Golob, Marjan; Avsec, Jurij

    2016-01-01

    Graphical abstract: Control of the amount of the pumped gases through extraction tubes. The connecting locations interconnect the extraction tubes for STC gas pumping. The extraction tubes are fitted with 3 control valves to control the amount of the pumped gas depending on the temperature of the pumped gas. The amount of the pumped gas increases through the extraction tubes, where the pumped gases are cooler and decreases, at the same time, through the extraction tubes, where the pumped gases are warmer. As a result, pumping of a larger amount of NCG is ensured and of a smaller amount of CG, given that the NCG concentration is the highest on the colder places. This way, the total amount of the pumped gases from the STC can be reduced, the SEPS operates more efficiently and consumes less energy for its operation. - Highlights: • Impact of non-condensable gas on heat transfer in a steam turbine condenser. • The ejector system is optimised by selecting a Laval nozzle diameter. • Simulation model of the control of the amount of pumped gases through extraction tubes. • Neural network and fuzzy logic systems used to control gas extraction rate. • Simulation model was designed by using real process data from the thermal power plant. - Abstract: The paper describes the impact of non-condensable gas (NCG) on heat transfer in a steam turbine condenser (STC) and modelling of the steam ejector pump system (SEPS) by controlling the gas extraction rate through extraction tubes. The ideal connection points for the NCG extraction from the STC are identified by analysing the impact of the NCG on the heat transfer and measuring the existing system at a thermal power plant in Slovenia. A simulation model is designed using the Matlab software and Simulink, Neural Net Work, Fuzzy Logic and Curve Fitting Toolboxes, to control gas extraction rate through extraction tubes of the gas pumped from the STC, thus optimising the operation of the steam ejector pump system (SEPS). The

  18. The effect of non-condensable gas on direct contact condensation of steam/air mixture

    International Nuclear Information System (INIS)

    Lee, H. C.; Park, S. K.; Kim, M. H.

    1998-01-01

    To investigate the effects of noncondensable gas on the direct contact film condensation of vapor mixture, a series of experiments has been carried out. The rectangular duct inclined 87.deg. to the horizontal plane was used for this experiment. The average heat transfer coefficient of the steam-air mixture was obtained at the atmospheric pressure with four main parameters, air-mass fraction, vapor velocity, film Reynolds number,and the degree of water film subcooling having an influence on the condensation heat transfer coefficient. With the analysis on 88 cases of experiments, a correlation of the average Nusselt number for direct contact film condensation of steam-air mixture at a vertical wall proposed as functions of film Reynolds number, mixture Reynolds number, air mass fraction, and Jacob number. The average heat transfer coefficient for steam-air mixture condensation decreased significantly while air mass fraction increases with the same inlet mixture velocity and inlet film temperature. The average heat transfer coefficients also decreased with the degree of film subcooling increasing and were scarcely affected by film Reynolds number below the mixture Reynolds number about 30,000

  19. Field synergy characteristics in condensation heat transfer with non-condensable gas over a horizontal tube

    Directory of Open Access Journals (Sweden)

    Junxia Zhang

    2017-05-01

    Full Text Available Field synergy characteristics in condensation heat transfer with non-condensable gas (NCG over a horizontal tube were numerically simulated. Consequently, synergy angles between velocity and pressure or temperature gradient fields, gas film layer thickness, and induced velocity and shear stress on gas–liquid interface were obtained. Results show that synergy angles between velocity and temperature gradient fields are within 73.2°–88.7° and ascend slightly with the increment in mainstream velocity and that the synergy is poor. However, the synergy angle between velocity and pressure gradient fields decreases intensively with the increase in mainstream velocity at θ ≤ 30°, thereby improving the pressure loss. As NCG mass fraction increases, the gas film layer thickness enlarges and the induced velocity and shear stress on gas–liquid interface decreases. The synergy angles between velocity and temperature gradient fields increase, and the synergy angles between velocity and pressure gradient fields change at θ = 70°, decrease at θ 70°. When the horizontal tube circumference angle increases, the synergy angles between velocity and temperature or pressure gradient fields decrease, the synergy between velocity and pressure fields enhances, and the synergy between velocity and temperature fields degrades.

  20. Natural gas supply - a producer's perspective

    International Nuclear Information System (INIS)

    Papa, M.G.

    1994-01-01

    The supply of natural gas from the producers standpoint is discussed. The following factors in the marketing demand for natural gas are considered to be important: gas demand is growing, U.S. gas resource base is large, chronic gas bubble has shrunk, and North American supply is more resilient than expected

  1. Special features in choosing a development procedure for deep gas condensate fields with small reserves

    Energy Technology Data Exchange (ETDEWEB)

    Rassokhin, G V; Soshnin, N M

    1971-01-01

    In planning the development and production schedule for fields with small gas-condensate reserves, the following factors need to be considered: capital investment per unit of production, value of produced gas, ultimate recovered reserves, geological structure of the field, depth of well, heterogeneity of producing sands, etc. The importance of such factors is discussed and it is shown that for small fields, the parameter of minimum net expense cannot be used as a planning tool. Both geological and economic factors must be included in field development.

  2. Optimization of fracture length in gas/condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, J.; Sharma, M.M.; Pope, G.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas Univ., Austin, TX (United States)

    2006-07-01

    A common practice that improves the productivity of gas-condensate reservoirs is hydraulic fracturing. Two important variables that determine the effectiveness of hydraulic fractures are fracture length and fracture conductivity. Although there are no simple guidelines for the optimization of fracture length and the factors that affect it, it is preferable to have an optimum fracture length for a given proppant volume in order to maximize productivity. An optimization study was presented in which fracture length was estimated at wells where productivity was maximized. An analytical expression that takes into account non-Darcy flow and condensate banking was derived. This paper also reviewed the hydraulic fracturing process and discussed previous simulation studies that investigated the effects of well spacing and fracture length on well productivity in low permeability gas reservoirs. The compositional simulation study and results and discussion were also presented. The analytical expression for optimum fracture length, analytical expression with condensate dropout, and equations for the optimum fracture length with non-Darcy flow in the fracture were included in an appendix. The Computer Modeling Group's GEM simulator, an equation-of-state compositional simulator, was used in this study. It was concluded that for cases with non-Darcy flow, the optimum fracture lengths are lower than those obtained with Darcy flow. 18 refs., 5 tabs., 22 figs., 1 appendix.

  3. Condensers

    International Nuclear Information System (INIS)

    Andrieux, M.B.

    1984-01-01

    Characteristics of the condenser cooling waters of various French 900 MW nuclear power plants. Design and description of various types of condensers: condensers feeded directly with river water, condensers feeded by cooling towers, condensers feeded with sea water of brackish water. Presentation of the main problems encountered with the brass bundles (ammoniacal corrosion, erosion of the peripheral tubes, vibrations of the tubes), with the titanium bundles, with the tubular plates, the tubes-tubular plates assemblies, the coatings of the condenser water chamber (sea water), the vapor by-pass and with the air inlet. Analysis of the in service performances such as condensation pressure, oxygen content and availability [fr

  4. Simulation of Flow Behavior of Gas Condensate at Low Interfacial Tension

    DEFF Research Database (Denmark)

    Wang, Peng; Stenby, Erling Halfdan; Pope, Gary A.

    1996-01-01

    A vertical, long-core experiment of natural depletion of a gas condensate that was conducted by Elf Aquitaine is simulated by an equation-of-state (EOS) compositional simulator, UTCOMP. The Peng-Robinson (PR) EOS is used for phase-behavior calculation. Because of low interfactial tension (IFT......) in the measurement, more attention is paid to the influence of IFT on gas/oil flow behavior. Two different types of model are used to compute the relative permeability. Model I is a Corey-type model combined with the capillary number concept. Model II is a modified form of the model proposed by Coats.The simulation...... results indicate that the effect of low IFT on relative permeability can be reasonably described by the two models selected, although the producing gas-oil ratio (GOR) obtained using Model I deviates somewhat from the experimental values in later depletion stages. The condensed liquid can be a mobile...

  5. Condensation in gas transmission pipelines. Phase behavior of mixtures of hydrogen with natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Schouten, J.A.; Michels, J.P.J. [Amsterdam Univ. (Netherlands). Van der Waals-Zeeman Inst.; Rosmalen, R.J. van [Energy, Roden (Netherlands)

    2005-05-01

    Several pressure and temperature reductions occur along gas transmission lines. Since the pressure and temperature conditions of the natural gas in the pipeline are often close to the dew point curve, liquid dropout can occur. Injection of hydrogen into the natural gas will change the phase envelope and thus the liquid dropout. This condensation of the heavy hydrocarbons requires continuous operational attention and a positive effect of hydrogen may affect the decision to introduce hydrogen. In this paper we report on calculations of the amount of condensate in a natural gas and in this natural gas mixed with 16.7% hydrogen. These calculations have been performed at conditions prevailing in gas transport lines. The results will be used to discuss the difference in liquid dropout in a natural gas and in a mixture with hydrogen at pressure reduction stations, at crossings under waterways, at side-branching, and at separators in the pipelines. (author)

  6. The pyrolysis of gas condensate at the Shatlyk field

    Energy Technology Data Exchange (ETDEWEB)

    Magaril, R.Z.; Khankuliyev, K.; Kul' zhayev, B.A.; Sergiyenko, S.R.

    1984-01-01

    The continuing growth in industrial demand for lower olefins for the manufacture of polymer materials has necessitated an expansion in the manufacture of ethylene. Gas condensate may serve as a source of ethylene manufacturing. The influence of the contact temperature and time in the pyrolysis of unseparated condensate from the Shatlyk field on the yield of lower olefins was investigated. It was discovered that the total yield of lower olefins (C2-C4) increases with an increase in the pyrolysis temperature, reaching a maximum of 63 to 67 percent by weight at a temperature of 1098 degrees Kelvin and contact time of .5 to .7 seconds, and at 1123 degrees Kelvin and .3 seconds, the maximum ethylene yield (40 percent) was obtained at 1123 degrees Kelvin, and at all previously noted temperatures with a contact time of .9 seconds.

  7. A new algorithm predicts pressure and temperature profiles of gas/gas-condensate transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mokhatab, Saied [OIEC - Oil Industries' Engineering and Construction Group, Tehran (Iran, Islamic Republic of); Vatani, Ali [University of Tehran (Iran, Islamic Republic of)

    2003-07-01

    The main objective of the present study has been the development of a relatively simple analytical algorithm for predicting flow temperature and pressure profiles along the two-phase, gas/gas-condensate transmission pipelines. Results demonstrate the ability of the method to predict reasonably accurate pressure gradient and temperature gradient profiles under operating conditions. (author)

  8. Water desalting schemes when using heat gas-vapor mixture in front of contact condenser

    OpenAIRE

    Kuznetsova, Svitlana A.

    2016-01-01

    Ukraine is a country with low quality of fresh water; there are regions with its deficiency. One of the possible solutions to this problem is the desalination of the brackish water from surface and groundwater sources by using heat of the mixture before the contact condenser in gas-steam turbine plants. The plants produce electricity and heat energy for the needs of the industrial, agricultural complexes and the population of Kherson, Nikolaev and Odessa regions. The studies were carried out ...

  9. The future of UK gas producers

    International Nuclear Information System (INIS)

    Hallas, P.A.

    1991-01-01

    Traditionally, an oil company wishing to develop UK gas reserves almost always faced a protracted gas sales negotiation with British Gas. British Gas then had an effective monopoly in the resale of that gas to final consumers. This traditional pattern is now in a process of fundamental change, as a result of recent UK gas market re-regulation and the emergence of a new large scale opportunity to sell gas for power generation. The impact of these changes is still not very well understood outside a relatively small group of gas specialists but is likely to be significant for British Gas, consumers and UK gas producers. This paper outlines the background to the recent changes, the possible future of UK gas marketing and the likely impact on gas producers in the North Sea

  10. A CFD study of wave influence on film steam condensation in the presence of non-condensable gas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianmao, E-mail: xm-wang11@mails.tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Chang, Huajian, E-mail: changhj@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Corradini, Michael, E-mail: corradini@engr.wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

    2016-08-15

    Highlights: • A condensation model is incorporated in the ANSYS FLUENT. • Different turbulence models are evaluated for flows over wavy surfaces. • Wavy surfaces with and without moving velocities are used to model the wave. • Various wavy surfaces with different wave heights and wavelengths are selected. • Wave influence on film steam condensation is investigated. - Abstract: Steam condensation plays an important role in removing heat from the containment of a nuclear plant during postulated accidents. However, due to the presence of non-condensable gases such as air and hydrogen in the containment, the condensation rate can decrease dramatically. Under certain conditions, the condensate film on the cold containment walls can affect the overall heat transfer rate. The wavy interface of the condensate film is a factor and is usually believed to enhance the condensation rate, since the waves can both increase the interfacial area and disturb the non-condensable gas boundary layer. However, it is not clear how to properly account for this factor and what is its quantitative influence in experiments. In this work, a CFD approach is applied to study the wave effects on film condensation in the presence of non-condensable gas. Wavy surfaces with and without moving velocities are used to replace the wavy interface of the falling film. A condensation model is incorporated in the ANSYS FLUENT simulation and a realizable k–ε turbulence model is applied. Various wavy surfaces with different wave heights and wavelengths are selected to conduct numerical experiments with a wide range of gas velocities. The results show that the wave structure can enhance condensation rate up to ten percent mainly due to the alteration of local flow structures in the gas phase. The increments of the condensation rate due to the wavy interface can vary with different gas velocities. The investigation shows that a multiplication factor accounts for the wave effects on film

  11. Materials in flue gas condensation plants; Materialval vid roekgaskondensering

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara; Nordling Magnus

    2003-02-01

    This project is the first part of a larger project. In the part reported here, materials for flue gas condensers have been investigated by contact with plant owners and suppliers and by a literature review of reported failures. If it is decided to continue with another part of the project, a number of materials will be long term tested on site. The project is complementary to an earlier project, which investigated the operating experiences from flue gas condensers in biomass fired cogeneration plants. In the project materials (steel and polymeric) suitable for long term testing in existing plants are discussed. It is proposed that testing in the second part of the project is made with material coupons in one plant fired with only biomass and one plant where biomass is co fired with other fuels. In the biomass fired plant a number of steel materials should be tested. In the co fired plant, with its harsher operating conditions, the same steel materials plus a number of polymeric materials should be tested. Materials suitable for testing are summarised in the report.

  12. Assessment of MELCOR condensation models with the presence of noncondensable gas in natural convection flow regime

    International Nuclear Information System (INIS)

    Yoon, Dhongik S; Jo, HangJin; Corradini, Michael L

    2017-01-01

    Condensation of steam vapor is an important mode of energy removal from the reactor containment. The presence of noncondensable gas complicates the process and makes it difficult to model. MELCOR, one of the more widely used system codes for containment analyses, uses the heat and mass transfer analogy to model condensation heat transfer. To investigate previously reported nodalization-dependence in natural convection flow regime, MELCOR condensation model as well as other models are studied. The nodalization-dependence issue is resolved by using physical length from the actual geometry rather than node size of each control volume as the characteristic length scale for MELCOR containment analyses. At the transition to turbulent natural convection regime, the McAdams correlation for convective heat transfer produces a better prediction compared to the original MELCOR model. The McAdams correlation is implemented in MELCOR and the prediction is validated against a set of experiments on a scaled AP600 containment. The MELCOR with our implemented model produces improved predictions. For steam molar fractions in the gas mixture greater than about 0.58, the predictions are within the uncertainty margin of the measurements. The simulation results still underestimate the heat transfer from the gas-steam mixture, implying that conservative predictions are provided.

  13. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    OpenAIRE

    Lekov, Alex

    2010-01-01

    Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certificati...

  14. Gas marketing strategies for Ontario producers

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, P.R. [Energy Objective Ltd., London, ON (Canada)

    2000-07-01

    Activity in natural gas exploration and production in the province of Ontario has recently increased due to higher natural gas prices. This paper discussed the issue of how the gas from the new reserves should be marketed. A review of historical pricing and consumption patterns was also presented to better identify how prices of natural gas are determined in Ontario and to forecast the future demand for natural gas. The first trend of interest is the increased use of natural gas in generating electricity to meet cooling needs in the summer months. The second trend is the increase in gas consumption by the industrial sector resulting from increases in process load. Several marketing options are available to Ontario natural gas producers. They can market their gas to third parties at various trading points in the province or they can market it directly to Union Gas Limited, the local gas utility. This paper briefly described how a gas supply contract works with the union, how gas marketing agreement is conducted with a gas marketer, and how a gas marketing arrangement works with a consultant. Some of the pitfalls of marketing natural gas were also described and some recommended some strategies for selling natural gas in the future were presented. 7 figs.

  15. Gas marketing strategies for Ontario producers

    International Nuclear Information System (INIS)

    Walsh, P.R.

    2000-01-01

    Activity in natural gas exploration and production in the province of Ontario has recently increased due to higher natural gas prices. This paper discussed the issue of how the gas from the new reserves should be marketed. A review of historical pricing and consumption patterns was also presented to better identify how prices of natural gas are determined in Ontario and to forecast the future demand for natural gas. The first trend of interest is the increased use of natural gas in generating electricity to meet cooling needs in the summer months. The second trend is the increase in gas consumption by the industrial sector resulting from increases in process load. Several marketing options are available to Ontario natural gas producers. They can market their gas to third parties at various trading points in the province or they can market it directly to Union Gas Limited, the local gas utility. This paper briefly described how a gas supply contract works with the union, how gas marketing agreement is conducted with a gas marketer, and how a gas marketing arrangement works with a consultant. Some of the pitfalls of marketing natural gas were also described and some recommended some strategies for selling natural gas in the future were presented. 7 figs

  16. On the design of residential condensing gas boilers

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    1997-02-01

    Two main topics are dealt with in this thesis. Firstly, the performance of condensing boilers with finned tube heat exchangers and premix burners is evaluated. Secondly, ways of avoiding condensate formation in the flue system are evaluated. In the first investigation, a transient heat transfer approach is used to predict performance of different boiler configurations connected to different heating systems. The smallest efficiency difference between heat loads and heating systems is obtained when the heat exchanger gives a small temperature difference between flue gases and return water, the heat transfer coefficient is low and the thermostat hysteresis is large. Taking into account heat exchanger size, the best boiler is one with higher heat transfer per unit area which only causes a small efficiency loss. The total heating cost at part load, including gas and electricity, has a maximum at the lowest simulated heat load. The heat supplied by the circulation heat pump is responsible for this. The second investigation evaluates methods of drying the flue gases. Reheating the flue gases in different ways and water removal in an adsorbent bed are evaluated. Reheating is tested in two specially designed boilers. The necessary reheating is calculated to approximately 100-150 deg C if an uninsulated masonry chimney is used. The tested boilers show that it is possible to design a proper boiler. The losses, stand-by and convective/radiative, must be kept at a minimum in order to obtain a high efficiency. 86 refs, 70 figs, 16 tabs

  17. A Simple Approach to Dynamic Material Balance in Gas-Condensate Reservoirs

    Directory of Open Access Journals (Sweden)

    Heidari Sureshjani M.

    2013-02-01

    Full Text Available In traditional material balance calculations, shut-in well pressure data are used to determine average reservoir pressure while recent techniques do not require the well to be shut-in and use instead flowing well pressure-rate data. These methods, which are known as “dynamic” material balance, are developed for single-phase flow (oil or gas in reservoirs. However, utilization of such methods for gas-condensate reservoirs may create significant errors in prediction of average reservoir pressure due to violation of the single-phase assumption in such reservoirs. In a previous work, a method for production data analysis in gas-condensate reservoirs was developed. The method required standard gas production rate, producing gas-oil ratio, flowing well pressure, CVD data and relative permeability curves. This paper presents a new technique which does not need relative permeability curves and flowing well pressure. In this method, the producing oil-gas ratio is interpolated in the vaporized oil in gas phase (Rv versus pressure (p data in the CVD table and the corresponding pressure is located. The parameter pressure/two-phase deviation factor (p/ztp is then evaluated at the determined pressure points and is plotted versus produced moles (np which forms a straight line. The nature of this plot is such that its extrapolation to point where p/ztp = 0 will give initial moles in place. Putting initial pressure/initial two-phase deviation factor (pi/ztp,i (known parameter and estimated initial moles (ni into the material balance equation, average reservoir pressure can be determined. A main assumption behind the method is that the region where both gas and condensate phases are mobile is of negligible size compared to the reservoir. The approach is quite simple and calculations are much easier than the previous work. It provides a practical engineering tool for industry studies as it requires data which are generally available in normal production

  18. Control systems for condensing flue-gas coolers related to natural-gas-fired heating plants

    International Nuclear Information System (INIS)

    Krighaar, M.; Paulsen, O.

    1992-01-01

    A theoretical study is made of the enthalpy-efficiency for a water-cooled heat exchanger added to a natural gas-fired boiler. Under varying conditions of both water flow and temperature and flue-gas flow and temperature, both in condensing and non-condensing mode, the efficiency seems to be constant. The result is very useful for comparison between two different working conditions. The efficiency is used to calculate the savings achieved for a district heating plant by using a heat exchanger. The energy economic calculations are also helpful for estimating the most appropriate size of heat exchanger. The annual savings are calculated by means of data regarding heat production, flue gas temperature and water return temperature. The savings achieved by using different connection principles such as bypass, reheating and controlled water temperature are also calculated. (author)

  19. Study on condensation of biomass pyrolysis gas by spray bio-oil droplets

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kun; Cheng, Wen-Long [University of Science and Technology of China (China)], email: wlcheng@ustc.edu.cn; Chen, Jing [Anhui Electric Power Design Institute (China); Shi, Wen-Jing [Anhui Heli Co., Ltd (China)

    2011-07-01

    This is a study of bio-oil generated by fast pyrolysis; a biomass feedstock is heated to pyrolyze at a rapid rate, the gas pyrolyzed is then condensed rapidly. The interesting result is a potential alternative fuel oil. An analysis was made of the effects of the initial pyrolysis gas temperatures, the initial bio-oil droplets temperatures and diameters, and the flow ratio of the gas and the liquid droplets on the heat and mass transfer between the gas and the liquid droplets. A few criterion equations were achieved with respect to the spray condenser. This paper established the gas-liquid phase equilibrium of an aqueous multi-composition system and the spray condensation model coupling heat and mass transfer. Model calculation and analysis showed that: spray condensation can effectively cool the high-temperature pyrolysis gas quickly; with gas liquid flowing, mass transfer rate reduces; and the relationship of gas and liquid flow ratio can achieve good accuracy.

  20. CO Emissions from Gas Engines Operating on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Jensen, T. K.; Henriksen, Ulrik Birk

    2004-01-01

    High carbon monoxide (CO) emission from gas engines fueled by producer gas is a concerning problem in the struggle to make biomass gasification for heat and power production a success. CO emissions from engines operating on biomass producer gases are high, especially at very lean conditions where...

  1. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-07-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed.

  2. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    International Nuclear Information System (INIS)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung

    2009-01-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed

  3. Molecular simulation of steady-state evaporation and condensation in the presence of a non-condensable gas

    Science.gov (United States)

    Liang, Zhi; Keblinski, Pawel

    2018-02-01

    Using molecular dynamics simulations, we study evaporation and condensation of fluid Ar in the presence of a non-condensable Ne gas in a nanochannel. The evaporation and condensation are driven by the temperature difference, ΔTL, between the evaporating and condensing liquid surfaces. The steady-state evaporation and condensation fluxes (JMD) are also affected by the Ne concentration, ρNe, and the nanochannel length. We find that across a wide range of ΔTL and ρNe, JMD is in good agreement with the prediction from Stefan's law and from Schrage relationships. Furthermore, for ΔTL less than ˜20% of the absolute average temperature, we find that both steady-state heat and mass fluxes are proportional to ΔTL. This allows us to determine the interfacial resistance to the heat and mass transfer and compare it with the corresponding resistances in the gas phase. In this context, we derive an analytical expression for the effective thermal conductivity of the gas region in the nanochannel and the mass transport interfacial resistance equivalent length, i.e., the length of the nanochannel for which the resistance to the mass flow is the same as the interfacial resistance to the mass flow.

  4. Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation

    Directory of Open Access Journals (Sweden)

    Martínez E

    2009-01-01

    Full Text Available Abstract Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM and scanning electron transmission microscopy (STEM measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications.

  5. Alberta producers' gas export prices slip

    International Nuclear Information System (INIS)

    Chandrasekharaiah, M.N.; Dubben, G.; Kolster, B.H.

    1992-01-01

    This paper reports that Alberta gas producers have approved a new contract with California buyers that includes slightly lower wellhead prices and more flexible pricing terms. The 1 year agreement, will apply a flexible price formula to gas sales. A basic volume of 212 MMcfd will receive $1.52 (U.S.)/Mcf. A and S also will buy 200 MMcfd at prices paid for other Alberta gas in the California market. It will have the right to buy added volumes at prices indexed to gas sold into California from the U.S. Southwest. Ballots cast by producers were to be verified by regulatory agencies in Alberta and British Columbia. The more flexible price terms in the new contract are seen as a positive development for negotiations in a dispute over long term contracts

  6. Characterization of the vadose zone above a shallow aquifer contaminated with gas condensate hydrocarbons

    International Nuclear Information System (INIS)

    Sublette, K.; Duncan, K.; Thoma, G.; Todd, T.

    2002-01-01

    A gas production site in the Denver Basin near Ft. Lupton, Colorado has leaked gas condensate hydrocarbons from an underground concrete tank used to store produced water. The leak has contaminated a shallow aquifer. Although the source of pollution has been removed, a plume of hydrocarbon contamination still remains for nearly 46 m from the original source. An extensive monitoring program was conducted in 1993 of the groundwater and saturated sediments. The objective was to determine if intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurred at the site at a rate that would support remediation. Geochemical indicators of hydrogen biodegradation by microorganisms in the saturated zone included oxygen depletion, increased alkalinity, sulfate depletion, methane production and Fe2+ production associated with hydrogen contamination. The presence of sulfate-reducing bacteria and methanogens was also much higher in the contaminated sediments. Degraded hydrocarbon metabolites were found in contaminated groundwater. An extensive characterization of the vadose zone was conducted in which the vadose zone was sample in increments of 15 cm from the surface to the water table at contaminated and non contaminated sites. The samples were tested for individual C3+ hydrocarbons, methane, CO2, total organic carbon, total inorganic carbon, and total petroleum hydrocarbons. The vadose zone consisted of an active and aerobic bioreactor fueled by condensate hydrocarbons transported into the unsaturated zone by evaporation of hydrocarbons at the water table. It was concluded that the unsaturated zone makes an important contribution to the natural attenuation of gas condensate hydrocarbons in the area. 17 refs., 2 tabs., 28 figs

  7. Effects of non-condensable gas on the condensation of steam

    International Nuclear Information System (INIS)

    Jackson, J.D.; An, P.; Reinert, A.; Ahmadinejad, M.

    2000-01-01

    The experimental work reported here was undertaken with the aim of extending the database currently available on the condensation of steam in the presence of non-condensable gases and thereby improving the empirical input to thermal-hydraulic codes which might be used for design and safety assessment of advanced water-cooled nuclear reactors. Heat was removed from flowing mixtures of steam and air in a test section by means of a water-cooled condensing plate. The test facility constructed for the study incorporates a degassing unit which supplies water to a boiler. This delivers steam steadily to a mixing chamber where it joins with a flow of preheated air. The mixture of steam and air is supplied to the bottom of a cylindrical test section in which it flows upwards over a double sided condensing plate which can be vertical, inclined or horizontal, The rate at which heat is removed by cooling water flowing through internal passages in the plate can de determined calorimetrically knowing the flow rate of the water and its temperature rise. After commissioning experiments had shown that reliable measurements of condensation heat transfer rate could be made using the test facility, a programme of development work followed in the course of which three different designs of condensing plate were evaluated in turn. The version eventually used in the main programme of experiments which followed was made from copper. However, its surfaces were coated with a thin layer of nickel and then with one of chromium. It was found that such a surface consistently promoted dropwise condensation and showed no signs of deterioration after lengthy periods of use. The rate of heat removal from pure steam and from mixtures of steam and air in varying proportions was measured as a function of plate sub-cooling for a variety of plate orientations. (author)

  8. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  9. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    International Nuclear Information System (INIS)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  10. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  11. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    Science.gov (United States)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-01

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  12. Improvement of degradation with non-condensable gas in micro steam injector

    International Nuclear Information System (INIS)

    Saihara, Atsushi; Horiki, Sachiyo; Osakabe, Masahiro; Ohmori, Shuichi

    2007-01-01

    Effect of non-condensable gas on a micro steam injector (MSI) to obtain a vacuum was experimentally studied. When a pure steam was used in the MSI, the high vacuum condition was obtained. However when the mass fraction of air included in the steam was larger than a cartain value, the MSI became unstable and the vacuum condition could not be obtained. It is considered that the malfunction is due to the instability triggered with the uncondensed steam remained at the throat in downstream of the condensing region. The water nozzle was expected to be a key component to mitigate the effect of non-condensable gas. Three kinds of water nozzle whose flow areas were round, star and screw shapes were used in the present experiment. The star-shaped nozzle where the increased surface area could be expected to compensate the degradation of condensation failed to improve the malfunction of MSI with the non-condensable gas. The screw nozzle expected to drive air away outside the condensing surface could mitigate the effect of non-condensable gas. (author)

  13. Natural gas and condensate occurrence in salt, specifically in the salt stock Gorleben-Rambow. Literature study

    International Nuclear Information System (INIS)

    Schneider, Ulrich

    2011-01-01

    The study on the natural gas and condensate occurrence in salt, specifically in the salt stock Gorleben-Rambow covers the topics development of salt deposits, salt stocks, crude oil and natural gas, gas and condensate inclusions in evaporite. Experimental data on crude oil borehole studies in Gorleben, natural gas drill holes in the salt stock Rambow, Luechow Z1 - saltstock Wustrow, gas indications, gas occurrences and gas detection are summarized.

  14. Beryllium coating produced by evaporation-condensation method and some their properties

    Energy Technology Data Exchange (ETDEWEB)

    Pepekin, G.I.; Anisimov, A.B.; Chernikov, A.S.; Mozherinn, S.I.; Pirogov, A.A. [SRI SIA Lutch., Podolsk (Russian Federation)

    1998-01-01

    The method of vacuum evaporation-condensation for deposition of beryllium coatings on metal substrates, considered in the paper, side by side with a plasma-spray method is attractive fon ITER application. In particular this technique may be useful for repair the surface of eroded tiles which is operated in a strong magnetic field. The possibility of deposition of beryllium coatings with the rate of layer growth 0.1-0.2 mm/h is shown. The compatibility of beryllium coating with copper or stainless steel substrate is provided due to intermediate barrier. The results of examination of microstructure, microhardness, porosity, thermal and physical properties and stability under thermal cycling of beryllium materials are presented. The value of thermal expansion coefficient and thermal conductivity of condensed beryllium are approximately the same as for industrial grade material produced by powder mettalurgy technique. However, the condensed beryllium has higher purity (up to 99.9-99.99 % wt.). (author)

  15. WWW expert system on producer gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Schouten, E.J.; Lammers, G.; Beenackers, A.A.C.M. [University of Groningen (Netherlands)

    1999-07-01

    The University of Groningen (RUG) has developed an expert system on cleaning of biomass producer gas. This work was carried out in close co-operation with the Biomass Technology Group B.V. (BTG) in Enschede, The Netherlands within the framework of the EC supported JOR3-CT95-0084 project. The expert system was developed as a tool for the designer-engineer of downstream gas cleaning equipment and consists of an information package and a flowsheet package. The packages are integrated in a client/server system. The flowsheeting package of the expert system has been designed for the evaluation of different gas cleaning methods. The system contains a number of possible gas cleaning devices such as: cyclone, fabric filter, ceramic filter, venturi scrubber and catalytic cracker. The user can select up to five cleaning steps in an arbitrary order for his specific gas cleaning problem. After specification of the required design parameters, the system calculates the main design characteristics of the cleaning device. The information package is a collection of HTML{sup TM} files. It contains a large amount of information, tips, experience data, literature references and hyperlinks to other interesting Internet sites. This information is arranged per cleaning device. (orig.)

  16. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  17. Flue gas condensation in straw fired CHP plants; Roeggaskondensation i halmfyrede kraftvarmeanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-15

    The high price of straw and a general demand for increased use of straw in power and heat production are expected to result in an increased need for efficient fuel utilization. The use of flue gas condensation in straw fired CHP plants can contribute to a higher exploitation of energy, and at the same time open of the possibility of utilization of wet (cheaper) fuels without energy loss. Furthermore flue gas condensation can contribute to the flue gas cleaning process through removal of HCl and SO{sub 2} as well as in particle cleaning in wet cleaning processes. With starting point in a straw fired CHP plant the technical and economic consequences of installation of a flue gas condensation system are investigated. Fuel exploitation and power/heat production distribution is included in the investigation. (BA)

  18. Condensing gas boilers for energy efficiency and reduction of CO2 and NOx

    International Nuclear Information System (INIS)

    Stewardson, E.

    1994-01-01

    The objectives of the study are: 1) to demonstrate the effectiveness of condensing gas boiler hot water system in reducing energy costs and pollution; 2) to illustrate the importance of marketing this technology to uninformed end users. The development of condensing boilers in the European Community, the materials used, product designs, key performance measures, and the types of applications suited to these products are outlined. Using calculations from a body of work produced by the Chartered Institute of Building Service Engineers in Britain, it is demonstrated how seasonal efficiency differs from combustion efficiency, and how the added capital cost for these boilers may be recovered within an acceptable commercial pay back period from fuel cost savings. Applying current NO x and CO 2 information from a body of the CE Technical Committees, the author show how these products can reduce pollution levels both from CO 2 and NO x . An example of marketing these products to a largely uninformed end user customer market is cited. 2 refs., 3 tabs., 12 figs. (orig.)

  19. Method and apparatus for controlled condensation isotope separation

    International Nuclear Information System (INIS)

    Sullivan, J.A.; Lee, J.T. Jr.; Kim, K.C.

    1981-01-01

    The invention provides a method for producing controlled homogeneous condensation of a molecular feed gas containing several isotopes. The feed gas flows at supersonic rates through an expansion nozzle under conditions at which the gas would normally condense. The gas is irradiated with laser radiation of a wavelength that selectively excites those molecules in the feed gas that contain a particular isotope, thus preventing their condensation. Condensate particles may be aerodynamically separated from the flowing gas stream

  20. ADVANCED STRIPPER GAS PRODUCED WATER REMEDIATION

    International Nuclear Information System (INIS)

    Ray W. Sheldon

    2001-01-01

    Natural gas and oil production from stripper wells also produces water contaminated with hydrocarbons, and in most locations, salts and trace elements. The hydrocarbons are not generally present in concentrations that allow the operator to economically recover these liquids. Produced liquids, (stripper gas water) which are predominantly water, present the operator with two options; purify the water to acceptable levels of contaminates, or pay for the disposal of the water. The project scope involves testing SynCoal as a sorbent to reduce the levels of contamination in stripper gas well produced water to a level that the water can be put to a productive use. Produced water is to be filtered with SynCoal, a processed sub-bituminous coal. It is expected that the surface area of and in the SynCoal would sorb the hydrocarbons and other contaminates and the effluent would be usable for agricultural purposes. Test plan anticipates using two well locations described as being disparate in the level and type of contaminates present. The loading capacity and the rate of loading for the sorbent should be quantified in field testing situations which include unregulated and widely varying liquid flow rates. This will require significant flexibility in the initial stages of the investigation. The scope of work outlined below serves as the guidelines for the testing of SynCoal carbon product as a sorbent to remove hydrocarbons and other contaminants from the produced waters of natural gas wells. A maximum ratio of 1 lb carbon to 100 lbs water treated is the initial basis for economic design. While the levels of contaminants directly impact this ratio, the ultimate economics will be dictated by the filter servicing requirements. This experimental program is intended to identify those treatment parameters that yield the best technological practice for a given set of operating conditions. The goal of this research is to determine appropriate guidelines for field trials by accurately

  1. Bose-Einstein condensation of a relativistic Bose gas trapped in a general external potential

    International Nuclear Information System (INIS)

    Su Guozhen; Chen Jincan; Chen Lixuan

    2006-01-01

    Bose-Einstein condensation of an ideal relativistic Bose gas trapped in a generic power-law potential is investigated. The analytical expressions for some important parameters such as the critical temperature, ground-state fraction and heat capacity are derived. The general criteria on the occurrence of Bose-Einstein condensation and the discontinuity of heat capacity at the critical temperature are obtained. The results obtained here present a unified description for the Bose-Einstein condensation of a class of ideal Bose systems so that many important conclusions in the literature are included in this paper

  2. Effect of non-condensation gas on pressure oscillation of submerged steam jet condensation

    International Nuclear Information System (INIS)

    Zhao, Quanbin; Cong, Yuelei; Wang, Yingchun; Chen, Weixiong; Chong, Daotong; Yan, Junjie

    2016-01-01

    Highlights: • Oscillation intensity of steam–air jet increases with rise of water temperature. • Oscillation intensity reduces obviously when air is mixed. • Both first and second dominant frequencies decrease with rise of air mass fraction. • Air has little effect on power of 1st & 2nd frequency bands under low temperature. • The maximum oscillation power occurs under case of A = 1% and T ⩾ 50 °C. - Abstract: The effect of air with low mass fraction on the oscillation intensity and oscillation frequency of a submerged steam jet condensation is investigated under stable condensation region. With air mixing in steam, an obvious dynamic pressure peak appears along the jet direction. The intensity peak increases monotonously with the rise of steam mass flux and water temperature. Peak position moves downstream with the rise of air mass fraction. Moreover, when compared with that of pure steam jet, the oscillation intensity clearly decreases as air is mixed. However, when water temperature is lower than approximately 45 °C, oscillation intensity increases slightly with the rise of air mass fraction, and when water temperature is higher than 55 °C, the oscillation intensity decreases greatly with the rise of air mass fraction. Both the first and second dominant frequencies decrease with rise of air mass fraction. Finally, effect of air mass fractions on the oscillation power of the first and second dominant frequency bands shows similar trends. Under low water temperature, the mixed air has little effect on the oscillation power of both first and second frequency bands. However, when water temperature is high, the oscillation power of both first and second frequency bands appears an obvious peak when air mass fraction is about 1%. With further rise of air mass fraction, the oscillation power decreases gradually.

  3. Waste heat recovery system including a mechanism for collection, detection and removal of non-condensable gas

    Science.gov (United States)

    Ernst, Timothy C.; Zigan, James A.

    2017-06-20

    The disclosure describes a non-condensable gas collection, detection, and removal system for a WHR system that helps to maintain cycle efficiency of the WHR system across the life of an engine system associated with the WHR system. A storage volume is configured to collect non-condensable gas received from the working fluid circuit, and a release valve is configured to selectively release non-condensable gas contained within the storage volume.

  4. Advanced treatment of flue gas condensate; Avancerad rening av roekgaskondensat

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik [Carl Bro Energikonsult AB, Malmoe (Sweden); Ekengren, Oesten; Bjurhem, Jan Erik [IVL Swedish Environmental Research Inst. (Sweden)

    2004-11-01

    The aim of the project is to study different techniques to recover water to the process and to reduce emission of ammonia to water and air. Membrane technology (ultra- (UF) and nanofiltration (NF) and reverse osmosis (RO)) and a stripper have been studied for ammonia separation. The use of bio-fuel in energy production is increasing. The off-gases are often condensed to increase energy yield and to decrease emissions to air. Since the concentration of nitrogen (ammonium) is high in condensates from units with SNCR for NO{sub x}-reduction (selective non-catalytic reduction) this water has to be treated further. Another aim of the project is to replace a great part of the tap water used in the process. This can be accomplished with membrane technology. Laboratory tests revealed a certain degree of membrane fouling. However, both NF and RO worked well in the full-scale unit, in spite of problems in the condensate treatment that resulted in tar products in the water. There was no obvious negative effect on these membranes. Analyses of PAH have shown a low base concentration that may lead to fouling after a long time. UF removes most of these PAH and thus protects the following NF- or RO-membranes. NF gave about 3 times higher filtration capacity (flux) than RO for the condensate at 30 bars. This can save a lot of money, since the membrane area can be reduced to a third. High temperature also increases the flux. The results are of high interest but ought to be certified during long run tests. Fouling was low in both NF and RO, and initial flux was retained after cleaning. The reason is probably the good pre-treatment (UF). The concentration could proceed very far, which make it possibly to reuse the concentrate to the system. Simulations of an ammonia stripper showed some parameters to be critical in certain ranges, while others didn't affect the result. Airflow is a critical parameter during stable conditions within the design data. Simulated data were verified

  5. Comparative study during condensation of R152 a and R134 a with presence of non-condensable gas inside a vertical tube

    Science.gov (United States)

    Charef, Adil; Feddaoui, M'barek; Najim, Monssif; Meftah, Hicham

    2018-04-01

    A computational study of the liquid film condensation from vapour-gas mixtures of HFC refrigerants inside a vertical tube is performed. The external wall of the tube is subjected to constant temperature. The model uses an implicit finite difference method to solve the governing equations for the liquid film and gas flow together including the boundary and interfacial matching conditions. Parametric computations were realised to examine the effects of inlet Reynolds number, tube length, and inlet temperature of the gas mixtures on the condensation mechanism. A comparative study between the results obtained for studied R152 a and R134 a with presence of non-condensable gas is made. The predicted results indicate that the condensation of R152 a-air corresponds to a higher accumulated condensation m c d and local heat transfer coefficient h T when compared to R134 a-air in the same conditions. Increasing the inlet Reynolds number or the tube length improve the condensation. Additionally, lower non-condensable gas in R152 a - a i r substantially enhances the heat and mass exchanges.

  6. Experimental substantiation of combined methods for designing processes for the commercial preparation of gas at gas condensate fields

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, G R; Karlinskii, E D; Posypkina, T V

    1977-04-01

    An analysis is made of the possibility of using two analytical methods for studying vapor--liquid equilibrium of hydrocarbon mixtures that are used in designing the separation of natural gas and the stabilization of condensate--the Chao and Sider method, which uses computations by equilibrium constants. A combined computational method is proposed for describing a unified process of natural gas separation and condensate stabilization. The method of preparing the original data for the computation of the separation and stabilization processes can be significantly simplified. 10 references, 1 table.

  7. Maximize Liquid Oil Production from Shale Oil and Gas Condensate Reservoirs by Cyclic Gas Injection

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, James [Texas Tech Univ., Lubbock, TX (United States); Li, Lei [Texas Tech Univ., Lubbock, TX (United States); Yu, Yang [Texas Tech Univ., Lubbock, TX (United States); Meng, Xingbang [Texas Tech Univ., Lubbock, TX (United States); Sharma, Sharanya [Texas Tech Univ., Lubbock, TX (United States); Huang, Siyuan [Texas Tech Univ., Lubbock, TX (United States); Shen, Ziqi [Texas Tech Univ., Lubbock, TX (United States); Zhang, Yao [Texas Tech Univ., Lubbock, TX (United States); Wang, Xiukun [Texas Tech Univ., Lubbock, TX (United States); Carey, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nguyen, Phong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porter, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jimenez-Martinez, Joaquin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mody, Fersheed [Apache Corp., Houston, TX (United States); Barnes, Warren [Apache Corp., Houston, TX (United States); Cook, Tim [Apache Corp., Houston, TX (United States); Griffith, Paul [Apache Corp., Houston, TX (United States)

    2017-11-17

    The current technology to produce shale oil reservoirs is the primary depletion using fractured wells (generally horizontal wells). The oil recovery is less than 10%. The prize to enhance oil recovery (EOR) is big. Based on our earlier simulation study, huff-n-puff gas injection has the highest EOR potential. This project was to explore the potential extensively and from broader aspects. The huff-n-puff gas injection was compared with gas flooding, water huff-n-puff and waterflooding. The potential to mitigate liquid blockage was also studied and the gas huff-n-puff method was compared with other solvent methods. Field pilot tests were initiated but terminated owing to the low oil price and the operator’s budget cut. To meet the original project objectives, efforts were made to review existing and relevant field projects in shale and tight reservoirs. The fundamental flow in nanopores was also studied.

  8. Condensation and critical exponents of an ideal non-Abelian gas

    Science.gov (United States)

    Talaei, Zahra; Mirza, Behrouz; Mohammadzadeh, Hosein

    2017-11-01

    We investigate an ideal gas obeying non-Abelian statistics and derive the expressions for some thermodynamic quantities. It is found that thermodynamic quantities are finite at the condensation point where their derivatives diverge and, near this point, they behave as \\vert T-Tc\\vert^{-ρ} in which Tc denotes the condensation temperature and ρ is a critical exponent. The critical exponents related to the heat capacity and compressibility are obtained by fitting numerical results and others are obtained using the scaling law hypothesis for a three-dimensional non-Abelian ideal gas. This set of critical exponents introduces a new universality class.

  9. Fluid flow behaviour of gas-condensate and near-miscible fluids at the pore scale

    Energy Technology Data Exchange (ETDEWEB)

    Dawe, Richard A. [Department of Chemical Engineering, University of West Indies, St. Augustine (Trinidad and Tobago); Grattoni, Carlos A. [Department of Earth Science and Engineering, Imperial College, London, SW7 2BP (United Kingdom)

    2007-02-15

    Retrograde condensate reservoir behaviour is complex with much of the detailed mechanisms of the multiphase fluid transport and mass transfer between the phases within the porous matrix still speculative. Visual modelling of selected processes occurring at the pore level under known and controlled boundary conditions can give an insight to fluid displacements at the core scale and help the interpretation of production behaviour at reservoir scale. Visualisation of the pore scale two-phase flow mechanisms has been studied experimentally at low interfacial tensions, < 0.5 mN/m, using a partially miscible fluid system in glass visual micro models. As the interfacial tension decreases the balance between fluid-fluid forces (interfacial, spreading and viscous) and fluid-solid interactions (wettability and viscous interactions) changes. Data measurements in the laboratory, particularly relative permeability, will therefore always be difficult especially for condensate fluids just below their dew point. What is certain is that gas production from a gas-condensate leads to condensate dropout when pressure falls below the dew point, either within the wellbore or, more importantly, in the reservoir. This paper illustrates some pore scale physics, particularly interfacial phenomena at low interfacial tension, which has relevance to appreciating the flow of condensate fluids close to their dew point either near the wellbore (which affects well productivity) or deep inside the reservoir (which affects condensate recovery). (author)

  10. Optimum conditions for producing Cs2 molecular condensates by stimulated Raman adiabatic passage

    International Nuclear Information System (INIS)

    Feng Zhifang; Li Weidong; Wang Lirong; Xiao Liantuan; Jia Suotang

    2009-01-01

    The optimum conditions for producing Cs 2 molecular condensates from Cs atomic condensates with high transfer efficiency by stimulated Raman adiabatic passage are presented. Under the extended 'two-photon' resonance condition, including the two-photon process, the mean-field correction, and the tunneling coupling between two upper excited molecular levels, a high and stable conversion efficiency is realized. The high conversion efficiency could be achieved by following two methods under experimentally less demanding conditions (relatively small effective Rabi frequency for pump laser pulse). One is adjusting the detuning difference between two laser pulses for same effective Rabi frequencies with up to 87.2% transfer efficiency. Another one is adjusting the effective Rabi frequency, the detuning of dump laser for given effective Rabi frequency, and the detuning of pump laser with up to 80.7% transfer efficiency.

  11. Optimum conditions for producing Cs2 molecular condensates by stimulated Raman adiabatic passage

    Science.gov (United States)

    Feng, Zhifang; Li, Weidong; Wang, Lirong; Xiao, Liantuan; Jia, Suotang

    2009-10-01

    The optimum conditions for producing Cs2 molecular condensates from Cs atomic condensates with high transfer efficiency by stimulated Raman adiabatic passage are presented. Under the extended “two-photon” resonance condition, including the two-photon process, the mean-field correction, and the tunneling coupling between two upper excited molecular levels, a high and stable conversion efficiency is realized. The high conversion efficiency could be achieved by following two methods under experimentally less demanding conditions (relatively small effective Rabi frequency for pump laser pulse). One is adjusting the detuning difference between two laser pulses for same effective Rabi frequencies with up to 87.2% transfer efficiency. Another one is adjusting the effective Rabi frequency, the detuning of dump laser for given effective Rabi frequency, and the detuning of pump laser with up to 80.7% transfer efficiency.

  12. EOS simulation and GRNN modeling of the constant volume depletion behavior of gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Elsharkawy, A.M.; Foda, S.G. [Kuwait University, Safat (Kuwait). Petroleum Engineering Dept.

    1998-03-01

    Currently, two approaches are being used to predict the changes in retrograde gas condensate composition and estimate the pressure depletion behavior of gas condensate reservoirs. The first approach uses the equation of states whereas the second uses empirical correlations. Equations of states (EOS) are poor predictive tools for complex hydrocarbon systems. The EOS needs adjustment against phase behavior data of reservoir fluid of known composition. The empirical correlation does not involve numerous numerical computations but their accuracy is limited. This study presents two general regression neural network (GRNN) models. The first model, GRNNM1, is developed to predict dew point pressure and gas compressibility at dew point using initial composition of numerous samples while the second model, GRNNM2, is developed to predict the changes in well stream effluent composition at any stages of pressure depletion. GRNNM2 can also be used to determine the initial reservoir fluid composition using dew point pressure, gas compressibility at dew point, and reservoir temperature. These models are based on analysis of 142 sample of laboratory studies of constant volume depletion (CVD) for gas condensate systems forming a total of 1082 depletion stages. The database represents a wide range of gas condensate systems obtained worldwide. The performance of the GRNN models has been compared to simulation results of the equation of state. The study shows that the proposed general regression neural network models are accurate, valid, and reliable. These models can be used to forecast CVD data needed for many reservoir engineering calculations in case laboratory data is unavailable. The GRNN models save computer time involved in EOS calculations. The study also show that once these models are properly trained they can be used to cut expenses of frequent sampling and laborious experimental CVD tests required for gas condensate reservoirs. 55 refs., 13 figs., 6 tabs.

  13. Condensation heat transfer with noncondensable gas for passive containment cooling of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Tauna [Schlumberger, 14910 Airline Rd., Rosharon, TX 77583 (United States)]. E-mail: Tleonardi@slb.com; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)]. E-mail: Ishii@ecn.purdue.edu

    2006-09-15

    Noncondensable gases that come from the containment and the interaction of cladding and steam during a severe accident deteriorate a passive containment cooling system's performance by degrading the heat transfer capabilities of the condensers in passive containment cooling systems. This work contributes to the area of modeling condensation heat transfer with noncondensable gases in integral facilities. Previously existing correlations and models are for the through-flow of the mixture of steam and the noncondensable gases and this may not be applicable to passive containment cooling systems where there is no clear passage for the steam to escape. This work presents a condensation heat transfer model for the downward cocurrent flow of a steam/air mixture through a condenser tube, taking into account the atypical characteristics of the passive containment cooling system. An empirical model is developed that depends on the inlet conditions, including the mixture Reynolds number and noncondensable gas concentration.

  14. Fluid flow in gas condensate reservoirs. The interplay of forces and their relative strengths

    Energy Technology Data Exchange (ETDEWEB)

    Ursin, Jann-Rune [Stavanger University College, Department of Petroleum Engineering, PO Box 8002, Stavanger, 4068 (Norway)

    2004-02-01

    Natural production from gas condensate reservoirs is characterized by gas condensation and liquid dropout in the reservoir, first in the near wellbore volume, then as a cylindrical shaped region, dynamically developing into the reservoir volume. The effects of liquid condensation are reduced productivity and loss of production. Successful forecast of well productivity and reservoir production depends on detailed understanding of the effect of various forces acting on fluid flow in time and space. The production form gas condensate reservoirs is thus indirectly related to the interplay of fundamental forces, such as the viscosity, the capillary, the gravitational and the inertial force and their relative strengths, demonstrated by various dimensionless numbers. Dimensionless numbers are defined and calculated for all pressure and space coordinates in a test reservoir. Various regions are identified where certain forces are more important than others. Based on reservoir pressure development, liquid condensation and the numerical representation of dimensionless numbers, a conceptual understanding of a varying reservoir permeability has been reached.The material balance, the reservoir fluid flow and the wellbore flow calculations are performed on a cylindrical reservoir model. The ratios between fundamental forces are calculated and dimensionless numbers defined. The interplay of forces, demonstrated by these numbers, are calculated as function of radial dimension and reservoir pressure.

  15. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube

    International Nuclear Information System (INIS)

    Yuann, R.Y.; Schrock, V.E.; Chen, Xiang, M.

    1995-01-01

    Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation κ-ε model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena

  16. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, R Y [Taiwan Power Company, Taipei (Taiwan, Province of China); Schrock, V E [Univ. of California, Berkeley, CA (United States); Chen, Xiang

    1995-09-01

    Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation {kappa}-{epsilon} model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena.

  17. State of the Art Report On Condensation Phenomena Within Tubes in the Presence of Noncondensable Gas

    International Nuclear Information System (INIS)

    Polo, J.

    1998-01-01

    Condensation phenomena play an important role in many industrial applications; in particular; the nuclear industry uses such processes in different systems for both operation and safety aspects. Thus most of the engineering safety features in the current Light Water Reactor (LWR) plants as well as in the new advanced/passive type design are based on the condensation phenomena inside tubes to reduce the system pressure and to remove the decay heat released under accidental conditions. Regarding the new advanced/passive plant designs such a systems must ensure their capabilities under severe accident conditions, that means, under the presence of non-condensable gas an even aerosol particles. The presence of even a small quantity of non condensable gas in liquid-vapour has profound influence on the resistance to heat transfer at the liquid-vapour interface leading to reduce in the heat transfer rate. In consequence, the safety analysis of the Simplified Boiling Water Reactor (SBWR) promoted in increase in the modelling, model development and experimental research on the gas mixtures condensing inside vertical tubes. This report summarises the last models developed as well as the experimental findings on such processes. (Author) 51 refs

  18. Numerical analyses on the effect of capillary condensation on gas diffusivities in porous media

    Science.gov (United States)

    Yoshimoto, Yuta; Hori, Takuma; Kinefuchi, Ikuya; Takagi, Shu

    2017-11-01

    We investigate the effect of capillary condensation on gas diffusivities in porous media composed of randomly packed spheres with moderate wettability. Lattice density functional theory simulations successfully reproduce realistic adsorption/desorption isotherms and provide fluid density distributions inside the porous media. We find that capillary condensations lead to the occlusion of narrow pores because they preferentially occur at confined spaces surrounded by the solid walls. Consequently, the characteristic lengths of the partially wet structures are larger than those of the corresponding dry structures with the same porosities. Subsequent gas diffusion simulations exploiting the mean-square displacement method indicate that while effective diffusion coefficients significantly decrease in the presence of partially condensed liquids, they are larger than those in the dry structures with the same porosities. Most importantly, we find that the porosity-to-tortuosity ratio, which is a crucial parameter that determines the effective diffusion coefficient, can be reasonably related to the porosity even for the partially wet porous media.

  19. Theoretical modeling of steam condensation in the presence of a noncondensable gas in horizontal tubes

    International Nuclear Information System (INIS)

    Lee, Kwon-Yeong; Kim, Moo Hwan; Kim, Moo Hwan

    2008-01-01

    A theoretical model was developed to investigate a steam condensation with a noncondensable gas in a horizontal tube. The heat transfer through the vapor/noncondensable gas mixture boundary layer consists of the sensible heat transfer and the latent heat transfer given up by the condensing vapor, and it must equal that from the condensate film to the tube wall. Therefore, the total heat transfer coefficient is given by the film, condensation and sensible heat transfer coefficients. The film heat transfer coefficients of the upper and lower portions of the tube were calculated separately from Rosson and Meyers (1965) correlation. The heat and mass transfer analogy was used to analyze the steam/noncondensable gas mixture boundary layer. Here, the Nusselt and Sherwood numbers in the gas phase were modified to incorporate the effects of condensate film roughness, suction, and developing flow. The predictions of the theoretical model for the experimental heat transfer coefficients at the top and bottom of the tube were reasonable. The calculated heat transfer coefficients at the top of the tube were higher than those at the bottom of it, as experimental results. As the temperature potential at the top of tube was lower than that at the bottom of it, the heat fluxes at the upper and lower portions of the tube were similar to each other. Generally speaking, however, the model predictions showed a good agreement with experimental data. The new empirical correlation proposed by Lee and Kim (2008) for the vertical tube was applied to the condensation of steam/noncondensable mixture in a horizontal tube. Nusselt theory and Chato correlation were used to calculate the heat transfer coefficients at top and bottom of the horizontal tube, respectively. The predictions of the new empirical correlation were good and very similar with the theoretical model. (author)

  20. Thermodynamic Characterization of Undefined Petroleum Fractions of Gas Condensate using Group Contribution

    Directory of Open Access Journals (Sweden)

    Uribe-Vargas Veronica

    2016-01-01

    Full Text Available A methodology proposed in a previous paper [Carreón-Calderón et al. (2012 Ind. Eng. Chem. Res. 51, 14188-14198] for thermodynamic characterization of undefined petroleum fractions was applied to gas-condensate fluids. Using this methodology, input parameters of cubic equations of state and their mixing rules, critical properties and chemical pseudostructures are determined for undefined fractions by minimizing their Gibbs free energy. The results show the feasibility of applying this approach to gas-condensate fluids without making use of either cubic equations of state or mixing rules with specific adjusted parameters for petroleum fluids. Besides, it is shown that the phase equilibrium envelopes of gas-condensate fluids are highly dependent on the critical properties assigned to the undefined petroleum fractions of such fluid fractions and less dependent on the equation used for modeling gas-condensate fluids as a whole. The Absolute Average Error (AAE considering the best arrangement is 1.79% in predicting the dew point.

  1. Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands

    NARCIS (Netherlands)

    Weiss, M.; Dittmar, L.; Junginger, H.M.; Patel, M.K.; Blok, K.

    2009-01-01

    High costs often prevent the market diffusion of novel and efficient energy technologies. Monitoring cost and price decline for these technologies is thus important in order to establish effective energy policy. Here, we present experience curves and cost-benefit analyses for condensing gas boilers

  2. Experimental phase behavior study of a five-component model gas condensate

    NARCIS (Netherlands)

    Shariati - Sarabi, A.; Straver, E.J.M.; Florusse, L.J.; Peters, C.J.

    2014-01-01

    In this work, the bubble points and dew points of a multicomponent mixture of methane, butane, heptane, decane and tetradecane as a model mixture representative of a gas condensate, have been measured experimentally. Ten samples with approximately the same composition were prepared and their

  3. Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.J.; Bao, J.J.; Yan, J.P.; Liu, J.H.; Song, S.J.; Fan, F.X. [Southeast University, Nanjing (China). School of Energy & Environment

    2010-01-01

    A novel process to remove fine particles with high efficiency by heterogeneous condensation in a wet flue gas desulfurization (WFGD) system is presented. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO{sub 2} absorption zone and at the top of the wet FGD scrubber by adding steam in the gas inlet and above the scrubbing liquid inlet of the scrubber, respectively. The condensational grown droplets were then removed by the scrubbing liquid and a high-efficiency demister. The results show that the effectiveness of the WFGD system for removal of fine particles is related to the SO{sub 2} absorbent employed. When using CaCO{sub 3} and NH{sub 3} {center_dot} H{sub 2}O to remove SO{sub 2} from flue gas, the fine particle removal efficiencies are lower than those for Na2CO{sub 3} and water, and the morphology and elemental composition of fine particles are changed. This effect can be attributed to the formation of aerosol particles in the limestone and ammonia-based FGD processes. The performance of the WFGD system for removal of fine particles can be significantly improved for both steam addition cases, for which the removal efficiency increases with increasing amount of added steam. A high liquid to gas ratio is beneficial for efficient removal of fine particles by heterogeneous condensation of water vapor.

  4. Constructing a unique two-phase compressibility factor model for lean gas condensates

    Energy Technology Data Exchange (ETDEWEB)

    Moayyedi, Mahmood; Gharesheikhlou, Aliashghar [Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of); Azamifard, Arash; Mosaferi, Emadoddin [Amirkabir University of Technology (AUT), Tehran (Iran, Islamic Republic of)

    2015-02-15

    Generating a reliable experimental model for two-phase compressibility factor in lean gas condensate reservoirs has always been demanding, but it was neglected due to lack of required experimental data. This study presents the main results of constructing the first two-phase compressibility factor model that is completely valid for Iranian lean gas condensate reservoirs. Based on a wide range of experimental data bank for Iranian lean gas condensate reservoirs, a unique two-phase compressibility factor model was generated using design of experiments (DOE) method and neural network technique (ANN). Using DOE, a swift cubic response surface model was generated for two-phase compressibility factor as a function of some selected fluid parameters for lean gas condensate fluids. The proposed DOE and ANN models were finally validated using four new independent data series. The results showed that there is a good agreement between experimental data and the proposed models. In the end, a detailed comparison was made between the results of proposed models.

  5. Operando Spectroscopy of the Gas-Phase Aldol Condensation of Propanal over Solid Base Catalysts

    NARCIS (Netherlands)

    Hernández-giménez, Ana M.; Ruiz-martínez, Javier; Puértolas, Begoña; Pérez-ramírez, Javier; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2017-01-01

    The gas-phase aldol condensation of propanal, taken as model for the aldehyde components in bio-oils, has been studied with a combined operando set-up allowing to perform FT-IR & UV–Vis diffuse reflectance spectroscopy (DRS) with on-line mass spectrometry (MS). The selected solid base catalysts, a

  6. Two-step condensation of the ideal Bose gas in highly anisotropic traps

    NARCIS (Netherlands)

    van Druten, N.J.; Ketterle, W.

    1997-01-01

    The ideal Bose gas in a highly anisotropic harmonic potential is studied. It is found that Bose-Einstein condensation occurs in two distinct steps as the temperature is lowered. In the first step the specific heat shows a sharp feature, but the system still occupies many one-dimensional quantum

  7. Constructing a unique two-phase compressibility factor model for lean gas condensates

    International Nuclear Information System (INIS)

    Moayyedi, Mahmood; Gharesheikhlou, Aliashghar; Azamifard, Arash; Mosaferi, Emadoddin

    2015-01-01

    Generating a reliable experimental model for two-phase compressibility factor in lean gas condensate reservoirs has always been demanding, but it was neglected due to lack of required experimental data. This study presents the main results of constructing the first two-phase compressibility factor model that is completely valid for Iranian lean gas condensate reservoirs. Based on a wide range of experimental data bank for Iranian lean gas condensate reservoirs, a unique two-phase compressibility factor model was generated using design of experiments (DOE) method and neural network technique (ANN). Using DOE, a swift cubic response surface model was generated for two-phase compressibility factor as a function of some selected fluid parameters for lean gas condensate fluids. The proposed DOE and ANN models were finally validated using four new independent data series. The results showed that there is a good agreement between experimental data and the proposed models. In the end, a detailed comparison was made between the results of proposed models

  8. The characteristics of operation of the Shatlyk gas condensate deposit

    Energy Technology Data Exchange (ETDEWEB)

    Zatov, G.A.; Friman, Yu.M.; Frumson, Yu.V.; Koshayev, T.K.; Stepanov, N.G.; Tverkovkin, S.M.

    1983-01-01

    Results are correlated of the operation of the Shatlyksk deposit for a 10 year period from the start of its development through 1982. The rates of gas withdrawal from the deposits are analyzed, along with the conditions for manifestation of elastic, water thrust modes, the characteristics of the studied wells and other issues. The results of modeling the advancement of stratum waters are cited. The modeling was performed on a computer (EVM) using a system of two dimensional, two phase filtration.

  9. Mercury removal from natural gas and associated condensates

    Energy Technology Data Exchange (ETDEWEB)

    Hennico, A.; Barthel, Y.; Courty, P. (Institut Francais du Petrole, 31 - Rueil-Malmaison (France). Direction Industrielle)

    1990-01-01

    IFP mercury trapping systems are based on CMG 273, the recently developed Procatalyse product which is the heart of IFP's gas phase and liquid phase mercury removal technology. This material, made of highly macroporous alumina supporting a metal sulfide, presents a very high reactivity towards mecury within a broad range of operating conditions, including those operating in the liquid phase. Characteristics of CMG 273 are presented. (orig.).

  10. The method of predicting the process of condensation of moisture and hydrate formation in the gas pipeline

    OpenAIRE

    Хвостова, Олена Вікторівна

    2014-01-01

    The problem of ensuring the required value of one of the natural gas quality indicators during its transportation to the consumer - moisture content is considered in the paper. The method for predicting possible moisture condensation and hydrate formation processes in gas pipelines considering mixing gas flows with different moisture content was developed.Predicting the moisture condensation and hydrate formation in gas pipelines is an actual task since a timely prevention of these processes ...

  11. Theoretical study on bubble formation and flow condensation in downflow channel with horizontal gas injection

    Science.gov (United States)

    Zhu, Kang; Li, Yanzhong; Wang, Jiaojiao; Ma, Yuan; Wang, Lei; Xie, Fushou

    2018-05-01

    Bubble formation and condensation in liquid pipes occur widely in industrial systems such as cryogenic propellant feeding system. In this paper, an integrated theoretical model is established to give a comprehensive description of the bubble formation, motion and condensation process. The model is validated by numerical simulations and bubble condensation experiments from references, and good agreements are achieved. The bubble departure diameter at the orifice and the flow condensation length in the liquid channel are predicted by the model, and effects of various influencing parameters on bubble behaviors are analyzed. Prediction results indicate that the orifice diameter, the gas feeding rate, and the liquid velocity are the primary influence factors on the bubble departure diameter. The interfacial heat transfer as well as the bubble departure diameter has a direct impact on the bubble flow condensation length, which increases by 2.5 times over a system pressure range of 0.1 0.4 MPa, and decreases by 85% over a liquid subcooling range of 5 30 K. This work could be beneficial to the prediction of bubble formation and flow condensation processes and the design of cryogenic transfer pipes.

  12. A condensation experiment in the accumulated conditions of noncondensable gas in a vertical tube

    International Nuclear Information System (INIS)

    Lee, Kwon Yeong; Kim, Moo Hwan

    2005-01-01

    Full text of publication follows: It has been well known that the presence of noncondensable gases in vapors can greatly inhibit the condensation process. Many analytical and experimental studies were conducted to investigate the effect of noncondensable gases on steam condensation for both stagnant and forced-convective situations either over a plate or outside a horizontal tube. Recently, several researches have been performed for the condensation in the presence of noncondensable gases taken place inside the vertical tube in order to give the information to design the passive containment cooling system (PCCS) in Simplified Boiling Water Reactor (SBWR). Generally, the experimental results showed that the heat transfer coefficient depends on inlet noncondensable gas mass fraction, inlet saturated steam temperature related with system pressure and inlet mixture Reynolds number. This research was performed for the System-integrated Modular Advanced ReacTor-Pilot (SMART-P), in which the remaining heat is removed from the core passively by Passive Residual Heat Removal System (PRHRS) condenser in a period of serious accident. The PRHRS is separated from working fluid loop, and pressurized by a nitrogen gas during the normal operation of SMART-P. But when the PRHRS starts operating, the nitrogen gas acts as a noncondensable gas and affects the heat transfer characteristics of the PRHRS. The experimental conditions of this study were almost similar with those of previous researches except the noncondensable gas was accumulated and remained inside the vertical tube. In the previous researches, the noncondensable gas was flowing with constant flow rate. Because of the condensate inside condenser tube, the accumulation of noncondensable gas could be developed inside the vertical tube. At steady-state condition the local temperatures and system pressure were measured to obtain heat transfer characteristics. This study also gave the information about the distribution of the

  13. Evaluation of non-condensable gas effect during LBLOCA in an OPR1000 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Hun; Seul, Kwang-Won; Bang, Young-Seok; Lee, Jun Soo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    Gas accumulation in the nuclear power plant may cause diverse safety issues such as water hammer, pump cavitation and inadvertent valve actuation. The Nuclear Regulatory Commission (NRC) has published twenty Information Notices, two Generic Letters, and one NUREG report related to the issue of the gas accumulation. It has been considered that gas accumulation occurred since the beginning of commercial nuclear power plant operation and may occur in the currently operating plants. Gas accumulation in the Emergency Core Cooling System (ECCS) is the condition that did not consider in Accident Analysis of Final Safety Analysis Report or Technical Specification and may finally result in degradation or loss of the safety functions. In this paper, the effect of gas accumulation in the ECCS has been analyzed by modeling non-condensable gas injection during the operation of Safety Injection Tank (SIT) and Low Pressure Safety Injection (LPSI) under the LBLOCA condition. Gas accumulation in the ECCS has been dealt with one of significant safety issues in the operating nuclear power plants. In order to identify the effect of the non-condensable gas in Hanul unit 3 and 4, the sensitivity studies for gas quantity, location or injection time was conducted for high or low pressure condition. At high pressure condition, the injected gas induced the reduced SIT flow rate and the reduced period of SIT injection. The reflood PCT at 5 ft''3 condition was 1150 K which was 49K higher than that at no gas condition. At low pressure condition, the reduced flow rate and the increased reflood PCT were also identified. However, the PCT deviation due to different gas quantity was not large as much as that at high pressure condition. We concluded that it is necessary to evaluate the effect of the accumulated gas with the consideration of plant- specific conditions such as system pressure, accumulated location, gas quantity and injection time.

  14. Conversion of straight-run gas-condensate benzenes into high- octane gasolines based on modified ZSM-5 zeolites

    International Nuclear Information System (INIS)

    Erofeev, V; Reschetilowski, V; Khomajakov, I; Egorova, L; Volgina, T; Tatarkina, A

    2014-01-01

    This paper describes the conversion of straight-run benzene of gas condensate into high-octane gasoline based on zeolite catalyst ZSM-5, modified in binary system oxide- based Sn (III) and Bi (III). It was defined that the introduction of the binary system oxide-based Sn(III) and Bi (III) into the basic zeolite results in the 2-fold increase of its catalytic activity.High-octane gasoline converted from straight-run benzene is characterized by a low benzol content in comparison to the high-octane benzenes produced during the catalytic reforming

  15. High-efficiency condenser of steam from a steam-gas mixture

    Science.gov (United States)

    Milman, O. O.; Krylov, V. S.; Ptakhin, A. V.; Kondratev, A. V.; Yankov, G. G.

    2017-12-01

    The design of a module for a high-efficiency condenser of steam with a high content (up to 15%) of noncondensable gases (NCGs) with a nearly constant steam-gas mixture (SGM) velocity during the condensation of steam has been developed. This module provides the possibility to estimate the operational efficiency of six condenser zones during the motion of steam from the inlet to the SGM suction point. Some results of the experimental tests of the pilot high-efficiency condenser module are presented. The dependence of the average heat transfer coefficient k¯ on the volumetric NCG concentration v¯ has been derived. It is shown that the high-efficiency condenser module can provide a moderate decrease in k¯ from 4400-4600 to 2600-2800 W/(m2 K) at v¯ ≈ 0.5-9.0%. The heat transfer coefficient distribution over different module zones at a heat duty close to its nominal value has been obtained. From this distribution, it can be seen that the average heat transfer coefficient decreases to 2600 W/(m2 K) at an NCG concentration v¯ = 7.5%, but the first condenser sections ( 1- 3) retain high values of k¯ at a level of no lower than 3200 W/(m2 K), and the last sections operate less well, having k¯ at a level of 1700 W/(m2 K). The dependence of the average heat transfer coefficient on the water velocity in condenser tubes has been obtained at a nearly nominal duty such that the extrapolation of this dependence to the water velocity of 2 m/s may be expected to give k¯ = 5000 W/(m2 K) for relatively pure steam, but an increase in k¯ at v¯ = 8% will be smaller. The effect of the gas removal device characteristic on the operation of the high-efficiency condenser module is described. The design developed for the steam condenser of a gas-turbine plant with a power of 25 MW, a steam flow rate of 40.2 t/h, and a CO2 concentration of up to 12% with consideration for the results of performed studies is presented.

  16. Experimental investigation of condensation and mixing during venting of a steam / non-condensable gas mixture into a pressure suppression pool

    Energy Technology Data Exchange (ETDEWEB)

    De Walsche, C.; Cachard, F. de

    2000-07-01

    Experiments have been performed in the LINX facility to investigate condensation and mixing phenomena in pressure Suppression Pools (SPs), in the context of the European Simplified Boiling Water Reactor (ESBWR) study. As a contribution to the TEPSS project of the 4th European Framework Programme, eight medium-scale, separate-effect tests were carried out in which constant steam/air flow rates were injected below the surface of a two-metre diameter water pool, maintained at constant pressure, through a large downward vent. The vessel pressure was regulated, the pool temperature rising until equilibrium conditions with the incoming gas were reached. The SP temperature distribution was measured, as well as the inlet and outlet gas flow rates, and the overall condensation rate was estimated using mass and heat balances. The test matrix was based on steam mass floret and air mass fraction of the injected gas, the vent immersion depth, and the vessel pressure. Overall, the condensation was shown to be efficient for all tests performed, even for high non-condensable gas concentrations of the injected gas. Thermal stratification above the vent outlet was shown to be moderate. The tests performed allowed a better understanding to be gained of the mechanisms of condensation and mixing in the SP and Wetwell, and results were incorporated into an ORACLE database, to be used for further model development. (authors)

  17. An analysis of the thermodynamic efficiency for exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB)

    International Nuclear Information System (INIS)

    Lee, Chang-Eon; Yu, Byeonghun; Lee, Seungro

    2015-01-01

    This study presents fundamental research on the development of a new boiler that is expected to have a higher efficiency and lower emissions than existing boilers. The thermodynamic efficiency of exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB) was calculated using thermodynamic analysis and was compared with other boilers. The results show the possibility of obtaining a high efficiency when the temperature of the exhaust gas is controlled within 50–60 °C because water in the exhaust gas is condensed within this temperature range. In addition, the enthalpy emitted by the exhaust gas for the new boiler is smaller because the amount of condensed water is increased by the high dew-point temperature and the low exhaust gas temperature. Thus, the new boiler can obtain a higher efficiency than can older boilers. The efficiency of the EGR-CWR-WHR CB proposed in this study is 93.91%, which is 7.04% higher than that of existing CB that is currently used frequently. - Highlights: • The study presents the development of a new boiler expected to have a high efficiency. • Thermodynamic efficiency of EGR-CWR-WHR condensing boiler was calculated. • Efficiency of EGR-CWR-WHR CB is 93.91%, which is 7.04% higher than existing CB

  18. Gas dynamics, optics and chemistry of an aircraft condensable wake

    Energy Technology Data Exchange (ETDEWEB)

    Grinats, E.S.; Kashevarov, A.V.; Stasenko, A.L. [Central Aerohydrodynamic Inst., Zhukovsky (Russian Federation)

    1997-12-31

    Prediction of the properties of a jet-and-vortex wake from an individual airplane is of great interest as the first step to assessment of the possible global changes in the atmosphere due to the world civil aviation. Several mathematical models of the different regions of an aircraft wake and corresponding numerical results are presented. The axisymmetric exhaust jet was simulated on the base of the well-known k-{epsilon} model of turbulence. Jet chemistry was investigated on the base of kinetic scheme of the gas phase reactions of enriched by including chemisorption by water droplets of several species and by taking into account of the photochemical processes. In the 3D far wake model, the numerical results for distribution of species exhausted by the engines and entrapped by the velocity field of two parallel vortices are shown. (R.P.) 7 refs.

  19. Gas dynamics, optics and chemistry of an aircraft condensable wake

    Energy Technology Data Exchange (ETDEWEB)

    Grinats, E S; Kashevarov, A V; Stasenko, A L [Central Aerohydrodynamic Inst., Zhukovsky (Russian Federation)

    1998-12-31

    Prediction of the properties of a jet-and-vortex wake from an individual airplane is of great interest as the first step to assessment of the possible global changes in the atmosphere due to the world civil aviation. Several mathematical models of the different regions of an aircraft wake and corresponding numerical results are presented. The axisymmetric exhaust jet was simulated on the base of the well-known k-{epsilon} model of turbulence. Jet chemistry was investigated on the base of kinetic scheme of the gas phase reactions of enriched by including chemisorption by water droplets of several species and by taking into account of the photochemical processes. In the 3D far wake model, the numerical results for distribution of species exhausted by the engines and entrapped by the velocity field of two parallel vortices are shown. (R.P.) 7 refs.

  20. A case study to optimum selection of deliquification method for gas condensate well design: South Pars gas field

    Directory of Open Access Journals (Sweden)

    Ehsan Khamehchi

    2016-06-01

    Today, the most effective liquid-removal devices are pumping, the combination of liquid-diverter with gas lift and velocity string. Considering mentioned complexities, the most efficient method of liquid removal is different from one well to the others. This paper discusses a multi-criteria decision making (MCDM strategy for ranking these methods based on ELECTRE and TOPSIS techniques in a gas condensate reservoir. The most efficient model in this case, regarding its high efficiency and level of reliability is continuous gas lift. These procedures can be extended to other cases easily by changing the comparison matrix and user defined weights.

  1. Flue gas moisture capacity calculation at the outlet of the condensation heat recovery unit

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2017-01-01

    Full Text Available As a result, study equation has been obtained which determine the flue gas moisture capacity at the outlet of the condensation heat recovery unit with an error of less than 1%. It possible to at the temperature of the flue gas below the dew point and the known air-fuel ratio efficient. The equation can be used to calculate plants operating on products of gas combustion without Use of tables and programs for calculating the water-vapor saturation pressure.

  2. Terahertz Active Photonic Crystals for Condensed Gas Sensing

    Directory of Open Access Journals (Sweden)

    Karl Unterrainer

    2011-06-01

    Full Text Available The terahertz (THz spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection scheme. Here, we present an optical sensor based on active photonic crystals (PhCs, i.e., the pillars are fabricated directly from an active THz quantum-cascade laser medium. The individual pillars are pumped electrically leading to laser emission at cryogenic temperatures. There is no need to couple light into the resonant structure because the PhC itself is used as the light source. An injected gas changes the resonance condition of the PhC and thereby the laser emission frequency. We achieve an experimental frequency shift of 10−3 times the center lasing frequency. The minimum detectable refractive index change is 1.6 × 10−5 RIU.

  3. Production of Au clusters by plasma gas condensation and their incorporation in oxide matrixes by sputtering

    Science.gov (United States)

    Figueiredo, N. M.; Serra, R.; Manninen, N. K.; Cavaleiro, A.

    2018-05-01

    Gold clusters were produced by plasma gas condensation method and studied in great detail for the first time. The influence of argon flow, discharge power applied to the Au target and aggregation chamber length on the size distribution and deposition rate of Au clusters was evaluated. Au clusters with sizes between 5 and 65 nm were deposited with varying deposition rates and size dispersion curves. Nanocomposite Au-TiO2 and Au-Al2O3 coatings were then deposited by alternating sputtering. These coatings were hydrophobic and showed strong colorations due to the surface plasmon resonance effect. By simulating the optical properties of the nanocomposites it was possible to identify each individual contribution to the overall surface plasmon resonance signal. These coatings show great potential to be used as high performance localized surface plasmon resonance sensors or as robust self-cleaning decorative protective layers. The hybrid method used for depositing the nanocomposites offers several advantages over co-sputtering or thermal evaporation processes, since a broader range of particle sizes can be obtained (up to tens of nanometers) without the application of any thermal annealing treatments and the properties of clusters and matrix can be controlled separately.

  4. Decoupling damage mechanisms in acid-fractured gas/condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, R.C.; Walters, D.A. [Taurus Reservoir Solutions Ltd., Calgary, AB (Canada); Settari, A. [Calgary Univ., AB (Canada); Rahim, Z.; Ahmed, M.S. [Saudi Aramco, Dhahran (Saudi Arabia)

    2006-07-01

    The Khuff is a gas condensate field located 11,500 feet beneath the producing Ghawar oil field in Saudi Arabia. Wells are mainly acid fracture stimulated following drilling with excellent fracture conductivity and length properties. The wells experience a quick production loss however, after tie-in which eventually stabilizes after two to five months. In order to identify the source of productivity loss, such as near well liquid dropout, fracture conductivity loss, reservoir permeability loss due to increased effective stress, a study of a well in the Khuff field was conducted. The study reviewed basic geomechanical and reservoir properties and identified the mechanisms of production loss. The paper presented the methodology, data and preliminary analysis, relative permeability and results of the history matching. It was concluded that traditional production type curves in cases with changing skin may indicate that transient flow is occurring when boundary effects are felt. In addition, stress dependent fracture conductivity and reservoir permeability can be modeled with simpler pressure dependent functions for relatively low overall loss in reservoir pressure. 30 refs., 25 figs., 1 appendix.

  5. Hydrogen condensation products of Turkmenistan gas fields as motor fuel components

    Energy Technology Data Exchange (ETDEWEB)

    Kul-dzhaev, B.A.; Sergienko, S.R.; Tsibrova, E.G.

    1985-07-01

    Technical data are provided in tabular form on the composition of hydrocarbon condensation products obtained from various gas fields in Turkmenia, with an analysis of their usefulness as gasoline and diesel fuels. For example, high-paraffin condensates are characterized by low octane numbers (30-50) of the gasoline fraction (150-180/sup 0/C). However, lowering the temperature at the end of distillation to 120-130/sup 0/C increased the octane number to 73, one point higher than required by State Standards for automobile gasoline A-72. The cetane number of diesel fuels in general exceed the State Standards, especially in the case of fractions 150/sup 0/C and 180/sup 0/C of the high-paraffin condensates obtained from the Shatlyk site. Summarized data are presented on the suitability of the products obtained from the different site for the different types of fuels. 4 references.

  6. Effect of disorder on condensation in the lattice gas model on a random graph.

    Science.gov (United States)

    Handford, Thomas P; Dear, Alexander; Pérez-Reche, Francisco J; Taraskin, Sergei N

    2014-07-01

    The lattice gas model of condensation in a heterogeneous pore system, represented by a random graph of cells, is studied using an exact analytical solution. A binary mixture of pore cells with different coordination numbers is shown to exhibit two phase transitions as a function of chemical potential in a certain temperature range. Heterogeneity in interaction strengths is demonstrated to reduce the critical temperature and, for large-enough degreeS of disorder, divides the cells into ones which are either on average occupied or unoccupied. Despite treating the pore space loops in a simplified manner, the random-graph model provides a good description of condensation in porous structures containing loops. This is illustrated by considering capillary condensation in a structural model of mesoporous silica SBA-15.

  7. Condensing species from flue gas in Puertollano gasification power plant, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Oriol Font; Xavier Querol; Felica Plana; Pilar Coca; Silvia Burgos; Francisco Garcia Pena [Institute of Earth Sciences ' Jaume Almera' , Barcelona (Spain). Environmental Geology

    2006-10-15

    The occurrence and distribution of trace elements (Pb, Zn, As, Ge, Cd, Tl, Bi, Sn, and also Ni, Fe and V) in condensates arising from coal gasification was investigated through the study of samples physically deposited on the gas cooling system from the Puertollano IGCC 335 MW power plant. These highly metal enriched samples are suitable for a comprehensive evaluation of the mode of occurrence of these elements in IGCC fly ash. Pb, Zn, Ge, and Fe sulfides, Ni-Fe arsenides, Ge and V oxides as well as traces of K chloride and Pb, Zn and Fe sulfates were determined as the major bearing phases for these elements. Three condensation zones were differentiated as function of the condensation temperatures and metal content: 1. Pb zone (520-750{sup o}C), characterized by the dominance of galena (70-90% of the main crystalline phases), and by the condensation of pyrrhotite and nickeline. 2. Ge-Zn-Pb zone (520-470{sup o}C), with sphalerite and wurzite being the dominant crystalline phases (over 40%), and Ge compounds, GeS{sub 2} and GeO{sub 2}, reaching 30% of the bulk condensates. 3. Zn zone (300-400{sup o}C), characterized by the dominance of Zn sulfides (over 85% of the main crystalline phases). The results obtained from these highly metalliferous condensates show similar forms of occurrence for the studied elements to those obtained in the bulk Puertollano IGCC fly ash (by using XAFS spectroscopy), where the contents of these elements are much lower. Furthermore, the sequential condensation of sulfides during coal gasification is similar to that from volcanic fumaroles, and may thus promote a better understanding of volcanic deposits. 23 refs., 7 figs., 5 tabs.

  8. Synthesis of Fe Nanoparticles Functionalized with Oleic Acid Synthesized by Inert Gas Condensation

    Directory of Open Access Journals (Sweden)

    L. G. Silva

    2014-01-01

    Full Text Available In this work, we study the synthesis of monodispersed Fe nanoparticles (Fe-NPs in situ functionalized with oleic acid. The nanoparticles were self-assembled by inert gas condensation (IGC technique by using magnetron-sputtering process. Structural characterization of Fe-NPs was performed by transmission electron microscopy (TEM. Particle size control was carried out through the following parameters: (i condensation zone length, (ii magnetron power, and (iii gas flow (Ar and He. Typically the nanoparticles generated by IGC showed diameters which ranged from ~0.7 to 20 nm. Mass spectroscopy of Fe-NPs in the deposition system allowed the study of in situ nanoparticle formation, through a quadrupole mass filter (QMF that one can use together with a mass filter. When the deposition system works without quadrupole mass filter, the particle diameter distribution is around +/−20%. When the quadrupole is in line, then the distribution can be reduced to around +/−2%.

  9. Condensed Fraction of an Atomic Bose Gas Induced by Critical Correlations

    International Nuclear Information System (INIS)

    Smith, Robert P.; Tammuz, Naaman; Campbell, Robert L. D.; Hadzibabic, Zoran; Holzmann, Markus

    2011-01-01

    We study the condensed fraction of a harmonically trapped atomic Bose gas at the critical point predicted by mean-field theory. The nonzero condensed fraction f 0 is induced by critical correlations which increase the transition temperature T c above T c MF . Unlike the T c shift in a trapped gas, f 0 is sensitive only to the critical behavior in the quasiuniform part of the cloud near the trap center. To leading order in the interaction parameter a/λ 0 , where a is the s-wave scattering length and λ 0 the thermal wavelength, we expect a universal scaling f 0 ∝(a/λ 0 ) 4 . We experimentally verify this scaling using a Feshbach resonance to tune a/λ 0 . Further, using the local density approximation, we compare our measurements with the universal result obtained from Monte Carlo simulations for a uniform system, and find excellent quantitative agreement.

  10. Critical behavior of the ideal-gas Bose-Einstein condensation in the Apollonian network.

    Science.gov (United States)

    de Oliveira, I N; dos Santos, T B; de Moura, F A B F; Lyra, M L; Serva, M

    2013-08-01

    We show that the ideal Boson gas displays a finite-temperature Bose-Einstein condensation transition in the complex Apollonian network exhibiting scale-free, small-world, and hierarchical properties. The single-particle tight-binding Hamiltonian with properly rescaled hopping amplitudes has a fractal-like energy spectrum. The energy spectrum is analytically demonstrated to be generated by a nonlinear mapping transformation. A finite-size scaling analysis over several orders of magnitudes of network sizes is shown to provide precise estimates for the exponents characterizing the condensed fraction, correlation size, and specific heat. The critical exponents, as well as the power-law behavior of the density of states at the bottom of the band, are similar to those of the ideal Boson gas in lattices with spectral dimension d(s)=2ln(3)/ln(9/5)~/=3.74.

  11. The smoke ion source: A device for the generation of cluster ions via inert gas condensation

    International Nuclear Information System (INIS)

    McHugh, K.M.; Sarkas, H.W.; Eaton, J.G.; Bowen, K.H.; Westgate, C.R.

    1989-01-01

    We report the development of an ion source for generating intense, continuous beams of both positive and negative cluster ions. This device is the result of the marriage of the inert gas condensation method with techniques for injecting electrons directly into expanding jets. In the preliminary studies described here, we have observed cluster ion size distributions ranging from n=1-400 for Pb n + and Pb n - and from n=12-5700 for Li n - . (orig.)

  12. Integration of gas phase condensed nanoparticles in YBa_2Cu_3O_7_-_δ multilayers

    International Nuclear Information System (INIS)

    Sparing, Maria

    2012-01-01

    The control and targeted variation of nanoparticles properties is a central challenge in research on particle induced defects in YBa_2Cu_3O_7_-_δ. Using a combined Sputter-PLD system with inert gas condensation particle size and density integrated into the YBCO multilayers were varied independently. The cooling process influences the electrical properties of the multilayers. The effect of HfO2 and FePt nanoparticles on the structural and electrical properties was studied.

  13. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  14. Effect of capillary condensation on gas transport properties in porous media

    Science.gov (United States)

    Yoshimoto, Yuta; Hori, Takuma; Kinefuchi, Ikuya; Takagi, Shu

    2017-10-01

    We investigate the effect of capillary condensation on gas diffusivity in porous media composed of randomly packed spheres with moderate wettability. To simulate capillary phenomena at the pore scale while retaining complex pore networks of the porous media, we employ density functional theory (DFT) for coarse-grained lattice gas models. The lattice DFT simulations reveal that capillary condensations preferentially occur at confined pores surrounded by solid walls, leading to the occlusion of narrow pores. Consequently, the characteristic lengths of the partially wet structures are larger than those of the corresponding dry structures with the same porosities. Subsequent gas diffusion simulations exploiting the mean-square displacement method indicate that while the effective diffusion coefficients significantly decrease in the presence of partially condensed liquids, they are larger than those in the dry structures with the same porosities. Moreover, we find that the ratio of the porosity to the tortuosity factor, which is a crucial parameter that determines an effective diffusion coefficient, can be reasonably related to the porosity even for the partially wet porous media.

  15. Gas Condensates onto a LHC Type Cryogenic Vacuum System Subjected to Electron Cloud

    CERN Multimedia

    Baglin, V

    2004-01-01

    In the Large Hadron Collider (LHC), the gas desorbed via photon stimulated molecular desorption or electron stimulated molecular desorption will be physisorbed onto the beam screen held between 5 and 20 K. Studies of the effects of the electron cloud onto a LHC type cryogenic vacuum chamber have been done with the cold bore experiment (COLDEX) installed in the CERN Super Proton Synchrotron (SPS). Experiments performed with gas condensates such as H2, H2O, CO and CO2 are described. Implications for the LHC design and operation are discussed.

  16. A Preliminary Study of Transverse Curvature Effects on Condensation Heat Transfer on Vertical Tube in the Presence of Non-condensable Gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeon Gun; Kim, Sin [Jeju National Univ., Jeju (Korea, Republic of); Jerng, Dong Wook [Chung Ang Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study, the effect of the transverse curvature on the condensation HTC on a vertical tube in the presence of air is preliminarily investigated by using the analysis of boundary layer for free convective heat transfer. The results indicate that the heat transfer performance can be enhanced as the outer diameter of condenser tubes is small. To confirm this curvature effect, an experimental program to obtain the condensation heat transfer data for various values of tube diameter is indispensable. Currently, by a joint research project of Jeju National University and Chung-Ang University, a condensation test facility is being designed and constructed to acquire the condensation HTC data as shown in Fig. 3. From a series of experiment on a single vertical tube, the effects of not only the tube diameter but the inclination, the existence of fins and the local velocity of a bulk mixture by natural circulation will be evaluated precisely. An empirical correlation for the condensation heat transfer of a steam-air mixture will also be developed for design optimization and performance evaluation of the PCCS. The Passive Containment Cooling System (PCCS) provides passive means to remove the decay heat and protect the integrity of the containment during severe accidents. Korea, in which all the NPPs employ the concrete containment, may adopt a PCCS using internal condensers. In the event of the loss-of-coolant accident (LOCA), steam released from the reactor coolant system is mixed with air inside the containment and condensed on the outer surface of inclined condenser tubes. It is noted that, among previous theoretical and empirical models for condensation on outer wall in the presence of non-condensable gas, no one took into account the effect of a tube diameter. Though the condensation heat transfer coefficient may vary with transverse curvature of condenser tubes, such a curvature effect has not been reported so far. In this study, a preliminary analysis is conducted

  17. A Preliminary Study of Transverse Curvature Effects on Condensation Heat Transfer on Vertical Tube in the Presence of Non-condensable Gas

    International Nuclear Information System (INIS)

    Lee, Yeon Gun; Kim, Sin; Jerng, Dong Wook

    2013-01-01

    In this study, the effect of the transverse curvature on the condensation HTC on a vertical tube in the presence of air is preliminarily investigated by using the analysis of boundary layer for free convective heat transfer. The results indicate that the heat transfer performance can be enhanced as the outer diameter of condenser tubes is small. To confirm this curvature effect, an experimental program to obtain the condensation heat transfer data for various values of tube diameter is indispensable. Currently, by a joint research project of Jeju National University and Chung-Ang University, a condensation test facility is being designed and constructed to acquire the condensation HTC data as shown in Fig. 3. From a series of experiment on a single vertical tube, the effects of not only the tube diameter but the inclination, the existence of fins and the local velocity of a bulk mixture by natural circulation will be evaluated precisely. An empirical correlation for the condensation heat transfer of a steam-air mixture will also be developed for design optimization and performance evaluation of the PCCS. The Passive Containment Cooling System (PCCS) provides passive means to remove the decay heat and protect the integrity of the containment during severe accidents. Korea, in which all the NPPs employ the concrete containment, may adopt a PCCS using internal condensers. In the event of the loss-of-coolant accident (LOCA), steam released from the reactor coolant system is mixed with air inside the containment and condensed on the outer surface of inclined condenser tubes. It is noted that, among previous theoretical and empirical models for condensation on outer wall in the presence of non-condensable gas, no one took into account the effect of a tube diameter. Though the condensation heat transfer coefficient may vary with transverse curvature of condenser tubes, such a curvature effect has not been reported so far. In this study, a preliminary analysis is conducted

  18. MARS-KS Code Assessment for Condensation Heat Transfer in Horizontal Tube with the Presence of Non-Condensable Gas using Purdue Experiment

    International Nuclear Information System (INIS)

    Jeon, Seong Su; Lee, Byung Chul; Park, Ju Yeop; Seul, Kwang Won

    2011-01-01

    In South Korea, advanced power reactor plus (APR+), as a Korean specific reactor, is currently under development for the export strategy. In order to raise competitiveness of the APR+ in the world market, it is necessary to develop the original technology for the improved technology, economics, and safety features. For this purpose, a passive auxiliary feedwater system (PAFS) was adopted as an improved safety design concept of APR+: and then there have been many efforts to develop the PAFS. According to PAFS design concept, PAFS can completely replace the auxiliary feedwater system. When the design basis accident, in which feedwater is unavailable, occurs, the PAFS can remove the residual heat in the core and then prevent the core damage. In the PAFS with the horizontal type heat exchanger, two-phase natural circulation, condensation heat transfer in tube, boiling heat transfer in pool, natural convection in pool, etc. are considered as very important thermalhydraulic phenomena (see Fig. 1). Compared with the vertical heat exchanger from these phenomena, the major difference of the horizontal heat exchanger is the condensation heat transfer phenomena in the tube side. There have been many efforts to understand the condensation heat transfer with in the presence of NC gas in tube but most researches focused on the condensation heat transfer in vertical tube. Therefore the details of the condensation heat transfer in the presence of NC gas in horizontal condenser tubes are not well understood. In order to develop the safety evaluation system for APR+ PAFS, it is required to evaluate the capability and applicability of the MARS-KS code for modeling the condensation heat transfer in the horizontal tube with NC gas because many heat transfer correlations in MARS-KS are known to have much uncertainty. In particular, there is no reliable model for the condensation phenomena in horizontal tube with NC gas. In order to assess the MARS-KS code results and identify the

  19. Study of flue gas condensing for biofuel fired heat and power plants; Studie av roekgaskondensering foer biobraensleeldade kraftvaermeanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik; Gustafsson, J O; Nystroem, Johan; Johansson, Kent

    2000-11-01

    This report considers questions regarding flue gas condensing plants connected to bio-fuelled heat and power plants. The report consists of two parts, one where nine existing plants are described regarding technical issues and regarding the experience from the different plants. Part two is a theoretical study where heat balance calculations are made to show the technical and economical performance in different plant configurations and operating conditions. Initially the different parts in the flue gas condensing plant are described. Tube, plate and scrubber condensers are described briefly. The different types of humidifiers are also described, rotor, cross-stream plate heat exchanger and scrubber. Nine flue gas-condensing plants have been visited. The plants where chosen considering it should be bio-fuel fired plant primarily heat and power plants. Furthermore we tried to get a good dissemination considering plant configuration, supplier, geographical position, operating situation and plant size. The description of the different plants focuses on the flue gas condenser and the belonging components. The fuel, flue gas and condensate composition is described as well as which materials are used in the different parts of the plant. The experience from operating the plants and the reasons of why they decided to chose the actual condenser supplier are reported.

  20. CO and PAH emissions from engines operating on producer gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2005-01-01

    High carbon monoxide (CO) emission from gas engines fueled by producer gas is a concerning problem in the struggle to make biomass gasification for heat and power production a success. The standing regulations concerning CO emissions from gas engine based power plants in most EU countries are so ...

  1. Method and apparatus for producing synthesis gas

    Science.gov (United States)

    Hemmings, John William; Bonnell, Leo; Robinson, Earl T.

    2010-03-03

    A method and apparatus for reacting a hydrocarbon containing feed stream by steam methane reforming reactions to form a synthesis gas. The hydrocarbon containing feed is reacted within a reactor having stages in which the final stage from which a synthesis gas is discharged incorporates expensive high temperature materials such as oxide dispersed strengthened metals while upstream stages operate at a lower temperature allowing the use of more conventional high temperature alloys. Each of the reactor stages incorporate reactor elements having one or more separation zones to separate oxygen from an oxygen containing feed to support combustion of a fuel within adjacent combustion zones, thereby to generate heat to support the endothermic steam methane reforming reactions.

  2. Hydrocarbons in sediments adjacent to a gas and condensate development and production platform in northwestern Australia

    International Nuclear Information System (INIS)

    Fischer, S.J.; Alexander, R.; Kagi, R.I.

    1994-01-01

    In northwestern Australia during the period of 1983 to 1991, 23 wells were drilled from a gas/condensate production platform to the producing formation approximately 3000 m below the sea bed. Low toxicity water-based drilling muds formulated with hydrogenated kerosenes were used, with the resultant formation cuttings being legally discharged into the ocean. To study the fate of hydrocarbons associated with the cuttings, sea-floor samples were collected along two perpendicular transects from the platform. The first extended 10 km in the prevailing direction of the current and the other to 1.2 km. Subsequently, samples have been collected from one of these sites on two occasions, first one year and secondly two years after the initial collection. Samples collected from directly under the platform cuttings chute contained the highest hydrocarbon concentrations, determined gravimetrically, of 75000 mg/kg, decreasing to approximately 40 mg/kg within 800 m in the direction of the prevailing current. Concentrations in the more remote samples were determined by GC and decreased gradually to be barely discernible above background at less than 0.01 mg/kg at 10 km from the platform. This suite of samples provided an excellent opportunity to study the progress of hydrocarbon biodegradation as it occurs in the marine environment. Analysis by GC-FID, GC-MS and GC-FTIR revealed a number of features. For example, the extent of biodegradation and weathering with increasing distance from the platform, and the half life for biodegradation of total hydrocarbons appears to be approximately one year. The hydrocarbon components of the sediments are mainly from the drilling mud with minor contributions from the formation fluids

  3. How is Order 636 affecting the gas producing industry?

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This paper is an interview with an energy representative for a major gas-producing company regarding the impact of the Federal Energy Regulatory Commission (FERC) Order 636. This legislation was suppose to streamline the interstate transportation of natural gas unhindered by local distribution company (LCD) interference. Many times these LCD's owned a portion of the necessary pipeline route used to transport natural gas, and as a result, had a priority on purchasing pipeline gas whenever they needed. This could, in turn, result in a depletion of contract gas which was in-route to a specified contract market. Such interferences caused problems with the contract markets, but could boost the net profits to natural gas companies who had excess gas that could be sold in-route to other markets. This paper addresses both the pro's and cons' of this new regulation on both the pipeline and gas producing companies

  4. Producer gas and its use for the manufacture of lime

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A K; Kumar, S

    1976-04-01

    An analysis of available data indicates that coal-based producer gas is superior to coal or wood as a fuel for lime kilns and much more readily available than oil or natural gas. With producer gas, chemical-grade lime is obtained, and the kiln capacity is increased, so that a smaller unit can be used or more lime obtained. With a mixture of coal and wood as the fuel, the lime produced is contaminated with ash. The added cost of the gas-producer unit can be paid out in one year owing to the greater demand for and the consequent higher prices obtainable for the chemical-grade product. In addition, the flue gases from the kiln can be used in place of steam to heat the gas producer, but experimental studies are needed to determine the magnitude of the savings in fuel consumption. 15 references.

  5. Water management technologies used by Marcellus Shale Gas Producers.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  6. Effect of carrier gas pressure on condensation in a supersonic nozzle

    International Nuclear Information System (INIS)

    Wyslouzil, B.E.; Wilemski, G.; Beals, M.G.; Frish, M.B.

    1994-01-01

    Supersonic nozzle experiments were performed with a fixed water or ethanol vapor pressure and varying amounts of nitrogen to test the hypothesis that carrier gas pressure affects the onset of condensation. Such an effect might occur if nonisothermal nucleation were important under conditions of excess carrier gas in the atmospheric pressure range, as has been suggested by Ford and Clement [J. Phys. A 22, 4007 (1989)]. Although a small increase was observed in the condensation onset temperature as the stagnation pressure was reduced from 3 to 0.5 atm, these changes cannot be attributed to any nonisothermal effects. The pulsed nozzle experiments also exhibited two interesting anomalies: (1) the density profiles for the water and ethanol mixtures were shifted in opposite directions from the dry N 2 profile; (2) a long transient period was required before the nozzle showed good pulse-to-pulse repeatability for condensible vapor mixtures. To theoretically simulate the observed onset behavior, calculations of nucleation and droplet growth in the nozzle were performed that took into account two principal effects of varying the carrier gas pressure: (1) the change in nozzle shape due to boundary layer effects and (2) the variation in the heat capacity of the flowing gas. Energy transfer limitations were neglected in calculating the nucleation rates. The trend of the calculated results matched that of the experimental results very well. Thus, heat capacity and boundary layer effects are sufficient to explain the experimental onset behavior without invoking energy transfer limited nucleation. The conclusions about the rate of nucleation are consistent with those obtained recently using an expansion cloud chamber, but are at odds with results from thermal diffusion cloud chamber measurements

  7. Financial instruments help producers hedge gas deals in volatile market

    International Nuclear Information System (INIS)

    Lawnin, J.N.; Kupiec, S.L.

    1993-01-01

    The Natural Gas Policy Act (NGPA) of 1978 and more recently the U.S. Federal Energy Regulatory Commission's Order 636 have changed gas marketing from a totally regulated industry to one that responds to free-market forces. The stable but controlled market in which producers once sold gas has become highly competitive and more efficient. Consequently, prices have become more volatile; they respond more quickly than they did before to changes in supply of and demand for natural gas. Prior to deregulation of the natural gas industry, producers had fewer marketing options than they do today. Under a typical gas sales contract, producers sold gas to the nearest pipeline at regulated prices, which remained relatively stable along the interstate distribution chain. The system, however, failed to generate adequate supply of gas. In an effort to realign supply and demand, Congress initiated the deregulation of natural gas with NGPA, which phased out most wellhead price controls. A series of FERC actions culminating in Order 636 extended the process. Now, independent producers can sell gas directly to end users. Under Order 636, interstate pipelines no longer offer merchant services to gas customers. The paper discusses the change in risk profiles, price protection, futures and options, hedged exposure, setting price floors, off-exchange contracts, risk considerations, types of risks, business controls, back office controls, and credit monitoring

  8. [Distortion and vertical fracture of the root: effect produced by condenser design].

    Science.gov (United States)

    Dang, D A; Walton, R E

    1990-01-01

    The incidence of vertical root fractures and the amount of root distortion created during lateral condensation of gutta-percha with either D11 spreaders or B-finger pluggers were evaluated in vitro. Fifty-five extracted human, single-rooted teeth were instrumented using the step-back flare technique. Ten teeth served as positive controls (obturation to the point of fracture) and five teeth as negative controls (prepared but not obtured). Strain gauges were attached to the root surfaces. In the experimental group, 20 teeth were obturated using a D11 spreader and 20 with a B-finger plugger. Recordings were made of root distortion (expansion) created during obturation. Then, after sectioning the teeth, root surfaces of obturated samples were examined for fractures under the scanning electron microscope. Only the more tapered spreader, the D11, produces vertical root fractures, although very few in number. Also, the D11 spreader caused greater root distortion than did the B-finger plugger.

  9. Advances in SAW gas sensors based on the condensate-adsorption effect.

    Science.gov (United States)

    Liu, Jiuling; Wang, Wen; Li, Shunzhou; Liu, Minghua; He, Shitang

    2011-01-01

    A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.

  10. Half-space problem of unsteady evaporation and condensation of polyatomic gas

    Science.gov (United States)

    Inaba, Masashi; Yano, Takeru

    2016-11-01

    On the basis of polyatomic version of the ellipsoidal-statistical Bhatnager-Gross-Krook (ES-BGK) model, we consider time-periodic gas flows in a semi-infinite expanse of an initially equilibrium polyatomic gas (methanol) bounded by its planar condensed phase. The kinetic boundary condition at the vapor-liquid interface is assumed to be the complete condensation condition with periodically time-varying macroscopic variables (temperature, saturated vapor density and velocity of the interface), and the boundary condition at infinity is the local equilibrium distribution function. The time scale of variation of macroscopic variables is assumed to be much larger than the mean free time of gas molecules, and the variations of those from a reference state are assumed to be sufficiently small. We numerically investigate thus formulated time-dependent half-space problem for the polyatomic version of linearized ES-BGK model equation with the finite difference method for the case of the Strouhal number Sh=0.01 and 0.1. It is shown that the amplitude of the mass flux at the interface is the maximum, and the phase difference in time between the mass flux and v∞ - vℓ (v∞: vapor velocity at infinity, vℓ: velocity of the vapor-liquid interface) is the minimum absolute value, when the phase difference in time between the liquid surface temperature (the saturated vapor density) and the velocity of interface is close to zero.

  11. Vortices in atomic Bose-Einstein condensates in the large-gas-parameter region

    International Nuclear Information System (INIS)

    Nilsen, J.K.; Mur-Petit, J.; Guilleumas, M.; Polls, A.; Hjorth-Jensen, M.

    2005-01-01

    In this work we compare the results of the Gross-Pitaevskii and modified Gross-Pitaevskii equations with ab initio variational Monte Carlo calculations for Bose-Einstein condensates of atoms in axially symmetric traps. We examine both the ground state and excited states having a vortex line along the z axis at high values of the gas parameter and demonstrate an excellent agreement between the modified Gross-Pitaevskii and ab initio Monte Carlo methods, both for the ground and vortex states

  12. Assessment of natural hydrocarbon bioremediation at two gas condensate production sites

    International Nuclear Information System (INIS)

    Barker, G.W.; Raterman, K.T.; Fisher, J.B.; Corgan, J.M.; Trent, G.L.; Brown, D.R.; Sublette, K.L.

    1995-01-01

    Condensate liquids are present in soil and groundwater at two gas production sites in the Denver-Julesburg Basin operated by Amoco. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores strongly suggest that intrinsic bioremediation is occurring at these sites by multiple pathways, including aerobic oxidation, Fe(III) reduction, and sulfate reduction

  13. Two-Step Condensation of the Ideal Bose Gas in Highly Anisotropic Traps

    International Nuclear Information System (INIS)

    van Druten, N.J.; Ketterle, W.

    1997-01-01

    The ideal Bose gas in a highly anisotropic harmonic potential is studied. It is found that Bose-Einstein condensation occurs in two distinct steps as the temperature is lowered. In the first step the specific heat shows a sharp feature, but the system still occupies many one-dimensional quantum states. In the second step, at a significantly lower temperature, the ground state becomes macroscopically occupied. It should be possible to verify these predictions using present-day atom traps. The two-step behavior can occur in a rather general class of anisotropic traps, including the box potential. copyright 1997 The American Physical Society

  14. Investigation of Continuous Gas Engine CHP Operation on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Jensen, Torben Kvist

    2005-01-01

    More than 2000 hours of gas engine operation with producer gas from biomass as fuel has been conducted on the gasification CHP demonstration and research plant, named “Viking” at the Technical University of Denmark. The gas engine is an integrated part of the entire gasification plant. The excess...... operates with varying excess of air due to variation in gas composition and thus stoichiometry, and a second where the excess of air in the exhaust gas is fixed and the flow rate of produced gas from the gasifier is varying. The interaction between the gas engine and the gasification system has been...... investigated. The engine and the plant are equipped with continuously data acquisition that monitors the operation including the composition of the producer gas and the flow. Producer gas properties and contaminations have been investigated. No detectable tar or particle content was observed...

  15. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  16. Characterization of condensed phase nitric acid particles formed in the gas phase

    Institute of Scientific and Technical Information of China (English)

    Long Jia; Yongfu Xu

    2011-01-01

    The formation of nitric acid hydrates has been observed in a chamber during the dark reaction of NO2 with O3 in the presence of air.The size of condensed phase nitric acid was measured to be 40-100 nm and 20-65 nm at relative humidity (RH) ≤ 5% and RH = 67% under our experimental conditions, respectively.The nitric acid particles were collected on the glass fiber membrane and their chemical compositions were analyzed by infrared spectrum.The main components of nitric acid hydrates in particles are HNO3·3H2O and NO3-·xH2O (x≥ 4) at low RH, whereas at high RH HNO3·H2O, HNO3·2H2O, HNO3·3H2O and NO3-·xH2O (x≥ 4) all exist in the condensed phase.At high RH HNO3·xH2O (x ≤ 3) collected on the glass fiber membrane is greatly increased, while NO3-·xH2O (x ≥4) decreased, compared with low RH.To the best of our knowledge, this is the first time to report that condensed phase nitric acid can be generated in the gas phase at room temperature.

  17. Modelling of steam condensation in the primary flow channel of a gas-heated steam generator

    International Nuclear Information System (INIS)

    Kawamura, H.; Meister, G.

    1982-10-01

    A new simulation code has been developed for the analysis of steam ingress accidents in high temperatures reactors which evaluates the heat transfer in a steam generator headed by a mixture of helium and water steam. Special emphasis is laid on the analysis of steam condensation in the primary circuit of the steam generator. The code takes wall and bulk condensation into account. A new method is proposed to describe the entrainment of water droplets in the primary gas flow. Some typical results are given. Steam condensation in the primary channel may have a significant effect on temperature distributions. The effect on the heat transferred by the steam generator, however, is found to be not so prominent as might be expected. The reason is discussed. A simplified code will also be described, which gives results with reasonable accuracy within much shorter execution times. This code may be used as a program module in a program simulating the total primary circuit of a high temperature reactor. (orig.) [de

  18. Effect of non-condensable gas on startup of a loop thermosyphon

    International Nuclear Information System (INIS)

    He, Jiang; Lin, Guiping; Bai, Lizhan; Miao, Jianyin; Zhang, Hongxing; Wang, Lu

    2013-01-01

    Non-condensable gas (NCG) generated inside two-phase heat transfer devices can adversely affect the thermal performance and limit the lifetime of such devices. In this work, experimental investigation of the effect of NCG on the startup of an ammonia-stainless steel loop thermosyphon was conducted. In the experiment, nitrogen was injected into the loop thermosyphon as NCG. The effect of NCG inventory on the startup behavior was investigated by adjusting the injected amount of nitrogen. The experimental results reveal that NCG prolongs the startup time and increases the startup liquid superheat and temperature overshoot; the more NCG exists in the loop thermosyphon, the higher the liquid superheat and temperature overshoot. When NCG is present in the system, boiling usually occurs in the evaporator before startup, but it does not mean the system will start up instantly, which differs from the conditions without NCG. Under all the conditions, increasing the heat load can effectively shorten the startup time but leads to a large temperature overshoot; forced convection cooling of the condenser has almost no effect on shortening the startup time especially for large NCG inventory situations, but it can effectively limit the temperature overshoot. For large NCG inventory situations, the loop thermosyphon can start up at a small heat load (5 W) or even without a heat load when the condenser is cooled by forced convection of ethanol. No failed start-ups occurred during any of the tests. (authors)

  19. Gas scavenging of insoluble vapors: Condensation of methyl salicylate vapor onto evaporating drops of water

    Science.gov (United States)

    Seaver, Mark; Peele, J. R.; Rubel, Glenn O.

    We have observed the evaporation of acoustically levitated water drops at 0 and 32% relative humidity in a moving gas stream which is nearly saturated with methyl salicylate vapor. The initial evaporation rate is characteristic of a pure water drop and gradually slows until the evaporation rate becomes that of pure methyl salicylate. The quantity of condensed methyl salicylate exceeds its Henry's law solubility in water by factors of more than 30-50. This apparent violation of Henry's law agrees with the concentration enhancements in the liquid phase found by glotfelty et al. (1987, Nature235, 602-605) during their field measurements of organophorus pesticides in fog water. Under our conditions, visual evidence demonstrates the presence of two liquid phases, thus invalidating the use of Henry's law. A continuum evaporation-condensation model for an immiscible two-component system which accounts for evaporative self-cooling of the drop correctly predicts the amount of methyl salicylate condensed onto the water drops.

  20. System and method for producing substitute natural gas from coal

    Science.gov (United States)

    Hobbs, Raymond [Avondale, AZ

    2012-08-07

    The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

  1. One billion cubic meters of gas produced in Kikinda area

    Energy Technology Data Exchange (ETDEWEB)

    Vicicevic, M; Duric, N

    1969-10-01

    The Kikinda gas reservoir has just passed a milestone in producing one billion cubic meters of natural gas. The reservoir was discovered in 1962, and its present production amounts to 26 million cu m. One of the biggest problems was formation of hydrates, which has successfully been solved by using methanol. Four tables show production statistics by years and productive formations.

  2. Mixed convection heat transfer between a steam / non-condensable gas mixture and an inclined finned tube bundle

    Energy Technology Data Exchange (ETDEWEB)

    Cachard, F. de; Lomperski, S.; Monauni, G.R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. for Thermal-Hydraulics

    1999-07-01

    An experimental and analytical program was performed at PSI to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned-tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. The finned-tubes condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less than 10 % standard deviation between experimental and predicted results. (authors)

  3. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    International Nuclear Information System (INIS)

    Dantus, Marcos

    2008-01-01

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 10 16 W/cm 2 . In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  4. Recovery enhancement at the later stage of supercritical condensate gas reservoir development via CO2 injection: A case study on Lian 4 fault block in the Fushan sag, Beibuwan Basin

    Directory of Open Access Journals (Sweden)

    Wenyan Feng

    2016-11-01

    Full Text Available Lian 4 fault block is located in the northwest of Fushan sag, Beibuwan Basin. It is a high-saturated condensate gas reservoir with rich condensate oil held by three faults. In order to seek an enhanced condensate oil recovery technology that is suitable for this condensate gas reservoir at its later development stage, it is necessary to analyze its reserve producing degree and remaining development potential after depletion production, depending on the supercritical fluid phase behavior and depletion production performance characteristics. The supercritical fluid theories and multiple reservoir engineering dynamic analysis methods were adopted comprehensively, such as dynamic reserves, production decline, liquid-carrying capacity of a production well, and remaining development potential analysis. It is shown that, at its early development stage, the condensate in Lian 4 fault block presented the features of supercritical fluid, and the reservoir pressure was lower than the dew point pressure, so retrograde condensate loss was significant. Owing to the retrograde condensate effect and the fast release of elastic energy, the reserve producing degree of depletion production is low in Lian 4 fault block, and 80% of condensate oil still remains in the reservoir. So, the remaining development potential is great. The supercritical condensate in Lian 4 fault block is of high density. Based on the optimization design by numerical simulation of compositional model, it is proposed to inject CO2 at the top and build up pressure by alternating production and injection, so that the secondary gas cap is formed while the gravity-stable miscible displacement is realized. In this way, the recovery factor of condensate reservoirs can be improved by means of the secondary development technology.

  5. Mixed convection heat transfer between a steam/non-condensable gas mixture and an inclined finned tube bundle

    Energy Technology Data Exchange (ETDEWEB)

    De Cachard, F.; Lompersky, S.; Monauni, G.R. [Paul Scherrer Institute, Villigen (Switzerland). Thermal Hydraulic Lab.

    1999-07-01

    An experimental and analytical program was performed at PSI (Paul Scherrer Institute) to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. On the gas, heat transfer correlations are used, and the condensation rate is calculated using the heat/mass transfer analogy. A combination of various available correlations for forced convection in staggered finned tube bundles is used, together with a correction accounting for superimposed natural convection. For the condensate heat transfer resistance, the beatty and Katz model for gravity driven liquid films on the tubes is used. The fine efficiency is accounted for using classical iterative calculations. Evaporative heat transfer inside the tubes is predicted using the Chen correlation. The finned tube condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less then 10% standard deviation between experimental and predicted results.

  6. Investigation of Bose Condensation in Ideal Bose Gas Trapped under Generic Power Law Potential in d Dimension

    Science.gov (United States)

    Mehedi Faruk, Mir; Sazzad Hossain, Md.; Muktadir Rahman, Md.

    2016-02-01

    The changes in characteristics of Bose condensation of ideal Bose gas due to an external generic power law potential U=\\sumi=1dci\\vert xi/ai\\vertni are studied carefully. Detailed calculation of Kim et al. (J. Phys. Condens. Matter 11 (1999) 10269) yielded the hierarchy of condensation transitions with changing fractional dimensionality. In this manuscript, some theorems regarding specific heat at constant volume CV are presented. Careful examination of these theorems reveal the existence of hidden hierarchy of the condensation transition in trapped systems as well.

  7. Flue gas condensation in oxyfuel power plants. Heat- and mass transfer measurements and experimental validation of an efficient condensation concept; Rauchgaskondensation in Oxyfuel-Kraftwerken. Waerme- und Stoffuebergangsmessungen sowie experimentelle Validierung eines effizienten Kondensationskonzepts

    Energy Technology Data Exchange (ETDEWEB)

    Raindl, Markus

    2010-12-06

    Condensation of a steam-inert gas mixture in an Oxyfuel condenser differs significantly from condensation of pure steam: condenser pressure and rest gas content increase dramatically, heat- and mass transfer coefficients are lower and oversaturation of the steam-inert gas mixture yields to fog formation. In the context of this thesis, therefore, at first the optimal ranges of working parameters for Oxyfuel processes calculated. In the following some heat flux measurements were carried out on a horizontal, crossflow pipe to validate various heat- and mass transfer theories. Building on these results a new, efficient condensation concept was developed to reduce fog formation. The final results of the measurements with a laboratory model show great performance regarding fog reduction and condensation efficiency. (orig.)

  8. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation

    KAUST Repository

    Du, Naiying; Dal-Cin, Mauro M D; Pinnau, Ingo; Nicalek, Andrzej; Robertson, Gilles P.; Guiver, Michael D.

    2011-01-01

    Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O 2/N 2 and CO 2/N 2 gas pairs, as well as for condensable gases, such as CO 2/CH 4, propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO 2 plasticization up to 20 atm pressure of pure CO 2 and CO 2/CH 4 mixtures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation

    KAUST Repository

    Du, Naiying

    2011-03-11

    Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O 2/N 2 and CO 2/N 2 gas pairs, as well as for condensable gases, such as CO 2/CH 4, propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO 2 plasticization up to 20 atm pressure of pure CO 2 and CO 2/CH 4 mixtures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Coupling Effect Research of Ash Deposition and Condensation in Low Temperature Flue Gas

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-01-01

    Full Text Available Ash deposition is a key factor that deteriorates the heat transfer performance and leads to higher energy consumption of low pressure economizer working in low temperature flue gas. In order to study the ash deposition of heat exchange tubes in low temperature flue gas, two experiments are carried out with different types of heat exchange tubes in different flue gas environments. In this paper, Nusselt Number Nu and fouling factor ε are calculated to describe the heat transfer characteristics so as to study the ash deposition condition. The scanning electron microscope (SEM is used for the analysis of ash samples obtained from the outer wall of heat exchange tubes. The dynamic process of ash deposition is studied under different temperatures of outer wall. The results showed that ash deposition of heat exchanger will achieve a stable state in constant flue gas environment. According to the condition of condensation of acid vapor and water vapor, the process of ash deposition can be distinguished as mere ash deposition, acid-ash coupling deposition, and acid-water-ash coupling deposition.

  11. Marketing advisors and their role for junior gas producers

    International Nuclear Information System (INIS)

    Maffitt, D.W.

    1997-01-01

    The role of marketing advisors in the new deregulated natural gas industry was discussed. These producer-oriented marketing consultants are specialists in providing affordable marketing services to junior gas producers on an 'as-needed' basis. The most important service provided by marketing advisors is helping the client identify management problems, analyze such problems and recommend solutions. Accordingly, the marketing advisor should be independent and objective, with no conflict of interests. He/she should be prepared to invest a lot of time and effort in providing the junior producer with a customized diagnosis of its marketing problems. 5 refs., 3 figs

  12. Marketing advisors and their role for junior gas producers

    Energy Technology Data Exchange (ETDEWEB)

    Maffitt, D.W. [Phoenix Gas Marketing Consultants Inc., Calgary, AB (Canada)

    1997-05-01

    The role of marketing advisors in the new deregulated natural gas industry was discussed. These producer-oriented marketing consultants are specialists in providing affordable marketing services to junior gas producers on an `as-needed` basis. The most important service provided by marketing advisors is helping the client identify management problems, analyze such problems and recommend solutions. Accordingly, the marketing advisor should be independent and objective, with no conflict of interests. He/she should be prepared to invest a lot of time and effort in providing the junior producer with a customized diagnosis of its marketing problems. 5 refs., 3 figs.

  13. Colloidal gas-liquid condensation of polystyrene latex particles with intermediate kappa a values (5 to 160, a > kappa(-1)).

    Science.gov (United States)

    Ishikawa, Masamichi; Kitano, Ryota

    2010-02-16

    Polystyrene latex particles showed gas-liquid condensation under the conditions of large particle radius (a > kappa(-1)) and intermediate kappa a, where kappa is the Debye-Hückel parameter and a is the particle radius. The particles were dissolved in deionized water containing ethanol from 0 to 77 vol %, settled to the bottom of the glass plate within 1 h, and then laterally moved toward the center of a cell over a 20 h period in reaching a state of equilibrium condensation. All of the suspensions that were 1 and 3 microm in diameter and 0.01-0.20 vol % in concentration realized similar gas-liquid condensation with clear gas-liquid boundaries. In 50 vol % ethanol solvent, additional ethanol was added to enhance the sedimentation force so as to restrict the particles in a monoparticle layer thickness. The coexistence of gas-liquid-solid (crystalline solid) was microscopically recognized from the periphery to the center of the condensates. A phase diagram of the gas-liquid condensation was created as a function of KCl concentration at a particle diameter of 3 microm, 0.10 vol % concentration, and 50:50 water/ethanol solvent at room temperature. The miscibility gap was observed in the concentration range from 1 to 250 microM. There was an upper limit of salt concentration where the phase separation disappeared, showing nearly critical behavior of macroscopic density fluctuation from 250 microM to 1 mM. These results add new experimental evidence to the existence of colloidal gas-liquid condensation and specify conditions of like-charge attraction between particles.

  14. Properties of atomic pairs produced in the collision of Bose-Einstein condensates

    Science.gov (United States)

    Ziń, Paweł; Wasak, Tomasz

    2018-04-01

    During a collision of Bose-Einstein condensates correlated pairs of atoms are emitted. The scattered massive particles, in analogy to photon pairs in quantum optics, might be used in the violation of Bell's inequalities, demonstration of Einstein-Podolsky-Rosen correlations, or sub-shot-noise atomic interferometry. Usually, a theoretical description of the collision relies either on stochastic numerical methods or on analytical treatments involving various approximations. Here, we investigate elastic scattering of atoms from colliding elongated Bose-Einstein condensates within the Bogoliubov method, carefully controlling performed approximations at every stage of the analysis. We derive expressions for the one- and two-particle correlation functions. The obtained formulas, which relate the correlation functions to the condensate wave function, are convenient for numerical calculations. We employ the variational approach for condensate wave functions to obtain analytical expressions for the correlation functions, whose properties we analyze in detail. We also present a useful semiclassical model of the process and compare its results with the quantum one. The results are relevant for recent experiments with excited helium atoms, as well as for planned experiments aimed at investigating the nonclassicality of the system.

  15. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  16. Effect of non-condensable gas on steady-state operation of a loop thermosyphon

    International Nuclear Information System (INIS)

    He, Jiang; Lin, Guiping; Bai, Lizhan; Miao, Jianyin; Zhang, Hongxing; Wang, Lu

    2014-01-01

    Non-condensable gas (NCG) generated inside two-phase heat transfer devices can adversely affect the thermal performance and limit the lifetime of such devices. In this work, extensive experimental investigation of the effect of NCG on the steady-state operation of an ammonia-stainless steel loop thermosyphon was conducted. In the experiments, nitrogen was injected into the loop thermosyphon as NCG, and the thermal performance of the loop thermosyphon was tested at different NCG inventories, heat loads applied to the evaporator and condenser cooling conditions, i.e. natural air cooling or circulating ethanol cooling. Experimental results reveal that NCG elevates the steady-state operating temperature of the evaporator, especially when the loop thermosyphon is operating in the low temperature range; meanwhile, the more NCG exists in the loop thermosyphon, the higher the operating temperature of the evaporator, and the lower the reservoir temperature. In addition, the existence of NCG results in the decrease of the overall thermal conductance of the loop thermosyphon, and the overall thermal conductance under the ethanol cooling condition may be even lower than that under the air cooling condition when the heat load is smaller than a certain value. Finally, the experimental results are theoretically analysed and explained. (authors)

  17. Lithium recovery from shale gas produced water using solvent extraction

    International Nuclear Information System (INIS)

    Jang, Eunyoung; Jang, Yunjai; Chung, Eunhyea

    2017-01-01

    Shale gas produced water is hypersaline wastewater generated after hydraulic fracturing. Since the produced water is a mixture of shale formation water and fracturing fluid, it contains various organic and inorganic components, including lithium, a useful resource for such industries as automobile and electronics. The produced water in the Marcellus shale area contains about 95 mg/L lithium on average. This study suggests a two-stage solvent extraction technique for lithium recovery from shale gas produced water, and determines the extraction mechanism of ions in each stage. All experiments were conducted using synthetic shale gas produced water. In the first-stage, which was designed for the removal of divalent cations, more than 94.4% of Ca"2"+, Mg"2"+, Sr"2"+, and Ba"2"+ ions were removed by using 1.0 M di-(2-ethylhexyl) phosphoric acid (D2EHPA) as an extractant. In the second-stage, for lithium recovery, we could obtain a lithium extraction efficiency of 41.2% by using 1.5 M D2EHPA and 0.3 M tributyl phosphate (TBP). Lithium loss in the first-stage was 25.1%, and therefore, the total amount of lithium recovered at the end of the two-step extraction procedure was 30.8%. Through this study, lithium, one of the useful mineral resources, could be selectively recovered from the shale gas produced water and it would also reduce the wastewater treatment cost during the development of shale gas. - Highlights: • Lithium was extracted from shale gas produced water using an organic solvent. • Two-stage solvent extraction technique was applied. • Divalent cations were removed in the first stage by D2EHPA. • Lithium was selectively recovered in the second stage by using TBP with D2EHPA.

  18. Gas chromatographic determination of residual hydrazine and morpholine in boiler feed water and steam condensates

    International Nuclear Information System (INIS)

    Vatsala, S.; Bansal, V.; Tuli, D.K.; Rai, M.M.; Jain, S.K.; Srivastava, S.P.; Bhatnagar, A.K.

    1994-01-01

    Hydrazine, an oxygen scavenger in boiler water, was derivatised to the corresponding acetone azine and determined at the ng ml -1 level by gas chromatography. Morpholine, a corrosion inhibitor used in steam boilers, was estimated either directly (if >2.0 μg ml -1 ) or by quantitative preconcentration (0.1 ng-2.0 μg ml -1 ). To obtain symmetrical peaks for these amines, the column packing was coated with KOH. Use of a nitrogen-specific detector improved accuracy of estimation of hydrazine and morpholine, giving a RSD of 1.9-3.6%. Chromatographic analysis of these amines in boiler feed water and steam condensate samples collected from boilers servicing a pertroleum refinery is described. Environmental safety regulations calls for monitoring of hydrazine and the methods developed can easily be adapted for this purpose. (orig.)

  19. Non-condensible gas fraction predictions using wet and dry bulb temperature measurements

    International Nuclear Information System (INIS)

    Bowman, J.; Griffith, P.

    1983-03-01

    A technique is presented whereby non-condensible gas mass fractions in a closed system can be determined using wet bulb and dry bulb temperature and system pressure measurements. This technique would have application in situations where sampling techniques could not be used. Using an energy balance about the wet bulb wick, and expression is obtained which relates the vapor concentration difference between the wet bulb wick and the free stream to the wet and dry bulb temperature difference and a heat to mass transfer coefficient ratio. This coefficient ratio was examined for forced and natural convection flows. This analysis was verified with forced and natural convection tests over the range of pressure and temperature from 50 to 557 psig and 415 to 576 0 F. All the data could best be fit by the natural convection analysis. This is useful when no information about the flow field is known

  20. Aspects of hyperspherical adiabaticity in an atomic-gas Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Kushibe, Daisuke; Mutou, Masaki; Morishita, Toru; Watanabe, Shinichi; Matsuzawa, Michio

    2004-01-01

    Excitation of an atomic-gas Bose-Einstein condensate (BEC) in the zeroth-order ground-state channel is studied with the hyperspherical adiabatic method of Bohn et al. [Bohn et al., Phys. Rev. A 58, 584 (1998)] suitably generalized to accommodate the anisotropic trapping potential. The method exploits the system's size as an adiabatic parameter so that the explicit size dependence is immediately conducive to the virial theorem. The oscillation frequencies associated with the monopole (breathing) and quadrupole modes thus emerge naturally and converge to the well-known Thomas-Fermi limits. Analysis of the single-particle density and the projected excitation wave function shows that the excitation in the single hyperspherical ground-state channel merely represents a progressive increase in occupancy of the first excited single-particle state. The work paves the way for applying the adiabatic picture to other BEC phenomena

  1. Materials in flue gas condensation plants. Stage 2; Materialval vid roekgaskondensering. Etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus; Bergman, Gunnar; Baeck, Gustaf; Jacobsson, Karin; Pahverk, Helen; Roemhild, Stefanie

    2004-12-01

    The corrosion resistance of some metallic and polymeric materials has been investigated in the flue gas scrubbers/condensers in the power plants at Igelsta using waste wood and Brista using bio fuel in the boilers. The materials were exposed inside the inlet part of the condenser and inside the flue gas duct after the condenser. In Brista, the polymeric materials were also exposed to the hot flue gases inside the duct before the condenser. The temperature of the gases before and after the condenser in Brista was 140 deg C and 50-60 deg C, respectively. In Igelsta, the flue gas temperature after the condenser was 45 deg C. The metallic coupons in the condenser were located in the spray-zone, both in Igelsta and Brista. That was true also for the polymeric material in Brista. In both plants, the wash-solution had a pH of 7-8, a temperature of 30 deg C, and a low content of chloride. The metallic materials investigated were stainless steels of the following grades: 17-12-2.5, 2205, SAF2507 and 254SMO. The major part of the polymeric materials investigated consisted of FRP laminates, which were made with different combinations of resin type of surface veil and type of chopped strand mat (CSM). Laminates with a new type of vinyl ester resin, Atlac E-Nova FW 1045, a new type of a stress-corrosion-resistant glass-fibre called Arcotex, and two types of surface reinforcement of carbon fibre have been compared to laminates of common type. Laminates with a special reinforcement of the type 3-D fabric were also included as well as five polypropylene materials (PP) with varying degree of stabilisation, two glass-flake materials applied on carbon steel and a butyl rubber. The corrosion resistance of the materials was evaluated after seven a months exposure at the different positions in the plants. The stainless steel materials were evaluated with respect to uniform corrosion, pitting and crevice attack. The corrosion resistance of the polymeric materials was evaluated with

  2. Numerical Method based on SIMPLE Algorithm for a Two-Phase Flow with Non-condensable Gas

    International Nuclear Information System (INIS)

    Kim, Jong Tae

    2009-08-01

    In this study, a numerical method based on SIMPLE algorithm for a two-phase flow with non-condensable gas has been developed in order to simulate thermal hydraulics in a containment of a nuclear power plant. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields include gas, drops, and continuous liquid. The gas field can contains vapor and non-condensable gases such as air and hydrogen. In order to resolve mixing phenomena of gas species, gas transport equations for each species base on the gas mass fractions are solved with gas phase governing equations such as mass, momentum and energy equations. Methods to evaluate the properties of the gas species were implemented in the code. They are constant or polynomial function based a user input and a property library from Chemkin and JANAF table for gas specific heat. Properties for the gas mixture which are dependent on mole fractions of the gas species were evaluated by a mix rule

  3. Use of ORELA to produce neutrons for scattering studies on condensed matter

    International Nuclear Information System (INIS)

    Peelle, R.W.; Lewis, T.A.; Mihalczo, J.T.; Mook, H.A.; Moon, R.M.

    1975-09-01

    The Oak Ridge Electron Linear Accelerator (ORELA) is evaluated as a source of neutrons for condensed matter research. Two options are assessed: (1) use of the present target arrangement with minor modifications; and (2) the construction of a new target and experiment facility designed for condensed matter research and equipped with a subcritical fission booster. The expected source strength and time behavior are discussed, including the fundamentals of moderator design. The effect on the programs presently using the linac are considered. It is concluded that a special-purpose neutron source facility using pulsed electrons from ORELA and containing a subcritical booster could be built to make a cost-effective neutron scattering facility of great power and utility. (auth)

  4. New European context for gas producers/operators

    International Nuclear Information System (INIS)

    Deyirmendjian, J.

    2008-01-01

    The development of the European Union towards more integration would enter a new phase if the draft Third Directive regarding the natural gas industry and the deregulation of gas markets would be validated as it stands. The stakes for gas producing/operating companies are very high: they must position themselves either as networks and installations companies or as production and trading companies - meaning regulation and recurring revenues or the opportunities and risks of production and trade. Changes such these, added to the globalisation of gas flows linked to the development of liquefied natural gas (LNG), require more investments than in the past. These additional investments and this technological progress nevertheless give hope that this transformation will not noticeably weaken the security of gas supplies within the European Union (EU) despite the greater volatility of the markets, which are increasingly dominated by the strategies of financial operators. The author reviews the history of the development of the gas distribution networks in Europe and discusses details of the new draft directive aiming at more competition on a market that has been dominated so far by vertical structures. Similarities and differences to the deregulation of the European electricity market are discussed. The divergent attitudes of the EU Member States and the negotiation strategy of the European Commission are discussed. Merges of gas and electricity utilities are on the agenda. The author then reviews the current situation of natural gas consumption and supplies and the transportation and distribution facilities. Political factors influencing the security of supply are discussed. Underground gas storage facilities are crucial in this context. Several projects for new main gas pipelines are discussed. Diversification of supply sources is considered as of strategic relevance. The article is richly illustrated and includes several maps and diagrams.

  5. Preparation of development plan for the gas-condensate pool with the use of a high speed computer (IBM-1620)

    Energy Technology Data Exchange (ETDEWEB)

    Shirkovsky, A I; Kumar, S

    1968-01-01

    The computation of all the technical, technological, and economic figures for a gas supply system by using the High Speed Computer IBM-1620 is presented. The gas supply system consists of a gas-condensate pool (source) and main gas pipeline from the pool to the consumer. All necessary analytical equations for correlating geological, technological, and economic variables have been used. Results of calculations and recommendations for the most profitable variant are given. Effects of geological, technological, and technical factors upon the economic figures are also shown.

  6. Agricultural residues as fuel for producer gas generation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, C

    1981-01-01

    This paper reports on results from a series of tests with four different types of agricultural residues as fuel for producer gas generation. The fuels are coconut shells, coconut husks, pelletized wheat-straw and pressed sugar cane. The tests were made with a 73 Hp (50 kW) agricultural tractor diesel engine equipped with a standard gasifier developed for wood chips in Sweden, and run on a testbed at the Swedish National Machinery Testing Institute. The engine was operated on approximately 10% diesel oil and 90% producer gas. The gas composition, its calorific value and temperature, the pressure drop and the engine power were monitored. Detailed elementary analysis of the fuel and gas were carried out. Observations were also made regarding the important aspects of bridging and slagging in the gasifier. The tests confirmed that coconut shells make an excellent fuel for producer gas generation. After 8 hours of running no problems with slags and bridging were experienced. Coconut husks showed no bridging but some slag formation. The gasifier operated satisfactorily for this fuel. Pelletized wheat straw and pressed sugar cane appeared unsuitable as fuel in the unmodified test gasifier (Type F 300) due to slag formation. It is important to note, however, that the present test results are not optimal for any of the fuels used, the gasifier being designed for wood-chips and not for the test-fuels used. Tests using approximately modified gasifiers are planned for the future.

  7. Inert-Gas Condensed Co-W Nanoclusters: Formation, Structure and Magnetic Properties

    Science.gov (United States)

    Golkar-Fard, Farhad Reza

    Rare-earth permanent magnets are used extensively in numerous technical applications, e.g. wind turbines, audio speakers, and hybrid/electric vehicles. The demand and production of rare-earth permanent magnets in the world has in the past decades increased significantly. However, the decrease in export of rare-earth elements from China in recent time has led to a renewed interest in developing rare-earth free permanent magnets. Elements such as Fe and Co have potential, due to their high magnetization, to be used as hosts in rare-earth free permanent magnets but a major challenge is to increase their magnetocrystalline anisotropy constant, K1, which largely drives the coercivity. Theoretical calculations indicate that dissolving the 5d transition metal W in Fe or Co increases the magnetocrystalline anisotropy. The challenge, though, is in creating a solid solution in hcp Co or bcc Fe, which under equilibrium conditions have negligible solubility. In this dissertation, the formation, structure, and magnetic properties of sub-10 nm Co-W clusters with W content ranging from 4 to 24 atomic percent were studied. Co-W alloy clusters with extended solubility of W in hcp Co were produced by inert gas condensation. The different processing conditions such as the cooling scheme and sputtering power were found to control the structural state of the as-deposited Co-W clusters. For clusters formed in the water-cooled formation chamber, the mean size and the fraction crystalline clusters increased with increasing power, while the fraction of crystalline clusters formed in the liquid nitrogen-cooled formation chamber was not as affected by the sputtering power. For the low W content clusters, the structural characterization revealed clusters predominantly single crystalline hcp Co(W) structure, a significant extension of W solubility when compared to the equilibrium solubility, but fcc Co(W) and Co3W structures were observed in very small and large clusters, respectively. At high

  8. Tar Removal from Biomass Producer Gas by Using Biochar

    DEFF Research Database (Denmark)

    Ravenni, Giulia; Henriksen, Ulrik Birk; Ahrenfeldt, Jesper

    2017-01-01

    The biomass-derived char (biochar) produced in the gasifier as a residue, is a potential solution for removing tars from producer gas. This work investigates the interaction between tar compounds and biochar. Residual biochar from a TwoStage gasifier was tested as bed material in a laboratory setup....... Phenol and naphthalene were chosen as model tars, and entrained in a nitrogen flow. The gaseous stream was sampled before and after the biochar bed to evaluate the extent of conversion. The biochar bed (30g) was tested at 250°C, 500°C and 600°C, with for 3 consecutive hours. The compounds concentration...... in the gas phase was quantified by stable isotope dilution analysis, using Gas Chromatography-Mass Spectrometry (GC-MS). Results showed a significant effect of biochar on the removal of phenol, at all temperatures. Naphthalene was removed less efficiently at higher temperature, and this trend was even more...

  9. OPTIMAL SYSNTHESIS PROCESSES OF LOW-TEMPERATURE CONDENSATION ASSOCIATED OIL GAS PLANT REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    O. Ostapenko

    2015-10-01

    Full Text Available Design of modern high-efficient systems is a key priority for the Energy Sector of Ukraine. The cooling technological streams of gas and oil refineries, including air coolers, water cooling and refrigeration systems for specific refrigerants are the objectives of the present study. Improvement of the refrigeration unit with refrigerant separation into fractions is mandatory in order to increase cooling capacity, lowering the boiling point of coolant and increasing the coefficient of target hydrocarbons extraction from the associated gas flow. In this paper it is shown that cooling temperature plays significant role in low-temperature condensation process. Two operation modes for refrigeration unit were proposed: permanent, in which the concentration of the refrigerant mixture does not change and dynamic, in which the concentration of refrigerant mixtures depends on the ambient temperature. Based on the analysis of exergy losses the optimal concentration of refrigerant mixtures propane/ethane for both modes of operation of the refrigeration unit has been determined. On the basis of the conducted pinch-analysis the modification of refrigeration unit with refrigerant separation into fractions was developed. Additional recuperative heat exchangers for utilization heat were added to the scheme. Several important measures to increase the mass flow rate of refrigerant through the second section of the refrigeration centrifugal compressor from 22.5 to 25 kg/s without violating the agreed operational mode of the compressor sections were implemented.

  10. Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer

    International Nuclear Information System (INIS)

    Gieg, L.M.; McInerney; Tanner, R.S.; Harris, S.H. Jr.; Sublette, K.L.; Suflita, J.M.; Kolhatkar, R.V.

    1999-01-01

    A study was designed to determine if the intrinsic bioremediation of gas condensate hydrocarbons represented an important fate process in a shallow aquifer underlying a natural gas production site. For over 4 yr, changes in the groundwater, sediment, and vadose zone chemistry in the contaminated portion of the aquifer were interpreted relative to a background zone. Changes included decreased dissolved oxygen and sulfate levels and increased alkalinity, Fe(II), and methane concentrations in the contaminated groundwater, suggesting that aerobic heterotrophic respiration depleted oxygen reserves leaving anaerobic conditions in the hydrocarbon-impacted subsurface. Dissolved hydrogen levels in the contaminated groundwater indicated that sulfate reduction and methanogenesis were predominant biological processes, corroborating the geochemical findings. Furthermore, 10--1000-fold higher numbers of sulfate reducers and methanogens were enumerated in the contaminated sediment relative to background. Putative metabolites were also detected in the contaminated groundwater, including methylbenzylsuccinic acid, a signature intermediate of anaerobic xylene decay. Laboratory incubations showed that benzene, toluene, ethylbenzene, and each of the xylene isomers were biodegraded under sulfate-reducing conditions as was toluene under methanogenic conditions. These results coupled with a decrease in hydrocarbon concentrations in contaminated sediment confirm that intrinsic bioremediation contributes to the attenuation of hydrocarbons in this aquifer

  11. Organic Pollutants in Shale Gas Flowback and Produced Waters

    NARCIS (Netherlands)

    Butkovskyi, Andrii; Bruning, Harry; Kools, Stefan A.E.; Rijnaarts, Huub H.M.; Wezel, van Annemarie P.

    2017-01-01

    Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses

  12. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  13. Origin of salinity in produced waters from the Palm Valley gas field, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Andrew, Anita S.; Whitford, David J.; Berry, Martin D.; Barclay, Stuart A.; Giblin, Angela M.

    2005-01-01

    The chemical composition and evolution of produced waters associated with gas production in the Palm Valley gas field, Northern Territory, has important implications for issues such as gas reserve calculations, reservoir management and saline water disposal. The occurrence of saline formation water in the Palm Valley field has been the subject of considerable debate. There were no occurrences of mobile water early in the development of the field and only after gas production had reduced the reservoir pressure, was saline formation water produced. Initially this was in small quantities but has increased dramatically with time, particularly after the initiation of compression in November 1996. The produced waters range from highly saline (up to 300,000 mg/L TDS), with unusual enrichments in Ca, Ba and Sr, to low salinity fluids that may represent condensate waters. The Sr isotopic compositions of the waters ( 87 Sr/ 86 Sr = 0.7041-0.7172) are also variable but do not correlate closely with major and trace element abundances. Although the extreme salinity suggests possible involvement of evaporite deposits lower in the stratigraphic sequence, the Sr isotopic composition of the high salinity waters suggests a more complex evolutionary history. The formation waters are chemically and isotopically heterogeneous and are not well mixed. The high salinity brines have Sr isotopic compositions and other geochemical characteristics more consistent with long-term residence within the reservoir rocks than with present-day derivation from a more distal pool of brines associated with evaporites. If the high salinity brines entered the reservoir during the Devonian uplift and were displaced by the reservoir gas into a stagnant pool, which has remained near the reservoir for the last 300-400 Ma, then the size of the brine pool is limited. At a minimum, it might be equivalent to the volume displaced by the reservoired gas

  14. Process and device for accelerating condensation of the steam produced during an accident from the pressure vessel of a water cooled nuclear reactor

    International Nuclear Information System (INIS)

    Schnitker, W.

    1980-01-01

    In case of an accident, the steam from the PWR is taken away via lances under the water surface of the condensation area. In order to accelerate condensation, water is added via pipes projecting sideways into the lances. The kinetic energy of the steam carries the water over and produces a fog. (DG) [de

  15. Process and device for accelerating condensation of the steam produced during an accident from the pressure vessel of a water cooled nuclear reactor

    International Nuclear Information System (INIS)

    Schnitker, W.

    1981-01-01

    In case of an accident, the steam from the PWR is taken away via lances under the water surface of the condensation area. In order to accelerate condensation, water is added via pipes projecting sideways into the lances. The kinetic energy of the steam carries the water over and produces a fog. (orig./PW)

  16. A novel method for producing multiple ionization of noble gas

    International Nuclear Information System (INIS)

    Wang Li; Li Haiyang; Dai Dongxu; Bai Jiling; Lu Richang

    1997-01-01

    We introduce a novel method for producing multiple ionization of He, Ne, Ar, Kr and Xe. A nanosecond pulsed electron beam with large number density, which could be energy-controlled, was produced by incidence a focused 308 nm laser beam onto a stainless steel grid. On Time-of-Flight Mass Spectrometer, using this electron beam, we obtained multiple ionization of noble gas He, Ne, Ar and Xe. Time of fight mass spectra of these ions were given out. These ions were supposed to be produced by step by step ionization of the gas atoms by electron beam impact. This method may be used as a ideal soft ionizing point ion source in Time of Flight Mass Spectrometer

  17. The Effect of Process Parameters on the Synthesis of Ti and TiO2 Nanoparticles Producted by Electromagnetic Levitational Gas Condensation

    Directory of Open Access Journals (Sweden)

    Maryam Moazeni

    2012-10-01

    Full Text Available The nanoparticles of Ti and TiO2 have attracted extensive research interest because of their diverse applications in, for instance, catalysis, energy conversion, pigment and cosmetic manufacturing and biomedical engineering. Through this project, a one-step bulk synthesis method of electromagnetic levitational gas condensation (ELGC was utilized for the synthesis of monodispersed and crystalline Ti and TiO2 nanoparticles. Within the process, the Ti vapours ascending from the high temperature levitated droplet were condensed by an argon gas stream under atmospheric pressure. The TiO2 nanoparticles were produced by simultaneous injection of argon and oxygen into the reactor. The effects of flow rate of the condensing and oxidizing gases on the size and the size distribution of the nanoparticles were investigated. The particles were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and image analysis. The process parameters for the synthesis of the crystalline Ti and TiO2 nanoparticles were determined.

  18. An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, S.Z.; Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    Previous experiments have been carried out by Vierow, Ogg, Kageyama and Siddique for condensation from steam/gas mixtures in vertical tubes. In each case the data scatter relative to the correlation was large and there was not close agreement among the three investigations. A new apparatus has been designed and built using the lessons learned from the earlier studies. Using the new apparatus, an extensive new data base has been obtained for pure steam, steam-air mixtures and steam-helium mixtures. Three different correlations, one implementing the degradation method initially proposed by Vierow and Schrock, a second diffusion layer theory initially proposed by Peterson, and third mass transfer conductance model are presented in this paper. The correlation using the simple degradation factor method has been shown, with some modification, to give satisfactory engineering accuracy when applied to the new data. However, this method is based on very simplified arguments that do not fully represent the complex physical phenomena involved. Better representation of the data has been found possible using modifications of the more complex and phenomenologically based method which treats the heat transfer conductance of the liquid film in series with the conductance on the vapor-gas side with the latter comprised of mass transfer and sensible heat transfer conductance acting in parallel. The mechanistic models, based on the modified diffusion layer theory or classical mass transfer theory for mass transfer conductance with transpiration successfully correlate the data for the heat transfer of vapor-gas side. Combined with the heat transfer of liquid film model proposed by Blangetti, the overall heat transfer coefficients predicted by the correlations from mechanistic models are in close agreement with experimental values.

  19. Evaluation of the condensation potential of hydrocarbon fluids in the national gas pipeline system; establishing of adequate operational schemes

    International Nuclear Information System (INIS)

    Pineda Gomez, Cesar Augusto; Arenas Mantilla, Oscar Armando; Santos Santos, Nicolas

    2007-01-01

    For transporting industry of natural gas by pipeline systems, it's vital to guarantee the integrity of their lines, in order to decrease operational costs and prevent accidents that may damaging against people's safety, the environment or the infrastructure itself. in this paper it's presented the principal compounds from o technical study about principal net and its distribution branches to municipalities of the National System Transport of Natural Gas pointed by the Colombian Natural Gas Company - ECOGAS, (specifically the Cusiana - Porvenir - La Belleza, La Belleza - Cogua, La Belleza - Vasconia, Vasconia - Neiva and Vasconia - Cali gas lines, (see Figure 1). The principal objective is evaluate the possible condensation of hydrocarbons fluids inside gas lines, due to compositional characteristics of the gas, the different topographical conditions along the gas line route and the actual and future operational conditions to be implemented in the system. The evaluation performed over this gas streams, generates transcendental information in the creation of safe operational limits that minimizing the existence of obstacle problems and damages over pipeline systems and process equipment, due to the presence of liquid hydrocarbons inside these flow lines. This article has been prepared in four sections in order to guarantee easy access to each one of the steps involved in the study. Section one presents the compositional and thermodynamic analysis of feeding gas streams; in section two, its presented the required information for modeling gas lines with definition of the gas pipeline numerical simulation model in stable state; section three presents the sensitivity analysis for gas variation upon loading gas composition at the inlet point of the system, variation of the operational conditions (flow, pressure and gas temperature) and environment temperatures for the different inlet points (branches) with verification of compliance of the Unique Transport Regulation

  20. Common ground : bitumen and gas producers come together to find gas-over-bitumen solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ross, E.

    2005-08-01

    The gas-over-bitumen issue has meant that hundreds of natural gas wells remain closed while regulatory hearings and research activities continue. The Alberta Energy and Utilities Board should soon reach a final decision on the status of gas wells considered to be a threat to thermal extraction of underlying oil sands. This article discussed collaborative efforts by oil and gas companies to resolve these issues, including the use of fluid injection technology, low pressure Steam-Assisted Gravity Drainage (SAGD) and artificial lift. The objective of the Gas Reinjection and Production Experiment (GRIPE) is to reinject gas to displace natural gas being produced. The pilot project, conducted by Paramount Resources Ltd., consists of 2 injector wells, 4 producers and 12 observation wells that measure gas pressure in the reservoir. The project also includes a 2 stage compressor modified to handle flue gas. According to reservoir simulations, Paramount should be able to recover between 50 to 60 per cent of the remaining gas in place. Results from the pilot suggest that the technique could result in more than half the currently shut-in pools being re-opened. It was suggested that gas-by-gas displacement may result in higher recovery rates because there is usually more remaining gas in place. It was noted that EnCana Corporation has also been repressurizing a depleted natural gas pool by injecting compressed air rather than flue gas. Various other projects were reviewed, including the use of electric submersible pumps, low pressure SAGD and new SAGD well pair configurations. It was concluded that the artificial lift and low pressure SAGD technical sub-committee have now filed 10 applications for funding under the Alberta Energy Department's Innovative Energy Technology Program.

  1. Gas Discharge Produced by Strong Microwaves of Nanosecond Duration

    International Nuclear Information System (INIS)

    Vikharev, A.L.

    2000-01-01

    The results of the investigation of nanosecond microwave discharge are reviewed. Nanosecond microwave discharge is a new branch of gas discharge physics. The paper lists base types of microwave generators used to produce nanosecond discharge and classifies the discharges relative to their base parameters: the way the discharge gets localized in a limited space, amplitude and frequency of microwave field, gas pressure, duration of microwave pulses. The laboratory experiments performed and the new effects which appear in nanosecond microwave discharge are briefly summarized. Different applications of such a discharge are analyzed on the basis of the experimental modelling. (author)

  2. Determination of Reasons of Obstruction in the Condensate Stabilizer System of Namconson Gas Treatment Terminal by Radioisotope Techniques

    International Nuclear Information System (INIS)

    Bui Quang Tri; Nguyen Huu Quang; Dang Nguyen The Duy; Tran Tri Hai; Tran Thanh Minh

    2008-01-01

    The Condensate Stabilizer System of Namconson Gas Treatment Terminal was designed with operational flow rate of 60 m 3 /h but for unknown reason it ran efficiently below 20 m 3 /h. The Radiotracer in combination with Gamma Scan was used to investigate in understanding the reasons. The results showed the build up at the bottom of Trap out Tray which caused obstruction of condensate flow in the outlet of Trap out Tray. As a results the feed flow rate to Reboiler from Trap out Tray lowered into 1/3 and the remaining 2/3 by passing the Reboiler by overflow to the Sump. (author)

  3. Refining Bio-Gas Produced from Biomass: An Alternative to Cooking Gas

    Directory of Open Access Journals (Sweden)

    A. S. ABDULKAREEM

    2005-06-01

    Full Text Available Our life is completely dependent on a reliable and adequate supply of energy. In other to reduce dependence on fossil fuels, the use of animal dung in producing a renewable alternative source of energy has been proved using cow dung. This work is aimed at produced and refined bio - gas from animal dung by reduces the H2S and CO2 content of bio - gas in other to improved the quality of the bio - gas to be used as an alternative to the petroleum based produces in use now. The sample of gas produced was passed through the gas chromatography to determine the percentage composition (mol % dry basis of the bio - gas contents. The results of the bio - gas before refinement were 54.09% mole dry CH4, 40.02mole % dry CO2 and 0.80mole % dry H2S which conformed with the literature values of 50 - 65 % mole dry CH4, 35 - 50 % mole dry CO2 and 0.1 - 1.0 % mole dry H2S. After refining, the composition of bio - gas on dry basis were 54.09% mole dry CH4, 4.01% mole dry CO2, 0.02% mole dry O2, 0.05% mole dry NH3, 0.01% mole dry H2S, 0.5% mole dry H2 and 2.54% mole dry N2. Analysis of the remnant indicated that it could be used for plant nutrient.

  4. Less greenhouse gas is being produced; Es entstehen weniger Treibhausgase

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, W [Messer Griesheim GmbH, Krefeld (Germany)

    1995-08-09

    The use of natural gas as fuel for vehicles has the advantage that much less ozone is produced compared to other fossil fuel sources. Also, considerably less CO, NO{sub x} and other hydrocarbons are released. However, natural gas drives have not succeeded so far. Compressed natural gas (CNG) or LPG (liquid petroleum gas) have been used so far, which also have disadvantages. This article deals with important questions on the use of gas fuels and their consequences for the car engine. (BWI) [Deutsch] Die Verwendung von Erdgas als Treibstoff fuer Kraftfahrzeuge hat den Vorteil, dass im Vergleich zu anderen fossilen Energietraegern sehr viel weniger Ozon entsteht. Aussderdem werden deutlich weniger Emissionen von CO, NO{sub x} und Kohlenwasserstoffen freigesetzt. Allerdings konnten sich Erdgas-Antriebe bislang nicht durchsetzen. Bislang wird verdichtetes Erdgas (CNG) bzw. LPG (Liquefied Petrol Gas) eingesetzt, die jedoch auch Nachteile in sich bergen. Der vorliegende Artikel geht auf die wesentlichen Fragen der Nutzung von Gastreibstoffen und deren Folgen fuer den Automobilmotor ein. (BWI)

  5. A thermodynamic approach on vapor-condensation of corrosive salts from flue gas on boiler tubes in waste incinerators

    International Nuclear Information System (INIS)

    Otsuka, Nobuo

    2008-01-01

    Thermodynamic equilibrium calculation was conducted to understand the effects of tube wall temperature, flue gas temperature, and waste chemistry on the type and amount of vapor-condensed 'corrosive' salts from flue gas on superheater and waterwall tubes in waste incinerators. The amount of vapor-condensed compounds from flue gases at 650-950 deg. C on tube walls at 350-850 deg. C was calculated, upon combustion of 100 g waste with 1.6 stoichiometry (in terms of the air-fuel ratio). Flue gas temperature, rather than tube wall temperature, influenced the deposit chemistry of boiler tubes significantly. Chlorine, sulfur, sodium, potassium, and calcium contents in waste affected it as well

  6. Catalytic destruction of tar in biomass derived producer gas

    International Nuclear Information System (INIS)

    Zhang Ruiqin; Brown, Robert C.; Suby, Andrew; Cummer, Keith

    2004-01-01

    The purpose of this study is to investigate catalytic destruction of tar formed during gasification of biomass, with the goal of improving the quality of the producer gas. This work focuses on nickel based catalysts treated with alkali in an effort to promote steam gasification of the coke that deposits on catalyst surfaces. A tar conversion system consisting of a guard bed and catalytic reactor was designed to treat the producer gas from an air blown, fluidized bed biomass gasifier. The guard bed used dolomite to crack the heavy tars. The catalytic reactor was used to evaluate three commercial steam reforming catalysts. These were the ICI46-1 catalyst from Imperial Chemical Industry and Z409 and RZ409 catalysts from Qilu Petrochemical Corp. in China. A 0.5-3 l/min slipstream from a 5 tpd biomass gasifier was used to test the tar conversion system. Gas and tar were sampled before and after the tar conversion system to evaluate the effectiveness of the system. Changes in gas composition as functions of catalytic bed temperature, space velocity and steam/TOC (total organic carbon) ratio are presented. Structural changes in the catalysts during the tests are also described

  7. Study of the mobility activation in ZnSe thin films deposited using inert gas condensation

    Directory of Open Access Journals (Sweden)

    Jeewan Sharma

    2017-12-01

    Full Text Available ZnSe thin films were synthesized on glass substrates using the inert gas condensation technique at substrate temperature ranging from 25 °C to 100 °C. The hexagonal structure and average crystallite size (6.1–8.4 nm were determined from X-ray diffraction data. The transient photoconductivity was investigated using white light of intensity 8450 lx to deduce the effective density of states (Neff in the order of 1.02 × 1010–13.90 × 1010 cm−3, the frequency factor (S in the range 2.5 × 105–24.6 × 105 s−1 and the trap depth (E ranging between 0.37–0.64 eV of these films. The trap depth study revealed three different types of levels with quasi-continuous distribution below the conduction band. An increase in the photoconductivity was observed as a result of the formation of potential barriers (Vb and of the increase of carrier mobility at the crystallite boundaries. The study of the dependence of various mobility activation parameters on the deposition temperature and the crystallite size has provided better understanding of the mobility activation mechanism.

  8. Fuzzy logic prediction of dew point pressure of selected Iranian gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nowroozi, Saeed [Shahid Bahonar Univ. of Kerman (Iran); Iranian Offshore Oil Company (I.O.O.C.) (Iran); Ranjbar, Mohammad; Hashemipour, Hassan; Schaffie, Mahin [Shahid Bahonar Univ. of Kerman (Iran)

    2009-12-15

    The experimental determination of dew point pressure in a window PVT cell is often difficult especially in the case of lean retrograde gas condensate. Besides all statistical, graphical and experimental methods, the fuzzy logic method can be useful and more reliable for estimation of reservoir properties. Fuzzy logic can overcome uncertainty existent in many reservoir properties. Complexity, non-linearity and vagueness are some reservoir parameter characteristics, which can be propagated simply by fuzzy logic. The fuzzy logic dew point pressure modeling system used in this study is a multi input single output (MISO) Mamdani system. The model was developed using experimentally constant volume depletion (CVD) measured samples of some Iranian fields. The performance of the model is compared against the performance of some of the most accurate and general correlations for dew point pressure calculation. Results show that this novel method is more accurate and reliable with an average absolute deviation of 1.33% and 2.68% for developing and checking, respectively. (orig.)

  9. Studies on the characteristics of the separated heat pipe system with non-condensible gas for the use of the passive decay heat removal in reactor systems

    International Nuclear Information System (INIS)

    Hayashi, Takao; Ishi, Takayuki; Hayakawa, Hitoshi; Ohashi, Kazutaka

    1997-01-01

    Experiments on the separated heat pipe system of variable conductance type, which enclose non-condensible gas, have been carried out with intention of applying such system to passive decay heat removal of the modular reactors such as HTR plant. Basic experiments have been carried out on the experimental apparatus consisting of evaporator, vapor transfer tube, condenser tube and return tube which returns the condensed liquid back to the evaporator. Water and methanol were examined as the working fluids and nitrogen gas was enclosed as the non-condensible gas. The behaviors of the system were examined for the parametric changes of the heat input under the various pressures of nitrogen gas initially enclosed, including the case without enclosing N 2 gas for the comparison. The results of the experiments shows very clear features of self control characteristics. The self control mechanism was made clear, that is, in such system in which the condensing area in the condenser expands automatically in accordance with the increase of the heat input to keep the system temperature nearly constant. The working temperature of the system are clearly dependent on the pressure of the non-condensable gas initially enclosed, with higher system working temperature with higher initial gas pressure enclosed. The analyses were done on water and methanol as the working fluids, which show very good agreement with the experimental results. A lot of attractive applications are expected including the self switching feature with minimum heat loss during normal operation with maintaining the sufficient heat removal at accidents. (author)

  10. 30 CFR 250.1157 - How do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap? 250.1157 Section 250.1157 Mineral Resources... do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap? (a...

  11. Developing of two-dimensional model of the corium cooling and behavior with non-condensible gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The purpose of this study is to understand the effect of the non-condensible gas injection into the molten corium on the heat transfer and dynamic behavior within the melt when molten core-concrete interaction occurs during the hypothetical severe accident. Corium behavior with gas injection effect is two phase fluid pattern in which droplet has dispersed gas phase in continuous liquid phase of corium. To analyze this behavior, two dimensional governing equation using the governing equation, the computer program is accomplished using the finite difference method and SIMPLER algorithm. And benchmarking calculation is performed for the KfK experiment, which consider the gas injection effect. After this pre-calculation, an analyses is performed with typical corium under severe accidents. It is concluded that the heat transfer within corium increases as the metal components of the corium and gas injection velocity increase. 88 refs., 23 tabs., 35 figs. (author)

  12. Correcting underestimation of optimal fracture length by modeling proppant conductivity variations in hydraulically fractured gas/condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Akram, A.H.; Samad, A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Schlumberger, Houston, TX (United States)

    2006-07-01

    A study was conducted in which a newly developed numerical simulator was used to forecast the productivity of a hydraulically fractured well in a retrograde gas-condensate sandstone reservoir. The effect of condensate dropout was modeled in both the reservoir and the proppant pack. The type of proppant and the stress applied to it are among the factors that determine proppant conductivity in a single-phase flow. Other factors include the high velocity of gas and the presence of liquid in the proppant pack. It was concluded that apparent proppant permeability in a gas condensate reservoir varies along the length of the hydraulic fracture and depends on the distance from the wellbore. It will increase towards the tip of the fracture where liquid ratio and velocity are lower. Apparent proppant permeability also changes with time. Forecasting is most accurate when these conditions are considered in the simulation. There are 2 problems associated with the use of a constant proppant permeability in a gas condensate reservoir. The first relates to the fact that it is impossible to obtain a correct single number that will mimic the drawdown of the real fracture at a particular rate without going through the process of determining the proppant permeability profile in a numerical simulator. The second problem relates to the fact that constant proppant permeability yields an optimal fracture length that is too short. Analytical modeling does not account for these complexities. It was determined that the only way to accurately simulate the behaviour of a hydraulic fracture in a high rate well, is by advanced numerical modeling that considers varying apparent proppant permeability in terms of time and distance along the fracture length. 10 refs., 2 tabs., 16 figs., 1 appendix.

  13. Development of a neural fuzzy system for advanced prediction of dew point pressure in gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nowroozi, Saeed; Hashemipour, Hasan; Schaffie, Mahin [Department of Chemical Engineering, Shahid Bahonar University of Kerman (Iran); ERC, Shahid Bahonar University of Kerman (Iran); Ranjbar, Mohammad [Department of Mining Engineering, Shahid Bahonar University of Kerman (Iran); ERC, Shahid Bahonar University of Kerman (Iran)

    2009-03-15

    Dew point pressure is one of the most critical quantities for characterizing a gas condensate reservoir. So, accurate determination of this property has been the main challenge in reservoir development and management. The experimental determination of dew point pressure in PVT cell is often difficult especially in case of lean retrograde gas condensate. Empirical correlations and some equations of state can be used to calculate reservoir fluid properties. Empirical correlations do not have ability to reliable duplicate the temperature behavior of constant composition fluids. Equations of state have convergence problem and need to be tuned against some experimental data. Complexity, non-linearity and vagueness are some reservoir parameter characteristic which can be propagated simply by intelligent system. With the advantage of fuzzy sets in knowledge representation and the high capacity of neural nets (NNs) in learning knowledge expressed in data, in this paper a neural fuzzy system(NFS) is proposed to predict dew point pressure of gas condensate reservoir. The model was developed using 110 measurements of dew point pressure. The performance of the model is compared against performance of some of the most accurate and general correlations for dew point pressure calculation. From the results of this study, it can be pointed out that this novel method is more accurate and reliable with the mean square error of 0.058%, 0.074% and 0.044% for training, validation and test processes, respectively. (author)

  14. GASCON and MHDGAS: FORTRAN IV computer codes for calculating gas and condensed-phase compositions in the coal-fired open-cycle MHD system

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, P E

    1977-12-01

    Fortran IV computer codes have been written to calculate the equilibrium partial pressures of the gaseous phase and the quantity and composition of the condensed phases in the open-cycle MHD system. The codes are based on temperature-dependent equilibrium constants, mass conservation, the mass action law, and assumed ideal solution of compounds in each of two condensed phases. It is assumed that the phases are an oxide-silicate phase and a sulfate-carbonate-hydroxide phase. Calculations are iterated for gas and condensate concentrations while increasing or decreasing the total moles of elements, but keeping mole ratios constant, to achieve the desired total pressure. During iteration the oxygen partial pressure is incrementally changed. The decision to increase or decrease the oxygen pressure in this process depends on comparison of the oxygen content calculated in the gas and condensate phases with the initial amount of oxygen in the ash, coal, seed, and air. This process, together with a normalization step, allows the elements to converge to their initial quantities. Two versions of the computer code have been written. GASCON calculates the equilibrium gas partial pressures and the quantity and composition of the condensed phases in steps of thirteen temperature and pressure combinations in which the condensate is removed after each step, simulating continuous slag removal from the MHD system. MHDGAS retains the condensate for each step, simulating flow of condensate (and gas) through the MHD system.

  15. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    Science.gov (United States)

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  16. RADIATION SAFETY JUSTIFICATION FOR THE LONG-TERM STORAGE OF GAS CONDENSATE IN THE UNDERGROUND RESERVOURS FORMED BY THE NUCLEAR EXPLOSION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    I. K. Romanovich

    2010-01-01

    Full Text Available The paper presents approaches to the safety justification of the gas condensate and brine long-term storage in the underground reservoirs formed by the nuclear explosion technology. Gas condensate and brine are the intermediate level liquid radioactive waste containing isotopes: 3Н, 137Cs and 90Sr, in traces - 239Pu, 235U, 241Am.Safety of the gas condensate and brine long-term storage in the underground reservoirs is assessed on the base of the multi-barrier principle implementation, used during radioactive waste disposal. It is shown that the gas condensate and brine long-term storage in the sealed underground reservoirs formed by nuclear explosion technologies in salt domes does not lead to the surface radioactive contamination and population exposure.

  17. Bose-Einstein condensation of a charged relativistic ideal gas in a general homogeneous magnetic field

    International Nuclear Information System (INIS)

    Toms, D.J.

    1994-01-01

    It is shown how the effective action formalism and ζ-function regularization can be used to study Bose-Einstein condensation for a relativistic charged scalar field in a general homogeneous magnetic field in a spacetime of arbitrary dimension. In the special case where the magnetic field has only one component, Bose-Einstein condensation occurs at high temperature only for D≥5 where D is the spatial dimension. When Bose-Einstein condensation does occur the ground-state expectation value of the scalar field is not constant and we determine its value. If the magnetic field has p independent nonzero components we show that the condition for Bose-Einstein condensation is D≥3+2p. In particular, Bose-Einstein condensation can never occur if the magnetic field has all of its independent components nonzero. The problem of Bose-Einstein condensation in a cylindrical box in D spatial dimensions with a uniform magnetic field directed along the axis of the cylinder is also discussed

  18. Condensate recovery by cycling at declining pressures

    Energy Technology Data Exchange (ETDEWEB)

    Havlena, Z G; Griffith, J D; Pot, R; Kiel, O G

    1967-06-05

    Cycling condensate reservoirs under conditions of declining pressure, rather than constant pressure, is advantageous from both a recovery and an economic standpoint. Wet gas displaced from the swept areas is recovered concurrently with wet gas recovered by gas expansion from the unswept portions of the reservoir. Any liquid condensed in the swept areas is revaporized by dry injection gas and recovered as an enriched gas. By this mode of operation, high condensate recovery is obtained, gas sales may be possible at an earlier stage of depletion, more flexibility in field and plant operations is feasible and reduction of 15% in investment and operating costs is achieved. Injection gas requirements are reduced by 40%. The Windfall reservoir in Canada has been successfully produced in this manner, starting in 1962. It is a typical retrograde type reservoir which in 1965 represented 15% of reservoirs exploited in North America.

  19. A thermodynamics model for morphology prediction of aluminum nano crystals fabricated by the inert gas condensation method

    Science.gov (United States)

    Wen, Yu; Xia, Dehong

    2018-03-01

    The purpose of this study is to provide scientific guidance for the morphological control of nanoparticle synthesis using the gas phase method. A universal thermodynamics model is developed to predict the morphology of nanoparticles fabricated using the inert gas condensation method. By using this model, the morphologies of aluminum nanocrystals are predicted under various preparation conditions. There are two types of energy that jointly determine the formation of nanoparticle morphology—Gibbs free energy for nanoparticles and energy variation during the process. The results show that energy variation dominates morphology formation when the cooling rate is less than 2 × 1011 K s-1 in the aluminum nanocrystal production process. At the beginning of the nanoparticle growth, the most stable morphology is predicted to be spherical, but the energetically preferred morphology becomes cubic as the particle grows. The turning point in the particle size at which spherical morphology is no longer the most stable morphology is exhibited as a function of pressure in a condensation chamber for different cooling rates. In this paper, we focus on the need for morphology prediction based on preparation conditions. It is concluded that nanoparticles with various morphologies could be obtained by adjusting the cooling rate and pressure in the condensation chamber.

  20. Water-saturated systems of the largest gas and gas-condensate deposits of the USSR. Vodonapornye sistemy krupneishikh gazovykh i gazokondensatnykh mestorozhdenii sssr

    Energy Technology Data Exchange (ETDEWEB)

    Kortsenshtein, V.N.

    1977-01-01

    A description is given of water-pressure systems in a number of the largest gas and gas-condensate fields of the Soviet Union, whose industrial reserves exceed 500 billion cubic meters. These include fields located in the concluding stage of development with sharply reduced recovery (Shebelinsk), fields that have just begun to operate and are characterized by increasing production (Vuktyl, Medved, Orenburg, Shatlyk, Urengoisk), and fields that are not yet developed (Yamburg and Zapolyar). Problems in the theory and practice of studying water-pressure systems of the largest gas and gas-condensate fields are analyzed primarily in connection with conditions required for their rational development which would provide for a maximum extraction of hydrocarbons from the interior. Importance is also given to the hydrogeological aspects of the formation of large hydrocarbon deposits and their distribution in the earth's crust. The most reliable factual materials on hydrogeology are utilized. The book is designed for personnel in the gas and oil industries, hydrogeologists, and scientists interested in problems of the formation, survey, and development of the largest hydrocarbon deposits. 92 references, 65 figures, 71 tables.

  1. Water recovery and air humidification by condensing the moisture in the outlet gas of a proton exchange membrane fuel cell stack

    International Nuclear Information System (INIS)

    Wan, Z.M.; Wan, J.H.; Liu, J.; Tu, Z.K.; Pan, M.; Liu, Z.C.; Liu, W.

    2012-01-01

    Humidification is one of the most important factors for the operation of proton exchange membrane fuel cell (PEMFC). To maintain the membrane at hydrated state, plenty of water is needed for the state-of-the-art of PEMFC technology, especially in large power applications or long time operation. A condenser is introduced to separate liquid water from the air outlet for air self-sufficient in water of the stack in this study. The condensed temperature at the outlet of the condenser and water recovered amount for air self-sufficient in water are investigated theoretically and experimentally. It is shown that the condensed temperature for air self-sufficient in water is irrelevant with the working current of the stack. When the condenser outlet temperature was above the theoretical line, recovery water was not sufficient for the air humidification. On the contrary, it is sufficient while the temperature was below the theoretical line. It is also shown that when the moisture is sufficiently cooled, large amount water can be separated from the outlet gas, and it increased almost linearly with the time. With the introduction of the condenser, the recovered amount of water can easily satisfy the air self-sufficient in water by condensing the outlet gas to a proper temperature. - Highlights: ► We introduce a condenser to separate liquid water from the air outlet in the stack. ► The mechanism of air self-sufficient in water by condensing gas is presented. ► The condensed temperature and water recovered amount are investigated. ► An experiment is present to validate simplicity and feasibility of the criterion. ► The criterion for air humidification is used for choosing the condenser.

  2. Producing ammonium sulfate from flue gas desulfurization by-products

    Science.gov (United States)

    Chou, I.-Ming; Bruinius, J.A.; Benig, V.; Chou, S.-F.J.; Carty, R.H.

    2005-01-01

    Emission control technologies using flue gas desulfurization (FGD) have been widely adopted by utilities burning high-sulfur fuels. However, these technologies require additional equipment, greater operating expenses, and increased costs for landfill disposal of the solid by-products produced. The financial burdens would be reduced if successful high-volume commercial applications of the FGD solid by-products were developed. In this study, the technical feasibility of producing ammonium sulfate from FGD residues by allowing it to react with ammonium carbonate in an aqueous solution was preliminarily assessed. Reaction temperatures of 60, 70, and 80??C and residence times of 4 and 6 hours were tested to determine the optimal conversion condition and final product evaluations. High yields (up to 83%) of ammonium sulfate with up to 99% purity were achieved under relatively mild conditions. The optimal conversion condition was observed at 60??C and a 4-hour residence time. The results of this study indicate the technical feasibility of producing ammonium sulfate fertilizer from an FGD by-product. Copyright ?? Taylor & Francis Inc.

  3. Gazprom vs. other Russian gas producers: The evolution of the Russian gas sector

    International Nuclear Information System (INIS)

    Lunden, Lars Petter; Fjaertoft, Daniel; Overland, Indra; Prachakova, Alesia

    2013-01-01

    The non-Gazprom gas producers (NGPs) doubled their share of the Russian domestic gas market between 2000 and 2010 and have continued growing since then. For several years especially Novatek expanded. More recently, Rosneft has emerged as a key player, not least through its purchase of TNK-BP. This article begins with an overview of the companies in the Russian gas sector, their resource bases and capacities, and subsequently examines whether differences in field development costs and export market access may make it rational for Gazprom to continue ceding market share to the NGPs. With rising costs of Gazprom's queue of greenfield developments, any delays in Gazprom's investment program may be compensated through increased NGP production. The article argues that the NGPs are ready to fill the gap, may be allowed to do so and are already increasing their market share in an increasingly competitive market. The stage may now be set for a continued gradual transformation of the Russian gas market, in which the interests of Gazprom and the NGPs may be complementary or may be pitted against each other, but those of the Russian Federation are in any case likely to be better fulfilled than in the past. - Highlights: • Other Russian gas producers, especially Novatek and Rosneft, are taking market shares from Gazprom. • Gazprom has a monopoly on exports and has had a de facto monopoly on the domestic pipeline grid through its control over trunk pipelines. • Gazprom's greenfield projects are more expensive than those of other producers. • Gazprom's loss of market shares to other producers in the domestic market may actually be in Gazprom's interest

  4. Disrupting the balance of natural fluid systems during the working of gas condensate deposits. Narushenie ravnovesiya prirodnykh flyuidal'nykh sistem pri razrabotke gazovykh i gazokondensatnykh mestorozhdenii

    Energy Technology Data Exchange (ETDEWEB)

    Kortsenshtein, V.N.

    1980-01-01

    Natural processes that occur in the ground as a result of almost complete or partial depletion of large gas and gas-condensate deposits are analyzed. Problems concerned with the disruption of the fluid systems equilibrium are examined as represented by interstitial water and industrial gaseous and gas-condensate accumulations. Observations over a period of 20-25 years were made of the depleted deposits of North-Stavropol', Gazlin, and Shebel, whose initial hydrogeological background that serves as the basis of the reference system, has been studied in detail. Information is also presented on recently exploited water-vapor systems, such as the large Vuktyl', Orenburg, Medvezh', and Shatlyk deposits. The book is intended for a broad spectrum of geologists, hydrogeologists, and engineers interested in geology and the working of gas and gas condensate deposits. 36 references, 27 figures, 35 tables.

  5. Determination of the vertical distribution and areal of the composition in volatile oil and/or gas condensate reservoirs

    International Nuclear Information System (INIS)

    Santos Santos, Nicolas; Ortiz Cancino, Olga Patricia; Barrios Ortiz, Wilson

    2005-01-01

    The compositional variation in vertical and areal direction due to gravitational and thermal effects plays an important role in the determination of the original reserves in-situ and in the selection of the operation scheme for volatile oil and/or gas condensate reservoirs. In this work we presented the mathematical formulation of the thermodynamic behavior experienced by compositional fluids, such as volatile oil and/or gas condensate, under the influence of the mentioned effects (gravitational and thermal), which was implemented in a software tool, this tool determine the compositional variation in vertical direction and, in addition, it allows to know the saturation pressure variation in the hydrocarbon column and the location of the gas-oil contact. With the obtained results, product of the use of this tool, was developed a methodology to obtain one first approach of the compositional variation in areal direction to obtain compositional spatial distribution (iso composition maps) in the reservoir, for components like the methane, which experiences the greater variations. These iso composition maps allow to determine the location of the hydrocarbon deposits, in such a way that the production strategies can be selected and be applied to maximize the recovery, such as in fill wells, perforation of new zones, EOR processes, etc

  6. Gas transport and separation with ceramic membranes. Part I: Multilayer diffusion and capillary condensation

    NARCIS (Netherlands)

    Uhlhorn, R.J.R.; Uhlhorn, R.J.R.; Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.

    1992-01-01

    Multilayer diffusion and capillary condensation of propylene on supported γ-alumina films greatly improved the permeability and selectivity. Multilayer diffusion, occurring at relative pressures of 0.4 to 0.8 strongly increased the permeability of 6 times the Knudsen permeability, yielding

  7. Investigation into the determination of trimethylarsine in natural gas and its partitioning into gas and condensate phases using (cryotrapping)/gas chromatography coupled to inductively coupled plasma mass spectrometry and liquid/solid sorption techniques

    International Nuclear Information System (INIS)

    Krupp, E.M.; Johnson, C.; Rechsteiner, C.; Moir, M.; Leong, D.; Feldmann, J.

    2007-01-01

    Speciation of trialkylated arsenic compunds in natural gas, pressurized and stable condensate samples from the same gas well was performed using (Cryotrapping) Gas Chromatography-Inductively Coupled Plasma Mass Spectrometry. The major species in all phases investigated was found to be trimethylarsine with a highest concentration of 17.8 ng/L (As) in the gas phase and 33.2 μg/L (As) in the stable condensate phase. The highest amount of trimethylarsine (121 μg/L (As)) was found in the pressurized condensate, along with trace amounts of non-identified higher alkylated arsines. Volatile arsenic species in natural gas and its related products cause concern with regards to environment, safety, occupational health and gas processing. Therefore, interest lies in a fast and simple field method for the determination of volatile arsenicals. Here, we use simple liquid and solid sorption techniques, namely absorption in silver nitrate solution and adsorption on silver nitrate impregnated silica gel tubes followed by total arsenic determination as a promising tool for field monitoring of volatile arsenicals in natural gas and gas condensates. Preliminary results obtained for the sorption-based methods show that around 70% of the arsenic is determined with these methods in comparison to volatile arsenic determination using GC-ICP-MS. Furthermore, an inter-laboratory- and inter-method comparison was performed using silver nitrate impregnated silica tubes on 14 different gas samples with concentrations varying from below 1 to 1000 μg As/m 3 natural gas. The results obtained from the two laboratories differ in a range of 10 to 60%, but agree within the order of magnitude, which is satisfactory for our purposes

  8. On the adequacy of wall functions to predict condensation rates from steam-noncondensable gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dehbi, A., E-mail: abdel.dehbi@psi.ch

    2013-12-15

    Highlights: • Work investigates the effect of near-wall mesh resolution on CFD predictions. • Case study: turbulent condensation in the presence of noncondensable gases. • Wall functions largely underpredict condensation rates at boundary layer onset. • When boundary layer is developed, wall functions predictions are reasonable. • Prescribed wall functions must be compatible with prevailing flow regime. - Abstract: As one looks forward to applying CFD based methods to simulate turbulent flows in larger volumes up to containment scales, the mesh resolution, especially near the walls, becomes one of the main issues dictating the feasibility of the simulation. The wall-function approach is a natural choice to minimize the computational size of the problem and make it tractable. In the current investigation, we compare the wall-function to the fully resolved boundary layer approaches for the prediction of vapor condensation rates on cold walls in the presence of noncondensable gases. We simulate three sets of geometric configurations. The first two sets relate to domains which are small (height of 2 m) and medium (height 4.8 m), and for which experimental heat transfer data are available. In the third set, we look at a hypothetical large 2D rectangular domain in which the condenser height is comparable to that of typical NPP containments (20 m). In the developing region of the boundary layer, it is found that the wall function treatment leads to substantial deviations from the wall resolved approach and available experimental data. Further downstream, however, when the boundary layer is fully developed, the discrepancy is greatly reduced. It is therefore concluded that the wall-function formulation is able to provide predictions of condensation rates that are similar to wall-resolved treatments in simple forced flows for which fully developed boundary layers can be assumed over most of the domain. Care must however be exercised to ensure the chosen wall

  9. 18 CFR 270.303 - Natural gas produced from Devonian shale.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Natural gas produced... DETERMINATION PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.303 Natural gas produced from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale...

  10. Studies of cluster-assembled materials: From gas phase to condensed phase

    Science.gov (United States)

    Gao, Lin

    Clusters, defined as "a number of similar things that occur together" in Webster's dictionary, has different meanings depending on the given subject. To physicists and chemists, the word cluster means "a group of atoms or molecules formed by interactions ranging from very weak van der Waals interactions to strong ionic bonds." Unlike molecules, which are made by nature and are stable under ambient conditions, clusters discovered in a laboratory are often metastable. Molecules have specific stoichiometry, whereas the cluster's composition can usually be altered atom by atom. Thus, clusters can be taken as intrinsically "artificial molecules" with considerably more tunabilities in their properties. Research into the relative stability and instability of clusters has in recent years become a very active research area, especially following the study by Khanna and Castleman that first suggested that by varying size and composition, clusters can expand the periodic table to the 3 rd-dimension; that is, clusters can mimic the chemistry of atoms and may, therefore, be used as the building blocks of new materials. The discovery of Met-Cars has drawn worldwide interests and has been actively investigated by researchers from a variety of fields, including physics, chemistry and material science. However, the unsuccessful search for a solvent capable of isolating Met-Cars has impeded progress in characterizing the material in the condensed state and, hence, limited its potential applications as a novel nanoscale material. An alternative method involving the deposition of mass-gated species and the subsequent structural investigation via Transmission Electron Microscopy (TEM) has been employed. With particularly interesting results, soft-landed deposits of zirconium Met-Cars were found to form a face-centered-cubic (FCC) structure with a lattice parameter ˜ 15A. The production of Met-Cars is conducted with the direct laser vaporization (DLV) of metal/graphite composite pellets

  11. Application of Evaporative Cooling for the Condensation of Water Vapors from a Flue Gas Waste Heat Boilers CCP

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2016-01-01

    Full Text Available The object of the study are boilers that burn organic fuel and the recovery boilers (RB of the combined cycle plant (CCP, which are al-so working on the products of the combustion of hydrocarbon fuels. The purpose of research is to find technologies that increase efficiency of the thermal power plant (TPP and technologies that reduce the environmental impact on the environment by burning fossil fuels. The paper deals with the technology of the boilers burning hydrocarbon fuel with condensation of water vapor from the exhaust flue gases. Considered the problems caused by using of this technology. Research shows that the main problem of this technology in the boilers is the lack of reliable methods of calculation of heat exchangers, condensers. Particular attention is paid to the application of this technology in the recovery boilers combined-cycle plants, which are currently gaining increasing use in the generation of electricity from the combustion of gas in power plants. It is shown that the application of technology of condensation of water vapor in RB CCP, the temperature decreases of exhaust gases from 100 to 40 °С, allows increasing the effi-ciency of the RB with 86.2 % to 99.5 %, i.e. at 12.3 %, and increase the ef-ficiency of the CCP at 2.8 %.

  12. Condensate from a two-stage gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Henriksen, Ulrik Birk; Hindsgaul, Claus

    2000-01-01

    Condensate, produced when gas from downdraft biomass gasifier is cooled, contains organic compounds that inhibit nitrifiers. Treatment with activated carbon removes most of the organics and makes the condensate far less inhibitory. The condensate from an optimised two-stage gasifier is so clean...... that the organic compounds and the inhibition effect are very low even before treatment with activated carbon. The moderate inhibition effect relates to a high content of ammonia in the condensate. The nitrifiers become tolerant to the condensate after a few weeks of exposure. The level of organic compounds...... and the level of inhibition are so low that condensate from the optimised two-stage gasifier can be led to the public sewer....

  13. Competition between Bose-Einstein Condensation and Spin Dynamics.

    Science.gov (United States)

    Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B

    2016-10-28

    We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.

  14. Basic design of the test facility for the two-phase critical flow with non-condensable gas

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Kim, Chang Hwe; Chung, Chang Hwan

    2000-12-01

    The two-phase critical flow test with non-condensible gas is for the simulation of the critical flow phenomena which can be occurred during SB-LOCA on SMART reactor. The basic design of the test facility for the actual installation is performed from the basis of the previous conceptual design according to the test requirements. The 1.3m 3 pressure vessel has the circulation pipeline which contains pump(5m 3 /hr), main heater(150KW) and cooler for heating the working fluid to the test temperature within 6 hours. The N2 gas, water supply line are attached to the upper part and test section, flowmeter and various sensors are installed at the lower part of the pressure vessel. The suppression tank is for the storage and cooling of the discharged water. The N2 gas storage tank provides the system pressure to the pressure vessel during the test. The 0.7m 3 N2 gas injection tank supplies the required N2 gas to the entrance of the test section. Since these N2 supply systems require much amount of gas during short period, multistage valve systems and optimal control logics are needed and applied. For the filling of the N2 gas to the N2 storage tank, 5m 3 LN2 tank and related gas converting system were designed. The operating mode of the test facility can be classified to the starting, steady, main test and cooling modes and the proper monitoring and control logics are developed for each operating mode. The operation of the test facility is performed through the PLC and the acquisition of the test data is done with DAS

  15. Theory of a condensed charged-Bose, charged Fermi gas and Ginzburg--Landau studies of superfluid 3He

    International Nuclear Information System (INIS)

    Dahl, D.A.

    1976-01-01

    Two independent topics in the field of condensed matter physics are examined: the condensed charged-Bose, charged Fermi gas and superfluid 3 He. Green's function (field theoretic) methods are used to derive the low-temperature properties of a dense, neutral gas of condensed charged bosons and degenerate charged fermions. Restriction is made to the case where the fermion mass is much lighter than the boson mass. Linear response and the density-density correlation function are examined and shown to exhibit two collective modes: a plasmon branch and a phonon branch with speed equal to that of ionic sound in solids. Comparison with a possible astrophysical application (white dwarf stars) is made. The behavior near the superfluid transition temperature (Ginzburg--Landau regime) of 3 He is then studied. Gorkov equations are derived and studied in the weak-coupling limit. In this way the form and order of magnitude estimates of coefficients appearing in the Ginzburg--Landau theory are obtained. Weak-coupling particle and spin currents are derived. Various perturbations break the large degeneracy of the states and have experimental implications. The electric contribution to the Ginzburg--Landau free energy is studied for the proposed A and B phases. Imposition of an electric field orients the axial state, but does not give rise to shifts in the NMR resonances. Shifts and discontinuous jumps in the longitudinal and transverse signals are predicted for the Balian--Werthamer state, the details depending on the relative strengths of the fields, as well as the angle between them

  16. Acute ecotoxicology of natural oil and gas condensate to coral reef larvae.

    Science.gov (United States)

    Negri, Andrew P; Brinkman, Diane L; Flores, Florita; Botté, Emmanuelle S; Jones, Ross J; Webster, Nicole S

    2016-02-19

    Risks posed by oil spills to coral reefs are difficult to evaluate, partially due to the absence of studies that adequately assess toxicity to relevant coral reef species. Here we experimentally tested the acute toxicity of condensate, representing a fraction of light crude oil, to coral (Acropora tenuis) and sponge (Rhopaloeides odorabile) larvae. The metamorphosis of coral larvae was inhibited at total petroleum aromatic hydrocarbon (TPAH) concentrations of water accommodated fractions (WAF) as low as 103 μg l(-1), similar to concentrations detected in seawater following large spills. The sensitivity of coral larvae increased by 40% when co-exposed to UV light that they might encounter in shallow reefal systems. Condensate WAF was more toxic to coral larvae than predicted by summing the toxicity of its main components (benzene, toluene, p-xylene and napthalene). In contrast, the sensitivity of sponge larvae to condensate WAF (>10,000 μg l(-1) TPAH) was far less than coral in the presence and absence of UV, but similar to that of other marine invertebrates. While these results highlight the relative sensitivity of coral larvae to oil, further research is needed to better understand and predict the impacts and risks posed by hydrocarbons to tropical reef systems.

  17. Application of fluorinated nanofluid for production enhancement of a carbonate gas-condensate reservoir through wettability alteration

    Science.gov (United States)

    Sakhaei, Zahra; Azin, Reza; Naghizadeh, Arefeh; Osfouri, Shahriar; Saboori, Rahmatollah; Vahdani, Hosein

    2018-03-01

    Condensate blockage phenomenon in near-wellbore region decreases gas production rate remarkably. Wettability alteration using fluorinated chemicals is an efficacious way to vanquish this problem. In this study, new synthesized fluorinated silica nanoparticles with an optimized condition and mean diameter of 50 nm is employed to modify carbonate rock surface wettability. Rock characterization tests consisting Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive x-ray Spectroscopy (EDX) were utilized to assess the nanofluid adsorption on rock surface after treatment. Contact angle, spontaneous imbibition and core flooding experiments were performed to investigate the effect of synthesized nanofluid adsorption on wettability of rock surface and liquid mobility. Results of contact angle experiments revealed that wettability of rock could alter from strongly oil-wetting to the intermediate gas-wetting even at elevated temperature. Imbibition rates of oil and brine were diminished noticeably after treatment. 60% and 30% enhancement in pressure drop of condensate and brine floods after wettability alteration with modified nanofluid were observed which confirm successful field applicability of this chemical.

  18. Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.

    Science.gov (United States)

    Chevallier, Maguelonne; Krauth, Werner

    2007-11-01

    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.

  19. ν-Dimensional ideal quantum q-gas: Bose-Einstein condensation and λ-point transition

    International Nuclear Information System (INIS)

    R-Monteiro, M.; Roditi, I.; Rodrigues, L.M.C.S.

    1994-01-01

    The authors consider an ideal quantum q-gas in ν spatial dimensions and energy spectrum ω i αp α . Departing from the Hamiltonian H = ω[N], the authors study the effect of the deformation on thermodynamic functions and equation of state of that system. The virial expansion is obtained for the high temperature (or low density) regime. The critical temperature is higher than in non-deformed ideal gases. They show that Bose-Einstein condensation always exists (unless when ν/α = 1) for finite q but not for q = ∞. Employing numerical calculations and selecting for ν/α the values 3/2, 2 and 3, the authors show the critical temperature as a function of q, the specific heat C V and the chemical potential μ as functions of T/T c q for q = 1.05 and q= 4.5. C V exhibits a λ-point discontinuity in all cases, instead of the cusp singularity found in the usual ideal gas. The results indicate that physical systems which have quantum symmetries can exhibit Bose-Einstein condensation phenomenon, the critical temperature being favored by the deformation parameter

  20. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  1. Israel-New natural gas producer in the Mediterranean

    International Nuclear Information System (INIS)

    Shaffer, Brenda

    2011-01-01

    In 2009 and 2010, major offshore natural gas reserves were discovered near the State of Israel. This article examines Israel's newly discovered natural gas reserves and the implications of this discovery for Israel, the Middle East, and the Mediterranean region. The article will discuss Israel's energy security approach; the role of natural gas in Israel's energy consumption patterns; the organization of Israel's natural gas sector; regional political and security implications of the natural gas discoveries; the prospects for export, and the outlook for various natural gas markets. These new discoveries significantly improve Israel's energy security. They may also spur Israel to develop technologies related to utilization of natural gas in a variety of sectors, such as transportation. The discoveries may contribute to the emergence of a number of maritime border delimitation conflicts in the Eastern Mediterranean. At current volumes, the Israeli discoveries will not be a game-changer for gas markets in southern Europe or liquefied natural gas (LNG) markets. However, they will lead to expanded natural gas consumption in the region. In addition, offshore exploration efforts in Israel and in neighboring countries are intensifying. Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. - Highlights: → In 2009 and 2010, major natural gas deposits were discovered offshore of Israel's port city of Haifa. → They will satisfy a large portion of Israel's domestic energy consumption needs for a number of decades. → The gas discoveries have created an opportunity to fundamentally change the country's energy policies. → Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. → Israel could become a supplier of natural gas to neighbors in the Middle East region, such as Jordan.

  2. Performance Study of Dual Fuel Engine Using Producer Gas as Secondary Fuel

    Directory of Open Access Journals (Sweden)

    Deepika Shaw

    2016-06-01

    Full Text Available In the present paper, development of producer gas fuelled 4 stroke diesel engine has been investigated. Producer gas from biomass has been examined and successfully operated with 4 stroke diesel engine. The effects of higher and lower loads were investigated on the dual fuel mode. The experimental investigations revealed that at lower loads dual fuel operation with producer gas shows lower efficiency due to lower combustion rate cause by low calorific value of the producer gas. Beyond 40% load the brake thermal efficiency of dual fuel operation improved due to faster combustion rate of producer gas and higher level of premixing. It can be observed that at lower load and 20% opening of producer gas the gaseous fuel substitution found to be 56% whereas at 100% opening of producer gas it reaches 78% substitution. The CO2 emission increased at high producer gas opening and high load because at 100% producer gas maximum atoms of carbons were there and at high load condition the diesel use increased. At 80% load and producer gas varying from 20% to 100. Power output was almost comparable to diesel power with marginal higher efficiency. Producer gas is one such technology which is environmentally benign and holds large promise for future.

  3. Characterization of biomass producer gas as fuel for stationary gas engines in combined heat and power production

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2008-01-01

    The aim of this project has been the characterization of biomass producer gas as a fuel for stationary gas engines in heat and power production. More than 3200 hours of gas engine operation, with producer gas as fuel, has been conducted at the biomass gasification combined heat and power (CHP...... different measuring methods. Likewise, no particles were detected in the gas. Considerable amounts of NH3 were measured in the produced gas.An analysis of engine operation at varying load has been carried out. Standard emissions, load and efficiency have been measured at varying operating conditions ranging...... from 50% to 90% load. Biomass producer gas is an excellent lean burn engine fuel: Operation of a natural aspirated engine has been achieved for 1.2...

  4. CO and PAH Emissions from Engines Operating on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Jensen, Torben Kvist; Henriksen, Ulrik Birk

    2003-01-01

    High carbon monoxide (CO) emission from gas engines fueled by producer gas is a concerning problem in the struggle to make biomass gasification for heat and power production a success. The standing regulations concerning CO emissions from producer gas engine based power plants in most EU countrie...

  5. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from an...

  6. The specifics of operating minor deposits (as given by the examples of gas condensate deposits of the Northern Caucasus

    Directory of Open Access Journals (Sweden)

    Р. А. Гасумов

    2016-08-01

    Full Text Available One of the most important directions in upgrading well productivity in the process of mining hydrocarbons consists in fighting with salt formation and salt deposition. Solving that problem becomes especially actual when operating deposits that are in their final stage of exploitation in complex mining and geological conditions accompanied by deposition of salts in the well foot area of oil bed and their sedimentation on the sub-surface and surface equipment. It provokes a drop in well productivity and results in off-schedule repair works. Specifics are considered of exploiting minor gas condensate deposits of the Northern Caucasus that are operated under complicated mining and geological conditions of anomalously high bed pressures, high temperatures, strong depressions on the beds and inflow of mineralized water from water saturated seams.Processes are studied of salt deposition from heavy hydrocarbons in the well foot and the bed area surrounding it. Water sample analyses data from different wells have demonstrated that the main salts carrier is the associated water, and the principal sedimenting agents are corrosion products, as confirmed by the results of microscopic studies. The dynamics is presented of salt deposition in the “well foot – wellhead – separator” system retrieved from the results of studies of reaction products in the well foot zone of oil bed.It is demonstrated that the efficiency of struggling with salt deposition in the course of mining hydrocarbons depends on comprehensive approach to the problem, the principal thrust lying with prevention of such deposition.Possible ways are considered to prevent precipitation of ferric compounds in the course of operating gas condensate wells, a way is suggested to intensify gas inflow.

  7. Numerical simulation of gas-liquid two-phase flow behavior with condensation heat transfer

    International Nuclear Information System (INIS)

    Takamori, Kazuhide; Murase, Michio; Baba, Yoshikazu; Aihara, Tsuyoshi.

    1995-01-01

    In this study, condensation heat transfer experiments were performed in order to verify a condensation heat transfer model coupled with a three-dimensional two-phase flow analysis. In the heat transfer model, the liquid film flow rate on the heat transfer tubes was calculated by a mass balance equation and the liquid film thickness was calculated from the liquid film flow rate using Nusselt's laminar flow model and Fujii's equation for steam velocity effect. In the experiments, 112 horizontal staggered tubes with an outer diameter of 16 mm and length of 0.55 m were used. Steam and spray water were supplied to the test section, and inlet quality was controlled by the spray water flow rate. The temperature was 100degC and the pressure was 0.1 MPa. The overall heat transfer coefficients were measured for inlet quality of 13-100%. From parameter calculations for the falling liquid film ratio from the upper tubes to the lower tubes, the calculated overall heat transfer coefficients agreed with the data to within ±5% at the falling liquid film ratio of 0.7. (author)

  8. Conceptual design of the test facility for the two-phase critical flow with non-condensable gas

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seok Kyu; Chung, Chang Hwan

    2000-12-01

    The two-phase critical flow test with non-condensible gas is for the simulation of the critical flow phenomena which can be occurred during SB-LOCA on SMART reactor. The requirements of the critical flow test are 7{approx}20mm pipe break dia., 7{approx}12MPa stagnation pressure, 0{approx}60 deg C subcooling degree and 0{approx}0.5kg/s N2 gas flow rate. For the satisfaction of these requirements on the test facility, critical flow rates were calculated with various models. With the selected reference pressure vessel(1.3m{sup 3}), the conceptual design of the test facility was performed. The important components of the test facility are the pressure vessel which has main circulation line, the test section attached to the bottom of the pressure vessel, suppression tank, the N2 gas supply tanks for maintaining the system pressure and N2 gas flow rate at test section and the auxiliary N2 gas converting system. For the measurements of the critical flow rate, flowmeter and level gauge is installed at the upstream of the test section and the pressure vessel, respectively. The realtime pressure control system is installed at the entrance of the pressure vessel for maintaining the system pressure and the N2 gas flow regulating system is also installed at the upstream of the test section. The design of the control and monitoring system for the operation of the test facility and the DAS for acquiring the test data were also performed. The conceptual operating process of the test facility was determined.

  9. Conceptual design of the test facility for the two-phase critical flow with non-condensable gas

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Chung, Chang Hwan

    2000-12-01

    The two-phase critical flow test with non-condensible gas is for the simulation of the critical flow phenomena which can be occurred during SB-LOCA on SMART reactor. The requirements of the critical flow test are 7∼20mm pipe break dia., 7∼12MPa stagnation pressure, 0∼60 deg C subcooling degree and 0∼0.5kg/s N2 gas flow rate. For the satisfaction of these requirements on the test facility, critical flow rates were calculated with various models. With the selected reference pressure vessel(1.3m 3 ), the conceptual design of the test facility was performed. The important components of the test facility are the pressure vessel which has main circulation line, the test section attached to the bottom of the pressure vessel, suppression tank, the N2 gas supply tanks for maintaining the system pressure and N2 gas flow rate at test section and the auxiliary N2 gas converting system. For the measurements of the critical flow rate, flowmeter and level gauge is installed at the upstream of the test section and the pressure vessel, respectively. The realtime pressure control system is installed at the entrance of the pressure vessel for maintaining the system pressure and the N2 gas flow regulating system is also installed at the upstream of the test section. The design of the control and monitoring system for the operation of the test facility and the DAS for acquiring the test data were also performed. The conceptual operating process of the test facility was determined

  10. Gas quality prediction in ligno-cellulosic biomass gasification in a co-current gas producer

    International Nuclear Information System (INIS)

    Martin, J.; Nganhou, J.; Amie Assouh, A.

    2008-01-01

    Our research covers the energetic valuation of the biomass for electricity production. As electrical energy production is the main drive behind a modern economy, we wanted to make our contribution to the debate by describing a tried technique, whose use on an industrial scale can still be perfected, failing control over the basic principles that support the gasification processes called upon in this industry. Our study describes gasification, which is a process to transform a solid combustible into a gas combustible. The resulting gas can be used as combustible in an internal combustion motor and produce electricity. Our work interprets the experimental results of gasification tests conducted on an available and functional experimental centre and the ENSPY's Decentralized Energy Production Lab. The work involved developing a tool to appreciate the results of the gasification of the ligneous biomass from the stoichiometric composition of the combustible to be gasified and the chemical and mathematical bases of the gasification process. It is an investigation with a view to elaborating a mathematical model based on the concept of compatibility. Its original lies in the quality prediction method for the gas obtained through the gasification of a biomass whose chemical composition is known. (authors)

  11. Problems of the protection of bioresources development ofthe Bovanenkovo gas condensate field

    Directory of Open Access Journals (Sweden)

    Vladimir Dmitrievich Bogdanov

    2012-12-01

    Full Text Available The data on the fish fauna and fish food resources in the Bovanenkovo gas field are presented. The estimation of fishery and fishery potential of water bodies, hydrobiological characteristics of water bodies in the studied area are given. It is shown that the arrangement of the gas field leads to overfishing BGKM fish and change the state of aquatic ecosystems associated with the violation of runoff, backfilling flood waters, crossing streams communications, water diversion, pollution, sand mining. Thehydrobionts reaction to anthropogenic influence in the area of the gas field developmentis identified and recommendations to reduce the impact on aquatic ecosystems in the period of construction are given

  12. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  13. Laboratory Optimization Tests of Decontamination of Cs, Sr, and Actinides from Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-06

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also substantially decrease the LAW vitrification mission duration and quantity of glass waste.

  14. Defect formation in fluoropolymer films at their condensation from a gas phase

    Science.gov (United States)

    Luchnikov, P. A.

    2018-01-01

    The questions of radiation defects, factors of influence of electronic high-frequency discharge plasma components on the molecular structure and properties of the fluoropolymer vacuum films synthesized on a substrate from a gas phase are considered. It is established that at sedimentation of fluoropolymer coverings from a gas phase in high-frequency discharge plasma in films there are radiation defects in molecular and supramolecular structure because of the influence of active plasma components which significantly influence their main properties.

  15. Experience in oil field processing of gas and condensate at the Shatlyk deposits

    Energy Technology Data Exchange (ETDEWEB)

    Dalmatov, V.V.; Chernikov, Ye.I.; Govorun, V.P.; Turevskiy, Ye.N.

    1983-01-01

    The operation of installations for preparing gas are analyzed, along with the operation of individual technological devices at the Shatlyk deposit, the basic things which hinder the support of the designed low temperature conditions are shown and recommendations for standardizing the operation of the technological installations are given. Experience in the operation of the gas preparation installations at the Shatlyk deposit is recommended for use in deposits being introduced into development.

  16. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Science.gov (United States)

    2010-04-01

    ... produced from coal seams. 270.302 Section 270.302 Conservation of Power and Water Resources FEDERAL ENERGY... produced from coal seams. A person seeking a determination that natural gas is occluded natural gas produced from coal seams must file an application with the jurisdictional agency which contains the...

  17. Pyrolysis of low-boiling gas condensate of the Shatlyk field

    Energy Technology Data Exchange (ETDEWEB)

    Khankuliyev, K.; Kul' dzhayev, B.A.; Magaril, R.Z.; Sergiyenko, S.R.

    1984-01-01

    A study was made of pyrolysis of the 60-180/sup 0/C fraction of condensate from the Shatlyk field at temperature 800-850/sup 0/ and contact time of 0.3-1.5 sec. An optimal pyrolysis mode was selected (825/sup 0/C, contact time 0.5-0.7 sec) at which there is simultaenously high yield of ethylene (36-40%) and olefins C/sub 2/-C/sub 4/ (60-61%). It is shown that the total yield of olefins and ethylene, as well as the correlation in them of ethylene/propylene, can be regulated by changing the temperature and contact time in the process. The maximum ethylene yields with the highest selectivity indicators for ethylene are observed under the following conditions: temperature 825/sup 0/C and contact time 0.9 sec; 850/sup 0/C and 0.7 sec.

  18. Analysis of the test results for the two-phase critical flow with non-condensible gas

    International Nuclear Information System (INIS)

    Chang, S. K.; Chung, C. H.; Park, H. S.; Min, K. H.; Choi, N. H.; Kim, C. H.; Lee, S. H.; Kim, H. C.; Chang, M. H.

    2002-07-01

    The two-phase critical flow test was performed for simulating the pipe break accident of SMART reactor. The requirements of the critical flow test are 7∼20mm pipe break dia., 7∼12MPa stagnation pressure, 0∼60 .deg. C subcooling degree and 0∼0.5kg/s N 2 gas flow rate. The test section is sharp edged pipe type which has the dimension of I.D.=20, L=300mm and I.D.=10.9, L=1000mm. The test conditions are 4, 7, 10 MPa at stagnation pressure, 0, 20, 50 .deg. C of subcooling degree and 0.028∼0.39 kg/s of N 2 injection gas flowrate. The measured data at test section and other components in terms of pressure, temperature and flowrate were collected in DAS computer with maintaining the steady state conditions at least 60 seconds. From the test results, the critical characteristics of the break pipe were analysed and verified the capacity of the test facility. For the verification of the Modified Henry-Fauske model which can predict the two-phase critical flow with non-condensible gas, the code simulation using MARS which contains the option of the Modified Henry -Fauske model was performed. The simulation results of steady-state two-phase critical flow experiments show that they agree with the measured critical flow rates within 6% root-mean-square error

  19. The use of contained nuclear explosions to create underground reservoirs, and experience of operating these for gas condensate storage

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Myasnikov, K.V.; Leonov, E.A.; Romadin, N.M.; Dorodnov, V.F.; Nikiforov, G.A.

    1975-01-01

    Investigations on the creation of underground reservoirs by means of nuclear explosions have been going on in the Soviet Union for many years. In this paper the authors consider three main kinds of sites or formations that can be used for constructing reservoirs by this method, namely, low-permeable rocks, worked-out mines and rock salt formations. Formulae are given for predicting the mechanical effect of an explosion in rocks, taking their strength characteristics into account. Engineering procedures are described for sealing and restoring the emplacement holes, so that they can be used for operating the underground reservoir. Experience with the contruction and operation of a 50 000 m 3 gas-condensate reservoir in a rock salt formation is described. In the appendix to the paper a method is presented for calculating the stability of spherical cavities created by nuclear explosions in rock salt, allowing for the development of elasto-plastic deformations and creep

  20. Effect of scenedesmus acuminatus green algae extracts on the development of Candida lipolytic yeast in gas condensate-containing media

    Science.gov (United States)

    Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.

    1980-01-01

    Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.

  1. Applications of UT results to confirm defects findings by utilization of relevant metallurgical investigations techniques on gas/condensate pipeline working in wet sour gas environment

    Science.gov (United States)

    El-Azhari, O. A.; Gajam, S. Y.

    2015-03-01

    The gas/condensate pipe line under investigation is a 12 inch diameter, 48 km ASTM, A106 steel pipeline, carrying hydrocarbons containing wet CO2 and H2S.The pipe line had exploded in a region 100m distance from its terminal; after 24 years of service. Hydrogen induced cracking (HIC) and sour gas corrosion were expected due to the presence of wet H2S in the gas analysis. In other areas of pipe line ultrasonic testing was performed to determine whether the pipeline can be re-operated. The results have shown presence of internal planner defects, this was attributed to the existence of either laminations, type II inclusions or some service defects such as HIC and step wise cracking (SWC).Metallurgical investigations were conducted on fractured samples as per NACE standard (TM-0284-84). The obtained results had shown macroscopic cracks in the form of SWC, microstructure of steel had MnS inclusions. Crack sensitivity analyses were calculated and the microhardness testing was conducted. These results had confirmed that the line material was suffering from sour gas deteriorations. This paper correlates the field UT inspection findings with those methods investigated in the laboratory. Based on the results obtained a new HIC resistance material pipeline needs to be selected.

  2. Efficient condensation of DNA into environmentally responsive polyplexes produced from block catiomers carrying amine or diamine groups

    Czech Academy of Sciences Publication Activity Database

    Albuquerque, L. J. C.; Annes, K.; Milazzotto, M. P.; Mattei, B.; Riske, K. A.; Jäger, Eliezer; Pánek, Jiří; Štěpánek, Petr; Kapusta, Peter; Muraro, P. I. R.; De Freitas, A. G. O.; Schmidt, V.; Giacomelli, C.; Bonvent, J.-J.; Giacomelli, F. C.

    2016-01-01

    Roč. 32, č. 2 (2016), s. 577-586 ISSN 0743-7463 R&D Projects: GA MŠk(CZ) LH14292 Institutional support: RVO:61389013 ; RVO:61388955 Keywords : polyplexes * DNA condensation * fluorescence Subject RIV: CC - Organic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 3.833, year: 2016

  3. Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity

    International Nuclear Information System (INIS)

    Nozieres, P.; Schmitt-Rink, S.

    1985-01-01

    We consider a gas of fermions interacting via an attractive potential. We study the ground state of that system and calculate the critical temperature for the onset of superconductivity as a function of the coupling strength. We compare the behavior of continuum and lattice models and show that the evolution from weak to strong coupling superconductivity is smooth

  4. Generation of low-Btu fuel gas from agricultural residues experiments with a laboratory scale gas producer

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R O

    1977-01-01

    Two successive laboratory-scale, downdraft gas producers were fabricated and tested. Agricultural and food processing residues including walnut shells, corn cobs, tree prunings, and cotton gin waste, were converted to a low Btu producer gas. The performance of 2 spark ignition engines, when running on producer gas, was highly satisfactory. The ability of the producer to maintain a continuous supply of good quality gas was determined largely by firebox configuration. Fuel handling and fuel flow control problems tended to be specific to individual types of residues. During each test run, air input, firebox temperature, fuel consumption rate, and pressure differential across the producer were monitored. An overall conversion efficiency of 65% was achieved.

  5. Liquid-gas and solid-liquid interface: thermodynamics of capillary condensation application to a prosimetry by calorimetric measurements

    International Nuclear Information System (INIS)

    Derrien, Francois; Hartmanshenn, Olivier.

    1978-01-01

    A direct determination of the pore radii distribution is proposed using calorimetric measurements during condensation and evacuation of pores by capillary condensate. This method is independant of any gravimetric or volumetric measurement of adsorption

  6. Relaxation dynamics of a driven two-level system coupled to a Bose-Einstein condensate: application to quantum dot-dipolar exciton gas hybrid systems.

    Science.gov (United States)

    Kovalev, Vadim M; Tse, Wang-Kong

    2017-11-22

    We develop a microscopic theory for the relaxation dynamics of an optically pumped two-level system (TLS) coupled to a bath of weakly interacting Bose gas. Using Keldysh formalism and diagrammatic perturbation theory, expressions for the relaxation times of the TLS Rabi oscillations are derived when the boson bath is in the normal state and the Bose-Einstein condensate (BEC) state. We apply our general theory to consider an irradiated quantum dot coupled with a boson bath consisting of a two-dimensional dipolar exciton gas. When the bath is in the BEC regime, relaxation of the Rabi oscillations is due to both condensate and non-condensate fractions of the bath bosons for weak TLS-light coupling and pre dominantly due to the non-condensate fraction for strong TLS-light coupling. Our theory also shows that a phase transition of the bath from the normal to the BEC state strongly influences the relaxation rate of the TLS Rabi oscillations. The TLS relaxation rate is approximately independent of the pump field frequency and monotonically dependent on the field strength when the bath is in the low-temperature regime of the normal phase. Phase transition of the dipolar exciton gas leads to a non-monotonic dependence of the TLS relaxation rate on both the pump field frequency and field strength, providing a characteristic signature for the detection of BEC phase transition of the coupled dipolar exciton gas.

  7. Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia

    OpenAIRE

    A. Belhaj Mohamed; M. Saidi; N. Boucherb; N. Ourtani; A. Soltani; I. Bouazizi; M. Ben Jrad

    2015-01-01

    Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples col...

  8. Up-to-date prospects for development of natural gas and condensate processing in the USSR

    International Nuclear Information System (INIS)

    Gritsenko, A.I.; Tyurin, P.P.

    1991-01-01

    Three large gas processing complexes are expected to be guilt in North Kazakhstan, Western Siberia and Orenburg, in the USSR. With added low temperature emphasis on recovery of ethane, propane and butane, the operation of these complexes will hae an appreciable effect on both domestic and international markets. This paper reports that modifications of alumina and titanium oxide zeolites to new and existing Claus units will improve sulfur recovery by 3-4%. This will cut sulfur costs and improve the environment

  9. Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments

    International Nuclear Information System (INIS)

    Cornell, E.A.; Wieman, C.E.

    2002-01-01

    Bose-Einstein condensation, or BEC, has a long and rich history dating from the early 1920s. In this article we will trace briefly over this history and some of the developments in physics that made possible our successful pursuit of BEC in a gas. We will then discuss what was involved in this quest. In this discussion we will go beyond the usual technical description to try and address certain questions that we now hear frequently, but are not covered in our past research papers. These are questions along the lines of: How did you get the idea and decide to pursue it? Did you know it was going to work? How long did it take you and why? We will review some our favorites from among the experiments we have carried out with BEC. There will then be a brief encore on why we are optimistic that BEC can be created with nearly any species of magnetically trappable atom. Throughout this article we will try to explain what makes BEC in a dilute gas so interesting, unique, and experimentally challenging

  10. Farm effluent plant produces gas for domestic heat and power

    Energy Technology Data Exchange (ETDEWEB)

    1963-01-01

    A plant for treating farm waste waters, developed by Wright Rain Ltd. and based on a prototype plant invented by J. Fry which has been in continuous use for 5 years on a pig farm at Rietvlei, Johannesburg, is described. Manure is pumped into one end of the digestion tank about one-third of the way up the tank, and anaerobic decomposition occurs at a controlled temperature (optimum 35/sup 0/C); the gas rises to the top and is collected in gas holders to be utilized for domestic heat and power, while an outlet near the bottom of the tank allows decomposed matter to be drawn off for spreading. Results with pig manure suggest that a digestion tank should be planned for a 60-day cycle. Cow and pig manure can be digested without difficulty, but it would be necessary to add water to chicken manure for successful digestion.

  11. Physical and chemical characterization of particles in producer gas

    DEFF Research Database (Denmark)

    Hindsgaul, Claus; Henriksen, Ulrik B.; Bentzen, Jens Dall

    2000-01-01

    ) engines fueled by the gas. The implications of the findings on engine wear are discussed.The majority (85%) of the total particulate matter (TPM) mass was identified, using scanning electron microscopy (SEM), as mono-sized spherical primary soot particles with diameters of 70 nm. Soot agglomerates, up...... to 30 um were present. 77% of the TPM was determined, by thermogravimetric analysis (TGA) to be carbon structures.The dichloromethane (DCM)-soluble fraction (11% of the TPM) was extracted, separated into fractions of varying polarities using adsorption column chromatography and analyzed using gas...... of the particles showed that a 3-7% of the DCM-insoluble TPM was dissolved using this solvent....

  12. Measurement of thorium content in gas mantles produced in India

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, P K [Bhabha Atomic Research Centre, Mumbai (India). Radiological Physics Div.; Chury, A J; Venkataraman, G [Bhabha Atomic Research Centre, Mumbai (India). Radiation Protection Services Div.

    1994-04-01

    Incandescent gas mantles, processed with thorium nitrate, were monitored for thorium content, using a 2 inch thick Nal(Tl) detector and detecting medium energy gamma radiations emitted by thorium daughters. Thirty different brands, manufactured in the country have been counted and most of them were found to contain thorium within the permissible limit specified by Atomic Energy Regulatory Board (AERB). (author). 5 refs., 1 fig., 3 tabs.

  13. Low Temperature Particle Filtration of Producer Gas with Low Tar Content

    DEFF Research Database (Denmark)

    Hindsgaul, Claus

    This report describes the tests of different techniques for removing the particulates from producer gas from the 100 kW two-stage down-draft gasifier at DTU1 . The goal of the tests was to identify and implement methods to remove soot particles from producer gas with low tar content. During the f...

  14. Experimental studies on condensation of steam mixed with noncondensable gas inside the vertical tube in a pool filled with subcooled water

    International Nuclear Information System (INIS)

    Maheshwari, N.K.; Saha, D.; Sinha, R.K.; Aritomi, M.

    2003-01-01

    A passive containment cooling system with immersed condensers has been proposed as one of the alternatives for the advanced heavy water reactor (AHWR) being designed in India. The system removes residual/decay heat released into the containment through the immersed condensers kept in a pool of water following loss of coolant accident. An important aspect of the immersed condensers is the potential degradation of its performance due to the presence of noncondensable gases. Experiments are performed to obtain reliable data on condensation phenomena in presence of air. These experiments are conducted on full-scale tubes of condensers immersed in a pool of water maintaining similar conditions as in the prototype of AHWR. A method has been proposed for the determination of the local heat transfer rate using correlations given in literature. The parametric effects of air mass fraction, pressure, steam flow, etc. on condensation heat transfer in presence of noncondensable gas have been studied. The experimental results are compared with the correlations given in literature. (orig.)

  15. The free Bose gas with flowing condensate in algebraic quantum field theory

    International Nuclear Information System (INIS)

    Hein, S.

    1979-01-01

    After the definition of the Weyl-algebra as a universal C* algebra of the canonical commutation relations the author classifies the equilibrium states of the free dynamics of a Bose gas in a representation independent way starting from the Kubo-Martin-Schwinger boundary conditions. The role of the Laplace equation is studied in this connection. It is shown that states with a two-point function can be described by simple natural hydrodynamics using a precise definition of the term vortex. The transition to these states is considered regarding the thermodynamic limit. (HSI)

  16. Produce More Oil Gas via eBusiness Data Sharing

    Energy Technology Data Exchange (ETDEWEB)

    Paul Jehn; Mike Stettner

    2004-09-30

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  17. Acoustic dew point and bubble point detector for gas condensates and reservoir fluids

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, A.; Hu, Y.; Thomas, F. B.; Bennion, D. B.; Jamaluddin, A. K. M. [Hycal Energy Research Labs. Ltd., Calgary, AB (Canada)

    1997-08-01

    Detailed knowledge of bubblepoint and dewpoint pressures at reservoir temperature are crucial for natural gas processing, transportation, metering and utilization. This paper introduces a new acoustic dewpoint and bubblepoint detector that can be applied to a broad range of phase transitions, including very lean gas systems and opaque heavy oils. The system uses two acoustic transducers, one to stimulate and the other to detect normal mode vibrations of reservoir fluids in a small cylindrical resonator. The acoustic spectra are recorded at close intervals throughout the phase envelope, along with temperature, pressure and volume measurements, and the data is processed to obtain the specific condition of phase transition. Results of two systems, a binary mixture and live reservoir fluid, are presented. The detector system is claimed to be capable of operation in an isothermal mode with variable volume, and in a constant volume mode with variable temperatures. Interpretation of results is free of operator subjectivity; they show excellent agreement with results obtained by visual methods and equations of state calculations. 4 refs., 2 tabs., 4 figs.

  18. by shale gas producers in USA and Poland

    Directory of Open Access Journals (Sweden)

    Anna Galimska

    2015-12-01

    Full Text Available The aim of this article is analysis and comparison of the standards used for preparation of financial statementsby enterprises looking for and extracting shale gas in Poland and in the USA. The author reviewsthe different accounting regulations underlying financial reporting of companies operating in this field.Nowadays, globalization and constant development of financial markets cause intensified expectations ofshareholders regarding the attributes of financial statements. The author points out the high level of specializationand comprehensiveness of American regulations. In contrast, international accounting standardsaddress only the initial phase of the process of alternative hydrocarbons extraction, which results ina lack of financial reports’ consistency and decline of investors’ interest.

  19. Combination gas producing and waste-water disposal well

    Science.gov (United States)

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  20. Corrosion in the wet-dry zone in a flue gas condenser; Korrosion i vaattorr zon i roekgaskondensor

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus; Roemhild, Stefanie; Bergman, Gunnar

    2008-06-15

    The corrosion resistance for a number of metallic and polymeric materials, in the environment of the inlet part of a flue gas condenser for a combustion plant, has been investigated. The combustion plants have been Igelstaverket and Bristaverket, for which the fuel has been mainly waste wood and biofuels, respectively. The materials were exposed in the dry and the wet zone, and also in the transfer zone in between. The metallic materials where stainless steels of the grades 17-10-2L, 2205, SAF2507 and 254SMO, all with a through weld joint, while the polymeric materials where fibre reinforced plastics (FRP) and glass-flake applied on carbon steel. The FRP materials had been formed partly by a traditional method and partly using new types of reinforcement materials, mainly based on carbon fibre, which where located in the surface layer. Also laminate with the special reinforcement of the type 3D-fabric was investigated. The investigation showed that all the metallic materials came off good under normal operating conditions when using biofuels, while 17-10-2L did not manage when using waste wood. The welds of 2205 showed a somewhat restricted corrosion resistance, otherwise being the best choice for waste wood plants when taking the material cost into consideration. FRP, as it seems, can be used successfully in the environments studied for combustion plants using biofuels. The results also indicate that the lifetime can be improved and the maintenance reduced by doing the correct choice of laminate structure and material compared to the laminates of the common type. The laminate structure, however, has to be adjusted to fulfil the demands given by the process environment. It should also further be pointed out that the good results for the flake coatings not necessarily would be the case for real use, where the walls are exposed to a temperature gradient. Finally, a conclusion, outside the initial purpose of the project, was that the addition of ammonium sulphate in

  1. Separation of submicron particles from biofuel combustion with flue gas condensation or wet condensing electrostatic precipitator. Analysis of possibilities; Avskiljning av submikrona partiklar vid biobraenslefoerbraenning med roekgaskondensering eller kondenserande vaata elfilter. Analys av moejligheterna

    Energy Technology Data Exchange (ETDEWEB)

    Roennbaeck, Marie; Gustavsson, Lennart [Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-11-15

    Dust particles in flue gas larger than 1 {mu}m are well separated by conventional techniques, while submicron particles are poorly separated. As the use of biofuels with high ash content is increasing, as well as knowledge about negative health effects from inhalation of submicron particles, the interest for reduction of emissions of submicron particles will probably increase. The aim of this project is to investigate possible techniques for separation of submicron particles during flue gas condensation through modification of conventional technique, or with available techniques not usually used with combustion of biofuels, e.g. a wet electrostatic precipitator. Mechanisms for separation of dust particles are briefly described. Cyclones separates particles larger than about 1 {mu}m. Fabric filters separates all particles sizes, but the efficiency reduces as the size reduces. In flue gas condensers and scrubbers the speed and size of water droplets are important for the reduction efficiency. Dry electrostatic precipitators work for all particle sizes, but with reduced efficiency for sizes between 0.1 and 3 {mu}m. Wet electrostatic precipitators separates submicron particles much better. One reason for this is that the potential between the electrodes can be higher. Among conventional flue gas condensers and scrubbers there are two types that, properly designed, can separate submicron particles, namely 'type venturi scrubbers', i.e. a scrubber where a high flue gas velocity is used to form many, small water droplets by friction forces in a nozzle, and 'type scrubber with nozzles', i.e. a scrubber where nozzles supply droplets to the flue gas. For a scrubber with nozzles, the falling velocity of the droplets must be lower and the size smaller than is common today. Also the wet electrostatic precipitator separates submicron particles with high efficiency. They are used today mainly for problematic particles, e.g. sticky or corrosive ones, or for

  2. Injury to crops by gas as produced from plastic materials

    Energy Technology Data Exchange (ETDEWEB)

    Inden, T; Tachibana, S

    1971-01-01

    The effects of gas formations of phthalate and epoxy plasticizers on crops were studied at room temperature and 100 to 200 C. The materials were tested either alone Or as products including polyvinyl chloride and a stabilizer. At room temperature, dioctylphthalate (DOP) did not injure the cucumber leaves, whereas diisobutyl phthalate (DIBF) injured 74.1%, and dibutyl phthalate injured 36.5% of the surface of the leaves. Among many stabilizers tested, triphenyl phosphite injured 80% of the surface area of cucumber leaves. At 100 C to 200 C for 48 hours DIBP and CLP injured the Chinese cabbage leaves most, about 80% of the surface area. The following chemicals for the manufacturing of the plasticizers were also found to injure Chinese cabbage leaves, isobutanol 18.3%, 2-ethyl-hexanol 98.3%, isodecanol 98.5%, phthalic acid 40.0, and adipic acid 6.6%.

  3. Producing hydrogen from coke-oven gas: the Solmer project. [PSA process

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, G; Vidal, J

    1984-05-01

    After presenting the energy situation at the Solmer plant, where coke-oven gas is produced to excess, the authors examine the technical and economic possibilities of utilizing this gas for hydrogen extraction. They describe a project (based on the PSA process) for producing some 65 t/d of hydrogen and present the technical features of the scheme. An evaluation of the energy and financial costs of producing the hydrogen confirms the competitive status of the process.

  4. Development of a micro-turbine plant to run on gasifier producer gas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the results of a work programme to test a Capstone micro gas turbine using producer gas (1) in a test facility using synthetic producer gas at Advantca's research laboratories and (2) at the premises of Biomass Engineering Ltd where the micro gas turbine was coupled to an existing 80 kWe downdraft gasifier operating on clean wood and wood wastes. The initial tests at Advantica achieved successful operation of the Capstone micro gas turbine on 100% producer gas at a net electrical output of 5.5 kWe and with very low NOx emissions (<2 ppm). The micro turbine was then moved and recommissioned at a site belonging to Biomass Engineering where 350 hours of operation were achieved using producer gas and over 800 hours using natural gas. Problems were experienced during start-up due to limited access to control software and late delivery of the gas compressor for the micro turbine. Gas emissions and performance were deemed satisfactory. The report describes the test work at Advantica and at Biomass Engineering and discusses the technical and economic aspects of biomass gasification and micro turbine systems.

  5. Development of indigenous laboratory scale gas atomizer for producing metal powders

    International Nuclear Information System (INIS)

    Khan, K.K.; Qasim, A.M.; Ahmed, P.

    2011-01-01

    Gas atomization is one of the methods for production of clean metal powders at relatively moderate cost. A laboratory scale gas atomizer was designed and fabricated indigenously to produce metal powders with a batch capacity of 500 g of copper (Cu). The design includes several features regarding fabrication and operation to provide optimum conditions for atomization. The inner diameter of atomizing chamber is 440 mm and its height is 1200 mm. The atomizing nozzle is of annular confined convergent type with an angle of 25 degree. Argon gas at desired pressure has been used for atomizing the metals to produce relatively clean powders. A provision has also been made to view the atomization process. The indigenous laboratory scale gas atomizer was used to produce tin (Sn) and copper (Cu) powders with different atomizing gas pressures ranging from 2 to 10 bar. The particle size of different powders produced ranges from 40 to 400 im. (author)

  6. Biomarkers of exposure to stainless steel tungsten inert gas welding fumes and the effect of exposure on exhaled breath condensate.

    Science.gov (United States)

    Riccelli, Maria Grazia; Goldoni, Matteo; Andreoli, Roberta; Mozzoni, Paola; Pinelli, Silvana; Alinovi, Rossella; Selis, Luisella; Mutti, Antonio; Corradi, Massimo

    2018-08-01

    The respiratory tract is the main target organ of the inhaled hexavalent chromium (Cr-VI) and nickel (Ni) contained in stainless steel (SS) welding fumes (WFs). The aim of this study was to investigate the Cr and Ni content of the exhaled breath condensate (EBC) of SS tungsten inert gas (TIG) welders, and relate their concentrations with oxidative stress and inflammatory biomarkers. EBC and urine from 100 SS TIG welders were collected pre-(T 0 ) and post-shift (T 1 ) on a Friday, and pre-shift (T 2 ) on the following Monday morning. Both EBC and urinary Cr concentrations were higher at T 1 (0.08 μg/L and 0.71 μg/g creatinine) and T 0 (0.06 μg/L and 0.74 μg/g creatinine) than at T 2 (below the limit of detection [LOD] and 0.59 μg/g creatinine), and EBC Ni concentrations generally remained welding also play a role in generating lung oxidative stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Reproductive effects of the water-accommodated fraction of a natural gas condensate in the Indo-Pacific reef-building coral Pocillopora damicornis.

    Science.gov (United States)

    Villanueva, R D; Yap, H T; Montaño, M N E

    2011-11-01

    Toxic effects of the water-accommodated fraction (WAF) of a natural gas condensate on the reproduction of the brooding coral Pocillopora damicornis were studied in short-term (24 h) laboratory experiments. Coral fragments were exposed to varying concentrations of condensate WAF during different reproductive phases: gametogenesis, early embryogenesis, and late embryogenesis (when nighttime planulation occurs). During gametogenesis, exposure to condensate WAF did not inhibit subsequent production of larvae. On the other hand, exposure to >25% WAF of gravid corals, at early and late embryogenesis, resulted in abortion and early release of larvae, respectively, with higher percentages of larvae expelled in fragments treated with higher concentrations of condensate WAF at least 3h after onset of exposure. Aborted larvae during early embryogenesis were 'premature', as they are of small size (0.06±0.03 mm³), low metamorphic competency (54%), and white in coloration, with a pale brown oral end (indicating low density of zooxanthellae). Those larvae released at the latter part of embryogenesis are bigger in size (0.22±0.08 mm³), possess 100% metamorphic competency, and are brown in coloration (high density of zooxanthellae). Aside from direct effects on reproduction, fragment mortality index was higher in samples exposed to higher concentrations of condensate WAF (>25%), hence lowering the number of potentially reproducing polyps. Altogether, exposure to >25% natural gas condensate WAF for at least 3h can potentially disrupt the replenishment of coral populations due to negative effects on reproduction and early life processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Method and apparatus for maintaining condensable constituents of a gas in a vapor phase during sample transport

    Science.gov (United States)

    Felix, Larry Gordon; Farthing, William Earl; Irvin, James Hodges; Snyder, Todd Robert

    2010-05-18

    A system for fluid transport at elevated temperatures having a conduit having a fluid inlet end and a fluid outlet end and at least one heating element disposed within the conduit providing direct heating of a fluid flowing through the conduit. The system is particularly suited for preventing condensable constituents of a high temperature fluid from condensing out of the fluid prior to analysis of the fluid. In addition, operation of the system so as to prevent the condensable constituents from condensing out of the fluid surprisingly does not alter the composition of the fluid.

  9. Prediction of mineral scale formation in wet gas condensate pipelines and in MEG (mono ethylene glycol) regeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Sandengen, Kristian

    2006-12-20

    Gas hydrate formation is a serious problem in the oil and gas industry, since its formation can plug wells and prevent production. The gas hydrate is a crystalline solid with a natural gas molecule surrounded by a cage of water molecules. It forms at high pressures and low temperatures. This is a problem for offshore gas wells, where the temperature is low in transport lines from well to the production facilities. Mono Ethylene Glycol (MEG) is commonly used as hydrate inhibitor. Classified as a thermodynamic inhibitor, this additive functions just as antifreeze in an automotive radiator. When producing oil and gas there will in most cases also be produced some water, which can contain dissolved salts. These salts may precipitate and they tend to deposit on surfaces. Deposition of inorganic minerals from brine is called scale. Generally MEG has the adverse effect of lowering the solubility of most salts. A common method to prevent corrosion in flow lines is to increase pH by adding basic agents (e.g. NaOH, NaHCO{sub 3}) to the MEG stream. In such cases, carbonate salts are particularly troublesome since an increase in pH by one unit, will reduce the solubility by two orders of magnitude. Thus there will be a trade off between good corrosion protection (high pH) and scale control (low pH). The aim of this work has been to develop a model that can predict mineral solubility in the presence of MEG. Experimental solubility data, together with thermodynamic data taken from literature, have been utilized to construct empirical functions for the influence of MEG on mineral scale formation. These functions enabled the expansion of an already existing aqueous scale model into a model valid for water+MEG mixed solutions. The aqueous scale model combines an equation of state (gas+oil phase) with the Pitzer ion interaction model (water phase) to describe the multiphase behaviour of gas-oil-water systems. This work summarizes the theoretical foundation and proposes how to work

  10. Wage Inequality and Violent Protests in Oil/Gas Producing Countries

    Science.gov (United States)

    Nuraliyev, Nurlan

    This work examines contrasting claims made by academic scholars on the relationship between income inequality and political discontent. Does income inequality directly cause social unrest or is this relationship conditional on the level of democratic development? Using the data from 55 oil/gas producing countries between 2010-2013, the author finds: 1) income disparity between an average income per capita of local population and an average income of foreign labor employed in the oil/gas industry results in higher number of violent protests in more democratic oil/gas producing societies; 2) wage disparity between local and foreign labor in the oil/gas industry is associated with higher number of protests in this industry in more democratic oil/gas producing states.

  11. Combustion of producer gas from gasification of south Sumatera lignite coal using CFD simulation

    Directory of Open Access Journals (Sweden)

    Vidian Fajri

    2017-01-01

    Full Text Available The production of gasses from lignite coal gasification is one of alternative fuel for the boiler or gas turbine. The prediction of temperature distribution inside the burner is important for the application and optimization of the producer gas. This research aims to provide the information about the influence of excess air on the temperature distribution and combustion product in the non-premixed burner. The process was carried out using producer gas from lignite coal gasification of BA 59 was produced by the updraft gasifier which is located on Energy Conversion Laboratory Mechanical Engineering Department Universitas Sriwijaya. The excess air used in the combustion process were respectively 10%, 30% and 50%. CFD Simulations was performed in this work using two-dimensional model of the burner. The result of the simulation showed an increase of excess air, a reduction in the gas burner temperature and the composition of gas (carbon dioxide, nitric oxide and water vapor.

  12. Distinguishing the Source of Natural Gas Accumulations with a Combined Gas and Co-produced Formation Water Geochemical Approach: a Case Study from the Appalachian Basin

    Science.gov (United States)

    The purpose of this study is to discuss the use of gas and co-produced formation water geochemistry for identifying the source of natural gas and present gas geochemistry for the northern Appalachian Basin.

  13. Bose-Einstein condensation in a general static homogeneous magnetic fieldinebreak and the effective action: The nonrelativistic ideal gas

    International Nuclear Information System (INIS)

    Toms, D.J.

    1995-01-01

    We consider the problem of Bose-Einstein condensation for a system of nonrelativistic spin-0 bosons in a space of arbitrary dimension D. A general static homogeneous magnetic field is imposed. The effective action approach and ζ-function regularization are used. If D=2δ or 2δ+1, a constant magnetic field is characterized by δ independent components. If p≤δ of these components are nonzero, the condition for Bose-Einstein condensation to occur is D-2p≥3. This means that if D=2δ, then Bose-Einstein condensation never occurs for p=δ-1 or δ. If D=2δ+1, Bose-Einstein condensation never occurs for p=δ. For D-2p≥3, Bose-Einstein condensation does occur, and we show how it may be interpreted as symmetry breaking to give a ground state which is not constant

  14. Process for producing synthetic ammonia gas. Verfahren zur Erzeugung von Ammoniak-Synthesegas

    Energy Technology Data Exchange (ETDEWEB)

    Meckel, J F; Messerschmidt, D; Wagener, D

    1984-01-12

    The invention refers to a process for producing synthetic ammonia gas from gases containing hydrocarbons, which is reformed catalytically and autothermally with a synthesis gas containing oxygen and then subjected to conversion to synthesis gas containing carbon dioxide and hydrogen. In order to simplify the plant required for such a process, the invention provides that part of the gas main flow is subjected to a multistage alternating pressure absorption plant (PSA plant) in a bypass of the gas main flow and the separated hydrogen is returned to the remaining gas main flow, in order to set the required H/sub 2/N/sub 2/ ratio and that the fission gas is subject to carbon dioxide washing and methanizing after conversion. This process therefore does not need a pipe splitting furnace and enrichment of the air with oxygen.

  15. Condensation of Macrocyclic Polyketides Produced by Penicillium sp. DRF2 with Mercaptopyruvate Represents a New Fungal Detoxification Pathway.

    Science.gov (United States)

    de Castro, Marcos V; Ióca, Laura P; Williams, David E; Costa, Bruna Z; Mizuno, Carolina M; Santos, Mario F C; de Jesus, Karen; Ferreira, Éverton L F; Seleghim, Mirna H R; Sette, Lara D; Pereira Filho, Edenir R; Ferreira, Antonio G; Gonçalves, Natália S; Santos, Raquel A; Patrick, Brian O; Andersen, Raymond J; Berlinck, Roberto G S

    2016-06-24

    Application of a refined procedure of experimental design and chemometric analysis to improve the production of curvularin-related polyketides by a marine-derived Penicillium sp. DRF2 resulted in the isolation and identification of cyclothiocurvularins 6-8 and cyclosulfoxicurvularins 10 and 11, novel curvularins condensed with a mercaptolactate residue. Two additional new curvularins, 3 and 4, are also reported. The structures of the sulfur-bearing curvularins were unambiguously established by analysis of spectroscopic data and by X-ray diffraction analysis. Analysis of stable isotope feeding experiments with [U-(13)C3(15)N]-l-cysteine confirmed the presence of the 2-hydroxy-3-mercaptopropanoic acid residue in 6-8 and the oxidized sulfoxide in 10 and 11. Cyclothiocurvularins A (6) and B (7) are formed by spontaneous reaction between 10,11-dehydrocurvularin (2) and mercaptopyruvate (12) obtained by transamination of cysteine. High ratios of [U-(13)C3(15)N]-l-cysteine incorporation into cyclothiocurvularin B (7), the isolation of two diastereomers of cyclothiocurvularins, the lack of cytotoxicity of cyclothiocurvularin B (7) and its methyl ester (8), and the spontaneous formation of cyclothiocurvularins from 10,11-dehydrocurvularin and mercaptopyruvate provide evidence that the formation of cyclothiocurvularins may well correspond to a 10,11-dehydrocurvularin detoxification process by Penicillium sp. DRF2.

  16. Study of condensate removal from wells

    Energy Technology Data Exchange (ETDEWEB)

    Gusein-Zade, Z I

    1967-01-01

    A pressure profile of well No. 218 in the Karadag condensate field showed that pressure did not vary linearly with depth. Calculations indicated that at depths of 3,000-3,640 m, produced fluid had a density of 0.29g/ cmU3D, whereas pure condensate gas should have a density of 0.11g/cmU3D. Apparently liquid was accumulating in the well. Other data showed that gas velocity in the well at various depths varied from 6 to 11 m/sec. It was also found that this same range of gas velocities was sufficient to prevent liquid accumulation in other wells. In an effort to solve this problem, the upward flow of gas-water and of gas-condensate mixtures in tubes was studied. Each had a different flow regime. Gas-condsensate formed foam, whereas the gas-water mixture did not. This resolved the problem, since foam is known to aid the removal of liquid by gas. Additional research showed that water was present in, and promoted accumulation of, liquid in well No. 218.

  17. Melt quenching and coolability by water injection from below: Co-injection of water and non-condensable gas

    International Nuclear Information System (INIS)

    Cho, Dae H.; Page, Richard J.; Abdulla, Sherif H.; Anderson, Mark H.; Klockow, Helge B.; Corradini, Michael L.

    2006-01-01

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of our work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University via test and analyses. In this paper, experiments on melt quenching by the injection of water from below are addressed. The test section represented one-dimensional flow-channel simulation of the bottom injection of water into a core melt in the reactor cavity. The melt simulant was molten lead or a lead alloy (Pb-Bi). For the experimental conditions employed (i.e., melt depth and water flow rates), it was found that: (1) the volumetric heat removal rate increased with increasing water mass flow rate and (2) the non-condensable gas mixed with the injected water had no impairing effect on the overall heat removal rate. Implications of these current experimental findings for ALWR ex-vessel coolability are discussed

  18. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from...... on filters and a sorbent was used for collection of vapour phase aromatic compounds. The filters and sorbent were analysed for polycyclic aromatic hydrocarbons (PAH) formed during combustion. The measurements showed that there was no significant increase in particulate PAH emissions due to the tar compounds...

  19. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    Science.gov (United States)

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  20. Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle (TCRC) system

    International Nuclear Information System (INIS)

    Bao, Junjiang; Lin, Yan; Zhang, Ruixiang; Zhang, Ning; He, Gaohong

    2017-01-01

    Highlights: • A two-stage condensation Rankine cycle (TCRC) system is proposed. • Net power output and thermal efficiency increases by 45.27% and 42.91%. • The effects of the condensation temperatures are analyzed. • 14 working fluids (such as propane, butane etc.) are compared. - Abstract: For the low efficiency of the traditional power generation system with liquefied natural gas (LNG) cold energy utilization, by improving the heat transfer characteristic between the working fluid and LNG, this paper has proposed a two-stage condensation Rankine cycle (TCRC) system. Using propane as working fluid, compared with the combined cycle in the conventional LNG cold energy power generation method, the net power output, thermal efficiency and exergy efficiency of the TCRC system are respectively increased by 45.27%, 42.91% and 52.31%. Meanwhile, the effects of the first-stage and second-stage condensation temperature and LNG vaporization pressure on the performance and cost index of the TCRC system (net power output, thermal efficiency, exergy efficiency and UA) are analyzed. Finally, using the net power output as the objective function, with 14 organic fluids (such as propane, butane etc.) as working fluids, the first-stage and second-stage condensation temperature at different LNG vaporization pressures are optimized. The results show that there exists a first-stage and second-stage condensation temperature making the performance of the TCRC system optimal. When LNG vaporization pressure is supercritical pressure, R116 has the best economy among all the investigated working fluids, and while R150 and R23 are better when the vaporization pressure of LNG is subcritical.

  1. Development and Test of a new Concept for Biomass Producer Gas Engines

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Foged, Esben Vendelbo; Strand, Rune

    The technical requirements and the economical assessment of converting commercial diesel engine gen-sets into high compression spark ignition operation on biomass producer gas have been investigated. Assessments showed that for a 200 kWe gen-set there would be a financial benefit of approximately...... 600.000 DKK corresponding to a reduction of 60% in investment costs compared to the price of a conventional gas engine gen-set. Experimental investigations have been conducted on two identical small scale SI gas engine gen-sets operating on biomass producer gas from thermal gasification of wood....... The engines were operated with two different compression ratios, one with the original compression ratio for natural gas operation 9.5:1, and the second with a compression ratio of 18.5:1 (converted diesel engine). It was shown that high compression ratio SI engine operation was possible when operating...

  2. Partial oxidation process for producing a stream of hot purified gas

    Science.gov (United States)

    Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

    1995-03-28

    A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

  3. Prediction of small spark ignited engine performance using producer gas as fuel

    Directory of Open Access Journals (Sweden)

    N. Homdoung

    2015-03-01

    Full Text Available Producer gas from biomass gasification is expected to contribute to greater energy mix in the future. Therefore, effect of producer gas on engine performance is of great interest. Evaluation of engine performances can be hard and costly. Ideally, they may be predicted mathematically. This work was to apply mathematical models in evaluating performance of a small producer gas engine. The engine was a spark ignition, single cylinder unit with a CR of 14:1. Simulation was carried out on full load and varying engine speeds. From simulated results, it was found that the simple mathematical model can predict the performance of the gas engine and gave good agreement with experimental results. The differences were within ±7%.

  4. Effect of Channel Geometry and Properties of a Vapor-Gas Mixture on Volume Condensation in a Flow through a Nozzle

    Science.gov (United States)

    Sidorov, A. A.; Yastrebov, A. K.

    2018-01-01

    A method of direct numerical solution of the kinetic equation for the droplet size distribution function was used for the numerical investigation of volume condensation in a supersonic vapor-gas flow. Distributions of temperature for the gas phase and droplets, degree of supersaturation, pressure, fraction of droplets by weight, the number of droplets per unit mass, and of the nucleation rate along the channel were determined. The influence of nozzle geometry, mixture composition, and temperature dependence of the mixture properties on the investigated process was evaluated. It has been found that the nozzle divergence angle determines the vapor-gas mixture expansion rate: an increase in the divergence angle enhances the temperature decrease rate and the supersaturation degree raise rate. With an increase or decrease in the partial pressure of incondensable gas, the droplet temperature approaches the gas phase temperature or the saturation temperature at the partial gas pressure, respectively. A considerable effect of the temperature dependence of the liquid surface tension and properties on gas phase parameters and the integral characteristics of condensation aerosol was revealed. However, the difference in results obtained with or without considering the temperature dependence of evaporation heat is negligible. The predictions are compared with experimental data of other investigations for two mixtures: a mixture of heavy water vapor with nitrogen (incondensable gas) or n-nonane vapor with nitrogen. The predictions agree quite well qualitatively and quantitatively with the experiment. The comparison of the predictions with numerical results from other publications obtained using the method of moments demonstrates the usefulness of the direct numerical solution method and the method of moments in a wide range of input data.

  5. Energy consumption in desalinating produced water from shale oil and gas extraction

    OpenAIRE

    Tow, Emily W.; Chung, Hyung Won; Lienhard, John H.; Thiel, Gregory Parker; Banchik, Leonardo David

    2014-01-01

    On-site treatment and reuse is an increasingly preferred option for produced water management in unconventional oil and gas extraction. This paper analyzes and compares the energetics of several desalination technologies at the high salinities and diverse compositions commonly encountered in produced water from shale formations to guide technology selection and to inform further system development. Produced water properties are modeled using Pitzer's equations, and emphasis is placed on how t...

  6. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in

  7. Study of flue gas condensers with reference to corrosion risks, biofuel quality, techniques and choice of material; Kartlaeggning av roekgaskondenseringsanlaeggningar med avseende paa korrosionsrisker, biobraenslekvaliteter, teknik och materialval

    Energy Technology Data Exchange (ETDEWEB)

    Stenqvist, Per-Aake

    2012-02-15

    Corrosion in flue gas appliances installed in small and medium sized biomass fired boiler plants has become a problem in an increasing number of sites around Sweden. A trend seems to be that the problems are greater in those plants that use so called terminal chips than those that utilize more homogeneous fuels. In pace with the increasing number of biomass power plants in the country, the demand for cheaper fuel is increased. Through the increasing number of fuel terminals the market is provided even with biofuel mixes in the form of traditional wood chips mixed with bark, forest residue, sawdust, willow, returned wood, etc. Both users and suppliers of boiler and flue gas systems, and fuel suppliers have currently no clear rules or guidelines for relationships between different chemical properties of fuels, technologies, operating data and material. In this report has experience in the form of questionnaires completed by field visits, interviews of operational personnel and literature studies been compiled from a number of plants using different types of flue gas condensers for increased energy output from various types of bio fuels. The purpose of this assignment is to survey the flue gas condensation plant in biomass fired boiler plants for the presence of corrosion damage made in relation to the use of technologies and fuel qualities. A milestone is that the report will be able to be used to support the selection of materials and appropriate techniques for both new facilities and for the repair and improvement of existing ones. Another objective is to compile existing experience and assessment criteria which are reported in the literature. This report describes some typical construction techniques, whenever applicable harmful images and links to various substances present in fuels, ash and condensate

  8. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  9. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants

    OpenAIRE

    Savino, Francesco; Cordisco, Lisa; Tarasco, Valentina; Locatelli, Emanuela; Di Gioia, Diana; Oggero, Roberto; Matteuzzi, Diego

    2011-01-01

    Abstract Background Infantile colic is a common disturb within the first 3 months of life, nevertheless the pathogenesis is incompletely understood and treatment remains an open issue. Intestinal gas production is thought to be one of the causes of abdominal discomfort in infants suffering from colic. However, data about the role of the amount of gas produced by infants' colonic microbiota and the correlation with the onset of colic symptoms are scanty. The benefit of supplementation with lac...

  10. Ion transport membrane reactor systems and methods for producing synthesis gas

    Science.gov (United States)

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  11. Alternate method for gas measurement to offshore wells producing by plunger lift

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sergio Jose Goncalves e [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao; Mota, Francisco das Chagas [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The purpose of this paper is to describe an alternate method for gas measurement to wells producing by conventional plunger lift to a two phase separator in offshore production systems. The principle of the plunger lift is basically the use of a free piston acting as a mechanical interface between the formation gas and the produced liquids, greatly increasing the well's lifting efficiency. However, when the piston reaches the surface a liquid slug is produced through the flowline and it propagates into the separator where the phases are measured. Usually, orifice meter is widely used in separators to measure steady-state gas flow rate, but when intermittent flow is present, the gas causes the signal saturation of the differential pressure element ({delta}P), resulting in measurement distortion. The solution proposed in this work to estimate the gas flow rate during the liquid slug it was obtained through the mathematical modeling of the separator and with the use of System Identification Theory. Applying the ARX model it was possible to get the best fit to the collected data. So, with this model and its recursive variant (RARX) it was possible to prove that, with reasonable forecast degree, the signal of the gas flow rate can be recovered by starting from the signal of the pressure control valve of the separator. (author)

  12. Development and test of a new concept for biomass producer gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Vendelbo Foged, E.; Strand, R.; Birk Henriksen, U.

    2010-02-15

    The technical requirements and the economical assessment of converting commercial diesel engine gen-sets into high compression spark ignition operation on biomass producer gas have been investigated. Assessments showed that for a 200 kW{sub e} gen-set there would be a financial benefit of approximately 600.000 DKK corresponding to a reduction of 60% in investment costs compared to the price of a conventional gas engine gen-set. Experimental investigations have been conducted on two identical small scale SI gas engine gen-sets operating on biomass producer gas from thermal gasification of wood. The engines were operated with two different compression ratios, one with the original compression ratio for natural gas operation 9.5:1, and the second with a compression ratio of 18.5:1 (converted diesel engine). It was shown that high compression ratio SI engine operation was possible when operating on this specific biomass producer gas. The results showed an increase in the electrical efficiency from 30% to 34% when the compression ratio was increased. (author)

  13. Foreign activities of German producers of petroleum and natural gas; Auslandsaktivitaeten deutscher Erdoel-ErdgasProduzenten

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-04-15

    The contribution under consideration is engaged in the foreign activities of German producers of natural gas and oil: Wintershall Holding AG (Kassel), RWE DEA AG (Hamburg), Petro Canada Germany GmbH (Essen), E.ON Ruhrgas AG (Essen), VNG Norge AG (Leipzig), Bavaria gas GmbH (Munich) and EWE AG (Oldenburg). Data according to the petroleum of petroleum and natural gas abroad are published for the period between 2007 and 2009. Besides this, the activities of these companies in individual countries are specified exactly.

  14. Producer gas fuelling of a 20kW output engine by gasification of solid biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hollingdale, A C; Breag, G R; Pearce, D

    1988-11-01

    Motive power requirements in the range up to 100 kW shaft power are common in developing country processing operations. Producer gas-fuelled systems based upon a relatively cheap and simple manually operated gasifier or reactor using readily available biomass feedstock can offer in some cases an attractive alternative to fossil-fuelled power units. This bulletin outlines research and development work by the Industrial Development Department of the Overseas Development Natural Resources Institute for 20 kW shaft power output from producer gas derived from solid biomass. Biomass materials such as wood or shells can be carbonized to form charcoal or left in the natural uncarbonized state. In this work both carbonized and uncarbonized biomass fuel has been used to provide producer gas to fuel a Ford 2274E engine, an industrial version of a standard vehicle spark-ignition engine. Cross-draught and down-draught reactor designs were evaluated during trials with this engine. Also different gas cleaning and cooling arrangements were tested. Particular emphasis was placed on practical aspects of reactor/engine operation. This work follows earlier work with a 4 kW shaft power output system using charcoal-derived producer gas. (author).

  15. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale

    Science.gov (United States)

    Orem, William H.; Tatu, Calin A.; Varonka, Matthew S.; Lerch, Harry E.; Bates, Anne L.; Engle, Mark A.; Crosby, Lynn M.; McIntosh, Jennifer

    2014-01-01

    Organic substances in produced and formation water from coalbed methane (CBM) and gas shale plays from across the USA were examined in this study. Disposal of produced waters from gas extraction in coal and shale is an important environmental issue because of the large volumes of water involved and the variable quality of this water. Organic substances in produced water may be environmentally relevant as pollutants, but have been little studied. Results from five CBM plays and two gas shale plays (including the Marcellus Shale) show a myriad of organic chemicals present in the produced and formation water. Organic compound classes present in produced and formation water in CBM plays include: polycyclic aromatic hydrocarbons (PAHs), heterocyclic compounds, alkyl phenols, aromatic amines, alkyl aromatics (alkyl benzenes, alkyl biphenyls), long-chain fatty acids, and aliphatic hydrocarbons. Concentrations of individual compounds range from gas shale unimpacted by production chemicals have a similar range of compound classes as CBM produced water, and TOC levels of about 8 mg/L. However, produced water from the Marcellus Shale using hydraulic fracturing has TOC levels as high as 5500 mg/L and a range of added organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at levels of 1000 s of μg/L for individual compounds. Levels of these hydraulic fracturing chemicals and TOC decrease rapidly over the first 20 days of water recovery and some level of residual organic contaminants remain up to 250 days after hydraulic fracturing. Although the environmental impacts of the organics in produced water are not well defined, results suggest that care should be exercised in the disposal and release of produced waters containing these organic substances into the environment because of the potential toxicity of many of these substances.

  16. Molecular equilibrium with condensation

    International Nuclear Information System (INIS)

    Sharp, C.M.; Huebner, W.F.

    1990-01-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated. 18 refs

  17. Radionuclides in produced water from Norwegian oil and gas installations - concentrations and bioavailability

    International Nuclear Information System (INIS)

    Eriksen, D.Oe.; Sidhu, R.; Stralberg, E.; Iden, K.I.; Hylland, K.; Ruus, A.; Roeyset, O.; Berntssen, M.H.G.; Rye, H.

    2006-01-01

    Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226 Ra and 228 Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. This study reports results indicating that the presence of added chemicals such as scale inhibitors in produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bioavailability of radium (and barium) will be larger than anticipated. Also, the bioavailability of food-borne radium is shown to increase due to presence of such chemicals. (author)

  18. Radionuclides in produced water from Norwegian oil and gas installations — Concentrations and bioavailability

    Science.gov (United States)

    Eriksen, D. Ø.; Sidhu, R.; Strålberg, E.; Iden, K. I.; Hylland, K.; Ruus, A.; Røyset, O.; Berntssen, M. H. G.; Rye, H.

    2006-01-01

    Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226Ra and 228Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. This study reports results indicating that the presence of added chemicals such as scale inhibitors in produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bioavailability of radium (and barium) will be larger than anticipated. Also, the bioavailability of food-borne radium is shown to increase due to presence of such chemicals.

  19. Increasing gas producer profitability with virtual well visibility via an end-to-end, wireless Internet gas monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, M.; Coleman, K.; Beck, R.; Lyon, R.; Potts, R. [Northrock Resources Ltd., Calgary, AB (Canada); Benterud, K. [Zed.i solutions, Calgary, AB (Canada)

    2003-07-01

    Most gas producing companies still use 100-year old technology to measure gas volumes because of the prohibitive costs of implementing corporate wide electronic information systems to replace circular mechanical chart technology. This paper describes how Northrock Resources Ltd. increased profitability using Smart-Alek{sup TM} while avoiding high implementation costs. Smart-Alek is a new type of fully integrated end-to-end electronic gas flow measurement (GFM) system based on Field Intelligence Network and End User Interference (FINE). Smart-Alek can analyze gas production through public wireless communications and a web-browser delivery system. The system has enabled Northrock to increase gas volumes with more accurate measurement and reduced downtime. In addition, operating costs were also decreased because the frequency of well visits was reduced and the administrative procedures of data collection was more efficient. The real-time well visibility of the tool has proven to be very effective in optimizing business profitability. 9 refs., 1 tab., 9 figs.

  20. Large Mass Flux Differences for Opposite Flow Directions of a Condensable Gas through an Asymmetric Porous Membrane

    Czech Academy of Sciences Publication Activity Database

    Uchytil, Petr; Loimer, T.

    2014-01-01

    Roč. 470, NOV 15 (2014), s. 451-457 ISSN 0376-7388 R&D Projects: GA MŠk 7AMB12AT010; GA MŠk(CZ) 7AMB14AT011 Institutional support: RVO:67985858 Keywords : condensation * vapor permeation * asymmetric membrane s Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 5.056, year: 2014

  1. Pyrolysis of blended animal manures to produce combustible gas and value-added charcoal adsorbent

    Science.gov (United States)

    Blended swine solids, chicken litter, and rye grass were pyrolyzed using a skid-mounted sytem. Produced gas composition was analyzed for major hydrocarbons and S-containing compounds. Charcoal was analyzed for its surface functional groups, contact angles, HHV, and total element contents. Some of th...

  2. Analysis of heat and mass transfer to determine heat loss and the rate of condensation of the MVSTs off-gas ducts

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Yang, G.; Bigzadeh, E.; Walker, J.F.; Abraham, T.J.

    1992-01-01

    Reduction of the existing nuclear waste in the Melton Valley Storage Tanks (MVSTs) at the Oak Ridge National Laboratory (ORNL) is of utmost concern to the scientists at this facility. This paper provides proof that a combination of vault heating, sparged air heating, and prevention of condensation is the best alternative to achieve this goal. Therefore, in this study a general system of mathematical equations has been developed taking into account all of the parameters affecting evaporation and condensation. This evaporation process has been analyzed by the careful modeling of a bubble chain through the extremely viscous, radioactive liquid contained in the storage tanks. This paper discusses in detail the evaporation procedure using bubble formation, air velocity, and determining the rate at which this liquid waste can be removed from the MVSTs by evaporation under different conditons of the sparging air. An additional objective is to study the heating/cooling of the condensation process of the off-gas piping inside the vault. A laboratory scale model has also been assembled for this purpose at ORNL to verify the accuracy of the mathematical modeling. A comparison of the experimental findings with the mathematical modeling shows excellent agreement. (orig.)

  3. Olivine, dolomite and ceramic filters in one vessel to produce clean gas from biomass.

    Science.gov (United States)

    Rapagnà, Sergio; Gallucci, Katia; Foscolo, Pier Ugo

    2018-01-01

    Heavy organic compounds produced during almond shells gasification in a steam and/or air atmosphere, usually called tar, are drastically reduced in the product gas by using simultaneously in one vessel a ceramic filter placed in the freeboard and a mixture of olivine and dolomite particles in the fluidized bed of the gasifier. The content of tar in the product gas during a reference gasification test with air, in presence of fresh olivine particles only, was 8600mg/Nm 3 of dry gas. By gasifying biomass with steam at the same temperature level of 820°C in a bed of olivine and dolomite (20% by weight), and in the presence of a catalytic ceramic filter inserted in the freeboard of the fluidized bed gasifier, the level of tar was brought down to 57mg/Nm 3 of dry producct gas, with a decrease of more than two orders of magnitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. U.S., Canadian pipelines producers lining up to meet Mexican gas demand growth

    International Nuclear Information System (INIS)

    Koen, A.D.

    1992-01-01

    This paper reports on prospects for continued strong growth in Mexican demand for natural gas imports that have U.S. and Canadian producers and pipelines queueing up to serve expected demand. In 1991, more than 25 U.S. companies exported a combined 61.7 bcf of gas into Mexico, an increase of more than 390% from 1990's total of 15.7 bcf. According to the Department of Energy Office of Fuels Programs (OFP), about 27.5 bcf of gas left the U.S. for Mexico in fourth quarter 1991 alone, an average 299 MMcfd. DOE has granted short term authorization to more than 65 countries to export gas into Mexico. Another 25 companies have short term export applications pending

  5. Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery

    International Nuclear Information System (INIS)

    Li, Yuzhong; Yan, Min; Zhang, Liqiang; Chen, Guifang; Cui, Lin; Song, Zhanlong; Chang, Jingcai; Ma, Chunyuan

    2016-01-01

    Highlights: • A method is developed for deep cooling of flue gas in coal-fired boilers. • The method can recover both latent heat and water from flue gas. • The method utilizes FGD scrubber as a deep cooling exchanger. • The method adopts the direct heat exchange mode to avoid the corrosion problem. - Abstract: Flue gas waste heat recovery and utilization is an efficient means to improve the energy efficiency of coal-fired power plants. At present, the surface corrosion and fouling problems of heat exchanger hinder the development of flue gas deep cooling. In this study, a novel flue gas deep cooling method that can reduce flue gas temperature below the dew point of vapor to recover latent heat and obtain clean water simultaneously is proposed to achieve improved energy efficiency. The heat transfer mode of this method is the direct contact mode, which takes the scrubber, e.g. the flue gas desulfurization (FGD) scrubber, as the deep cooling exchanger. The flash evaporation and condensation (FEC) device and heat pump (HP) are utilized to provide low-temperature medium, such as FGD slurry or water, for washing and deep cooling flue gas, to collect recovered water, and to absorb recovered waste heat. This method is called as the FEC–HP method. This paper elaborated on two optional models of the proposed method. The mechanism for recovering heat and water was also analyzed using the customized flue gas humidity chart, and the method to quantitate recovered heat and water, as well as the results of the case of a 300 MW coal-fired generator set were provided. Net present value calculations showed that this method is profitable in the scenario of burning high-water-content coals. Several potential advantages of this method and suggestions for practical application were also discussed.

  6. The closure of European nuclear power plants: a commercial opportunity for the gas-producing countries

    International Nuclear Information System (INIS)

    Pauwels, J-P.; Swartenbroekx, C.

    2000-01-01

    The planned closure of nuclear power plants in Sweden, Germany, Belgium, Spain and the Netherlands and their hypothetical closure in the United Kingdom and Switzerland - two countries where this question remains open - will require their replacement by other types of production capacity, mainly gas turbine combined-cycle power stations (GTCCs). The increase in efficiency of GTCCs and the lower carbon content of natural gas favour the use of gas for electricity generation over coal. However, carbon dioxide emissions are unavoidable and, in the context of the Kyoto Protocol, supplementary measures must be taken to compensate, where possible, for the resulting increases in emissions. The replacement of nuclear plants with a 35-40 year lifetime by up-to-date GTCCs will require some 62 billion cubic metres per year of natural gas, resulting in an emissions increase of about 130 million tonnes per year of CO 2 . The replacement of polluting coal-fired and oil-fired plants by GTCCs will reduce CO 2 emissions, but will also require some extra 42 bcm/y of natural gas, at an (unrealistic) high cost. In short, gas-producing countries will benefit from the market breakthrough of their 'clean' fuel, thanks to the GTCCs, and gas demand will be reinforced by the abandonment of nuclear power. (author)

  7. CO2 capture by Condensed Rotational Separation

    NARCIS (Netherlands)

    Benthum, van R.J.; Kemenade, van H.P.; Brouwers, J.J.H.; Golombok, M.

    2010-01-01

    Condensed Rotational Separation (CRS) technology is a patented method to upgrade gas mixtures. A novel application is thecapture of CO2 from coal-combustion fired power stations: Condensed Contaminant Centrifugal Separation in Coal Combustion(C5sep). CRS involves partial condensation of a gas

  8. Desalination of Produced Water via Gas Hydrate Formation and Post Treatment

    OpenAIRE

    Niu, Jing

    2012-01-01

    This study presents a two-step desalination process, in which produced water is cleaned by forming gas hydrate in it and subsequently dewatering the hydrate to remove the residual produced water trapped in between the hydrate crystals. All experiments were performed with pressure in the range of 450 to 800psi and temperature in the range of -1 to 1°C using CO? as guest molecule for the hydrate crystals. The experiments were conducted using artificial produced waters containing different amoun...

  9. Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Seggiani, Maurizia, E-mail: m.seggiani@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Puccini, Monica, E-mail: m.puccini@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Raggio, Giovanni, E-mail: g.raggio@tiscali.it [Italprogetti Engineering SPA, Lungarno Pacinotti, 59/A, 56020 San Romano (Pisa) (Italy); Vitolo, Sandra, E-mail: s.vitolo@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was

  10. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Derr, R.M.; Pope, D.H.

    1995-12-31

    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI) in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.

  11. Sn and Cu oxide nanoparticles deposited on TiO{sub 2} nanoflower 3D substrates by Inert Gas Condensation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kusior, A., E-mail: akusior@agh.edu.pl [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kollbek, K. [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kowalski, K. [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Borysiewicz, M. [Institute of Electron Technology, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Wojciechowski, T. [Institute of Physics Polish Academy of Science, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M. [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Zakrzewska, K. [Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2016-09-01

    Graphical abstract: - Highlights: • Inert Gas Condensation method yields non-agglomerated nanoparticles. • The growth of nanoparticles is controllable at the level of deposition. • Electrical conductivity increases with respect to pure nanostructured TiO{sub 2}. - Abstract: Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO{sub 2} 3D substrates obtained in the oxidation process of Ti-foil in 30% H{sub 2}O{sub 2}. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity.

  12. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces.

    Science.gov (United States)

    Spezia, Riccardo; Martínez-Nuñez, Emilio; Vazquez, Saulo; Hase, William L

    2017-04-28

    In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'. © 2017 The Author(s).

  13. Research on How to Remove Efficiently the Condensate Water of Sampling System

    International Nuclear Information System (INIS)

    Cho, SungHwan; Kim, MinSoo; Choi, HoYoung; In, WonHo

    2015-01-01

    Corrosion was caused in the measurement chamber inside the O 2 and H 2 analyzer, and thus measuring the concentration of O 2 and H 2 was not possible. It was confirmed that the cause of the occurrence of condensate water is due to the temperature difference caused during the process of the internal gas of the disposal and degasifier tank being brought into the analyzer. Thus, a heating system was installed inside and outside of the sampling panel for gas to remove generated condensate water in the analyzer and pipe. For the case where condensate water is not removed by the heating system, drain port is also installed in the sampling panel for gas to collect the condensate water of the sampling system. It was verified that there is a great volume of condensate water existing in the pipe line during the purging process after installing manufactured goods. The condensate water was fully removed by the installed heating cable and drain port. The heating cable was operated constantly at a temperature of 80 to 90 .deg. C, which allows the precise measurement of gas concentration and longer maintenance duration by blocking of the condensate water before being produced. To install instruments for measuring the gas, such as an O 2 and H 2 analyzer etc., consideration regarding whether there condensate water is present due to the temperature difference between the measuring system and analyzer is required

  14. Research on How to Remove Efficiently the Condensate Water of Sampling System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, SungHwan; Kim, MinSoo; Choi, HoYoung; In, WonHo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Corrosion was caused in the measurement chamber inside the O{sub 2} and H{sub 2} analyzer, and thus measuring the concentration of O{sub 2} and H{sub 2} was not possible. It was confirmed that the cause of the occurrence of condensate water is due to the temperature difference caused during the process of the internal gas of the disposal and degasifier tank being brought into the analyzer. Thus, a heating system was installed inside and outside of the sampling panel for gas to remove generated condensate water in the analyzer and pipe. For the case where condensate water is not removed by the heating system, drain port is also installed in the sampling panel for gas to collect the condensate water of the sampling system. It was verified that there is a great volume of condensate water existing in the pipe line during the purging process after installing manufactured goods. The condensate water was fully removed by the installed heating cable and drain port. The heating cable was operated constantly at a temperature of 80 to 90 .deg. C, which allows the precise measurement of gas concentration and longer maintenance duration by blocking of the condensate water before being produced. To install instruments for measuring the gas, such as an O{sub 2} and H{sub 2} analyzer etc., consideration regarding whether there condensate water is present due to the temperature difference between the measuring system and analyzer is required.

  15. Method for increasing the calorific value of gas produced by the in situ combustion of coal

    Science.gov (United States)

    Shuck, Lowell Z.

    1978-01-01

    The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.

  16. Experience in producing LEU fuel elements for the RSG-GAS

    International Nuclear Information System (INIS)

    Suripto, A.; Soentono, S.

    1991-01-01

    To achieve a self-reliance in the operation of the 30 MW Multipurpose Research Reactor at Serpong (the RSG-GAS), a fuel element production facility has been constructed nearby. The main task of the facility is to produce MTR type fuel and control elements containing U 3 O 8 -Al dispersion LEU fuel for the RSG-GAS. The hot commissioning activity has started in early 1988 after completion of the cold commissioning using depleted uranium in 1987, marking the beginning of the real production activity. This paper briefly describes the main features of the fuel production facility, the production experience gained so far, and its current production activity. (orig.)

  17. How is Order 636 affecting the gas producing industry? -- Part 4

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This paper is an interview with a representative of the natural gas industry regarding the impacts of the new Order 636 recently approved by the Federal Energy Regulatory Commission. The regulations are related to natural gas production and regulated pipeline distribution. The goal is to help establish long-term contracts between users and producers with a stable transportation system allowing both competition and price controls. The interview discusses the economic aspects of this regulation, the effects on marketing and production, and the ability of the regulation to actually be a catalyst for long-term contract agreements

  18. Measurements of hydrogen gas stopping efficiency for tin ions from laser-produced plasma

    Science.gov (United States)

    Abramenko, D. B.; Spiridonov, M. V.; Krainov, P. V.; Krivtsun, V. M.; Astakhov, D. I.; Medvedev, V. V.; van Kampen, M.; Smeets, D.; Koshelev, K. N.

    2018-04-01

    Experimental studies of stopping of ion fluxes from laser-produced plasma by a low-pressure gas atmosphere are presented. A modification of the time-of-flight spectroscopy technique is proposed for the stopping cross-sectional measurements in the ion energy range of 0.1-10 keV. The application of the proposed technique is demonstrated for Sn ion stopping by H2 gas. This combination of elements is of particular importance for the development of plasma-based sources of extreme ultraviolet radiation for lithographic applications.

  19. U.K., Norway producers push gas exports to mainland Europe

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that producers in Norway and the U.K. are moving toward their goals of increasing natural gas exports to mainland Europe. Troll and Sleipner fields on the Norwegian continental shelf, along with the Zeepipe and Europipe lines linking Norway with mid-Europe, are the main building blocks of the Troll gas sales agreement, the foundation for Norway's plans. Total investment will exceed $11 billion. The Troll agreement involves about 28 billion cu m of gas and is currently the subject of negotiations between Troll field partners and the buyers. In 1986, when the contract was first agreed, it was a buyer's market. Increasing demand in the last 2 years has changed that. Also, new taxes on gas and oil products have driven both parties back to the negotiating table. Adjustments cane be called for every 3 years under the Troll contract; this is the first time parties have invoked the provision. Torstein Indrebo of Norsk Hydro says the contract gas price is based on prices of competing energy sources, such as oil, coal fired electricity, and nuclear power. Because volumes are so large, he says, small adjustments in the gas price have a large effect

  20. The Integration of Gasification Systems with Gas Engine to Produce Electrical Energy from Biomass

    Science.gov (United States)

    Siregar, K.; Alamsyah, R.; Ichwana; Sholihati; Tou, S. B.; Siregar, N. C.

    2018-05-01

    The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis, and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactor were 900 mm and 1000 mm respectively. The method used here were the design the Detailed Engineering Design (DED), assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 hours with performance engine of 84% and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kWh-electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2eq/MJ. Electrical production cost for Biomass Power Generation is about Rp.1.500,/kWh which is cheaper than Solar Power Generation which is about of Rp. 3.300,-/kWh.

  1. Water Condensation

    DEFF Research Database (Denmark)

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund

    2014-01-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics......, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address...

  2. Geochemical and strontium isotope characterization of produced waters from Marcellus Shale natural gas extraction.

    Science.gov (United States)

    Chapman, Elizabeth C; Capo, Rosemary C; Stewart, Brian W; Kirby, Carl S; Hammack, Richard W; Schroeder, Karl T; Edenborn, Harry M

    2012-03-20

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ~375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε(Sr)(SW) = +13.8 to +41.6, where ε(Sr) (SW) is the deviation of the (87)Sr/(86)Sr ratio from that of seawater in parts per 10(4)); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  3. Managing produced water from coal seam gas projects: implications for an emerging industry in Australia.

    Science.gov (United States)

    Davies, Peter J; Gore, Damian B; Khan, Stuart J

    2015-07-01

    This paper reviews the environmental problems, impacts and risks associated with the generation and disposal of produced water by the emerging coal seam gas (CSG) industry and how it may be relevant to Australia and similar physical settings. With only limited independent research on the potential environmental impacts of produced water, is it necessary for industry and government policy makers and regulators to draw upon the experiences of related endeavours such as mining and groundwater extraction accepting that the conclusions may not always be directly transferrable. CSG is widely touted in Australia as having the potential to provide significant economic and energy security benefits, yet the environmental and health policies and the planning and regulatory setting are yet to mature and are continuing to evolve amidst ongoing social and environmental concerns and political indecision. In this review, produced water has been defined as water that is brought to the land surface during the process of recovering methane gas from coal seams and includes water sourced from CSG wells as well as flowback water associated with drilling, hydraulic fracturing and gas extraction. A brief overview of produced water generation, its characteristics and environmental issues is provided. A review of past lessons and identification of potential risks, including disposal options, is included to assist in planning and management of this industry.

  4. Application of carbon isotopes to detect seepage out of coalbed natural gas produced water impoundments

    International Nuclear Information System (INIS)

    Sharma, Shikha; Baggett, Joshua K.

    2011-01-01

    Highlights: → Coalbed natural gas extraction results in large amount of produced water. → Risk of deterioration of ambient water quality. → Carbon isotope natural tracer for detecting seepage from produced water impoundments. - Abstract: Coalbed natural gas (CBNG) production from coal bed aquifers requires large volumes of produced water to be pumped from the subsurface. The produced water ranges from high quality that meets state and federal drinking water standards to low quality due to increased salinity and/or sodicity. The Powder River Basin of northeastern Wyoming is a major coalbed natural gas producing region, where water quality generally decreases moving from the southeastern portion of the basin towards the center. Most produced water in Wyoming is disposed into impoundments and other surface drainages, where it may infiltrate into shallow groundwater. Groundwater degradation caused by infiltration of CBNG produced water holding impoundments into arid, soluble salt-rich soils is an issue of immense importance because groundwater is a major source for stock water, irrigation, and drinking water for many small communities in these areas. This study examines the potential of using stable C isotope signatures of dissolved inorganic C (δ 13 C DIC ) to track the fate of CBNG produced water after it is discharged into the impoundments. Other geochemical proxies like the major cations and major anions were used in conjunction with field water quality measurements to understand the geochemical differences between CBNG produced waters and ambient waters in the study area. Samples were collected from the CBNG discharge outfalls, produced water holding impoundments, and monitoring wells from different parts of the Powder River Basin and analyzed for δ 13 C DIC . The CBNG produced waters from outfalls and impoundments have positive δ 13 C DIC values that fall within the range of +12 per mille to +22 per mille, distinct from the ambient regional surface and

  5. Middle East gas: utilization, development and policies

    International Nuclear Information System (INIS)

    Mabro, R.

    1997-01-01

    The relationships between gas and liquid hydrocarbon fuels are interesting.Gas can be and being used to boost oil production and recovery factors in oil fields. This is proper use of gas. Gas displaces oil as a fuel in energy markets but yields a low net back. If all gas and oil producers formed a single cartel they will produce oil first and delay gas. But they are not. As a result the drive for gas harms oil and there is therefore an opportunity cost which gas producers who, in many instances, are also oil exporters, should consider. The economics of gas often depend on the condensates. In some instance gas is the economics by-product of condensates and not the other way round. Thus more gas means also more oil supplies in international markets

  6. Middle East gas: utilization, development and policies

    Energy Technology Data Exchange (ETDEWEB)

    Mabro, R [Oxford Inst. for Energy Studies (United Kingdom)

    1997-06-01

    The relationships between gas and liquid hydrocarbon fuels are interesting.Gas can be and being used to boost oil production and recovery factors in oil fields. This is proper use of gas. Gas displaces oil as a fuel in energy markets but yields a low net back. If all gas and oil producers formed a single cartel they will produce oil first and delay gas. But they are not. As a result the drive for gas harms oil and there is therefore an opportunity cost which gas producers who, in many instances, are also oil exporters, should consider. The economics of gas often depend on the condensates. In some instance gas is the economics by-product of condensates and not the other way round. Thus more gas means also more oil supplies in international markets.

  7. GE`s worldwide experience with IFO based gypsum producing flue gas desulfurization systems

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, A. [GE Environmental Systems, Lebanon, PA (United States)

    1994-12-31

    The In-Situ Forced Oxidation (IFO) process to produce gypsum in a commercial scale flue gas desulfurization (FGD) system was first demonstrated by GE Environmental Systems in 1980 at the Monticello Generating Station of Texas Utilities. Since then, the IFO technology developed and demonstrated by GE has become the industry standard and is used extensively on a world-wide basis to produce both commercial and disposable-grade gypsum. The paper gives an overview of the development, demonstration, commercial design and current status of the IFO technology.

  8. Thermodynamic measurement of the sound velocity of a Bose gas across the transition to Bose–Einstein condensation

    Science.gov (United States)

    Fritsch, A. R.; Tavares, P. E. S.; Vivanco, F. A. J.; Telles, G. D.; Bagnato, V. S.; Henn, E. A. L.

    2018-05-01

    We present an alternative method for determining the sound velocity in atomic Bose–Einstein condensates, based on thermodynamic global variables. The total number of trapped atoms was as a function of temperature carefully studied across the phase transition, at constant volume. It allowed us to evaluate the sound velocity resulting in consistent values from the quantum to classical regime, in good agreement with previous results found in literature. We also provide some insight about the dominant sound mode (thermal or superfluid) across a wide temperature range.

  9. Precision closed bomb calorimeter for testing flame and gas producing initiators

    Science.gov (United States)

    Carpenter, D. R., Jr.; Taylor, A. C., Jr.

    1972-01-01

    A calorimeter has been developed under this study to help meet the needs of accurate performance monitoring of electrically or mechanically actuated flame and gas producing devices, such as squib-type initiators. A ten cubic centimeter closed bomb (closed volume) calorimeter was designed to provide a standard pressure trace and to measure a nominal 50 calorie output, using the basic components of a Parr Model 1411 calorimeter. Two prototype bombs were fabricated, pressure tested to 2600 psi, and extensively evaluated.

  10. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2007-12-01

    Full Text Available Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned regarding production of synthetic diesel fuel, known as GTL (Gas To Liquid. Most of the future GTL plants are planned in oil exporting countries, such are Qatar and Nigeria, where natural gas as by-product of oil production is being flared, losing in that way precious energy and profit. In that way, otherwise flared natural gas, will be transformed into synthetic diesel fuel which can be directly used in all modern diesel engines. Furthermore, fossil fuel transportation and distribution technology grid can be used without any significant changes. According to lower emissions of harmful gasses during combustion than fossil diesel, this fuel could in the future play a significant part of EU efforts to reach 23% of alternative fuel share till 2020., which are now mostly relied on biodiesel, LPG (liquefied petroleum gas and CNG (compressed natural gas.

  11. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Landi, G. T.; Romero, S. A.; Santos, A. D. [Departamento de Fisica dos Materiais e Mecanica, Laboratorio de Materiais Magneticos, Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05314-970 Sao Paulo, SP (Brazil)

    2010-03-15

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  12. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus

    International Nuclear Information System (INIS)

    Landi, G. T.; Romero, S. A.; Santos, A. D.

    2010-01-01

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  13. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  14. Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction.

    Science.gov (United States)

    Murali Mohan, Arvind; Hartsock, Angela; Bibby, Kyle J; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  15. Condensed Matter Nuclear Science

    Science.gov (United States)

    Biberian, Jean-Paul

    2006-02-01

    into characteristics of X-ray emission laser beams from solidstate cathode medium of high-current glow discharge / A. B. Karabut. Charged particles from Ti and Pd foils / L. Kowalski ... [et al.]. Cr-39 track detectors in cold fusion experiments: review and perspectives / A. S. Roussetski. Energetic particle shower in the vapor from electrolysis / R. A. Oriani and J. C. Fisher. Nuclear reactions produced in an operating electrolysis cell / R. A. Oriani and J. C. Fisher. Evidence of microscopic ball lightning in cold fusion experiments / E. H. Lewis. Neutron emission from D[symbol] gas in magnetic fields under low temperature / T. Mizuno ... [et al.]. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation / A. G. Lipson ... [et al.]. H-D permeation. Observation of nuclear transmutation reactions induced by D[symbol] gas permeation through Pd complexes / Y. Iwamura ... [et al.]. Deuterium (hydrogen) flux permeating through palladium and condensed matter nuclear science / Q. M. Wei ... [et al.]. Triggering. Precursors and the fusion reactions in polarized Pd/D-D[symbol]O system: effect of an external electric field / S. Szpak, P. A. Mosier-Boss, and F. E. Gordon. Calorimetric and neutron diagnostics of liquids during laser irradiation / Yu. N. Bazhutov ... [et al.]. Anomalous neutron capture and plastic deformation of Cu and Pd cathodes during electrolysis in a weak thermalized neutron field: evidence of nuclei-lattice exchange / A. G. Lipson and G. H. Miley. H-D loading. An overview of experimental studies on H/Pd over-loading with thin Pd wires and different electrolytic solutions / A. Spallone ... [et al.] -- 3. Transmutations. Photon and particle emission, heat production, and surface transformation in Ni-H system / E. Campari ... [et al.]. Surface analysis of hydrogen-loaded nickel alloys / E. Campari ... [et al.]. Low-energy nuclear reactions and the leptonic monopole / G. Lochak and L. Urutskoev. Results

  16. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, John M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-29

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  17. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes

  18. Vortices in trapped Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Jackson, B.

    2000-09-01

    In this thesis we solve the Gross-Pitaevskii equation numerically in order to model the response of trapped Bose-Einstein condensed gases to perturbations by electromagnetic fields. First, we simulate output coupling of pulses from the condensate and compare our results to experiments. The excitation and separation of eigenmodes on flow through a constriction is also studied. We then move on to the main theme of this thesis: the important subject of quantised vortices in Bose condensates, and the relation between Bose-Einstein condensation and superfluidity. We propose methods of producing vortex pairs and rings by controlled motion of objects. Full three-dimensional simulations under realistic experimental conditions are performed in order to test the validity of these ideas. We link vortex formation to drag forces on the object, which in turn is connected with energy transfer to the condensate. We therefore argue that vortex formation by moving objects is intimately related to the onset of dissipation in superfluids. We discuss this idea in the context of a recent experiment, using simulations to provide evidence of vortex formation in the experimental scenario. Superfluidity is also manifest in the property of persistent currents, which is linked to vortex stability and dynamics. We simulate vortex line and ring motion, and find in both cases precessional motion and thermodynamic instability to dissipation. Strictly speaking, the Gross-Pitaevskii equation is valid only for temperatures far below the BEC transition. We end the thesis by describing a simple finite-temperature model to describe mean-field coupling between condensed and non-condensed components of the gas. We show that our hybrid Monte-Carlo/FFT technique can describe damping of the lowest energy excitations of the system. Extensions to this model and future research directions are discussed in the conclusion. (author)

  19. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Guangul, F M; Sulaiman, S A; Ramli, A

    2013-01-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  20. Gold nanoparticles and films produced by a laser ablation/gas deposition (LAGD) method

    International Nuclear Information System (INIS)

    Kawakami, Yuji; Seto, Takafumi; Yoshida, Toshinobu; Ozawa, Eiichi

    2002-01-01

    Gold nanoparticles have great potential for various nanoelectronic applications such as single electron transistors, an infrared absorption sensor and so on. It is very important to understand and control the size distribution of the particles for such a variety of applications. In this paper, we report the size distribution of gold nanoparticles and the relationship between the nanoparticle-films and the electrical property produced by a laser ablation method. Gold nanoparticle-films were prepared by a technique, which sprays nanoparticles on the substrate through a nozzle. We call it a gas deposition method. The nanoparticles were generated by the nanosecond pulsed Nd:YAG laser ablation of a gold substrate under a low-pressure inert gas atmosphere. The ambient pressure was changed to control the average size and their distribution. The particles produced in the generation chamber were transported by a helium carrier gas to the deposition chamber and deposited on a substrate to form the films composed of gold nanoparticles. The electrical resistivity of the generated gold nanoparticle-films on the glass substrates was measured using a four-probe method. The size distribution of the nanoparticles was examined using transmission electron microscopy (TEM) and a low-pressure differential mobility analyzer (LP-DMA). The relationship between the particle size and the electrical properties of each film made by the different synthesis conditions were analyzed. The electrical resistivity changed from the order of 10 -5 to 10 -1 Ω cm depending on the ambient pressure and the size distribution

  1. Nanoporous gold synthesized by plasma-assisted inert gas condensation: room temperature sintering, nanoscale mechanical properties and stability against high energy electron irradiation

    Science.gov (United States)

    Weyrauch, S.; Wagner, C.; Suckfuell, C.; Lotnyk, A.; Knolle, W.; Gerlach, J. W.; Mayr, S. G.

    2018-02-01

    With a plasma assisted gas condensation system it is possible to achieve high-purity nanoporous Au (np-Au) structures with minimal contaminations and impurities. The structures consist of single Au-nanoparticles, which partially sintered together due to their high surface to volume ratio. Through electron microscopy investigations a porosity  >50% with ligament sizes between 20-30 nm was revealed. The elastic modulus of the np-Au was determined via peak force quantitative nanomechanical mapping and resulted in values of 7.5  ±  1.5 GPa. The presented structures partially sintered at room temperature, but proved to be stable to electron irradiation with energies of 7 MeV up to doses of 100 MGy. The electron irradiation stability opens the venue for electron assisted functionalization with biomolecules.

  2. Evaluation of the PRHRS Performance Degradation due to Non-Condensable Gas for the Small and Medium Reactor using MARS-KS code

    International Nuclear Information System (INIS)

    Kim, Sook Kwan; Sim, Suk Ku; Park, Ju Yeop; Seol, Kwang Won; Ryu, Yong Ho

    2011-01-01

    The effect of non-condensable gas on the performance of PRHRS (Passive Residual Heat Removal System) of the Small and Medium Reactor(SMR) was evaluated during a loss of flow event. Since the TMI accident in 1979, the passive systems have been considered in the advanced reactors as a feature of design improvement because the passive system simplifies the system and thus increases the reliability of the system. The Westinghouse received the design certification from the USNRC for the AP600 and AP1000 passive type pressurized water reactors. The APR+ under development by KEPCO considers the use of PAFS (Passive Auxiliary Feedwater System). And the PRHRS is adopted as a passive secondary heat removal system for the SMART (System-integrated Modular Advanced ReacTor)

  3. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  4. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC

  5. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-04-30

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

  6. Titanium Matrix Composite Ti/TiN Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Aleksander Lisiecki

    2015-01-01

    Full Text Available A high power direct diode laser, emitting in the range of near infrared radiation at wavelength 808–940 nm, was applied to produce a titanium matrix composite on a surface layer of titanium alloy Ti6Al4V by laser surface gas nitriding. The nitrided surface layers were produced as single stringer beads at different heat inputs, different scanning speeds, and different powers of laser beam. The influence of laser nitriding parameters on the quality, shape, and morphology of the surface layers was investigated. It was found that the nitrided surface layers consist of titanium nitride precipitations mainly in the form of dendrites embedded in the titanium alloy matrix. The titanium nitrides are produced as a result of the reaction between molten Ti and gaseous nitrogen. Solidification and subsequent growth of the TiN dendrites takes place to a large extent at the interface of the molten Ti and the nitrogen gas atmosphere. The direction of TiN dendrites growth is perpendicular to the surface of molten Ti. The roughness of the surface layers depends strongly on the heat input of laser nitriding and can be precisely controlled. In spite of high microhardness up to 2400 HV0.2, the surface layers are crack free.

  7. Biomass utilization for green environment: Co-combustion of diesel fuel and producer gas in thermal application

    International Nuclear Information System (INIS)

    Hussain, A.; Ani, F.N.; Mehamed, A.F.

    2007-01-01

    Study of co-combustion of diesel oil and producer gas from a gasifier, individually as well as combined, in an experimental combustion chamber revealed that the producer gas can be co-combusted with liquid fuel. The process produced more CO, NO/sub x/, SO/sub 2/ and CO/sub 2/ as compared to the combustion of diesel oil alone; the exhaust temperature for the process was higher than the diesel combustion alone. (author)

  8. cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING.

    Science.gov (United States)

    Ablasser, Andrea; Goldeck, Marion; Cavlar, Taner; Deimling, Tobias; Witte, Gregor; Röhl, Ingo; Hopfner, Karl-Peter; Ludwig, Janos; Hornung, Veit

    2013-06-20

    Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions. The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin. Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria. DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING. We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2'-5' and a 3'-5' phosphodiester linkage >Gp(2'-5')Ap(3'-5')>. We found that the presence of this 2'-5' linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2'-5'-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3'-5' phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2'-5'-linked antiviral biomolecules.

  9. Gas and Pressure Dependence for the Mean Size of Nanoparticles Produced by Laser Ablation of Flowing Aerosols

    International Nuclear Information System (INIS)

    Nichols, William T.; Malyavanatham, Gokul; Henneke, Dale E.; Brock, James R.; Becker, Michael F.; Keto, John W.; Glicksman, Howard D.

    2000-01-01

    Silver nanoparticles were produced by laser ablation of a continuously flowing aerosol of microparticles entrained in argon, nitrogen and helium at a variety of gas pressures. Nanoparticles produced in this new, high-volume nanoparticle production technique are compared with our earlier experiments using laser ablation of static microparticles. Transmission electron micrographs of the samples show the nanoparticles to be spherical and highly non-agglomerated under all conditions tested. These micrographs were analyzed to determine the effect of carrier gas type and pressure on size distributions. We conclude that mean diameters can be controlled from 4 to 20 nm by the choice of gas type and pressure. The smallest nanoparticles were produced in helium, with mean sizes increasing with increasing molecular weight of the carrier gas. These results are discussed in terms of a model based on cooling via collisional interaction of the nanoparticles, produced in the laser exploded microparticle, with the ambient gas

  10. Bose condensation in (random traps

    Directory of Open Access Journals (Sweden)

    V.A. Zagrebnov

    2009-01-01

    Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.

  11. Evaluation of the Modern State of Water Ecosystems and the Issues with Protecting Biological Resources During Development of the Kruzenshternskoye Gas Condensate Field

    Directory of Open Access Journals (Sweden)

    Vladimir Dmitrievich Bogdanov

    2015-09-01

    Full Text Available In the article, the results of the studies of the present state of freshwater ecosystems and their biotic components in the western part of the Yamal Peninsula are presented. Based on the evaluation of the structure of the communities of phytoplankton, zooplankton, benthos and whitefishes, the range of the problems related to the protection of biological resources at the development of the Kruzenshternskoye gas field is defined. Data on species composition and quantitative indicators of hydrobionts of different types of waterbodies and watercourses in the lower reaches of the Mordyyakha and Naduyyakha rivers basins are the basis for environmental monitoring of water objects at development and exploitation of the Kruzenshternskoye gas field. According to the monitoring program, evaluation of the fish fauna state and their food base on the territory of the Kruzenshternskoye gas condensate field (GCF, is present. The zones of rivers deltas are the most important areas of the salmonid and whitefishes valuable fish species feeding at the territory of Kruzenshternskoye GCF. In the cases where complete demolish of waterbodies and watercourses for construction of facilities for GCF does not occur, changes of quantitative and qualitative characteristics of communities of hydrobionts after cease of works are reversible. River ecosystems are restored within a more short period of time in comparison to lacustrine ones. On the basis of conducted comprehensive studies, the proposals for the protection of fisheries resources and monitoring of aquatic ecosystems are reported. Recommendations for reducing the anthropogenic impact on aquatic ecosystems in the development period are presented. The results of the investigation were used in the designing the environmental protection part of the Kruzenshternskoye deposit project. At present, the disturbances in the territory of Kruzenshternskoye deposit of gas does not impact the aquatic ecosystems

  12. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-05-01

    During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

  13. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  14. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2003-12-15

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback

  15. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization

  16. Proceedings of the 1999 Oil and Gas Conference: Technology Options for Producer Survival

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2000-04-12

    The 1999 Oil & Gas Conference was cosponsored by the U.S. Department of Energy (DOE), Office of Fossil Energy, Federal Energy Technology Center (FETC) and National Petroleum Technology Office (NPTO) on June 28 to 30 in Dallas, Texas. The Oil & Gas Conference theme, Technology Options for Producer Survival, reflects the need for development and implementation of new technologies to ensure an affordable, reliable energy future. The conference was attended by nearly 250 representatives from industry, academia, national laboratories, DOE, and other Government agencies. Three preconference workshops (Downhole Separation Technologies: Is it Applicable for Your Operations, Exploring and developing Naturally Fractured Low-Permeability Gas Reservoirs from the Rocky Mountains to the Austin Chalk, and Software Program Applications) were held. The conference agenda included an opening plenary session, three platform sessions (Sessions 2 and 3 were split into 2 concurrent topics), and a poster presentation reception. The platform session topics were Converting Your Resources Into Reserves (Sessions 1 and 2A), Clarifying Your Subsurface Vision (Session 2B), and High Performance, Cost Effective Drilling, Completion, Stimulation Technologies (Session 3B). In total, there were 5 opening speakers, 30 presenters, and 16 poster presentations.

  17. SLAC synchronous condenser

    International Nuclear Information System (INIS)

    Corvin, C.

    1995-06-01

    A synchronous condenser is a synchronous machine that generates reactive power that leads real power by 90 degrees in phase. The leading reactive power generated by the condenser offsets or cancels the normal lagging reactive power consumed by inductive and nonlinear loads at the accelerator complex. The quality of SLAC's utility power is improved with the addition of the condenser. The inertia of the condenser's 35,000 pound rotor damps and smoothes voltage excursions on two 12 kilovolt master substation buses, improving voltage regulation site wide. The condenser absorbs high frequency transients and noise in effect ''scrubbing'' the electric system power at its primary distribution source. In addition, the condenser produces a substantial savings in power costs. Federal and investor owned utilities that supply electric power to SLAC levy a monthly penalty for lagging reactive power delivered to the site. For the 1993 fiscal year this totaled over $285,000 in added costs for the year. By generating leading reactive power on site, thereby reducing total lagging reactive power requirements, a substantial savings in electric utility bills is achieved. Actual savings of $150,000 or more a year are possible depending on experimental operations

  18. UTILIZATION OF AQUEOUS-TAR CONDENSATES FORMED DURING GASIFICATION

    Directory of Open Access Journals (Sweden)

    Anna Kwiecińska

    2016-11-01

    Full Text Available Gasification of solid fuels is an alternative process for energy production using conventional and renewable fuels. Apart from desired compounds, i.e. carbon oxide, hydrogen and methane, the produced gas contains complex organic (tars and inorganic (carbonizate, ammonia contaminants. Those substances, together with water vapor, condensate during cooling of the process gas, what results in the formation of aqueous-tar condensate, which requires proper methods of utilization. The management of this stream is crucial for commercialization and application of the gasification technology. In the paper the treatment of aqueous-tar condensates formed during biomass gasification process is discussed. The removal of tars from the stream was based on their spontaneous separation. The aqueous stream was subjected to ultrafiltration operated at different pressures. Such a treatment configuration enabled to obtain highly concentrated retentate, which could be recycled to the gasifier, and filtrate, which could be subjected to further treatment.

  19. Performance and emissions of a modified small engine operated on producer gas

    International Nuclear Information System (INIS)

    Homdoung, N.; Tippayawong, N.; Dussadee, N.

    2015-01-01

    Highlights: • A small agricultural diesel engine was converted into a spark ignited engine. • The modified engine operated solely on producer gas at various loads and speeds. • It run successfully at high compression ratio, without knocking. • Improvement in efficiency and specific energy consumption at higher CR was evident. - Abstract: Existing agricultural biomass may be upgraded converted to a gaseous fuel via a downdraft gasifier for spark ignition engines. In this work, a 0.6 L, naturally aspirated single cylinder compression ignition engine was converted into a spark ignition engine and coupled to a 5 kW dynamometer. The conventional swirl combustion chamber was replaced by a cavity chamber. The effect of variable compression ratios between 9.7 and 17:1, and engine speeds between 1000 and 2000 rpm and loads between 20% and 100% of engine performance were investigated in terms of engine torque, power output, thermal efficiency, specific fuel consumption and emissions. It was found that the modified engine was able to operate well with producer gas at higher compression ratios than with gasoline. The brake thermal efficiency was lower than the original diesel engine at 11.3%. Maximum brake power was observed to be 3.17 kW, and the best BSFC of 0.74 kg/kWh was achieved. Maximum brake thermal efficiency of 23.9% was obtained. The smoke density of the engine was lower than the diesel engine, however, CO emission was higher with similar HC emission

  20. Power generation using coir-pith and wood derived producer gas in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673 601, Kerala State (India)

    2006-10-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used for heating purposes and as supplementary or sole fuel in internal combustion engines. In this study, the potential of coir-pith and wood chips as the feedstock for gasifier is analyzed. The performance of the gasifier-engine system is analyzed by running the engine for various producer gas-air flow ratios and at different load conditions. The system is experimentally optimized with respect to maximum diesel savings and lower emissions in the dual fuel mode operation while using coir-pith and wood chips separately. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual fuel mode of operation is found to be in the higher side at all load conditions. The brake thermal efficiency of the engine while using wood chips in the dual mode operation is higher than that of coir-pith. The CO emission is higher in the case of dual fuel mode of operation as compared to that of diesel mode. In the dual fuel mode of operation, the higher diesel savings is achieved while using wood chips as compared to that of coir-pith. The comparison of the performance and emission characteristics of the dual fuel engine with diesel engine is also described. (author)

  1. Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R. [Department of Mechanical Engineering, L and T-Sargent and Lundy Limited, L and T Energy Centre, Near Chhani Jakat Naka, Baroda 390 002 (India); Channiwala, S.A. [Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Deemed University, Ichchhanath, Surat 395 007, Gujarat (India)

    2009-03-15

    This paper presents the emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. The producer gas fired premixed burner of 150 kW capacity was tested on open core throat less down draft gasifier system in the present study. A stable and uniform flame was observed with this burner. An instrumented test set up was developed to evaluate the performance of the burner. The conventional bluff body having blockage ratio of 0.65 was used for flame stabilization. With respect to maximum flame temperature, minimum pressure drop and minimum emissions, a swirl angle of 60 seems to be optimal. The experimental results also showed that the NO{sub x} emissions are inversely proportional to swirl angle and CO emissions are independent of swirl angle. The minimum emission levels of CO and NO{sub x} are observed to be 0.167% and 384 ppm respectively at the swirl angle of 45-60 . The experimental results showed that the maximum axial flame temperature distribution was achieved at A/F ratio of 1.0. The adiabatic flame temperature of 1653 C was calculated theoretically at A/F ratio of 1.0. Experimental results are in tune with theoretical results. It was also concluded that the CO and UHC emissions decreases with increasing A/F ratio while NO{sub x} emissions decreases on either side of A/F ratio of 1.0. (author)

  2. Studies on the characteristics of the separated type heat pipe system with non-condensible gas for the use of the passive decay heat removal in reactor systems

    International Nuclear Information System (INIS)

    Hayashi, Takao; Iigaki, Kazuhiko; Ohashi, Kazutaka; Hayakawa, Hitoshi; Yamada, Masao.

    1995-01-01

    This study is the fundamental research by experiments to aim at the development of the complete passive decay heat removal system on the modular reactor systems by the form of the separated type of heat pipe system utilizing the features of both the big latent heat for vaporization from water to steam and easy transportation characteristics. Special intention in our study on the fundamental experiments is to look for the effects in such a separated type of heat pipe system to introduce non-condensible gas such as nitrogen gas together with the working fluid of water. Many interesting findings have been obtained so far on the experiments for the variable conductance heat pipe characteristics from viewpoint of the actual application on the aim said above. This study has been carried out by the joint study between Tokai University and Fuji Electric Co., Ltd. and this paper is made up from the several papers presented so far at both the national and international symposiums under the name of joint study of the both bodies. (author)

  3. Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells

    Science.gov (United States)

    Akob, Denise M.; Cozzarelli, Isabelle M.; Dunlap, Darren S.; Rowan, Elisabeth L.; Lorah, Michelle M.

    2015-01-01

    Hydraulically fractured shales are becoming an increasingly important source of natural gas production in the United States. This process has been known to create up to 420 gallons of produced water (PW) per day, but the volume varies depending on the formation, and the characteristics of individual hydraulic fracture. PW from hydraulic fracturing of shales are comprised of injected fracturing fluids and natural formation waters in proportions that change over time. Across the state of Pennsylvania, shale gas production is booming; therefore, it is important to assess the variability in PW chemistry and microbiology across this geographical span. We quantified the inorganic and organic chemical composition and microbial communities in PW samples from 13 shale gas wells in north central Pennsylvania. Microbial abundance was generally low (66–9400 cells/mL). Non-volatile dissolved organic carbon (NVDOC) was high (7–31 mg/L) relative to typical shallow groundwater, and the presence of organic acid anions (e.g., acetate, formate, and pyruvate) indicated microbial activity. Volatile organic compounds (VOCs) were detected in four samples (∼1 to 11.7 μg/L): benzene and toluene in the Burket sample, toluene in two Marcellus samples, and tetrachloroethylene (PCE) in one Marcellus sample. VOCs can be either naturally occurring or from industrial activity, making the source of VOCs unclear. Despite the addition of biocides during hydraulic fracturing, H2S-producing, fermenting, and methanogenic bacteria were cultured from PW samples. The presence of culturable bacteria was not associated with salinity or location; although organic compound concentrations and time in production were correlated with microbial activity. Interestingly, we found that unlike the inorganic chemistry, PW organic chemistry and microbial viability were highly variable across the 13 wells sampled, which can have important implications for the reuse and handling of these fluids

  4. Concentration of saline produced water from coalbed methane gas wells in multiple-effect evaporator using waste heat from the gas compressor and compressor drive engine

    International Nuclear Information System (INIS)

    Sadler, L.Y.; George, O.

    1995-01-01

    The use of heat of compression from the gas compressor and waste heat from the diesel compressor drive engine in a triple-effect feed forward evaporator was studied as a means of concentrating saline produced water to facilitate its disposal. The saline water, trapped in deeply buried coal seams, must be continuously pumped from coalbed natural gas wells so that the gas can desorb from the coal and make its way to the wellbore. Unlike conventional natural gas which is associated with petroleum and usually reaches the wellhead at high pressure, coalbed natural gas reaches the wellhead at low pressure, usually around 101 kPa (1 atm), and must be compressed near the well site for injection into gas transmission pipelines. The water concentration process was simulated for a typical 3.93 m 3 /s (500 MCF/h), at standard conditions (101 kPa, 289K), at the gas production field in the Warrior Coal Basin of Alabama, but has application to the coalbed gas fields being brought into production throughout the world. It was demonstrated that this process can be considered for concentrating saline water produced with natural gas in cases where the gas must be compressed near the wellhead for transportation to market. 9 refs., 1 fig., 2 tabs

  5. The origin and fate of arsenic in coalbed natural gas-produced water ponds.

    Science.gov (United States)

    Sowder, J T; Kelleners, T J; Reddy, K J

    2010-01-01

    Coalbed natural gas (CBNG)-produced water contains small amounts of trace metals that can accumulate over time in produced water retention ponds. Within the Powder River Basin (PRB) of Wyoming, high concentrations of trace metals in pond water and their effect on shallow groundwater are potential concerns. A pond with a maximum As concentration of 146 microg L(-1) was studied in detail to determine the potential for groundwater pollution and to explain the cause for the high concentration of As. Infiltration characteristics, subsurface hydrology, our fall and pond water quality, isotope signatures, and trace metal balances were examined to assess the hydrology and geochemistry of the pond. The results indicated minimum or no infiltration of pond water and no measurable contamination of the shallow groundwater. The high As concentrations in the pond were determined to be the result of semi-continuous inputs of CBNG-produced water with low As concentrations (0.20-0.48 microg L(-1)), exasperated by low pond volumes during drought conditions. Because of reduced infiltration and high evaporation rates, As became concentrated over time. Reduced infiltration was most likely caused by the high sodium concentration and high sodium adsorption ratio of the CBNG-produced water, which disrupt soil structure. The findings for the pond and the techniques used may serve as a template for future impact assessments of other CBNG-produced water ponds and are relevant for the approximately 4000 ponds currently permitted in the PRB and for future ponds. Further studies are recommended in the use of playa landforms to store marginal-quality produced water.

  6. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  7. Oxidation and Condensation of Zinc Fume From Zn-CO2-CO-H2O Streams Relevant to Steelmaking Off-Gas Systems

    International Nuclear Information System (INIS)

    Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu; Sohn, Hong Yong

    2017-01-01

    Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2 -CO-H 2 O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2 O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2 /CO = 40/7). Rate expressions that correlate CO 2 and H 2 O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Rate ((mol)/(m 2 s)) = 406 exp ((−50.2kJ/mol)/(RT)) (pZnpCO 2 − PCO/K eq CO 2 ) ((mol)/(m 2 xs)) Rate (((mol)/(m 2 s))) = 32.9 exp (((−13.7kJ/mol)/(RT))) (pZnPH 2 O − PH 2 /K eq H 2 O) ((mol)/(m 2 xs)). It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2 O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by

  8. Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

  9. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

  10. An investigation of noise produced by unsteady gas flow through silencer elements

    Science.gov (United States)

    Mawhinney, Graeme Hugh

    This thesis presents an investigation of the noise produced by unsteady gas flow through silencer elements. The central aim of the research project was to produce a tool for assistance in the design of the exhaust systems of diesel powered electrical generator sets, with the modelling techniques developed having a much wider application in reciprocating internal combustion engine exhaust systems. An automotive cylinder head was incorporated in a purpose built test rig to supply exhaust pulses, typical of those found in the exhaust system of four stroke diesel engines, to various experimental exhaust systems. Exhaust silencer elements evaluated included expansion, re- entrant, concentric tube resonator and absorptive elements. Measurements taken on the test rig included, unsteady superposition pressure in the exhaust ducting, cyclically averaged mass flow rate through the system and exhaust noise levels radiated into a semi-anechoic measurement chamber. The entire test rig was modelled using the 1D finite volume method developed previously developed at Queen's University Belfast. Various boundary conditions, developed over the years, were used to model the various silencer elements being evaluated. The 1D gas dynamic simulation thus estimated the mass flux history at the open end of the exhaust system. The mass flux history was then broken into its harmonic components and an acoustic radiation model was developed to model the sound pressure level produced by an acoustic monopole over a reflecting plane. The accuracy of the simulation technique was evaluated by correlation of measured and simulated superposition pressure and noise data. In general correlation of superposition pressure was excellent for all of the silencer elements tested. Predicted sound pressure level radiated from the open end of the exhaust tailpipe was seen to be accurate in the 100 Hz to 1 kHz frequency range for all of the silencer elements tested.

  11. Vapour pressure of components made by the presence of HgS(s,alpha) in an oil/gas reservoir and consequences for the produced gas

    Energy Technology Data Exchange (ETDEWEB)

    Oestvold, T.; Gustavsen, Oe.; Grande, K.; Aas, N.; Olsvik, Mimmi Kjetsaa

    2006-03-15

    A thermodynamic analysis is presented on how components made from HgS (s,alpha), existing in a oil/gas reservoir, will distribute themselves between gas, water, liquid and solid components as a function of temperature and pressure. The consequence of the formation of mercury containing components on gas injection and on gas quality is discussed. Since equilibrium is established in the model calculation, other gas components in the gas phase and components in condensed phases present will also influence the composition of the gas. Six cases are considered in the calculation: 1) HgS(s,alpha) - Ar(g), 2) HgS(s,alpha) - Ar (g) - water with 10-4 molal NaCl at pH = 7, 3) HgS(s,alpha) - CH{sub 4}(g), 4) HgS(s,alpha) - CH{sub 4} (g) - water with 10-4 molal NaCl at pH = 7 and 5) HgS(s,alpha) - natural gas - water with 10-4 molal NaCl at pH = 7, 6) HgS(s,alpha) - natural gas - water with 10-4 molal NaCl and 5*10-5 molal NO-3- at pH = 7. When HgS(s,alpha) is present in an oil reservoir at 170 deg C and 200 bar, these calculations show that the major components formed are: H{sub 2}(g), H{sub 2}S(g), Hg(l) and Hg(g) together with carbon. Mercury in the gas phase in the cases 1) is 4*10-7 bar and is determined by the evaporation and decomposition HgS(g) in the reservoir. In case 2) P{sub Hg} = 5.7*10-4 bar mainly determined by the formation of sulphate in the water phase. In the cases 3), 4) and 5) these calculations show that the major components formed are: H{sub 2}(g), H{sub 2}S(g), Hg(l) and Hg(g) together with carbon, and the gas phase is dominated by Hg(g) at approx. *10-3 bar. The water phase may contain Hg(CH{sub 3}NH{sub 2}){sub 2}2+ if NO{sub 3}- for some reasons is introduced into the formation water, and the very carcinogenic dimethyl mercury compound, C{sub 2}HgH{sub 6}, can be formed in the gas phase. Both compounds, however, in insignificant low concentration/partial pressure. (Author)

  12. Method to produce combustible gas with low tar content out of biomass. Foerfarande foer att ur biomassa framstaella en tjaerfattig braennbar gas

    Energy Technology Data Exchange (ETDEWEB)

    Lindman, N

    1988-01-11

    The gas is led in a controlled flow to a vertical reactor shaft with a circulating fluidized bed containing dispersed calcined limestone. The biomass is pyrolyzed by means of the reactor heat in order to produce tarry gas and charcoal. While the gas flows upward in the reactor shaft the tar is gasified in a heterogeneous catalytic reaction with limestone. Charcoal and limestone are separated from the gas at the top of the reactor shaft and brought back to the fluidized bed for combustion. (L.F.).

  13. Characterization of cylinder liners produced with hypereutectic Al-Si alloys and investigation of corrosion behaviour in synthetic automotive condensed solution

    International Nuclear Information System (INIS)

    Santos, Hamilta de Oliveira

    2006-01-01

    In the present study four hypereutectic Al-Si alloys, three produced by spray forming and one by casting, were characterized for microhardness, roughness, microstructure, texture and corrosion resistance in a synthetic automotive condensed solution (SACS). Two of the spray formed alloys tested were obtained from cylinder liners and the other was laboratory made. Spray forming involves alloy atomization and droplets deposition on a substrate, previous to the solidification of all of the droplets. This process favours the production of materials with a fine microstructure free of macrosegregation that is related to improved hot workability. The microstructure characterization of the four alloys revealed the presence of porosities in the laboratory made alloy. All the three alloys produced by spray forming showed a homogeneous distribution of primary precipitates. The microstructure of one of the alloys showed eutectic microstructure, indicating that this alloy was fabricated by casting. In the cylinder liners, the surface roughness was measured and the microhardness of all the alloys was also evaluated. Furthermore, the laboratory made alloy was hot and cold rolled. Texture determinations were carried out to investigate the correlation between the alloy type and their fabrication process. The texture investigation indicated that the fine distribution of primary silicon phase in the alloy hindered the development of texture typical of aluminium alloys deformation, even after severe mechanical work, such as those used in the conversion of pre-formed in cylinder liners. The surface roughness results indicated typical characteristics of the surface finishing used, honing or chemical etching. The microhardness results were dependent on the fabrication process used, with higher microhardness associated to the eutectic alloy comparatively to the spray formed ones. All hypereutectic alloys were tested for corrosion resistance using electrochemical impedance spectroscopy in

  14. Transport diphasique de gaz et de condensat. Aspects techniques et économiques Technical and Economic Aspects of Two-Phase Pipelining of Gas and Condensate

    Directory of Open Access Journals (Sweden)

    Bourgeois T.

    2006-11-01

    Full Text Available L'évacuation diphasique de la production d'un gisement de gaz à condensat présente des avantages importants, en particulier sur le plan économique. Les caractéristiques des écoulements diphasiques sont exposées, avec les conséquences principales sur la définition d'un schéma d'exploitation. Une comparaison économique est ensuite présentée, pour illustrer la réduction des investissements qui peut être apportée par l'évacuation diphasique de la production. Enfin, les recherches françaises sur les écoulements diphasiques dans les conduites pétrolières sont brièvement décrites, ainsi qu'un exemple de calcul sur une conduite de gaz à condensat en exploitation diphasique. The two-phase pipelining of a wet gas field production presents many advantages, especially from an economic point of view. The characteristics of two-phase flow are described, together with their main consequences on the operational scheme. Then an economic comparison is made to illustrate the reduction in investment costs that can by achieved with two-phase pipelining. Research in France on two-phase flow in gas and condensate pipelines is briefly described, and an example is given of the designing of a wet-gas pipeline currently being operated in the two-phase mode.

  15. An overview on exploration and environmental impact of unconventional gas sources and treatment options for produced water.

    Science.gov (United States)

    Silva, Tânia L S; Morales-Torres, Sergio; Castro-Silva, Sérgio; Figueiredo, José L; Silva, Adrián M T

    2017-09-15

    Rising global energy demands associated to unbalanced allocation of water resources highlight the importance of water management solutions for the gas industry. Advanced drilling, completion and stimulation techniques for gas extraction, allow more economical access to unconventional gas reserves. This stimulated a shale gas revolution, besides tight gas and coalbed methane, also causing escalating water handling challenges in order to avoid a major impact on the environment. Hydraulic fracturing allied to horizontal drilling is gaining higher relevance in the exploration of unconventional gas reserves, but a large amount of wastewater (known as "produced water") is generated. Its variable chemical composition and flow rates, together with more severe regulations and public concern, have promoted the development of solutions for the treatment and reuse of such produced water. This work intends to provide an overview on the exploration and subsequent environmental implications of unconventional gas sources, as well as the technologies for treatment of produced water, describing the main results and drawbacks, together with some cost estimates. In particular, the growing volumes of produced water from shale gas plays are creating an interesting market opportunity for water technology and service providers. Membrane-based technologies (membrane distillation, forward osmosis, membrane bioreactors and pervaporation) and advanced oxidation processes (ozonation, Fenton, photocatalysis) are claimed to be adequate treatment solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Impacts from oil and gas produced water discharges on the Gulf of Mexico hypoxic zone

    International Nuclear Information System (INIS)

    Parker, M.E.; Satterlee, K.; Veil, J.A.

    2006-01-01

    Shallow water areas of the Gulf of Mexico continental shelf experience low dissolved oxygen (hypoxia) each summer. The hypoxic zone is primarily caused by input of nutrients from the Mississippi and Atchafalaya Rivers. The nutrients stimulate the growth of phytoplankton, which leads to reduction of the oxygen concentration near the sea floor. During the renewal of an offshore discharge permit used by the oil and gas industry in the Gulf of Mexico, the U.S. Environmental Protection Agency (EPA) identified the need to assess the potential contribution from produced water discharges to the occurrence of hypoxia. The EPA permit required either that all platforms in the hypoxic zone submit produced water samples, or that industry perform a coordinated sampling program. This paper, based on a report submitted to EPA in August 2005 (1), describes the results of the joint industry sampling program and the use of those results to quantify the relative significance of produced water discharges in the context of other sources on the occurrence of hypoxia in the Gulf of Mexico. In the sampling program, 16 facilities were selected for multiple sampling - three times each at one month intervals-- and another 34 sites for onetime sampling. The goal of the sampling program was to quantify the sources and amount of oxygen demand associated with a variety of Gulf of Mexico produced waters. Data collected included direct oxygen demand measured by BOD5 (5-day biochemical oxygen demand) and TOC (total organic carbon) and indirect oxygen demand measured by nitrogen compounds (ammonia, nitrate, nitrate, and TKN (total Kjeldahl nitrogen)) and phosphorus (total phosphorus and orthophosphate). These data will serve as inputs to several available computer models currently in use for forecasting the occurrence of hypoxia in the Gulf of Mexico. The output of each model will be compared for consistency in their predictions and then a semi-quantitative estimate of the relative significance of

  17. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants

    Directory of Open Access Journals (Sweden)

    Oggero Roberto

    2011-06-01

    Full Text Available Abstract Background Infantile colic is a common disturb within the first 3 months of life, nevertheless the pathogenesis is incompletely understood and treatment remains an open issue. Intestinal gas production is thought to be one of the causes of abdominal discomfort in infants suffering from colic. However, data about the role of the amount of gas produced by infants' colonic microbiota and the correlation with the onset of colic symptoms are scanty. The benefit of supplementation with lactobacilli been recently reported but the mechanisms by which they exert their effects have not yet been fully defined. This study was performed to evaluate the interaction between Lactobacillus spp. strains and gas-forming coliforms isolated from stools of colicky infants. Results Strains of coliforms were isolated from stools of 45 colicky and 42 control breastfed infants in McConkey Agar and identified using PCR with species-specific primers, and the BBL™ Enterotube™ II system for Enterobacteriaceae. Gas-forming capability of coliforms was assessed in liquid cultures containing lactose as sole carbon source. The average count of total coliforms in colicky infants was significantly higher than controls: 5.98 (2.00-8.76 log10 vs 3.90 (2.50-7.10 CFU/g of faeces (p = 0.015. The following strains were identified: Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae and Enterococcus faecalis. Then, 27 Lactobacillus strains were tested for their antagonistic effect against coliforms both by halo-forming method and in liquid co-cultures. Lactobacillus delbrueckii subsp.delbrueckii DSM 20074 and L. plantarum MB 456 were able to inhibit all coliforms strains (halo-forming method, also in liquid co-cultures, thus demonstrating an antagonistic activity. Conclusions This study shows that two out of 27 strains of Lactobacillus examined possess an antimicrobial effect against six species of gas-forming coliforms

  18. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants.

    Science.gov (United States)

    Savino, Francesco; Cordisco, Lisa; Tarasco, Valentina; Locatelli, Emanuela; Di Gioia, Diana; Oggero, Roberto; Matteuzzi, Diego

    2011-06-30

    Infantile colic is a common disturb within the first 3 months of life, nevertheless the pathogenesis is incompletely understood and treatment remains an open issue. Intestinal gas production is thought to be one of the causes of abdominal discomfort in infants suffering from colic. However, data about the role of the amount of gas produced by infants' colonic microbiota and the correlation with the onset of colic symptoms are scanty. The benefit of supplementation with lactobacilli been recently reported but the mechanisms by which they exert their effects have not yet been fully defined. This study was performed to evaluate the interaction between Lactobacillus spp. strains and gas-forming coliforms isolated from stools of colicky infants. Strains of coliforms were isolated from stools of 45 colicky and 42 control breastfed infants in McConkey Agar and identified using PCR with species-specific primers, and the BBL™ Enterotube™ II system for Enterobacteriaceae. Gas-forming capability of coliforms was assessed in liquid cultures containing lactose as sole carbon source. The average count of total coliforms in colicky infants was significantly higher than controls: 5.98 (2.00-8.76) log10 vs 3.90 (2.50-7.10) CFU/g of faeces (p = 0.015). The following strains were identified: Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae and Enterococcus faecalis. Then, 27 Lactobacillus strains were tested for their antagonistic effect against coliforms both by halo-forming method and in liquid co-cultures. Lactobacillus delbrueckii subsp. delbrueckii DSM 20074 and L. plantarum MB 456 were able to inhibit all coliforms strains (halo-forming method), also in liquid co-cultures, thus demonstrating an antagonistic activity. This study shows that two out of 27 strains of Lactobacillus examined possess an antimicrobial effect against six species of gas-forming coliforms isolated from colicky infants. Our findings may stimulate

  19. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites

    Science.gov (United States)

    Chen, Hongda; Wang, Jihui; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-01

    In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and 1H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame

  20. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites

    Directory of Open Access Journals (Sweden)

    Hongda Chen

    2018-01-01

    Full Text Available In order to improve the efficiency of intumescent flame retardants (IFRs, a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine (PETAT with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP in combination with ammonium polyphosphate (APP via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR, and 1H nuclear magnetic resonance (NMR spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG and thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR. The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI values before and after soaking, underwritten laboratory-94 (UL-94 vertical burning test, cone calorimetric test (CCT, scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS, and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR, total heat release (THR, and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame

  1. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites.

    Science.gov (United States)

    Chen, Hongda; Wang, Jihui; Ni, Aiqing; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-11

    In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and ¹H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame

  2. IPR CURVE CALCULATING FOR A WELL PRODUCING BY INTERMITTENT GAS-LIFT METHOD

    Directory of Open Access Journals (Sweden)

    Zoran Mršić

    2009-12-01

    Full Text Available Master degree thesis (Mršić Z., 2009 shows the detailed procedure of calculating inflow performance curve for intermittent gas lift, based entirely on the data measured at surface. This article explains the detailed approach of the mentioned research and the essence of the results and observations acquired during the study. To evaluate the proposed method of calculating the average bottom hole flowing pressure (BHFP as the key parameter of inflow performance calculation, downhole pressure surveys have been conducted in three producing wells at Šandrovac and Bilogora oil fields: Šandrovac-75α, Bilogora-52 and Šandrovac-34. Absolute difference between measured and calculated values of average BHFP for first two wells was Δp=0,64 bar and Δp=0,06 bar while calculated relative error was εr=0,072 and εr=0,0038 respectively. Due to gas-lift valve malfunction in well Šandrovac-34, noticed during downhole pressure survey, value of calculated BHFP cannot be considered correct to compare with measured value. Based on the measured data the information have been revealed about actual values of a certain intermittent gas lift parameters that are usually assumed based on experience gained values or are calculated using empirical equations given in literature. The significant difference has been noticed for a parameter t2. The length of a minimum pressure period for which the measured values were in range of 10,74 min up to 16 min, while empirical equation gives values in the range of 1,23 min up to 1,75 min. Based on measured values of above mentioned parameter a new empirical equation has been established (the paper is published in Croatian.

  3. Effects of gas produced by degradation of Mg–Zn–Zr Alloy on cancellous bone tissue

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingbo; Jiang, Hongfeng [Tianjin Hospital, 300211 Tianjin (China); Bi, Yanze; Sun, Jin e; Chen, Minfang; Liu, Debao [School of Materials Science and Engineering, Tianjin University of Technology, 300384 Tianjin (China)

    2015-10-01

    Mg–Zn–Zr alloy cylinders were implanted into the femoral condyles of Japanese big-ear white rabbits. X-ray showed that by 12 weeks following implantation the implant became obscure, around which the low-density area appeared and enlarged. By 24 weeks, the implant was more obscure and the density of the surrounding cancellous bone increased. Scanning electron microscopy examination showed bone tissue on the surface of the alloy attached by living fibers at 12 weeks. Micro-CT confirmed that new bone tissue on the surface of the residual alloy implant increased from 12 weeks to 24 weeks. By 12 weeks, many cavities in the cancellous bone tissue around the implant were noted with a CT value, similar to gas value, and increasing by 24 weeks (P < 0.01). Histological examination of hard tissue slices showed that bone tissue was visibly attached to the alloy in the femoral condyle at 12 weeks. The trabecular bone tissues became more intact and dense, and the cavities were filled with soft tissue at 24 weeks. In general, gas produced by the degradation of the Mg–Zn–Zr alloy can cause cavitation within cancellous bone, which does not affect osteogenesis of Mg alloy. - Highlights: • The degradation of Mg alloy in cancellous bone causes cavitation around the alloy. • At first, the CT value of the cavities is similar to the gas value. • The area of the cavities enlarges gradually by 12 weeks. • The cavities are filled with bone tissue and soft tissue gradually.

  4. Producer gas production of Indonesian biomass in fixed-bed downdraft gasifier as an alternative fuels for internal combustion engines

    Science.gov (United States)

    Simanjuntak, J. P.; Lisyanto; Daryanto, E.; Tambunan, B. H.

    2018-03-01

    downdraft biomass gasification reactors, coupled with reciprocating internal combustion engines (ICE) are a viable technology for small scale heat and power generation. The direct use of producer gas as fuel subtitution in an ICE could be of great interest since Indonesia has significant land area in different forest types that could be used to produce bioenergy and convert forest materials to bioenergy for use in energy production and the versatility of this engine. This paper will look into the aspect of biomass energie as a contributor to energy mix in Indonesia. This work also contains information gathered from numerous previews study on the downdraft gasifier based on experimental or simulation study on the ability of producer gas as fuels for internal combustion engines aplication. All data will be used to complement the preliminary work on biomass gasification using downdraft to produce producer gas and its application to engines.

  5. Tribological Characteristic of Titanium Alloy Surface Layers Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-06-01

    Full Text Available In order to improve the tribological properties of titanium alloy Ti6Al4V composite surface layers Ti/TiN were produced during laser surface gas nitriding by means of a novel high power direct diode laser with unique characteristics of the laser beam and a rectangular beam spot. Microstructure, surface topography and microhardness distribution across the surface layers were analyzed. Ball-on-disk tests were performed to evaluate and compare the wear and friction characteristics of surface layers nitrided at different process parameters, base metal of titanium alloy Ti6Al4V and also the commercially pure titanium. Results showed that under dry sliding condition the commercially pure titanium samples have the highest coefficient of friction about 0.45, compared to 0.36 of titanium alloy Ti6Al4V and 0.1-0.13 in a case of the laser gas nitrided surface layers. The volume loss of Ti6Al4V samples under such conditions is twice lower than in a case of pure titanium. On the other hand the composite surface layer characterized by the highest wear resistance showed almost 21 times lower volume loss during the ball-on-disk test, compared to Ti6Al4V samples.

  6. Investigation of produced waters radioactivity of oil and gas deposits in the Dnieper-Donets province

    Directory of Open Access Journals (Sweden)

    Plyatsuk L. D.

    2017-12-01

    Full Text Available The process of radioactive pollution of produced waters, oilfield equipment, oil-contaminated soils and sludge is widely spread and differs within the various oil and gas regions. Formation waters contained radioactive element isotopes become the significant source and cause of elevated level of equivalent dose power and as a consequence, an increase in the incidence among the population. The author's idea is formulation of specific recommendations on the decontamination of the investigated objects by conducting the necessary appropriate experimental studies. The purpose of the article is to determine the content of radionuclides, γ- and α-emitters in technogenic objects of Bugruvate oil and gas fields, and to reveal the relationship with the features of mineralogical composition, geological structure and technological process. The γ-spectrometric analysis was used to determine the radionuclide composition of the natural radiators of the 238U (226Ra, 214Pо, 214Bi and 232Th (228Ac, 212Pb, 212Вi series in samples of technological sludge, oil, individual soil samples and water. The content of radionuclides of α-emitters was determined using separate radiochemical techniques. It was investigated that the radioactivity of the formation water is mainly determined by 226Ra and 228Ra and the products of their decay.

  7. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-05-31

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

  8. Niobium films produced by magnetron sputtering using an Ar-He mixture as discharge gas

    CERN Document Server

    Schucan, G M; Calatroni, Sergio

    1995-01-01

    Superconducting RF accelerating cavities have been produced at CERN by sputter-coating, with a thin niobium layer, cavities made of copper. In the present work, the discharge behaviour and niobium film properties have been investigated when part of the argon sputtering gas is replaced with helium. Helium is chosen because of its low mass, which reduces the energy lost by the niobium atoms colliding with the sputter gas atoms. The higher niobium atom energy should lead to higher adatom mobility on the substrate and, hence, to a larger grain size, a feature which is highly desirable to reduce the cavity surface resistance. It has been found that helium addition effectively helps to maintain the discharge at considerably lower argon pressures, via metastable-neutral ionisation and high secondary electron yield. However, a large amount of helium is trapped in the film, amount which is proportional to the helium partial pressure during the discharge, resulting in a reduction of both Residual Resistivity Ratio and ...

  9. Condensate growth in trapped Bose gates

    NARCIS (Netherlands)

    Bijlsma, M.J.; Zaremba, E.; Stoof, H.T.C.

    2000-01-01

    We study the dynamics of condensate fromation in an inhomogeneous trapped Bose gas with a positive interatomic scattering length. We take into account both the nonequilibrium kinetics of the thermal cloud and the Hartree-Fock mean-field efects in the condensed and the noncondensed parts of the gas.

  10. Condensate growth in trapped Bose gases

    NARCIS (Netherlands)

    Bijlsma, M.J.; Zaremba, E.; Stoof, H.T.C.

    2000-01-01

    We study the dynamics of condensate formation in an inhomogeneous trapped Bose gas with a positive interatomic scattering length. We take into account both the nonequilibrium kinetics of the thermal cloud and the Hartree-Fock mean-field effects in the condensed and the noncondensed parts of the gas.

  11. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  12. The price of the natural gas in the producing states: Espirito Santo case; O preco do gas natural nos estados produtores: caso Espirito Santo

    Energy Technology Data Exchange (ETDEWEB)

    Cometi, Darcy Lannes

    2008-07-01

    The State of the Espirito Santo will become until the end of 2008, one of the main producers and natural gas exporters of Brazil, where, according to PETROBRAS, the State will produce about 20 million /day m{sup 3}, what it will go to contribute significantly for reduction of the dependence of the Bolivian gas, and still to give support to the natural gas sector in Brazil. The Intention of this work, is to identify proposals so that it has left of the gas produced in the State of the Espirito Santo, has a differentiated price. It does not make sensible the State to pay for the gas that is removed in its proper territory the same price that paid Sao Paulo for the gas that consumes imported of national Bolivia. With the markdown of the gas the State will be able to attract investments of great transport, to generate job and income and to advance in the question of the regional development that is of great importance for the developed cities less. Important to stand out that this study it will present proposals to try to sensitize PETROBRAS, initiating a quarrel on the subject. (author)

  13. Reference price of natural gas produced in Bacia dos Solimoes; Preco de referencia do gas natural produzido na Bacia do Solimoes

    Energy Technology Data Exchange (ETDEWEB)

    Valim, Leandro S.; Ferreira, Leticia P.; Correia, Irina S.; Guimaraes, Maria Jose de O.C.; Seidl, Peter R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Bispo, Luiz Henrique de Oliveira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Oil and natural gas are exhaustible resources. Thus, exploitation of these energy sources can lead to shortages and even the absence for future generations. In this context, royalties are included as a way to financially compensate future generations through a monthly payment made by the explorer. In Brazil, the control of the royalties and their distribution is charge of the National Agency of Petroleum, Natural Gas and Biofuels (ANP). Its function is to establish reference prices used for the payment of royalties on oil and natural gas. In this study, three methods were used to calculate royalties, using data from Leste do Urucu field, located in Solimoes Basin. The first one is imposed by Resolution ANP No. 40/2009 that uses the calculation of the reference price of natural gas produced in Brazil. The second one is an alternative method of calculating royalties produced by Bispo, 2011, considering the different compositions of the gas produced and injected. And finally, the Resolution ANP RD No. 983/2011 that uses the calculation of the price of gas injected, considering this as the price of gas processed. When performing the calculation of royalties through the proposed methodologies by Bispo, 2011, and the ANP (Resolution No. 40/2009 and RD 983/2011), the results were similar to each other, and the methodology proposed by Resolution No. 40/2009 was the most different from the others. (author)

  14. Theoretical study on composition of gas produced by coal gasification; Sekitan gas ka de seiseisuru gas no sosei ni kansuru kosatsu (HYCOL data no doteki kaiseki)

    Energy Technology Data Exchange (ETDEWEB)

    Kaiho, M.; Yasuda, H.; Kobayashi, M.; Yamada, O.; Soneda, Y.; Makino, M. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    In relation to considerations on composition of gas produced by coal gasification, the HYCOL hydrogen generation process data were analyzed. From the fact that CO concentration (Y) decreases linearly with CO2 concentration (X), element balance of gasification of reacted coal was used to introduce a reaction analysis equation. The equation includes a term of oxygen excess {Delta}(amount of oxygen consumed for combustion of CO and H2 in excess of the theoretical amount), derived by subtracting the stoichiometric oxygen amount used to gasify coal into CO and H2 from the consumed oxygen amount. The {Delta} can be used as a reference to oxygen utilization efficiency. An equation for the {Delta} was introduced. Also introduced was a term for steam decomposition amount derived by subtracting the generated steam from the supplied steam. These terms may be used as a clue to permeate into the gasifying reaction process. This suggestion was discussed by applying the terms to gas composition value during operation. According to the HYCOL analysis, when a gasification furnace is operated at higher than the reference oxygen amount, coal supply variation is directly reflected to the combustion reaction, making the {Delta} distribution larger. In an inverse case, unreacted carbon remains in the furnace due to oxygen shortage, and shift reaction may occur more easily even if oxygen/coal supply ratio varies. 6 figs., 1 ref.

  15. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Science.gov (United States)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain; Jung, Hun Bok; Carroll, Kenneth C.

    2018-01-23

    An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.

  16. In situ and laboratory toxicity of coalbed natural gas produced waters with elevated sodium bicarbonate

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.; Skaar, Don

    2014-01-01

    Some tributaries in the Powder River Structural Basin, USA, were historically ephemeral, but now contain water year round as a result of discharge of coalbed natural gas (CBNG)-produced waters. This presented the opportunity to study field sites with 100% effluent water with elevated concentrations of sodium bicarbonate. In situ experiments, static renewal experiments performed simultaneously with in situ experiments, and static renewal experiments performed with site water in the laboratory demonstrated that CBNG-produced water reduces survival of fathead minnow (Pimephales promelas) and pallid sturgeon (Scaphirhynchus albus). Age affected survival of fathead minnow, where fish 2 d posthatch (dph) were more sensitive than 6 dph fish, but pallid sturgeon survival was adversely affected at both 4 and 6 dph. This may have implications for acute assays that allow for the use of fish up to 14 dph. The survival of early lifestage fish is reduced significantly in the field when concentrations of NaHCO3 rise to more than 1500 mg/L (also expressed as >1245 mg HCO3 (-) /L). Treatment with the Higgin's Loop technology and dilution of untreated water increased survival in the laboratory. The mixing zones of the 3 outfalls studied ranged from approximately 800 m to 1200 m below the confluence. These experiments addressed the acute toxicity of effluent waters but did not address issues related to the volumes of water that may be added to the watershed.

  17. Antimicrobial activity of silica coated silicon nano-tubes (SCSNT) and silica coated silicon nano-particles (SCSNP) synthesized by gas phase condensation.

    Science.gov (United States)

    Tank, Chiti; Raman, Sujatha; Karan, Sujoy; Gosavi, Suresh; Lalla, Niranjan P; Sathe, Vasant; Berndt, Richard; Gade, W N; Bhoraskar, S V; Mathe, Vikas L

    2013-06-01

    Silica-coated, silicon nanotubes (SCSNTs) and silica-coated, silicon nanoparticles (SCSNPs) have been synthesized by catalyst-free single-step gas phase condensation using the arc plasma process. Transmission electron microscopy and scanning tunneling microscopy showed that SCSNTs exhibited a wall thickness of less than 1 nm, with an average diameter of 14 nm and a length of several 100 nm. Both nano-structures had a high specific surface area. The present study has demonstrated cheaper, resistance-free and effective antibacterial activity in silica-coated silicon nano-structures, each for two Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) was estimated, using the optical densitometric technique, and by determining colony-forming units. The MIC was found to range in the order of micrograms, which is comparable to the reported MIC of metal oxides for these bacteria. SCSNTs were found to be more effective in limiting the growth of multidrug-resistant Staphylococcus aureus over SCSNPs at 10 μg/ml (IC 50 = 100 μg/ml).

  18. Polariton condensates

    International Nuclear Information System (INIS)

    Snoke, David; Littlewood, Peter

    2010-01-01

    Most students of physics know about the special properties of Bose-Einstein condensates (BECs) as demonstrated in the two best-known examples: superfluid helium-4, first reported in 1938, and condensates of trapped atomic gases, first observed in 1995. (See the article by Wolfgang Ketterle in PHYSICS TODAY, December 1999, page 30.) Many also know that superfluid 3 He and superconducting metals contain BECs of fermion pairs. An underlying principle of all those condensed-matter systems, known as quantum fluids, is that an even number of fermions with half-integer spin can be combined to make a composite boson with integer spin. Such composite bosons, like all bosons, have the property that below some critical temperature--roughly the temperature at which the thermal de Broglie wavelength becomes comparable to the distance between the bosons--the total free energy is minimized by having a macroscopic number of bosons enter a single quantum state and form a macroscopic, coherent matter wave. Remarkably, the effect of interparticle repulsion is to lead to quantum mechanical exchange interactions that make that state robust, since the exchange interactions add coherently.

  19. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  20. Producing cement

    Energy Technology Data Exchange (ETDEWEB)

    Stone, E G

    1923-09-12

    A process and apparatus are described for producing Portland cement in which pulverized shale is successively heated in a series of inclined rotary retorts having internal stirrers and oil gas outlets, which are connected to condensers. The partially treated shale is removed from the lowermost retort by a conveyor, then fed separately or conjointly into pipes and thence into a number of vertically disposed retorts. Each of these retorts may be fitted interiorly with vertical arranged conveyors which elevate the shale and discharge it over a lip, from whence it falls to the bottom of the retorts. The lower end of each casing is furnished with an adjustable discharge door through which the spent shale is fed to a hopper, thence into separate trucks. The oil gases generated in the retorts are exhausted through pipes to condensers. The spent shale is conveyed to a bin and mixed while hot with ground limestone. The admixed materials are then ground and fed to a rotary kiln which is fired by the incondensible gases derived from the oil gases obtained in the previous retorting of the shale. The calcined materials are then delivered from the rotary kiln to rotary coolers. The waste gases from the kiln are utilized for heating the retorts in which the ground shale is heated for the purpose of extracting therefrom the contained hydrocarbon oils and gases.

  1. Optimisation of continuous gas fermentation by immobilisation of acetate-producing Acetobacterium woodii.

    Science.gov (United States)

    Steger, Franziska; Rachbauer, Lydia; Windhagauer, Matthias; Montgomery, Lucy F R; Bochmann, Günther

    2017-08-01

    Hydrogen from water electrolysis is often suggested as a way of storing the excess energy from wind and solar power plants. However, unlike natural gas, hydrogen is difficult to store and distribute. One solution is to convert the hydrogen into other fuels or bulk chemicals. In this study we investigated fermentation in which homoacetogenic clostridia apply the Wood-Ljungdahl pathway to generate acetate from H 2 and CO 2 . Acetate can be used as a bulk chemical or further transformed into biofuels. Autotrophic growth with CO 2 as the sole carbon source is slow compared to heterotrophic growth, so the aim of this work was to improve continuous gas fermentation by immobilising the acetate-producing clostridia, thus preventing their wash out from the bioreactor. Two homoacetogenic bacterial strains (Acetobacterium woodii and Moorella thermoacetica) were tested for their acetate production potential, with A. woodii proving to be the better strain with maximum acetate concentration of 29.57 g l -1 . Due to its stability during fermentation and good bacterial immobilisation, linen was chosen as immobilisation material for continuous fermentation. This study demonstrates the successful continuous fermentation of acetate from H 2 and CO 2 using A. woodii immobilised on a low-cost surface at high volumetric productivity of 1.21 ± 0.05 g acetate l -1 d -1 . This has great industrial potential and future studies should focus on the scale-up of this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. How Posttranslational Modification of Nitrogenase Is Circumvented in Rhodopseudomonas palustris Strains That Produce Hydrogen Gas Constitutively

    Science.gov (United States)

    Heiniger, Erin K.; Oda, Yasuhiro; Samanta, Sudip K.

    2012-01-01

    Nitrogenase catalyzes the conversion of dinitrogen gas (N2) and protons to ammonia and hydrogen gas (H2). This is a catalytically difficult reaction that requires large amounts of ATP and reducing power. Thus, nitrogenase is not normally expressed or active in bacteria grown with a readily utilized nitrogen source like ammonium. nifA* mutants of the purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris have been described that express nitrogenase genes constitutively and produce H2 when grown with ammonium as a nitrogen source. This raised the regulatory paradox of why these mutants are apparently resistant to a known posttranslational modification system that should switch off the activity of nitrogenase. Microarray, mutation analysis, and gene expression studies showed that posttranslational regulation of nitrogenase activity in R. palustris depends on two proteins: DraT2, an ADP-ribosyltransferase, and GlnK2, an NtrC-regulated PII protein. GlnK2 was not well expressed in ammonium-grown NifA* cells and thus not available to activate the DraT2 nitrogenase modification enzyme. In addition, the NifA* strain had elevated nitrogenase activity due to overexpression of the nif genes, and this increased amount of expression overwhelmed a basal level of activity of DraT2 in ammonium-grown cells. Thus, insufficient levels of both GlnK2 and DraT2 allow H2 production by an nifA* mutant grown with ammonium. Inactivation of the nitrogenase posttranslational modification system by mutation of draT2 resulted in increased H2 production by ammonium-grown NifA* cells. PMID:22179236

  3. Experimental and computational analysis of steam condensation in the presence of air and helium

    International Nuclear Information System (INIS)

    Bucci, M.

    2010-01-01

    Among the different phenomena expected to occur within nuclear reactor containments during a postulated loss of coolant accident, condensation on containment walls plays a major role, since it represents an important heat sink for evacuating the energy released by the discharge of the primary water. Nevertheless, condensation strongly affects other relevant phenomena, like containment atmosphere mixing, that influences the distribution of non-condensable gases hypothetically delivered in severe accident conditions. In this scenario, the role of condensation is not obvious, since it can locally aid the hydrogen produced by the oxidation of the core claddings to concentrate and reach flammability limits, providing a dangerous effect instead of a positive one. The understanding of condensation in the presence of air and hydrogen is therefore a fundamental task for the safety analyses of reactor containments. This research has been carried out with the aim to contribute to the understanding of these phenomena. A double strategy has been adopted, including complementary experimental and computational activities. Novel data have been made available by the CONAN facility, investigating the effects induced by light non-condensable gases in experimental configurations that were scarcely investigated in past studies. Computational fluid dynamics (CFD) condensation models have been developed and validated. The suitability of helium as a substitute for hydrogen in experimental activities has been investigated by theoretical and computational analyses allowing to establish simple criteria for the scaling of condensation tests in the presence of a light non-condensable gas. (authors)

  4. Measurement of liquid-liquid equilibria for condensate + glycol and condensate + glycol + water systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    ,2-ethanediol (MEG) + condensate and MEG + water + condensate systems at temperatures from (275 to 323) K at atmospheric pressure. The condensate used in this work is a stabilized natural gas condensate from an offshore field in the North Sea. Compositional analysis of the natural gas condensate was carried out...... by gas chromatography, and detailed separation of individual condensate's components has been carried out. Approximately 85 peaks eluting before nonane were identified by their retention time. Peak areas were converted to mass fraction using 1-heptene as an internal standard. The components were divided...... into boiling range groups from hexane to nonane. Paraffinic (P), naphthenic (N), and aromatic (A) distributions were obtained for the boiling point fractions up to nonane. The average molar mass and the overall density of the condensate were measured experimentally. For the mutual solubility of MEG...

  5. Peculiarity of radioactivity pollution of manufacturing environment gas and oil producing firms of the apsheron region

    International Nuclear Information System (INIS)

    Mamedov, A.M.; Alekperova, J.A.

    2002-01-01

    Full text: Present time protection of the biosphere from technogene pollution is the important problem, having common to all mankind value. In circuits of the technogene pollution of the environment the soil is a carrying on link for through soil the contaminants freely go to air environment, in underground waters in plants and in foodstuff of a vegetative and animal genesis. In subsequent these contaminants on the indicated chains by penetrating in an organism of the people render an ill effect on their health. In this plane the radiological contamination of soil introduces still large dangerous. As the radionuclides of soil can render as external radiation, and by getting in an organism with air, water and foodstuff can cause internal radiation. In this plane, for detection of a role of gas and oil producing firms in radiological contamination soil as object of an environment, we conduct researches by a hygienic estimation of radiological contamination of soil of territory of oil-fields OOGE 'Gum adasi' of the Apsheron region. By spectrometric method were studied a natural background radiation and radioactivity of soil of different territories of shop of complex opening-up of oil. Established, that for the raw tank the specific activity reaches 4438-9967 Bk/kg, close of the product repair shop the radioactivity reached 650- 700 micro R/hour. In territory of the region 'Gum adasi', where the waste from cleaning chisel tubes were accumulated, the radioactivity made 600 micro R/hour. These indexes the superior background level is significant. The analysis of power spectrums a gamma of radiations is model from the indicated sites has shown, that the radioactivity is conditioned by isotopes of a radium. The researches have allowed to demonstrate a radioactivity technogene of impurity of rocks to recommend urgent dumping of above-stated waste in bunkers on sites, retracted by it. Thus, was established, that gas and oil producing firms contributing to radiological

  6. An Investigation on Gas Lift Performance Curve in an Oil-Producing Well

    Directory of Open Access Journals (Sweden)

    Deni Saepudin

    2007-01-01

    Full Text Available The main objective in oil production system using gas lift technique is to obtain the optimum gas injection rate which yields the maximum oil production rate. Relationship between gas injection rate and oil production rate is described by a continuous gas lift performance curve (GLPC. Obtaining the optimum gas injection rate is important because excessive gas injection will reduce production rate, and also increase the operation cost. In this paper, we discuss a mathematical model for gas lift technique and the characteristics of the GLPC for a production well, for which one phase (liquid is flowing in the reservoir, and two phases (liquid and gas in the tubing. It is shown that in certain physical condition the GLPC exists and is unique. Numerical computations indicate unimodal properties of the GLPC. It is also constructed here a numerical scheme based on genetic algorithm to compute the optimum oil production.

  7. How gas producers can position themselves to take advantage of a deregulated energy market

    International Nuclear Information System (INIS)

    Reid, S.D.

    1996-01-01

    An overview of Norcen Energy Resource's finances, their production of oil, natural gas liquids (NGL) and gas, and their approach to marketing was provided in this poster presentation. Formerly owned power projects and current opportunities for Norcen were summarized. The potential role of natural gas in electrical restructuring, and some possible marketing strategies were highlighted

  8. Wet gas sampling

    Energy Technology Data Exchange (ETDEWEB)

    Welker, T.F.

    1997-07-01

    The quality of gas has changed drastically in the past few years. Most gas is wet with hydrocarbons, water, and heavier contaminants that tend to condense if not handled properly. If a gas stream is contaminated with condensables, the sampling of that stream must be done in a manner that will ensure all of the components in the stream are introduced into the sample container as the composite. The sampling and handling of wet gas is extremely difficult under ideal conditions. There are no ideal conditions in the real world. The problems related to offshore operations and other wet gas systems, as well as the transportation of the sample, are additional problems that must be overcome if the analysis is to mean anything to the producer and gatherer. The sampling of wet gas systems is decidedly more difficult than sampling conventional dry gas systems. Wet gas systems were generally going to result in the measurement of one heating value at the inlet of the pipe and a drastic reduction in the heating value of the gas at the outlet end of the system. This is caused by the fallout or accumulation of the heavier products that, at the inlet, may be in the vapor state in the pipeline; hence, the high gravity and high BTU. But, in fact, because of pressure and temperature variances, these liquids condense and form a liquid that is actually running down the pipe as a stream or is accumulated in drips to be blown from the system. (author)

  9. Investigations on a highly luminous condensed xenon scintillator

    International Nuclear Information System (INIS)

    Lansiart, Alain; Seigneur, Alain; Morucci, J.-P.

    1976-12-01

    The means of creating a maximal amount of light by absorption of gamma radiation in condensed xenon were investigated. One of the methods relies on the light production around wires in liquid xenon when several kilovolts are applied to them. Another method uses the saturating vapor present over solid xenon; the electric field pulls out electrons from the solid and accelerates them in the gas phase where they produce light through inelastic collisions [fr

  10. Processing and structure of in situ Fe-Al alloys produced by gas tungsten arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-02-14

    Iron aluminide weld overlays are being investigated for corrosion and erosion protection of boiler tubes in low NOx burners. The primary objective of the research is to identify overlay compositions which can be deposited in a crack-free condition and provide corrosion protection in moderately reducing environments. In the current phase of work, Fe-Al alloy weld overlays were produced by depositing commercially pure aluminum wire on to low carbon steel substrates using Gas Tungsten Arc Welding. A systematic variation of the wire feed speed and current, two major factors affecting dilution, resulted in a variation in aluminum contents of the welds ranging from 3--42 wt% aluminum. The aluminum content was observed to increase with wire feed speed and a decrease in the current. The aluminum content was also found to affect the cracking susceptibility of the overlays. At 10wt% aluminum, few to no cracks were observed in the deposits. Above this value, cracking was prevalent throughout the weld. In addition, two types of microstructures were found correlating to different concentrations of aluminum. A homogeneous matrix with second phase particles consisting of coarse columnar grains was found for low aluminum concentrations. With higher aluminum contents, a two-phase constituent was observed to surround primary dendrites growing from the substrate. The transition of the microstructures occurred between 24 and 32 wt% Al.

  11. A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis

    International Nuclear Information System (INIS)

    Raman, P.; Ram, N.K.; Gupta, Ruchi

    2013-01-01

    The existing biomass gasifier systems have several technical challenges, which need to be addressed. They are reduction of impurities in the gas, increasing the reliability of the system, easy in operation and maintenance. It is also essential to have a simple design of gasifier system for power generation, which can work even in remote locations. A dual fired downdraft gasifier system was designed to produce clean gas from biomass fuel, used for electricity generation. This system is proposed to overcome a number of technical challenges. The system is equipped with dry gas cleaning and indirect gas cooling equipment. The dry gas cleaning system completely eliminates wet scrubbers that require large quantities of water. It also helps to do away with the disposal issues with the polluted water. With the improved gasifier system, the tar level in the raw gas is less than 100 mg Nm −3 .Cold gas efficiency has improved to 89% by complete gasification of biomass and recycling of waste heat into the reactor. Several parameters, which are considered in the design and development of the reactors, are presented in detail with their performance indicators. - Highlights: • Hot air injection in dual fired reactor reduces the tar content to less than 100 mg Nm −3 . • In clean gas the tar content is 35 mg Nm −3 and the dust content is nil. • The specific gasification rate is 2.8 Nm 3 kg −1 of fuel wood and cold gas efficiency is 89.7%. • CV of the gas: 5.3 MJ Nm −3 , SFC: 1.1 kg kWh −1 and wood to power efficiency: 21%. • Cold gas efficiency is improved by optimizing the reactor's design and recycling the waste heat from hot gas

  12. Modeling of gas condensates properties using continuous distribution functions for the characterization of the plus fraction; Modelisation des proprietes thermodynamiques des gaz a condensat par representation de la fraction lourde a l`aide de fonctions de distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sportisse, M.

    1996-12-20

    The modeling of thermodynamic behaviour for gas condensates is not yet satisfactory and it involves an adjustment of thermodynamic models. We propose here a fitting based on the characterization of the plus fraction using three continuous distribution functions associated to the following families: n-alkanes, n-alkylbenzenes and poly-aromatics. No continuous thermodynamic model is used and PVT calculations are made with the Peng-Robinson equation of state. For poly-aromatics, a simple correlation of {l_brace} T{sub c}, P{sub c}, {omega} {r_brace} is given. The parameters of the distributions are fitted in order to improve the accuracy of the liquid deposit curve calculation. A continuous minimization by simulated annealing has been used to avoid local minima. Good results on fitting PVT properties have been obtained with more than twenty gas condensates from different areas. Moreover, the prediction of tank liquid and heavy-plus fraction densities are given with an average deviation of 1.2 % and 3.6 %. Tests on temperature extrapolation show that our modeling yields a good representation of pressure and temperature influence on gas condensates behaviour. (author) 89 refs.

  13. Increasing gas producer profitability with virtual well visibility via an end-to-end wireless Internet gas monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, M. [Northrock Resources Ltd., Calgary, AB (Canada); Benterud, K. [Zed.i solutions, Calgary, AB (Canada)

    2003-07-01

    This PowerPoint presentation describes how Northrock Resources Ltd. increased profitability using Smart-Alek{sup TM} while avoiding high implementation costs. Smart-Alek is a new type of fully integrated end-to-end electronic gas flow measurement (GFM) system based on Field Intelligence Network and End User Interference (FINE). Smart-Alek can analyze gas production through public wireless communications and a web-browser delivery system. The system has enabled Northrock to increase gas volumes with more accurate measurement and reduced downtime. In addition, operating costs have decreased because the frequency of well visits has been reduced and the administrative procedures of data collection is more efficient. The real-time well visibility of the tool has proven to be very effective in optimizing business profitability. 7 figs.

  14. Technological investigations and efficiency analysis of a steam heat exchange condenser: Conceptual design of a hybrid steam condenser

    OpenAIRE

    Kapooria, R K; Kumar, S; Kasana, K S

    2008-01-01

    Most of the electricity being produced throughout the world today is from steam power plants. At the same time, many other competent means of generating electricity have been developed viz. electricity from natural gas, MHD generators, biogas, solar cells, etc. But steam power plants will continue to be competent because of the use of water as the main working fluid which is abundantly available and is also reusable. The condenser remains among one of the key components of a steam power plant...

  15. Continuous condensation in nanogrooves

    Science.gov (United States)

    Malijevský, Alexandr

    2018-05-01

    We consider condensation in a capillary groove of width L and depth D , formed by walls that are completely wet (contact angle θ =0 ), which is in a contact with a gas reservoir of the chemical potential μ . On a mesoscopic level, the condensation process can be described in terms of the midpoint height ℓ of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (D →∞ ), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second-order phase transition, such that ℓ ˜(μcc-μ ) -1 /4 as μ →μcc - where μc c is the chemical potential pertinent to capillary condensation in a slit pore of width L . For finite values of D , the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than μc c with a difference of the order of D-3. For sufficiently deep grooves, the meniscus growth initially follows the power law ℓ ˜(μcc-μ ) -1 /4 , but this behavior eventually crosses over to ℓ ˜D -(μ-μc c) -1 /3 above μc c, with a gap between the two regimes shown to be δ ¯μ ˜D-3 . Right at μ =μc c , when the groove is only partially filled with liquid, the height of the meniscus scales as ℓ*˜(D3L) 1 /4 . Moreover, the chemical potential (or pressure) at which the groove is half-filled with liquid exhibits a nonmonotonic dependence on D with a maximum at D ≈3 L /2 and coincides with μc c when L ≈D . Finally, we show that condensation in finite grooves can be mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance D apart with potential strengths depending on L . All these predictions, based on mesoscopic arguments, are confirmed by fully microscopic Rosenfeld's density functional theory with a reasonable agreement down to surprisingly small values of both L and D .

  16. Technologies applied to wells producing gas in Bolivia; Tecnologias aplicadas aos pocos produtores de gas em Bolivia

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Fernando R.B. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Carrillo, Marco A.; Barrerro, Dennys A. [PETROBRAS Bolivia S.A., La Paz (Bolivia)

    2012-07-01

    The This paper seeks to highlight the engineering, lessons learned and topics for improvement of the technologies used in gas wells drilled between November 2008 and October 2011 in an environment of Bolivian' subandino. Among technologies employed and commented hereunder has the drilling gas reservoirs in near balance using a dual phase fluid, with nitrogen; carrying out multilateral wells equipped with intelligent completion in such environment; as well as other technologies presented herein. This document was prepared on drilling operations performed in SAL-15, SAL-17, SBLSBL- 7 and SBL-8, comprising the period from November 2008 to October 2011. (author)

  17. Process and plant for obtaining producer gas from fossil fuels. Verfahren und Anlage zur Gewinnung von Generatorgas aus fossilen Brennstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1983-12-01

    In a plant for generating producer gas from fossil fuels with relatively high humidity, there is predrying of the wet material in two drying chambers situated above the actual reactor shaft. The drying air required for this purpose is drawn off via blowers and heat exchangers preheated from the area of the combustion zone. The preparation of the crude gases produced first in the process is done by a socalled bypass gas system, i.e. the reintroduction of the crude gases enriched with tar oil and steam and diverting prepared hot gases via an annular pipe from the area of the reduction zone.

  18. Visual Investigation of Retrograde Phenomena and Gas Condensate Flow in Porous Media Étude visuelle des phénomènes rétrogrades et de l'écoulement des gaz de condensat en milieux poreux

    Directory of Open Access Journals (Sweden)

    Danesh A.

    2006-11-01

    Full Text Available The mechanism of retrograde condensation and the flow of gas-condensate in horizontal porous media under simulated reservoir conditions were visually studied. Two-dimensional glass micromodels with homogeneous pore structures, as well as heterogeneous patterns, reproduced from real rock micrographs were employed in this study. Depletion tests were carried out using synthetic multicomponent hydrocarbon gas mixtures and also a North Sea gas condensate. The multiphase flow behaviour of the tested systems, as observed and recorded on video, is presented here along with the measured data. In water-wet pores, condensate was observed to be formed as a continuous thin film on connate water, which was the preferred site for condensation. Pressure reduction below the system cricondenbar resulted in the growth of the condensate almost exclusively on water rings at pore throats and dead end pores. The condensate was observed to flow through thin films even at low saturations, with little contribution to the condensate recovery. The rate of pressure depletion influenced the gas flow shear and was found to strongly affect the condensate propagation. Local instabilities could promote significant condensate movement in pore sections which would only be retarded further downstream by capillary effects diminishing the condensate recovery. Relative permeability-saturation relation-ships for gas-condensate flow should not be expected to take the same form as the oil-gas relative permeability for solution gas or external gas drive. Le mécanisme de la condensation rétrograde et l'écoulement des gaz de condensat en milieu poreux horizontal dans une simulation des conditions naturelles ont fait l'objet d'études visuelles. Des micromodèles en verre bi-dimensionnels à structure poreuse homogène, et des éléments hétérogènes reproduisant des micrographies de roches réelles, ont été utilisés pour cette étude. Des essais d'épuisement ont été effectu

  19. Greenhouse gas emissions of imported and locally produced fruit and vegetable commodities: A quantitative assessment

    International Nuclear Information System (INIS)

    Michalský, Marián; Hooda, Peter S.

    2015-01-01

    Highlights: • Green house gas (GHG) emission of selected fruit and vegetables (SFVs) estimated. • Production and transport – most energy-intensive life cycle stages considered. • Sourcing SFVs from non-European countries causes much GHG emissions. • Increased UK production of SFVs offers considerable emission savings. • Sourcing SFVs from Europe can help make considerable GHG emission savings. - Abstract: Today considerable efforts are being made in identifying means of further energy efficiencies within the UK food system. Current air importation of fruit and vegetables (FVs) generates large amounts of greenhouse gas (GHG) emissions part of which could be avoided. Local food production has been recognized as an environmentally feasible alternative production option and could help reduce GHG emissions, as required under the legally binding emissions targets stipulated by the UK Climate Change Act 2008. Climate change impacts of FVs importation were determined for a selection of five indigenous FV commodities, namely: apples, cherries, strawberries, garlic and peas. Carbon dioxide equivalents (CO 2 e) emissions associated with the production and transport stages were calculated using the sample of selected fruit and vegetables (SFVs). The latter stage includes three diverse geographic locations/regions for emissions comparison, namely the UK, Europe and non-European (NE) countries. On average (across the five SFVs), NE commodities, all in fresh/chilled state, were found to contain embedded (arising from production, air freighting and distribution within the UK) GHG emissions of 10.16 kg CO 2 e/kg. This is 9.66 kg more CO 2 e emissions compared to a kilogram of these commodities produced and supplied locally. A scenario-based approach determined the level of emissions savings that could be achieved by local FVs production in the UK. The least dramatic change of SCENARIO-1 (25% reduction in NE SFVs imports by increasing their local production by the same

  20. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    Science.gov (United States)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  1. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.

    2017-06-01

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in

  2. The chronic toxicity of sodium bicarbonate, a major component of coal bed natural gas produced waters

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.

    2014-01-01

    Sodium bicarbonate (NaHCO3) is the principal salt in coal bed natural gas produced water from the Powder River Structural Basin, Wyoming, USA, and concentrations of up to 3000 mg NaHCO3/L have been documented at some locations. No adequate studies have been performed to assess the chronic effects of NaHCO3 exposure. The present study was initiated to investigate the chronic toxicity and define sublethal effects at the individual organism level to explain the mechanisms of NaHCO3 toxicity. Three chronic experiments were completed with fathead minnows (Pimephales promelas), 1 with white suckers (Catostomus commersoni), 1 with Ceriodaphnia dubia, and 1 with a freshwater mussel, (Lampsilis siliquoidea). The data demonstrated that approximately 500 mg NaHCO3/L to 1000 mg NaHCO3/L affected all species of experimental aquatic animals in chronic exposure conditions. Freshwater mussels were the least sensitive to NaHCO3 exposure, with a 10-d inhibition concentration that affects 20% of the sample population (IC20) of 952 mg NaHCO3/L. The IC20 for C. dubia was the smallest, at 359 mg NaHCO3/L. A significant decrease in sodium–potassium adenosine triphosphatase (Na+/K+ ATPase) together with the lack of growth effects suggests that Na+/K+ ATPase activity was shut down before the onset of death. Several histological anomalies, including increased incidence of necrotic cells, suggested that fish were adversely affected as a result of exposure to >450 mg NaHCO3/L.

  3. Oil and gas development in the United States in the early 1990`s: An expanded role for independent producers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Since 1991, the major petroleum companies` foreign exploration and development expenditures have exceeded their US exploration and development expenditures. The increasing dependence of US oil and gas development on the typically much smaller nonmajor companies raises a number of issues. Did those companies gain increased prominence largely through the reduced commitments of the majors or have they been significantly adding to the US reserve base? What are the characteristics of surviving and growing producers compared with companies exiting the US oil and gas business? Differences between majors` development strategies and those of other US oil and gas producers appear considerable. As the mix of exploration and development strategies in US oil and gas increasingly reflects the decisions of smaller, typically more specialized producers, what consequences can be seen regarding the costs of adding to US reserves? How are capital markets accessed? Are US oil and gas investments by the nonmajors likely to be undertaken only with higher costs of capital? This report analyzes these issues. 20 figs., 6 tabs.

  4. Bose-Einstein condensation in real space

    International Nuclear Information System (INIS)

    Valencia, J.J.; Llano, M. de; Solis, M.A.

    2004-01-01

    We show how Bose-Einstein condensation (BEC) occurs not only in momentum space but also in coordinate (or real) space. Analogies between the isotherms of a van der Waals classical gas of extended (or finite-diameter) identical atoms and the point (or zero-diameter) particles of an ideal BE gas allow concluding that, in contrast with the classical case, the volume per particle vanishes in the pure BE condensate phase precisely because the boson diameters are zero. Thus a BE condensate forms in real space without exhibiting a liquid branch as does the classical gas. (Author)

  5. LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS

    International Nuclear Information System (INIS)

    Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E.; Elmegreen, B. G.; Elmegreen, D. M.; Pérez-Montero, E.; Vílchez, J. M.; Amorín, R.; Ascasibar, Y.; Papaderos, P.

    2015-01-01

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties

  6. LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Elmegreen, B. G. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Pérez-Montero, E.; Vílchez, J. M. [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Amorín, R. [INAF-Osservatorio Astronomico di Roma, Monte Porzio Catone (Italy); Ascasibar, Y. [Universidad Autonoma de Madrid, Madrid (Spain); Papaderos, P., E-mail: jos@iac.es [Centro de Astrofísica da Universidade do Porto, Porto (Portugal)

    2015-09-10

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.

  7. Organic pollutants in shale gas flowback and produced waters : identification, potential ecological impact and implications for treatment strategies

    NARCIS (Netherlands)

    Butkovskyi, Andrii; Bruning, Harry; Kools, Stefan A E; Rijnaarts, Huub H M; van Wezel, Annemarie P

    2017-01-01

    Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses

  8. Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Stigkær, Jens Peter; Løhndorf, Bo

    2013-01-01

    This paper discusses the application of plant-wide control philosophy to enhance the performance and capacity of the Produced Water Treatment (PWT) in offshore oil & gas production processes. Different from most existing facility- or material-based PWT innovation methods, the objective of this work...

  9. Thermodynamic modelling of an onsite methanation reactor for upgrading producer gas from commercial small scale biomass gasifiers.

    Science.gov (United States)

    Vakalis, S; Malamis, D; Moustakas, K

    2018-06-15

    Small scale biomass gasifiers have the advantage of having higher electrical efficiency in comparison to other conventional small scale energy systems. Nonetheless, a major drawback of small scale biomass gasifiers is the relatively poor quality of the producer gas. In addition, several EU Member States are seeking ways to store the excess energy that is produced from renewables like wind power and hydropower. A recent development is the storage of energy by electrolysis of water and the production of hydrogen in a process that is commonly known as "power-to-gas". The present manuscript proposes an onsite secondary reactor for upgrading producer gas by mixing it with hydrogen in order to initiate methanation reactions. A thermodynamic model has been developed for assessing the potential of the proposed methanation process. The model utilized input parameters from a representative small scale biomass gasifier and molar ratios of hydrogen from 1:0 to 1:4.1. The Villar-Cruise-Smith algorithm was used for minimizing the Gibbs free energy. The model returned the molar fractions of the permanent gases, the heating values and the Wobbe Index. For mixtures of hydrogen and producer gas on a 1:0.9 ratio the increase of the heating value is maximized with an increase of 78%. For ratios higher than 1:3, the Wobbe index increases significantly and surpasses the value of 30 MJ/Nm 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. 17 CFR 210.4-10 - Financial accounting and reporting for oil and gas producing activities pursuant to the Federal...

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Financial accounting and... of General Application § 210.4-10 Financial accounting and reporting for oil and gas producing... section prescribes financial accounting and reporting standards for registrants with the Commission...

  11. The Dynamics of Aerosols in Condensational Scrubbers

    DEFF Research Database (Denmark)

    Johannessen, Jens Tue; Christensen, Jan A.; Simonsen, Ole

    1997-01-01

    A mathematical model for the simulation of the dynamics of aerosol change in condensational scrubbers and scrubbing condensers is proposed. The model is applicable for packed column gas/liquid contact when plug flow can be assumed. The model is compared with experimental data for particle removal...... for their estimation is proposed. The behaviour of scrubbers and condensers for some important technical applications is demonstrated by model simulations. (C) 1997 Elsevier Science Ltd....

  12. The Integration of Gasification Systems with Gas Engine by Developing Wet Tar Scrubbers and Gas Filter to Produce Electrical Energy from Biomass

    Directory of Open Access Journals (Sweden)

    Siregar Kiman

    2018-01-01

    Full Text Available The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactorwere 900 mm and 1 000 mm respectively. The method used here werethe design the Detailed Engineering Design, assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 h with performance engine of 84 % and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kW h electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2 eq per MJ. Electrical production cost for Biomass Power Generation is about IDR 1 500 per kW h which is cheaper than solar power generation which is about of IDR 3 300 per kW h.

  13. Condensation of exciton polaritons

    International Nuclear Information System (INIS)

    Kasprzak, J.

    2006-10-01

    Because of their unique property of bringing pure quantum effects into the real world scale, phase transitions towards condensed phases - like Bose-Einstein condensation (BEC), superfluidity, and superconductivity - have always fascinated scientists. The BEC, appearing upon cooling a gas of bosons below a critical temperature, has been given a striking demonstration in dilute atomic gases of rubidium atoms at temperatures below 200 nK. By confining photons in a semiconductor micro-cavity, and strongly coupling them to electronic excitations, one may create polaritons. These bosonic quasi-particles are 10 9 times lighter than rubidium atoms, thus theoretically allowing a BEC at standard cryogenic temperatures. Here we detail a comprehensive set of experiments giving compelling evidence for a BEC of polaritons. Above a critical density, we observe massive occupation of the ground state, developing from a thermalized and saturated distribution of the polariton population at (16-20) K. We demonstrate as well the existence of a critical temperature for this transition. The spontaneous onset of a coherent state is manifested by the increase of temporal coherence, the build-up of long-range spatial coherence and the reduction of the thermal noise observed in second order coherence experiments. The marked linear polarization of the emission from the condensate is also measured. All of these findings indicate the spontaneous onset of a macroscopic quantum phase. (author)

  14. Produced water ponds are an important source of aromatics and alcohols in Rocky Mountain oil and gas basins

    Science.gov (United States)

    Lyman, S. N.

    2017-12-01

    Most of the water extracted with oil and natural gas (i.e., produced water) is disposed of by injection into the subsurface. In the arid western United States, however, a significant portion of produced water is discharged in ponds for evaporative disposal, and produced water is often stored in open ponds prior to subsurface injection. Even though they are common in the West (Utah's Uinta Basin has almost 200 ha), produced water ponds have been excluded from oil and gas emissions inventories because little information about their emission rates and speciation is available. We used flux chambers and inverse plume modeling to measure emissions of methane, C2-C11 hydrocarbons, light alcohols, carbonyls, and carbon dioxide from oil and gas produced water storage and disposal ponds in the Uinta Basin and the Upper Green River Basin, Wyoming, during 2013-2017. Methanol was the most abundant organic compound in produced water (91 ± 2% of the total volatile organic concentration; mean ± 95% confidence interval) but accounted for only 25 ± 30% of total organic compound emissions from produced water ponds. Non-methane hydrocarbons, especially C6-C9 alkanes and aromatics, accounted for the majority of emitted organics. We were able to predict emissions of individual compounds based on water concentrations, but only to within an order of magnitude. The speciation and magnitude of emissions varied strongly across facilities and was influenced by water age, the presence or absence of oil sheens, and with meteorological conditions (especially ice cover). Flux chamber measurements were lower than estimates from inverse modeling techniques.Based on our flux chamber measurements, we estimate that produced water ponds are responsible for between 3 and 9% of all non-methane organic compound emissions in the Uinta Basin (or as much as 18% if we rely on our inverse modeling results). Emissions from produced water ponds contain little methane and are more reactive (i.e., they have

  15. Sewage sludge based producer gas of rich H{sub 2} content as a fuel for an IC engine

    Energy Technology Data Exchange (ETDEWEB)

    Szwaja, Stanislaw; Cupial, Karol [Czestochowa Univ. of Technology (Poland)

    2010-07-01

    The manuscript presents investigation on hydrogen rich gas combustion in an internal combustion (IC) engine. The gas is obtained from gasification process of sewage sludge which is by-product of waste water treatment in a municipal sewage treatment plant. Recently introduced EU regulations of environmental protection do not allow to use such sludge as a soil fertilizer or substance for landfilling the ground due to its biological toxicity. On another hand, this sludge contains organic content of approximately 45-55% and from this point of view the sludge looks as an attractive material for fuel production through its gasification. This technology, primarily applied for wood gasification, has been also successfully implemented for gasification of sludge. It was found that the producer gas obtained in this way is rich of hydrogen content even up to 25%. This is because of high water content in the sludge that provides favorable conditions for steam reforming resulting in increase of hydrogen in the products of gasification. The high hydrogen content in the producer gas can lead to improper combustion particularly when the combustion takes place in the internal combustion engine. That improper combustion might appear as combustion knock and it is the main problem for the engine in which hydrogen is used as a fuel [1]. Onset of the knock during combustion contributes to rapid increase in heat transfer to the piston crown causing the piston to be quickly overheated that leads to surface erosion and damages. Additionally, engine body vibration coming from the knock significantly shortens engine durability. Conclusions from this investigation provide good premises for combusting the sludge producer gas in the IC engine without any improper combustion anomalies, thus considers this gas as worthy fuel for a stationary engine driven a power generator. The presentation shows results of producer gas combustion in both the spark-ignited and the compression ignition engine with

  16. Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region

    Science.gov (United States)

    Yuan, B.; Veres, P. R.; Warneke, C.; Roberts, J. M.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Li, S.-M.; Wild, R. J.; Brown, S. S.; Dubé, W. P.; Lerner, B. M.; Williams, E. J.; Johnson, J. E.; Quinn, P. K.; Bates, T. S.; Lefer, B.; Hayes, P. L.; Jimenez, J. L.; Weber, R. J.; Zamora, R.; Ervens, B.; Millet, D. B.; Rappenglück, B.; de Gouw, J. A.

    2015-02-01

    Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site (Pasadena) in June-July 2010 during CalNex (California Research at the Nexus of Air Quality and Climate Change) and a site in an oil and gas producing region (Uintah Basin) in January-February 2013 during UBWOS 2013 (Uintah Basin Winter Ozone Studies) will be discussed. Although the VOC (volatile organic compounds) compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 ± 1.3 in UBWOS 2013 and 2.0 ± 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 99%). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Compared to the original MCM model that includes only ozonolysis of unsaturated organic compounds and OH oxidation of acetylene, when we updated yields of ozonolysis of alkenes and included OH oxidation of isoprene, vinyl alcohol chemistry, reaction of formaldehyde with HO2, oxidation of aromatics, and reaction of CH3O2 with OH, the model predictions for formic acid were improved by a factor of 6.4 in UBWOS 2013 and 4.5 in CalNex, respectively. A comparison of measured and modeled HCOOH/acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 19 and 45% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be 0-6 and 0-5% in UBWOS 2013 and CalNex, respectively. We observe that

  17. Natural gas facility methane emissions: measurements by tracer flux ratio in two US natural gas producing basins

    Directory of Open Access Journals (Sweden)

    Tara I. Yacovitch

    2017-11-01

    Full Text Available Methane (CH4 emission rates from a sample of natural gas facilities across industry sectors were quantified using the dual tracer flux ratio methodology. Measurements were conducted in study areas within the Fayetteville shale play, Arkansas (FV, Sept–Oct 2015, 53 facilities, and the Denver-Julesburg basin, Colorado, (DJ, Nov 2014, 21 facilities. Distributions of methane emission rates at facilities by type are computed and statistically compared with results that cover broader geographic regions in the US (Allen et al., 2013, Mitchell et al., 2015. DJ gathering station emission rates (kg CH4 hr–1 are lower, while FV gathering and production sites are statistically indistinguishable as compared to these multi-basin results. However, FV gathering station throughput-normalized emissions are statistically lower than multi-basin results (0.19% vs. 0.44%. This implies that the FV gathering sector is emitting less per unit of gas throughput than would be expected from the multi-basin distribution alone. The most common emission rate (i.e. mode of the distribution for facilities in this study is 40 kg CH4 hr–1 for FV gathering stations, 1.0 kg CH4 hr–1 for FV production pads, and 11 kg CH4 hr–1 for DJ gathering stations. The importance of study design is discussed, including the benefits of site access and data sharing with industry and of a scientist dedicated to measurement coordination and site choice under evolving wind conditions.

  18. Condensation coefficient of water in a weak condensation state

    International Nuclear Information System (INIS)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-01-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  19. Condensation coefficient of water in a weak condensation state

    Science.gov (United States)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-07-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  20. Modelling gas migration in compacted bentonite. A report produced for the GAMBIT club

    International Nuclear Information System (INIS)

    Nash, P.J.; Swift, B.T.; Goodfield, M.; Rodwell, W.R.

    1998-08-01

    This report describes the first phase of a programme of work that has as its overall objective the development of a computational model that can simulate the results of experiments on gas migration through highly compacted bentonite, and will provide the basis of a model suitable to assess the effects of bentonite barriers on the build-up of pressure and the escape of hydrogen gas from disposal canisters in a radioactive waste repository. In this first phase of the project, the possible mechanisms and controlling features of gas migration through compacted bentonite have been reviewed, and a preliminary computational model of the process has been implemented and evaluated. In the model it is assumed that gas invasion of the clay occurs by induced microfissuring, and that the permeability of the pathways thus created depends on the gas pressure (or the effective stress). Experimental data on gas migration in compacted bentonite that was collected under well controlled conditions by Horseman and Harrington was used in a preliminary evaluation of the new model. The model was able to reproduce qualitatively all the features seen in the subset of the experimental data used in the evaluation, and to provide quantitative agreement to substantial sections of the results of test sequences, but quantitative agreement between simulation and experimental results over a whole test sequence was not obtained. As part of the model evaluation, the dependence of the results obtained on key model parameters is reported. Outline plans for a further phase of work are suggested. (orig.)

  1. Modelling gas migration in compacted bentonite. A report produced for the GAMBIT club

    Energy Technology Data Exchange (ETDEWEB)

    Nash, P.J.; Swift, B.T.; Goodfield, M.; Rodwell, W.R. [AEA Technology plc, Dorchester (United Kingdom)

    1998-08-01

    This report describes the first phase of a programme of work that has as its overall objective the development of a computational model that can simulate the results of experiments on gas migration through highly compacted bentonite, and will provide the basis of a model suitable to assess the effects of bentonite barriers on the build-up of pressure and the escape of hydrogen gas from disposal canisters in a radioactive waste repository. In this first phase of the project, the possible mechanisms and controlling features of gas migration through compacted bentonite have been reviewed, and a preliminary computational model of the process has been implemented and evaluated. In the model it is assumed that gas invasion of the clay occurs by induced microfissuring, and that the permeability of the pathways thus created depends on the gas pressure (or the effective stress). Experimental data on gas migration in compacted bentonite that was collected under well controlled conditions by Horseman and Harrington was used in a preliminary evaluation of the new model. The model was able to reproduce qualitatively all the features seen in the subset of the experimental data used in the evaluation, and to provide quantitative agreement to substantial sections of the results of test sequences, but quantitative agreement between simulation and experimental results over a whole test sequence was not obtained. As part of the model evaluation, the dependence of the results obtained on key model parameters is reported. Outline plans for a further phase of work are suggested. (orig.) 32 refs.

  2. Membranes for Flue Gas Treatment - Transport behavior of water and gas in hydrophilic polymer membranes

    NARCIS (Netherlands)

    Potreck, Jens

    2009-01-01

    Fossil fuel fired power plants produce electricity and in addition to that large volume flows of flue gas, which mainly contain N2, O2, and CO2, but also large quantities of water vapor. To prevent condensation of the water vapor present in this flue gas stream, water needs to be removed before

  3. AN OVERVIEW OF GAS-UPGRADING TECHNOLOGIES FOR BIOHYDROGEN PRODUCED FROM TREATMENT OF PALM OIL MILL EFFLUENT

    Directory of Open Access Journals (Sweden)

    IZZATI NADIA MOHAMAD

    2017-03-01

    Full Text Available To date, a high energy demand has led to massive research efforts towards improved gas-separation techniques for more energy-efficient and environmenttally friendly methods. One of the potential alternative energies is biogas produced from the fermentation of liquid waste generated from the oil-extraction process, which is known as palm oil mill effluent (POME. Basically, the gas produced from the POME fermentation process consists mainly of a CO2 and H2 gas mixture. CO2 is known as an anthropogenic greenhouse gas, which contributes towards the climate change phenomenon. Hence, it is crucial to determine a suitable technique for H2 separation and purification with good capability for CO2 capture, as this will reduce CO2 emission to the environment as well. This paper reviewed the current gas-separation techniques that consist of absorption, adsorption and a membrane in order to determine the advantages and disadvantages of these techniques towards the efficiency of the separation system. Crucial aspects for gas-separation techniques such as energy, economic, and environmental considerations are discussed, and a potential biohydrogen and biogas-upgrading technique for industrial POME application is presented and concluded in this paper. Based on the comparison on these aspects, water scrubbing is found to be the best technique to be used in the biogas-upgrading industry, followed by membrane and chemical scrubbing as well as PSA. Hence, these guidelines are justified for selecting the best gas-upgrading technique to be used in palm oil mill industry applications.

  4. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  5. Life Cycle Assessment of Producing Electricity in Thailand: A Case Study of Natural Gas Power Plant

    Directory of Open Access Journals (Sweden)

    Usapein Parnuwat

    2017-01-01

    Full Text Available Environmental impacts from natural gas power plant in Thailand was investigated in this study. The objective was to identify the hotspot of environmental impact from electricity production and the allocation of emissions from power plant was studied. All stressors to environment were collected for annual natural gas power plant operation. The allocation of environmental load between electricity and steam was done by WRI/WBCSD method. Based on the annual power plant operation, the highest of environmental impact was fuel combustion, followed by natural gas extraction, and chemical reagent. After allocation, the result found that 1 kWh of electricity generated 0.425 kgCO2eq and 1 ton of steam generated 225 kgCO2eq. When compared based on 1GJ of energy product, the result showed that the environmental impact of electricity is higher than steam product. To improve the environmental performance, it should be focused on the fuel combustion, for example, increasing the efficiency of gas turbine, and using low sulphur content of natural gas. This result can be used as guideline for stakeholder who engage with the environmental impact from power plant; furthermore, it can be useful for policy maker to understand the allocation method between electricity and steam products.

  6. A cost-benefit analysis of produced water management opportunities in selected unconventional oil and gas plays

    Science.gov (United States)

    Marsters, P.; Macknick, J.; Bazilian, M.; Newmark, R. L.

    2013-12-01

    Unconventional oil and gas production in North America has grown enormously over the past decade. The combination of horizontal drilling and hydraulic fracturing has made production from shale and other unconventional resources economically attractive for oil and gas operators, but has also resulted in concerns over potential water use and pollution issues. Hydraulic fracturing operations must manage large volumes of water on both the front end as well as the back end of operations, as significant amounts of water are coproduced with hydrocarbons. This water--often called flowback or produced water--can contain chemicals from the hydraulic fracturing fluid, salts dissolved from the source rock, various minerals, volatile organic chemicals, and radioactive constituents, all of which pose potential management, safety, and public health issues. While the long-term effects of hydraulic fracturing on aquifers, drinking water supplies, and surface water resources are still being assessed, the immediate impacts of produced water on local infrastructure and water supplies are readily evident. Produced water management options are often limited to underground injection, disposal at centralized treatment facilities, or recycling for future hydraulic fracturing operations. The costs of treatment, transport, and recycling are heavily dependent on local regulations, existing infrastructure, and technologies utilized. Produced water treatment costs also change over time during energy production as the quality of the produced water often changes. To date there is no publicly available model that evaluates the cost tradeoffs associated with different produced water management techniques in different regions. This study addresses that gap by characterizing the volume, qualities, and temporal dynamics of produced water in several unconventional oil and gas plays; evaluating potential produced water management options, including reuse and recycling; and assessing how hydraulic

  7. EVALUATION OF SOLVENTS EFFICIENCY IN CONDENSATE BANKING REMOVAL

    OpenAIRE

    CORREA, TOMAS; TIAB, DJEBBAR; RESTREPO, DORA PATRICIA

    2009-01-01

    This work describes experimental design and tests performed to simulate gas condensate reservoir conditions below dew point in the laboratory using three different compositions of synthetic gas condensate. Methanol, propanol and methylene chloride are the solvents used to remove the condensate banking and improve the gas effective permeability near to the wellbore. Solvents are injected in Berea sandstone rock with similar petrophysical properties in order to compare the efficiency at removin...

  8. Heat exchanger for transfering heat produced in a high temperature reactor to an intermediate circuit gas

    International Nuclear Information System (INIS)

    Barchewitz, E.; Baumgaertner, H.

    1985-01-01

    The invention is concerned with improving the arrangement of a heat exchanger designed to transfer heat from the coolant gas circuit of a high temperature reactor to a gas which is to be used for a process heat plant. In the plant the material stresses are to be kept low at high differential pressures and temperatures. According to the invention the tube bundles designed as boxes are fixed within the heat exchanger closure by means of supply pipes having got loops. For conducting the hot gas the heat exchanger has got a central pipe leading out of the reactor vessel through the pod closure and having got only one point of fixation, lying in this closure. Additional advantageous designs are mentioned. (orig./PW)

  9. Sound produced by an oscillating arc in a high-pressure gas

    Science.gov (United States)

    Popov, Fedor K.; Shneider, Mikhail N.

    2017-08-01

    We suggest a simple theory to describe the sound generated by small periodic perturbations of a cylindrical arc in a dense gas. Theoretical analysis was done within the framework of the non-self-consistent channel arc model and supplemented with time-dependent gas dynamic equations. It is shown that an arc with power amplitude oscillations on the order of several percent is a source of sound whose intensity is comparable with external ultrasound sources used in experiments to increase the yield of nanoparticles in the high pressure arc systems for nanoparticle synthesis.

  10. Foreign activities of German producers of petroleum and natural gas in 2011; Auslandsaktivitaeten deutscher Erdoel-Erdgas-Produzenten in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2012-04-15

    The contribution under consideration reports on the foreign activities of the German producers of petroleum/natural gas Wintershall Holding GmbH (Kassel), RWE DEA AG (Hamburg), E.ON Ruhrgas AG (Essen), Petro-Canada Germany GmbH (Essen), VNG Verbundnetz Gas Aktiengesellschaft (Leipzig), Bayerngas Norge AS (Oslo, Norway) und EWE Aktiengesellschaft (Oldenburg) in the year 2011. In Norway, Wintershall has more than fourty licences, around twenty of tem self-operated. RWE DEA has the operating lead at five from nine field development projects. At E.ON Ruhrgas AG, the exploration and production are a high-growth segment with good perspectives in the future. In Norway, Bayerngas Norge As promoted nearly 6.3 billion kWh gas equivalent in 2011.

  11. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING.

    Science.gov (United States)

    Diner, Elie J; Burdette, Dara L; Wilson, Stephen C; Monroe, Kathryn M; Kellenberger, Colleen A; Hyodo, Mamoru; Hayakawa, Yoshihiro; Hammond, Ming C; Vance, Russell E

    2013-05-30

    The presence of foreign DNA in the cytosol of mammalian cells elicits a potent antiviral interferon response. Recently, cytosolic DNA was proposed to induce the synthesis of cyclic GMP-AMP (cGAMP) upon binding to an enzyme called cGAMP synthase (cGAS). cGAMP activates an interferon response by binding to a downstream receptor called STING. Here, we identify natural variants of human STING (hSTING) that are poorly responsive to cGAMP yet, unexpectedly, are normally responsive to DNA and cGAS signaling. We explain this paradox by demonstrating that the cGAS product is actually a noncanonical cyclic dinucleotide, cyclic [G(2'-5')pA(3'-5')p], which contains a single 2'-5' phosphodiester bond. Cyclic [G(2'-5')pA(3'-5')p] potently activates diverse hSTING receptors and, therefore, may be a useful adjuvant or immunotherapeutic. Our results indicate that hSTING variants have evolved to distinguish conventional (3'-5') cyclic dinucleotides, known to be produced mainly by bacteria, from the noncanonical cyclic dinucleotide produced by mammalian cGAS. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The Innate Immune DNA Sensor cGAS Produces a Noncanonical Cyclic Dinucleotide that Activates Human STING

    Directory of Open Access Journals (Sweden)

    Elie J. Diner

    2013-05-01

    Full Text Available The presence of foreign DNA in the cytosol of mammalian cells elicits a potent antiviral interferon response. Recently, cytosolic DNA was proposed to induce the synthesis of cyclic GMP-AMP (cGAMP upon binding to an enzyme called cGAMP synthase (cGAS. cGAMP activates an interferon response by binding to a downstream receptor called STING. Here, we identify natural variants of human STING (hSTING that are poorly responsive to cGAMP yet, unexpectedly, are normally responsive to DNA and cGAS signaling. We explain this paradox by demonstrating that the cGAS product is actually a noncanonical cyclic dinucleotide, cyclic [G(2′-5′pA(3′-5′p], which contains a single 2′-5′ phosphodiester bond. Cyclic [G(2′-5′pA(3′-5′p] potently activates diverse hSTING receptors and, therefore, may be a useful adjuvant or immunotherapeutic. Our results indicate that hSTING variants have evolved to distinguish conventional (3′-5′ cyclic dinucleotides, known to be produced mainly by bacteria, from the noncanonical cyclic dinucleotide produced by mammalian cGAS.

  13. Profiling of volatile organic compounds produced by clinical Aspergillus isolates using gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Gerritsen, M G; Brinkman, P; Escobar Salazar, Natalia; Bos, L D; de Heer, K; Meijer, M; Janssen, H-G; de Cock, H; Wösten, H A B; Visser, C.E.; van Oers, M H J; Sterk, P J

    Volatile organic compounds (VOCs) in exhaled breath may identify the presence of invasive pulmonary aspergillosis. We aimed to detect VOC profiles emitted by in vitro cultured, clinical Aspergillus isolates using gas chromatography-mass spectrometry (GC-MS). Three clinical Aspergillus isolates and a

  14. Profiling of volatile organic compounds produced by clinical Aspergillus isol