WorldWideScience

Sample records for gas atomization processing

  1. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States); Siemon, John [Alcoa Inc., Pittsburgh, PA (United States)

    2017-06-30

    The charge for each gas atomization experiment was provided by Alcoa and consisted of cast blocks cut into 1 inch by 1 inch square rods of the chosen aluminum alloys. The atmosphere in the melting chamber and connected atomization system was evacuated with a mechanical pump prior to backfilling with ultrahigh purity (UHP grade) Ar. The melt was contained in a bottom tapped alumina crucible with an alumina stopper rod to seal the exit while heating to a pouring temperature of 1000 – 1400°C. When the desired superheat was reached, the stopper rod was lifted and melt flowed through pour tube and was atomized with Ar from a 45-22-052-409 gas atomization nozzle (or atomization die), having a jet apex angle of 45 degrees with 22 cylindrical gas jets (each with diameter of 1.32 mm or 0.052 inches) arrayed around the axis of a 10.4 mm central bore. The Ar atomization gas supply regulator pressure was set to produce nozzle manifold pressures for the series of runs at pressures of 250-650 psi. Secondary gas halos of Ar+O2 and He also were added to the interior of the spray chamber at various downstream locations for additional cooling of the atomized droplets, surface passivation, and to prevent coalescence of the resulting powder.

  2. Dynamics of gas-surface interactions atomic-level understanding of scattering processes at surfaces

    CERN Document Server

    Díez Muniño, Ricardo

    2013-01-01

    This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level u...

  3. Pulse radiolysis studies of some atomic and molecular processes in the gas phase

    International Nuclear Information System (INIS)

    Hatano, Y.; Takao, S.; Shimamori, H.; Ueno, T.; Yokoyama, A.

    1977-01-01

    The technique of pulse radiolysis has been applied to the study of some atomic and molecular processes in gas phase. The first application was to the determination of the Penning ionization rate constant. He-N 2 mixture was irradiated with nano-second pulses of 600 keV electrons, and the optical emission of N 2 + was measured. The result was compared with those obtained by other techniques. The second application was to the study of the lowest triplet state of benzene. The triplet state relaxation of benzene in gas phase was studied by measuring the phosphorescence of biacetyl induced by the energy transfer to biacetyl from triplet benzene in the pulse radiolysis of benzene-biacetyl mixture. The third application was to the study of thermal electron attachment to O 2 , in which microwave cavity method combined with pulse radiolysis has been used to observe the disappearance of thermal electrons directly with the fast response by attachment to O 2 . (Aoki, K.)

  4. Inflow of atomic gas fuelling star formation

    DEFF Research Database (Denmark)

    Michałowski, M. J.; Gentile, G.; Hjorth, Jeppe

    2016-01-01

    Gamma-ray burst host galaxies are deficient in molecular gas, and show anomalous metal-poor regions close to GRB positions. Using recent Australia Telescope Compact Array (ATCA) Hi observations we show that they have substantial atomic gas reservoirs. This suggests that star formation in these ga......Gamma-ray burst host galaxies are deficient in molecular gas, and show anomalous metal-poor regions close to GRB positions. Using recent Australia Telescope Compact Array (ATCA) Hi observations we show that they have substantial atomic gas reservoirs. This suggests that star formation...... in these galaxies may be fuelled by recent inflow of metal-poor atomic gas. While this process is debated, it can happen in low-metallicity gas near the onset of star formation because gas cooling (necessary for star formation) is faster than the Hi-to-H2 conversion....

  5. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States); Siemon, John [Alcoa, Inc, Pittsburgh, PA (United States)

    2017-06-30

    The initial three atomization attempts resulted in “freeze-outs” within the pour tubes in the pilot-scale system and yielded no powder. Re-evaluation of the alloy liquidus temperatures and melting characteristics, in collaboration with Alcoa, showed further superheat to be necessary to allow the liquid metal to flow through the pour tube to the atomization nozzle. A subsequent smaller run on the experimental atomization system verified these parameters and was successful, as were all successive runs on the larger pilot scale system. One alloy composition froze-out part way through the atomization on both pilot scale runs. SEM images showed needle formation and phase segregations within the microstructure. Analysis of the pour tube freeze-out microstructures showed that large needles formed within the pour tube during the atomization experiment, which eventually blocked the melt stream. Alcoa verified the needle formation in this alloy using theoretical modeling of phase solidification. Sufficient powder of this composition was still generated to allow powder characterization and additive manufacturing trials at Alcoa.

  6. Gas atomization processing of tin and silicon modified LaNi5 for nickel-metal hydride battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    Numerous researchers have studied the relevant material properties of so-called AB5 alloys for battery applications. These studies involved LaNi5 substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 μm) atomized powders with high surface area for enhanced battery performance. Concurrently, development of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB5 alloy powder for further processing advantage. Gas atomization processing of the AB5 alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB5 alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB5 alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB5 production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle

  7. Argon gas atoms trapping by carbon dendrites

    Science.gov (United States)

    Danilaev, M. P.; Bogoslov, E. A.; Polskii, Y. E.

    2017-11-01

    The conditions of argon gas atoms trapping by carbon dendrites, which growing in atmospheric pressure gas-discharge plasma, are considered in that paper. It’s showing that the argons atoms trapping by the carbon diamond-like cell can occur in arc gas discharge with current density more than j 0 ∼ 45 mA/sm2 and provided that the eximer molecules of noble gas and carbon atoms (e.g., ArC) can be formed.

  8. Gas lasers applied atomic collision physics, v.3

    CERN Document Server

    McDaniel, E W

    1982-01-01

    Applied Atomic Collision Physics, Volume 3: Gas Lasers describes the applications of atomic collision physics in the development of many types of gas lasers. Topics covered range from negative ion formation in gas lasers to high-pressure ion kinetics and relaxation of molecules exchanging vibrational energy. Ion-ion recombination in high-pressure plasmas is also discussed, along with electron-ion recombination in gas lasers and collision processes in chemical lasers.Comprised of 14 chapters, this volume begins with a historical summary of gas laser developments and an overview of the basic ope

  9. Studies on Microstructure and Thermoelectric Properties of p-Type Bi-Sb-Te Based Alloys by Gas Atomization and Hot Extrusion Processes

    Science.gov (United States)

    Park, Ki-Chan; Madavali, Babu; Kim, Eun-Bin; Koo, Kyung-Wan; Hong, Soon-Jik

    2017-05-01

    p-Type Bi2Te3 + 75% Sb2Te3 based thermoelectric materials were fabricated via gas atomization and the hot extrusion process. The gas atomized powder showed a clean surface with a spherical shape, and expanded in a wide particle size distribution (average particle size 50 μm). The phase of the fabricated extruded and R-extruded bars was identified using x-ray diffraction. The relative densities of both the extruded and R-extruded samples were measured by Archimedes principle with ˜98% relative density. The R-extruded bar exhibited finer grain microstructure than that of single extrusion process, which was attributed to a recrystallization mechanism during the fabrication. The R-extruded sample showed improved Vickers hardness compared to the extruded sample due to its fine grain microstructure. The electrical conductivity improved for the extruded sample whereas the Seebeck coefficient decreases due to its high carrier concentration. The peak power factor, ˜4.26 × 10-3 w/mK2 was obtained for the single extrusion sample, which is higher than the R-extrusion sample owing to its high electrical properties.

  10. Inert gas atomization of chemical grade silicon

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, D.; Ferreira Neto, J.B.; Salgado, L.; Nogueira, P.F.; Poco, J.G.R. [Metallurgy Div. Cidade Univ., Inst. for Technological Research, Sao Paulo, SP (Brazil)

    2001-07-01

    The use of inert gas atomization to obtain chemical grade silicon particles was investigated. Both cooling rate and chemical composition are very important regarding a tailored microstructure, related with silicon performance during the synthesis of the silanos, an intermediary raw material in the silicone production. Previously refined silicon was used as raw material. Silicon with different aluminum contents were atomized and analyzed. The atomization temperature was set around 1520 C, and it was used a confined atomization nozzle. It was necessary to use a long atomization chamber to allow the cooling of the coarse silicon particles. After atomization, the powder was characterized and classified. The coarse fraction was milled. Two different particle size groups (different cooling rates) and the as atomized particles were investigated. The chemical behavior during the synthesis of the silanos was analyzed in a laboratory reactor. The relationship between cooling rate, aluminum content and silicon performance during the silanos synthesis is discussed. (orig.)

  11. Passivation and alloying element retention in gas atomized powders

    Energy Technology Data Exchange (ETDEWEB)

    Heidloff, Andrew J.; Rieken, Joel R.; Anderson, Iver E.

    2017-12-05

    A method for gas atomization of a titanium alloy, nickel alloy, or other alumina (Al.sub.2O.sub.3)-forming alloy wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a passivation reaction film on the atomized particles wherein the reaction film retains a precursor halogen alloying element that is subsequently introduced into a microstructure formed by subsequent thermally processing of the atomized particles to improve oxidation resistance.

  12. General Atomic's radioactive gas recovery system

    International Nuclear Information System (INIS)

    Mahn, J.A.; Perry, C.A.

    1975-01-01

    General Atomic Company has developed a Radioactive Gas Recovery System for the HTGR which separates, for purposes of retention, the radioactive components from the non-radioactive reactor plant waste gases. This provides the capability for reducing to an insignificant level the amount of radioactivity released from the gas waste system to the atmosphere--a most significant improvement in reducing total activity release to the environment. (U.S.)

  13. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  14. High-speed cinematography of gas-metal atomization

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [ALCOA Specialty Metals Division, 100 Technical Drive, Alcoa Center, PA 15069 (United States)]. E-mail: jason.ting@alcoa.com; Connor, Jeffery [Material Science Engineering Department, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ridder, Stephen [Metallurgical Processing Group, NIST, 100 Bureau Dr. Stop 8556, Gaithersburg, MD 20899 (United States)

    2005-01-15

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images.

  15. High-speed cinematography of gas-metal atomization

    International Nuclear Information System (INIS)

    Ting, Jason; Connor, Jeffery; Ridder, Stephen

    2005-01-01

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images

  16. Detection of gas atoms with carbon nanotubes

    Science.gov (United States)

    Arash, B.; Wang, Q.

    2013-05-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  17. Detection of gas atoms with carbon nanotubes

    Science.gov (United States)

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  18. Gas processing handbook

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    Brief details are given of processes including: BGC-Lurgi slagging gasification, COGAS, Exxon catalytic coal gasification, FW-Stoic 2-stage, GI two stage, HYGAS, Koppers-Totzek, Lurgi pressure gasification, Saarberg-Otto, Shell, Texaco, U-Gas, W-D.IGI, Wellman-Galusha, Westinghouse, and Winkler coal gasification processes; the Rectisol process; the Catacarb and the Benfield processes for removing CO/SUB/2, H/SUB/2s and COS from gases produced by the partial oxidation of coal; the selectamine DD, Selexol solvent, and Sulfinol gas cleaning processes; the sulphur-tolerant shift (SSK) process; and the Super-meth process for the production of high-Btu gas from synthesis gas.

  19. Gas processing device

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji.

    1991-01-01

    State of electric discharge is detected based on a gas pressure in a sealed container and a discharging current flowing between both of electrodes. When electric arc discharges occur, introduction of gases to be processed is stopped and a voltage applied to both of the electrodes is interrupted. Then, when the gas pressure in the sealed container is lowered to a predetermined value, a power source voltage is applied again to both of the electrodes to recover glow discharges, and the introduction of the gas to be processed is started. With such steps, even if electric arc discharges occur, they are eliminated automatically and, accordingly, normal glow discharges can be recovered, to prevent failures of the device due to electric arc discharges. The glow discharges are recovered automatically without stopping the operation of the gas processing device, and gas injection and solidification processing can be conducted continuously and stably. (T.M.)

  20. Development of indigenous laboratory scale gas atomizer for producing metal powders

    International Nuclear Information System (INIS)

    Khan, K.K.; Qasim, A.M.; Ahmed, P.

    2011-01-01

    Gas atomization is one of the methods for production of clean metal powders at relatively moderate cost. A laboratory scale gas atomizer was designed and fabricated indigenously to produce metal powders with a batch capacity of 500 g of copper (Cu). The design includes several features regarding fabrication and operation to provide optimum conditions for atomization. The inner diameter of atomizing chamber is 440 mm and its height is 1200 mm. The atomizing nozzle is of annular confined convergent type with an angle of 25 degree. Argon gas at desired pressure has been used for atomizing the metals to produce relatively clean powders. A provision has also been made to view the atomization process. The indigenous laboratory scale gas atomizer was used to produce tin (Sn) and copper (Cu) powders with different atomizing gas pressures ranging from 2 to 10 bar. The particle size of different powders produced ranges from 40 to 400 im. (author)

  1. The Atomic Bose Gas in Flatland

    Science.gov (United States)

    Hadzibabic, Z.; Krüger, P.; Cheneau, M.; Battelier, B.; Dalibard, J.

    2006-11-01

    We describe a recent experiment performed with rubidium atoms (87Rb), aiming at studying the coherence properties of a two-dimensional gas of bosonic particles at low temperature. We have observed in particular a Berezinskii-Kosterlitz-Thouless (BKT) type crossover in the system, using a matter wave heterodyning technique. At low temperatures, the gas is quasi-coherent on the length scale set by the system size. As the temperature is increased, the loss of long-range coherence coincides with the onset of the proliferation of free vortices, in agreement with the microscopic BKT theory.

  2. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  3. Interaction of rare gas metastable atoms

    International Nuclear Information System (INIS)

    Wang, A.Z.F.

    1977-11-01

    The physical and chemical properties of metastable rare gas atoms are discussed and summarized. This is followed by a detailed examination of the various possible pathways whereby the metastable's excess electronic energy can be dissipated. The phenomenon of chemi-ionization is given special emphasis, and a theoretical treatment based on the use of complex (optical) potential is presented. This is followed by a discussion on the unique advantages offered by elastic differential cross section measurements in the apprehension of the fundamental forces governing the ionization process. The methodology generally adopted to extract information about the interaction potential for scattering data is also systematically outlined. Two widely studied chemi-ionization systems are then closely examined in the light of accurate differential cross section measurements obtained in this work. The first system is He(2 3 S) + Ar for which one can obtain an interaction potential which is in good harmony with the experimental results of other investigators. The validity of using the first-order semiclassical approximation for the phase shifts calculation in the presence of significant opacities is also discussed. The second reaction studied is He*+D 2 for which measurements were made on both spin states of the metastable helium. A self-consistent interaction potential is obtained for the triplet system, and reasons are given for not being able to do likewise for the singlet system. The anomalous hump proposed by a number of laboratories is analyzed. Total elastic and ionization cross sections as well as rate constants are calculated for the triplet case. Good agreement with experimental data is found. Finally, the construction and operation of a high power repetitively pulsed nitrogen laser pumped dye laser system is described in great details. Details for the construction and operation of a flashlamp pumped dye laser are likewise given

  4. Cucurbit[6]uril: A Possible Host for Noble Gas Atoms.

    Science.gov (United States)

    Pan, Sudip; Mandal, Subhajit; Chattaraj, Pratim K

    2015-08-27

    Density functional and ab initio molecular dynamics studies are carried out to investigate the stability of noble gas encapsulated cucurbit[6]uril (CB[6]) systems. Interaction energy, dissociation energy and dissociation enthalpy are calculated to understand the efficacy of CB[6] in encapsulating noble gas atoms. CB[6] could encapsulate up to three Ne atoms having dissociation energy (zero-point energy corrected) in the range of 3.4-4.1 kcal/mol, whereas due to larger size, only one Ar or Kr atom encapsulated analogues would be viable. The dissociation energy value for the second Ar atom is only 1.0 kcal/mol. On the other hand, the same for the second Kr is -0.5 kcal/mol, implying the instability of the system. The noble gas dissociation processes are endothermic in nature, which increases gradually along Ne to Kr. Kr encapsulated analogue is found to be viable at room temperature. However, low temperature is needed for Ne and Ar encapsulated analogues. The temperature-pressure phase diagram highlights the region in which association and dissociation processes of Kr@CB[6] would be favorable. At ambient temperature and pressure, CB[6] may be used as an effective noble gas carrier. Wiberg bond indices, noncovalent interaction indices, electron density, and energy decomposition analyses are used to explore the nature of interaction between noble gas atoms and CB[6]. Dispersion interaction is found to be the most important term in the attraction energy. Ne and Ar atoms in one Ng entrapped analogue are found to stay inside the cavity of CB[6] throughout the simulation at 298 K. However, during simulation Ng2 units in Ng2@CB[6] flip toward the open faces of CB[6]. After 1 ps, one Ne atom of Ne3@CB[6] almost reaches the open face keeping other two Ne atoms inside. At lower temperature (77 K), all the Ng atoms in Ngn@CB[6] remain well inside the cavity of CB[6] throughout the simulation time (1 ps).

  5. Radiations from atomic collision processes

    International Nuclear Information System (INIS)

    Bernyi, D.

    1994-01-01

    The physics of atomic collision phenomena in which only the Coulomb forces have a role is an actual field or the research of the present days. The impact energy range in these collisions is very broad,it extends from the eV or even lower region to the GeV region or higher,i.e. it spans the region of three branches of physics,namely that of the atomic,the nuclear and the particle physics.To describe and explain the collision processes themselves, different models (collision mechanisms) are used and they are surveyed in the presentation. Different electromagnetic radiations and particles are emitted from the collision processes.Their features are shown in details together with the most important methods in their detection and study.Examples are given based on the literature and on the investigations of the author and his coworkers. The applications of the radiation from atomic collisions in other scientific fields and in the solution of different practical problems are also surveyed shortly. 16 figs., 2 tabs., 76 refs. (author)

  6. Penning ionization cross sections of excited rare gas atoms

    International Nuclear Information System (INIS)

    Ukai, Masatoshi; Hatano, Yoshihiko.

    1988-01-01

    Electronic energy transfer processes involving excited rare gas atoms play one of the most important roles in ionized gas phenomena. Penning ionization is one of the well known electronic energy transfer processes and has been studied extensively both experimentally and theoretically. The present paper reports the deexcitation (Penning ionization) cross sections of metastable state helium He(2 3 S) and radiative He(2 1 P) atoms in collision with atoms and molecules, which have recently been obtained by the authors' group by using a pulse radiolysis method. Investigation is made of the selected deexcitation cross sections of He(2 3 S) by atoms and molecules in the thermal collisional energy region. Results indicate that the cross sections are strongly dependent on the target molecule. The deexcitation probability of He(2 3 S) per collision increases with the excess electronic energy of He(2 3 S) above the ionization potential of the target atom or molecule. Another investigation, made on the deexcitation of He(2 1 P), suggests that the deexcitation cross section for He(2 1 P) by Ar is determined mainly by the Penning ionization cross section due to a dipole-dipole interaction. Penning ionization due to the dipole-dipole interaction is also important for deexcitation of He(2 1 P) by the target molecules examined. (N.K.)

  7. Radioactive gas processing device

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki; Okazaki, Akira; Kumagaya, Koji.

    1982-01-01

    Purpose: To simplify the structure of a gas processing system which has hitherto been much complicated by the recyclic use of molecular sieve regeneration gas, by enabling to release the regeneration gas to outside in a once-through manner. Constitution: The system comprises a cooler for receiving and cooling gases to be processed containing radioactive rare gases, moisture-removing pipelines each connected in parallel to the exit of the cooler and having switching valves and a moisture removing column disposed between the valves and a charcoal absorber in communication with the moisture removing pipelines. Pipelines for flowing regeneration heating gases are separately connected to the moisture removing columns, and molecular sieve is charged in the moisture removing column by the amount depending on the types of the radioactive rare gases. (Aizawa, K.)

  8. Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observation.

    Science.gov (United States)

    Straubinger, Rainer; Beyer, Andreas; Volz, Kerstin

    2016-06-01

    A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa.

  9. Introduction to gas lasers with emphasis on selective excitation processes

    CERN Document Server

    Willett, Colin S

    1974-01-01

    Introduction to Gas Lasers: Population Inversion Mechanisms focuses on important processes in gas discharge lasers and basic atomic collision processes that operate in a gas laser. Organized into six chapters, this book first discusses the historical development and basic principles of gas lasers. Subsequent chapters describe the selective excitation processes in gas discharges and the specific neutral, ionized and molecular laser systems. This book will be a valuable reference on the behavior of gas-discharge lasers to anyone already in the field.

  10. Atomic processes relevant to polarization plasma spectroscopy

    International Nuclear Information System (INIS)

    Fujimoto, T.; Koike, F.; Sakimoto, K.; Okasaka, R.; Kawasaki, K.; Takiyama, K.; Oda, T.; Kato, T.

    1992-04-01

    When atoms (ions) are excited anisotropically, polarized excited atoms are produced and the radiation emitted by these atoms is polarized. From the standpoint of plasma spectroscopy research, we review the existing data for various atomic processes that are related to the polarization phenomena. These processes are: electron impact excitation, excitation by atomic and ionic collisions, photoexcitation, radiative recombination and bremsstrahlung. Collisional and radiative relaxation processes of atomic polarization follow. Other topics included are: electric-field measurement, self alignment, Lyman doublet intensity ratio, and magnetic-field measurement of the solar prominence. (author)

  11. Process gas solidification system

    International Nuclear Information System (INIS)

    1980-01-01

    A process for withdrawing gaseous UF 6 from a first system and directing same into a second system for converting the gas to liquid UF 6 at an elevated temperature, additionally including the step of withdrawing the resulting liquid UF 6 from the second system, subjecting it to a specified sequence of flash-evaporation, cooling and solidification operations, and storing it as a solid in a plurality of storage vessels. (author)

  12. Non-Elastic Processes in Atom Rydberg-Atom Collisions

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Inour previous research, it has been demonstrated that inelastic processes in atom Rydberg-atom collisions, such as chemi-ionization and ( n − n ′ ) mixing, should be considered together. Here we will review the present state-of-the-art and the actual problems. In this context, we will consider the influence ...

  13. 16. Hot dense plasma atomic processes

    International Nuclear Information System (INIS)

    Werner, Dappen; Totsuji, H.; Nishii, Y.

    2002-01-01

    This document gathers 13 articles whose common feature is to deal with atomic processes in hot plasmas. Density functional molecular dynamics method is applied to the hydrogen plasma in the domain of liquid metallic hydrogen. The effects of the density gradient are taken into account in both the electronic kinetic energy and the exchange energy and it is shown that they almost cancel with each other, extending the applicability of the Thomas-Fermi-Dirac approximation to the cases where the density gradient is not negligible. Another article reports about space and time resolved M-shell X-ray measurements of a laser-produced gas jet xenon plasma. Plasma parameters have been measured by ion acoustic and electron plasma waves Thomson scattering. Photo-ionization becomes a dominant atomic process when the density and the temperature of plasmas are relatively low and when the plasma is submitted to intense external radiation. It is shown that 2 plasmas which have a very different density but have the same ionization parameters, are found in a similar ionization state. Most radiation hydrodynamics codes use radiative opacity data from available libraries of atomic data. Several articles are focused on the determination of one group Rosseland and Planck mean analytical formulas for several single elements used in inertial fusion targets. In another paper the plasma density effect on population densities, effective ionization, recombination rate coefficients and on emission lines from carbon and Al ions in hot dense plasma, is studied. The last article is devoted to a new atomic model in plasmas that considers the occupation probability of the bound state and free state density in the presence of the plasma micro-field. (A.C.)

  14. Visualization of Atomization Gas Flow and Melt Break-up Effects in Response to Nozzle Design

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver; Rieken, Joel; Meyer, John; Byrd, David; Heidloff, Andy

    2011-04-01

    Both powder particle size control and efficient use of gas flow energy are highly prized goals for gas atomization of metal and alloy powder to minimize off-size powder inventory (or 'reverb') and excessive gas consumption. Recent progress in the design of close-coupled gas atomization nozzles and the water model simulation of melt feed tubes were coupled with previous results from several types of gas flow characterization methods, e.g., aspiration measurements and gas flow visualization, to make progress toward these goals. Size distribution analysis and high speed video recordings of gas atomization reaction synthesis (GARS) experiments on special ferritic stainless steel alloy powders with an Ar+O{sub 2} gas mixture were performed to investigate the operating mechanisms and possible advantages of several melt flow tube modifications with one specific gas atomization nozzle. In this study, close-coupled gas atomization under closed wake gas flow conditions was demonstrated to produce large yields of ultrafine (dia.<20 {mu}m) powders (up to 32%) with moderate standard deviations (1.62 to 1.99). The increased yield of fine powders is consistent with the dual atomization mechanisms of closed wake gas flow patterns in the near-field of the melt orifice. Enhanced size control by stabilized pre-filming of the melt with a slotted trumpet bell pour tube was not clearly demonstrated in the current experiments, perhaps confounded by the influence of the melt oxidation reaction that occurred simultaneously with the atomization process. For this GARS variation of close-coupled gas atomization, it may be best to utilize the straight cylindrical pour tube and closed wake operation of an atomization nozzle with higher gas mass flow to promote the maximum yields of ultrafine powders that are preferred for the oxide dispersion strengthened alloys made from these powders.

  15. Evolution of the atomic and molecular gas content of galaxies

    NARCIS (Netherlands)

    Popping, Gergö; Somerville, Rachel S.; Trager, Scott C.

    We study the evolution of atomic and molecular gas in galaxies in semi-analytic models of galaxy formation that include new modelling of the partitioning of cold gas in galactic discs into atomic, molecular, and ionized phases. We adopt two scenarios for the formation of molecules: one pressure

  16. Cascade Processes in Muonic Hydrogen Atoms

    International Nuclear Information System (INIS)

    Faifman, M. P.; Men'Shikov, L. I.

    2001-01-01

    The QCMC scheme created earlier for cascade calculations in heavy hadronic atoms of hydrogen isotopes has been modified and applied to the study of cascade processes in the μp muonic hydrogen atoms. The distribution of μp atoms over kinetic energies has been obtained and the yields of K-series X-rays per one stopped muon have been calculated.Comparison with experimental data indicated directly that for muonic and pionic atoms new types of non-radiative transitions are essential, while they are negligible for heavy (kaonic, antiprotonic, etc.) atoms. These processes have been considered and their probabilities have been estimated.

  17. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    Science.gov (United States)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  18. Bulk and surface controlled diffusion of fission gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders D. [Los Alamos National Laboratory

    2012-08-09

    Fission gas retention and release impact nuclear fuel performance by, e.g., causing fuel swelling leading to mechanical interaction with the clad, increasing the plenum pressure and reducing the gap thermal conductivity. All of these processes are important to understand in order to optimize operating conditions of nuclear reactors and to simulate accident scenarios. Most fission gases have low solubility in the fuel matrix, which is especially pronounced for large fission gas atoms such as Xe and Kr, and as a result there is a significant driving force for segregation of gas atoms to extended defects such as grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. Several empirical or semi-empirical models have been developed for fission gas release in nuclear fuels, e.g. [1-6]. One of the most commonly used models in fuel performance codes was published by Massih and Forsberg [3,4,6]. This model is similar to the early Booth model [1] in that it applies an equivalent sphere to separate bulk UO{sub 2} from grain boundaries represented by the sphere circumference. Compared to the Booth model, it also captures trapping at grain boundaries, fission gas resolution and it describes release from the boundary by applying timedependent boundary conditions to the circumference. In this work we focus on the step where fission gas atoms diffuse from the grain interior to the grain boundaries. The original Massih-Forsberg model describes this process by applying an effective diffusivity divided into three temperature regimes. In this report we present results from density functional theory calculations (DFT) that are relevant for the high (D{sub 3}) and intermediate (D{sub 2}) temperature diffusivities of fission gases. The results are validated by making a quantitative comparison to Turnbull's [8-10] and Matzke's data [12]. For the intrinsic or high temperature regime we report activation energies for both Xe and Kr diffusion

  19. Investigation of accelerated neutral atom beams created from gas cluster ion beams

    Science.gov (United States)

    Kirkpatrick, A.; Kirkpatrick, S.; Walsh, M.; Chau, S.; Mack, M.; Harrison, S.; Svrluga, R.; Khoury, J.

    2013-07-01

    A new concept for ultra-shallow processing of surfaces known as accelerated neutral atom beam (ANAB) technique employs conversion of energetic gas cluster ions produced by the gas cluster ion beam (GCIB) method into intense collimated beams of coincident neutral gas atoms having controllable average energies from less than 10 eV per atom to beyond 100 eV per atom. A beam of accelerated gas cluster ions is first produced as is usual in GCIB, but conditions within the source ionizer and extraction regions are adjusted such that immediately after ionization and acceleration the clusters undergo collisions with non-ionized gas atoms. Energy transfer during these collisions causes the energetic cluster ions to release many of their constituent atoms. An electrostatic deflector is then used to eliminate charged species, leaving the released neutral atoms to still travel collectively at the same velocities they had as bonded components of their parent clusters. Upon target impact, the accelerated neutral atom beams produce effects similar to those normally associated with GCIB, but to shallower depths, with less surface damage and with superior subsurface interfaces. The paper discusses generation and characterization of the accelerated neutral atom beams, describes interactions of the beams with target surfaces, and presents examples of ongoing work on applications for biomedical devices.

  20. Resonance ionization spectroscopy: counting noble-gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G.S.; Payne, M.G.; Chen, C.H.; Willis, R.D.; Lehmann, B.E.; Kramer, S.D.

    1981-06-01

    New work on the counting of noble gas atoms, using lasers for the selective ionization and detectors for counting individual particles (electrons or positive ions) is reported. When positive ions are counted, various kinds of mass analyzers (magnetic, quadrupole, or time-of-flight) can be incorporated to provide A selectivity. It is shown that a variety of interesting and important applications can be made with atom-counting techniques which are both atomic number (Z) and mass number (A) selective.

  1. One-dimensional Bose gas on an atom chip

    NARCIS (Netherlands)

    van Amerongen, A.H.

    2008-01-01

    We describe experiments investigating the (coherence) properties of a finite-temperature one-dimensional (1D) Bose gas with repulsive interactions. The confining magnetic field is generated with a micro-electronic circuit. This microtrap for atoms or `atom chip' is particularly suited to generate a

  2. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  3. Bibliography of atomic and molecular processes, 1983

    International Nuclear Information System (INIS)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.

    1984-10-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1983. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  4. 1985 bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howald, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

    1986-06-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1985. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  5. 1984 Bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.

    1985-04-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1984. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  6. Bibliography of atomic and molecular processes, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Gregory, D.C.; Kirkpatrick, M.I.; McDaniel, E.W.; McKnight, R.H.; Meyer, F.W.; Morgan, T.J.; Phaneuf, R.A. (comps.)

    1984-10-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1983. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  7. 1980 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    1982-02-01

    This annotated bibliography lists 2866 works on atomic and molecular processes reported in publications dated 1980. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors

  8. 1984 Bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howard, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

    1985-04-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1984. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  9. 1985 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.

    1986-06-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1985. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  10. 1982 bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Gregory, D.C.; Kirkpatrick, M.I.; McDaniel, E.W.; McKnight, R.H.; Meyer, F.W.; Morgan, T.J.; Phaneuf, R.A. (comps.)

    1984-05-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1982. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  11. Atomic and Molecular Processes in Atmospheric Environments

    Science.gov (United States)

    1971-04-28

    Van der Graaff accelerator through a thin fo.’lo We have calculated the cross section for 7* this process for 0’ ions. This w: 11 provide the... generated curves calculated tor many assumed values of the rate constants. Physical consistency requires two equilibrium constants (hydration n xi...results have generally confirmed the previous results, i.e., with the alkaline earth atoms, charge transfer leaving an atomic ion strongly dominates over

  12. Rapid gas hydrate formation process

    Science.gov (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  13. Magnetic resonance studies of atomic hydrogen gas at low temperatures

    International Nuclear Information System (INIS)

    Hardy, W.N.; Morrow, M.; Jochemsen, R.; Statt, B.W.; Kubik, P.R.; Marsolais, R.M.; Berlinsky, A.J.; Landesman, A.

    1980-01-01

    Using a pulsed low temperature discharge in a closed cell containing H 2 and 4 He, we have been able to store a low density (approximately 10 12 atoms/cc) gas of atomic hydrogen for periods of order one hour in zero magnetic field and T=1 K. Pulsed magnetic resonance at the 1420 MHz hyperfine transition has been used to study a number of the properties of the gas, including the recombination rate H + H + 4 He→H 2 + 4 He, the hydrogen spin-exchange relaxation rates, the diffusion coefficient of H in 4 He gas and the pressure shift of the hyperfine frequency due to the 4 He buffer gas. Here we discuss the application of hyperfine frequency shifts as a probe of the H-He potential, and as a means for determining the binding energy of H on liquid helium

  14. Flash Atomization: A New Concept to Control Combustion Instability in Water-Injected Gas Turbines

    Directory of Open Access Journals (Sweden)

    Vishwas Iyengar

    2012-01-01

    Full Text Available The objective of this work is to explore methods to reduce combustor rumble in a water-injected gas turbine. Attempts to use water injection as a means to reduce NOX emissions in gas turbines have been largely unsuccessful because of increased combustion instability levels. This pulsation causes chronic fretting, wear, and fatigue that damages combustor components. Of greater concern is that liberated fragments could cause extensive damage to the turbine section. Combustion instability can be tied to the insufficient atomization of injected water; large water droplets evaporate non-uniformly that lead to energy absorption in chaotic pulses. Added pulsation is amplified by the combustion process and acoustic resonance. Effervescent atomization, where gas bubbles are injected, is beneficial by producing finely atomized droplets; the gas bubbles burst as they exit the nozzles creating additional energy to disperse the liquid. A new concept for effervescent atomization dubbed “flash atomization” is presented where water is heated to just below its boiling point in the supply line so that some of it will flash to steam as it leaves the nozzle. An advantage of flash atomization is that available heat energy can be used rather than mechanical energy to compress injection gas for conventional effervescent atomization.

  15. Dynamics of cascade processes of muonic atoms

    International Nuclear Information System (INIS)

    Kalantari, Z.; Pirahmadian, M. H.; Ebrahimi, A.

    2006-01-01

    Studies on exotic atoms are important in different ways. They are important for strong interaction with nucleus and the theory of QCD in low energies. They are also important in muon catalyzed fusion. Their properties can be revealed by studies on cascade of muonic atoms. In this paper, unlike the others, we do not consider the kinetic energy of muonic atoms, constant (the kinetic energy of muonic atoms can vary due to cascade processes). We have used multi group method. The energy dependence of the rates of collisional cascade processes can take into account by this method. In addition, the energy spectra of muonic atoms in the ground state are calculated. For this purpose we divided the energy spectrum to 10 groups, and then use the rate of external Auger effect, Coulomb de-excitation, muon transfer and elastic scattering to solve the dynamics of cascade processes in each group. These equations are coupled linear differential equations. To solve them we use the Runge-Kutta method in the fourth order. One of the conclusions of this paper is that, this energy spectrum is not Maxwellian distribution. Finally our results are compared with the results of the Monte-Carlo simulation.

  16. Chemical reactivity of the compressed noble gas atoms and their ...

    Indian Academy of Sciences (India)

    Attempts are made to gain insights into the effect of confinement of noble gas atoms on their various reactivity indices. Systems become harder, less polarizable and difficult to excite as the compression increases. Ionization also causes similar effects. A quantum fluid density functional technique is adopted in order to study ...

  17. Population analysis for atomic cascade decay processes

    International Nuclear Information System (INIS)

    Suto, Keiko; Kagawa, Takashi; Futaba, Kaoru

    1998-01-01

    Down-stream cascade decay processes in atomic systems are analyzed by solving a coupled rate equation for which an analytical solution for a population in each excited state is obtained. Some typical numerical examples for populations to interpret the decay passes connecting to features of optical or electron spectra observed in various collision experiments are also given. (author)

  18. Dipole–dipole interactions in a hot atomic vapor and in an ultracold gas of Rydberg atoms

    Science.gov (United States)

    Sautenkov, V. A.; Saakyan, S. A.; Bronin, S. Ya; Klyarfeld, A. B.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    In our paper ideal and non-ideal gas media of neutral atoms are analyzed. The first we discuss a dipole broadening of atomic transitions in excited dilute and dense metal vapors. Then the theoretical studies of the dipole–dipole interactions in dense ultracold gas of Rydberg atoms are considered. Possible future experiments on a base of our experimental arrangement are suggested.

  19. Quantum information processing with atoms and photons

    International Nuclear Information System (INIS)

    Monroe, C.

    2003-01-01

    Quantum information processors exploit the quantum features of superposition and entanglement for applications not possible in classical devices, offering the potential for significant improvements in the communication and processing of information. Experimental realization of large-scale quantum information processors remains a long term vision, as the required nearly pure quantum behaviour is observed only in exotic hardware such as individual laser-cooled atoms and isolated photons. But recent theoretical and experimental advances suggest that cold atoms and individual photons may lead the way towards bigger and better quantum information processors, effectively building mesoscopic versions of Schroedinger's cat' from the bottom up. (author)

  20. The evolution of structural and chemical heterogeneity during rapid solidification at gas atomization

    Science.gov (United States)

    Golod, V. M.; Sufiiarov, V. Sh

    2017-04-01

    Gas atomization is a high-performance process for manufacturing superfine metal powders. Formation of the powder particles takes place primarily through the fragmentation of alloy melt flow with high-pressure inert gas, which leads to the formation of non-uniform sized micron-scale particles and subsequent their rapid solidification due to heat exchange with gas environment. The article presents results of computer modeling of crystallization process, simulation and experimental studies of the cellular-dendrite structure formation and microsegregation in different size particles. It presents results of adaptation of the approach for local nonequilibrium solidification to conditions of crystallization at gas atomization, detected border values of the particle size at which it is possible a manifestation of diffusionless crystallization.

  1. Gas purification using membrane gas absorption processes

    NARCIS (Netherlands)

    Dindore, V.Y.

    2003-01-01

    Owing to the increasing energy demand and the abundance of low quality natural gas reservoirs containing high percentages of CO2, considerable attention is given to the bulk removal of CO2 and upgrading of low quality natural gas. The main goal in doing so is to increase the heating value of natural

  2. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting

    Science.gov (United States)

    Li, Ruidi; Shi, Yusheng; Wang, Zhigang; Wang, Li; Liu, Jinhui; Jiang, Wei

    2010-04-01

    The densification during selective laser melting (SLM) process is an important factor determining the final application of SLM-part. In the present work, the densifications under different processing conditions were investigated and the densification mechanisms were elucidated. It was found that the higher laser power, lower scan speed, narrower hatch spacing and thinner layer thickness could enable a much smoother melting surface and consequently a higher densification. The gas atomized powder possessed better densification than water atomized powder, due to the lower oxygen content and higher packing density of gas atomized powder. A large number of regular-shaped pores can be generated at a wider hatch spacing, even if the scanning track is continuous and wetted very well. The densification mechanisms were addressed and the methods for building dense metal parts were also proposed as follows: inhibiting the balling phenomenon, increasing the overlap ratio of scanning tracks and reducing the micro-cracks.

  3. Photoionization of the outer electrons in noble gas endohedral atoms

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Baltenkov, A. S.; Chernysheva, L. V.

    2008-01-01

    We suggest a prominent modification of the outer shell photoionization cross section in noble gas (NG) endohedral atoms NG-C n under the action of the electron shell of fullerene C n . This shell leads to two important effects: a strong enhancement of the cross section due to fullerene shell polarization under the action of the incoming electromagnetic wave and to prominent oscillation of this cross section due to the reflection of a photoelectron from the NG by the fullerene shell. Both factors lead to powerful maxima in the outer shell ionization cross sections of NG-C n , which we call giant endohedral resonances. The oscillator strength reaches a very large value in the atomic scale, 25. We consider atoms of all noble gases except He. The polarization of the fullerene shell is expressed in terms of the total photoabsorption cross section of the fullerene. The photoelectron reflection is taken into account in the framework of the so-called bubble potential, which is a spherical δ-type potential. It is assumed in the derivations that the NG is centrally located in the fullerene. It is also assumed, in accordance with the existing experimental data, that the fullerene radius R C is much larger than the atomic radius r A and the thickness Δ C of the fullerene shell. As was demonstrated recently, these assumptions allow us to represent the NG-C n photoionization cross section as a product of the NG cross section and two well-defined calculated factors

  4. Thermodynamic properties of small aggregates of rare-gas atoms

    Science.gov (United States)

    Etters, R. D.; Kaelberer, J.

    1975-01-01

    The present work reports on the equilibrium thermodynamic properties of small clusters of xenon, krypton, and argon atoms, determined from a biased random-walk Monte Carlo procedure. Cluster sizes ranged from 3 to 13 atoms. Each cluster was found to have an abrupt liquid-gas phase transition at a temperature much less than for the bulk material. An abrupt solid-liquid transition is observed for thirteen- and eleven-particle clusters. For cluster sizes smaller than 11, a gradual transition from solid to liquid occurred over a fairly broad range of temperatures. Distribution of number of bond lengths as a function of bond length was calculated for several systems at various temperatures. The effects of box boundary conditions are discussed. Results show the importance of a correct description of boundary conditions. A surprising result is the slow rate at which system properties approach bulk behavior as cluster size is increased.

  5. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1990-03-01

    Much theoretical and experimental efforts have been expended in recent years to study those atomic processes which are specially relevant to understanding high temperature laboratory plasmas. For magnetically confined fusion plasmas, the temperature range of interest spans from the hundreds of eV at plasma edges to 10 keV at the center of the plasma, where most of the impurity ions are nearly fully ionized. These highly stripped ions interact strongly with electrons in the plasma, leading to further excitation and ionization of the ions, as well as electron capture. Radiations are emitted during these processes, which easily escape to plasma container walls, thus cooling the plasma. One of the dominant modes of radiation emission has been identified with dielectronic recombination. This paper reviews this work

  6. Multiphoton processes in isolated atoms and molecules

    International Nuclear Information System (INIS)

    Sudbo, A.S.

    1979-11-01

    The theory of coherent excitation of a multilevel quantum mechanical system is developed. Damping of the system is taken into account by the use of a density matrix formalism. General properties of the wave function and/or the density matrix are discussed. The physical implications for the behavior of the system are described, together with possible applications of the formalism, including the infrared multiphoton excitation of molecules, and optical pumping in alkali atoms. Experimental results are presented on the infrared multiphoton dissociation of molecules, followed by a discussion of the general features of this process. The experimental results were obtained using a crossed laser and molecular beam method, and the emphasis is on determining the properties of the dissociating molecule and the dissociation products. The dissociation process is shown to be described very well by the standard statistical theory (RRKM theory) of unimolecular reactions, a brief presentation of which is also included

  7. Cross sections for atomic processes, vol. 2

    International Nuclear Information System (INIS)

    Takayanagi, Kazuo; Suzuki, Hiroshi; Otani, Shunsuke

    1977-09-01

    This data collection book contains the data on all processes involving hydrogen and helium isotopes, their ions, electrons and photons, collected systematically and comprehensively, and is compiled subsequently to Vol. 1 as one of the works of the data collection study group in the Institute of Plasma Physics, Nagoya University, Japan. The items of the contents will include energy level, multiplicately excited state, radiation process, electron collision, ionic collision, recombination, collision of neutral atoms, colliding process involving molecules, and other processes. However, the first edition this time contains energy level, radiation process, electron collision and ionic collision, and the data on remaining items are now under collection. Though some criticisms have been heard about Vol. 1, the authors consider that such comprehensive collection based on systematic classification is the foundation of making a generalized data bank expected to become necessary in future. Thus the data collection book includes all relevant processes, and records the experimental data and theoretically calculated results in principle without modification by selecting them systematically. This year, investigation on data evaluation is taken up also as one of the tasks of the study group. (Wakatsuki, Y.)

  8. Small angle elastic scattering of electrons by noble gas atoms

    International Nuclear Information System (INIS)

    Wagenaar, R.W.

    1984-01-01

    In this thesis, measurements are carried out to obtain small angle elastic differential cross sections in order to check the validity of Kramers-Kronig dispersion relations for electrons scattered by noble gas atoms. First, total cross sections are obtained for argon, krypton and xenon. Next, a parallel plate electrostatic energy analyser for the simultaneous measurement of doubly differential cross section for small angle electron scattering is described. Also absolute differential cross sections are reported. Finally the forward dispersion relation for electron-helium collisions is dealt with. (Auth.)

  9. Elastic scattering of positrons off rare-gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S.; Talukdar, B. (Department of Physics, Visva-Bharati University, Santiniketan-731 235 (India)); Mandal, P. (Department of Mathematics, Visva-Bharati University, Santiniketan-731 235 (India))

    1995-01-01

    A simple potential model proposed for the elastic scattering of positrons off rare-gas atoms is used to compute low-energy phase shifts and differential scattering cross sections [sigma]([theta]) for positrons incident on [sub 10]Ne, [sub 18]Ar, and [sub 36]Kr at energies 20, 3.4, and 6.67 eV, respectively. The calculated results for [sigma]([theta]) are in good agreement with currently available experimental values and are as reliable as the numbers obtained from much more elaborate calculations. It is pointed out that an important virtue of the present model is its simplicity.

  10. Observation of nuclear spin waves in spin-polarized atomic hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Johson, B.R.; Denker, J.S.; Bigelow, N.; Levy, L.P.; Freed, J.H.; Lee, D.M.

    1984-04-23

    We have observed narrow, distinct resonances in the NMR spectrum of dilute spin-polarized atomic hydrogen gas (nroughly-equal10/sup 16/ atoms/cm/sup 3/). The dependence of the observed spectra on temperature, density, polarization, and magnetic field gradient is consistent with theoretical predictions for spin-wave excitations damped by diffusion. We have measured the parameter ..mu.., which is a measure of the importance of exchange effects in spin transport processes, and the diffusion coefficient D/sub 0/, both of which are in reasonable agreement with theory.

  11. Significant increase in the stability of rare gas hydrides on insertion of beryllium atom.

    Science.gov (United States)

    Jayasekharan, T; Ghanty, Tapan K

    2007-09-21

    Chemical binding between a rare gas atom with other elements leading to the formation of stable chemical compounds has received considerable attention in recent years. With an intention to predict highly stable novel rare gas compounds, the process of insertion of beryllium atom into rare gas hydrides (HRgF with Rg=Ar, Kr, and Xe) has been investigated, which leads to the prediction of HBeRgF species. The structures, energetic, and charge distributions have been obtained using MP2, density functional theory, and CCSD(T) methods. Analogous to the well-known rare gas hydrides, HBeRgF species are found to be metastable in nature; however, the stabilization energy of the newly predicted species has been calculated to be significantly higher than that of HRgF species. Particularly, for HBeArF molecule, it has been found to be an order of magnitude higher. Strong chemical binding between beryllium and rare gas atom has also been found in the HBeArF, HBeKrF, and HBXeF molecules. In fact, the basis set superposition error and zero-point energy corrected Be-Ar bond energy calculated using CCSD(T) method has been found to be 112 kJ/mol, which is the highest bond energy ever achieved for a bond involving an argon atom in any chemically bound neutral species. Vibrational analysis reveals a large blueshift (approximately 200 cm(-1)) of the H-Be stretching frequency in HBeRgF with respect to that in BeH and HBeF species. This feature may be used to characterize these species after their preparation by the laser ablation of Be metal along with the photolysis of HF precursor in a suitable rare gas matrix. An analysis of the nature of interactions involved in the present systems has been performed using theory of atoms in molecules (AIM). Geometric as well as energetic considerations along with the AIM results suggest a substantial covalent nature of Be-Rg bond in these systems. Thus, insertion of a suitable metal atom into rare gas hydrides is a promising way to energetically

  12. Stability of gas atomized reactive powders through multiple step in-situ passivation

    Science.gov (United States)

    Anderson, Iver E.; Steinmetz, Andrew D.; Byrd, David J.

    2017-05-16

    A method for gas atomization of oxygen-reactive reactive metals and alloys wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a protective reaction film on the atomized particles. The present invention is especially useful for making highly pyrophoric reactive metal or alloy atomized powders, such as atomized magnesium and magnesium alloy powders. The gaseous reactive species (agents) are introduced into the atomization spray chamber at locations downstream of a gas atomizing nozzle as determined by the desired powder or particle temperature for the reactions and the desired thickness of the reaction film.

  13. Cold Atom Laboratory: exploring ultracold gas mixtures aboard the International Space Station

    Science.gov (United States)

    Aveline, David; Elliott, Ethan; Williams, Jason; Thompson, Robert

    2017-04-01

    We report on the current status of the Cold Atom Laboratory (CAL) mission to be operated aboard the International Space Station (ISS), with emphasis on results achieved in the CAL ground test bed (GTB) facility. Utilizing a compact atom chip trap loaded from a dual-species magneto optical trap of rubidium and potassium, CAL is a multi-user facility developed by NASA's Jet Propulsion Laboratory (JPL) to provide the first persistent quantum gas platform in the microgravity environment of space. In the unique environment of microgravity, the confining potentials necessary to the process of cooling atoms can be arbitrarily weakened, creating gases at pikoKelvin temperatures and ultra-low densities, while the complete removal of the confining potential allows for ultracold clouds that can float virtually fixed relative to the CAL apparatus. This new parameter regime enables ultracold atom research by a globe spanning group of researchers with broad applications in fundamental physics and inertial sensing. In this paper, we describe validation and development of critical technologies in the CAL GTB, including the demonstration of the first microwave evaporation and generation of dual-species quantum gas mixtures on an atom chip.

  14. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1991-07-01

    This is the final report on the project Atomic Processes in High Temperature Plasmas', which has been completed in June 30, 1991. The original contract started in 1978. The dielectronic recombination (DR) rate coefficients were calculated for ions with the number of electrons N = 1, 2, 3, 4, 5, 10, 11, and 12. The result was then used to construct a new and improved rate formula. Other important resonant processes, which are closely related to DR, were also studied to interpret experiments and to test the DR theory. The plasma field and the density effects on the rate coefficients was found to be important, and a consistent correction procedure is being developed. The available data on the DR rates and their accuracy do not yet fully meet the requirement for plasma modeling; there are serious gaps in the available data, and the currently adopted theoretical procedure needs improvements. Critical assessment of the current status of the DR problem is presented, and possible future work needed is summarized

  15. Coating synthesis on dielectric substrates assisted by pulsed beams of high-energy gas atoms

    Science.gov (United States)

    Grigoriev, S. N.; Melnik, Yu A.; Metel, A. S.

    2017-05-01

    Titanium nitride and aluminum nitride coatings have been deposited on glass and aluminum oxide substrates in a flow of metal atoms accompanied by high-energy gas atoms. The metal atoms are produced due to sputtering of a flat rectangular magnetron target. The gas atoms with energy up to 25 keV are produced due to charge exchange collisions of ions extracted from the magnetron discharge plasma and accelerated by high-voltage pulses applied to a flat grid parallel to the target. The metal atoms pass through the grid and deposit on the substrate. Conjunction of their trajectories with those of gas atoms bombarding the growing coating enables the coating synthesis on complex-shape dielectric products planetary rotating inside the vacuum chamber. Mixing high-energy gas atoms of the coating and substrate atoms substantially improves the coating adhesion.

  16. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    Directory of Open Access Journals (Sweden)

    Melezhik Vladimir S.

    2018-01-01

    Full Text Available We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  17. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    Science.gov (United States)

    Melezhik, Vladimir S.

    2018-02-01

    We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  18. Gas prices and price process

    International Nuclear Information System (INIS)

    Groenewegen, G.G.

    1992-01-01

    On a conference (Gas for Europe in the 1990's) during the Gasexpo '91 the author held a speech of which the Dutch text is presented here. Attention is paid to the current European pricing methods (prices based on the costs of buying, transporting and distributing the natural gas and prices based on the market value, which is deducted from the prices of alternative fuels), and the transparency of the prices (lack of information on the way the prices are determined). Also attention is paid to the market signal transparency and gas-gas competition, which means a more or less free market of gas distribution. The risks of gas-to-gas competition for a long term price stability, investment policies and security of supply are discussed. Opposition against the Third Party Access (TPA), which is the program to implement gas-to-gas competition, is caused by the fear of natural gas companies for lower gas prices and lower profits. Finally attention is paid to government regulation and the activities of the European Commission (EC) in this matter. 1 fig., 6 ills., 1 tab

  19. Recent results from the chemistry of recoiling carbon and silicon atoms: The interplay between hot atom chemistry and gas kinetics

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Ferrieri, R.A.; Wolf, A.P.

    1990-01-01

    Recent results from the chemistry of recoiling carbon and silicon atoms illustrate the power of an experimental approach to the solution of complex mechanistic problems that combines the study of the reactions of recoiling atoms with conventional gas kinetic techniques. Included will be the reactions of 11 C atoms with anisole, addressing the question whether an aromatic pi-electron system can compete as a reactive site with carbon-hydrogen bonds

  20. Coherence effects in atomic impact processes

    International Nuclear Information System (INIS)

    Blum, K.

    1980-01-01

    The author considers excitation of target atoms by projectile particles and the coincident detection of the scattered projectiles and the photons emitted in the subsequent decay by the target atoms. The observation is restricted to radiation emitted by those atoms only which 'scattered' the projectiles with a given energy in a given direction defined by the particle detector. Thus, a certain subensemble of atoms is selected in the experiment. The author reviews the theoretical scheme used for the description of the excited subensemble with the emphasis on the coherence properties. The author reviews developments of the Fano-Macek theory concerning the description of coherently excited states with different angular momenta and parities. A comprehensive expression for the angular distribution of the emitted radiation, including all possible interference terms is given. (Auth.)

  1. Long-range interactions of excited He atoms with ground-state noble-gas atoms

    KAUST Repository

    Zhang, J.-Y.

    2013-10-09

    The dispersion coefficients C6, C8, and C10 for long-range interactions of He(n1,3S) and He(n1,3P), 2≤n≤10, with the ground-state noble-gas atoms Ne, Ar, Kr, and Xe are calculated by summing over the reduced matrix elements of multipole transition operators. The large-n expansions for the sums over the He oscillator strength divided by the corresponding transition energy are presented for these series. Using the expansions, the C6 coefficients for the systems involving He(131,3S) and He(131,3P) are calculated and found to be in good agreement with directly calculated values.

  2. [Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption].

    Science.gov (United States)

    Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi

    2015-02-01

    High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.

  3. Radioactive waste gas processing systems

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki.

    1981-01-01

    Purpose: To effectively separate and remove only hydrogen from hydrogen gas-containing radioactive waste gases produced from nuclear power plants without using large scaled facilities. Constitution: From hydrogen gas-enriched waste gases which contain radioactive rare gases (Kr, Xe) sent from the volume control tank of a chemical volume control system, only the hydrogen is separated in a hydrogen separator using palladium alloy membrane and rare gases are concentrated, volume-decreased and then stored. In this case, an activated carbon adsorption device is connected at its inlet to the radioactive gas outlet of the hydrogen separator and opened at its outlet to external atmosphere. In this system, while only the hydrogen gas permeates through the palladium alloy membrane, other gases are introduced, without permeation, into the activated carbon adsorption device. Then, the radioactive rare gases are decayed by the adsorption on the activated carbon and then released to the external atmosphere. (Furukawa, Y.)

  4. Atomic process modeling based on nearest neighbor approximation

    International Nuclear Information System (INIS)

    Nishikawa, Takeshi

    2016-01-01

    An atomic modeling based on the nearest neighbor approximation (NNA) to solove atomic process in plasmas was considered. In the atomic modeling, it includes the plasma effect to the electron state densities of the atom or ion as the potential due to the nearest neighbor atom or ion. Using the modeling, I was able to compute the ionization degrees of hydrogen plasmas without any ad hoc assumption adopted in the atomic modeling based on the plasma microfield. In order to apply the NNA to the plasmas of near and above solid density, three adequate treatments were required to obtain physically acceptable results. The first one was the Coulomb interaction between pairs of ions. The second one was the modification of the Saha equation. The third one was the adequate treatment of the neutral atom's contribution to the potential distribution as the nearest neighbor particle. (author)

  5. A Study on the Effects of the Use of Gas or Water Atomized AISI 316L Steel Powder on the Corrosion Resistance of Laser Deposited Material

    Science.gov (United States)

    Tobar, M. J.; Amado, J. M.; Montero, J.; Yáñez, A.

    Water atomized and gas atomized powders are commonly used in 3D laser manufacturing. Both types of AISI 316L stainless steel powders are available which differ in their manganese content. This is due to specific procedures related to the two different atomization process. The amount of manganese in the laser processed part might have important implications in its corrosion resistance. It could lead to the formation of manganese sulfides (MnS) which are known to be initiation sites for pitting corrosion. In this work, corrosion performance of laser deposited 316L steel using gas and atomized powders is compared by means of potentiodynamic polarization tests in 0.35%wt. NaCL solution. Worse performance of the gas atomized samples is observed as with respect to the water atomized ones in terms of polarization resistance, corrosion rate and pitting susceptibility.

  6. Non-Elastic Processes in Atom Rydberg-Atom Collisions: Review of ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Inour previous research, it has been demonstrated that inelastic processes in atom Rydberg-atom collisions, such as chemi-ionization and ( n − n ′ ) mixing, should be considered together. Here we will review the present state-of-the-art and the actual problems. In this context, we will consider the influence ...

  7. Symmetric Atom–Atom and Ion–Atom Processes in Stellar Atmospheres

    Directory of Open Access Journals (Sweden)

    Vladimir A. Srećković

    2017-12-01

    Full Text Available We present the results of the influence of two groups of collisional processes (atom–atom and ion–atom on the optical and kinetic properties of weakly ionized stellar atmospheres layers. The first type includes radiative processes of the photodissociation/association and radiative charge exchange, the second one the chemi-ionisation/recombination processes with participation of only hydrogen and helium atoms and ions. The quantitative estimation of the rate coefficients of the mentioned processes were made. The effect of the radiative processes is estimated by comparing their intensities with those of the known concurrent processes in application to the solar photosphere and to the photospheres of DB white dwarfs. The investigated chemi-ionisation/recombination processes are considered from the viewpoint of their influence on the populations of the excited states of the hydrogen atom (the Sun and an M-type red dwarf and helium atom (DB white dwarfs. The effect of these processes on the populations of the excited states of the hydrogen atom has been studied using the general stellar atmosphere code, which generates the model. The presented results demonstrate the undoubted influence of the considered radiative and chemi- ionisation/recombination processes on the optical properties and on the kinetics of the weakly ionized layers in stellar atmospheres.

  8. A progress update for the pressure controlled atomization process

    International Nuclear Information System (INIS)

    Tierney, J.C.; Glovan, R.J.

    1994-01-01

    Two engineering tests series were conducted to qualify the Pressure Controlled Atomization Process (PCAP) for use as a replacement for hard chromium electroplating as a means of refurbishing US Air Force aviation parts. The test series, Boeing and Wright Laboratory Test Series, were conducted on PCAP-coated specimens that were sprayed by MSE, Inc., and then tested by Boeing and the Wright Laboratory. Tests conducted included fatigue, abrasion, corrosion, adhesion, internal stress, chemistry, metallurgy, hardness, and materials compatibility and workability. In addition to the two test series, modifications to the spray system have been implemented to make the PCAP repeatable and controllable by a single operator. Modifications included installation of a vacuum/pressure spray chamber, design and installation of a new high temperature 1,800 C (3,272 F) inert gas heating system, and an automated tundish pressure control system to regulate the spray process. As the PCAP process has been refined, potential research and development applications have also been identified. These applications are well-suited to the characteristic narrow spray plume, low thermal input, and high deposition efficiency of the PCAP. Potential applications include development of a self-locking threaded fastener, development of anew method for rapid manufacturing of printed circuit boards, and possibly spraying ceramics as near-net shape components

  9. Towards sympathetic cooling of large molecules: cold collisions between benzene and rare gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, P; Tennyson, J; Barker, P F [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)], E-mail: p.barletta@ucl.ac.uk

    2009-05-15

    This paper reports on calculations of collisional cross sections for the complexes X-C{sub 6}H{sub 6} (X={sup 3}He, {sup 4}He, Ne) at temperatures in the range 1 {mu}K-10 K and shows that relatively large cross sections in the 10{sup 3}-10{sup 5} A{sup 2} range are available for collisional cooling. Both elastic and inelastic processes are considered in this temperature range. The calculations suggest that sympathetically cooling benzene to microkelvin temperatures is feasible using these co-trapped rare gas atoms in an optical trap.

  10. Radiative processes of two entangled atoms in cosmic string spacetime

    Science.gov (United States)

    Cai, Huabing; Ren, Zhongzhou

    2018-01-01

    We investigate the radiative processes of two static two-level atoms in a maximally entangled state coupled to vacuum electromagnetic field in the cosmic string spacetime. We find that the decay rate from the entangled state to the ground state crucially depends on the atomic separation, the polarization directions of the individual atoms, the atom-string distance and the deficit angle induced by the string. As the atom-string distance increases, the decay rate oscillates around the result in Minkowski spacetime and the amplitude gradually decreases. The oscillation is more severe for larger planar angle deficit. We analyze the decay rate in different circumstances such as near zone and specific polarization cases. Some comparisons between symmetric and antisymmetric states are performed. By contrast with the case in Minkowski spacetime, we can reveal the effects of the cosmic string on the radiative properties of the entangled atoms.

  11. Microstructural and magnetic behavior of nanostructured soft alloys prepared by mechanical grinding and gas atomization

    International Nuclear Information System (INIS)

    Marin, P.; Lopez, M.; Garcia-Escorial, A.; Lieblich, M.

    2007-01-01

    Nanocrystalline powder of Fe-Si-B-Cu-Nb has been obtained by means of mechanical milling of the corresponding nanocrystalline ribbons. Gas atomization technique has been used to minimize the magnetic hardening due to stress effects observed in ball-milled samples. Fe-Si-B-Cu-Nb and Fe-Si nanocrystalline samples have been prepared by gas atomization. The aim of our work is to analyse the particle size dependence of coercivity in this nanostructured alloys and to show the analogies and differences between ball-milled and gas atomized samples

  12. Methanation process utilizing split cold gas recycle

    Science.gov (United States)

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  13. Working under the PJVA gas processing agreement

    International Nuclear Information System (INIS)

    Collins, S.

    1996-01-01

    The trend in the natural gas industry is towards custom processing. New gas reserves tend to be smaller and in tighter reservoirs than in the past. This has resulted in plants having processing and transportation capacity available to be leased to third parties. Major plant operators and owners are finding themselves in the business of custom processing in a more focused way. Operators recognize that the dilution of operating costs can result in significant benefits to the plant owners as well as the third party processor. The relationship between the gas processor and the gas producer as they relate to the Petroleum Joint Venture Association (PJVA) Gas Processing Agreement were discussed. Details of the standard agreement that clearly defines the responsibilities of the third party producer and the processor were explained. In addition to outlining obligations of the parties, it also provides a framework for fee negotiation. It was concluded that third party processing can lower facility operating costs, extend facility life, and keep Canadian gas more competitive in holding its own in North American gas markets

  14. Reactive Atom Plasma Processing of Slumped Glass Wedges Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Reactive Atom Plasma (RAPTM) process will be evaluated as a rapid and practical method for fabricating precision wedges in glass sheets. The glass sheets are to...

  15. 1978 bibliography of atomic and molecular processes. [Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This annotated bibliography lists 2557 works on atomic and molecular processes reported in publications dated 1978. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  16. 1979 bibliography of atomic and molecular processes. [Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    This annotated bibliography lists 2146 works on atomic and molecular processes reported in publications dated 1979. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  17. Rate processes in gas phase

    International Nuclear Information System (INIS)

    Hansen, C.F.

    1983-05-01

    Reaction-rate theory and experiment are given a critical review from the engineers' point of view. Rates of heavy-particle, collision-induced reaction in gas phase are formulated in terms of the cross sections and activation energies of the reaction. The effect of cross section function shape and of excited state contributions to the reaction both cause the slope of Arrhenius plots to differ from the true activation energy, except at low temperature. The master equations for chemically reacting gases are introduced, and dissociation and ionization reactions are shown to proceed primarily from excited states about kT from the dissociation or ionization limit. Collision-induced vibration, vibration-rotation, and pure rotation transitions are treated, including three-dimensional effects and conservation of energy, which have usually been ignored. The quantum theory of transitions at potential surface crossing is derived, and results are found to be in fair agreement with experiment in spite of some questionable approximations involved

  18. Attosecond time delays in the photoionization of noble gas atoms studied in TDLDA

    International Nuclear Information System (INIS)

    Magrakvelidze, Maia; Chakraborty, Himadri; Madjet, Mohamed

    2015-01-01

    We perform time-dependent local density functional calculations of the quantum phase and time delays of valence photoionization of noble gas atoms. Results may be accessed by XUV-IR interferometric metrology. (paper)

  19. Proceedings of the international seminar on atomic processes in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takako; Murakami, Izumi [eds.

    2000-01-01

    The International Seminar on Atomic Processes in Plasmas (ISAPP), a satellite meeting to the ICPEAC was held July 28-29 at the National Institute for Fusion Science in Toki, Gifu, Japan. About 110 scientists attended the ISAPP meeting and discussed atomic processes and atomic data required for fusion research. This Proceedings book includes the papers of the talks, posters and panel discussion given at the meeting. The invited talks described the super configuration array method for complex spectra, near-LTE atomic kinetics, R-matrix calculations, the binary-encounter dipole model for electron-impact ionization of molecules, other calculations of molecular processes, the ADAS project and the NIFS atomic data-base, and a survey of the role of molecular processes in divertor plasmas. On the experimental side crossed-beam ion-ion collision-experiments for charge transfer, and storage-ring and EBIT measurements of ionization, excitation and dielectronic recombination cross-sections were presented, and atomic processes important for x-ray laser experiments and x-ray spectroscopy of astrophysical plasmas were described. The new method of plasma polarization spectroscopy was outlined. There was also a spectroscopic study of particle transport in JT-60U, new results for detached plasmas, and a sketch of the first hot plasma experiments with the Large Helical Device recently completed at NIFS. The 63 of the presented papers are indexed individually. (J.P.N.)

  20. De Haas-van Alphen effect of a two-dimensional ultracold atomic gas

    Science.gov (United States)

    Farias, B.; Furtado, C.

    2016-01-01

    In this paper, we show how the ultracold atom analogue of the two-dimensional de Haas-van Alphen effect in electronic condensed matter systems can be induced by optical fields in a neutral atomic system. The interaction between the suitable spatially varying laser fields and tripod-type trapped atoms generates a synthetic magnetic field which leads the particles to organize themselves in Landau levels. Initially, with the atomic gas in a regime of lowest Landau level, we display the oscillatory behaviour of the atomic energy and its derivative with respect to the effective magnetic field (B) as a function of 1/B. Furthermore, we estimate the area of the Fermi circle of the two-dimensional atomic gas.

  1. Coherent and non coherent atom optics experiment with an ultra-narrow beam of metastable rare gas atoms

    International Nuclear Information System (INIS)

    Grucker, J.

    2007-12-01

    In this thesis, we present a new type of atomic source: an ultra-narrow beam of metastable atoms produced by resonant metastability exchange inside a supersonic beam of rare gas atoms. We used the coherence properties of this beam to observe the diffraction of metastable helium, argon and neon atoms by a nano-transmission grating and by micro-reflection-gratings. Then, we evidenced transitions between Zeeman sublevels of neon metastable 3 P 2 state due to the quadrupolar part of Van der Waals potential. After we showed experimental proofs of the observation of this phenomenon, we calculated the transition probabilities in the Landau - Zener model. We discussed the interest of Van der Waals - Zeeman transitions for atom interferometry. Last, we described the Zeeman cooling of the supersonic metastable argon beam ( 3 P 2 ). We have succeeded in slowing down atoms to speeds below 100 m/s. We gave experimental details and showed the first time-of-flight measurements of slowed atoms

  2. Crossover Temperature of Bose-Einstein Condensation in an Atomic Fermi Gas

    NARCIS (Netherlands)

    Falco, G.M.; Stoof, H.T.C.

    2004-01-01

    We show that in an atomic Fermi gas near a Feshbach resonance the crossover between a Bose-Einstein condensate of diatomic molecules and a Bose-Einstein condensate of Cooper pairs occurs at positive detuning, i.e., when the molecular energy level lies in the two-atom continuum. We determine the

  3. Atom-molecule equilibration in a degenerate Fermi gas with resonant interactions

    DEFF Research Database (Denmark)

    Williams, J. E.; Nikuni, T.; Nygaard, Nicolai

    2004-01-01

    We present a nonequilibrium kinetic theory describing atom-molecule population dynamics in a two-component Fermi gas with a Feshbach resonance. Key collision integrals emerge that govern the relaxation of the atom-molecule mixture to chemical and thermal equilibrium. Our focus is on the pseudogap...

  4. Boron doping: B/H/C/O gas-phase chemistry; H atom density dependences on pressure and wire temperature; puzzles regarding the gas-surface mechanism

    International Nuclear Information System (INIS)

    Mankelevich, Yuri A.; Ashfold, Michael N.R.; Comerford, Dane W.; Ma Jie; Richley, James C.

    2011-01-01

    Experimental and modeling studies of the gas-phase chemistry occurring in dilute, hot filament (HF) activated B 2 H 6 /CH 4 /H 2 gas mixtures appropriate for growth of boron-doped diamond are reported. The results of two-dimensional modeling of heat and mass transfer processes and the B/H/C chemistry prevailing in such HF activated gas mixtures (supplemented by reactions involving trace O 2 present as air impurity in the process gas mixture) are discussed and compared with measurements of B atom densities as functions of the hot wire temperature T w and distance from the wire. Most of the B 2 H 6 molecules that diffuse from the cool, near-wall regions into the hot, near wire region are thermally decomposed (yielding two BH 3 molecules as primary products) and then converted into various 'active' B-containing species like B, BH and BH 2 - some of which are able to accommodate into the growing diamond film. H-shifting reactions BH x + H ↔ BH x-1 + H 2 enable rapid inter-conversion between the various BH x (x = 0-3) species and the BH x source is limited by diffusional transfer of B 2 H 6 . H atoms play several key roles - e.g. activating the process gas mixture, and driving inter-conversions between the various H x B y C z O z' species. We show that the T w and gas pressure dependences of the H atom production rate (by H 2 dissociation on the HF surface) can be accommodated by a simple gas-surface reaction model.

  5. Lattice-gas model in kinetic theory of gas-solid interface processes

    Science.gov (United States)

    Tovbin, Yu. K.

    The improvement of the experimental methods for investigating surface processes changes the existing ideas about the role of the different factors of the gas-solid system and the mechanisms of the processes. The recent studies have confirmed the conception of surface processes as the ones taking place in the condensed phases. At the same time, the surface processes generally are described by fairly rough models based on the law of mass action, which is true of the ideal systems. The contradiction is eliminated to a certain degree when a lattice-gas model which takes into account the proper volume of the adspecies and adspecies interaction is used. On this basis it is easy to consider the effect of the local environment on the activation barrier of an elementary process. This enables one to apply it extensively to be the atomic-molecular processes associated with a change in the spatial arrangement of the adspecies and their chemical conversion. The review describes the development of the kinetic theory of the surface processes at the gas-solid interface using on the lattice-gas model and its modern modifications. Applications of the theory to the adsorption-desorption processes and the catalytic reactions are considered. The reaction rates in the condensed phases and the role of the correlation effects of the interacting adspecies and the distribution of the system's components are described. The lattice-gas model helps us explain the empirical principles of the adsorption processes; a variable order of desorption rate; the splitting of the thermodesorption spectra on the homogeneous surfaces; an increase in the sticking coefficient with coverage at its small values; phase transitions in the adlayers and their effect on the adsorption-desorption rate and the diffusion coefficients; a great mutual effect of the adspecies of the different kinds on the rate of the elementary processes; the dependence of the course of a process on the conditions in which the initial

  6. Divergence analysis of atomic ionization processes and isoelectronic series

    International Nuclear Information System (INIS)

    Lopez-Rosa, S.; Angulo, J. C.; Antolin, J.; Esquivel, R. O.

    2009-01-01

    Fisher divergences (FDs) and Jensen-Shannon divergences (JSDs) are used in this work to quantify the informational discrepancies between the one-particle electron densities of neutral atoms, singly charged ions, and isoelectronic series. These dissimilarity magnitudes, computed for a set of 319 atomic systems in both position and momentum spaces, provide relevant information concerning pattern, structure, and periodicity properties of the ionization processes. In particular an apparent correlation between extremal values of the atomic ionization potential and the divergences is found. Results are compared with those obtained by quantum similarity techniques.

  7. The influence of gas phase velocity fluctuations on primary atomization and droplet deformation

    Science.gov (United States)

    Kourmatzis, A.; Masri, A. R.

    2014-02-01

    The effects of grid-generated velocity fluctuations on the primary atomization and subsequent droplet deformation of a range of laminar liquid jets are examined using microscopic high-speed backlit imaging of the break-up zone and laser Doppler anemometry of the gas phase separately. This is done for fixed gas mean flow conditions in a miniature wind tunnel experiment utilizing a selection of fuels, turbulence-generating grids and two syringe sizes. The constant mean flow allows for an isolated study of velocity fluctuation effects on primary atomization in a close approximation to homogeneous decaying turbulence. The qualitative morphology of the primary break-up region is examined over a range of turbulence intensities, and spectral analysis is performed in order to ascertain the break-up frequency which, for a case of no grid, compares well with the existing literature. The addition of velocity fluctuations tends to randomize the break-up process. Slightly downstream of the break-up region, image processing is conducted in order to extract a number of metrics, which do not depend on droplet sphericity, and these include droplet aspect ratio and orientation, the latter quantity being somewhat unconventional in spray characterization. A turbulent Weber number which takes into account gas phase fluctuations is utilized to characterize the resulting droplet shapes, in addition to a mean Weber number . Above a a clear positive relationship exists between the mean aspect ratio of droplets and the turbulent Weber number where is varied by altering all relevant variables including the velocity root mean square, the initial droplet diameter, the surface tension and the density.

  8. Electron beam flue gas treatment process. Review

    International Nuclear Information System (INIS)

    Honkonen, V.A.

    1996-01-01

    The basis of the process for electron beam flue gas treatment are presented in the report. In tabular form the history of the research is reviewed. Main dependences of SO 2 and NO x removal efficiencies on different physico-chemical parameters are discussed. Trends concerning industrial process implementation are presented in the paper,finally. (author). 74 refs, 11 figs, 1 tab

  9. Individual Tracer Atoms in an Ultracold Dilute Gas

    Science.gov (United States)

    Hohmann, Michael; Kindermann, Farina; Lausch, Tobias; Mayer, Daniel; Schmidt, Felix; Lutz, Eric; Widera, Artur

    2017-06-01

    We report on the experimental investigation of individual Cs atoms impinging on a dilute cloud of ultracold Rb atoms with variable density. We study the relaxation of the initial nonthermal state and detect the effect of single collisions which has so far eluded observation. We show that, after few collisions, the measured spatial distribution of the tracer atoms is correctly described by a Langevin equation with a velocity-dependent friction coefficient, over a large range of Knudsen numbers. Our results extend the simple and effective Langevin treatment to the realm of light particles in dilute gases. The experimental technique developed opens up the microscopic exploration of a novel regime of diffusion at the level of individual collisions.

  10. Statistical dynamics of transient processes in a gas discharge plasma

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Telegin, G.G.

    1991-01-01

    The properties of a gas discharge plasma to a great extent depend on random processes whose study has recently become particularly important. The present work is concerned with analyzing the statistical phenomena that occur during the prebreakdown stage in a gas discharge. Unlike other studies of breakdown in the discharge gap, in which secondary electron effects and photon processes at the electrodes must be considered, here the authors treat the case of an electrodeless rf discharge or a laser photoresonant plasma. The analysis is based on the balance between the rates of electron generation and recombination in the plasma. The fluctuation kinetics for ionization of atoms in the hot plasma may also play an important role when the electron temperature changes abruptly, as occurs during adiabatic pinching of the plasma or during electron cyclotron heating

  11. Numerical and experimental modelling of back stream flow during close-coupled gas atomization

    OpenAIRE

    Motaman, S; Mullis, AM; Borman, DJ; Cochrane, RF; McCarthy, IN

    2013-01-01

    This paper reports the numerical and experimental investigation into the effects of different gas jet mis-match angles (for an external melt nozzle wall) on the back-stream flow in close coupled gas atomization. The Pulse Laser Imaging (PLI) technique was applied for visualising the back-stream melt flow phenomena with an analogue water atomizer and the associated PLI images compared with numerical results. In the investigation a Convergent–Divergent (C–D) discrete gas jet die at five differe...

  12. Magnetic-field-driven localization of light in a cold-atom gas.

    Science.gov (United States)

    Skipetrov, S E; Sokolov, I M

    2015-02-06

    We discover a transition from extended to localized quasimodes for light in a gas of immobile two-level atoms in a magnetic field. The transition takes place either upon increasing the number density of atoms in a strong field or upon increasing the field at a high enough density. It has many characteristic features of a disorder-driven (Anderson) transition but is strongly influenced by near-field interactions between atoms and the anisotropy of the atomic medium induced by the magnetic field.

  13. Gas processing in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.L.

    1995-02-01

    This article is a brief overview of code requirements in the nuclear air cleaning arena. NRC standards, which employ the various ASME codes, are noted. It is also noted that DOE facilities do not fall under the purview of the NRC and that DOE facilities (especially fuel cycle facilities) typically have broader gas processing activities than for power reactors. The typical differences between DOE facilities` and power reactor facilities` gas processing needs are listed, as are DOE facility components not covered by the ASME AG-1 code.

  14. Stability investigation of a high number density Pt1/Fe2O3single-atom catalyst under different gas environments by HAADF-STEM.

    Science.gov (United States)

    Duan, Sibin; Wang, Rongming; Liu, Jingyue

    2018-05-18

    Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt 1 /Fe 2 O 3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water-gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe 2 O 3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H 2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H 2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H 2 O molecules to the CO or H 2 significantly accelerates the sintering of the Fe 2 O 3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal-support interaction.

  15. 30 CFR 206.153 - Valuation standards-processed gas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Valuation standards-processed gas. 206.153... MANAGEMENT PRODUCT VALUATION Federal Gas § 206.153 Valuation standards—processed gas. (a)(1) This section applies to the valuation of all gas that is processed by the lessee and any other gas production to which...

  16. 30 CFR 202.151 - Royalty on processed gas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Royalty on processed gas. 202.151 Section 202... MANAGEMENT ROYALTIES Federal Gas § 202.151 Royalty on processed gas. (a)(1) A royalty, as provided in the... settlement without resorting to processing; and (ii) Residue gas and all gas plant products resulting from...

  17. Gas processing at DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jacox, J.

    1995-02-01

    The term {open_quotes}Gas Processing{close_quotes} has many possible meanings and understandings. In this paper, and panel, we will be using it to generally mean the treatment of gas by methods other than those common to HVAC and Nuclear Air Treatment. This is only a working guideline not a rigorous definition. Whether a rigorous definition is desirable, or even possible is a question for some other forum. Here we will be discussing the practical aspects of what {open_quotes}Gas Processing{close_quotes} includes and how existing Codes, Standards and industry experience can, and should, apply to DOE and NRC Licensed facilities. A major impediment to use of the best engineering and technology in many nuclear facilities is the administrative mandate that only systems and equipment that meet specified {open_quotes}nuclear{close_quotes} documents are permissible. This paper will highlight some of the limitations created by this approach.

  18. A MOLECULAR STAR FORMATION LAW IN THE ATOMIC-GAS-DOMINATED REGIME IN NEARBY GALAXIES

    International Nuclear Information System (INIS)

    Schruba, Andreas; Walter, Fabian; Dumas, Gaelle; Sandstrom, Karin; Leroy, Adam K.; Bigiel, Frank; Brinks, Elias; De Blok, W. J. G.; Kramer, Carsten; Rosolowsky, Erik; Schuster, Karl; Usero, Antonio; Weiss, Axel; Wiesemeyer, Helmut

    2011-01-01

    We use the IRAM HERACLES survey to study CO emission from 33 nearby spiral galaxies down to very low intensities. Using 21 cm line atomic hydrogen (H I) data, mostly from THINGS, we predict the local mean CO velocity based on the mean H I velocity. By re-normalizing the CO velocity axis so that zero corresponds to the local mean H I velocity we are able to stack spectra coherently over large regions. This enables us to measure CO intensities with high significance as low as I CO ∼ 0.3 K km s -1 (Σ H 2 ∼1 M sun pc -2 ), an improvement of about one order of magnitude over previous studies. We detect CO out to galactocentric radii r gal ∼ r 25 and find the CO radial profile to follow a remarkably uniform exponential decline with a scale length of ∼0.2 r 25 . Here we focus on stacking as a function of radius, comparing our sensitive CO profiles to matched profiles of H I, Hα, far-UV (FUV), and Infrared (IR) emission at 24 μm and 70 μm. We observe a tight, roughly linear relationship between CO and IR intensity that does not show any notable break between regions that are dominated by molecular gas (Σ H 2 >Σ H i ) and those dominated by atomic gas (Σ H 2 H i ). We use combinations of FUV+24 μm and Hα+24 μm to estimate the recent star formation rate (SFR) surface density, Σ SFR , and find approximately linear relations between Σ SFR and Σ H 2 . We interpret this as evidence of stars forming in molecular gas with little dependence on the local total gas surface density. While galaxies display small internal variations in the SFR-to-H 2 ratio, we do observe systematic galaxy-to-galaxy variations. These galaxy-to-galaxy variations dominate the scatter in relationships between CO and SFR tracers measured at large scales. The variations have the sense that less massive galaxies exhibit larger ratios of SFR-to-CO than massive galaxies. Unlike the SFR-to-CO ratio, the balance between atomic and molecular gas depends strongly on the total gas surface density

  19. Novel Applications of Buffer-gas Cooling to Cold Atoms, Diatomic Molecules, and Large Molecules

    Science.gov (United States)

    Drayna, Garrett Korda

    Cold gases of atoms and molecules provide a system for the exploration of a diverse set of physical phenomena. For example, cold gasses of magnetically and electrically polar atoms and molecules are ideal systems for quantum simulation and quantum computation experiments, and cold gasses of large polar molecules allow for novel spectroscopic techniques. Buffer-gas cooling is a robust and widely applicable method for cooling atoms and molecules to temperatures of approximately 1 Kelvin. In this thesis, I present novel applications of buffer-gas cooling to obtaining gases of trapped, ultracold atoms and diatomic molecules, as well as the study of the cooling of large organic molecules. In the first experiment of this thesis, a buffer-gas beam source of atoms is used to directly load a magneto-optical trap. Due to the versatility of the buffer-gas beam source, we obtain trapped, sub-milliKelvin gases of four different lanthanide species using the same experimental apparatus. In the second experiment of this thesis, a buffer-gas beam is used as the initial stage of an experiment to directly laser cool and magneto-optically trap the diatomic molecule CaF. In the third experiment of this thesis, buffer-gas cooling is used to study the cooling of the conformational state of large organic molecules. We directly observe conformational relaxation of gas-phase 1,2-propanediol due to cold collisions with helium gas. Lastly, I present preliminary results on a variety of novel applications of buffer-gas cooling, such as mixture analysis, separation of chiral mixtures, the measurement of parity-violation in chiral molecules, and the cooling and spectroscopy of highly unstable reaction intermediates.

  20. Starting up a programme of atomic piles using compressed gas

    International Nuclear Information System (INIS)

    Horowitz, J.; Yvon, J.

    1959-01-01

    1) An examination of the intellectual and material resources which have directed the French programme towards: a) the natural uranium and plutonium system, b) the use of compressed gas as heat transfer fluid (primary fluid). 2) The parts played in exploring the field by the pile EL2 and G1, EL2 a natural uranium, heavy water and compressed gas pile, G1 a natural uranium, graphite and atmospheric air pile. 3) Development of the neutronics of graphite piles: physical study of G1. 4) The examination of certain problem posed by centres equipped with natural uranium, graphite and compressed carbon dioxide piles: structure, special materials, fluid circuits, maximum efficiency. Economic aspects. 5) Aids to progress: a) piles for testing materials and for tests on canned fuel elements, b) laboratory and calculation facilities. 6) Possible new orientations of compressed gas piles: a) raising of the pressure, b) enriched fuel, c) higher temperatures, d) use of heavy water. (author) [fr

  1. A Rapid Process for Fabricating Gas Sensors

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2014-07-01

    Full Text Available Zinc oxide (ZnO is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (△R/R of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost.

  2. COUPLED ATOMIZATION AND SPRAY MODELLING IN THE SPRAY FORMING PROCESS USING OPENFOAM

    DEFF Research Database (Denmark)

    Gjesing, Rasmus; Hattel, Jesper Henri; Fritsching, Udo

    2009-01-01

    The paper presents a numerical model capable of simulating the atomization, break-up and in-flight spray phenomena in the spray forming process. The model is developed and implemented in the freeware code openFOAM. The focus is on studying the coupling effect of the melt break-up phenomena...... with the local gas and droplets flow fields. The work is based on an Eulerian-Lagrangian description, which is implemented in a full 3D representation. The gas is described by the incompressible RANS equations, whereas the movement of the droplets is modeled by a tracking approach, together with a full thermal...

  3. process for K-shell ionization of atoms

    Indian Academy of Sciences (India)

    cross-section for the (e,2e) process can be expressed in terms of atomic structure functions, which in turn can be related to bilinear combination of the four-current components in momentum space. Donnelly [15] has given detailed formalism for decomposition of the PWBA cross-section into product of the kinematical factors.

  4. process for K-shell ionization of atoms

    Indian Academy of Sciences (India)

    . The longitudinal spin asymmetry in the relativistic ( 2 ) process on K-shell of atoms has been shown to depend on the interference between the transition charge and component of the transition current in the direction perpendicular to the ...

  5. Atomic and molecular processes with lithium in peripheral plasmas

    International Nuclear Information System (INIS)

    Murakami, I.; Kato, D.; Hirooka, Y.; Sawada, K.

    2010-01-01

    Atomic and molecular processes for Li chemistry are examined for low temperature plasma such as peripheral plasmas in fusion research laboratory devices. Particle abundances of Li, Li ions, LiH and LiH ion are calculated by solving rate equations in which all reactions of the Li chemistry are considered for low temperature plasma.

  6. Method and apparatus for noble gas atom detection with isotopic selectivity

    Science.gov (United States)

    Hurst, G. Samuel; Payne, Marvin G.; Chen, Chung-Hsuan; Parks, James E.

    1984-01-01

    Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.

  7. Predicted organic compounds derived from rare gas atoms and formic acid.

    Science.gov (United States)

    Zhang, Min; Sheng, Li

    2014-01-07

    Organic insertion compounds of rare gas atoms into formic acid were investigated at the MP2(full)/aug-cc-pVTZ level. There are two configuration isomers for each molecule based on the location of H atoms: trans- and cis-HCOORgH (Rg = Ar, Kr, Xe). Their structures, harmonic frequencies, and decomposition energies have been calculated using the above ab initio method. Using trans-HCOOXeH as an example, natural bond orbital (NBO) and atom-in-molecules (AIM) analyses were also carried out to explore the binding nature of the rare gas atoms. The formation mechanism of molecular orbitals is also presented in this paper. The presented results indicate that HCOOXeH and HCOOKrH are potential candidates for experimental observation.

  8. Exploring the thermodynamics of Bose-Einstein condensation in a homogeneous atomic gas

    Science.gov (United States)

    Schmidutz, Tobias; Gotlibovych, Igor; Gaunt, Alexander; Smith, Robert; Hadzibabic, Zoran

    2013-05-01

    Atomic Bose-Einstein condensates have traditionally been produced in harmonic traps and only very recently it became possible to attain condensation in a homogeneous gas [A.L. Gaunt et al., arXiv:1212.4453]. In this talk we will present our new experimental results on the thermodynamics of condensation in a homogeneous weakly interacting Bose gas. We perform a systematic study of the tuning of the critical temperature with system parameters, the saturation of the thermal components in a partially condensed sample, and the total energy of the gas. We also study the dynamics of cooling in a uniform gas.

  9. Tax issues in structuring gas process arrangements

    International Nuclear Information System (INIS)

    Iverach, R.J.

    1999-01-01

    The current status of various tax issues regarding ownership, operation and financing of gas processing facilities in Canada was discussed. Frequently, energy companies are not taxed because of their large pools of un-depreciated capital cost and other resource related accounts. In addition, their time horizons for taxability are being extended in line with the expansion of their businesses. However, other investors are fully taxable, hence they wish to shelter their income through the use of tax efficient investment arrangements. This paper provides a detailed description of the tax treatment of gas processing facilities, tax implications of various structures between the producer and the investor such as lease, processing fee arrangements etc., and use of 'Canadian Renewable and Conservation Expense' (CRCE) for cogeneration projects within processing plants. All these need to be considered before completing a financing transaction involving a gas processing facility, since the manner in which the transaction is completed will determine the advantages and benefits from an income tax perspective. The accounting and legal aspects must be similarly scrutinized to ensure that the intended results for all parties are achieved. 8 figs

  10. Atomic-scale processes at the fluorite-water interface visualized by frequency modulation atomic force microscopy

    OpenAIRE

    Kobayashi, Naritaka; Itakura, Shiro; Asakawa, Hitoshi; Fukuma, Takeshi

    2013-01-01

    The crystal growth and dissolution processes of a fluorite (CaF 2) crystal have attracted much attention due to the importance in the industrial, environmental, and medical applications. While previous studies clarified nanoscale processes at the fluorite-water interface, atomic-scale origins of the processes have yet to be understood. In this study, we have investigated atomic-scale processes at the fluorite-water interface by frequency modulation atomic force microscopy (FM-AFM). We perform...

  11. Development of the process for production of UO2 powder by atomization of uranyl nitrate

    International Nuclear Information System (INIS)

    Oliveira Lainetti, P.E. de.

    1991-01-01

    A method of direct conversion of uranyl nitrate hexahydrate (UNH) solution to ceramic grade uranium dioxide powders by thermal denitration in a furnace that combines atomization nozzle and a gas stirred bed is described. The main purpose of this work is to show that this alternative process is technically viable, specially if the recovery of the scrap generated in the nuclear fuel pellet production is required, without further generation of new liquid wastes. The steps for the development of the denitration unit as well as the characteristics of the final powders are described. Powder production experiments have been carried out for different atomization gas pressures and furnace upper section temperatures. Determination of impurity content, specific surface area, particle size and pore size distribution, density, U content, and O/U rate of uranium dioxide powders have been done; phase identification and morphology studies have also been performed. Sintered pellets have been studied by hydrostatic density determination and microstructure analyses. (author)

  12. DISTRIBUTION OF FAINT ATOMIC GAS IN HICKSON COMPACT GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Borthakur, Sanchayeeta; Heckman, Timothy M.; Zhu, Guangtun [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Yun, Min Su [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Verdes-Montenegro, Lourdes [Instituto de Astrofísica de Andalucía, CSIC, Apdo. Correos 3004, E-18080 Granada (Spain); Braatz, James A., E-mail: sanch@pha.jhu.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2015-10-10

    We present 21 cm H i observations of four Hickson Compact Groups (HCGs) with evidence for a substantial intragroup medium using the Robert C. Byrd Green Bank Telescope (GBT). By mapping H i emission in a region of 25′ × 25′ (140–650 kpc) surrounding each HCG, these observations provide better estimates of H i masses. In particular, we detected 65% more H i than that detected in the Karl G. Jansky Very Large Array (VLA) imaging of HCG 92. We also identify whether the diffuse gas has the same spatial distribution as the high surface brightness (HSB) H i features detected in the VLA maps of these groups by comparing the H i strengths between the observed and modeled masses based on VLA maps. We found that the H i observed with the GBT has a similar spatial distribution to the HSB structures in HCG 31 and HCG 68. Conversely, the observed H i distributions in HCG 44 and HCG 92 were extended and showed significant offsets from the modeled masses. Most of the faint gas in HCG 44 lies to the northeast–southwest region and in HCG 92 lies in the northwest region of their respective groups. The spatial and dynamical similarities between the total (faint+HSB) and the HSB H i indicate that the faint gas is of tidal origin. We found that the gas will survive ionization by the cosmic UV background and the escaping ionizing photons from the star-forming regions and stay primarily neutral for at least 500 Myr.

  13. Advanced statistics to improve the physical interpretation of atomization processes

    International Nuclear Information System (INIS)

    Panão, Miguel R.O.; Radu, Lucian

    2013-01-01

    Highlights: ► Finite pdf mixtures improves physical interpretation of sprays. ► Bayesian approach using MCMC algorithm is used to find the best finite mixture. ► Statistical method identifies multiple droplet clusters in a spray. ► Multiple drop clusters eventually associated with multiple atomization mechanisms. ► Spray described by drop size distribution and not only its moments. -- Abstract: This paper reports an analysis of the physics of atomization processes using advanced statistical tools. Namely, finite mixtures of probability density functions, which best fitting is found using a Bayesian approach based on a Markov chain Monte Carlo (MCMC) algorithm. This approach takes into account eventual multimodality and heterogeneities in drop size distributions. Therefore, it provides information about the complete probability density function of multimodal drop size distributions and allows the identification of subgroups in the heterogeneous data. This allows improving the physical interpretation of atomization processes. Moreover, it also overcomes the limitations induced by analyzing the spray droplets characteristics through moments alone, particularly, the hindering of different natures of droplet formation. Finally, the method is applied to physically interpret a case-study based on multijet atomization processes

  14. Imaging quantum stereodynamics through Fraunhofer scattering of NO radicals with rare-gas atoms.

    Science.gov (United States)

    Onvlee, Jolijn; Gordon, Sean D S; Vogels, Sjoerd N; Auth, Thomas; Karman, Tijs; Nichols, Bethan; van der Avoird, Ad; Groenenboom, Gerrit C; Brouard, Mark; van de Meerakker, Sebastiaan Y T

    2017-03-01

    Stereodynamics describes how the vector properties of molecules, such as the directions in which they move and the axes about which they rotate, affect the probabilities (or cross-sections) of specific processes or transitions that occur on collision. The main aspects of stereodynamics in inelastic atom-molecule collisions can often be understood from classical considerations, in which the particles are represented by billiard-ball-like hard objects. In a quantum picture, however, the collision is described in terms of matter waves, which can also scatter into the region of the geometrical shadow of the object and reveal detailed information on the pure quantum-mechanical contribution to the stereodynamics. Here we present measurements of irregular diffraction patterns for NO radicals colliding with rare-gas atoms that can be explained by the analytical Fraunhofer model. They reveal a hitherto overlooked dependence on (or 'propensity rule' for) the magnetic quantum number m of the molecules, and a previously unrecognized type of quantum stereodynamics that has no classical analogue or interpretation.

  15. Boundary effects on radiative processes of two entangled atoms

    Energy Technology Data Exchange (ETDEWEB)

    Arias, E. [Instituto Politécnico, Universidade do Estado do Rio de Janeiro,28625-570 Nova Friburgo (Brazil); Dueñas, J.G. [Universidade Federal de Minas Gerais,Belo Horizonte, BH 31270-901 (Brazil); Menezes, G. [Grupo de Física Teórica e Matemática Física, Departamento de Física,Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23897-000 (Brazil); Svaiter, N.F. [Centro Brasileiro de Pesquisas Físicas,Rio de Janeiro, RJ 22290-180 (Brazil)

    2016-07-29

    We analyze radiative processes of a quantum system composed by two identical two-level atoms interacting with a massless scalar field prepared in the vacuum state in the presence of perfect reflecting flat mirrors. We consider that the atoms are prepared in a stationary maximally entangled state. We investigate the spontaneous transitions rates from the entangled states to the collective ground state induced by vacuum fluctuations. In the empty-space case, the spontaneous decay rates can be enhanced or inhibited depending on the specific entangled state and changes with the distance between the atoms. Next, we consider the presence of perfect mirrors and impose Dirichlet boundary conditions on such surfaces. In the presence of a single mirror the transition rate for the symmetric state undergoes a slight reduction, whereas for the antisymmetric state our results indicate a slightly enhancement. Finally, we investigate the effect of multiple reflections by two perfect mirrors on the transition rates.

  16. Computer simulation of void formation in residual gas atom free metals by dual beam irradiation experiments

    International Nuclear Information System (INIS)

    Shimomura, Y.; Nishiguchi, R.; La Rubia, T.D. de; Guinan, M.W.

    1992-01-01

    In our recent experiments (1), we found that voids nucleate at vacancy clusters which trap gas atoms such as hydrogen and helium in ion- and neutron-irradiated copper. A molecular dynamics computer simulation, which implements an empirical embedded atom method to calculate forces that act on atoms in metals, suggests that a void nucleation occurs in pure copper at six and seven vacancy clusters. The structure of six and seven vacancy clusters in copper fluctuates between a stacking fault tetrahedron and a void. When a hydrogen is trapped at voids of six and seven vacancy, a void can keep their structure for appreciably long time; that is, the void do not relax to a stacking fault tetrahedron and grows to a large void. In order to explore the detailed atomics of void formation, it is emphasized that dual-beam irradiation experiments that utilize beams of gas atoms and self-ions should be carried out with residual gas atom free metal specimens. (author)

  17. Kennard-Stepanov relation connecting absorption and emission spectra in an atomic gas.

    Science.gov (United States)

    Moroshkin, Peter; Weller, Lars; Sass, Anne; Klaers, Jan; Weitz, Martin

    2014-08-08

    The Kennard-Stepanov relation describes a thermodynamic, Boltzmann-type scaling between the absorption and emission spectral profiles of an absorber, which applies in many liquid state dye solutions as well as in semiconductor systems. Here we examine absorption and emission spectra of rubidium atoms in a dense argon buffer gas environment. We demonstrate that the Kennard-Stepanov relation between absorption and emission spectra is well fulfilled in the collisionally broadened atomic gas system. Our experimental findings are supported by a simple theoretical model.

  18. Phase diagrams for an ideal gas mixture of fermionic atoms and bosonic molecules

    DEFF Research Database (Denmark)

    Williams, J. E.; Nygaard, Nicolai; Clark, C. W.

    2004-01-01

    We calculate the phase diagrams for a harmonically trapped ideal gas mixture of fermionic atoms and bosonic molecules in chemical and thermal equilibrium, where the internal energy of the molecules can be adjusted relative to that of the atoms by use of a tunable Feshbach resonance. We plot...... diagrams obtained in recent experiments on the Bose-Einstein condensation to Bardeen-Cooper-Schrieffer crossover, in which the condensate fraction is plotted as a function of the initial temperature of the Fermi gas measured before a sweep of the magnetic field through the resonance region....

  19. Mutual neutralization of atomic rare-gas cations (Ne(+), Ar(+), Kr(+), Xe(+)) with atomic halide anions (Cl(-), Br(-), I(-)).

    Science.gov (United States)

    Shuman, Nicholas S; Miller, Thomas M; Johnsen, Rainer; Viggiano, Albert A

    2014-01-28

    We report thermal rate coefficients for 12 reactions of rare gas cations (Ne(+), Ar(+), Kr(+), Xe(+)) with halide anions (Cl(-), Br(-), I(-)), comprising both mutual neutralization (MN) and transfer ionization. No rate coefficients have been previously reported for these reactions; however, the development of the Variable Electron and Neutral Density Attachment Mass Spectrometry technique makes it possible to measure the difference of the rate coefficients for pairs of parallel reactions in a Flowing Afterglow-Langmuir Probe apparatus. Measurements of 18 such combinations of competing reaction pairs yield an over-determined data set from which a consistent set of rate coefficients of the 12 MN reactions can be deduced. Unlike rate coefficients of MN reactions involving at least one polyatomic ion, which vary by at most a factor of ∼3, those of the atom-atom reactions vary by at least a factor 60 depending on the species. It is found that the rate coefficients involving light rare-gas ions are larger than those for the heavier rare-gas ions, but the opposite trend is observed in the progression from Cl(-) to I(-). The largest rate coefficient is 6.5 × 10(-8) cm(3) s(-1) for Ne(+) with I(-). Rate coefficients for Ar(+), Kr(+), and Xe(+) reacting with Br2 (-) are also reported.

  20. Atomic processes in hydrogen and deuterium negative ion discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1992-01-01

    A knowledge of the atomic processes active in a hydrogen negative ion discharge and their respective rates is an essential component of the interpretation, modeling, and enhancement of negative ion systems. The generation of the cross sections and rate processes appropriate to this problem has been a principal activity at several laboratories. In this paper is discussed those collision processes that are of major importance for the destruction of the vibrationally excited molecules generated in the discharge, processes that are essential to the valuation of the optimization procedure that is to be discussed in this paper

  1. Plasma effective field theory advertised, then illustrated by e, p, H-atom gas

    International Nuclear Information System (INIS)

    Brown, L.S.

    2001-01-01

    The first part is a lightning fast overview of the application of ideas of modern effective quantum field theory (which originated in elementary particle theory) to plasma physics. An exhaustive account is presented in a long report with L. G. Yaffe which contains all the details set out in a self-contained and pedagogical fashion. The second part shows how the low temperature but dilute limit of the partition function at two-loop order describes a gas of electrons, protons, and hydrogen atoms in their ground state. Hydrogen atoms emerge automatically from the general framework which does not begin with any explicit consideration of atoms. (orig.)

  2. Nondestructive cavity QED probe of Bloch oscillations in a gas of ultracold atoms

    International Nuclear Information System (INIS)

    Peden, B. M.; Meiser, D.; Holland, M. J.; Chiofalo, M. L.

    2009-01-01

    We describe a scheme for probing a gas of ultracold atoms trapped in an optical lattice and moving in the presence of an external potential. The probe is nondestructive and uses the existing lattice fields as the measurement device. Two counterpropagating cavity fields simultaneously set up a conservative lattice potential and a weak quantum probe of the atomic motion. Balanced heterodyne detection of the probe field at the cavity output along with integration in time and across the atomic cloud yield information about the atomic dynamics in a single run. The scheme is applied to a measurement of the Bloch oscillation frequency for atoms moving in the presence of the local gravitational potential. Signal-to-noise ratios are estimated to be as high as 10 4 .

  3. Atomizing industrial gas-liquid flows – Development of an efficient hybrid VOF-LPT numerical framework

    International Nuclear Information System (INIS)

    Ström, Henrik; Sasic, Srdjan; Holm-Christensen, Olav; Shah, Louise Jivan

    2016-01-01

    Highlights: • Modelling of turbulent atomizing gas-liquid flows in real industrial devices. • A combined VOF-LPT framework with statistical coupling. • Regions of separated and dispersed multiphase flow treated simultaneously. • Statistical model based on a limited amount of highly resolved VOF data. - Abstract: Atomizing gas-liquid flows are used in industrial applications where high interphase heat and mass transfer rates and good mixing are of primary importance. Today, there is no single mathematical framework available to predict the entire liquid breakup process at an acceptable computational cost for a typical problem of industrial size. In this work, we develop a volume-of-fluid (VOF) framework that is combined with Lagrangian particle tracking (LPT) to take advantage of the respective strengths of these two approaches. The two frameworks are coupled via a statistical model that enables a transition from the VOF to the LPT formulation using input data about the primary breakup process obtained from detailed VOF simulations in dedicated switching zones. LPT-to-VOF transitions are handled directly by analyzing the proximity of LPT parcels to larger VOF structures. The combined framework is specifically designed to accommodate situations where atomization occurs in several locations simultaneously and when separated and dispersed turbulent gas-liquid flows co-exist in the same industrial unit. The procedure in which the statistical model is derived is presented and discussed, its performance is verified and the computational efficiency of the combined VOF-LPT model is assessed. Finally, the application of the coupled framework to the simulation of an industrial gas-liquid mixer with four separate atomization regions is presented.

  4. Influence of the atomic mass of the background gas on laser ablation plume propagation

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2008-01-01

    A combination of time-of-flight ion probe measurements and gas dynamical modeling has been used to investigate the propagation of a laser ablation plume in gases of different atomic/molecular weight. The pressure variation of the ion time-of-flight was found to be well described by the gas...... dynamical model of Predtechensky and Mayorov (Appl. Supercond. 1:2011, 1993). In particular, the model describes how the pressure required to stop the plume in a given distance depends on the atomic/molecular weight of the gas, which is a feature that cannot be explained by standard point......-blast-wave descriptions of laser ablation plume expansion in gas....

  5. Formation of oxides particles in ferritic steel by using gas-atomized powder

    International Nuclear Information System (INIS)

    Liu Yong; Fang Jinghua; Liu Donghua; Lu Zhi; Liu Feng; Chen Shiqi; Liu, C.T.

    2010-01-01

    Oxides dispersion strengthened (ODS) ferritic steel was prepared by using gas-atomized pre-alloyed powder, without the conventional mechanical alloying process. By adjusting the volume content of O 2 in the gas atmosphere Ar, the O level in the ferritic powder can be well controlled. The O dissolves uniformly in the ferritic powder, and a very thin layer of oxides forms on the powder surface. After hot deformation, the primary particle boundaries, which retain after sintering, can be disintegrated and near fully dense materials can be obtained. The oxide layer on the powder surface has a significant effect on the microstructural evolution. It may prevent the diffusion in between the primary particles during sintering, and may dissolve and/or induce the nucleation of new oxides in the ferritic matrix during recrystallization. Two kinds of oxide particles are found in the ferritic steel: large (∼100 nm) Ti-rich and fine (10-20 nm) Y-Ti-rich oxides. The hardness of the ferritic steel increases with increasing annealing temperatures, however, decreases at 1400 deg. C, due to the coarsening of precipitates and the recrystallization microstructure.

  6. An improved model of fission gas atom transport in irradiated uranium dioxide

    Science.gov (United States)

    Shea, J. H.

    2018-04-01

    The hitherto standard approach to predicting fission gas release has been a pure diffusion gas atom transport model based upon Fick's law. An additional mechanism has subsequently been identified from experimental data at high burnup and has been summarised in an empirical model that is considered to embody a so-called fuel matrix 'saturation' phenomenon whereby the fuel matrix has become saturated with fission gas so that the continued addition of extra fission gas atoms results in their expulsion from the fuel matrix into the fuel rod plenum. The present paper proposes a different approach by constructing an enhanced fission gas transport law consisting of two components: 1) Fick's law and 2) a so-called drift term. The new transport law can be shown to be effectively identical in its predictions to the 'saturation' approach and is more readily physically justifiable. The method introduces a generalisation of the standard diffusion equation which is dubbed the Drift Diffusion Equation. According to the magnitude of a dimensionless Péclet number, P, the new equation can vary from pure diffusion to pure drift, which latter represents a collective motion of the fission gas atoms through the fuel matrix at a translational velocity. Comparison is made between the saturation and enhanced transport approaches. Because of its dependence on P, the Drift Diffusion Equation is shown to be more effective at managing the transition from one type of limiting transport phenomenon to the other. Thus it can adapt appropriately according to the reactor operation.

  7. Electronic Relaxation Processes of Transition Metal Atoms in Helium Nanodroplets

    Science.gov (United States)

    Kautsch, Andreas; Lindebner, Friedrich; Koch, Markus; Ernst, Wolfgang E.

    2014-06-01

    Spectroscopy of doped superfluid helium nanodroplets (He_N) gives information about the influence of this cold, chemically inert, and least interacting matrix environment on the excitation and relaxation dynamics of dopant atoms and molecules. We present the results from laser induced fluorescence (LIF), photoionization (PI), and mass spectroscopy of Cr and Cu doped He_N. From these results, we can draw a comprehensive picture of the complex behavior of such transition metal atoms in He_N upon photo-excitation. The strong Cr and Cu ground state transitions show an excitation blueshift and broadening with respect to the bare atom transitions which can be taken as indication for the solvation inside the droplet. From the originally excited states the atoms relax to energetically lower states and are ejected from the He_N. The relaxation processes include bare atom spin-forbidden transitions, which clearly bears the signature of the He_N influence. Two-color resonant two-photon ionization (2CR2PI) also shows the formation of bare atoms and small Cr-He_n and Cu-He_n clusters in their ground and metastable states ^c. Currently, Cr dimer excitation studies are in progress and a brief outlook on the available results will be given. C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, 2011. A. Kautsch, M. Koch, and W. E. Ernst, J. Phys. Chem. A, 117 (2013) 9621-9625, DOI: 10.1021/jp312336m F. Lindebner, A. Kautsch, M. Koch, and W. E. Ernst, Int. J. Mass Spectrom. (2014) in press, DOI: 10.1016/j.ijms.2013.12.022 M. Koch, A. Kautsch, F. Lackner, and W. E. Ernst, submitted to J. Phys. Chem. A

  8. Electronic excitation of ground state atoms by collision with heavy gas particles

    Science.gov (United States)

    Hansen, C. Frederick

    1993-01-01

    Most of the important chemical reactions which occur in the very high temperature air produced around space vehicles as they enter the atmosphere were investigated both experimentally and theoretically, to some extent at least. One remaining reaction about which little is known, and which could be quite important at the extremely high temperatures that will be produced by the class of space vehicles now contemplated - such as the AOTV - is the excitation of bound electron states due to collisions between heavy gas particles. Rates of electronic excitation due to free electron collisions are known to be very rapid, but because these collisions quickly equilibrate the free and bound electron energy, the approach to full equilibrium with the heavy particle kinetic energy will depend primarily on the much slower process of bound electron excitation in heavy particle collisions and the subsequent rapid transfer to free electron energy. This may be the dominant mechanism leading to full equilibrium in the gas once the dissociation process has depleted the molecular states so the transfer between molecular vibrational energy and free electron energy is no longer available as a channel for equilibration of free electron and heavy particle kinetic energies. Two mechanisms seem probable in electronic excitation by heavy particle impact. One of these is the collision excitation and deexcitation of higher electronic states which are Rydberg like. A report, entitled 'Semi-Classical Theory of Electronic Excitation Rates', was submitted previously. This presented analytic expressions for the transition probabilities, assuming that the interaction potential is an exponential repulsion with a perturbation ripple due to the dipole-induced dipole effect in the case of neutral-neutral collisions, and to the ion-dipole interaction in the case of ion-neutral collisions. However the above may be, there is little doubt that excitation of ground state species by collision occurs at the

  9. Three-dimensional imaging of atomic four-body processes

    CERN Document Server

    Schulz, M; Fischer, D; Kollmus, H; Madison, D H; Jones, S; Ullrich, J

    2003-01-01

    To understand the physical processes that occur in nature we need to obtain a solid concept about the 'fundamental' forces acting between pairs of elementary particles. it is also necessary to describe the temporal and spatial evolution of many mutually interacting particles under the influence of these forces. This latter step, known as the few-body problem, remains an important unsolved problem in physics. Experiments involving atomic collisions represent a useful testing ground for studying the few-body problem. For the single ionization of a helium atom by charged particle impact, kinematically complete experiments have been performed since 1969. The theoretical analysis of such experiments was thought to yield a complete picture of the basic features of the collision process, at least for large collision energies. These conclusions are, however, almost exclusively based on studies of restricted electron-emission geometries. We report three- dimensional images of the complete electron emission pattern for...

  10. Binding of noble metal clusters with rare gas atoms: theoretical investigation.

    Science.gov (United States)

    Jamshidi, Zahra; Far, Maryam Fakhraei; Maghari, Ali

    2012-12-27

    Binding of noble metal clusters (M(n), M = Cu, Ag, and Au; n = 2-4) with rare gas atoms (Rg = Kr, Xe, and Rn) has been investigated at the density functional (CAM-B3LYP) and ab initio (MP2) levels of theory. The calculation shows significant affinity of neutral metal clusters for interaction with rare gas atoms. The binding energies indicate that gold clusters have the highest and silver clusters have the lowest affinity for interaction with rare gas atoms, and for the same metal clusters, there is a continuous increase in E(b) from Kr to Rn. The M-Rg bonding mechanism have been interpreted by means of the quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO), and energy decomposition analysis (EDA). According to these theories, the M-Rg bonds are found to be partially electrostatic and partially covalent. EDA results identify that these bonds have less than 40% covalent character and more than 60% electrostatic, and also NBO calculations predict the amount of charge transfer from the lone pair of rare gas to σ* and n*orbitals of metal clusters.

  11. Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods

    Science.gov (United States)

    Halpern, Arthur M.

    2011-01-01

    A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…

  12. Gas Atomization Equipment Statement of Work and Specification for Engineering design, Fabrication, Testing, and Installation

    Energy Technology Data Exchange (ETDEWEB)

    Boutaleb, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pluschkell, T. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-30

    The Gas Atomization Equipment will be used to fabricate metallic powder suitable for Powder Bed Fusion additive Manufacturing material to support Lawrence Livermore National Laboratory (LLNL) research and development. The project will modernize our capabilities to develop spherical reactive, refractory, and radioactive powders in the 10-75 μm diameter size range at LLNL.

  13. The Use of an Air-Natural Gas Flame in Atomic Absorption.

    Science.gov (United States)

    Melucci, Robert C.

    1983-01-01

    Points out that excellent results are obtained using an air-natural gas flame in atomic absorption experiments rather than using an air-acetylene flame. Good results are obtained for alkali metals, copper, cadmium, and zinc but not for the alkaline earths since they form refractory oxides. (Author/JN)

  14. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Rieken, Joel [Iowa State Univ., Ames, IA (United States)

    2011-12-13

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from

  15. Retrieval of phase memory in two independent atomic ensembles by Raman process

    Science.gov (United States)

    Bian, Cheng-Ling; Chen, Li-Qing; Zhang, Guo-Wan; Ou, Z. Y.; Zhang, Weiping

    2012-02-01

    In spontaneous Raman process in atomic cell at high gain, both the Stokes field and the accompanying collective atomic excitation (atomic spin wave) are coherent. We find that, due to the spontaneous nature of the process, the phases of the Stokes field and the atomic spin wave change randomly from one realization to another but are anti-correlated. The phases of the atomic ensembles are read out via another Raman process at a later time, thus realizing phase memory in atoms. The observation of phase correlation between the Stokes field and the collective atomic excitations is an important step towards macroscopic EPR-type entanglement of continuous variables between light and atoms.

  16. Gasoline from natural gas by sulfur processing

    Energy Technology Data Exchange (ETDEWEB)

    Erekson, E.J.; Miao, F.Q. [Institute of Gas Technology, Des Plaines, IL (United States)

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogen production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.

  17. Long-range dispersion interactions between Li and rare-gas atoms

    Science.gov (United States)

    Zhang, Deng-Hong; Xu, Ya-Bin; Jiang, Jun; Jiang, Li; Xie, Lu-You; Dong, Chen-Zhong

    2017-06-01

    The energy levels, oscillator strength and dipole scalar polarizabilities of Li atoms are calculated by using the relativistic semiempirical-core-potential method (RCICP). The dispersion coefficients C6 between ground 2s1/2 2p1/2,2p3/2 states of Li atom and the ground state of rare gas atoms (Ne, Ar, Kr, Xe) are calculated in JJ coupled states, in which the spin-orbital interactions are included. Present results are in good agreement with other available results. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  18. Quantum chaos in ultracold collisions of gas-phase erbium atoms.

    Science.gov (United States)

    Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2014-03-27

    Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

  19. Experimental investigation on distribution of mass flux and gas/liquid mixture ratio of airblast coaxial atomizers

    Science.gov (United States)

    Wu, Jinxiang; Liu, Weidong; Zhuang, Fengchen

    1993-06-01

    Airblast coaxial atomizers are widely used in combustion chambers of liquid rocket engines, and the distributions of mass flux and gas/liquid mixture ratio in the downstream of the atomizers are one of the important parameters which influence the performance of combustion. A two-phase impact probe designed by the authors was employed to measure these parameters in a type of airblast coaxial atomizer. Graphs from experimental results show the details of the distribution in the downstream of the atomizers and the influences of the configuration parameters on distribution. The results provides important references for understanding the structure of gas/liquid flow fields and for designing and improving such atomizers.

  20. Fundamental Processes of Atomization in Fluid-Fluid Flows

    Science.gov (United States)

    McCready, M. J.; Chang, H.-C.; Leighton, D. T.

    2001-01-01

    This report outlines the major results of the grant "Fundamental Processes of Atomization in Fluid-Fluid Flows." These include: 1) the demonstration that atomization in liquid/liquid shear flow is driven by a viscous shear instability that triggers the formation of a long thin sheet; 2) discovery of a new mode of interfacial instability for oscillatory two-layer systems whereby a mode that originates within the less viscous liquid phase causes interfacial deformation as the oscillation proceeds; 3) the demonstration that rivulet formation from gravity front occurs because the local front shape specified by gravity and surface tension changes from a nose to a wedge geometry, thus triggering a large increase in viscous resistance; and 4) extension of the studies on nonlinear wave evolution on falling films and in stratified flow, particularly the evolution towards large-amplitude solitary waves that tend to generate drops.

  1. Quantum Information Processing with Atomic Qubits and Optical Frequency Combs

    Science.gov (United States)

    Campbell, Wesley

    2010-03-01

    Pulsed optical fields from mode-locked lasers have found widespread use as tools for precision quantum control and are well suited for implementation in quantum information processing and quantum simulation. We experimentally demonstrate two distinct regimes of the interaction between hyperfine atomic ion qubits and stimulated Raman transitions driven by picosecond pulses from a far off- resonant mode-locked laser. In the weak pulse regime, the coherent accumulation of successive pulses from an optical frequency comb performs single qubit operations and is used to entangle two trapped atomic ion qubits. In the strong pulse regime, a single pulse is used to implement a fast (kicks. To entangle multiple ions, optical frequency combs operated near the strong pulse regime may be used to implement motion-mediated gates that can be performed much faster than a collective motional period.[4pt] [1] Garc'ia-Ripoll et al., PRL 91, 157901 (2003).[0pt] [2] Duan, PRL 93, 100502 (2004).

  2. Highly Adsorptive, MOF-Functionalized Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition

    Science.gov (United States)

    2014-03-20

    areas and high adsorptive capacities. We find that a nanoscale coating of Al2O3 formed by atomic layer deposition (ALD) on the surface of nonwoven ...distribution is unlimited. Highly Adsorptive, MOF-Functionalized Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition The... Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition Report Title While metal-organic frameworks (MOFs) show great

  3. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  4. Orbital alignment effects in near-resonant Rydberg atoms-rare gas collisions

    International Nuclear Information System (INIS)

    Isaacs, W.A.; Morrison, M.A.

    1993-01-01

    Recent experimental and theoretical studies of near-resonant energy transfer collisions involving rare-gas atoms and alkali or alkaline earth atoms which have been initially excited to an aligned state via one or more linearly polarized rasters have yielded a wealth of insight into orbital alignment and related effects. We have extended this inquiry to initially aligned Rydberg states, examining state-to-state and alignment-selected cross sections using quantum collision theory augmented by approximations appropriate to the special characteristics of the Rydberg state (e.g., the quasi-free-electron model and the impulse approximation)

  5. Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model

    DEFF Research Database (Denmark)

    Özen, C.; Zinner, Nikolaj Thomas

    2014-01-01

    of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two......-component atomic fermi gas in a tight external trap can be mapped to the nuclear shell model so that readily available many-body techniques in nuclear physics, such as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an application of the SMMC method...

  6. Magnetic-Field Dependence of Raman Coupling Strength in Ultracold 40K Atomic Fermi Gas

    International Nuclear Information System (INIS)

    Huang Liang-Hui; Wang Peng-Jun; Meng Zeng-Ming; Peng Peng; Chen Liang-Chao; Li Dong-Hao; Zhang Jing

    2016-01-01

    We experimentally demonstrate the relation of Raman coupling strength with the external bias magnetic field in degenerate Fermi gas of 40 K atoms. Two Raman lasers couple two Zeeman energy levels, whose energy splitting depends on the external bias magnetic field. The Raman coupling strength is determined by measuring the Rabi oscillation frequency. The characteristics of the Rabi oscillation is to be damped after several periods due to Fermi atoms in different momentum states oscillating with different Rabi frequencies. The experimental results show that the Raman coupling strength will decrease as the external bias magnetic field increases, which is in good agreement with the theoretical prediction. (paper)

  7. Thermoelectric properties of n-type 95%Bi2Te3–5%Bi2Se3 compounds fabricated by gas-atomization and spark plasma sintering

    International Nuclear Information System (INIS)

    Kim, Hyo-Seob; Hong, Soon-Jik

    2014-01-01

    Highlights: • Gas Atomization process was used to fabricate 95%Bi 2 Te 3 –5%Bi 2 Se 3 powders. • Characterization of gas atomized powders were conducted. • SPS process was used to sinter the atomized powders at different sintering temp. • Thermoelectric properties, density and hardness of SPS-ed bulks were analyzed. -- Abstract: In this study, n-type 95%Bi 2 Te 3 –5%Bi 2 Se 3 doped with 0.04% SbI 3 thermoelectric materials was fabricated by gas-atomization and spark plasma sintering (SPS) at a temperature range of 623–723 K. The microstructure of the gas atomized powder shows spherical shape, fine particle size and homogeneously distributed grains. The density of the sintered bulk reached nearly 100% of the theoretical density, where micro Vickers Hardness was found around 54–57 Hv. The Seebeck coefficient (α) of the sintered bulk decreased while electrical resistivity and thermal conductivity (κ) increased with increasing sintering temperature to 723 K, resulting in a decrease in figure of merit. The maximum figure of merit (ZT) was 0.76, which was obtained in the sintered bulk at 623 K

  8. Enhancement of the vacuum ultraviolet emission from excimer laser-generated plasmas by ambient gas atoms

    Science.gov (United States)

    Mehlman, G.; Chrisey, D. B.; Horwitz, J. S.; Burkhalter, P. G.; Auyeung, R. C. Y.; Newman, D. A.

    1993-11-01

    We have measured the axial (z) and radial (x) distribution of the vacuum ultraviolet emission from excimer laser generated aluminum plasmas in vacuum and in 300 mTorr of argon. The ratio of the radiated line intensities (emission in a gas versus vacuum) on the z axis (i.e., x=0) increased exponentially with distance from the target surface for plasmas generated in a 300 mTorr argon ambient. The absolute line intensities increased linearly with the argon pressure and approximately linearly with the ambient gas atomic cross section when other rare gases were substituted. The line intensity radial distribution was broader for plasmas in argon than in vacuum and the magnitude of the effect increased monotonically with z. The spectral data obtained from plasmas in a gas ambient are discussed in terms of the diffusion of plasma electrons in an ionized gas.

  9. Experiments on state selection and Penning ionisation with fast metastable rare gas atoms

    International Nuclear Information System (INIS)

    Kroon, J.P.C.

    1985-01-01

    This thesis describes experiments with metastable He/Ne atoms. The experiments are performed in a crossed beam machine. Two different sources are used for the production of metastable atoms: a source for the production of metastable atoms in the thermal energy range and a hollow cathode arc for the production of metastable atoms in the superthermal energy range (1-7 eV). The progress made in the use of the hollow cathode arc is described as well as the experimental set-up. The rare gas energy-level diagram is characterized by two metastable levels. By optical pumping it is possible to select a single metastable level, both for He and Ne. For the case of He this is done by a recently built He quenchlamp which selectively quenches the metastable 2 1 S level population. In the thermal energy range the quenching is complete; in the superthermal energy range the 2 1 S level population is only partly quenched. For the optical pumping of Ne* atoms a cw dye laser is used. New experiments have been started on the measurement, in a crossed beam machine, of the fluorescence caused by inelastic collisions where metastable atoms are involved. The He* + Ne system is used as a pilot study for these experiments. The He-Ne laser is based on this collision system. (Auth.)

  10. Speciation of methylmercury and ethylmercury by gas chromatography cold vapor atomic fluresence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Boggess, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-28

    Existing models and simulants of tank disposition media at SRS have presumed the presence of high concentrations of inorganic mercury. However, recent quarterly tank analyses show that mercury is present as organomercurial species at concentrations that may present challenges to remediation and disposition and may exceed the Saltstone Waste Acceptance Criteria (WAC). To-date, methylmercury analysis for Savannah River Remediation (SRR) has been performed off-site by Eurofins Scientific (Lancaster, PA). A series of optimization and validation experiments has been performed at SRNL, which has resulted in the development of on-site organomercury speciation capabilities using purge and trap gas chromatography coupled with thermal desorption cold vapor atomic fluorescence spectroscopy (P&T GC/CVAFS). Speciation has been achieved for methylmercury, with a method reporting limit (MRL) values of 1.42 pg for methylmercury. Results obtained by SRNL from the analysis of past quarterly samples from tanks 21, 40, and 50 have demonstrated statistically indistinguishable concentration values compared with the concentration data obtained from Eurofins, while the data from SRNL has demonstrated significantly improved precision and processing time.

  11. Process for catalytic flue gas denoxing

    International Nuclear Information System (INIS)

    Woldhuis, A.; Goudriaan, F.; Groeneveld, M.; Samson, R.

    1991-01-01

    With the increasing concern for the environment, stringency of legislation and industry's awareness of its own environmental responsibility, the demand for the reduction of emission levels of nitrogen oxides is becoming increasingly urgent. This paper reports that Shell has developed a low temperature catalytic deNOx system for deep removal of nitrogen oxides, which includes a low-pressure-drop reactor. This process is able to achieve over 90% removal of nitrogen oxides and therefore can be expected to meet legislation requirements for the coming years. The development of a low-temperature catalyst makes it possible to operate at temperatures as low as 120 degrees C, compared to 300-400 degrees C for the conventional honeycomb and plate-type catalysts. This allows an add-on construction, which is most often a more economical solution than the retrofits in the hot section required with conventional deNOx catalysts. The Lateral Flow Reactor (LFR), which is used for dust-free flue gas applications, and the Parallel Passage Reactor (PPR) for dust-containing flue gas applications, have been developed to work with pressure drops below 10 mbar

  12. Momentum distributions of selected rare-gas atoms probed by intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses. The cal......We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses....... The calculations are performed by solving the time-dependent Schrödinger equation within the single-active-electron approximation, and focal-volume effects are taken into account by appropriately averaging the results. The resulting momentum distributions are in quantitative agreement with the experimental...

  13. Development of gas-phase sample-introduction techniques for analytical atomic spectrometry.

    Science.gov (United States)

    Nakahara, Taketoshi

    2005-05-01

    For the last 30 years, several types of gas-phase sample-introduction methods in analytical atomic spectrometry, i.e., atomic absorption spectrometry (AAS), atomic emission spectrometry (AES) and atomic fluorescence spectrometry (AFS), have been investigated and developed in the author's laboratory. Their fundamental results are summarized in this review article. The gas-phase sample-introduction techniques developed in the author's laboratory can be roughly divided into four groups: i) hydride generation, ii) cold-vapor generation of mercury, iii) analyte volatilization reactions and iv) miscellaneous. The analytical figures of merit of the gas-phase sample-introduction methods have been described in detail. Hydride generation has been coupled with the AAS of As, Bi, Ge, Pb, Sb, Se, Sn and Te, with the inductively coupled plasma (ICP) AES of As, Bi, Sn, Se and Sb, with the high-power nitrogen microwave-induced plasma (N2-MIP) AES of As, Bi, Pb, Sb, Se, Sn and Te by their single- and multi-element determinations, with the AFS of As, Bi, Pb, Sb, Se, Sn and Te, and with the ICP mass spectrometry (MS) of As and Se. The cold-vapor generation method for Hg has been combined with atmospheric-pressure helium microwave-induced plasma (He- or Ar-MIP)-AES and AFS. Furthermore, analyte volatilization reactions have been employed in the ICP-AES of iodine, in the He-MIP-AES of iodine bromine, chlorine, sulfur and carbon, and in the ICP-MS of sulfur. As a result, when compared with conventional solution nebulization, a great improvement in the sensitivity has been attained in each instance. In addition, the developed techniques coupled with analytical atomic spectrometry have been successfully applied to the determination of trace elements in a variety of practical samples.

  14. Spark Plasma Sintering of a Gas Atomized Al7075 Alloy: Microstructure and Properties

    Czech Academy of Sciences Publication Activity Database

    Molnárová, O.; Málek, P.; Lukáč, František; Chráska, Tomáš

    2016-01-01

    Roč. 9, č. 12 (2016), č. článku 1004. ISSN 1996-1944 R&D Projects: GA ČR(CZ) GA15-15609S Institutional support: RVO:61389021 Keywords : gas atomized Al7075 alloy * spark plasma sintering * microstructure * microhardness * high temperature stability Subject RIV: JJ - Other Materials Impact factor: 2.654, year: 2016 http://www.mdpi.com/1996-1944/9/12/1004

  15. Molecular dynamics simulation study of the influence of the lattice atom potential function upon atom ejection processes

    International Nuclear Information System (INIS)

    Harrison, D.E. Jr.; Webb, R.P.

    1982-01-01

    A molecular dynamics simulation has been used to investigate the sensitivity of atom ejection processes from a single-crystal target to changes in the atom-atom potential function. Four functions, three constructed from the Gibson potentials with Anderman's attractive well, and a fouth specifically developed for this investigation, were investigated in the Cu/Ar/sup +/ system over a range of ion energies from 1.0 to 10.0 kev with the KSE-B ion-atom potential. Well depths and widths also were varied. The calculations were done at normal incidence on the fcc (111) crystal orientation. Computed values were compared with experimental data where they exist. Sputtering yields, multimer yield ratios, layer yield ratios, and the ejected atom energy distribution vary systematically with the parameters of the atom-atom potential function. Calculations also were done with the modified Moliere function. Yields and other properties fall exactly into the positions predicted from the Born-Mayer function analysis. Simultaneous analysis of the ejected atom energy distribution and the ion energy dependence of the sputtering yield curve provides information about the parameters of both the wall and well portions of the atom-atom potential function

  16. Controlling residual hydrogen gas in mass spectra during pulsed laser atom probe tomography.

    Science.gov (United States)

    Kolli, R Prakash

    2017-01-01

    Residual hydrogen (H 2 ) gas in the analysis chamber of an atom probe instrument limits the ability to measure H concentration in metals and alloys. Measuring H concentration would permit quantification of important physical phenomena, such as hydrogen embrittlement, corrosion, hydrogen trapping, and grain boundary segregation. Increased insight into the behavior of residual H 2 gas on the specimen tip surface in atom probe instruments could help reduce these limitations. The influence of user-selected experimental parameters on the field adsorption and desorption of residual H 2 gas on nominally pure copper (Cu) was studied during ultraviolet pulsed laser atom probe tomography. The results indicate that the total residual hydrogen concentration, H TOT , in the mass spectra exhibits a generally decreasing trend with increasing laser pulse energy and increasing laser pulse frequency. Second-order interaction effects are also important. The pulse energy has the greatest influence on the quantity H TOT , which is consistently less than 0.1 at.% at a value of 80 pJ.

  17. Kinetics, mechanism, and thermochemistry of the gas-phase reaction of atomic chlorine with pyridine.

    Science.gov (United States)

    Zhao, Z; Huskey, D T; Olsen, K J; Nicovich, J M; McKee, M L; Wine, P H

    2007-08-21

    A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of the reaction of atomic chlorine with pyridine (C(5)H(5)N) as a function of temperature (215-435 K) and pressure (25-250 Torr) in nitrogen bath gas. At T> or = 299 K, measured rate coefficients are pressure independent and a significant H/D kinetic isotope effect is observed, suggesting that hydrogen abstraction is the dominant reaction pathway. The following Arrhenius expression adequately describes all kinetic data at 299-435 K for C(5)H(5)N: k(1a) = (2.08 +/- 0.47) x 10(-11) exp[-(1410 +/- 80)/T] cm(3) molecule(-1) s(-1) (uncertainties are 2sigma, precision only). At 216 K law analyses of the equilibrium data lead to the following thermochemical parameters for the addition reaction: Delta(r)H = -47.2 +/- 2.8 kJ mol(-1), Delta(r)H = -46.7 +/- 3.2 kJ mol(-1), and Delta(r)S = -98.7 +/- 6.5 J mol(-1) K(-1). The enthalpy changes derived from our data are in good agreement with ab initio calculations reported in the literature (which suggest that the adduct structure is planar and involves formation of an N-Cl sigma-bond). In conjunction with the well-known heats of formation of atomic chlorine and pyridine, the above Delta(r)H values lead to the following heats of formation for C(5)H(5)N-Cl at 298 K and 0 K: Delta(f)H = 216.0 +/- 4.1 kJ mol(-1), Delta(f)H = 233.4 +/- 4.6 kJ mol(-1). Addition of Cl to pyridine could be an important atmospheric loss process for pyridine if the C(5)H(5)N-Cl product is chemically degraded by processes that do not regenerate pyridine with high yield.

  18. Implementing process safety management in gas processing operations

    International Nuclear Information System (INIS)

    Rodman, D.L.

    1992-01-01

    The Occupational Safety and Health Administration (OSHA) standard entitled Process Safety Management of Highly Hazardous Chemicals; Explosives and Blasting Agents was finalized February 24, 1992. The purpose of the standard is to prevent or minimize consequences of catastrophic releases of toxic, flammable, or explosive chemicals. OSHA believes that its rule will accomplish this goal by requiring a comprehensive management program that integrates technologies, procedures, and management practices. Gas Processors Association (GPA) member companies are significantly impacted by this major standard, the requirements of which are extensive and complex. The purpose of this paper is to review the requirements of the standard and to discuss the elements to consider in developing and implementing a viable long term Process Safety Management Program

  19. Comparative investigation of pure and mixed rare gas atoms on coronene molecules.

    Science.gov (United States)

    Rodríguez-Cantano, Rocío; Bartolomei, Massimiliano; Hernández, Marta I; Campos-Martínez, José; González-Lezana, Tomás; Villarreal, Pablo; Pérez de Tudela, Ricardo; Pirani, Fernando; Hernández-Rojas, Javier; Bretón, José

    2017-01-21

    Clusters formed by the combination of rare gas (RG) atoms of He, Ne, Ar, and Kr on coronene have been investigated by means of a basin-hopping algorithm and path integral Monte Carlo calculations at T = 2 K. Energies and geometries have been obtained and the role played by the specific RG-RG and RG-coronene interactions on the final results is analysed in detail. Signatures of diffuse behavior of the He atoms on the surface of the coronene are in contrast with the localization of the heavier species, Ar and Kr. The observed coexistence of various geometries for Ne suggests the motion of the RG atoms on the multi-well potential energy surface landscape offered by the coronene. Therefore, the investigation of different clusters enables a comparative analysis of localized versus non-localized features. Mixed Ar-He-coronene clusters have also been considered and the competition of the RG atoms to occupy the docking sites on the molecule is discussed. All the obtained information is crucial to assess the behavior of coronene, a prototypical polycyclic aromatic hydrocarbon clustering with RG atoms at a temperature close to that of interstellar medium, which arises from the critical balance of the interactions involved.

  20. Experimental and computational investigation on the gas phase reaction of p-cymene with Cl atoms.

    Science.gov (United States)

    Dash, Manas Ranjan; Srinivasulu, G; Rajakumar, B

    2015-01-29

    The rate coefficient for the gas-phase reaction of Cl atoms with p-cymene was determined as a function of temperature (288-350 K) and pressure (700-800 Torr) using the relative rate technique, with 1,3-butadiene and ethylene as reference compounds. Cl atoms were generated by UV photolysis of oxalyl chloride ((COCl)2) at 254 nm, and nitrogen was used as the diluent gas. The rate coefficient for the reaction of Cl atoms with p-cymene at 298 K was measured to be (2.58 ± 1.55) × 10(-10) cm(3) molecule(-1) s(-1). The kinetic data obtained over the temperature range 288-350 K were used to derive an Arrhenius expression: k(T) = (9.36 ± 2.90) × 10(-10) exp[-(488 ± 98)/T] cm(3) molecule(-1) s(-1). Theoretical kinetic calculations were also performed for the title reaction using canonical variational transition state theory (CVT) with small curvature tunneling (SCT) between 250 and 400 K. The calculated rate coefficients obtained over the temperature range 250-400 K were used to derive an Arrhenius expression: k(T) = 5.41 × 10(-13) exp[1837/T] cm(3) molecule(-1) s(-1). Theoretical study indicated that addition channels contribute maximum to the total reaction and H-abstraction channels can be neglected. The atmospheric lifetime (τ) of p-cymene due to its reactions with various tropospheric oxidants was estimated, and it was concluded that the reactions of p-cymene with Cl atoms may compete with OH radicals in the marine boundary layer and in coastal urban areas where the concentration of Cl atoms is high.

  1. Synthesis and densification of Cu added Fe-based BMG composite powders by gas atomization and electrical explosion of wire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.C., E-mail: jckimpml@ulsan.ac.k [University of Ulsan, School of Materials Science and Engineering, Ulsan 680-749 (Korea, Republic of); Ryu, H.J.; Kim, J.S. [University of Ulsan, School of Materials Science and Engineering, Ulsan 680-749 (Korea, Republic of); Kim, B.K.; Kim, Y.J. [Department of Powder Materials, Korea Institute of Materials Science, Changwon 641-831 (Korea, Republic of); Kim, H.J. [Advanced Materials Division, Korea Institute of Industrial Technology, Incheon 406-130 (Korea, Republic of)

    2009-08-26

    In this study, the Fe-based (Fe-C-Si-B-P-Cr-Mo-Al) BMG powders were produced by the high pressure gas atomization process, and they were combined with the ductile Cu powders produced by the electrical explosion of wire (EEW). The Fe-based amorphous powders and Cu added BMG composite powders were compacted by the spark plasma sintering (SPS) processes into cylindrical shape. In the SPS press, the as-prepared powders were sintered at 793 K and 843 K. The relative density increased to 98% when the pressure increased up to 500 MPa by optimum control of the SPS process parameters. The micro-Vickers hardness was over 1100 Hv.

  2. Scattering of NH3 and ND3 with rare gas atoms at low collision energy.

    Science.gov (United States)

    Loreau, J; van der Avoird, A

    2015-11-14

    We present a theoretical study of elastic and rotationally inelastic collisions of NH3 and ND3 with rare gas atoms (He, Ne, Ar, Kr, Xe) at low energy. Quantum close-coupling calculations have been performed for energies between 0.001 and 300 cm(-1). We focus on collisions in which NH3 is initially in the upper state of the inversion doublet with j = 1, k = 1, which is the most relevant in an experimental context as it can be trapped electrostatically and Stark-decelerated. We discuss the presence of resonances in the elastic and inelastic cross sections, as well as the trends in the inelastic cross sections along the rare gas series and the differences between NH3 and ND3 as a colliding partner. We also demonstrate the importance of explicitly taking into account the umbrella (inversion) motion of NH3 in order to obtain accurate scattering cross sections at low collision energy. Finally, we investigate the possibility of sympathetic cooling of ammonia using cold or ultracold rare gas atoms. We show that some systems exhibit a large ratio of elastic to inelastic cross sections in the cold regime, which is promising for sympathetic cooling experiments. The close-coupling calculations are based on previously reported ab initio potential energy surfaces for NH3-He and NH3-Ar, as well as on new, four-dimensional, potential energy surfaces for the interaction of ammonia with Ne, Kr, and Xe, which were computed using the coupled-cluster method and large basis sets. We compare the properties of the potential energy surfaces corresponding to the interaction of ammonia with the various rare gas atoms.

  3. Magnetic and mechanical properties of consolidated gas atomized and hydrogenation, disproportionation, desorption, and recombination Nd2Fe14B powders (abstract)

    International Nuclear Information System (INIS)

    Horton, J.A.; Heatherly, L.; Sellers, C.H.; Branagan, D.J.; Ragg, O.; Harris, I.R.

    1997-01-01

    Magnetic and mechanical properties of consolidated (hot pressed) gas atomized powders of Nd 2 Fe 14 B with TiC additions will be reported and the results correlated with microstructure. The fracture toughnesses obtained will be compared with similar tests on hot pressed hydrogenation, disproportionation, desorption, and recombination (HDDR) material, made by the HDDR process and with previously reported results on a variety of commercially available materials. TiC additions, by controlling grain growth, aid the gas atomization process and should result in better processability of consolidated magnets. Improvements in the fracture toughness and processability may lead to the use of the Nd 2 Fe 14 B magnets in special situations where it is necessary for the magnet to be highly stressed. For example, in electric vehicle drive motors, high rpm and small clearances preclude the use of supporting elements and result in high tensile forces on the magnet. copyright 1997 American Institute of Physics

  4. Speciation analysis of arsenic by selective hydride generation- cryotrapping-atomic fluorescence spectrometry with flame-in-gas- shield atomizer: Achieving extremely low detection limits with inexpensive instrumentation

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Matoušek, Tomáš; Currier, J. M.; Stýblo, M.; Dědina, Jiří

    2014-01-01

    Roč. 86, č. 20 (2014), s. 10422-10428 ISSN 0003-2700 R&D Projects: GA ČR GA14-23532S; GA MŠk LH12040 Institutional support: RVO:68081715 Keywords : speciation analysis of arsenic * selective hydride generation * flame-in-gas-shield atomizer * cryotrapping-atomic fluorescence spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014

  5. Carbon dioxide removal in gas treating processes

    International Nuclear Information System (INIS)

    Lidal, H.

    1992-06-01

    The main contribution of this work is the development of a simple and reliable modelling technique on carbon dioxide removal describing the vapor-liquid equilibria of CO 2 in aqueous alkanolamine solutions. By making use of measured pH data, the author has circumvented the problem of estimating interaction parameters, activity coefficients, and equilibrium constants in the prediction of vapor-liquid equilibria. The applicability of the model is best demonstrated on the tertiary amine system using MDEA. For this system, the VLE is accurately represented for temperatures in the range 25 to 140 o C, for CO 2 loadings from 0.001 to 1 mol/mol, and for amine molarities usually encountered in acid gas treating processes. The absorption of CO 2 into solutions containing the sterically hindered amine AMP, is also well described by the model. The equilibrium of CO 2 in mixed solvents containing a glycol (TEG,DEG) and an alkonolamine (MEA,DEA) has been measured at temperatures encountered in the absorption units. An equilibrium model has been developed for the CO 2 /TEG/MEA system for estimation of CO 2 partial pressures, covering loadings and temperatures for both absorption and desorption conditions. An important spin-off of the work described is that two new experimental set-ups have been designed and built. 154 refs., 38 figs., 22 tabs

  6. Transport of Gas-Phase Anthropogenic VOCs to the Remote Troposphere During the NASA ATom Mission

    Science.gov (United States)

    Hornbrook, R. S.; Apel, E. C.; Hills, A. J.; Asher, E. C. C.; Emmons, L. K.; Blake, D. R.; Blake, N. J.; Simpson, I. J.; Barletta, B.; Meinardi, S.; Montzka, S. A.; Moore, F. L.; Miller, B. R.; Sweeney, C.; McKain, K.; Wofsy, S. C.; Daube, B. C.; Commane, R.; Bui, T. V.; Hanisco, T. F.; Wolfe, G. M.; St Clair, J. M.; Ryerson, T. B.; Thompson, C. R.; Peischl, J.; Ray, E. A.

    2017-12-01

    The NASA Atmospheric Tomography (ATom) project aims to study the impact of human-produced air pollution on greenhouse gases and on chemically reactive gases in the atmosphere. During the first two deployments, ATom-1 and ATom-2, which took place August 2016 and February 2017, respectively, a suite of trace gas measurement instruments were deployed on the NASA DC-8 which profiled the atmosphere between 0.2 and 13 km from near-pole to near-pole around the globe, sampling in the most remote regions of the atmosphere over the Arctic, Pacific, Southern, and Atlantic Oceans. Volatile organic compounds (VOCs) with a range of lifetimes from days to decades quantified using the Trace Organic Gas Analyzer (TOGA), Whole Air Sampler (WAS) and Programmable Flask Packages (PFPs) demonstrate a significant impact on the remote atmosphere from urban and industrial sources. Comparisons between the transport and fate of pollutants during Northern Hemisphere summer and winter will be presented. Observations of the distributions of anthropogenic VOCs will be compared with simulations using the Community Atmosphere Model with chemistry (CAM-chem).

  7. Giant Gas Cloud Made of Atoms Formed in First Stars Revealed in Universe's Most Distant Quasar

    Science.gov (United States)

    2003-07-01

    Astronomers studying the most distant quasar yet found in the Universe have discovered a massive reservoir of gas containing atoms made in the cores of some of the first stars ever formed. The carbon-monoxide gas was revealed by the National Science Foundation's Very Large Array (VLA) and the Plateau de Bure radio interferometer in Europe. The gas, along with the young galaxy containing it, is seen as it was when the Universe was only one-sixteenth its current age, just emerging from the primeval "Dark Ages" before light could travel freely through the cosmos. VLA Image of Quasar VLA Image of J1148+5251 CREDIT: NRAO/AUI/NSF (Click on Image for Larger Version) "Our discovery of this much carbon monoxide gas in such an extremely distant and young galaxy is surprising. It means that, even at a very early time in the history of the Universe, galaxies already had huge amounts of molecular gas that would eventually form new generations of stars," said Chris Carilli, of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The distant galaxy, dubbed J1148+5251, contains a bright quasar powered by a black hole at least a billion times more massive than the Sun. The galaxy is seen as it was only 870 million years after the Big Bang. The Universe now is 13.7 billion years old. J1148+5251 would have been among the first luminous objects in the Universe. The original atoms formed in the Universe within the first three minutes of the Big Bang were only hydrogen and helium. Carbon and oxygen -- the atoms making up carbon monoxide -- had to be made in the thermonuclear furnaces at the cores of the earliest stars. "The carbon and oxygen atoms in the gas we detected were made by some of the first stars ever formed, only about 650 million years after the Big Bang. In the next 200 million years or so, those stars -- probably very different stars from those we see today -- exploded as supernovae, spreading the carbon and oxygen out into space. Those atoms then cooled

  8. The processing and management of wastes from atomic reactors

    International Nuclear Information System (INIS)

    Cerre, P.; Mestre, E.; Bourdrez, J.

    1964-01-01

    The policy concerning radioactive wastes studied by all Atomic Centres has led to various procedures which, while apparently numerous, come under a few standard headings. Whether the wastes are in the liquid or solid state their management depends on their physical and chemical nature. The procedure adopted is governed by three general principles: - determination of the most economical means possible of storage and processing by volume reduction; - conversion to a solid compact form; - complete acceptance of the accepted standards at all places and all times. In this communication all the standard solutions adopted and used by the various Centres of the Commissariat a l'Energie Atomique will be examined bearing in mind the preceding remarks. Particular mention will be made of the following: - For liquids, physical, chemical and physico-chemical processing - For solids, decontamination, volume reduction and long-term conditioning techniques. The different procedures for collecting and storing solid wastes before and after processing are also discussed. The paper ends with a brief review of the studies, both technical and economic, being pursued on this subject. (authors) [fr

  9. Significance of fundamental processes of radiation chemistry in hot atom chemical processes: electron thermalization

    International Nuclear Information System (INIS)

    Nishikawa, M.

    1984-01-01

    The author briefly reviews the current understanding of the course of electron thermalization. An outline is given of the physical picture without going into mathematical details. The analogy of electron thermalization with hot atom processes is taken as guiding principle in this paper. Content: secondary electrons (generation, track structure, yields); thermalization (mechanism, time, spatial distribution); behaviour of hot electrons. (Auth.)

  10. A model of the gas analysis system operation process

    Science.gov (United States)

    Yakimenko, I. V.; Kanishchev, O. A.; Lyamets, L. L.; Volkova, I. V.

    2017-12-01

    The characteristic features of modeling the gas-analysis measurement system operation process on the basis of the semi-Markov process theory are discussed. The model of the measuring gas analysis system operation process is proposed, which makes it possible to take into account the influence of the replacement interval, the level of reliability and maintainability and to evaluate the product reliability.

  11. Scalable quantum information processing with photons and atoms

    Science.gov (United States)

    Pan, Jian-Wei

    Over the past three decades, the promises of super-fast quantum computing and secure quantum cryptography have spurred a world-wide interest in quantum information, generating fascinating quantum technologies for coherent manipulation of individual quantum systems. However, the distance of fiber-based quantum communications is limited due to intrinsic fiber loss and decreasing of entanglement quality. Moreover, probabilistic single-photon source and entanglement source demand exponentially increased overheads for scalable quantum information processing. To overcome these problems, we are taking two paths in parallel: quantum repeaters and through satellite. We used the decoy-state QKD protocol to close the loophole of imperfect photon source, and used the measurement-device-independent QKD protocol to close the loophole of imperfect photon detectors--two main loopholes in quantum cryptograph. Based on these techniques, we are now building world's biggest quantum secure communication backbone, from Beijing to Shanghai, with a distance exceeding 2000 km. Meanwhile, we are developing practically useful quantum repeaters that combine entanglement swapping, entanglement purification, and quantum memory for the ultra-long distance quantum communication. The second line is satellite-based global quantum communication, taking advantage of the negligible photon loss and decoherence in the atmosphere. We realized teleportation and entanglement distribution over 100 km, and later on a rapidly moving platform. We are also making efforts toward the generation of multiphoton entanglement and its use in teleportation of multiple properties of a single quantum particle, topological error correction, quantum algorithms for solving systems of linear equations and machine learning. Finally, I will talk about our recent experiments on quantum simulations on ultracold atoms. On the one hand, by applying an optical Raman lattice technique, we realized a two-dimensional spin-obit (SO

  12. Amplitudes and state parameters from ion- and atom-atom excitation processes

    International Nuclear Information System (INIS)

    Andersen, T.; Horsdal-Pedersen, E.

    1984-01-01

    This chapter examines single collisions between two atomic species, one of which is initially in a 1 S state (there is only one initial spin channel). The collisions are characterized by a definite scattering plane and a definite orientation. Topics considered include an angular correlation between scattered particles and autoionization electrons or polarized photons emitted from states excited in atomic collisions (photon emission, electron emission, selectivity excited target atoms), experimental methods for obtaining information on the alignment and orientation parameters of atoms or ions excited in specific collisions, results of experiments and numerical calculations (quasi-oneelectron systems, He + -He collisions, other collision systems), and future aspects and possible applications of the polarizedphoton, scattered-particle coincidence techniques to atomic spectroscopy

  13. Combustible gas recombining method and processing facility for gas waste

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Atsushi; Murakami, Kazuo

    1998-09-02

    Combustible gases (hydrogen, oxygen) generated by radiation decomposition of reactor water in the vicinity of a reactor core in a reactor pressure vessel of a BWR type nuclear power plant pass, together with flow of steams, through a gas/water separator and a steam dryer disposed at the upper portion of a reactor core. A catalyst for allowing hydrogen and oxygen to react efficiently and recombine them into water is plated on the surface of the steam dryer. The catalyst comprises palladium (Pd) or platinum (Pt) or a Pd-Pt alloy. The combustible gases passing through the steam dryer are recombined and formed into steams by the catalyst. A slight amount of hydrogen and oxygen which are not recombined transfers, together with main steams, from a main steam pipe to a main condensator by way of a turbine. Then they are released, together with air from an air extraction device, from an activated carbon-type rare gas hold up tower. (I.N.)

  14. Train of high-power femtosecond pulses: Probe wave in a gas of prepared atoms

    Science.gov (United States)

    Muradyan, Gevorg; Muradyan, Atom Zh.

    2009-09-01

    We present a method for generating a regular train of ultrashort optical pulses in a prepared two-level medium. The train develops from incident monochromatic probe radiation traveling in a medium of atoms, which are in a quantum mechanical superposition of dressed internal states. In the frame of linear theory for the probe radiation, the energy of individual pulses is an exponentially growing function of atom density and of interaction cross section. Pulse repetition rate is determined by the pump field’s generalized Rabi frequency and can be around 1 THz and greater. We also show that the terms, extra to the dipole approximation, endow the gas by a new property: nonsaturating dependence of refractive index on dressing monochromatic field intensity. Contribution of these nonsaturating terms can be compatible with the main dipole approximation term contribution in the wavelength region of about ten micrometers (the range of CO2 laser) or larger.

  15. Handbook of gasifiers and gas-treatment systems. [39 gasification processes and 40 gas processing systems

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, R.D.

    1982-09-01

    In February 1976, the Energy Research and Development Administration (ERDA) published the Handbook of Gasifiers and Gas Treatment Systems. The intent of this handbook was to provide a ready reference to systems that are or may be applicable to coal conversion technology. That handbook was well received by users and was subsequently reprinted many times. The Department of Energy (successor agency to the ERDA) expands, revises and updates the Handbook in this volume. This new Handbook is not intended as a comparative evaluation, but rather as an impartial reference on recent and current technology. The Handbook now presents 39 gasification technologies and 40 gas processing systems that are or may be applicable to coal conversion technology. The information presented has been approved or supplied by the particular licensor/developer.

  16. Evolution of Molecular and Atomic Gas Phases in the Milky Way

    Science.gov (United States)

    Koda, Jin; Scoville, Nick; Heyer, Mark

    2016-06-01

    We analyze radial and azimuthal variations of the phase balance between the molecular and atomic interstellar medium (ISM) in the Milky Way (MW) using archival CO(J = 1-0) and HI 21 cm data. In particular, the azimuthal variations—between the spiral arm and interarm regions—are analyzed without any explicit definition of the spiral arm locations. We show that the molecular gas mass fraction, I.e., {f}{{mol}}={{{Σ }}}{{{H}}2}/({{{Σ }}}{HI}+{{{Σ }}}{{{H}}2}), varies predominantly in the radial direction: starting from ˜ 100% at the center, remaining ≳ 50% to R˜ 6 {{kpc}} and decreasing to ˜10%-20% at R=8.5 {{kpc}} when averaged over the whole disk thickness (from ˜100% to ≳60%, then to ˜50% in the midplane). Azimuthal, arm-interarm variations are secondary: only ˜ 20% in the globally molecule-dominated inner MW, but becoming larger, ˜40%-50%, in the atom-dominated outskirts. This suggests that in the inner MW the gas remains highly molecular ({f}{{mol}}\\gt 50%) as it moves from an interarm region into a spiral arm and back into the next interarm region. Stellar feedback does not dissociate molecules much, and the coagulation and fragmentation of molecular clouds dominate the evolution of the ISM at these radii. The trend differs in the outskirts where the gas phase is globally atomic ({f}{{mol}}\\lt 50%). The HI and H2 phases cycle through spiral arm passage there. These different regimes of ISM evolution are also seen in external galaxies (e.g., the LMC, M33, and M51). We explain the radial gradient of {f}{{mol}} using a simple flow continuity model. The effects of spiral arms on this analysis are illustrated in the Appendix.

  17. Experimental investigation about attachment processes of atoms and ions in the size range < 0.1 μm

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Mercer, T.T.

    1977-01-01

    Results of an investigation of the attachment process of atoms and ion in the size range between 0.009 to 4 μm on a particle or droplet surface are presented. It is again shown that the experimental values are adequately predicted by the diffusion attachment theory under gas kinetic consideration, if the sticking probability of Rn and Tn decay products is S = 1. 12 references

  18. Vortices in atomic Bose-Einstein condensates in the large-gas-parameter region

    International Nuclear Information System (INIS)

    Nilsen, J.K.; Mur-Petit, J.; Guilleumas, M.; Polls, A.; Hjorth-Jensen, M.

    2005-01-01

    In this work we compare the results of the Gross-Pitaevskii and modified Gross-Pitaevskii equations with ab initio variational Monte Carlo calculations for Bose-Einstein condensates of atoms in axially symmetric traps. We examine both the ground state and excited states having a vortex line along the z axis at high values of the gas parameter and demonstrate an excellent agreement between the modified Gross-Pitaevskii and ab initio Monte Carlo methods, both for the ground and vortex states

  19. Gas-cell atomic clocks for space: new results and alternative schemes

    Science.gov (United States)

    Affolderbach, C.; Breschi, E.; Schori, C.; Mileti, G.

    2017-11-01

    We present our development activities on compact Rubidium gas-cell atomic frequency standards, for use in space-borne and ground-based applications. We experimentally demonstrate a high-performance laser optically-pumped Rb clock for space applications such as telecommunications, science missions, and satellite navigation systems (e.g. GALILEO). Using a stabilised laser source and optimized gas cells, we reach clock stabilities as low as 1.5·10-12 τ-1/2 up to 103 s and 4·10-14 at 104 s. The results demonstrate the feasibility of a laser-pumped Rb clock reaching power consumption and a total volume around 1 cm3 , at the expense of relaxed frequency stability. Here miniaturized "chip-scale" vapour cells and use of coherent laser interrogation techniques are at the heart of the investigations.

  20. Carbon Co-Deposition During Gas Reduction of Water-Atomized Fe-Cr-Mo Powder

    Directory of Open Access Journals (Sweden)

    Ali B.

    2017-06-01

    Full Text Available The water atomization of iron powder with a composition of Fe-3Cr-0.5Mo (wt.% at 1600°C and 150 bar creates an oxide layer, which in this study was reduced using a mixture of methane (CH4 and argon (Ar gas. The lowest oxygen content was achieved with a 100 cc/min flow rate of CH4, but this also resulted in a co-deposition of carbon due to the cracking of CH4. This carbon can be used directly to create high-quality, sinter hardenable steel, thereby eliminating the need for an additional mixing step prior to sintering. An exponential relationship was found to exist between the CH4 gas flow rate and carbon content of the powder, meaning that its composition can be easily controlled to suit a variety of different applications.

  1. Process for the production of hydrogen/deuterium-containing gas

    International Nuclear Information System (INIS)

    Nitschke, E.; Desai, A.; Ilgner, H.

    1978-01-01

    A process for the production of hydrogen/deuterium-containing gas is described in which the enriched condensate obtained from the production of a hydrogen/deuterium-containing gas mixture is collected and subjected to a direct exchange of isotopes with the feedsteam admitted to the process. Such condensate can be brought into direct exchange of isotopes with the gas water vapor mixture within the process, viz. ahead of the CO conversion section. The exchange of isotopes may be performed according to the counter-current principle. If it is intended to maintain in the hydrogen/deuterium-containing gas a certain definite content of water vapor whose phase condition is superior to the condition achieved when using normal cooling water, this gas, at least 0.6 kg/m 3 of gas, is subjected to an exchange of isotopes with the water fed additionally into the process

  2. Collisions of halogen (2P) and rare gas (1S) atoms

    International Nuclear Information System (INIS)

    Becker, C.H.

    1978-12-01

    Differential cross sections I (THETA) at several collision energies measured in crossed molecular beam experiments are reported for several combinations of halogen atoms ( 2 P) scattered off rare gas-rare gas atoms ( 1 S 0 ), namely, F + Ne, F + Ar, F + Kr, F + Xe, C1 + Xe. The scattering is described by an elastic model appropriate to Hund's case c coupling. With the use of this model, the X 1/2, I 3/2, and II 1/2 interaction potential energy curves are derived by fitting calculated differential cross sections, based on analytic representations of the potentials, to the data. The F - Xe X 1/2 potential shows a significant bonding qualitatively different than for the other F-rare gases. The I 3/2 and II 1/2 potentials closely resemble the van der Waals interactions of the one electron richer ground state rare gas-rare gas systems. Coupled-channel scattering calculations are carried out for F + Ar, F + Xe, and C1 + Xe using the realistic potential curves derived earlier. The results justify the use of the elastic model, and give additional information on intramultiplet and intermultiplet transitions. The transitions are found to be governed by the crossing of the two Ω = 1/2 potentials in the complex plane. The measured I (theta) and I (THETA) derived from the coupled-channel computations show small oscillations or perturbations (Stueckelberg oscillations) though quantitative agreement is not obtained.The nature of the anomalous F - Xe X 1/2 potential is discussed as is the approximation of a constant spin orbit coupling over the experimentally accessible range of internuclear distances for these open shell molecules. 55 references

  3. xGASS: total cold gas scaling relations and molecular-to-atomic gas ratios of galaxies in the local Universe

    Science.gov (United States)

    Catinella, Barbara; Saintonge, Amélie; Janowiecki, Steven; Cortese, Luca; Davé, Romeel; Lemonias, Jenna J.; Cooper, Andrew P.; Schiminovich, David; Hummels, Cameron B.; Fabello, Silvia; Geréb, Katinka; Kilborn, Virginia; Wang, Jing

    2018-05-01

    We present the extended GALEX Arecibo SDSS Survey (xGASS), a gas fraction-limited census of the atomic hydrogen (H I) gas content of 1179 galaxies selected only by stellar mass (M⋆ = 109-1011.5 M⊙) and redshift (0.01 < z < 0.05). This includes new Arecibo observations of 208 galaxies, for which we release catalogues and H I spectra. In addition to extending the GASS H I scaling relations by one decade in stellar mass, we quantify total (atomic+molecular) cold gas fractions and molecular-to-atomic gas mass ratios, Rmol, for the subset of 477 galaxies observed with the IRAM 30 m telescope. We find that atomic gas fractions keep increasing with decreasing stellar mass, with no sign of a plateau down to log M⋆/M⊙ = 9. Total gas reservoirs remain H I-dominated across our full stellar mass range, hence total gas fraction scaling relations closely resemble atomic ones, but with a scatter that strongly correlates with Rmol, especially at fixed specific star formation rate. On average, Rmol weakly increases with stellar mass and stellar surface density μ⋆, but individual values vary by almost two orders of magnitude at fixed M⋆ or μ⋆. We show that, for galaxies on the star-forming sequence, variations of Rmol are mostly driven by changes of the H I reservoirs, with a clear dependence on μ⋆. Establishing if galaxy mass or structure plays the most important role in regulating the cold gas content of galaxies requires an accurate separation of bulge and disc components for the study of gas scaling relations.

  4. Processing device for re-processing off-gas

    International Nuclear Information System (INIS)

    Tsukagami, Yosoji; Yamazaki, Hitoshi; Nakao, Genroku; Kodama, Hiroshi.

    1989-01-01

    In a step of dissolving spent fuels with concentrated nitric acid, off-gases mainly composed of steams and NOx, etc. are formed. In the step of processing the off-gases, a number of small semi-spherical water droplets are formed to the inner wall surface of the device due to the cooling effect of a condenser. Iodine or oxygen in the gas phase is dissolved into the water droplets to form hard iodine oxides, by which the water droplets are adhered in a semi-spherical state to bring about such a condition that pitting corrosion or gap corrosion is liable to occur. In view of the above, means for supplying a liquid including surface active agent capable of flowing due to the falling or rotation of the liquid relative is disposed to the inner wall surface from the top end of the condenser. The semi-spherical water droplets are washed out by the aqueous solution. Further, it is possible to form liquid membranes of uniform thickness due to the effect of reducing the surface tension of the water droplets by means of the surface active agent, to prevent corrosion of the device. (T.M.)

  5. System evaluation of offshore platforms with gas liquefaction processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; de Oliveira Júnior, Silvio

    2018-01-01

    Abstract Floating, production, storage and offloading plants are facilities used for offshore processing of hydrocarbons in remote locations. At present, the produced gas is injected back into the reservoir instead of being exported. The implementation of refrigeration processes offshore for liqu....... It is therefore essential to conduct a careful analysis of the trade-off between the capital costs and operating revenues for such options....... for liquefying natural gas provides the opportunity to monetize offshore gas resources. The present work analyzes the performance of offshore platforms, from the oil processing to the gas liquefaction system. Different feed compositions, system layouts and liquefaction processes are considered. Potential system...... improvements are discussed based on an energy and exergy analysis. Compared to a standard platform where gas is directly injected into the reservoir, the total power consumption increases by up to 50%, and the exergy destruction within the processing plant doubles when a liquefaction system is installed...

  6. Atomic processes and application in honour of David R. Bates' 60th birthday

    CERN Document Server

    Burke, P G

    2013-01-01

    Atomic Processes and Applications is a collection of review articles that discusses major atomic and molecular processes and their applications to upper atmospheric physics and to astrophysics. The book also serves as a 60th birthday tribute to Dr. David R. Bates. The coverage of the text includes the overview of stratospheric aeronomy; upper atmosphere of the earth; and problems in atmospheric pollution. The book also deals with technical and highly specialized issues including photoionization of atomic systems; atomic structure and oscillator strengths; and atomic scattering computations. Th

  7. Measuring deuterium enrichment of glucose hydrogen atoms by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Antoniewicz, Maciek R; Kelleher, Joanne K; Stephanopoulos, Gregory

    2011-04-15

    We developed a simple and accurate method for determining deuterium enrichment of glucose hydrogen atoms by electron impact gas chromatography mass spectrometry (GC/MS). First, we prepared 18 derivatives of glucose and screened over 200 glucose fragments to evaluate the accuracy and precision of mass isotopomer data for each fragment. We identified three glucose derivatives that gave six analytically useful ions: (1) glucose aldonitrile pentapropionate (m/z 173 derived from C4-C5 bond cleavage; m/z 259 from C3-C4 cleavage; m/z 284 from C4-C5 cleavage; and m/z 370 from C5-C6 cleavage); (2) glucose 1,2,5,6-di-isopropylidene propionate (m/z 301, no cleavage of glucose carbon atoms); and (3) glucose methyloxime pentapropionate (m/z 145 from C2-C3 cleavage). Deuterium enrichment at each carbon position of glucose was determined by least-squares regression of mass isotopomer distributions. The validity of the approach was tested using labeled glucose standards and carefully prepared mixtures of standards. Our method determines deuterium enrichment of glucose hydrogen atoms with an accuracy of 0.3 mol %, or better, without the use of any calibration curves or correction factors. The analysis requires only 20 μL of plasma, which makes the method applicable for studying gluconeogenesis using deuterated water in cell culture and animal experiments. © 2011 American Chemical Society

  8. Xenon gas field ion source from a single-atom tip

    Science.gov (United States)

    Lai, Wei-Chiao; Lin, Chun-Yueh; Chang, Wei-Tse; Li, Po-Chang; Fu, Tsu-Yi; Chang, Chia-Seng; Tsong, T. T.; Hwang, Ing-Shouh

    2017-06-01

    Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ˜150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.

  9. Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks

    International Nuclear Information System (INIS)

    Abdullah, S.; Affolderbach, C.; Gruet, F.; Mileti, G.

    2015-01-01

    We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (−5.2 ± 0.6) × 10 −11 /day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variations and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7 ± 0.7) × 10 −22 m 2 s −1  Pa −1 at 81 °C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases

  10. Using Noble Gas Measurements to Derive Air-Sea Process Information and Predict Physical Gas Saturations

    Science.gov (United States)

    Hamme, Roberta C.; Emerson, Steven R.; Severinghaus, Jeffrey P.; Long, Matthew C.; Yashayaev, Igor

    2017-10-01

    Dissolved gas distributions are important because they influence oceanic habitats and Earth's climate, yet competing controls by biology and physics make gas distributions challenging to predict. Bubble-mediated gas exchange, temperature change, and varying atmospheric pressure all push gases away from equilibrium. Here we use new noble gas measurements from the Labrador Sea to demonstrate a technique to quantify physical processes. Our analysis shows that water-mass formation can be represented by a quasi steady state in which bubble fluxes and cooling push gases away from equilibrium balanced by diffusive gas exchange forcing gases toward equilibrium. We quantify the rates of these physical processes from our measurements, allowing direct comparison to gas exchange parameterizations, and predict the physically driven saturation of other gases. This technique produces predictions that reasonably match N2/Ar observations and demonstrates that physical processes should force SF6 to be ˜6% more supersaturated than CFC-11 and CFC-12, impacting ventilation age calculations.

  11. Project Safe. Gas related processes in SFR

    International Nuclear Information System (INIS)

    Moreno, L.

    2001-06-01

    The radionuclide release from the SFR repository caused by gas generation was calculated for different scenarios for three repository parts (Silo, BMA and 1BTF). The calculation cases are based on the way the gas escapes from the concrete structures. In the basic cases the gas escapes through the evacuation pipes in the concrete lid of the Silo, through existing gaps between the concrete walls and the lid in BMA, and through the concrete backfill surrounding the waste packages in 1BTF. These cases correspond to the situation that we expect to occur. Another category of cases corresponds to the situation where an initial fracture exists in the concrete structures. The fracture is assumed to exist at the bottom of the respective concrete structure in the Silo and BMA. For 1BTF the initial defect is represented by a fracture transversely crossing the section containing the steel drums with ashes. Other cases were also calculated with the purpose of studying some special situations. For example, the consequences of a silo repository without evacuation pipes and backfill in the interior of BMA. The radionuclide release, for some radionuclides, may be increased by several orders of magnitude when contaminated water is expelled by gas from the interior of the concrete structures. However, the impact on the total doses during the first thousands years after closure of the repository is limited. The total dose is dominated by the release of organic 14 C. Since the radionuclides are released to the coastal area during the first thousand years the dilution is considerable, which results in a very low dose

  12. Kinetic theory of weakly ionized dilute gas of hydrogen-like atoms of the first principles of quantum statistics and dispersion laws of eigenwaves

    Science.gov (United States)

    Slyusarenko, Yurii V.; Sliusarenko, Oleksii Yu.

    2017-11-01

    We develop a microscopic approach to the construction of the kinetic theory of dilute weakly ionized gas of hydrogen-like atoms. The approach is based on the statements of the second quantization method in the presence of bound states of particles. The basis of the derivation of kinetic equations is the method of reduced description of relaxation processes. Within the framework of the proposed approach, a system of common kinetic equations for the Wigner distribution functions of free oppositely charged fermions of two kinds (electrons and cores) and their bound states—hydrogen-like atoms— is obtained. Kinetic equations are used to study the spectra of elementary excitations in the system when all its components are non-degenerate. It is shown that in such a system, in addition to the typical plasma waves, there are longitudinal waves of matter polarization and the transverse ones with a behavior characteristic of plasmon polaritons. The expressions for the dependence of the frequencies and Landau damping coefficients on the wave vector for all branches of the oscillations discovered are obtained. Numerical evaluation of the elementary perturbation parameters in the system on an example of a weakly ionized dilute gas of the 23Na atoms using the D2-line characteristics of the natrium atom is given. We note the possibility of using the results of the developed theory to describe the properties of a Bose condensate of photons in the diluted weakly ionized gas of hydrogen-like atoms.

  13. Use of carbon dioxide in underground natural gas storage processes

    Directory of Open Access Journals (Sweden)

    Nagy Stanislaw

    2006-10-01

    Full Text Available The possibility of use of carbon dioxide in gas storage processes is presented. The model of mixing process between CO2 and methane in porous media is given. The process of injection of carbon dioxide into a lower part of storage near the water –gas contact is modeled. The example of changes in the mixing zone is presented and discussed.

  14. Apparatus and process for collection of gas and vapor samples

    Science.gov (United States)

    Jackson, Dennis G [Augusta, GA; Peterson, Kurt D [Aiken, SC; Riha, Brian D [Augusta, GA

    2008-04-01

    A gas sampling apparatus and process is provided in which a standard crimping tool is modified by an attached collar. The collar permits operation of the crimping tool while also facilitating the introduction of a supply of gas to be introduced into a storage vial. The introduced gas supply is used to purge ambient air from a collection chamber and an interior of the sample vial. Upon completion of the purging operation, the vial is sealed using the crimping tool.

  15. The Validity of 21 cm Spin Temperature as a Kinetic Temperature Indicator in Atomic and Molecular Gas

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Gargi [Dept. of Physics, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai 400098 (India); Ferland, G. J. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Hubeny, I., E-mail: gargishaw@gmail.com, E-mail: gary@uky.edu, E-mail: hubeny@as.arizona.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2017-07-10

    The gas kinetic temperature ( T {sub K} ) of various interstellar environments is often inferred from observations that can deduce level populations of atoms, ions, or molecules using spectral line observations; H i 21 cm is perhaps the most widely used, and has a long history. Usually the H i 21 cm line is assumed to be in thermal equilibrium and the populations are given by the Boltzmann distribution. A variety of processes, many involving Ly α , can affect the 21 cm line. Here we show how this is treated in the spectral simulation code Cloudy, and present numerical simulations of environments where this temperature indicator is used, with a detailed treatment of the physical processes that determine level populations within H{sup 0}. We discuss situations where this temperature indicator traces T {sub K}, cases where it fails, as well as the effects of Ly α pumping on the 21 cm spin temperature. We also show that the Ly α excitation temperature rarely traces the gas kinetic temperature.

  16. Process for preparing alkanols from synthesis gas

    International Nuclear Information System (INIS)

    Knifton, J.F.; Lin, J-J.

    1982-01-01

    Synthesis gas (carbon monoxide and hydrogen) can be converted highly selectively into alkanols, especially methanol, by reaction at a temperature of at least 150 degrees Celsius and a pressure of at least 35 bars in the presence of a catalyst comprising a ruthenium compound, a rhenium or manganese compound, and a quaternary ammonium or phosphonium compound, in the presence of an inert oxygenated solvent (ketone, ester, alcohol or preferably ether). Preferably a Group VB donor ligand, e.g. triphenyl phosphine, is also present

  17. The Utilization of Nitrogen Gas as a Carrier Gas in the Determination of Hg Ions Using Cold Vapor-Atomic Absorption Spectrophotometer (CV-AAS)

    OpenAIRE

    Panggabean, Aman Sentosa; Pasaribu, Subur P; Kristiana, Farida

    2018-01-01

    The research about utilization of nitrogen gas as a carrier gas in the determination of Hg ions by using Cold Vapor-Atomic Absorption Spectrophotometer (CV-AAS) method has been conducted. To optimize the measurement results, several parameters that affect hydride generator have been studied. Some specified important parameters are SnCl2 concentration as reductant, acid concentration, and the analytical performance such as repeatability and reproducibility (% RSD), linearity (r), limits of det...

  18. Characterization of 17-4PH stainless steel powders produced by supersonic gas atomization

    Science.gov (United States)

    Zhao, Xin-Ming; Xu, Jun; Zhu, Xue-Xin; Zhang, Shao-Ming; Zhao, Wen-Dong; Yuan, Guo-Liang

    2012-01-01

    17-4PH stainless steel powders were prepared using a supersonic nozzle in a close-coupled gas atomization system. The characteristics of powder particles were carried out by means of a laser particle size analyzer, scanning electron microscopy (SEM), and the X-ray diffraction (XRD) technique. The results show that the mass median particle diameter is about 19.15 μm. Three main types of surface microstructures are observed in the powders: well-developed dendrite, cellular, and cellular dendrite structure. The XRD measurements show that, as the particle size decreases, the amount of fcc phase gradually decreases and that of bcc phase increases. The cooling rate is inversely related to the particle size, i.e., it decreases with an increase in particle size.

  19. Detection of small atom numbers through image processing

    NARCIS (Netherlands)

    Ockeloen, C.F.; Tauschinsky, A.F.; Spreeuw, R.J.C.; Whitlock, S.

    2010-01-01

    We demonstrate improved detection of small trapped atomic ensembles through advanced postprocessing and optimal analysis of absorption images. A fringe-removal algorithm reduces imaging noise to the fundamental photon-shot-noise level and proves beneficial even in the absence of fringes. A

  20. Process for making ceramic hot gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    2001-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  1. An experimental study on atomizing formation process of diesel spray

    International Nuclear Information System (INIS)

    Kim, Ki Bong

    2000-02-01

    In this study, the experiment has, been conducted to investigate the spray characteristics under the parameter of an ambient pressure with a single hole nozzle having aspect ratio(L/D) of 5 and diameter of 0.45mm. Under the condition of the injection pressure of 14Mpa, the initial disintegrating process of a diesel spray is investigated and analysized according to change of the ambient pressures, 0.1, 1, 2 and 3Mpa. The double flash method has been employed to visualize the process of the diesel sprays. The results obtained in this study are as follows: 1) After spray starts, the spray is shown as non-disturbance liquid column within about 1∼2mm from the nozzle tip, whose diameter is similar to that of a nozzle. For the same injection pressure, the increase of the ambient pressure makes the length of the non-disturbance liquid column become short. 2) Due to the surface wave, ligaments of the shape thread appear at the boundary of liquid column right after spray. The more developed wave together the progress of spray transforms ligaments into droplets that have generally the uniformed size. 3) In case spraying into chambers having different ambient pressures, 1, 2, and 3Mpa, the spray tip velocities reach up to 1.5, 1.2, and 0.6ms, respectively, and decrease with lapse of time. The spray angle keeps increasing for 0.6, 1.2, and 1.4ms after spray under the various ambient pressures, 3, 2, and 1Mpa, respectively, and begins to decrease and maintains the constant value. Therefore, the transition points appear near the point where the velocity decreases and the spray angle increases, simultaneously. The higher ambient pressure leads to fast appearance of transition under the same spray pressure. 4) The disintegrating mechanism of the liquid spray is two combined effects: a) friction forces between the surface waves generated at the surface of the liquid column and the ambient gas, b) the collisions of liquid droplets and ligaments by spray were overtaking

  2. Interactions of C+(2PJ) with rare gas atoms: incipient chemical interactions, potentials and transport coefficients

    Science.gov (United States)

    Tuttle, William D.; Thorington, Rebecca L.; Viehland, Larry A.; Breckenridge, W. H.; Wright, Timothy G.

    2018-03-01

    Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C+, with a single rare gas atom, RG (RG = Ne-Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C+(2P) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Π and 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar-Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C+ electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge-Sponer plots and various population analyses across the C+-RG series (RG = He-Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C+ in RG, and the results were compared with the limited available data. This article is part of the theme issue `Modern theoretical chemistry'.

  3. Detection of cold gas releases in space via low energy neutral atom imaging

    International Nuclear Information System (INIS)

    McComas, D.J.; Funsten, H.O.; Moore, K.R.; Scime, E.E.; Thomsen, M.F.

    1993-01-01

    Low energy neutral atoms (LENAs) are produced in space plasmas by charge exchange between the ambient magnetospheric plasma ions and cold neutral atoms. Under normal conditions these cold neutrals come from the terrestrial geocorona, a shroud of few-eV hydrogen atoms surrounding the Earth. As a consequence of this charge exchange, it has become possible to remotely image many regions of the magnetosphere for the first time utilizing recently developed LENA imaging technology. In addition to the natural hydrogen geocorona, conventional explosions and maneuvering thruster firings can also introduce large amounts of cold gas into the space environment. In this paper the authors examine whether such potentially clandestine activities could also be remotely observed for the first time via LENA imaging. First, they examine the fluxes of LENAs produced in the space environment from a conventional explosion. Then they review the present state of the art in the emerging field of LENA detection and imaging. Recent work has shown that LENAs can be imaged by first converting the neutrals to ions with ultra-thin (10s of angstrom) foils and then electrostatically analyzing these newly created ions to reject the large (> 10 10 cm -2 s -1 ) UV background to which the low energy detectors are sensitive. They conclude that the sensitivities for present LENA imager designs may be just adequate for detecting some man-made releases. With additional improvements in LENA detection capabilities, this technique could become an important new method for monitoring for conventional explosions, as well as other man-made neutral releases, in the space environment

  4. Interactions of C+(2 PJ ) with rare gas atoms: incipient chemical interactions, potentials and transport coefficients.

    Science.gov (United States)

    Tuttle, William D; Thorington, Rebecca L; Viehland, Larry A; Breckenridge, W H; Wright, Timothy G

    2018-03-13

    Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C + , with a single rare gas atom, RG (RG = Ne-Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C + ( 2 P ) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2 Π and 2 Σ + Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar-Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C + electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge-Sponer plots and various population analyses across the C + -RG series (RG = He-Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C + in RG, and the results were compared with the limited available data.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  5. The atomization and burning of biofuels in the combustion chambers of gas turbine engines

    Science.gov (United States)

    Maiorova, A. I.; Vasil’ev, A. Yu; Sviridenkov, A. A.; Chelebyan, O. G.

    2017-11-01

    The present work analyzes the effect of physical properties of liquid fuels with high viscosity (including biofuels) on the spray and burning characteristics. The study showed that the spray characteristics behind devices well atomized fuel oil, may significantly deteriorate when using biofuels, until the collapse of the fuel bubble. To avoid this phenomenon it is necessary to carry out the calculation of the fuel film form when designing the nozzles. As a result of this calculation boundary curves in the coordinates of the Reynolds number on fuel - the Laplace number are built, characterizing the transition from sheet breakup to spraying. It is shown that these curves are described by a power function with the same exponent for nozzles of various designs. The swirl of air surrounding the nozzle in the same direction, as the swirl of fuel film, can significantly improve the performance of atomization of highly viscous fuel. Moreover the value of the tangential air velocity has the determining influence on the film shape. For carrying out of hot tests in aviation combustor some embodiments of liquid fuels were proved and the most preferred one was chosen. Fire tests of combustion chamber compartment at conventional fuel has shown comprehensible characteristics, in particular wide side-altars of the stable combustion. The blended biofuel application makes worse combustion stability in comparison with kerosene. A number of measures was recommended to modernize the conventional combustors when using biofuels in gas turbine engines.

  6. Contracting out gas processing : the pros and cons

    International Nuclear Information System (INIS)

    Stout, D.L.

    1999-01-01

    The impact of competition within the energy industry on the midstream infrastructure was discussed. It was demonstrated that it is no longer necessary to own all or a portion of a processing facility to be a successful exploration company. It is now possible for midstream operators to manage the transmission business, the gas storage sector and the gas processing segment of the industry. Contract options and issues that should be addressed by natural gas producers in determining risks involved in contracting out were summarized. Changes in the industry has greatly expanded the options and opportunities for companies, both upstream and midstream. The industry has been contracting out gas processing for many years. However, the entry into the business of the specialized midstream player should further enhance the producer's options. The ultimate goal for the producer should be to benefit from lower costs, long term offerings, and a reduced need to invest potential exploration capital into non-core processing facilities

  7. A slow atomic diffusion process in high-entropy glass-forming metallic melts

    Science.gov (United States)

    Chen, Changjiu; Wong, Kaikin; Krishnan, Rithin P.; Embs, Jan P.; Chathoth, Suresh M.

    2018-04-01

    Quasi-elastic neutron scattering has been used to study atomic relaxation processes in high-entropy glass-forming metallic melts with different glass-forming ability (GFA). The momentum transfer dependence of mean relaxation time shows a highly collective atomic transport process in the alloy melts with the highest and lowest GFA. However, a jump diffusion process is the long-range atomic transport process in the intermediate GFA alloy melt. Nevertheless, atomic mobility close to the melting temperature of these alloy melts is quite similar, and the temperature dependence of the diffusion coefficient exhibits a non-Arrhenius behavior. The atomic mobility in these high-entropy melts is much slower than that of the best glass-forming melts at their respective melting temperatures.

  8. A systematic study of rare gas atoms encapsulated in small fullerenes using dispersion corrected density functional theory.

    Science.gov (United States)

    Sure, Rebecca; Tonner, Ralf; Schwerdtfeger, Peter

    2015-01-15

    The most stable fullerene structures from C20 to C60 are chosen to study the energetics and geometrical consequences of encapsulating the rare gas elements He, Ne, or Ar inside the fullerene cage using dispersion corrected density functional theory. An exponential increase in stability is found with increasing number of carbon atoms. A similar exponential law is found for the volume expansion of the cage due to rare gas encapsulation with decreasing number of carbon atoms. We show that dispersion interactions become important with increasing size of the fullerene cage, where Van der Waals forces between the rare gas atom and the fullerene cage start to dominate over repulsive interactions. The smallest fullerenes where encapsulation of a rare gas element is energetically still favorable are He@C48, Ne@C52, and Ar@C58. While dispersion interactions follow the trend Ar > Ne > He inside C60 due to the trend in the rare gas dipole polarizabilities, repulsive forces become soon dominant with smaller cage size and we have a complete reversal for the energetics of rare gas encapsulation at C50. © 2014 Wiley Periodicals, Inc.

  9. Atomic hydrogen bridge fueling NGC 4418 with gas from VV 655

    Science.gov (United States)

    Varenius, E.; Costagliola, F.; Klöckner, H.-R.; Aalto, S.; Spoon, H.; Martí-Vidal, I.; Conway, J. E.; Privon, G. C.; König, S.

    2017-11-01

    Context. The galaxy NGC 4418 harbours a compact (well as emission and absorption from atomic hydrogen. Gaussian distributions are fitted to observed HI emission and absorption spectra. We estimate the star formation rates (SFRs) of NGC 4418 and VV 655 from the 1.4 GHz radio emission and compare them with estimates from archival 70 μm Herschel observations. Results: An atomic HI bridge is seen in emission, connecting NGC 4418 to the nearby galaxy VV 655. An HI tail is also seen extending south-west from VV 655. While NGC 4418 is bright in continuum emission and seen in HI absorption, VV 655 is barely detected in the continuum, but shows bright HI emission (MHI 109 M⊙). We estimate SFRs from the 1.4 GHz continuum of 3.2 M⊙ yr-1 and 0.13 M⊙ yr-1 for NGC 4418 and VV 655, respectively. Systemic HI velocities of 2202 ± 20 km s-1 (emission) and 2105.4 ± 10 km s-1 (absorption) are measured for VV 655 and NGC 4418, respectively. Redshifted HI absorption is seen (vc = 2194.0 ± 4.4 km s-1) towards NGC 4418, suggesting gas infall. North-west of NGC 4418, we detect HI in emission, blueshifted (vc = 2061.9 ± 5.1 km s-1) with respect to NGC 4418, consistent with an outflow perpendicular to the galaxy disk. We derive a deprojected outflow speed of 178 km s-1, which, assuming a simple cylindrical model, gives an order-of-magnitude estimate of the HI mass outflow rate of 2.5 M⊙ yr-1. Conclusions: The morphology and velocity structure seen in HI is consistent with an interaction scenario where gas was transferred from VV 655 to NGC 4418. We argue that the galaxies have passed each other once, about 190 Myr ago, and that this interaction has caused the tidal HI bridge and HI tail seen today. Some gas is falling towards NGC 4418, and may fuel the activity in the centre. We interpret blueshifted HI-emission north-west of NGC 4418 as a continuation of the outflow previously reported on smaller scales, powered by star formation and/or black hole accretion in the centre. The

  10. Non-equilibrium plasma reactor for natrual gas processing

    International Nuclear Information System (INIS)

    Shair, F.H.; Ravimohan, A.L.

    1974-01-01

    A non-equilibrium plasma reactor for natural gas processing into ethane and ethylene comprising means of producing a non-equilibrium chemical plasma wherein selective conversion of the methane in natural gas to desired products of ethane and ethylene at a pre-determined ethane/ethylene ratio in the chemical process may be intimately controlled and optimized at a high electrical power efficiency rate by mixing with a recycling gas inert to the chemical process such as argon, helium, or hydrogen, reducing the residence time of the methane in the chemical plasma, selecting the gas pressure in the chemical plasma from a wide range of pressures, and utilizing pulsed electrical discharge producing the chemical plasma. (author)

  11. The behaviour of population in a plasma interacting with an atomic gas

    International Nuclear Information System (INIS)

    Furukane, Utaro; Oda, Toshiatsu.

    1983-01-01

    The processes leading to the population inversion are investigated in a recombining hydrogen plasma which is interacting with a cool and dense neutral hydrogen gas by using the rate equations on the basis of the CR model and the energy equation for electrons ions and neutral parlicles. The quasi-steady state approximation are used only for the levels higher than a certain level which is not the first excited level. The calculations have shown that the quasi-steady state cannot be realized while intense energy-flows due to the collisional processes exist between different kinds of the particles such as the electrons and the ions in the plasma and the population inversion is realized only in the quasi-steady state following the transient phase. The effects of the initial conditions of the hydrogen plasma and the introduced neutral hydrogen gas on the overpopulation density are also discussed. (author)

  12. Cross section database for collision processes of helium atom with charged particles. 1. Electron impact processes

    International Nuclear Information System (INIS)

    Ralchenko, Yu.V.; Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de; Ralchenko, Yu.V.

    2000-10-01

    A comprehensive and critically assessed cross section database for the inelastic collision processes of ground state and excited helium atoms colliding with electrons, protons and multiply-charged ions has been prepared at the Data and Planning Center at NIFS. The present report describes the first part of the database containing the recommended data for electron impact excitation and ionization of neutral helium. An states (atomic terms) with n ≤ 4 are treated individually while the states with n > 4 are considered degenerate. For the processes involving transitions to and from n > 4 levels, suitable cross section scaling relations are presented. For a large number of electron impact transitions, both from the ground and excited states, new convergent close coupling (CCC) calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in a graphical form. (author)

  13. Interfacial-Bonding-Regulated CO Oxidation over Pt Atoms Immobilized on Gas-Exfoliated Hexagonal Boron Nitride

    KAUST Repository

    Liu, Xin

    2017-10-12

    We compared the electronic structure and CO oxidation mechanisms over Pt atoms immobilized by both B-vacancies and N-vacancies on gas-exfoliated hexagonal boron nitride. We showed that chemical bonds are formed between the B atoms associated with dangling bonds around the vacancies and Pt atoms. These bonds not only alter the thermodynamics and kinetics for the aggregation and effectively immobilize Pt atoms, but also significantly change the composition and energetic distribution of the electronic states of the composites to circumvent CO poisoning and to favour coadsorption of CO and O2, which further regulates the reactions to proceed through a Langmuir-Hinshelwood mechanism. The CO oxidation over Pt atoms immobilized at N-vacancies involves formation of an intermediate with –C(O)-O−O- bonded to Pt, the generation of CO2 by peroxo O−O bond scission and the reduction of the remnant oxygen, and the calculated energy barriers are 0.49, 0.23 and 0.18 eV, respectively. Such small energy barriers are comparable to those over Pt atoms trapped at B-vacancies, showing the effectiveness of Pt/hexagonal boron nitride atomic composites as catalysts for CO oxidation. These findings also suggest the feasibility of regulating the reaction pathways over single atom catalysts via interfacial engineering.

  14. Puzzle degeneracies for 87Rb2 and Yangian structures appearing in lower excited states of rare gas atoms

    International Nuclear Information System (INIS)

    Bai Chengming; Ge Molin

    2001-01-01

    The authors show that the degenerate states appearing in the experiment of the condensed vapor of 87 Rb 2 can be described by Yangian. Furthermore, the model for three angular momentum system is solved through Yangian that can be checked by the experiments for lower excited states of Inert Gas atoms under pressure

  15. Nature of the interaction between rare gas atoms and transition metal doped silicon clusters: the role of shielding effects.

    Science.gov (United States)

    Ngan, Vu Thi; Janssens, Ewald; Claes, Pieterjan; Fielicke, André; Nguyen, Minh Tho; Lievens, Peter

    2015-07-21

    Mass spectrometry experiments show an exceptionally weak bonding between Si7Mn(+) and rare gas atoms as compared to other exohedrally transition metal (TM) doped silicon clusters and other SinMn(+) (n = 5-10) sizes. The Si7Mn(+) cluster does not form Ar complexes and the observed fraction of Xe complexes is low. The interaction of two cluster series, SinMn(+) (n = 6-10) and Si7TM(+) (TM = Cr, Mn, Cu, and Zn), with Ar and Xe is investigated by density functional theory calculations. The cluster-rare gas binding is for all clusters, except Si7Mn(+) and Si7Zn(+), predominantly driven by short-range interaction between the TM dopant and the rare gas atoms. A high s-character electron density on the metal atoms in Si7Mn(+) and Si7Zn(+) shields the polarization toward the rare gas atoms and thereby hinders formation of short-range complexes. Overall, both Ar and Xe complexes are similar except that the larger polarizability of Xe leads to larger binding energies.

  16. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    NARCIS (Netherlands)

    Mohammadi, V.; Nihtianov, S.

    2016-01-01

    The lateral gas phase diffusion length of boron atoms, LB, along silicon and boron surfaces during chemical vapor deposition(CVD) using diborane (B2H6) is reported. The value of LB is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and

  17. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    Science.gov (United States)

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  18. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Czech Academy of Sciences Publication Activity Database

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-01-01

    Roč. 109, JUL (2015), s. 16-23 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : hydride generation * arsenic * atomic fluorescence spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  19. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    Science.gov (United States)

    Carr,; Jeffrey, W [Livermore, CA

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  20. Process for producing alcohols from synthesis gas

    International Nuclear Information System (INIS)

    Stevens, R.R.

    1988-01-01

    A process is described for making alcohols comprising contacting a mixture of hydrogen and carbon monoxide with a catalyst comprising: (1) as a first component, at least one element selected from the group consisting of molybdenum and tungsten in free or combined form; (2) as a second component, at least one element selected from the group consisting of cobalt and nickel in free or combined form; (3) as a third component, a promoter comprising an alkali or alkaline earth element in free or combined form; the catalyst excluding rhodium and ruthenium and containing less than two (2) weight percent copper; at a pressure of at least about 500 psig and at conditions sufficient to form an alcohol fraction boiling in the range of motor gasoline in at least 20 percent CO/sub 2/ free carbon selectivity, the alcohol fraction containing a C/sub 1/ to C/sub 2-5/ alcohol weight ratio of less than about 1:1

  1. Modeling and simulation of the atomization process in the ceramic tile industry

    International Nuclear Information System (INIS)

    Favalli, Renata Cristina

    2002-01-01

    The aim of the present work is to numerically simulate the behaviour of the drying system for several sets of operating conditions in order to improve and optimize this process. However, the mathematical modeling adopted here can be employed to simulate other systems such as the processes that occur in liquid-fueled engines with direct spray injection and ceramic spraying for hard surfacing. Then, mathematical and physical models were established to simulate the interaction of continuous and disperse phases in drying processes of ceramic slurries. Solving the set of governing coupled partial differential equations, it is possible to study the influence of drying air on the atomized droplets of alumina slurry, and vice-versa. The materials used as continuous and disperse phase, air and alumina slurry respectively, are representative since any kind of gas and slurry can be used if its thermodynamic and transport properties are known. Several experimental tests were carried out in a spray dryer in the 'Laboratorio de Insumos', at IPEN - Instituto de Pesquisas Energeticas e Nucleares for different sets of operating conditions: initial temperature of the drying air, the gas flow rate, the slurry feed rate and atomiser configuration among others. Measurements of the wet and the dry bulb temperatures were made in some experimental tests to allow the calculations of the air humidity. The dynamic pressure were also measured in order to determine the gas flow rate. Some samples of the material used in the tile industry and of the one produced at IPEN were analysed to determine: the morphology of the atomized material and the range of granules diameter through scanning electron microscopy; the amount of pores and the bulk density through porosimetry; the residual moisture of the material through thermogravimetry; and the granulometric distribution of granules and particles through laser diffraction. Important information about the process and the final material are given by

  2. Method for treating a nuclear process off-gas stream

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.-C.

    1981-01-01

    A method is described for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. The method involves a sequence of adsorption and desorption steps which are specified. Particular reference is made to the separation of xenon and krypton from the off-gas stream, and to the use of silver-exchanged mordenite as the adsorbent. (U.K.)

  3. Coherent and non coherent atom optics experiment with an ultra-narrow beam of metastable rare gas atoms; Experiences d'optique atomique coherente ou non avec un jet superfin d'atomes metastables de gaz rares

    Energy Technology Data Exchange (ETDEWEB)

    Grucker, J

    2007-12-15

    In this thesis, we present a new type of atomic source: an ultra-narrow beam of metastable atoms produced by resonant metastability exchange inside a supersonic beam of rare gas atoms. We used the coherence properties of this beam to observe the diffraction of metastable helium, argon and neon atoms by a nano-transmission grating and by micro-reflection-gratings. Then, we evidenced transitions between Zeeman sublevels of neon metastable {sup 3}P{sub 2} state due to the quadrupolar part of Van der Waals potential. After we showed experimental proofs of the observation of this phenomenon, we calculated the transition probabilities in the Landau - Zener model. We discussed the interest of Van der Waals - Zeeman transitions for atom interferometry. Last, we described the Zeeman cooling of the supersonic metastable argon beam ({sup 3}P{sub 2}). We have succeeded in slowing down atoms to speeds below 100 m/s. We gave experimental details and showed the first time-of-flight measurements of slowed atoms.

  4. Flue Gas Cleaning With Alternative Processes and Reaction Media

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Huang, Jun; Riisager, Anders

    2007-01-01

    Alternative methods to the traditional industrial NOX and SOXflue gas cleaning processes working at lower temperatures and/orleading to useful products are desired. In this work we presentour latest results regarding the use of molten ionic media inelectrocatalytic membrane separation, ionic liquid...... reversibleabsorption and supported ionic liquid deNOX catalysis. Furtherdevelopment of the methods will hopefully make them suitable forinstallation in different positions in the flue gas duct ascompared to the industrial methods available today....

  5. Image processing for grazing incidence fast atom diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Debiossac, Maxime; Roncin, Philippe, E-mail: philippe.roncin@u-psud.fr

    2016-09-01

    Grazing incidence fast atom diffraction (GIFAD, or FAD) has developed as a surface sensitive technique. Compared with thermal energies helium diffraction (TEAS or HAS), GIFAD is less sensitive to thermal decoherence but also more demanding in terms of surface coherence, the mean distance between defects. Such high quality surfaces can be obtained from freshly cleaved crystals or in a molecular beam epitaxy (MBE) chamber where a GIFAD setup has been installed allowing in situ operation. Based on recent publications by Atkinson et al. (2014) and Debiossac et al. (2014), the paper describes in detail the basic steps needed to measure the relative intensities of the diffraction spots. Care is taken to outline the underlying physical assumptions.

  6. Plasma properties and atomic processes at medium and high pressures

    International Nuclear Information System (INIS)

    Drawin, H.W.

    1979-01-01

    When the state of a plasma deviates from local thermodynamic equilibrium (L.T.E.) the equilibrium relations cannot be applied. The thermodynamic properties must then be described on the basis of models in which the individual atomic properties and elementary reactions intervene. The first part of the paper gives a schematic description of a plasma suffering power input, power losses and external constraints in the form of initial and boundary conditions. The rate equations for particle density, momentum and energy of open systems are summarized, including nuclear reactions. The second part gives a review of the progress made in understanding the properties of special types of non-L.T.E. plasmas such as glow discharge plasmas, negative ion plasmas (with application to the physics of SF 6 circuit-breakers) and Tokamak plasmas on the basis of these rate equations

  7. Simulation of primary fuel atomization processes at subcritical pressures.

    Energy Technology Data Exchange (ETDEWEB)

    Arienti, Marco

    2013-06-01

    This report documents results from an LDRD project for the first-principles simulation of the early stages of spray formation (primary atomization). The first part describes a Cartesian embedded-wall method for the calculation of flow internal to a real injector in a fully coupled primary calculation. The second part describes the extension to an all-velocity formulation by introducing a momentum-conservative semi-Lagrangian advection and by adding a compressible term in the Poissons equation. Accompanying the description of the new algorithms are verification tests for simple two-phase problems in the presence of a solid interface; a validation study for a scaled-up multi-hole Diesel injector; and demonstration calculations for the closing and opening transients of a single-hole injector and for the high-pressure injection of liquid fuel at supersonic velocity.

  8. Proposed Atomic Energy of Canada Ltd. 99Mo waste calcination process

    International Nuclear Information System (INIS)

    Ramey, D.W.; Haas, P.A.; Malkemus, D.W.; McGinnis, C.P.; Meyers, E.S.; Patton, B.D.; Birdwell, J.F.; Jubin, R.T.; Coltharp, K.A.

    1994-10-01

    Atomic Energy of Canada Limited (AECL), at its Chalk River Laboratory, generates from 3000 to 5000 L/year of high-level fissile waste solution from the production of 99 Mo. In this Mo process, highly enriched uranium (93 wt % 235 U, total uranium basis) contained in uranium-aluminum alloy target rods is irradiated to produce the 99 Mo product. The targets are removed from the reactor and dissolved in a mercury nitrate-catalyzed reaction with nitric acid. The 99 Mo product is then recovered by passing the solution through an alumina (Al 2 O 3 ) column. During discussions with personnel from the Oak Ridge National Laboratory (ORNL) on September 10, 1992, the ORNL-developed technology formerly applied to the solidification of aqueous uranium waste (Consolidated Edison Uranium Solidification Program or CEUSP) was judged potentially applicable to the AECL 99 Mo waste. Under a Work-for-Others contract (no. ERD-92-1132), which began May 24, 1993, ORNL was tasked to determine the feasibility of applying the CEUSP (or a similar) calcination process to solidify AECL's 99 Mo waste for > 30 years of safe dry storage. This study was to provide sufficient detailed information on the applicability of a CEUSP-type waste solidification process to allow AECL to select the process which best suited its needs. As with the CEUSP process, evaporation of the waste and a simultaneously partial destruction of acid by reaction with formaldehyde followed by in situ waste can thermal denitration waste was chosen as the best means of solidification. Unlike the CEUSP material, the 99 Mo waste has a considerable number of problem volatile and semivolatile constituents which must be recovered in the off-gas treatment system. Mercury removal before calcination was seen as the best option

  9. An important atomic process in the CVD growth of graphene: Sinking and up-floating of carbon atom on copper surface

    International Nuclear Information System (INIS)

    Li, Yingfeng; Li, Meicheng; Gu, TianSheng; Bai, Fan; Yu, Yue; Trevor, Mwenya; Yu, Yangxin

    2013-01-01

    By density functional theory (DFT) calculations, the early stages of the growth of graphene on copper (1 1 1) surface are investigated. At the very first time of graphene growth, the carbon atom sinks into subsurface. As more carbon atoms are adsorbed nearby the site, the sunken carbon atom will spontaneously form a dimer with one of the newly adsorbed carbon atoms, and the formed dimer will up-float on the top of the surface. We emphasize the role of the co-operative relaxation of the co-adsorbed carbon atoms in facilitating the sinking and up-floating of carbon atoms. In detail: when two carbon atoms are co-adsorbed, their co-operative relaxation will result in different carbon–copper interactions for the co-adsorbed carbon atoms. This difference facilitates the sinking of a single carbon atom into the subsurface. As a third carbon atom is co-adsorbed nearby, it draws the sunken carbon atom on top of the surface, forming a dimer. Co-operative relaxations of the surface involving all adsorbed carbon atoms and their copper neighbors facilitate these sinking and up-floating processes. This investigation is helpful for the deeper understanding of graphene synthesis and the choosing of optimal carbon sources or process.

  10. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

    Directory of Open Access Journals (Sweden)

    Guanglong Chen

    2015-10-01

    Full Text Available The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized deq in scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.

  11. Spark Plasma Sintering of a Gas Atomized Al7075 Alloy: Microstructure and Properties

    Directory of Open Access Journals (Sweden)

    Orsolya Molnárová

    2016-12-01

    Full Text Available The powder of an Al7075 alloy was prepared by gas atomization. A combination of cellular, columnar, and equiaxed dendritic-like morphology was observed in individual powder particles with continuous layers of intermetallic phases along boundaries. The cells are separated predominantly by high-angle boundaries, the areas with dendritic-like morphology usually have a similar crystallographic orientation. Spark plasma sintering resulted in a fully dense material with a microstructure similar to that of the powder material. The continuous layers of intermetallic phases are replaced by individual particles located along internal boundaries, coarse particles are formed at the surface of original powder particles. Microhardness measurements revealed both artificial and natural ageing behavior similar to that observed in ingot metallurgy material. The minimum microhardness of 81 HV, observed in the sample annealed at 300 °C, reflects the presence of coarse particles. The peak microhardness of 160 HV was observed in the sample annealed at 500 °C and then aged at room temperature. Compression tests confirmed high strength combined with sufficient plasticity. Annealing even at 500 °C does not significantly influence the distribution of grain sizes—about 45% of the area is occupied by grains with the size below 10 µm.

  12. Transient processes in high-power gas laser amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Bakanina, L.P.; Belonuchkin, V.E.; Kozel, S.M.; Kuznetsov, E.P.; Lokshin, T.R.

    1980-01-01

    A system of equations is derived which describes the laser onset process in a high-gain gas laser amplifier. The intrinsic, amplified spontaneous emission plays the determinate role in the transient processes. The transient processes for a HeFe (3.39 micrometers) laser amplifier are calculated on a computer for three amplifier lengths (40, 80 and 200 centimeters) with the instantaneous onset of inversion.

  13. Bibliography of atomic and molecular processes. Volume 1, 1978-1981

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Farmer, B.J. (comps.)

    1982-10-01

    This annotated bibliography lists 10,676 works on atomic and molecular processes reported in publications dated 1978-1981. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the county of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  14. Bibliography of atomic and molecular processes. Volume 1, 1978-1981

    International Nuclear Information System (INIS)

    Barnett, C.F.; Crandall, D.H.; Farmer, B.J.

    1982-10-01

    This annotated bibliography lists 10,676 works on atomic and molecular processes reported in publications dated 1978-1981. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the county of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  15. Overview of gas processing fee practices in Canada

    International Nuclear Information System (INIS)

    Swenson, R.W.

    1999-01-01

    The negotiation of gas processing fees from the perspective of the natural gas producer are summarized. Some of the topics discussed are: evaluation of fee proposals, capital cost estimates, pipeline capital fees, compressor capital fees, plant capital fees, upper and lower limits on fees, (JP-90 and JP-95), negotiation options, operating costs, production allocation, and processing agreements. Several case studies involving one or more of these items were reviewed by way of illustration. The importance of documentation of all agreements, changes to agreements, commitments, etc., was stressed

  16. COIL Operation with All-Gas Chemical Generation of Atomic Iodine

    National Research Council Canada - National Science Library

    Kodymova, Jarmila

    2005-01-01

    ...) Experimental investigation of kinetics of atomic iodine generation via F atoms based on the chemical reaction of F2 with NO, and a sequential reaction of F with HI performed on a small-scale device...

  17. Inelastic Processes in the Interaction of an Atom with an Ultrashort Electromagnetic Pulse

    International Nuclear Information System (INIS)

    Matveev, V.I.; Gusarevich, E.S.; Pashev, I.N.

    2005-01-01

    Electron transitions occurring during the interaction of a heavy relativistic atom with a spatially inhomogeneous ultrashort electromagnetic pulse are considered by solving the Dirac equation. The corresponding transition probabilities are expressed in terms of known inelastic atomic form factors, which are widely used in the theory of relativistic collisions between charged particles and atoms. By way of example, the inelastic processes accompanying the interaction of ultrashort pulses with hydrogen-like atoms are considered. The probabilities of ionization and production of a bound-free electron-positron pair on a bare nucleus, which are accompanied by the formation of a hydrogen-like atom in the final state and a positron in the continuum, are calculated. The developed technique makes it possible to take into account exactly not only the spatial inhomogeneity of an ultrashort electromagnetic pulse, but also the magnetic interaction

  18. An assessment of the Atomic Energy Control Board consultation process

    International Nuclear Information System (INIS)

    1984-03-01

    This report analyzes the consultation process followed by the AECB in discharging its responsibility for regulation development. It shows how the process could be improved by better targeting of the consultation towards groups that can be expected to provide valuable input. It also addresses the question of how best to convey to members of those groups the information they need before making comments on proposed regulatory changes. The study also looks at how effective the process is and at possible procedural improvements that might facilitate the preparation of comments by outside groups and improve the understanding among the public of the role played by the AECB and of the issues surrounding nuclear facilities and the use and handling of prescribed substances

  19. Novel Fe-based nanocrystalline powder cores with excellent magnetic properties produced using gas-atomized powder

    Science.gov (United States)

    Chang, Liang; Xie, Lei; Liu, Min; Li, Qiang; Dong, Yaqiang; Chang, Chuntao; Wang, Xin-Min; Inoue, Akihisa

    2018-04-01

    FeSiBPNbCu nanocrystalline powder cores (NPCs) with excellent magnetic properties were fabricated by cold-compaction of the gas-atomized amorphous powder. Upon annealing at the optimum temperature, the NPCs showed excellent magnetic properties, including high initial permeability of 88, high frequency stability up to 1 MHz with a constant value of 85, low core loss of 265 mW/cm3 at 100 kHz for Bm = 0.05 T, and superior DC-bias permeability of 60% at a bias field of 100 Oe. The excellent magnetic properties of the present NPCs could be attributed to the ultrafine α-Fe(Si) phase precipitated in the amorphous matrix and the use of gas-atomized powder coated with a uniform insulation layer.

  20. Collision lifetimes of polyatomic molecules at low temperatures: benzene-benzene vs benzene-rare gas atom collisions.

    Science.gov (United States)

    Cui, Jie; Li, Zhiying; Krems, Roman V

    2014-10-28

    We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom-molecule interaction. We then compare the results of the atom-benzene calculations with those for benzene-benzene collisions. The comparison illustrates that the mean lifetimes of the benzene-benzene collision complexes are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene-benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.

  1. Atomic Data on Inelastic Processes in Calcium–Hydrogen Collisions

    Science.gov (United States)

    Belyaev, A. K.; Voronov, Y. V.; Yakovleva, S. A.; Mitrushchenkov, A.; Guitou, M.; Feautrier, N.

    2017-12-01

    Inelastic cross sections and rate coefficients in Ca + H and Ca+ + H‑ collisions for all transitions between the 17 lowest covalent states plus one ionic molecular state are calculated based on the most recent ab initio adiabatic potentials for the 11 lowest molecular states, as well as on the model asymptotic potentials for higher-lying states, including the ground ionic molecular state. Nuclear dynamics is treated by the probability-current method and the multichannel formulas for the collision energy range 0.01–100 eV. The rates are computed for mutual neutralization, ion-pair formation, and (de-)excitation processes for the temperature range T = 1000–10,000 K. The calculations single out the partial processes with large and moderate rate coefficients. The largest rates correspond to the mutual neutralization into the {Ca}(4s5s{}3S), {Ca}(4s5p{}3P^\\circ ), {Ca}(4s5s{}1S), and {Ca}(4s5p{}{1}P^\\circ ) final states; at T = 6000 K the largest value is 5.50 × 10‑8 cm3 s‑1 for {Ca}(4s5s{}3S). Among the (de-)excitation processes, the largest rate coefficient corresponds to the {Ca}(4s5s{}1S)\\to {Ca}(4s5s{}3S) transition; at T = 6000 K, the largest rate has the value of 8.46 × 10‑9 cm3 s‑1.

  2. The current investment climate for midstream gas processing assets

    International Nuclear Information System (INIS)

    Brouwer, R.J.

    1999-01-01

    Topics discussed in this paper dealing with the current investment climate for midstream gas processing assets include: (1) strategic reasons to retain or divest midstream assets, (2) available options for midstream asset divestment, (3) midstream market fundamentals, and (4) financial performance of midstream companies. There are some 700 gas plants in Alberta at present, of which about 20 per cent are owned by midstream companies . About one half of the plants are smaller than 12.5 MMCFD which represent inefficient use of resources; a clear indication that there are substantial opportunities for consolidation. 1 tab., 4 figs

  3. Slag processing system for direct coal-fired gas turbines

    Science.gov (United States)

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

  4. Gas permeation process for post combustion CO2 capture

    International Nuclear Information System (INIS)

    Pfister, Marc

    2017-01-01

    CO 2 Capture and Storage (CCS) is a promising solution to separate CO 2 from flue gas, to reduce the CO 2 emissions in the atmosphere, and hence to reduce global warming. In CCS, one important constraint is the high additional energy requirement of the different capture processes. That statement is partly explained by the low CO 2 fraction in the inlet flue gas and the high output targets in terms of CO 2 capture and purity (≥90%). Gas permeation across dense membrane can be used in post combustion CO 2 capture. Gas permeation in a dense membrane is ruled by a mass transfer mechanism and separation performance in a dense membrane are characterized by component's effective permeability and selectivity. One of the newest and encouraging type of membrane in terms of separation performance is the facilitated transport membrane. Each particular type of membrane is defined by a specific mass transfer law. The most important difference to the mass transfer behavior in a dense membrane is related to the facilitated transport mechanism and the solution diffusion mechanism and its restrictions and limitations. Permeation flux modelling across a dense membrane is required to perform a post combustion CO 2 capture process simulation. A CO 2 gas permeation separation process is composed of a two-steps membrane process, one drying step and a compression unit. Simulation on the energy requirement and surface area of the different membrane modules in the global system are useful to determine the benefits of using dense membranes in a post combustion CO 2 capture technology. (author)

  5. Reemission spectra and inelastic processes at interaction of attosecond and shorter duration electromagnetic pulses with atoms

    Directory of Open Access Journals (Sweden)

    Makarov D.N.

    2017-01-01

    Full Text Available Inelastic processes and the reemission of attosecond and shorter electromagnetic pulses by atoms have been considered within the analytical solution of the Schrödinger equation in the sudden perturbation approximation. A method of calculations with the exact inclusion of spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in the reemission processes has been developed. The probabilities of inelastic processes and spectra of reemission of ultrashort electromagnetic pulses by one- and many-electron atoms have been calculated. The results have been presented in the form of analytical formulas.

  6. Off-shell distortions of multichannel atomic processes

    Science.gov (United States)

    Barrachina, R. O.; Clauser, C. F.

    2017-10-01

    Any multichannel problem can be reduced to a succession of two-body events. However, these basic building blocks of many-body theories do not correspond to elastic processes but are off-the-energy-shell. In view of this difficulty, the great majority of the Distorted-Wave models includes a subsidiary approximation where these off-shell terms are arbitrarily forced to lie on the energy shell. At a first glance, since the energy deficiency is negligible for high enough velocities, the on-shell assumption seems to be completely justified. However, for the case of Coulomb interactions, the two-body off-shell distortions have branch-point singularities on the on-shell limit. In this article we demonstrate that these singularities might produce sizeable distortions of multiple scattering amplitudes, mainly when dealing with ion-ion collisions. Finally, we propose a method of including these distortions that might lead to better results that removing them completely.

  7. [A microbiological study of an underground gas storage in the process of gas extraction].

    Science.gov (United States)

    Ivanova, A E; Borzenkov, I A; Tarasov, A L; Milekhina, E I; Beliaev, S S

    2007-01-01

    The numbers of microorganisms belonging to ecologically significant groups and the rates of terminal microbial processes of sulfate reduction and methanogenesis were determined in the liquid phase of an underground gas storage (UGS) in the period of gas extraction. The total number of microorganisms in water samples from the operation and injection wells reached 2.1 x 10(6) cells/ml. Aerobic organotrophs (including hydrocarbon- and oil-oxidizing ones) and various anaerobic microorganisms (fermenting bacteria, methanogens, acetogens, sulfate-, nitrate-, and iron-reducing bacteria) were constituent parts of the community. The radioisotopic method showed that, in all the UGS units, the terminal stages of organic matter decomposition included sulfate reduction and methanogenesis, with the maximal rate of these processes recorded in the aqueous phase of above-ground technological equipment which the gas enters from the operation wells. A comparative analysis by these parameters of different anaerobic ecotopes, including natural hydrocarbon fields, allows us to assess the rate of these processes in the UGS as high throughout the annual cycle of its operation. The data obtained indicate the existence in the UGS of a bacterial community that is unique in its diversity and metabolic capacities and able to make a certain contribution to the geochemistry of organic and inorganic compounds in the natural and technogenic ecosystem of the UGS and thus influence the industrial gas composition.

  8. Technical characterization and economic evaluation of recovery of flare gas in various gas-processing plants

    International Nuclear Information System (INIS)

    Zolfaghari, Mohabbat; Pirouzfar, Vahid; Sakhaeinia, Hossein

    2017-01-01

    Today in the worldwide quest for production and economic preference, only industries will survive that have proper solutions for waste disposal and environmental pollution. In industrial applications, a blow down network of gases is used in order to control system pressure and safety instruments. At the end of this network, the excess gases are burnt in the flare tower, which have severe consequences on the environment. Different methods have been proposed and several alternatives have been introduced for reduction and recovery of flaring gases. In this paper, three methods including gas to liquid (GTL), gas turbines generation (GTG) and gas to ethylene (GTE) are introduced and compared with the best method from economic point of view being identified. For this purpose, a natural gas sample is taken from Asalloyeh Refinery Plant and the process has been simulated using Aspen HYSYS. Meanwhile, estimation of the capital and operating costs and evaluation of the processes involved were made using Aspen Capital Cost Estimator. According to the results obtained, production of the electric power from flaring gases is one of the most economical methods. GTG method, with an annual profit of about 480e+006 $, has a greater ROR percent. - Highlights: • Three methods including GTL, GTG and GTE are developed for flare gas recovery. • The processes has been simulated using Aspen HYSYS. • Estimation of the capital and operating costs of the processes were made. • According to the results obtained, GTG is one of the most economical methods. • GTE method has the highest annual benefit, it has the lowest ROR percent.

  9. Imaging initial formation processes of nanobubbles at the graphite-water interface through high-speed atomic force microscopy

    Science.gov (United States)

    Liao, Hsien-Shun; Yang, Chih-Wen; Ko, Hsien-Chen; Hwu, En-Te; Hwang, Ing-Shouh

    2018-03-01

    The initial formation process of nanobubbles at solid-water interfaces remains unclear because of the limitations of current imaging techniques. To directly observe the formation process, an astigmatic high-speed atomic force microscope (AFM) was modified to enable imaging in the liquid environment. By using a customized cantilever holder, the resonance of small cantilevers was effectively enhanced in water. The proposed high-speed imaging technique yielded highly dynamic quasi-two-dimensional (2D) gas structures (thickness: 20-30 nm) initially at the graphite-water interface. The 2D structures were laterally mobile mainly within certain areas, but occasionally a gas structure might extensively migrate and settle in a new area. The 2D structures were often confined by substrate step edges in one lateral dimension. Eventually, all quasi-2D gas structures were transformed into cap-shaped nanobubbles of higher heights and reduced lateral dimensions. These nanobubbles were immobile and remained stable under continuous AFM imaging. This study demonstrated that nanobubbles could be stably imaged at a scan rate of 100 lines per second (640 μm/s).

  10. Study of Rb-vapor coated cells — Atomic diffusion and cell curing process

    Science.gov (United States)

    Atutov, S. N.; Benimetskiy, F. A.; Plekhanov, A. I.; Sorokin, V. A.

    2016-02-01

    We present the results of a study on an optical-resonant cell filled by a vapor of the Rb atoms and coated with a non-stick polydimethylsiloxane (PDMS) polymer. We show that it is possible to define correctly the diffusion coefficient of the atoms in the coating using the geometric parameters of the cell and the vapor density in the cell volume only. The dependence of the diffusion coefficient on the cell curing time is presented. It is shown that the mysterious cell curing process can be explained in terms of the polymerization of the polymer coating by alkali atoms. The anomalous long dwell time of the Rb atoms on the PDMS coating is discussed as well.

  11. Inelastic processes in interaction of an atom with ultrashort pulse of an electromagnetic field

    International Nuclear Information System (INIS)

    Matveev, V.I.; Gusarevich, E.S.; Pashev, I.N.

    2005-01-01

    Electron transitions occurring when a heavy relativistic atom interacts with a spatially inhomogeneous ultrashort electromagnetic pulse are considered. Transition probabilities are expressed in terms of the known inelastic atomic form factors. By way of example, the inelastic processes accompanying the interaction of ultrashort pulses with hydrogen-like atoms are considered. The probabilities of ionization and production of a bound-free electron-positron pair on a bare nucleus, which are accompanied by the formation of a hydrogen-like atom in the final state and a positron in the continuum, are calculated. The developed technique makes it possible to take into exact account magnetic interaction besides spatial inhomogeneity of an ultrashort electromagnetic pulse [ru

  12. Comparison of SPS Processing Behavior between As Atomized and Cryomilled Aluminum Alloy 5083 Powder

    Science.gov (United States)

    Kellogg, Frank; McWilliams, Brandon; Sietins, Jennifer; Giri, Anit; Cho, Kyu

    2017-11-01

    Aluminum 5083 powder, both as atomized and cryomilled, was consolidated via spark plasma sintering (SPS). This study quantified and compared the effects of heating an aluminum alloy powder directly through Joule heating vs indirectly through thermal conduction from the die during SPS processing. When consolidated under the same processing conditions, the cryomilled powders showed faster heating rates and densification than the as atomized powder. It was also possible to process the cryomilled powder in a non-conductive die but not the as atomized powder. This could be ascribed to an improvement in electrical conductivity of the powder due to the break up and redistribution of surface oxides after cryomilling. The changes in behavior as a result of cryomilling and/or changing die material led to samples with different fracture morphologies and increased hardness values.

  13. Inelastic processes in atomic, molecular and chemical physics (in honour of Andrey K. Belyaev)

    Science.gov (United States)

    Barklem, Paul S.; Tscherbul, Timur V.

    2015-11-01

    This Special Issue is dedicated to Professor Andrey K. Belyaev, on the occasion of his 60th birthday and in celebration of his productive career in theoretical atomic, molecular, and chemical physics. It brings together 12 research studies of Inelastic Processes in Atomic, Molecular and Chemical Physics, a research area where Andrey himself made significant contributions. Inelastic processes are central to many different areas of physics, including atmospheric physics, astrophysics, and plasma physics to name a few, as well as in related technological applications such as lasers and fusion reactors. Quantitative understanding of the mechanisms of inelastic processes in atoms and molecules is therefore a problem of fundamental importance in physics, astrophysics, and chemistry. It is precisely this challenging problem that Andrey's research addresses using a broad arsenal of theoretical tools and techniques.

  14. OT2_mmeixner_4: Atomic and Molecular Gas Observations of Supernova Remnants in the Magellanic Clouds

    Science.gov (United States)

    Meixner, M.

    2011-09-01

    We propose PACs and SPIRE spectroscopy of three core-collapse supernova remnants (SNRs) in the Large and Small Magellanic Clouds (LMC, SMC): 1E0102-7219, N132D and N49. They are chosen to have a range of ages and degrees of interaction with nearby molecular clouds. We will use the spectroscopy to 1) constrain shock models, 2) judge the line contamination of broadband fluxes used to measure dust mass, 3) determine carbon and oxygen abundances and gas masses and 4) understand the CO ladder in cases where SNe shocks interact with molecular clouds. SNRs play a fundamental role in the evolution of galaxies: their ejecta drives the chemical evolution of the interstellar medium (ISM), and the energy liberated in their explosion drives the shock waves that generate bulk motions in the ISM, accelerate cosmic rays, regulate the star formation rate, and alters the size and properties of interstellar dust. In order to understand the life cycle of dust, which is the overarching science goal of the HERITAGE key program on the LMC and SMC, we must investigate SNR shocks in both the supernova ejecta and the ISM. SNRs radiate from radio to X-ray wavelengths, but far-infrared (FIR)/submm observations are crucial both because shock heated dust is visible in these bands and because the FIR lines in many cases dominate the cooling in SNRs. For the first time, Herschel provides the necessary sensitivity and spatial resolution to map LMC and SMC SNRs in several critical cooling lines in SNR shocks: [O I] 63um, [C II] 158 um and [O III] 88 um with PACS spectroscopy, and CO rotational lines with SPIRE/FTS. The atomic fine-structure transition lines in the FIR are important shock diagnostics particularly for the lower densities ( 50-500 cm^{-3}). The submm molecular lines will provide critical information on the interaction of SNRs with neighboring molecular clouds. Comparison of our results with Herschel studies of Galactic SNRs will reveal potential dependencies of SNR evolution on

  15. Simple and double two-colour photoionization of rare gas atoms

    International Nuclear Information System (INIS)

    Guyetand, O.

    2008-05-01

    The present work deals with simple and double ionization of rare gases by harmonic radiation produced by, and combined with, an intense femtosecond infrared laser. Technical aspects related to the use of harmonic generation and to the detection of ions and electrons in coincidence are exposed. Theoretical background for two colour, few-photon, single and double ionization is detailed. Spectra and angular distributions of the photoelectrons measured in helium are described and compared with TDSE (time-dependent Schroedinger equation) theoretical calculations, for various conditions of the harmonic photons. The shape of the angular distributions can be explained within the frame of two distinct analytic approaches: the perturbation theory and the soft-photon approximation. The double ionization measurements have been performed on xenon, a complex atom characterized by many possible routes leading to double ionization. The analysis of energy and angular correlations of the two photoelectrons proves the feasibility of such experiments that combines harmonic and infrared radiations. It shows that two step processes are dominant in the case of xenon. This work appeals for extending few-photon, double ionization experiments to lighter rare gases. (author)

  16. Chemical sensors and gas sensors for process control in biotechnology

    International Nuclear Information System (INIS)

    Williams, D.E.

    1988-04-01

    This paper is concerned with the possibilities for chemical measurement of the progress of biotechnological processes which are offered by devices already developed for other demanding applications. It considers the potential use of ultrasonic instrumentation originally developed for the nuclear industry, gas measurement methods from the fields of environmental monitoring and combustion control, nuclear instruments developed for the oil, mining and chemical industries, robotic systems and advanced control techniques. (author)

  17. Overview on collision processes of highly charged ions with atoms present status and problems

    International Nuclear Information System (INIS)

    Janev, R.K.

    1983-05-01

    This paper provides a brief discussion on the present status of the collision physics of highly charged ions with atoms. The emphasis is on the main achievements in understanding and describing the most important collision processes, and as charge transfer, ionization and Auger-type processes, and even more on those open problems which, due either to their scientific or practical importance, represent challenges to current research in this field. The paper concentrates on general ideas and problems whose development and solutions have advanced or will advance our basic understanding of the collision dynamics of multiply charged ions with atoms

  18. Ceramics in gas turbines - Powder and process characterization

    Science.gov (United States)

    Dutta, S.

    1977-01-01

    The role of powder and process characterization in producing high quality silicon nitride and silicon carbide components, for gas turbine applications, is described. Some of the intrinsic properties of various forms of Si3N4 and SiC are listed and limitations of such materials' availability have been pointed out. The essential features/parameters to characterize a batch of powder have been discussed including the standard techniques for such characterization. In process characterization, parameters in sintering, reaction sintering, and hot pressing processes are discussed including the factors responsible for strength limitations in ceramic bodies. It is inevitable that significant improvements in material properties can be achieved by reducing or eliminating the strength limiting factors with consistent powder and process characterization along with process control.

  19. Mapping trapped atomic gas with spin-orbit coupling to quantum Rabi-like model

    OpenAIRE

    Hu, Haiping; Chen, Shu

    2013-01-01

    We construct a connection of the ultracold atomic system in a harmonic trap with Raman-induced spin-orbit coupling to the quantum Rabi-like model. By mapping the trapped atomic system to a Rabi-like model, we can get the exact solution of the Rabi-like model following the methods to solve the quantum Rabi model. The existence of such a mapping implies that we can study the basic model in quantum optics by using trapped atomic gases with spin-orbit coupling.

  20. Atomic layer deposition of copper and copper silver films using an electrochemical process

    International Nuclear Information System (INIS)

    Fang, J.S.; Liu, Y.S.; Chin, T.S.

    2015-01-01

    This paper describes the formation and properties of Cu and Cu(Ag) films on a Ru/Si substrate using electrochemical atomic layer deposition. The process was performed layer-by-layer using underpotential deposition (UPD) and surface-limited redox reactions. The first Cu atomic layer was deposited on the Ru/Si substrate via UPD. Using UPD, atomic layered of Pb, which acts as a sacrificial layer, was applied on the Cu layer. Then, a Cu 2+ solution was flushed into the cell at an open-circuit potential, and the Pb layer was exchanged for Cu via redox replacements. The above sequences were repeated 500 times to form a Cu film. The Cu(Ag) alloy films were formed using Cu–UPD and Ag–UPD in predetermined sequences. The lowest electrical resistivity achieved was 3.6 and 2.2 μΩ cm for the Cu film and Cu(Ag) film, respectively, after annealing at 400 °C. Due to the self-limiting reactions, the process has the ability to deposit atomic layers to meet the requirement of Cu interconnects. - Highlights: • Layer-by-layer growth of Cu and Cu(Ag) films are prepared using electrochemical atomic layer deposition. • Cu coverage is from 0.33 to 0.51 ML for each deposition cycle in different NaCl concentrations. • The process can be applied in Cu interconnections

  1. Measuring gas temperature during spin-exchange optical pumping process

    Science.gov (United States)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  2. RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    LANCE HAYS

    2007-02-27

    A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

  3. Glovebox atmosphere detritiation process using gas separation membranes

    International Nuclear Information System (INIS)

    Le Digabel, M.; Truan, P.A.; Ducret, D.; Laquerbe, C.; Perriat, P.; Niepce, J.C.; Pelletier, T.

    2003-01-01

    The use of gas separation membranes in atmospheric detritiation systems has been studied. The main advantage of this new process is to reduce the number and/or the size of the equipment in comparison to conventional tritium removal systems. Owing to the constraints linked to tritium handling, the separation performances of several commercial hollow fiber organic membranes have been analyzed, under various operating conditions, with hydrogen/nitrogen or deuterium/nitrogen mixtures. The experiments are performed with small quantities of hydrogen or deuterium (5000 ppm). The experimental results allow to evaluate the separation efficiency of these membranes and to determine the appropriate operating conditions to apply to a membrane detritiation process

  4. Data correlation in on-line solid-phase extraction-gas chromatography-atomic emission/mass spectrometric detection of unknown microcontaminants

    NARCIS (Netherlands)

    Hankemeier, Th.; Rozenbrand, J.; Abhadur, M.; Vreuls, J.J.; Brinkman, U.A.Th.

    1998-01-01

    A procedure is described for the (non-target) screening of hetero-atom-containing compounds in tap and waste water by correlating data obtained by gas chromatography (GC) using atomic emission (AED) and mass selective (MS) detection. Solid-phase extraction (SPE) was coupled on-line to both GC

  5. Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.

    Science.gov (United States)

    Haley, Daniel; Bagot, Paul A J; Moody, Michael P

    2017-04-01

    In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.

  6. Study of the atomic rare gas behaviour by ab initio calculations

    International Nuclear Information System (INIS)

    Petit, Th.

    2002-01-01

    The atomic behaviour of helium and krypton in uranium dioxide has been studied using an ab initio simulation technique. Incorporation energies and solution energies of these two rare gases have been calculated. Krypton atoms are found to be insoluble in this nuclear fuel whatever the trap considered and their presence in the lattice induces swelling when they are located in interstitial sites or in oxygen vacancies. Due to its small atomic size, the predicted helium behaviour is very different. Indeed, helium is found to be soluble in stoichiometric and hyper-stoichiometric uranium dioxide in the presence of uranium vacancies or divacancies constituted by one uranium and one oxygen vacancy. Moreover helium atoms induce a lattice parameter contraction except in interstitial sites where a slight expansion is calculated. (author)

  7. The role of process intensification in cutting greenhouse gas emissions

    International Nuclear Information System (INIS)

    Reay, David

    2008-01-01

    Between 1900 and 1955 the average rate of global energy use rose from about 1 TW to 2 TW. Between 1955 and 1999 energy use rose from 2 TW to about 12 TW, and to 2006 a further 16% growth in primary energy use was recorded world-wide. There are recommendations by the UK Royal Commission on Environmental Pollution, subsequently supported by others in the UK, that we need to reduce CO 2 emissions by over 50% in order to stabilise their impact on global warming (CO 2 being the principal gas believed to be contributing to this phenomenon). One way in which we can address this is by judicious use of process intensification technology. Process intensification may be defined as: 'Any engineering development that leads to a substantially smaller, cleaner, safer and more energy-efficient technology.' It is most often characterised by a huge reduction in plant volume - orders of magnitude - but its contribution to reducing greenhouse gas emissions may also be significant. Potential energy savings due to investment in process intensification were studied by several UK organisations in the mid 1990s, to assist the UK Government in formulating a strategy on intensification. It is relevant to the themes of the PRES 07 Conference that process integration features in these analyses. Overall plant intensification in the UK was identified as having a technical potential of 40 PJ/year (about 1 million tonnes of oil equivalent/annum). The total potential energy savings due to investment in process intensification in a range of process unit operations were predicted to be over 74 PJ/year (1 PJ = 10 15 J). Projections for The Netherlands suggest that savings of 50-100 PJ/year should be achieved across chemicals and food processing by 2050. Substantial benefits to industry in the USA are highlighted by US Department of Energy studies. This paper relates by discussion and example process intensification to the main themes of the PRES 07 Conference, including process integration. It also

  8. Databases and coordinated research projects at the IAEA on atomic processes in plasmas

    International Nuclear Information System (INIS)

    Braams, Bastiaan J.; Chung, Hyun-Kyung

    2012-01-01

    The Atomic and Molecular Data Unit at the IAEA works with a network of national data centres to encourage and coordinate production and dissemination of fundamental data for atomic, molecular and plasma-material interaction (A+M/PMI) processes that are relevant to the realization of fusion energy. The Unit maintains numerical and bibliographical databases and has started a Wiki-style knowledge base. The Unit also contributes to A+M database interface standards and provides a search engine that offers a common interface to multiple numerical A+M/PMI databases. Coordinated Research Projects (CRPs) bring together fusion energy researchers and atomic, molecular and surface physicists for joint work towards the development of new data and new methods. The databases and current CRPs on A+M/PMI processes are briefly described here.

  9. The migration behavior of atomic clusters in early nanocrystalline process of soft magnetic Finemet alloy.

    Science.gov (United States)

    Wang, Yuxin; Li, Xiang; Zhang, Yu; Zhao, Guannan; Yan, Biao; Lu, Wei

    2010-11-01

    The Finemet alloys are commonly used as cores in transformers and generators, stress and field sensors in technological application for their excellent soft magnetic characteristics. To clarify the nanocrystallization mechanism of Finemet especially about the atomic migration in early stage is very essential for developing their distinctive characteristics. In this study, we investigate the migration behavior of atoms in order to clarify the mechanism of the early-stage nanocrystallization in amorphous Finemet alloys. The Fe(73.5)Si(13.5)B9Nb3Cu1 amorphous ribbons were prepared by single-roller melt-spinning process in argon atmosphere, and then annealed at 350 degrees C-400 degrees C for 10 minutes in vacuum. The atom force microscope (AFM) and the coincidence Doppler broadening spectra (CDB) were used to characterize the migration behavior of different atoms in Fe(73.5)Si(13.5)B9Nb3Cu1 amorphous alloy during the early-stage nanocrystallization. The X-ray diffraction (XRD) patterns show that all annealed samples are in the amorphous state. But the AFM observation shows clearly that there are many small atomic clusters (nuclei) which distribute in the amorphous matrix of the annealed samples. With increasing annealing temperature, there is a significant increase in the amount of atomic clusters and a dramatic drop in the average size of clusters with very limited Cu contention in the samples, which reflect the structural evolution into more homogeneity. The CDB spectrum indicates that the peaks of positron annihilation spectrum are gradually reduced, which means the number of grain boundary and the defects in samples are gradually increased. It can be concluded that more defects are introduced by the formation of atomic clusters through atomic migration during the early-stage nanocrystallization in Fe(73.5)Si(13.5)B9Nb3Cu1 amorphous alloys.

  10. Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations

    Science.gov (United States)

    Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard

    2013-09-01

    Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory's BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release.

  11. Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations

    International Nuclear Information System (INIS)

    Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard

    2013-01-01

    Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory’s BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO 2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release

  12. Research and development prospects for the atomic uranium laser isotope separation process. Research report 442

    International Nuclear Information System (INIS)

    Janes, G.S.; Forsen, H.K.; Levy, R.H.

    1977-06-01

    Research and development activities are being conducted on many aspects of the atomic uranium laser isotope separation process. Extensive laser spectroscopy studies have been made in order to identify attractive multi-step selective ionization schemes. Using low density (10 10 atoms/cm 3 ) apparatus, the excited state spectra of atomic uranium have been investigated via multiple step laser excitation and photoionization studies using two, three and four pulsed lasers. Observation of the spectra was accomplished by observing the yield of 235 U and 238 U ions as a function of the wavelength, intensities and delays of the various lasers. These data yielded information on the photoexcitation and photoionizatin cross sections, and on the location, J values, lifetimes, isotope shifts and hyperfine structure of the various atomic levels of uranium. Experiments on selective ionization of uranium vapor by multiple step laser excitation followed by ion extraction at 10 13 atoms/cm 3 density have produced 6% enriched 235 U. These indicate that this process is well adapted to produce light water reactor fuel but less suitable for highly enriched material. Application has been made for license for a 1979 experimental facility to provide data for a mid-1980 commercial plant

  13. Electromagnetically induced transparency and ultraslow optical solitons in a coherent atomic gas filled in a slot waveguide.

    Science.gov (United States)

    Xu, Jin; Huang, Guoxiang

    2013-02-25

    We investigate the electromagnetically induced transparency (EIT) and nonlinear pulse propagation in a Λ-type three-level atomic gas filled in a slot waveguide, in which electric field is strongly confined inside the slot of the waveguide due to the discontinuity of dielectric constant. We find that EIT effect can be greatly enhanced due to the reduction of optical-field mode volume contributed by waveguide geometry. Comparing with the atomic gases in free space, the EIT transparency window in the slot waveguide system can be much wider and deeper, and the Kerr nonlinearity of probe laser field can be much stronger. We also prove that using slot waveguide ultraslow optical solitons can be produced efficiently with extremely low generation power.

  14. A high precision gas flow cell for performing in situ neutron studies of local atomic structure in catalytic materials.

    Science.gov (United States)

    Olds, Daniel; Page, Katharine; Paecklar, Arnold; Peterson, Peter F; Liu, Jue; Rucker, Gerald; Ruiz-Rodriguez, Mariano; Olsen, Michael; Pawel, Michelle; Overbury, Steven H; Neilson, James R

    2017-03-01

    Gas-solid interfaces enable a multitude of industrial processes, including heterogeneous catalysis; however, there are few methods available for studying the structure of this interface under operating conditions. Here, we present a new sample environment for interrogating materials under gas-flow conditions using time-of-flight neutron scattering under both constant and pulse probe gas flow. Outlined are descriptions of the gas flow cell and a commissioning example using the adsorption of N 2 by Ca-exchanged zeolite-X (Na 78-2x Ca x Al 78 Si 144 O 384 ,x ≈ 38). We demonstrate sensitivities to lattice contraction and N 2 adsorption sites in the structure, with both static gas loading and gas flow. A steady-state isotope transient kinetic analysis of N 2 adsorption measured simultaneously with mass spectrometry is also demonstrated. In the experiment, the gas flow through a plugged-flow gas-solid contactor is switched between N215 and N214 isotopes at a temperature of 300 K and a constant pressure of 1 atm; the gas flow and mass spectrum are correlated with the structure factor determined from event-based neutron total scattering. Available flow conditions, sample considerations, and future applications are discussed.

  15. A high precision gas flow cell for performing in situ neutron studies of local atomic structure in catalytic materials

    Science.gov (United States)

    Olds, Daniel; Page, Katharine; Paecklar, Arnold; Peterson, Peter F.; Liu, Jue; Rucker, Gerald; Ruiz-Rodriguez, Mariano; Olsen, Michael; Pawel, Michelle; Overbury, Steven H.; Neilson, James R.

    2017-03-01

    Gas-solid interfaces enable a multitude of industrial processes, including heterogeneous catalysis; however, there are few methods available for studying the structure of this interface under operating conditions. Here, we present a new sample environment for interrogating materials under gas-flow conditions using time-of-flight neutron scattering under both constant and pulse probe gas flow. Outlined are descriptions of the gas flow cell and a commissioning example using the adsorption of N2 by Ca-exchanged zeolite-X (Na78-2xCaxAl78Si144O384,x ≈ 38). We demonstrate sensitivities to lattice contraction and N2 adsorption sites in the structure, with both static gas loading and gas flow. A steady-state isotope transient kinetic analysis of N2 adsorption measured simultaneously with mass spectrometry is also demonstrated. In the experiment, the gas flow through a plugged-flow gas-solid contactor is switched between 15N2 and 14N2 isotopes at a temperature of 300 K and a constant pressure of 1 atm; the gas flow and mass spectrum are correlated with the structure factor determined from event-based neutron total scattering. Available flow conditions, sample considerations, and future applications are discussed.

  16. Process for dehydration of oregano using propane gas as fuel

    Directory of Open Access Journals (Sweden)

    Carlos O. Velásquez-Santos

    2014-08-01

    Full Text Available The article describes two important issues, the first is the process to design, implement and validate a mechanical dryer of oregano, using propane gas as fuel, and the second is the cost of the process of dehydrated, taking into account the cost of electric energy consumption by the fan and the cost of propane gas consumption by the heat exchanger. To achieve this, it was necessary review the state of the art and the study of the raw material (oregano, were established as premises of design the necessary technical specifications and the variables involved in the process, using conceptual methods and simulation to ensure that it complies with the ISO standard 7925:1999, which defines the requirements for the marketing of dried oregano and processed. Emphasis was made on the percentage of moisture that is 10%, the moisture of the product was found by the azeotropic distillation method, subsequently was validated the functionality and efficiency, comparing the results from an experimental design, then it was obtained the drying curve of oregano with the prototype of drying and it was checked if it meets ISO 7925:1999 standard and the NTC 4423 standard in order to obtain a final product dehydrated with the percentage of humidity appropriate.

  17. A CALCULATION OF SEMI-EMPIRICAL ONE-ELECTRON WAVE FUNCTIONS FOR MULTI-ELECTRON ATOMS USED FOR ELEMENTARY PROCESS SIMULATION IN NONLOCAL PLASMA

    Directory of Open Access Journals (Sweden)

    M. V. Tchernycheva

    2017-01-01

    Full Text Available Subject of Research. The paper deals with development outcomes for creation method of one-electron wave functions of complex atoms, relatively simple, symmetrical for all atom electrons and free from hard computations. The accuracy and resource intensity of the approach are focused on systematic calculations of cross sections and rate constants of elementary processes of inelastic collisions of atoms or molecules with electrons (ionization, excitation, excitation transfer, and others. Method. The method is based on a set of two iterative processes. At the first iteration step the Schrödinger equation was solved numerically for the radial parts of the electron wave functions in the potential of the atomic core self-consistent field. At the second iteration step the new approximationfor the atomic core field is created that uses found solutions for all one-electron wave functions. The solution optimization for described multiparameter problem is achieved by the use of genetic algorithm. The suitability of the developed method was verified by comparing the calculation results with numerous data on the energies of atoms in the ground and excited states. Main Results. We have created the run-time version of the program for creation of sets of one-electron wave functions and calculation of the cross sections and constants of collisional transition rates in the first Born approximation. The priori available information about binding energies of the electrons for any many-particle system for creation of semi-empirical refined solutions for the one-electron wave functions can be considered at any step of this procedure. Practical Relevance. The proposed solution enables a simple and rapid preparation of input data for the numerical simulation of nonlocal gas discharge plasma. The approach is focused on the calculation of discharges in complex gas mixtures requiring inclusion in the model of a large number of elementary collisional and radiation

  18. Preface: Photon and fast Ion induced Processes in Atoms, MOlecules and Nanostructures (PIPAMON)

    Science.gov (United States)

    Kövér, László

    2016-02-01

    This Special Issue contains selected papers of contributions presented in the International Workshop on Photon and fast Ion induced Processes in Atoms, MOlecules and Nanostructures (PIPAMON), held between March 24 and 26, 2015 in Debrecen, Hungary. The venue, the Aquaticum Thermal and Wellness Hotel provided a pleasant ;all-under-one-roof; environment for the event.

  19. COUPLED ATOMIZATION AND SPRAY MODELLING IN THE SPRAY FORMING PROCESS USING OPENFOAM

    DEFF Research Database (Denmark)

    Gjesing, Rasmus; Hattel, Jesper Henri; Fritsching, Udo

    2009-01-01

    The paper presents a numerical model capable of simulating the atomization, break-up and in-flight spray phenomena in the spray forming process. The model is developed and implemented in the freeware code openFOAM. The focus is on studying the coupling effect of the melt break-up phenomena...

  20. Retrofit design of a boil-off gas handling process in liquefied natural gas receiving terminals

    International Nuclear Information System (INIS)

    Park, Chansaem; Song, Kiwook; Lee, Sangho; Lim, Youngsub; Han, Chonghun

    2012-01-01

    Generation of Boil-off gas (BOG) in liquefied natural gas (LNG) receiving terminals considerably affects operating costs and the safety of the facility. For the above reasons, a proper BOG handling process is a major determinant in the design of a LNG receiving terminal. This study proposes the concept of a retrofit design for a BOG the handling process using a fundamental analysis. A base design was determined for a minimum send-out case in which the BOG handling becomes the most difficult. In the proposed design, the cryogenic energy of the LNG stream is used to cool other streams inside the process. It leads to a reduction in the operating costs of the compressors in the BOG handling process. Design variables of the retrofit design were optimized with non-linear programming to maximize profitability. Optimization results were compared with the base design to show the effect of the proposed design. The proposed design provides a 22.7% energy saving ratio and a 0.176 year payback period. -- Highlights: ► A retrofit design of the BOG handling process was proposed to maximize energy savings. ► The superstructure of the proposed design was developed based on a thermodynamic analysis. ► In the proposed design, the cryogenic energy of the LNG stream was utilized to directly cool down the BOG streams. ► The payback period of the proposed design is sufficiently short for investment in industry.

  1. The rate coefficients for the processes of (n - n')-mixing in collisions of Rydberg atoms H*(n) with H(1s) atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlov, A A [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Ignjatovic, Lj M [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Djuric, Z [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom); Ljepojevic, N N [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom)

    2004-11-28

    This paper presents the results of semi-classical calculations of rate coefficients of (n - n')-mixing processes in collisions of Rydberg atoms H*(n) with H(1s) atoms. These processes have been modelled by the mechanism of the resonant energy exchange within the electron component of the H*(n) + H collisional system. The calculations of the rate coefficients, based on this model, were performed for the series of principal quantum numbers, n and n', and atomic, T{sub a}, and electronic, T{sub e}, temperatures. It was shown that these processes can be of significant influence on the populations of Rydberg atoms in weakly ionized plasmas (ionization degree {approx}<10{sup -4}), and therefore have to be included in appropriate models of such plasmas.

  2. The rate coefficients for the processes of (n - n')-mixing in collisions of Rydberg atoms H*(n) with H(1s) atoms

    International Nuclear Information System (INIS)

    Mihajlov, A A; Ignjatovic, Lj M; Djuric, Z; Ljepojevic, N N

    2004-01-01

    This paper presents the results of semi-classical calculations of rate coefficients of (n - n')-mixing processes in collisions of Rydberg atoms H*(n) with H(1s) atoms. These processes have been modelled by the mechanism of the resonant energy exchange within the electron component of the H*(n) + H collisional system. The calculations of the rate coefficients, based on this model, were performed for the series of principal quantum numbers, n and n', and atomic, T a , and electronic, T e , temperatures. It was shown that these processes can be of significant influence on the populations of Rydberg atoms in weakly ionized plasmas (ionization degree ∼ -4 ), and therefore have to be included in appropriate models of such plasmas

  3. 75 FR 71733 - Requirements for Measurement Facilities Used for the Royalty Valuation of Processed Natural Gas

    Science.gov (United States)

    2010-11-24

    ...' representatives, including lessees who process natural gas extracted from a Federal lease in the Gulf of Mexico... Used for the Royalty Valuation of Processed Natural Gas AGENCY: Bureau of Ocean Energy Management..., flare gas, condensate, natural gas liquids, or any other products recovered from Federal production...

  4. Low-noise humidity controller for imaging water mediated processes in atomic force microscopy

    Science.gov (United States)

    Gaponenko, I.; Gamperle, L.; Herberg, K.; Muller, S. C.; Paruch, P.

    2016-06-01

    We demonstrate the construction of a novel low-noise continuous flow humidity controller and its integration with a commercial variable-temperature atomic force microscope fluid cell, allowing precise control of humidity and temperature at the sample during nanoscale measurements. Based on wet and dry gas mixing, the design allows a high mechanical stability to be achieved by means of an ultrasonic atomiser for the generation of water-saturated gas, improving upon previous bubbler-based architectures. Water content in the flow is measured both at the inflow and outflow of the fluid cell, enabling the monitoring of water condensation and icing, and allowing controlled variation of the sample temperature independently of the humidity. To benchmark the performance of the controller, the results of detailed noise studies and time-based imaging of the formation of ice layers on highly oriented pyrolytic graphite are shown.

  5. Low-noise humidity controller for imaging water mediated processes in atomic force microscopy

    International Nuclear Information System (INIS)

    Gaponenko, I.; Gamperle, L.; Herberg, K.; Muller, S. C.; Paruch, P.

    2016-01-01

    We demonstrate the construction of a novel low-noise continuous flow humidity controller and its integration with a commercial variable-temperature atomic force microscope fluid cell, allowing precise control of humidity and temperature at the sample during nanoscale measurements. Based on wet and dry gas mixing, the design allows a high mechanical stability to be achieved by means of an ultrasonic atomiser for the generation of water-saturated gas, improving upon previous bubbler-based architectures. Water content in the flow is measured both at the inflow and outflow of the fluid cell, enabling the monitoring of water condensation and icing, and allowing controlled variation of the sample temperature independently of the humidity. To benchmark the performance of the controller, the results of detailed noise studies and time-based imaging of the formation of ice layers on highly oriented pyrolytic graphite are shown.

  6. The diffusion cross section for atomic hydrogen in helium gas at low temperature and the H-He potential

    International Nuclear Information System (INIS)

    Jochemsen, R.; Berlinsky, A.J.; Hardy, W.N.

    1984-01-01

    A calculation of the diffusion cross section Q sub(D) of hydrogen atoms in helium gas at low temperature is performed and compared with recent experimental results. The comparison allows an improved determination of the H-He potential. Calculations were done for three different potentials: our own empirical potential based on experimental high-energy scattering results and calculated long-range dispersion terms, which gives good results for Q sub(D) and total collision cross sections; a recently determined semi-empirical potential, and an ab initio calculated potential. All three potentials imply a strong temperature dependence of Q sub(D) for T < 1.5 K

  7. A Microstructural Investigation of Gas Atomized Raney Type Al-27.5 at.%Ni Catalyst Precursor Alloys

    OpenAIRE

    Mullis, AM; Bigg, TD; Adkins, NJ

    2015-01-01

    Quantitative image analysis has been used to investigate the phase composition of gas atomized powders of a Raney type Ni catalyst precursor alloys of composition Al-27.5 at.% Ni in the powder size range 150-212 μm. We find that there are considerable variations in phase composition both between powders from the same batch and as a function distance from the particle surface within individual particles. Such variations may have significant implications for the future production and uptake of ...

  8. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    Science.gov (United States)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  9. Atomic-scale processes revealing dynamic twin boundary strengthening mechanisms in face-centered cubic materials

    International Nuclear Information System (INIS)

    Yang, Z.Q.; Chisholm, M.F.; He, L.L.; Pennycook, S.J.; Ye, H.Q.

    2012-01-01

    We report experimental investigations on interactions/reactions between dislocations and twin boundaries in Al. The absorption of screw dislocations via cross-slip and the production of stair-rods via reactions with non-screw dislocations were verified by atomic resolution imaging. Importantly, the resulting partial dislocations moving along twin boundaries can produce secondary sessile defects. These immobile defects act as obstacles to other dislocations and also serve to pin the twin boundaries. These findings show the atomic-level dynamics of the dislocation–twin boundary processes and the unique strengthening mechanism of twin boundaries in face-centered cubic metals.

  10. Ultra fast atomic process in X-ray emission by inner-shell ionization

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Tajima, T.

    1998-03-01

    An ultra-fast atomic process together with X-ray emission by inner-shell ionization using high intensity (10{sup 18} W/cm{sup 2}) short pulse (20fs) X-ray is studied. A new class of experiment is proposed and a useful pumping source is suggested. In this method, it is found that the gain value of X-ray laser amounts to larger than 1000(1/cm) with use of the density of 10{sup 22}/cm{sup 3} of carbon atom. Electron impact ionization effect and initial density effect as well as intensity of pumping source effect are also discussed. (author)

  11. Gas Between the Stars

    Indian Academy of Sciences (India)

    The interstellar gas in galaxies is heated by stellar radiation and cosmic rays and it also cools through radiation. We take a detailed look at these processes in order to understand the thermal state of equilibrium of the interstellar gas. This gas also manifests itself in different 'phases'– molecular, neutral atomic and ionized ...

  12. ATOMIC-LEVEL MODELING OF CO2 DISPOSAL AS A CARBONATE MINERAL: A SYNERGETIC APPROACH TO OPTIMIZING REACTION PROCESS DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    A.V.G. Chizmeshya; M.J. McKelvy; J.B. Adams

    2001-11-01

    measurements is provided by computing, from first principles, the equilibrium structures, elastic, optical, and vibrational properties of Mg(OH){sub 2} (brucite), MgO (periclase), MgCO{sub 3} (magnesite), as well as the energetics of the dehydroxylation reaction (Mg(OH){sub 2} {yields} MgO + H{sub 2}O), and the reactivity of CO{sub 2} with MgO and Mg(OH){sub 2}. From these calculations, thermodynamic characteristics of the reaction conditions can be inferred. This kind of information, when integrated with the atomic level data obtained from experimental gas-solid dehydroxylation/carbonation studies, will be used to design optimized reaction processes leading to the practical and cost-effective sequestration of CO{sub 2} in mineral form.

  13. Intact Four-atom Organic Tetracation Stabilized by Charge Localization in the Gas Phase.

    Science.gov (United States)

    Yatsuhashi, Tomoyuki; Toyota, Kazuo; Mitsubayashi, Naoya; Kozaki, Masatoshi; Okada, Keiji; Nakashima, Nobuaki

    2016-10-05

    Several features distinguish intact multiply charged molecular cations (MMCs) from other species such as monocations and polycations: high potential energy, high electron affinity, a high density of electronic states with various spin multiplicities, and charge-dependent reactions. However, repulsive Coulombic interactions make MMCs quite unstable, and hence small organic MMCs are currently not readily available. Herein, we report that the isolated four-atom molecule diiodoacetylene survives after the removal of four electrons via tunneling. We show that the tetracation remains metastable towards dissociation because of the localization (91-95 %) of the positive charges on the terminal iodine atoms, ensuring minimum Coulomb repulsion between adjacent atoms as well as maximum charge-induced attractive dipole interactions between iodine and carbon. Our approach making use of iodines as the positively charged sites enables small organic MMCs to remain intact. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High-temperature gas-cooled reactors and process heat

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1980-01-01

    High-Temperature Gas-Cooled Reactors (HTGRs) are fueled with ceramic-coated microspheres of uranium and thorium oxides/carbides embedded in graphite blocks which are cooled with helium. Promising areas of HTGR application are in cogeneration, energy transport using Heat Transfer Salt, recovery of oils from oil shale, steam reforming of methane for chemical production, coal gasification, and in energy transfer using chemical heat jpipes in the long term. Further, HTGRs could be used as the energy source for hydrogen production through thermochemical water splitting in the long term. The potential market for Process Heat HTGRs is 100-200 large units by about the year 2020

  15. Acid gas control process and apparatus for waste fired incinerators

    International Nuclear Information System (INIS)

    Kubin, P.Z.; Stepan, J.E.

    1992-01-01

    This patent describes a process for reducing noxious emission produced in a waste material incinerator. It comprises incinerating solid waste material in a furnace section of the waste material incinerator; providing an additive to an additive supply storage unit; conveying the additive to an additive injection means that communicates with the furnace section of the waste material incinerator; injecting the additive into a turbulent reaction zone of the furnace section such that acid gas content, acid dewpoint temperature and the level of corrosion in the incinerator are reduced

  16. Families of atomic functions ch a, n ( x) and fup n ( x) in digital signal processing

    Science.gov (United States)

    Kravchenko, V. F.; Konovalov, Ya. Yu.; Pustovoit, V. I.

    2015-05-01

    A new class of weight functions constructed on the basis of family of atomic functions and ch a, n ( x) and fup n ( x) is proposed and substantiated. The study consists of three parts. In the first part, the definition of atomic functions and their convolutions are presented. In the second part, a definition of a new family of atomic functions ch a, n ( x) as convolutions of h a ( x) is given. In the third part, a family of weight functions is constructed by truncation of ch a, n ( x) to the effective support. If smoothening with classical windows is applied after the truncation combined weight functions will be received. The physical characteristics of the weight functions constructed by the direct truncation and in combination with the Hamming and Riesz windows are presented. The found functions can find wide application in problems of digital signal processing, restoration of images, radar, radiometry, radio astronomy, remote probing, and other physical domains.

  17. Intrinsic electronic defects and multiple-atom processes in the oxidic semiconductor Ga2O3

    Science.gov (United States)

    Schmeißer, Dieter; Henkel, Karsten

    2018-04-01

    We report on the electronic structure of gallium oxide (Ga2O3) single crystals as studied by resonant photoelectron spectroscopy (resPES). We identify intrinsic electronic defects that are formed by mixed-atomic valence states. We differentiate three coexisting defect states that differ in their electronic correlation energy and their spatial localization lengths. Their relative abundance is described by a fractional ionicity with covalent and ionic bonding contributions. For Ga2O3, our analyses of the resPES data enable us to derive two main aspects: first, experimental access is given to determine the ionicity based on the original concepts of Pauling and Phillips. Second, we report on multi-atomic energy loss processes in the Ga2p core level and X-ray absorption data. The two experimental findings can be explained consistently in the same context of mixed-atomic valence states and intrinsic electronic defects.

  18. Rare gas atomic number dependence of the hyperpolarizability for rare gas inserted fluorohydrides, HRgF (Rg = He, Ar, and Kr).

    Science.gov (United States)

    Liu, Zhen-Bo; Li, Zhi-Ru; Zuo, Ming-Hui; Li, Qing-Zhong; Ma, Fang; Li, Zong-Jun; Chen, Guang-hui; Sun, Chia-Chung

    2009-07-28

    The three structures of rare gas inserted fluorohydrides HRgF (Rg = He, Ar, and Kr) with all real frequencies are obtained at the QCISD(T)/aug-cc-pVTZ level. The static first hyperpolarizabilities (beta(0)) at the QCISD/aug-cc-pVQZ level are 8 a.u. (HF), 384 a.u. (HHeF), 737 a.u. (HArF), and 465 a.u. (HKrF). The beta(0) value remarkably increases by about 50-90 times from 8 a.u. (HF) to 384-737 a.u. (HRgF) due to the inserted rare gas (Rg). The Rg atomic number dependence of beta(0) for HRgF (Rg = He, Ar, and Kr) is found at the first time. The order of beta(0) is unmonotonic to be HHeFHKrF, but not monotonic (HHeFrare gas atomic number dependence of beta(0) is unmonotonic. Furthermore, as the order of beta(0) is consistent with that of the difference between the ground and excited-state dipole moments (Deltamu), the Deltamu may be one mainly controlling factor of beta(0). The nature of H-Rg bond is also explored that special short H-He bond of 0.811 A is only a half single bond due to its Wiberg bond index of 0.51, while the long H-Ar and H-Kr bonds are almost single bond with the Wiberg bond index of about 0.8.

  19. CO gas sensing by ultrathin tin oxide films grown by atomic layer deposition using transmission FTIR spectroscopy.

    Science.gov (United States)

    Du, X; Du, Y; George, S M

    2008-10-02

    Ultrathin tin oxide films were deposited on SiO2 nanoparticles using atomic layer deposition (ALD) techniques with SnCl4 and H2O2 as the reactants. These SnO(x) films were then exposed to O2 and CO gas pressure at 300 degrees C to measure and understand their ability to serve as CO gas sensors. In situ transmission Fourier transform infrared (FTIR) spectroscopy was used to monitor both the charge conduction in the SnO(x) films and the gas-phase species. The background infrared absorbance measured the electrical conductivity of the SnO(x) films based on Drude-Zener theory. O2 pressure was observed to decrease the SnO(x) film conductivity. Addition of CO pressure then increased the SnO(x) film conductivity. Static experiments also monitored the buildup of gas-phase CO2 reaction products as the CO reacted with oxygen species. These results were consistent with both ionosorption and oxygen-vacancy models for chemiresistant semiconductor gas sensors. Additional experiments demonstrated that O2 pressure was not necessary for the SnO(x) films to detect CO pressure. The background infrared absorbance increased with CO pressure in the absence of O2 pressure. These results indicate that CO can produce oxygen vacancies on the SnO(x) surface that ionize and release electrons that increase the SnO(x) film conductivity, as suggested by the oxygen-vacancy model. The time scale of the response of the SnO(x) films to O2 and CO pressure was also measured by using transient experiments. The ultrathin SnO(x) ALD films with a thickness of approximately 10 A were able to respond to O2 within approximately 100 s and to CO within approximately 10 s. These in situ transmission FTIR spectroscopy help confirm the mechanisms for chemiresistant semiconductor gas sensors.

  20. Saturated two-photon absorption by atoms in a perturber gas

    NARCIS (Netherlands)

    Nienhuis, G.

    We derive a general expression for the two-photon absorption spectrum of a state-atom excited by two monochromatic radiation fields. Collisional line-brodening effects are incorporated, and the result allows inclusion of profiles with a validity outside the impact limit. Results of previous work are

  1. Rate of reaction of dimethylmercury with oxygen atoms in the gas phase

    DEFF Research Database (Denmark)

    Egsgaard, Helge

    1986-01-01

    The rate constant for the reaction of atomic oxygen (O(3P)) with dimethylmercury has been measured at room temperature at a pressure of about 1 Torr using a fast flow system with electron paramagnetic resonance and mass spectrometric detection. Some reaction products were identified. The rate...

  2. Assessment of Atomic Charge Models for Gas-Phase Computations on Polypeptides.

    Science.gov (United States)

    Verstraelen, Toon; Pauwels, Ewald; De Proft, Frank; Van Speybroeck, Veronique; Geerlings, Paul; Waroquier, Michel

    2012-02-14

    The concept of the atomic charge is extensively used to model the electrostatic properties of proteins. Atomic charges are not only the basis for the electrostatic energy term in biomolecular force fields but are also derived from quantum mechanical computations on protein fragments to get more insight into their electronic structure. Unfortunately there are many atomic charge schemes which lead to significantly different results, and it is not trivial to determine which scheme is most suitable for biomolecular studies. Therefore, we present an extensive methodological benchmark using a selection of atomic charge schemes [Mulliken, natural, restrained electrostatic potential, Hirshfeld-I, electronegativity equalization method (EEM), and split-charge equilibration (SQE)] applied to two sets of penta-alanine conformers. Our analysis clearly shows that Hirshfeld-I charges offer the best compromise between transferability (robustness with respect to conformational changes) and the ability to reproduce electrostatic properties of the penta-alanine. The benchmark also considers two charge equilibration models (EEM and SQE), which both clearly fail to describe the locally charged moieties in the zwitterionic form of penta-alanine. This issue is analyzed in detail because charge equilibration models are computationally much more attractive than the Hirshfeld-I scheme. Based on the latter analysis, a straightforward extension of the SQE model is proposed, SQE+Q(0), that is suitable to describe biological systems bearing many locally charged functional groups.

  3. Long-range dispersion interactions. II. Alkali-metal and rare-gas atoms

    International Nuclear Information System (INIS)

    Mitroy, J.; Zhang, J.-Y.

    2007-01-01

    The dispersion coefficients for the van der Waals interactions between the rare gases Ne, Ar, Kr, and Xe and the low-lying states of Li, Na, K, and Rb are estimated using a combination of ab initio and semiempirical methods. The rare-gas oscillator strength distributions for the quadrupole and octupole transitions were derived by using high-quality calculations of rare-gas polarizabilities and dispersion coefficients to tune Hartree-Fock single-particle energies and expectation values

  4. Simultaneous multiphoton processes in the interaction of atoms with electromagnetic fields

    International Nuclear Information System (INIS)

    Levine, A.M.; Schreiber, W.M.; Weiszmann, A.N.

    1984-01-01

    It is impossible to obtain an exact description of multiphoton processes in the interaction of electromagnetic fields with atomic systems. Approximate approaches must be used to describe the physically different effects that can occur. One effect is the stepwise absorption/emission of many photons by a N-level system that evolves dynamically in between each absorption/emission. Another effect is described in the theories of Raman processes where the simultaneous absorption/emission of many photons is considered. In this paper, consideration is given to both processes allowing interference between the stepwise and simultaneous absorptions. An approximate Hamiltonian is obtained from the quantum mechanical multipole expansion. An exact solution of an atom-field system subject to this Hamiltonian will be presented. The extension of the method to multiple electromagnetic fields is discussed

  5. Surfactant process for promoting gas hydrate formation and application of the same

    Science.gov (United States)

    Rogers, Rudy E.; Zhong, Yu

    2002-01-01

    This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.

  6. Inhomogeneous feed gas processing in industrial ozone generation.

    Science.gov (United States)

    Krogh, Fabio; Merz, Reto; Gisler, Rudolf; Müller, Marco; Paolini, Bernhard; Lopez, Jose L; Freilich, Alfred

    2008-01-01

    The synthesis of ozone by means of dielectric barrier discharge (DBD) is extensively used in industry. Ozone generators available on the market differ in ozone production capacities, electrode arrangements and working parameters, but operate with a uniformly distributed filamentary discharge plasma pattern.In the presented work the benefits of inhomogeneous feed gas processing are explored. Causality between power induction, production efficiency and working parameters are investigated. Different electrode arrangements, evenly distributed within a given space parameter, were designed, simulated, manufactured and tested on a representative scale. A finite element model was utilized to simulate an inhomogeneous power induction pattern along the ozone generator tube. The simulation yielded the local power density, the local gas temperature gradient and the relative DBD packing density.Results show that the degree of filamentation turns out to be decisive, indicating a new potential by means of plasma tailoring. An arrangement with a pronounced power induction at the inlet of the ozone generator revealed several advantages over homogeneous plasma processing arrangements, for which an increase in robustness and a reduction in electrical power consumption are achieved. Copyright (c) IWA Publishing 2008.

  7. Carbon nanotubes randomly decorated with gold clusters: from nano2hybrid atomic structures to gas sensing prototypes

    International Nuclear Information System (INIS)

    Charlier, J-C; Zanolli, Z; Arnaud, L; Avilov, I V; Felten, A; Pireaux, J-J; Delgado, M; Demoisson, F; Reniers, F; Espinosa, E H; Ionescu, R; Leghrib, R; Llobet, E; Ewels, C P; Suarez-Martinez, I; Guillot, J; Mansour, A; Migeon, H-N; Watson, G E

    2009-01-01

    Carbon nanotube surfaces, activated and randomly decorated with metal nanoclusters, have been studied in uniquely combined theoretical and experimental approaches as prototypes for molecular recognition. The key concept is to shape metallic clusters that donate or accept a fractional charge upon adsorption of a target molecule, and modify the electron transport in the nanotube. The present work focuses on a simple system, carbon nanotubes with gold clusters. The nature of the gold-nanotube interaction is studied using first-principles techniques. The numerical simulations predict the binding and diffusion energies of gold atoms at the tube surface, including realistic atomic models for defects potentially present at the nanotube surface. The atomic structure of the gold nanoclusters and their effect on the intrinsic electronic quantum transport properties of the nanotube are also predicted. Experimentally, multi-wall CNTs are decorated with gold clusters using (1) vacuum evaporation, after activation with an RF oxygen plasma and (2) colloid solution injected into an RF atmospheric plasma; the hybrid systems are accurately characterized using XPS and TEM techniques. The response of gas sensors based on these nano 2 hybrids is quantified for the detection of toxic species like NO 2 , CO, C 2 H 5 OH and C 2 H 4 .

  8. Carbon nanotubes randomly decorated with gold clusters: from nano{sup 2}hybrid atomic structures to gas sensing prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Charlier, J-C; Zanolli, Z [Unite de Physico-Chimie et de Physique des Materiaux (PCPM), European Theoretical Spectroscopy Facility (ETSF), Universite Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve (Belgium); Arnaud, L; Avilov, I V; Felten, A; Pireaux, J-J [Centre de Recherche en Physique de la Matiere et du Rayonnement (PMR-LISE), Facultes Universitaires Notre-Dame de la Paix, 61 Rue de Bruxelles, B-5000 Namur (Belgium); Delgado, M [Sensotran, s.l., Avenida Remolar 31, E-08820 El Prat de Llobregat, Barcelona (Spain); Demoisson, F; Reniers, F [Service de Chimie Analytique et Chimie des Interfaces (CHANI), Universite Libre de Bruxelles, Faculte des Sciences, CP255, Boulevard du Triomphe 2, B-1050 Bruxelles (Belgium); Espinosa, E H; Ionescu, R; Leghrib, R; Llobet, E [Department of Electronic Engineering, Universitat Rovira i Virgili, Avenida Paisos Catalans 26, E-43007 Tarragona (Spain); Ewels, C P; Suarez-Martinez, I [Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes, 2 rue de la Houssiniere-BP 32229, F-44322 Nantes Cedex 3 (France); Guillot, J; Mansour, A; Migeon, H-N [Departement Science et Analyse des Materiaux, Centre de Recherche Public-Gabriel Lippmann, rue du Brill 41, L-4422 Belvaux (Luxembourg); Watson, G E, E-mail: jean-jacques.pireaux@fundp.ac.b [Vega Science Trust, Unit 118, Science Park SQ, Brighton, BN1 9SB (United Kingdom)

    2009-09-16

    Carbon nanotube surfaces, activated and randomly decorated with metal nanoclusters, have been studied in uniquely combined theoretical and experimental approaches as prototypes for molecular recognition. The key concept is to shape metallic clusters that donate or accept a fractional charge upon adsorption of a target molecule, and modify the electron transport in the nanotube. The present work focuses on a simple system, carbon nanotubes with gold clusters. The nature of the gold-nanotube interaction is studied using first-principles techniques. The numerical simulations predict the binding and diffusion energies of gold atoms at the tube surface, including realistic atomic models for defects potentially present at the nanotube surface. The atomic structure of the gold nanoclusters and their effect on the intrinsic electronic quantum transport properties of the nanotube are also predicted. Experimentally, multi-wall CNTs are decorated with gold clusters using (1) vacuum evaporation, after activation with an RF oxygen plasma and (2) colloid solution injected into an RF atmospheric plasma; the hybrid systems are accurately characterized using XPS and TEM techniques. The response of gas sensors based on these nano{sup 2}hybrids is quantified for the detection of toxic species like NO{sub 2}, CO, C{sub 2}H{sub 5}OH and C{sub 2}H{sub 4}.

  9. Data on the densification during sintering of binder jet printed samples made from water- and gas-atomized alloy 625 powders

    Directory of Open Access Journals (Sweden)

    Amir Mostafaei

    2017-02-01

    Full Text Available Binder jet printing (BJP is a metal additive manufacturing method that manufactures parts with complex geometry by depositing powder layer-by-layer, selectively joining particles in each layer with a polymeric binder and finally curing the binder. After the printing process, the parts still in the powder bed must be sintered to achieve full densification (A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016; A. Mostafaei, E. Stevens, E. Hughes, S. Biery, C. Hilla, M. Chmielus, 2016; A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016 [1–3]. The collected data presents the characterization of the as-received gas- and water-atomized alloy 625 powders, BJP processing parameters and density of the sintered samples. The effect of sintering temperatures on the microstructure and the relative density of binder jet printed parts made from differently atomized nickel-based superalloy 625 powders are briefly compared in this paper. Detailed data can be found in the original published papers by authors in (A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, M. Chmielus, 2017 [4].

  10. Quantum-orbit theory of high-order atomic processes in strong fields

    International Nuclear Information System (INIS)

    Milosevic, D.B.

    2005-01-01

    Full text: Atoms submitted to strong laser fields can emit electrons and photons of very high energies. These processes find a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits. The quantum-orbit formalism is particularly useful for high-order atomic processes in strong laser fields. For such multi-step processes there is an intermediate step during which the electron is approximately under the influence of the laser field only and can absorb energy from the field. This leads to the appearance of the plateau structures in the emitted electron or photon spectra. Usual examples of such processes are high-order harmonic generation (HHG) and high-order above threshold ionization (HATI). These structures were also observed in high-order above-threshold detachment, laser-assisted x-ray-atom scattering, laser-assisted electron-ion recombination, and electron-atom scattering. We will present high-order strong-field approximation (SFA) and show how the quantum-orbit formalism follows from it. This will be done for various above-mentioned processes. For HHG a classification of quantum orbits will be given [10) and generalized to the presence of a static field. The low-energy part of the HHG spectra and the enhancement of HHG near the channel closings can be explained taking into account a large number of quantum orbits. For HATI we will concentrate on the case of few-cycle laser pulse. The influence of the carrier-envelope relative phase on the HATI spectrum can easily be explained in terms of quantum orbits. The SFA and the quantum-orbit results will be compared with the results obtained by Dieter Bauer using ab initio solutions of the time-dependent Schroedinger equation. It will be shown that the Coulomb effects are important for low-energy electron spectra. Refs. 11 (author)

  11. Benefits of atomic-level processing by quasi-ALE and ALD technique

    Science.gov (United States)

    Honda, M.; Katsunuma, T.; Tabata, M.; Tsuji, A.; Oishi, T.; Hisamatsu, T.; Ogawa, S.; Kihara, Y.

    2017-06-01

    A new technology has been developed using the atomic layer etching (ALE) and atomic layer deposition (ALD) concepts. It has been applied to self-aligned contacts (SAC) and patterning processes, for the sub 7 nm technology generation. In the SAC process, ultra-high selectivity of SiO2 etching towards SiN is required, for which we have developed quasi-ALE technique for SiO2 etching. We were able to significantly improve the trade-off between the etching ability of SiO2 on the micro slit portions and SiN selectivity. Quasi-ALE precisely controls the reaction layer thickness of the surface, by controlling the radical flux and ion flux independently, and hence enables etching at lower ion energies (E i  <  250 eV). On the other hand, in the patterning processes, the shrinking of critical dimensions (CD) without loading is mandatory. Therefore, we developed a new process flow that combines ALD technique and etching. With this method, we were able to achieve CD shrinking at atomic-layer level precision for various patterns, without causing CD loading. In addition, we were also able to uniformly control the CD shrinkage amount across the whole wafer. This is because this technique takes advantage of the deposition step which is independent of the pattern density and the location on the wafer by self-limited reactions.

  12. Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing.

    Science.gov (United States)

    Giraud-Carrier, M; Hill, C; Decker, T; Black, J A; Schmidt, H; Hawkins, A

    2016-03-28

    A hollow-core waveguide structure for on-chip atomic spectroscopy is presented. The devices are based on Anti-Resonant Reflecting Optical Waveguides and may be used for a wide variety of applications which rely on the interaction of light with gases and vapors. The designs presented here feature short delivery paths of the atomic vapor into the hollow waveguide. They also have excellent environmental stability by incorporating buried solid-core waveguides to deliver light to the hollow cores. Completed chips were packaged with an Rb source and the F = 3 ≥ F' = 2, 3, 4 transitions of the D2 line in 85 Rb were monitored for optical absorption. Maximum absorption peak depths of 9% were measured.

  13. Kinetics and mechanism of the gas phase reaction of Cl atoms with iodobenzene

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Ponomarev, DA; Nielsen, OJ

    2001-01-01

    Smog chamber/FTIR techniques were used to study the kinetics and mechanism of the reaction of Cl atoms with iodobenzene (C6H5I) in 20-700 Torr of N-2, air, or O-2 diluent at 296 K. The reaction proceeds with a rate constant k(Cl + QH(5)I) = (3.3 +/- 0.7) x 10(-11) cm(3) molecule(-1) s(-1) to give...

  14. Saturated two-photon absorption by atoms in a perturber gas

    International Nuclear Information System (INIS)

    Nienhuis, G.

    1980-01-01

    We derive a general expression for the two-photon absorption spectrum of a three-state atom excited by two mono-chromatic radiation fields. Collisional line-broadening effects are incorporated, and the result allows inclusion of profiles with a validity outside the impact limit. Results of previous work are recovered in the appropriate limits. Saturation affects the different lines in the two-photon absorption spectrum in a different fashion. (orig.)

  15. Photonic quantum state transfer between a cold atomic gas and a crystal

    Science.gov (United States)

    Maring, Nicolas; Farrera, Pau; Kutluer, Kutlu; Mazzera, Margherita; Heinze, Georg; de Riedmatten, Hugues

    2017-11-01

    Interfacing fundamentally different quantum systems is key to building future hybrid quantum networks. Such heterogeneous networks offer capabilities superior to those of their homogeneous counterparts, as they merge the individual advantages of disparate quantum nodes in a single network architecture. However, few investigations of optical hybrid interconnections have been carried out, owing to fundamental and technological challenges such as wavelength and bandwidth matching of the interfacing photons. Here we report optical quantum interconnection of two disparate matter quantum systems with photon storage capabilities. We show that a quantum state can be transferred faithfully between a cold atomic ensemble and a rare-earth-doped crystal by means of a single photon at 1,552  nanometre telecommunication wavelength, using cascaded quantum frequency conversion. We demonstrate that quantum correlations between a photon and a single collective spin excitation in the cold atomic ensemble can be transferred to the solid-state system. We also show that single-photon time-bin qubits generated in the cold atomic ensemble can be converted, stored and retrieved from the crystal with a conditional qubit fidelity of more than 85 per cent. Our results open up the prospect of optically connecting quantum nodes with different capabilities and represent an important step towards the realization of large-scale hybrid quantum networks.

  16. Photonic quantum state transfer between a cold atomic gas and a crystal.

    Science.gov (United States)

    Maring, Nicolas; Farrera, Pau; Kutluer, Kutlu; Mazzera, Margherita; Heinze, Georg; de Riedmatten, Hugues

    2017-11-22

    Interfacing fundamentally different quantum systems is key to building future hybrid quantum networks. Such heterogeneous networks offer capabilities superior to those of their homogeneous counterparts, as they merge the individual advantages of disparate quantum nodes in a single network architecture. However, few investigations of optical hybrid interconnections have been carried out, owing to fundamental and technological challenges such as wavelength and bandwidth matching of the interfacing photons. Here we report optical quantum interconnection of two disparate matter quantum systems with photon storage capabilities. We show that a quantum state can be transferred faithfully between a cold atomic ensemble and a rare-earth-doped crystal by means of a single photon at 1,552  nanometre telecommunication wavelength, using cascaded quantum frequency conversion. We demonstrate that quantum correlations between a photon and a single collective spin excitation in the cold atomic ensemble can be transferred to the solid-state system. We also show that single-photon time-bin qubits generated in the cold atomic ensemble can be converted, stored and retrieved from the crystal with a conditional qubit fidelity of more than 85 per cent. Our results open up the prospect of optically connecting quantum nodes with different capabilities and represent an important step towards the realization of large-scale hybrid quantum networks.

  17. Silicon Nano fabrication by Atomic Force Microscopy-Based Mechanical Processing

    International Nuclear Information System (INIS)

    Miyake, Sh.; Wang, M.; Kim, J.

    2014-01-01

    This paper reviews silicon nano fabrication processes using atomic force microscopy (AFM). In particular, it summarizes recent results obtained in our research group regarding AFM-based silicon nano fabrication through mechanochemical local oxidation by diamond tip sliding, as well as mechanical, electrical, and electromechanical processing using an electrically conductive diamond tip. Microscopic three-dimensional manufacturing mainly relies on etching, deposition, and lithography. Therefore, a special emphasis was placed on nano mechanical processes, mechanochemical reaction by potassium hydroxide solution etching, and mechanical and electrical approaches. Several important surface characterization techniques consisting of scanning tunneling microscopy and related techniques, such as scanning probe microscopy and AFM, were also discussed.

  18. The Star Formation Rate Efficiency of Neutral Atomic-Dominated Hydrogen Gas in the Ooutskirts of Star-Forming Galaxies From z approx. 1 to z approx. 3

    Science.gov (United States)

    Rafelski, Marc; Gardner, Jonathan P.; Fumagalli, Michele; Neeleman, Marcel; Teplitz, Harry I.; Grogin, Norman; Koekemoer, Anton M.; Scarlata, Claudia

    2016-01-01

    Current observational evidence suggests that the star formation rate (SFR)efficiency of neutral atomic hydrogen gas measured in damped Ly(alpha) systems (DLAs) at z approx. 3 is more than 10 times lower than predicted by the Kennicutt-Schmidt (KS)relation. To understand the origin of this deficit, and to investigate possible evolution with redshift and galaxy properties, we measure the SFR efficiency of atomic gas at z approx. 1, z approx. 2, and z approx. 3 around star-forming galaxies. We use new robust photometric redshifts in the Hubble Ultra Deep Field to create galaxy stacks in these three redshift bins, and measure the SFR efficiency by combining DLA absorber statistics with the observed rest-frame UV emission in the galaxies' outskirts. We find that the SFR efficiency of H I gas at z > 1 is approx. 1%-3% of that predicted by the KS relation. Contrary to simulations and models that predict a reduced SFR efficiency with decreasing metallicity and thus with increasing redshift, we find no significant evolution in the SFR efficiency with redshift. Our analysis instead suggests that the reduced SFR efficiency is driven by the low molecular content of this atomic-dominated phase, with metallicity playing a secondary effect in regulating the conversion between atomic and molecular gas. This interpretation is supported by the similarity between the observed SFR efficiency and that observed in local atomic-dominated gas, such as in the outskirts of local spiral galaxies and local dwarf galaxies.

  19. Process and apparatus for sampling gas-entrained particulate materials

    Energy Technology Data Exchange (ETDEWEB)

    Giddens, A.B.

    1991-09-24

    This patent describes an apparatus for sampling a stream of gas-entrained particulate matter. It comprises a sample receiver; a sampling tube having an inlet exposed to the stream of gas-entrained particulate matter and extending to an outlet in the sample receiver; a source of pressurized gas; gas injection port between the inlet and outlet which introduces the pressurized gas into the sample tube and directs the gas toward the sample receiver, the introduction of the gas acting to decrease the gas pressure present at the inlet of the sampling tube to induce the particulate matter to be substantially continuously drawn into the tube and deposited into the receiver; means for adjusting the rate at which the particulate matter is drawn into the sampling tube; and vent means for venting gas introduced into the receiver while retaining the particulate matter in the receiver.

  20. Economic assessment of advanced flue gas desulfurization processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  1. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions. Updated 1997

    Energy Technology Data Exchange (ETDEWEB)

    Tawara, H.

    1997-04-01

    Following our previous compilations (IPPJ-AM-45 (1986), NIFS-DATA-7 (1990), NIFS-DATA-20 (1993)), bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1954-1996 are listed in the order of the publication year. For easy finding of the references for a combination of collision partners, a simple list is provided. (author)

  2. Process for the production of fuel gas from coal

    Science.gov (United States)

    Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.

    1982-01-01

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  3. Gas infall into atomic cooling haloes: on the formation of protogalactic disks and supermassive black holes at z > 10

    CERN Document Server

    Prieto, Joaquin; Haiman, Zoltan

    2013-01-01

    We have performed cosmo-hydro simulations using the RAMSES code to study atomic cooling (ACHs) haloes at z=10 with masses 5E7Msun10 to date. We examine the morphology, angular momentum (AM), thermodynamic, and turbulence of these haloes, in order to assess the prevalence of disks and supermassive black holes (SMBHs). We find no correlation between either the magnitude or the direction of the AM of the gas and its parent DM halo. Only 3 haloes form rotationally supported cores. Two of the most massive haloes form massive, compact overdense blobs. These blobs have an accretion rate ~0.5 Msun/yr (at a distance of 100 pc), and are possible sites of SMBH formation. Our results suggest that the degree of rotational support and the fate of the gas in a halo is determined by its large-scale environment and merger history. In particular, the two haloes forming blobs are located at knots of the cosmic web, cooled early on, and experienced many mergers. The gas in these haloes is lumpy and highly turbulent, with Mach N....

  4. HIGH STAR FORMATION RATES IN TURBULENT ATOMIC-DOMINATED GAS IN THE INTERACTING GALAXIES IC 2163 AND NGC 2207

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Kaufman, Michele [110 Westchester Rd, Newton, MA 02458 (United States); Bournaud, Frédéric; Juneau, Stéphanie [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif sur Yvette (France); Elmegreen, Debra Meloy [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Struck, Curtis [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Brinks, Elias, E-mail: bge@us.ibm.com, E-mail: kaufmanrallis@icloud.com, E-mail: frederic.bournaud@gmail.com, E-mail: stephanie.juneau@cea.fr, E-mail: elmegreen@vassar.edu, E-mail: struck@iastate.edu, E-mail: e.brinks@herts.ac.uk [University of Hertfordshire, Centre for Astrophysics Research, College Lane, Hatfield AL10 9AB (United Kingdom)

    2016-05-20

    CO observations of the interacting galaxies IC 2163 and NGC 2207 are combined with HI, H α , and 24 μ m observations to study the star formation rate (SFR) surface density as a function of the gas surface density. More than half of the high-SFR regions are HI dominated. When compared to other galaxies, these HI-dominated regions have excess SFRs relative to their molecular gas surface densities but normal SFRs relative to their total gas surface densities. The HI-dominated regions are mostly located in the outer part of NGC 2207 where the HI velocity dispersion is high, 40–50 km s{sup −1}. We suggest that the star-forming clouds in these regions have envelopes at lower densities than normal, making them predominantly atomic, and cores at higher densities than normal because of the high turbulent Mach numbers. This is consistent with theoretical predictions of a flattening in the density probability distribution function for compressive, high Mach number turbulence.

  5. HIGH STAR FORMATION RATES IN TURBULENT ATOMIC-DOMINATED GAS IN THE INTERACTING GALAXIES IC 2163 AND NGC 2207

    International Nuclear Information System (INIS)

    Elmegreen, Bruce G.; Kaufman, Michele; Bournaud, Frédéric; Juneau, Stéphanie; Elmegreen, Debra Meloy; Struck, Curtis; Brinks, Elias

    2016-01-01

    CO observations of the interacting galaxies IC 2163 and NGC 2207 are combined with HI, H α , and 24 μ m observations to study the star formation rate (SFR) surface density as a function of the gas surface density. More than half of the high-SFR regions are HI dominated. When compared to other galaxies, these HI-dominated regions have excess SFRs relative to their molecular gas surface densities but normal SFRs relative to their total gas surface densities. The HI-dominated regions are mostly located in the outer part of NGC 2207 where the HI velocity dispersion is high, 40–50 km s −1 . We suggest that the star-forming clouds in these regions have envelopes at lower densities than normal, making them predominantly atomic, and cores at higher densities than normal because of the high turbulent Mach numbers. This is consistent with theoretical predictions of a flattening in the density probability distribution function for compressive, high Mach number turbulence.

  6. Theory of Multiphoton Processes for Atoms and Ions in the Presence of a Static Electric Field

    Science.gov (United States)

    Bao, Min-Qi.

    Theoretical studies of both Multiphoton Detachment (MPD) and High Harmonic Generation (HHG) processes of ions and atoms in the presence of a static electric field are presented in this thesis. In the first part of this thesis, a symbolic algebra program is presented for the analytical evaluation of Feynman's path integral for an interaction of the form F(t) cdot r. Such an interaction governs the motion of an electron in a combination of laser fields and/or static electric fields. This Feynman's path integral is used in the rest of this thesis. In the second part of this thesis, theories of atomic effects on MPD of negative ions in a static electric field are developed by using the Green's function approach as well as the quasienergy approach. Atomic rescattering effects on both linearly and circularly polarized laser detachment cross sections are demonstrated. In the third part of this thesis, theories of HHG of atoms and ions in the presence of a static electric field are presented. The presence of the static electric field leads to the extension of the well-known HHG plateau and the production of even as well as odd high harmonics; the interplay between MPD and HHG is also illustrated. In the last part of this thesis, the classical and quantum mechanical motions of a charged particle in a Paul trap are investigated. The animation code in Mathematica of these motions is included.

  7. Collective effects in isolated atoms (many-body aspects of photoionization process)

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1983-01-01

    This chapter examines outer and intermediate many-electron shells and demonstrates that photoionization is of collective nature because in the atomic reaction to the external electromagnetic field at least all electrons of the ionized subshell take part. Performs the calculation of complex atom photoionization using random phase approximation with exchange (RPAE). Explains that in RPAE the ionization amplitude is presented as a sum of two terms, describing the direct knock-out and the induced one which is connected with a variation of the self-consistent field, caused by polarization of atomic shells under the action of the external field. Discusses collective effects in outer shells; deviation from RPAE prediction in outer shells; excitations ''two electrons-two holes'' and autoionizing states; collective effects in inner shells; and bremsstrahlung. Observes a large number of many-particle effects which manifest themselves practically in all atomic processes. Finds that by correcting and improving the one-electron approximation it becomes possible even in its frame to include much of what seems to be many-electron corrections

  8. Method and apparatus for quantum information processing using entangled neutral-atom qubits

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan Yu; Biedermann, Grant; Deutsch, Ivan

    2018-04-03

    A method for preparing an entangled quantum state of an atomic ensemble is provided. The method includes loading each atom of the atomic ensemble into a respective optical trap; placing each atom of the atomic ensemble into a same first atomic quantum state by impingement of pump radiation; approaching the atoms of the atomic ensemble to within a dipole-dipole interaction length of each other; Rydberg-dressing the atomic ensemble; during the Rydberg-dressing operation, exciting the atomic ensemble with a Raman pulse tuned to stimulate a ground-state hyperfine transition from the first atomic quantum state to a second atomic quantum state; and separating the atoms of the atomic ensemble by more than a dipole-dipole interaction length.

  9. Kinetics and mechanism of the gas phase reaction of Cl atoms with iodobenzene

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Ponomarev, DA; Nielsen, OJ

    2001-01-01

    Smog chamber/FTIR techniques were used to study the kinetics and mechanism of the reaction of Cl atoms with iodobenzene (C6H5I) in 20-700 Torr of N-2, air, or O-2 diluent at 296 K. The reaction proceeds with a rate constant k(Cl + QH(5)I) = (3.3 +/- 0.7) x 10(-11) cm(3) molecule(-1) s(-1) to give...... chlorobenzene (C6H5Cl) in a yield which is indistinguishable from 100 The title reaction proceeds via a displacement mechanism (probably addition followed by elimination). (C) 2001 Elsevier Science B.V. All rights reserved....

  10. Improved laser damage threshold performance of calcium fluoride optical surfaces via Accelerated Neutral Atom Beam (ANAB) processing

    Science.gov (United States)

    Kirkpatrick, S.; Walsh, M.; Svrluga, R.; Thomas, M.

    2015-11-01

    Optics are not keeping up with the pace of laser advancements. The laser industry is rapidly increasing its power capabilities and reducing wavelengths which have exposed the optics as a weak link in lifetime failures for these advanced systems. Nanometer sized surface defects (scratches, pits, bumps and residual particles) on the surface of optics are a significant limiting factor to high end performance. Angstrom level smoothing of materials such as calcium fluoride, spinel, magnesium fluoride, zinc sulfide, LBO and others presents a unique challenge for traditional polishing techniques. Exogenesis Corporation, using its new and proprietary Accelerated Neutral Atom Beam (ANAB) technology, is able to remove nano-scale surface damage and particle contamination leaving many material surfaces with roughness typically around one Angstrom. This surface defect mitigation via ANAB processing can be shown to increase performance properties of high intensity optical materials. This paper describes the ANAB technology and summarizes smoothing results for calcium fluoride laser windows. It further correlates laser damage threshold improvements with the smoothing produced by ANAB surface treatment. All ANAB processing was performed at Exogenesis Corporation using an nAccel100TM Accelerated Particle Beam processing tool. All surface measurement data for the paper was produced via AFM analysis on a Park Model XE70 AFM, and all laser damage testing was performed at Spica Technologies, Inc. Exogenesis Corporation's ANAB processing technology is a new and unique surface modification technique that has demonstrated to be highly effective at correcting nano-scale surface defects. ANAB is a non-contact vacuum process comprised of an intense beam of accelerated, electrically neutral gas atoms with average energies of a few tens of electron volts. The ANAB process does not apply mechanical forces associated with traditional polishing techniques. ANAB efficiently removes surface

  11. Development of biological coal gasification (MicGAS Process)

    Energy Technology Data Exchange (ETDEWEB)

    Walia, D.S.; Srivastava, K.C.

    1994-10-01

    The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

  12. CO₂ Capture Membrane Process for Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Toy, Lora [Research Triangle Inst. International, Research Triangle Park, NC (United States); Kataria, Atish [Research Triangle Inst. International, Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. International, Research Triangle Park, NC (United States)

    2012-04-01

    Because the fleet of coal-fired power plants is of such importance to the nation's energy production while also being the single largest emitter of CO₂, the development of retrofit, post-combustion CO₂ capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO₂ from plant flue gas with 95% captured CO₂ purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO₂-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft²) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO₂, NOx, etc.). Specific objectives were: - Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO₂ over N₂ and CO

  13. Kinetic study of the gas-phase reaction of atomic chlorine with a series of aldehydes

    Directory of Open Access Journals (Sweden)

    D. Rodríguez

    2005-01-01

    Full Text Available The reactions of Cl atoms with a series of unsaturated aldehydes have been investigated for the first time using a relative method. In order to obtain additional information for a qualitative structure versus reactivity discussion, we have also determined the rate coefficients for the reactions of atomic chlorine with their respective saturated aldehydes. These relative measurements were performed at room temperature and atmospheric pressure of air and N2, by using ethane, propene and 1-butene as reference compounds. The weighted average relative rate constants obtained, kCl±2σ (in units of cm3 molecule−1 s−1 were: trans-2-pentenal (1.31±0.19×10−10; trans-2-hexenal (1.92±0.22×10−10; trans-2-heptenal (2.40±0.29×10−10; n-pentanal (2.56±0.27×10−10; n-hexanal (2.88±0.37×10−10; n-heptanal (3.00±0.34×10−10. Finally, results and atmospheric implications are discussed and compared with the reactivity with OH and NO3 radicals.

  14. Ion trajectories in atom probe field ion microscopy and gas field ion sources

    CERN Document Server

    Castilho, C M C

    1999-01-01

    Trajectories of positive ions produced in a region close to a structured surface, modelled by spherical or spheroidal protrusions and kept at a positive electric potential with respect to a distant screen or detector are calculated. The results are discussed in comparison with similar practical situations produced by field ionization and field evaporation or desorption, such as those occurring in gas field ion sources, field ion microscopy and field desorption spectroscopy. (author)

  15. Co-Processing Coal and Natural Gas by the Hynol Process for Enhanced Methanol Production and Reduced CO2 Emissions

    National Research Council Canada - National Science Library

    Steinberg, Meyer

    1997-01-01

    ...) catalytic methanol synthesis. The Hynol Process is a total recycle process. Using a process simulation computer program, mass and energy balances and yields and efficiency data have been obtained for a range of natural gas to coal feedstock ratios...

  16. Effect of corona pre-treatment on the performance of gas barrier layers applied by atomic layer deposition onto polymer-coated paperboard

    International Nuclear Information System (INIS)

    Hirvikorpi, Terhi; Vaehae-Nissi, Mika; Harlin, Ali; Marles, Jaana; Miikkulainen, Ville; Karppinen, Maarit

    2010-01-01

    The effect of corona pre-treatment on the performance of Al 2 O 3 and SiO 2 gas barrier layers applied by atomic layer deposition onto polymer-coated paperboards was studied. Both polyethylene and polylactide coated paperboards were corona treated prior to ALD. Corona treatment increased surface energies of the paperboard substrates, and this effect was still observed after several days. Al 2 O 3 and SiO 2 films were grown on top of the polymer coatings at temperature of 100 deg. C using the atomic layer deposition (ALD) technique. For SiO 2 depositions a new precursor, bis(diethylamido) silane, was used. The positive effect of the corona pre-treatment on the barrier properties of the polymer-coated paperboards with the ALD-grown layers was more significant with polyethylene coated paperboard and with thin deposited layers (shorter ALD process). SiO 2 performed similarly to Al 2 O 3 with the PE coated board when it comes to the oxygen barrier, while the performance of SiO 2 with the biopolymer-coated board was more moderate. The effect of corona pre-treatment was negligible or even negative with the biopolymer-coated board. The ALD film growth and the effect of corona treatment on different substrates require further investigation.

  17. Determination of organic forms of mercury and arsenic in water and atmospheric samples by gas chromatography-atomic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Paudyn, A.; Van Loon, J.C.

    1986-10-01

    A study of the determination of dimethylmercury, methylmercury, ethylmercury, dimethylarsine and methylarsine in water and in atmospheric samples was carried out. The studied compounds were extracted from water by a benzene-toluene mixture, evaporated if necessary and analyzed by gas chromatography with atomic absorption spectrometry as a detector. A 45 cm column packed with Tenax was used. The detection limits of the procedure were: 4 ng Hg in dimethylmercury and methylmercury, 5 ng Hg in ethylmercury and 25 ng As in dimethyl and methylarsine in 1 l water. Methylmercury and ethylmercury were detected in Ontario natural waters and snow at 12-45 and 7-15 ng Hg l/sup -1/ respectively. The level of methylarsine varied from 40 to 90 ng l/sup -1/. Dimethylmercury and dimethylarsine were detected only in the Humber River.

  18. Post-collision interaction in Auger-electron emission of rare-gas atoms following electron-impact ionization

    Science.gov (United States)

    Ishii, H.; Iketaki, Y.; Watabe, T.; Takayanagi, T.; Wakiya, K.; Suzuki, H.; Koike, F.

    1991-01-01

    A study of post-collision interaction has been carried out experimentally for Auger-electron emission of rare-gas atoms following electron-impact ionization. Spectra of the Xe N5O23O23 (1S0), Kr M5N1N23 (1P1), and Ar L3M23M23 (1S0) Auger electrons have been measured changing the electron-impact energy from slightly above the threshold of the ionization to a few kilo-electron-volts. The Auger line shape has been analyzed using a profile formula that includes the finiteness of the velocities of all the cooperating electrons. Moreover, the analysis has partly considered the possible energy distribution of the scattered primary electron and the ejected secondary electron, due to the sharing of excess energy between them. The post-collision interaction effect is found to be absent at high excess energies.

  19. Solution processed Al doped ZnO film fabrication through electrohydrodynamic atomization

    International Nuclear Information System (INIS)

    Muhammad, Nauman Malik; Duraisamy, Navaneethan; Dang, Hyun-Woo; Jo, Jeongdai; Choi, Kyung-Hyun

    2012-01-01

    In this study, highly transparent, 250 nm thick films of Aluminum doped Zinc-oxide (ZnO:Al) are achieved on glass substrates at ambient conditions through a solution processing technique called electrohydrodynamic atomization. A 10 wt.% monodispersed solution containing 6% ZnO:Al nanoparticles (ZnO/Al 2 O 3 ) in ethanol has been synthesized first and then used in the deposition process as the working solution. Pure and uniform transparent films with an average transmittance of 93% have been deposited with crystal structure exhibiting both zincite and gahnite phases. Surface composition purity has been confirmed using X-ray photoelectron spectroscopy technique and the clear indication of Zn-2p and Al-2p peaks confirms surface integrity. Fourier Transform Infrared analysis further confirms the presence of aluminum in the samples. The electrical properties are studied by recording and analyzing the current–voltage (I–V) measurements and the resistivity has been estimated from the slope of the IV-curve which is approximately 25 mΩ.cm. The layer roughness has been characterized using atomic force microscopy. - Highlights: ►Aluminum doped Zinc oxide (ZnO:Al) films are made via electrohydrodynamic atomization. ►ZnO:Al nano-particle ink is used to form thin films in single step at room conditions. ►Scanning electron and atomic force microscopes confirm fine layer characteristics. ►X-ray photoelectron and Fourier Transform-Infrared spectroscope confirm film purity. ►Transparent and conductive films have been fabricated with wurtzite structure.

  20. Gas-centrifuge unit and centrifugal process for isotope separation

    International Nuclear Information System (INIS)

    Stark, T.M.

    1979-01-01

    An invention involving a process and apparatus for isotope-separation applications such as uranium-isotope enrichment is disclosed which employs cascades of gas centrifuges. A preferred apparatus relates to an isotope-enrichment unit which includes a first group of cascades of gas centrifuges and an auxiliary cascade. Each cascade has an input, a light-fraction output, and a heavy-fraction output for separating a gaseous-mixture feed including a compound of a light nuclear isotope and a compound of a heavy nuclear isotope into light and heavy fractions respectively enriched and depleted in the light isotope. The cascades of the first group have at least one enriching stage and at least one stripping stage. The unit further includes means for introducing a gaseous-mixture feedstock into each input of the first group of cascades, means for withdrawing at least a portion of a product fraction from the light-fraction outputs of the first group of cascades, and means for withdrawing at least a portion of a waste fraction from the heavy-fraction outputs of the first group of cascades. The isotope-enrichment unit also includes a means for conveying a gaseous-mixture from a light-fraction output of a first cascade included in the first group to the input of the auxiliary cascade so that at least a portion of a light gaseous-mixture fraction produced by the first group of cascades is further separated into a light and a heavy fraction by the auxiliary cascade. At least a portion of a product fraction is withdrawn from the light fraction output of the auxiliary cascade. If the light-fraction output of the first cascade and the heavy-fraction output of the auxiliary cascade are reciprocal outputs, the concentraton of the light isotope in the heavy fraction produced by the auxiliary cascade essentially equals the concentration of the light isotope in the gaseous-mixture feedstock

  1. Natural gas from coal : the community consultation process in Alberta

    International Nuclear Information System (INIS)

    Robinson, G.

    2005-01-01

    The community consultation process was examined with reference to natural gas from coal (NGC) development in Alberta. It was suggested that NGC has a huge potential in Canada, and can be developed in an environmentally responsible manner which considers all stakeholders. However, water supply shortages and the effects of development on groundwater remain key stakeholder concerns in Alberta. Issues concerning water protection and handling were discussed, along with issues concerning surface disruption during resource development activities. An outline of road needs and pipeline corridors was presented. An outline of a typical NGC compressor station were given. Issues concerning public anxiety over air quality were discussed with reference to flaring and landowner complaints. It was noted NGC is not sour and contains no liquid hydrocarbons or foreign contaminants. A review of government regulations and best practices was presented with regards to flaring. Multi-stakeholder advisory committee practices were reviewed. It was concluded that Alberta is currently using a variety of consultation processes to enable better communications between industry and stakeholders. figs

  2. Electrochemical atomic layer deposition of Pt nanostructures on fuel cell gas diffusion layer

    CSIR Research Space (South Africa)

    Modibedi, M

    2010-12-01

    Full Text Available technologies including gasoline internal combustion engines. The membrane electrode assembly (MEA) consists of a membrane, two dispersed catalyst layers, and two gas diffusion layers (GDLs). The electrochemical performance of the fuel cells is strongly...+ (small Overpotential Deposition (OPD) - to produce sacrificial Cu adlayer on active sites of the substrate; Rinse with BE Cu 2+ Cu 2+ S S S S S S S Cu Cu Cu Cu Cu -2e S S S S S S S Pt Cu Pt Cu Cu (3) Inject H 2PtCl 6 solution and allow...

  3. Using the van der Waals broadening of spectral atomic lines to measure the gas temperature of an argon-helium microwave plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Munoz, J.; Dimitrijevic, M.S.; Yubero, C.; Calzada, M.D.

    2009-01-01

    The applications of plasmas generated with gas mixtures have become increasingly common in different scientific and technological fields. In order to understand the advantages of these discharges, for instance in chemical analysis, it is necessary to know the gas temperature (T g , kinetic energy of the heavy particles) since it has a great influence on the atomization reactions of the molecules located in the discharge, along with the dependence of the reaction rate on this parameter. The ro-vibrational emission spectra of the molecular species are usually used to measure the gas temperature of a discharge at atmospheric pressure although under some experimental conditions, these are difficult to detect. In such cases, the gas temperature can be determined from the van der Waals broadening of the emitted atomic spectral lines related to this parameter. The method proposed is based on the van der Waals broadening taking into account two perturbers

  4. Direct microscopic image and measurement of the atomization process of a port fuel injector

    Science.gov (United States)

    Esmail, Mohamed; Kawahara, Nobuyuki; Tomita, Eiji; Sumida, Mamoru

    2010-07-01

    The main objective of this study is to observe and investigate the phenomena of atomization, i.e. the fuel break-up process very close to the nozzle exit of a practical port fuel injector (PFI). In order to achieve this objective, direct microscopic images of the atomization process were obtained using an ultra-high-speed video camera that could record 102 frames at rates of up to 1 Mfps, coupled with a long-distance microscope and Barlow lens. The experiments were carried out using a PFI in a closed chamber at atmospheric pressure. Time-series images of the spray behaviour were obtained with a high temporal resolution using backlighting. The direct microscopic images of a liquid column break-up were compared with experimental results from laser-induced exciplex fluorescence (LIEF), and the wavelength obtained from the experimental results compared with that predicated from the Kelvin-Helmholtz break-up model. The droplet size diameters from a ligament break-up were compared with results predicated from Weber's analysis. Furthermore, experimental results of the mean droplet diameter from a direct microscopic image were compared with the results obtained from phase Doppler anemometry (PDA) experimental results. Three conclusions were obtained from this study. The atomization processes and detailed characterizations of the break-up of a liquid column were identified; the direct microscopic image results were in good agreement with the results obtained from LIEF, experimental results of the wavelength were in good agreement with those from the Kelvin-Helmholtz break-up model. The break-up process of liquid ligaments into droplets was investigated, and Weber's analysis of the predicated droplet diameter from ligament break-up was found to be applicable only at larger wavelengths. Finally, the direct microscopic image method and PDA method give qualitatively similar trends for droplet size distribution and quantitatively similar values of Sauter mean diameter.

  5. Method and apparatus for rapid adjustment of process gas inventory in gaseous diffusion cascades

    International Nuclear Information System (INIS)

    1980-01-01

    A method is specified for the operation of a gaseous diffusion cascade wherein electrically driven compressors circulate a process gas through a plurality of serially connected gaseous diffusion stages to establish first and second countercurrently flowing cascade streams of process gas, one of the streams being at a relatively low pressure and enriched in a component of the process gas and the other being at a higher pressure and depleted in the same, and wherein automatic control systems maintain the stage process gas pressures by positioning process gas flow control valve openings at values which are functions of the difference between reference-signal inputs to the systems, and signal inputs proportional to the process gas pressures in the gaseous diffusion stages associated with the systems, the cascade process gas inventory being altered, while the cascade is operating, by simultaneously directing into separate process-gas freezing zones a plurality of substreams derived from one of the first and second streams at different points along the lengths thereof to solidify approximately equal weights of process gas in the zone while reducing the reference-signal inputs to maintain the positions of the control valves substantially unchanged despite the removal of process gas inventory via the substreams. (author)

  6. Workplace exposure to nanoparticles from gas metal arc welding process

    International Nuclear Information System (INIS)

    Zhang, Meibian; Jian, Le; Bin, Pingfan; Xing, Mingluan; Lou, Jianlin; Cong, Liming; Zou, Hua

    2013-01-01

    Workplace exposure to nanoparticles from gas metal arc welding (GMAW) process in an automobile manufacturing factory was investigated using a combination of multiple metrics and a comparison with background particles. The number concentration (NC), lung-deposited surface area concentration (SAC), estimated SAC and mass concentration (MC) of nanoparticles produced from the GMAW process were significantly higher than those of background particles before welding (P < 0.01). A bimodal size distribution by mass for welding particles with two peak values (i.e., 10,000–18,000 and 560–320 nm) and a unimodal size distribution by number with 190.7-nm mode size or 154.9-nm geometric size were observed. Nanoparticles by number comprised 60.7 % of particles, whereas nanoparticles by mass only accounted for 18.2 % of the total particles. The morphology of welding particles was dominated by the formation of chain-like agglomerates of primary particles. The metal composition of these welding particles consisted primarily of Fe, Mn, and Zn. The size distribution, morphology, and elemental compositions of welding particles were significantly different from background particles. Working activities, sampling distances from the source, air velocity, engineering control measures, and background particles in working places had significant influences on concentrations of airborne nanoparticle. In addition, SAC showed a high correlation with NC and a relatively low correlation with MC. These findings indicate that the GMAW process is able to generate significant levels of nanoparticles. It is recommended that a combination of multiple metrics is measured as part of a well-designed sampling strategy for airborne nanoparticles. Key exposure factors, such as particle agglomeration/aggregation, background particles, working activities, temporal and spatial distributions of the particles, air velocity, engineering control measures, should be investigated when measuring workplace

  7. Workplace exposure to nanoparticles from gas metal arc welding process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Meibian [Zhejiang Provincial Center for Disease Control and Prevention (China); Jian, Le [Curtin University of Technology, School of Public Health, Curtin Health Innovation Research Institute (Australia); Bin, Pingfan [Wujin District Center for Disease Control and Prevention (China); Xing, Mingluan [Zhejiang Provincial Center for Disease Control and Prevention (China); Lou, Jianlin [Zhejiang Academy of Medical Sciences (China); Cong, Liming; Zou, Hua, E-mail: hzou@cdc.zj.cn [Zhejiang Provincial Center for Disease Control and Prevention (China)

    2013-11-15

    Workplace exposure to nanoparticles from gas metal arc welding (GMAW) process in an automobile manufacturing factory was investigated using a combination of multiple metrics and a comparison with background particles. The number concentration (NC), lung-deposited surface area concentration (SAC), estimated SAC and mass concentration (MC) of nanoparticles produced from the GMAW process were significantly higher than those of background particles before welding (P < 0.01). A bimodal size distribution by mass for welding particles with two peak values (i.e., 10,000–18,000 and 560–320 nm) and a unimodal size distribution by number with 190.7-nm mode size or 154.9-nm geometric size were observed. Nanoparticles by number comprised 60.7 % of particles, whereas nanoparticles by mass only accounted for 18.2 % of the total particles. The morphology of welding particles was dominated by the formation of chain-like agglomerates of primary particles. The metal composition of these welding particles consisted primarily of Fe, Mn, and Zn. The size distribution, morphology, and elemental compositions of welding particles were significantly different from background particles. Working activities, sampling distances from the source, air velocity, engineering control measures, and background particles in working places had significant influences on concentrations of airborne nanoparticle. In addition, SAC showed a high correlation with NC and a relatively low correlation with MC. These findings indicate that the GMAW process is able to generate significant levels of nanoparticles. It is recommended that a combination of multiple metrics is measured as part of a well-designed sampling strategy for airborne nanoparticles. Key exposure factors, such as particle agglomeration/aggregation, background particles, working activities, temporal and spatial distributions of the particles, air velocity, engineering control measures, should be investigated when measuring workplace

  8. Workplace exposure to nanoparticles from gas metal arc welding process

    Science.gov (United States)

    Zhang, Meibian; Jian, Le; Bin, Pingfan; Xing, Mingluan; Lou, Jianlin; Cong, Liming; Zou, Hua

    2013-11-01

    Workplace exposure to nanoparticles from gas metal arc welding (GMAW) process in an automobile manufacturing factory was investigated using a combination of multiple metrics and a comparison with background particles. The number concentration (NC), lung-deposited surface area concentration (SAC), estimated SAC and mass concentration (MC) of nanoparticles produced from the GMAW process were significantly higher than those of background particles before welding ( P size distribution by mass for welding particles with two peak values (i.e., 10,000-18,000 and 560-320 nm) and a unimodal size distribution by number with 190.7-nm mode size or 154.9-nm geometric size were observed. Nanoparticles by number comprised 60.7 % of particles, whereas nanoparticles by mass only accounted for 18.2 % of the total particles. The morphology of welding particles was dominated by the formation of chain-like agglomerates of primary particles. The metal composition of these welding particles consisted primarily of Fe, Mn, and Zn. The size distribution, morphology, and elemental compositions of welding particles were significantly different from background particles. Working activities, sampling distances from the source, air velocity, engineering control measures, and background particles in working places had significant influences on concentrations of airborne nanoparticle. In addition, SAC showed a high correlation with NC and a relatively low correlation with MC. These findings indicate that the GMAW process is able to generate significant levels of nanoparticles. It is recommended that a combination of multiple metrics is measured as part of a well-designed sampling strategy for airborne nanoparticles. Key exposure factors, such as particle agglomeration/aggregation, background particles, working activities, temporal and spatial distributions of the particles, air velocity, engineering control measures, should be investigated when measuring workplace exposure to nanoparticles.

  9. Prediction of Mass Flow Rate in Supersonic Natural Gas Processing

    Directory of Open Access Journals (Sweden)

    Wen Chuang

    2015-11-01

    Full Text Available The mass flow rate of natural gas through the supersonic separator was numerically calculated by various cubic equations of state. The numerical results show that the compressibility factor and specific heat ratio for ideal gas law diverge remarkably from real gas models at a high inlet pressure. Simultaneously, the deviation of mass flow calculated by the ideal and real gas models reaches over 10 %. The difference increases with the lower of the inlet temperature regardless of the inlet pressure. A higher back pressure results in an earlier location of the shock wave. The pressure ratio of 0.72 is the first threshold to get the separator work normally. The second threshold is 0.95, in which case the whole flow is subsonic and cannot reach the choked state. The shock position moves upstream with the real gas model compared to the ideal gas law in the cyclonic separation section.

  10. A pressure gauge based on gas density measurement from analysis of the thermal noise of an atomic force microscope cantilever.

    Science.gov (United States)

    Seo, Dongjin; Paul, Mark R; Ducker, William A

    2012-05-01

    We describe a gas-density gauge based on the analysis of the thermally-driven fluctuations of an atomic force microscope (AFM) cantilever. The fluctuations are modeled as a ring-down of a simple harmonic oscillator, which allows fitting of the resonance frequency and damping of the cantilever, which in turn yields the gas density. The pressure is obtained from the density using the known equation of state. In the range 10-220 kPa, the pressure readings from the cantilever gauge deviate by an average of only about 5% from pressure readings on a commercial gauge. The theoretical description we use to determine the pressure from the cantilever motion is based upon the continuum hypothesis, which sets a minimum pressure for our analysis. It is anticipated that the cantilever gauge could be extended to measure lower pressures given a molecular theoretical description. Alternatively, the gauge could be calibrated for use in the non-continuum range. Our measurement technique is similar to previous AFM cantilever measurements, but the analysis produces improved accuracy.

  11. Analytical performance of a low-gas-flow torch optimized for inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Montaser, A.; Huse, G.R.; Wax, R.A.; Chan, S.-K.; Golightly, D.W.; Kane, J.S.; Dorrzapf, A.F.

    1984-01-01

    An inductively coupled Ar plasma (ICP), generated in a lowflow torch, was investigated by the simplex optimization technique for simultaneous, multielement, atomic emission spectrometry (AES). The variables studied included forward power, observation height, gas flow (outer, intermediate, and nebulizer carrier) and sample uptake rate. When the ICP was operated at 720-W forward power with a total gas flow of 5 L/min, the signal-to-background ratios (S/B) of spectral lines from 20 elements were either comparable or inferior, by a factor ranging from 1.5 to 2, to the results obtained from a conventional Ar ICP. Matrix effect studies on the Ca-PO4 system revealed that the plasma generated in the low-flow torch was as free of vaporizatton-atomizatton interferences as the conventional ICP, but easily ionizable elements produced a greater level of suppression or enhancement effects which could be reduced at higher forward powers. Electron number densities, as determined via the series until line merging technique, were tower ht the plasma sustained in the low-flow torch as compared with the conventional ICP. ?? 1984 American Chemical Society.

  12. Transport Processes in Materials Processing Plasmas: Particulate Behavior and Neutral Gas Transport.

    Science.gov (United States)

    Kilgore, Michael Duane

    This research work focuses on two transport problems in low pressure plasma reactors which are used in thin film manufacturing processes. Computer simulation techniques are used to study particulate behavior in processing discharges and neutral species transport in high plasma density discharges. Particulate behavior is predicted by combining models of charging and transport with numerical plasma simulation. A charged particulate is influenced by discharge electric fields and by momentum transfer collisions with drifting plasma species. A particulate is also subject to other forces including neutral gas drag, thermophoresis, and gravity. For radio frequency capacitively coupled discharges, several forces which act on a particulate may be of comparable magnitude. This results in particulate trapping at plasma-sheath boundaries in many cases. For high plasma density discharges, high ion fluxes make the ion drag force dominate particulate behavior. This means that it is more difficult for particulates to be suspended in the plasma, compared to the situation in parallel plate systems. However, particulate contamination of a wafer can still occur in high density plasmas because particulates may be ejected from chamber walls and reach the wafer after residing very briefly in the gas phase. The direct simulation Monte Carlo method is applied to follow transition regime neutral gas transport in high plasma density processing discharges. Three effects are evaluated: neutral depletion by ionization; neutral heating by collisions with energetic plasma species; and gas flow and pumping. These effects are important for discharges that operate at relatively high fractional ionization. Results show the magnitude of these effects in an electron cyclotron resonance reactor and in an inductively coupled reactor operated under a range of typical conditions. The neutral gas transport simulation is extended to investigate neutral beam processing. A high density inductively coupled

  13. Kinetic of the gas-phase reactions of OH radicals and Cl atoms with Diethyl Ethylphosphonate and Triethyl Phosphate

    KAUST Repository

    Laversin, H.

    2015-11-30

    In this paper, the relative-rate technique has been used to obtain rate coefficients for the reaction of two organophosphorus compounds: Triethyl phosphate (TEP) and Diethyl ethylphosphonate (DEEP) with OH radicals and Cl atoms at atmospheric pressure and at different temperatures. The calculated rate constants were fitted to the Arrhenius expression over the temperature range 298 – 352 K. The following expressions (in cm3molecule-1s-1) were obtained for the reactions of OH and CL with DEEP and TEP: kOH+DEEP= (7.84±0.65)x10-14exp((1866±824)/T), kOH+TEP = (6.54±0.42)x10-14exp((1897±626)/T), kCl+DEEP = (5.27± 0.80)x10−11exp(765±140/T) and kCl+TEP = (5.23± 0.80)x10−11exp(736± 110/T). These results show that the reaction of the studied compounds with Cl atoms proceeds more rapidly than that with OH radicals. The related tropospheric lifetimes suggest that once emitted into the atmosphere, TEP and DEEP can be removed within a few hours in areas close to their emission sources. TEP and DEEP are principally removed by OH radicals. However, in coastal areas where the Cl atoms’ concentration is higher, TEP and DEEP removal by reaction with Cl atoms could be a competitive process.

  14. Ionisation of hydrogen-like atoms by a multiphoton absorption process

    International Nuclear Information System (INIS)

    Gontier, Y.; Trahin, M.

    1967-01-01

    The general expression for the amplitude of the probability of ionisation by a multiphoton absorption process is derived. Its non-relativistic limit is taken and the bipolar approximation is used for calculating the ionisation cross-section of hydrogen-like atoms. This latter involves the summation over intermediate virtual states by means of: a) a recursion relationship concerning angular functions, b) a particular technique which when applied to radial functions makes it possible to solve a system of inhomogeneous first-order differential equations. (authors) [fr

  15. Global gas processing will strengthen to meet expanding markets

    International Nuclear Information System (INIS)

    Haun, R.R.; Otto, K.W.; Whitley, S.C.; Gist, R.L.

    1996-01-01

    The worldwide LPG industry continues to expand faster than the petroleum industry -- 4%/year for LPG vs. 2%/year for petroleum in 1995 and less than 1%/year in the early 1990s. This rapid expansion of LPG markets is occurring in virtually every region of the world, including such developing countries as China. The Far East is the focus of much of the LPG industry's attention, but many opportunities exist in other regions such as the Indian subcontinent, Southeast Asia, and Latin America. The investment climate is improving in all phases of downstream LPG marketing, including terminaling, storage, and wholesale and retail distribution. The world LPG supply/demand balance has been relatively tight since the Gulf War and should remain so. Base demand (the portion of demand that is not highly price-sensitive) is expanding more rapidly than supplies. As a result, the proportion of total LPG supplies available for price-sensitive petrochemical feedstock markets is declining, at least in the short term. The paper discusses importers, price patterns, world LPG demand, world LPG supply, US NGL supply, US gas processing, ethane and propane supply, butane, isobutane, and natural gasoline supply, and US NGL demand

  16. Underground Coal Gasification: Rates of Post Processing Gas Transport

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Stanczyk, K.; Šolcová, Olga

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1707-1715 ISSN 0366-6352 R&D Projects: GA MŠk 7C12017 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : underground coal gas ification * gas transport * textural properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  17. Electro-membrane processes for flue gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, T. F.

    1997-12-31

    Various techniques for NO removal in Membrane Contactor were considered. However the NO absorption in a liquid adsorbent with chemical enhancement and its ease for regeneration, was selected as the most practicable choice. Various different compounds for chemical enhancement were studied and Fe(II)-chelate enhanced adsorbent was selected for further studies. The technical feasibility of Fe(II)-chelate enhanced adsorbent for obtaining greater than 80% NO removal have been successfully established. Even though the membrane area required for greater than 80% NO removal has been found to be about 500 m{sup 2}/MW{sub c} (compared to 50 - 150 m{sup 2}/MW{sub c}, for 95% SO{sub 2} removal, depending on the membrane characteristics), suitable Membrane Contactor design has been proposed for carrying out the process at an acceptable gas side pressure drop. The electro-membrane processes for the regeneration of adsorbents have been studied both theoretically and experimentally. The theoretical studies have concerned the study of basic functions of both the bipolar membranes and charge laden (anion/cation) membranes. Suitable experimental techniques have been devised for studying of these basic parameters (e.g. charge transport number, salt diffusion through membranes, current-voltage characteristics of bipolar membranes and electrical resistance of charge laden membranes). These parameters have further been utilized in the mechanistic model of combined membranes in an ED cell (electrodialysis). Based on these fundamental studies and analysis of process requirements, suitable configuration of ED cell has been developed and verified by experimental studies. The effect of both the stack design parameters (e.g. number of cells, membrane type and spacer design) and the operational parameters (e.g. temperature, electrolyte concentration, liquid velocity and current density) have been studied for optimization of energy consumption for regeneration of loaded adsorbents. As a result

  18. Ab initio calculations and modelling of atomic cluster structure

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Lyalin, Andrey G.; Solov'yov, Andrey V.

    2004-01-01

    framework for modelling the fusion process of noble gas clusters is presented. We report the striking correspondence of the peaks in the experimentally measured abundance mass spectra with the peaks in the size-dependence of the second derivative of the binding energy per atom calculated for the chain...... of the noble gas clusters up to 150 atoms....

  19. Electron-enhanced nano scaled atomic processes in classic semiconductors and polymers

    International Nuclear Information System (INIS)

    Turaeva, N.N.

    2007-06-01

    the experimental data on disordering in silicon implanted by boron, phosphorous and laser annealing. Managing by hydrogen atom localization between complementary bases in DNA by SHF on the base of Lewdin hydrogen key has a practical interest for the safe usage of mobile telephones. Degree of embed and economic effectivity: Managing by atomic processes and structures on the mezo-scales by electronic excitations can be used in cool technology of radiation materials science and nano technology. Sphere of usage: radiation physics of semiconductors and polymers, material science, nano technology, radiobiology. (author)

  20. Kinetics of the reaction of F atoms with O2 and UV spectrum of FO2 radicals in the gas phase at 295 K

    DEFF Research Database (Denmark)

    Ellermann, T.; Sehested, J.; Nielsen, O.J.

    1994-01-01

    The ultraviolet absorption spectrum of FO2 radicals and the kinetics of the reaction of F atoms with O2 have been studied in the gas phase at 295 K using pulse radiolysis combined with kinetic UV spectroscopy. At 230 nm, sigma(FO2) = (5.08 +/- 0.70) X 10(-18) cm2 molecule-1. The kinetics...

  1. Experimental study and new three-dimensional kinetic modeling of foamy solution-gas drive processes.

    Science.gov (United States)

    Sun, Xiaofei; Zhang, Yanyu; Wang, Shilin; Song, Zhaoyao; Li, Peng; Wang, Changfa

    2018-03-12

    Foamy solution-gas drive processes in heavy oil reservoirs are very complex. The influence of some microscopic factors on this process is not fully understood due to limitations of traditional depletion tests. This study aims to investigate foamy solution-gas drive by experiments and simulations. First, the effects of the pressure depletion rate on critical gas saturation and foamy solution-gas drive processes were investigated by laboratory experiments. Second, a new three-dimensional foamy oil model that captures many important characteristics of foamy solution-gas drive, such as non-equilibrium behavior, gas evolution kinetics, and the effect of viscous forces on gas mobility, was developed. Last, the effects of some important parameters on foamy solution-gas drive were systematically investigated,and a model application was conducted in a typical foamy oil reservoir. The results indicate that the new model is capble of simulating many of the unusual behaviors observed in foamy solution-gas drive on a laboratory and field scales. High oil recoveries were obtained with a high oil viscosity, high depletion rate, long sandpack, and low solution gas-oil ratio. Foamy solution-gas drive processes are sensitive to the depletion rate, length, and critical gas saturation. The oil viscosity, solution GOR and diffusion coefficient are not sensitive factors.

  2. Natural gas processing optimization in Espirito Santo plant; Sistema de otimizacao aplicado ao processamento de gas natural no Espirito Santo

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Carlos Henrique de Oliveira; Costa, Fernando Lourenco Pinho da; Mazzini, Filipe Ferreira; Campos, Flavia Schittine [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Oliveira, Fabricio Carlos; Hamacher, Silvio [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2008-07-01

    This work introduces the MODEP system, which was developed by PETROBRAS in association with PUC-Rio. The system objective is to support the gas processing and flow planning for the Espirito Santo PETROBRAS. The MODEP core is a non linear optimization model that allows the user to optimize the production of gas as well as to optimize the net present value. In addition, the system offers to the user a comprehensive asset of the gas network since its production fields until the products selling points. The development of this system was motivated by the sharp increase of the Espirito Santo gas production capacity as well as the increase in the number of its processing units. (author)

  3. Activation of Propane C-H and C-C Bonds by Gas-Phase Pt Atom: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Chang-Wei Hu

    2012-07-01

    Full Text Available The reaction mechanism of the gas-phase Pt atom with C3H8 has been systematically investigated on the singlet and triplet potential energy surfaces at CCSD(T//BPW91/6-311++G(d, p, Lanl2dz level. Pt atom prefers the attack of primary over secondary C-H bonds in propane. For the Pt + C3H8 reaction, the major and minor reaction channels lead to PtC3H6 + H2 and PtCH2 + C2H6, respectively, whereas the possibility to form products PtC2H4 + CH4 is so small that it can be neglected. The minimal energy reaction pathway for the formation of PtC3H6 + H2, involving one spin inversion, prefers to start at the triplet state and afterward proceed along the singlet state. The optimal C-C bond cleavages are assigned to C-H bond activation as the first step, followed by cleavage of a C-C bond. The C-H insertion intermediates are kinetically favored over the C-C insertion intermediates. From C-C to C-H oxidative insertion, the lowering of activation barrier is mainly caused by the more stabilizing transition state interaction ΔEint, which is the actual interaction energy between the deformed reactants in the transition state.

  4. Competing effects of rare gas atoms in matrix isolation spectroscopy: a case study of vibrational shift of BeO in Xe and Ar matrices.

    Science.gov (United States)

    Nakayama, Akira; Niimi, Keisuke; Ono, Yuriko; Taketsugu, Tetsuya

    2012-02-07

    We investigate the vibrational shift of beryllium oxide (BeO) in Xe matrix as well as in Ar matrix environments by mixed quantum-classical simulation and examine the origin of spectral shift in details. BeO is known to form strong chemical complex with single rare gas atom, and it is predicted from the gas phase calculations that vibrational frequencies are blueshifted by 78 cm(-1) and 80 cm(-1) upon formation of XeBeO and ArBeO, respectively. When the effects of other surrounding rare gas atoms are included by Monte Carlo simulations, it is found that the vibrational frequencies are redshifted by 21 cm(-1) and 8 cm(-1) from the isolated XeBeO and ArBeO complexes, respectively. The vibrational shift of XeBeO in Ar matrix is also calculated and compared with experimental data. In all simulations examined in this paper, the calculated vibrational frequency shifts from the isolated BeO molecule are in reasonable agreement with experimental values. The spectral shift due to the rare-gas-complex formation of RgBeO (Rg = Xe or Ar) is not negligible as seen in the previous studies, but it is shown in this paper that the effects of other surrounding rare gas atoms should be carefully taken into account for quantitative description of the spectral shifts and that these two effects are competing in vibrational spectroscopy of BeO in matrix environments.

  5. The Effect of Turbulences Flow on a Gas-Liquid Mixing Process Downstream of a Curved Duct

    Directory of Open Access Journals (Sweden)

    Abdul Satar Jawad Mohammed

    2018-02-01

    Full Text Available An experimental investigation is carried out on the use of water injection on the humidification process of air with a steady flow that travels during the curved part of a duct with a constant cross section. The naturally generated turbulences will surely aid the mixing process between the injected water droplets and the air to enhance both the mass and heat transfer. The current investigation is regarded as a simulation of the inlet air cooling of the gas turbine which aims to specify the optimum atomizer position on the air cooling by the fogging technique. The experiments were carried out on a (50×50 cm wind tunnel with an average air velocity of (10 m/s. Experiments were conducted in a range of air to water flow ratio between 1000 and 2000, and an ambient temperature in a range of 30° to 50°C. At higher ambient temperature of 45.2oC (DBT, a temperature reduction of 26% and an increase in the relative humidity ratio of 2.13 were recorded at the flow ratio of 1000. Injecting water upward through the range of angles -25° to 75° showed less sensitivity to atomizer location regardless the radial position of the atomizer. This situation is most suitable for using atomizing array across the duct. The central location with tangential spray introduces the critical position for a single-point spray. Such position is promising the optimum atomizer place specified by a radii ratio of (r/rin=3 and tangential orientation to the direction of flow.

  6. Acceleration of Vaporization, Atomization, and Ionization Efficiencies in Inductively Coupled Plasma by Merging Laser-Ablated Particles with Hydrochloric Acid Gas.

    Science.gov (United States)

    Nakazawa, Takashi; Izumo, Saori; Furuta, Naoki

    2016-01-01

    To accelerate the vaporization, atomization, and ionization efficiencies in laser ablation inductively coupled plasma mass spectrometry, we merged HCl gas with laser-ablated particles before introduction into the plasma, to convert their surface constituents from oxides to lower-melting chlorides. When particles were merged with HCl gas generated from a HCl solution at 200°C, the measured concentrations of elements in the particles were 135% higher on average than the concentrations in particles merged with ultrapure water vapor. Particle corrosion and surface roughness were observed by scanning electron microscopy, and oxide conversion to chlorides was confirmed by X-ray photoelectron spectroscopy. Under the optimum conditions, the recoveries of measured elements improved by 23% on average, and the recoveries of elements with high-melting oxides (Sr, Zr, and Th) improved by as much as 36%. These results indicate that vaporization, atomization, and ionization in the ICP improved when HCl gas was merged with the ablated particles.

  7. Method for atmospheric pressure reactive atom plasma processing for surface modification

    Science.gov (United States)

    Carr, Jeffrey W [Livermore, CA

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  8. Atomic collisions research with excited atomic species

    International Nuclear Information System (INIS)

    Hoogerland, M.D.; Gulley, R.J.; Colla, M.; Lu, W.; Milic, D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF 2 radicals formed by electron impact dissociation in a CF 4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(2 3 S) atoms

  9. Thief process for the removal of mercury from flue gas

    Science.gov (United States)

    Pennline, Henry W.; Granite, Evan J.; Freeman, Mark C.; Hargis, Richard A.; O'Dowd, William J.

    2003-02-18

    A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

  10. Atomic data on inelastic processes in low-energy manganese-hydrogen collisions

    Science.gov (United States)

    Belyaev, Andrey K.; Voronov, Yaroslav V.

    2017-10-01

    Aims: The aim of this paper is to calculate cross sections and rate coefficients for inelastic processes in low-energy Mn + H and Mn+ + H- collisions, especially, for processes with high and moderate rate coefficients. These processes are required for non-local thermodynamic equilibrium (non-LTE) modeling of manganese spectra in cool stellar atmospheres, and in particular, for metal-poor stars. Methods: The calculations of the cross sections and the rate coefficients were performed by means of the quantum model approach within the framework of the Born-Oppenheimer formalism, that is, the asymptotic semi-empirical method for the electronic MnH molecular structure calculation followed by the nonadiabatic nuclear dynamical calculation by means of the multichannel analytic formulas. Results: The cross sections and the rate coefficients for low-energy inelastic processes in manganese-hydrogen collisions are calculated for all transitions between 21 low-lying covalent states and one ionic state. We show that the highest values of the cross sections and the rate coefficients correspond to the mutual neutralization processes into the final atomic states Mn(3d54s(7S)5s e 6S), Mn(3d54s(7S)5p y 8P°), Mn(3d54s(7S)5s e 8S), Mn(3d54s(7S)4d e 8D) [the first group], the processes with the rate coefficients (at temperature T = 6000 K) of the values 4.38 × 10-8, 2.72 × 10-8, 1.98 × 10-8, and 1.59 × 10-8 cm3/ s, respectively, that is, with the rate coefficients exceeding 10-8 cm3/ s. The processes with moderate rate coefficients, that is, with values between 10-10 and 10-8 cm3/ s include many excitation, de-excitation, mutual neutralization and ion-pair formation processes. In addition to other processes involving the atomic states from the first group, the processes from the second group include those involving the following atomic states: Mn(3d5(6S)4s4p (1P°) y 6P°), Mn(3d54s(7S)4d e 6D), Mn(3d54s(7S)5p w 6P°), Mn(3d5(4P)4s4p (3P°) y 6D°), Mn(3d5(4G)4s4p (3P°) y 6F

  11. Advanced All-Gas Chemical Generation of Atomic Iodine for a COIL, and Testing the COIL Operation Including This Method of Atomic Iodine Generation

    National Research Council Canada - National Science Library

    Kodymova, Jarmila; Spalek, Otomar; Jirasek, Vit; Censky, Miroslav

    2004-01-01

    This report results from a contract tasking Academy of Sciences as follows: The Grantee will investigate advanced methods for chemical generation of atomic iodine for a Chemical Oxygen-Iodine Laser (COIL...

  12. Welding fumes from stainless steel gas metal arc processes contain multiple manganese chemical species.

    Science.gov (United States)

    Keane, Michael; Stone, Samuel; Chen, Bean

    2010-05-01

    Fumes from a group of gas metal arc welding (GMAW) processes used on stainless steel were generated using three different metal transfer modes and four different shield gases. The objective was to identify and measure manganese (Mn) species in the fumes, and identify processes that are minimal generators of Mn species. The robotic welding system was operated in short-circuit (SC) mode (Ar/CO2 and He/Ar), axial spray (AXS) mode (Ar/O2 and Ar/CO2), and pulsed axial-spray (PAXS) mode (Ar/O2). The fumes were analyzed for Mn by a sequential extraction process followed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, and by X-ray diffraction (XRD). Total elemental Mn, iron (Fe), chromium (Cr) and nickel (Ni) were separately measured after aqua regia digestion and ICP-AES analysis. Soluble Mn2+, Fe2+, Fe3+, and Ni2+ in a simple biological buffer (phosphate-buffered saline) were determined at pH 7.2 and 5.0 after 2 h incubation at 37 C by ion chromatography. Results indicate that Mn was present in soluble form, acid-soluble form, and acid-soluble form after reduction by hydroxylamine, which represents soluble Mn0 and Mn2+ compounds, other Mn2+ compounds, and (Mn3+ and Mn4+) compounds, respectively. The dominant fraction was the acid-soluble Mn2+ fraction, but results varied with the process and shield gas. Soluble Mn mass percent in the fume ranged from 0.2 to 0.9%, acid-soluble Mn2+ compounds ranged from 2.6 to 9.3%, and acid plus reducing agent-soluble (Mn3+ and Mn4+) compounds ranged from 0.6 to 5.1%. Total Mn composition ranged from 7 to 15%. XRD results showed fumes had a crystalline content of 90-99% Fe3O4, and showed evidence of multiple Mn oxides, but overlaps and weak signals limited identification. Small amounts of the Mn2+ in the fume (welding process. Mn generation rates for the fractions were tabulated, and the influence of ozone is discussed. The conclusions are that exposures to welding fumes include multiple Mn species, both

  13. The determination by gas chromatography with atomic emission detection of total sulfur in fuels used as forensic evidence.

    Science.gov (United States)

    Kaneko, Tsuyoshi; Yoshida, Hiroaki; Suzuki, Shinichi

    2008-05-20

    In Japan, taxed diesel fuel from non-taxed fuel oil-A is illegally produced by removing coumarin, which is added as a non-taxed marker. The coumarin is removed using concentrated sulfuric acid and this produces a high viscosity and hazardous material, called "sulfuric acid pitch", as a by-product. This compound has a detrimental effect on the environment and is hazardous to humans. The actions have been associated with organized crime with the illegally gained taxes becoming financial bases. To discriminate legal and diesel oil from illegal product, the peak area ratio R(SC), the ratio of total sulfur to carbon (>C(14)), was used. R(SC) is calculated by the total areas of sulfur and carbon (>C(14)) from the gas chromatogram obtained by gas chromatography-atomic emission detection (GC-AED). Sulfur in legal diesel fuels is strictly regulated by a maximum limit, which was 50ppm (and is now 10ppm), but in the preparation of illegal diesel oil, in which coumarin is eliminated, sulfur cannot be removed. Therefore, the R(SC) of fuel oil-A and illegal fuel oil is over 15, whereas those for legal fuel oil and diesel fuel are under 2.0. Furthermore, these ratios do not change in weathering experiments. GC-AED was applied to an actual arson case and was found to be effective for the determination of total sulfur in trace amounts of accelerants detected in fire debris at the arson scene, and hence was effective for the characterization of the ignitable liquids used.

  14. Optimization of digital image processing to determine quantum dots' height and density from atomic force microscopy.

    Science.gov (United States)

    Ruiz, J E; Paciornik, S; Pinto, L D; Ptak, F; Pires, M P; Souza, P L

    2018-01-01

    An optimized method of digital image processing to interpret quantum dots' height measurements obtained by atomic force microscopy is presented. The method was developed by combining well-known digital image processing techniques and particle recognition algorithms. The properties of quantum dot structures strongly depend on dots' height, among other features. Determination of their height is sensitive to small variations in their digital image processing parameters, which can generate misleading results. Comparing the results obtained with two image processing techniques - a conventional method and the new method proposed herein - with the data obtained by determining the height of quantum dots one by one within a fixed area, showed that the optimized method leads to more accurate results. Moreover, the log-normal distribution, which is often used to represent natural processes, shows a better fit to the quantum dots' height histogram obtained with the proposed method. Finally, the quantum dots' height obtained were used to calculate the predicted photoluminescence peak energies which were compared with the experimental data. Again, a better match was observed when using the proposed method to evaluate the quantum dots' height. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Natural Gas Consumption of Emerging Economies in the Industrialization Process

    Directory of Open Access Journals (Sweden)

    Jian Chai

    2016-10-01

    Full Text Available Natural gas has become more and more important in the world energy market with the change of energy consumption structure and consumption subjects. This paper applies the panel smooth transition regression (PSTR model to study the nonlinear relationship between natural gas consumption and economic variables of emerging economies, and the empirical results show that: (1 There is a non-linear relationship among natural gas consumption, GDP per capita, industrialization and urbanization rate; (2 The optimal PSTR model is a two-regime model by using the lagged industrialization as a transition variable, and the impact of GDP per capita and of industrialization on natural gas consumption shows incomplete symmetry in low and high regime, respectively; (3 The result of time-varying elasticity analysis indicates that natural gas consumption is inelastic to GDP per capita, but elastic to both industrialization and urbanization. The elasticity of GDP per capita generally decrease with fluctuation, the elasticity of industrialization tends to rise, and the elasticity of urbanization is linear at high level; (4 Regional difference shows that there are 10 emerging economies are in first regime (below industrialization of 43.2%, and the remaining 6 are in second regime. This provides reference for countries in different transformation periods to make economic policies adapting to energy saving, energy structure optimization and other sustainable development strategies.

  16. The time-dependent close-coupling method for atomic and molecular collision processes

    Energy Technology Data Exchange (ETDEWEB)

    Pindzola, M S [Department of Physics, Auburn University, Auburn, AL (United States); Robicheaux, F [Department of Physics, Auburn University, Auburn, AL (United States); Loch, S D [Department of Physics, Auburn University, Auburn, AL (United States); Berengut, J C [Department of Physics, Auburn University, Auburn, AL (United States); Topcu, T [Department of Physics, Auburn University, Auburn, AL (United States); Colgan, J [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Foster, M [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Griffin, D C [Department of Physics, Rollins College, Winter Park, FL (United States); Ballance, C P [Department of Physics, Rollins College, Winter Park, FL (United States); Schultz, D R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Minami, T [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Badnell, N R [Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Witthoeft, M C [Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Plante, D R [Department of Mathematics, Stetson University, Deland, FL (United States); Mitnik, D M [Department of Physics, University of Buenos Aires, Buenos Aires (Argentina); Ludlow, J A [Department of Applied Mathematics, Queen' s University, Belfast (United Kingdom); Kleiman, U [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany)

    2007-04-14

    We review the development of the time-dependent close-coupling method to study atomic and molecular few body dynamics. Applications include electron and photon collisions with atoms, molecules, and their ions. (topical review)

  17. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges

    Science.gov (United States)

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.

    2014-01-01

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874

  18. Insights inot the atomic many-particle dynamics of scattering processes by ab-initio calculations

    International Nuclear Information System (INIS)

    Zapukhlyak, Myroslav

    2008-01-01

    The present thesis gives a theoretical contribution to the understanding of the many-particle dynamics in inelastic ion-atom collisions. Many-electron dynamics in ion-helium collisions and proton-sodium collisions was theoretically studied. The description is based on the semiclassical approximation with the straight orbit for the projectile motion. The ion-atom collision problem is by this reduced to a time-dependent many-electron problem and in the non-relativistic approximation described by the time-dependent Schroedinger equation. The solution of the many-electron problem pursues in the framework of the time-dependent density functional theory. The time-dependent Schroedinger equation for the interacting many-electron problem is transformed to the system of the time-dependent Kohn-Sham equations and solved by the two-center-basis generator method. The unknown time-dependent exchange-correlation one-particle potential forces different approximation int he time-dependent Kohn-Shan scheme. In this thesis the model of the independent electrons was applied as basis model, in which the electron-electron correlation is consistently neglected in all parts and in all steps. Differential cross sections for different one- and two-electron processes were calculated in the so-called eikonal approximation for the collisional systems p-He, He 2+ -He, and Ar q+ -He (q=15-18) [de

  19. Design, develop, and manufacture process gas lubricated hot recycle gas circulators. Final technical report, MTI--77TR5

    Energy Technology Data Exchange (ETDEWEB)

    Dominy, D.G.; Hurley, J.D.

    1976-10-01

    In the SYNTHANE coal gasification process raw product gas of approximately 35 mole % methane is passed through a methanator which increases the methane content (and heating value) to approximately 86 mole % methane. The reaction is highly exothermic. In order to limit the temperature rise of the reaction, high BTU methane process gas is diluted with raw product gas. A pressure increase is necessary to force the mixed gases back into the methanator. In addition, varying recycle ratios affect the total flow of the gas stream necessitating a compressor or other device to operate at varying flow capacities. The present hot gas recycle methanator system utilized an eductor to mix and raise the pressure of the product gas. This method has limitations. The pressure rise is small, in the order of 1/2 psig, and the eductor does not allow proper mixing pressures and temperatures if the flow conditions are changed. An eductor is useful for this purpose only in a pilot plant and represents an expedient solution to the problem. For commercial use a compressor is essential.

  20. Experiments with cold hydrogen atoms

    International Nuclear Information System (INIS)

    Leonas, V.B.

    1981-01-01

    Numerous investigations of atomic processes in Waseous phase on the surface with participation of ''cold'' hydrogen atoms, made during the last years, are considered. The term ''cold atom'' means the range of relative collision energies E<10 MeV (respectively 'ultracold ' atoms at E< or approximately 1 MeV) which corresponds to the range of temperatures in tens (units) of K degrees. Three main ranges of investigations where extensive experimental programs are realized are considered: study of collisional processes with hydrogen atom participation, hydrogen atoms being of astrophysical interest; study of elastic atom-molecular scattering at superlow energies and studies on the problem of condensed hydrogen. Hydrogen atoms production is realized at dissociation in non-electrode high-frequency or superhigh-frequency discharge. A method of hydrogen quantum generator and of its modifications appeared to be rather an effective means to study collisional changes of spin state of hydrogen atoms. First important results on storage and stabilization of the gas of polarized hydrogen atoms are received

  1. Process and device for cleaning furnace exhaust gas in a vitrification plant

    International Nuclear Information System (INIS)

    Kaufmann, F.

    1986-01-01

    The furnace exhaust gas produced during vitrification is cleaned of carried over dust particles in an exhaust gas cleaning stage using a washing liquid. In order to achieve a simplified process for dosing and exhaust gas cleaning, radioactive fission product solution is taken from the feed container as the washing liquid and is transported to the head of the exhaust gas cleaning stage. The fission product solution noting as washing liquid is returned to the feed container after passing through the exhaust gas cleaning stage. The furnace exhaust gas of the vitrification plant is taken through the exhaust gas cleaning stage in counterflow. The invention also concerns a device to carry out this process. (orig./HP) [de

  2. Effects of superficial gas velocity on process dynamics in bioreactors

    Science.gov (United States)

    Devi, T. T.; Kumar, B.

    2014-06-01

    Present work analyzes the flow hydrodynamics and mass transfer mechanisms in double Rushton and CD-6 impeller on wide range (0.0075-0.25 m/s) of superficial gas velocity ( v g) in a gas-liquid phase bioreactor by employing computational fluid dynamics (CFD) technique. The volume averaged velocity magnitude and dissipation rate are found higher with increasing superficial gas velocity. Higher relative power draw ( P g/ P 0) is predicted in CD-6 than the Rushton impeller but no significant difference in volume averaged mass transfer coefficient ( k L a) observed between these two types of impeller. The ratio of power draw with mass transfer coefficient has been found higher in CD-6 impeller (25-50 %) than the Rushton impeller.

  3. Collisional destruction of fast hydrogen Rydberg atoms

    International Nuclear Information System (INIS)

    King, M.R.

    1984-01-01

    A new modulated electric field technique was developed to study Rydberg atom destruction processes in a fast beam. The process of destruction of a band of Rydberg atom destruction of a band of Rydberg atoms through the combined processes of ionization, excitation, and deexcitation was studied for collisions with gas targets. Rydberg atoms of hydrogen were formed by electron capture, and detected by field ionization. The modulated field technique described proved to be an effective technique for producing a large signal for accurate cross section measurements. The independent particle model for Rydberg atom destruction processes was found to hold well for collisions with molecular nitrogen, argon, and carbon dioxide. The resonances in the cross sections for the free electron scattering with these targets were found to also occur in Rydberg destruction. Suggestions for future investigations of Rydberg atom collision processes in the fast beam regime are given

  4. On the optimal design of membrane-based gas separation processes

    NARCIS (Netherlands)

    Gabrielli, Paolo; Gazzani, Matteo; Mazzotti, Marco

    2017-01-01

    Gas-separation processes are of paramount importance for several industrial applications. In this context, membrane-based gas separation has a great innovation potential in term of limiting the energy consumption and simplifying the process operation and control. Much of the research in this field

  5. Essentials of water systems design in the oil, gas, and chemical processing industries

    CERN Document Server

    Bahadori, Alireza; Boyd, Bill

    2013-01-01

    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  6. Surface gas-exchange processes of snow algae

    OpenAIRE

    Williams, William E.; Gorton, Holly L.; Vogelmann, Thomas C.

    2003-01-01

    The red-colored chlorophyte Chlamydomonas nivalis is commonly found in summer snowfields. We used a modified Li-Cor gas-exchange system to investigate surface gas-exchange characteristics of snow colonized by this alga, finding rates of CO2 uptake up to 0.3 μmol m−2⋅s−1 in dense algal blooms. Experiments varying the irradiance resulted in light curves that resembled those of the leaves of higher plants. Red light was more effective than white and much more effective than green or blue, becaus...

  7. Features of electromagnetic processes in electric gas turbine installations

    Science.gov (United States)

    Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.

    2017-12-01

    Electric gas turbine aggregates are considered in terms of ensuring reliable operation of gas-dynamic bearings. A complex of unfavorable factors affecting this unit of the installation is described, including rotor unbalance, eccentricity, irregularity of armature field rotation, its amplitude variation during rotor rotation, etc. The studies have shown that it is possible to increase the efficiency of EGTA by increasing the number of armature winding phases (i.e. reducing electromagnetic torque ripples), amplifying the damping circuits on the rotor, as well as by introducing pulse-width modulation of currents in the phases and flexible feedbacks.

  8. Mixing of Cr and Si atoms induced by noble gas ions irradiation of Cr/Si bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tobbeche, S., E-mail: said_tobbeche@yahoo.com [Faculte des Sciences, Universite El-Hadj Lakhdar, Batna 05000 (Algeria); Boukhari, A. [Faculte des Sciences, Universite El-Hadj Lakhdar, Batna 05000 (Algeria); Khalfaoui, R. [Faculte des Sciences, Universite M. Bougara, Boumerdes 35000 (Algeria); Amokrane, A. [Faculte de Physique, USTHB, B.P. 32 El-Alia, Bab-Ezzouar 16111 (Algeria); Ecole Nationale Preparatoire aux Etudes d' Ingeniorat, Route Nationale, Rouiba (Algeria); Benazzouz, C.; Guittoum, A. [Centre de Recherche Nucleaire d' Alger, 02, Boulevard Frantz Fanon, B.P. 399 Alger-Gare (Algeria)

    2011-12-15

    Cr/Si bilayers were irradiated at room temperature with 120 keV Ar, 140 keV Kr and 350 keV Xe ions to fluences ranging from 10{sup 15} to 2 Multiplication-Sign 10{sup 16} ions/cm{sup 2}. The thickness of Cr layer evaporated on Si substrate was about 400 A. Rutherford backscattering spectrometry (RBS) was used to investigate the atomic mixing induced at the Cr-Si interface as function of the incident ion mass and fluence. We observed that for the samples irradiated with Ar ions, RBS yields from both Cr layer and Si substrate are the same as before the irradiation. There is no mixing of Cr and Si atoms, even at the fluence of 2 Multiplication-Sign 10{sup 16} ions/cm{sup 2}. For the samples irradiated with Kr ions, a slight broadening of the Cr and Si interfacial edges was produced from the fluence of 5 Multiplication-Sign 10{sup 15} ions/cm{sup 2}. The broadening of the Cr and Si interfacial edges is more pronounced with Xe ions particularly to the fluence of 10{sup 16} ions/cm{sup 2}. The interface broadening was found to depend linearly on the ion fluence and suggests that the mixing is like a diffusion controlled process. The experimental mixing rates were determined and compared with values predicted by ballistic and thermal spike models. Our experimental data were well reproduced by the thermal spikes model.

  9. Process intensification by coupling the Joule effect with pervaporation and sweeping gas membrane distillation

    NARCIS (Netherlands)

    Shukla, S.; Méricq, J. P.; Belleville, M.P.; Hengl, N.; Benes, N. E.; Vankelecom, I.; Sanchez Marcano, Jose

    2018-01-01

    This work concerns the intensification of membrane processes by coupling the Joule effect with two membrane processes: pervaporation and sweeping gas membrane distillation. For this purpose, conducting metallic hollow fibers impregnated or coated with polydimethyl siloxane were simultaneously used

  10. Assessment of toxic metals in raw and processed milk samples using electrothermal atomic absorption spectrophotometer.

    Science.gov (United States)

    Kazi, Tasneem Gul; Jalbani, Nusrat; Baig, Jameel Ahmed; Kandhro, Ghulam Abbas; Afridi, Hassan Imran; Arain, Mohammad Balal; Jamali, Mohammad Khan; Shah, Abdul Qadir

    2009-09-01

    Milk and dairy products have been recognized all over the world for their beneficial influence on human health. The levels of toxic metals (TMs) are an important component of safety and quality of milk. A simple and efficient microwave assisted extraction (MAE) method has been developed for the determination of TMs (Al, Cd, Ni and Pb), in raw and processed milk samples. A Plackett-Burman experimental design and 2(3)+star central composite design, were applied in order to determine the optimum conditions for MAE. Concentrations of TMs were measured by electrothermal atomic absorption spectrometry. The accuracy of the optimized procedure was evaluated by standard addition method and conventional wet acid digestion method (CDM), for comparative purpose. No significant differences were observed (P>0.05), when comparing the values obtained by the proposed MAE method and CDM (paired t-test). The average relative standard deviation of the MAE method varied between 4.3% and 7.6% based on analyte (n=6). The proposed method was successfully applied for the determination of understudy TMs in milk samples. The results of raw and processed milk indicated that environmental conditions and manufacturing processes play a key role in the distribution of toxic metals in raw and processed milk.

  11. The Challenge of Teaching Blind Students Atomic Models and the Process of Teacher Education

    Directory of Open Access Journals (Sweden)

    Renata Cardoso de Sá Ribeiro Razuck

    2014-04-01

    Full Text Available Based on the National Special Education in the Perspective of Inclusive Education (2008, students with special educational needs have to be included in the regular schools. Specifically blind students, because of their specific characteristics, they need necessary resources and suitable materials that can provide overcoming the lack of visualization. In this context, chemistry has a great visual appeal and provides a huge challenge for the acquisition of its concepts by the blinds. In order to try to fill some gaps in Chemistry contents with great visual appeal, this paper proposes a discussion on the importance of applying alternative pedagogical resources that enable visually impaired to understand and construct this imaginary science, working to this with prototypes of atomic models. This work is intended not only to contribute to the teaching-learning process, but also for the training of undergraduate courses to work towards inclusion.

  12. Exergy analysis of offshore processes on North Sea oil and gas platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Pierobon, Leonardo; Elmegaard, Brian

    2012-01-01

    Offshore processes are associated with significant energy consumption and large CO2 emissions. Conventional North Sea oil and gas facilities include the following operations: crude oil separation, gas compression and purification, wastewater treatment, gas lifting, seawater injection and power...... exergy losses amount to 22.3 MW. The gas lifting train and the production-separation module are the most exergy-destructive operations of the oil and gas processing system, consuming 8.83 MW and 8.17 MW respectively, while the power generation system alone is responsible for 46.7 MW. The exergetic...... efficiency of the oil and gas processing is about 39%, while the exergetic efficiency of the utility system is about 21-27%....

  13. Adsorption of hydrogen gas and redox processes in clays.

    Science.gov (United States)

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  14. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of ozone treatment on chemical and physical properties of wheat (Triticum aestivum L.) gluten, glutenin and gliadin. Methods: Wheat proteins isolated from wheat flour were treated with ozone gas. The physical and chemical properties of gluten proteins were investigated after treatment ...

  15. Multipass optical device and process for gas and analyte determination

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E [Kennewick, WA

    2011-01-25

    A torus multipass optical device and method are described that provide for trace level determination of gases and gas-phase analytes. The torus device includes an optical cavity defined by at least one ring mirror. The mirror delivers optical power in at least a radial and axial direction and propagates light in a multipass optical path of a predefined path length.

  16. Nuclear processes induced by muon decay at the K-orbit of muonic atom

    International Nuclear Information System (INIS)

    Sabirov, B.; Abazov, V.; Dem'yanov, A.

    2012-01-01

    Results are presented of an experimental study of processes taking place in the case of muons stopping in nuclei. The aim of the experiment consists in investigating the possibility of a nucleus being excited when a muon on the K-orbit decays. The uniqueness of this process is that the nucleus, happening to be in the electromagnetic field of the muon occupying the lowest atomic orbit of angular momentum l=0, is jolted, when the muon decay μ - → e - ν μ ν e tilde occurs, and it mainly undergoes monopole excitation. The experiment aimed at searching for nuclear excitation related to a bound muon is based on the registration of coincidences between electrons from μ decays and γ quanta from nuclear transitions. An experimental installation MEGA has been created, which involves a set of scintillation counters for identifying muons stopping in the target enriched with powder-like samarium dioxide Sm 2 O 3 , a Ge(Li) γ detector with a sensitive volume ∼ 50 cm 3 and a Cherenkov counter made of TF-1 lead glass. The experiment was carried out with the muon beam in the low-background hall of the Phasotron of the JINR Laboratory of Nuclear Problems. The total number of muons that stopped in the target permitted to determine the upper limit for E0 excitation in the 152 Sm nucleus to be ω(E0) -3 , which is inferior to the level of the theoretical estimate (≅ 3 · 10 -4 ). The isomeric shift of the 121.78 keV level in the nucleus has been measured in the presence of a muon on the K-orbit of a muonic atom: ΔE is = 820 ±40 eV. The search for monopole excitation of a nucleus related to the decay of a bound muon is to be continued with the use of improved equipment and muon beams of higher intensity

  17. ATOMIC PHYSICS PROCESSES IMPORTANT TO THE UNDERSTANDING OF THE SCRAPE-OFF LAYER OF TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    WEST, W.P.; GOLDSMITH,; B. EVANS,T.E.; OLSON, R.J.

    2002-05-01

    The region between the well-confined plasma and the vessel walls of a magnetic confinement fusion research device, the scrape-off layer (SOL), is typically rich in atomic and molecular physics processes. The most advanced magnetic confinement device, the magnetically diverted tokamak, uses a magnetic separatrix to isolate the confinement zone (closed flux surfaces) from the edge plasma (open field lines). Over most of their length the open field lines run parallel to the separatrix, forming a thin magnetic barrier with the nearby vessel walls. In a poloidally-localized region, the open field lines are directed away from the separatrix and into the divertor, a region spatially separated from the separatrix where intense plasma wall interaction can occur relatively safely. Recent data from several tokamaks indicate that particle transport across the field lines of the SOL can be somewhat faster than previously thought. In these cases, the rate at which particles reach the vessel wall is comparable to the rate to the divertor from parallel transport. The SOL can be thin enough that the recycling neutrals and sputtered impurities from the wall may refuel or contaminate the confinement zone more efficiently than divertor plasma wall interaction. Just inside the SOL is a confinement barrier that produces a sharp pedestal in plasma density and temperature. Understanding neutral transport through the SOL and into the pedestal is key to understanding particle balance and particle and impurity exhaust. The SOL plasma is sufficiently hot and dense to excite and ionize neutrals. Ion and neutral temperatures are high enough that charge exchange between the neutrals and fuel and impurity ions is fast. Excitation of neutrals can be fast enough to lead to nonlinear behavior in charge exchange and ionization processes. In this paper the detailed atomic physics important to the understanding of the neutral transport through the SOL will be discussed.

  18. A preliminary analysis of floating production storage and offloading facilities with gas liquefaction processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Carranza-Sánchez, Yamid Alberto; Junior, Silvio de Oliveira

    2016-01-01

    Floating, production, storage and offloading (FPSO) plants are facilities used in upstream petroleum processing. They have gained interest because they are more flexible than conventional plants and can be used for producing oil and gas in deep-water fields. In general, gas export is challenging...... in this work, and they were suggested by Brazilian operators for fields processing natural gas with moderate to high content of carbon dioxide. The performance of the combined systems is analysed by conducting energy and exergy analyses. The integration of gas liquefaction results in greater power consumption...

  19. Analysis Technique for Exhaust Gas Including PFCs from Microelectronics Manufacturing Processes

    Science.gov (United States)

    Tomita, Nobuyasu; Isaki, Ryuichiro

    In the manufacturing processes of Semiconductor and the Liquid Crystal Display (LCD), Perfluorocompounds (PFCs), Sulfurhexafluoride (SF6) and Nitrogenfluoride (NF3), which have high Green house effect,are used in large quantities. As emission reduction of these gases, the following countermeasures are taken. 1. Opimization of PFCs usage 2. Utilization of alternative gas 3. Instllation of Scrubber for exhaust gas treatment To inspect the effect of countermeasure that are introduced for these PFCs emission reduction, it is necessary to analyze PFCs in exhaust gas. In this report, we will discribe about analysis technique for exhaust gas including PFCs from microelectornics manufacturing processes.

  20. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  1. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  2. Time ordering of two-step processes in energetic ion-atom collisions: Basic formalism

    International Nuclear Information System (INIS)

    Stolterfoht, N.

    1993-01-01

    The semiclassical approximation is applied in second order to describe time ordering of two-step processes in energetic ion-atom collisions. Emphasis is given to the conditions for interferences between first- and second-order terms. In systems with two active electrons, time ordering gives rise to a pair of associated paths involving a second-order process and its time-inverted process. Combining these paths within the independent-particle frozen orbital model, time ordering is lost. It is shown that the loss of time ordering modifies the second-order amplitude so that its ability to interfere with the first-order amplitude is essentially reduced. Time ordering and the capability for interference is regained, as one path is blocked by means of the Pauli exclusion principle. The time-ordering formalism is prepared for papers dealing with collision experiments of single excitation [Stolterfoht et al., following paper, Phys. Rev. A 48, 2986 (1993)] and double excitation [Stolterfoht et al. (unpublished)

  3. Legislative Process For National Atomic Energy Laws Various Legal Approaches And Lessons Learned

    International Nuclear Information System (INIS)

    Ali, A.M.

    2008-01-01

    Legislative Process for National Atomic Energy Laws (NAELs) aim at establishing a legal base for the peaceful uses of nuclear energy. Various approaches (partial and comprehensive) to draft the NAELs are studied. The paper also studies some national nuclear energy laws through a comparative legal analysis and the important developments that have taken place in the legislative process for NAELs. There are lessons learned from the legislative process for NAELs. First, each state must develop its own legislative framework based on its own situation. Second, although the NAELs have common features, they vary considerably due to national legal traditions, social, economic circumstances and cultural values. Third, the NAELs have also evolved in time. Fourth, the technical standards, rules and guidelines should not be part of legislation issued by the Parliament because they would also facilitate quick adaption to new technical developments. Fifth, interface between legal and technical issues, requiring legal and technical experts to interact with each other. Sixth, continuing assessment that may lead to amendments to the law over time

  4. The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases

    KAUST Repository

    Wang, Hao

    2014-01-01

    In industry, cryogenic rectification for separating xenon from other noble gases such as krypton and argon is an energy and capital intensive process. Here we show that a microporous metal-organic framework, namely Co 3(HCOO)6 is capable of effective capture and separation of xenon from other noble gases. Henry\\'s constant, isosteric heat of adsorption (Qst), and IAST selectivity are calculated based on single component sorption isotherms. Having the highest Qst reported to date, Co 3(HCOO)6 demonstrates high adsorption capacity for xenon and its IAST selectivity for Xe-Kr is the largest among all MOFs investigated to date. To mimic real world conditions, breakthrough experiments are conducted on Xe-Kr binary mixtures at room temperature and 1 atmosphere. The results are consistent with the calculated data. These findings show that Co 3(HCOO)6 is a promising candidate for xenon capture and purification. Our gas adsorption measurements and molecular simulation study also reveal that the adsorption of xenon represents the first example of commensurate adsorption of atomic gases near ambient conditions. © 2014 The Royal Society of Chemistry.

  5. BEAMDB and MolD - databases for atomic and molecular collisional and radiative processes: Belgrade nodes of VAMDC

    Science.gov (United States)

    Marinković, Bratislav P.; Jevremović, Darko; Srećković, Vladimir A.; Vujčić, Veljko; Ignjatović, Ljubinko M.; Dimitrijević, Milan S.; Mason, Nigel J.

    2017-06-01

    We present two atomic and molecular (A&M) databases, MolD and BEAMDB, hosted by the SerVO - the Serbian virtual observatory (http://servo.aob.rs). These databases and web applications have been implemented in accordance to the standards developed by Virtual Atomic and Molecular Data Centre (VAMDC, http://www.vamdc.eu). The MolD database contains photo-dissociation cross-sections for individual rovibrational states of the diatomic molecular ions and rate coefficients for the atom-Rydberg atom chemi-ionisation and inverse electron-ion-atom chemi-recombination processes. The Belgrade electron/atom(molecule) database (BEAMDB) provides collisional data for electron interactions with atoms and molecules. Differential cross sections (DCS) are presented for both elastic and inelastic (excitation) cross sections in tabulated data tables. These DCS data are integrated over a full range of scattering angles in order to achieve integral, momentum transfer and viscosity cross sections as functions of impact electron energy. Beside these tables, energy loss spectra are presented in the graphical form.

  6. An industrial FT-IR process gas analyzer for stack gas cems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Welch, G.M. [American instruments, Anacortes, WA (United States); Herman, B.E. [Applied Automation/Hartmann & Braun, Bartlesville, OK (United States)

    1995-12-31

    This paper describes utilizing Fourier Transform Infrared (FT-IR) technology to meet and exceed EPA requirements to Continuously Monitor Carbon Monoxide (CO) and Sulfur Dioxide (SO){sub 2} in an oil refinery. The application consists of Continuous Emission Monitoring (CEMS) of two stacks from a Fluid Catalytic Cracking unit (FCCU). The discussion will follow the project from initial specifications, installation, start-up, certification results (RATA, 7 day drift), Cylinder Gas Audit (CGA) and the required maintenance. FT-IR is a powerful analytical tool suitable for measurement of stack component gases required to meet CEMS regulations, and allows simultaneous multi-component analysis of complex stack gas streams with a continuous sample stream flow through the measurement cell. The Michelson Interferometer in a unique {open_quotes}Wishbone{close_quotes} design and with a special alignment control enables standardized configuration of the analyzer for flue gas analysis. Normal stack gas pollutants: NO{sub x}, SO{sub 2}, and CO; as well as water soluble pollutants such as NH{sub 3} and HCI may be accurately determined and reported even in the presence of 0-31 Vol % water vapor concentrations (hot and wet). This FT-IR analyzer has been operating with EPA Certification in an oil refinery environment since September 1994.

  7. Slag processing system for direct coal-fired gas turbines

    Science.gov (United States)

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  8. A purification process for an inert gas system

    International Nuclear Information System (INIS)

    Raj, S.S.; Samanta, S.K.; Jain, N.G.; Deshingkar, D.S.; Ramaswamy, M.

    1984-01-01

    Special inert atmosphere is desired inside hot cells used for handling radioactive materials. In this report, details of experiments conducted to generate data required for the design of a system for maintaining very low levels of organic and acid vapours, oxygen and moisture in a nitrogen gas inert atmosphere, are described. Several grades of activated charcoals impregnated with 1% KOH were studied for the adsorption of acidic and organic vapours. A Pd/Al 2 O 3 catalyst was developed to remove oxygen with greater than 90% efficiency. For the removal of moisture, a regenerable molecular sieve 4A dual-bed was provided. Based on the performance data thus generated, an integrated purification system for nitrogen gas is proposed. (author)

  9. Gas Permeation Processes in Biogas Upgrading: A Short Review

    Czech Academy of Sciences Publication Activity Database

    Kárászová, Magda; Sedláková, Zuzana; Izák, Pavel

    2015-01-01

    Roč. 69, č. 10 (2015), s. 1277-1283 ISSN 0366-6352 R&D Projects: GA MŠk(CZ) LD14094; GA MŠk LH14006; GA ČR GA14-12695S Institutional support: RVO:67985858 Keywords : biogas upgrading * memranes * gas permeation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.326, year: 2015

  10. Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Yubero, C.; Dimitrijevic, M.S.; Garcia, M.C.; Calzada, M.D.

    2007-01-01

    The ro-vibrational emission spectra of the molecular species are usually used to measure the gas temperature of a discharge at atmospheric pressure. However, under some experimental conditions, it is difficult to detect them. In order to overcome this difficulty and obtain the temperature, there are methods based on the relation between the gas temperature and the van der Waals broadening of argon atomic spectral lines with a Stark contribution negligible. In this work, we propose a method based on this relation but for lines with a Stark broadening comparable with the van der Waals one

  11. Power-generating process of obtaining gas-energy carrier and reducer from coal

    International Nuclear Information System (INIS)

    Tleugabulov, S.; Duncheva, E.; Zubkevich, M.

    1999-01-01

    The manufacture of power-generating gas has the important economic value for Kazakhstan having large territory, raw and fuel resources especially power coal and clean coal wastes. The technology of reception of gas-energy carrier and reducer from power coal is developed. The basic product of technological process is heated reducing gas. Reducing potential of the gas is characterized by a volumetric share of components (CO+H 2 )-RC in relation to volume of whole mix of gases received with gasification of coal. The value of parameter RC is regulated by a degree of enrichment of air by oxygen r 0 , and the temperature - by the charge of a parity of endothermic reaction in the chamber of gas regeneration. The dependence of the gas structure and temperature on the degree of enrichment of air by oxygen is shown and the circuit of the gas generator is given. (author)

  12. Study of Pair and many-body interactions in rare-gas halide atom clusters using negative ion zero electron kinetic energy (ZEKE) and threshold photodetachment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yourshaw, Ivan [Univ. of California, Berkeley, CA (United States)

    1998-07-09

    The diatomic halogen atom-rare gas diatomic complexes KrBr-, XeBr-, and KrCl- are studied in this work by zero electron kinetic energy (ZEKE) spectroscopy in order to characterize the weak intermolecular diatomic potentials of these species. Also, the ZEKE and threshold photodetachment spectra of the polyatomic clusters ArnBr- (n = 2-9) and ArnI- (n = 2-19) are studied to obtain information about the non-additive effects on the interactions among the atoms. This work is part of an ongoing effort to characterize the pair and many-body potentials of the complete series of rare gas halide clusters. In these studies we obtain information about both the anionic and neutral clusters.

  13. Study of proton polarization in charge exchange process on optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Zelenskij, A.N.; Kokhanovskij, S.A.

    1984-01-01

    Using high-power adjustable dye lasers for electron spin orientation in a charge-exchange target enables to significantly increase the proton polarization efficiency. A device is described that permits to avoid growth of the polarized proton beam emittance in a charge-exchange process in a strong magnetic field. The devise main feature is the use of an intensive source of neutral hydrogen atoms and the presence of a helium additional charge-exchange target which actualy is a proton ''source''. The helium charge-exchange cell is placed in the same magnetic field of a solenoid where a cell with oriented sodium is placed, a polarized electron being captured by a proton in the latter cell. In this case the beam at the solenoid inlet and outlet is in a neutral state; emittance growth related to the effect of end magnetic fields is not observed. The device after all prouduces polarized protons, their polarization degree is measured and the effect of various factors on polarization degree is studied. The description of the laser source and laser system is given. Measurement results have shown the beam intensity of neutral 7 keV atoms which passed through a polarizer to be 2 mA. The proton current doesn't depend. On the beeld fin the region of chrge exchange for the 8 kGs magnetic field. The degree of sodium polarization was 80% and polarized proton current approximately 70 μA at a temperature of the polarized sodium cell corresponding to the density of sodium vapar approximately 3x10 13 at/cm 2

  14. 4. All-Russian (international) scientific conference. Physicochemical processes during selection of atoms and molecules. Collection of reports

    International Nuclear Information System (INIS)

    Baranov, V.Yu.; Kolesnikov, Yu.A.

    1999-01-01

    The reports of the 4. All-Russian (international) scientific conference: Physicochemical processes during selection of atoms and molecules, are presented. The conference took place in Zvenigorod, 4-8 October, 1999. Contents of the reports are the following: laser isotope separation of molecules and atoms; isotopic selection of molecules and atoms in the field of centrifugal forces; selection of molecules by means of rectification and isotopic exchange methods; separation of isotopes by ion cyclotron-resonance method, in electric discharge and electromagnetic field; change in physical properties of substances which variation of their natural isotopic composition; use of isotopes in pharmacy preparation; status of experimental and diagnostic technique; certain promising methods of selection of atoms and molecules. The problems of laser separation of uranium isotopes, separation of carbon isotopes by multi-photon selective dissociation are discussed. The procedures permitting production of isotopes with high concentration and efficiency are developed [ru

  15. Atomically Dispersed Au-(OH)x Species Bound on Titania Catalyze the Low-Temperature Water-Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Allard, Lawrence F; Flytzani-Stephanopoulos, Maria [Tufts; (ORNL)

    2013-03-27

    We report a new method for stabilizing appreciable loadings (~1 wt %) of isolated gold atoms on titania and show that these catalyze the low-temperature water-gas shift reaction. The method combines a typical gold deposition/precipitation method with UV irradiation of the titania support suspended in ethanol. Dissociation of H2O on the thus-created Au–O–TiOx sites is facile. At higher gold loadings, nanoparticles are formed, but they were shown to add no further activity to the atomically bound gold on titania. Removal of this “excess” gold by sodium cyanide leaching leaves the activity intact and the atomically dispersed gold still bound on titania. The new materials may catalyze a number of other reactions that require oxidized active metal sites.

  16. Atmospheric chemistry of trans-CF3CH=CHCl: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbaek; Nilsson, Elna Johanna Kristina; Nielsen, Ole John

    2008-01-01

    Long path length Fourier transform infrared (FTIR)–smog chamber techniques were used to study the kinetics of the gas-phase reactions of Cl atoms, OH radicals and O3 with trans-3,3,3-trifluoro-1-chloropropene, t-CF3CH CHCl, in 700 Torr total pressure at 295±2K. Values of k(Cl + t-CF3CH CHCl) = (5...

  17. Theoretical test of Jarzynski's equality for reversible volume-switching processes of an ideal gas system.

    Science.gov (United States)

    Sung, Jaeyoung

    2007-07-01

    We present an exact theoretical test of Jarzynski's equality (JE) for reversible volume-switching processes of an ideal gas system. The exact analysis shows that the prediction of JE for the free energy difference is the same as the work done on the gas system during the reversible process that is dependent on the shape of path of the reversible volume-switching process.

  18. Rate coefficients for reactive elementary processes involving atoms and vibrationally excited molecules

    International Nuclear Information System (INIS)

    Lagana, A.; Ochoa de Aspuru, G.; Riganelli, A.; Garcia, E.

    1996-01-01

    To investigate reactions of atoms with simple molecules with new computation approaches and applying consolidated efficient numerical procedures to the calculation of experimental observables under a wide range of operating conditions were developed. A first family of reactions investigated using the described techniques and computational procedures are those of the nitrogen atom with some diatomic molecules (N 2 and O 2 ) as well as oxygen atom reactions with O 2 and HCl molecules

  19. Incoporating Ammonia Synthesis for an Offshore Gas-to-Liquid Process

    OpenAIRE

    Lundgren, Mathias Kristoffer

    2016-01-01

    The world energy demand is increasing, and so is the demand for fertilizer to sustain an exponential population growth. Currently, with low oil prices, asso- ciated natural gas is flared off or re-injected into oil reservoirs for enhanced oil recovery (EOR). A gas-to-liquid process (GTL) for offshore applications aboard a foating production, storage, and offoading vessel (FPSO) incorpo- rating Fischer-Tropsch Synthesis (FTS) seeks to reform natural gas into more valuable liq...

  20. How to measure atomic diffusion processes in the sub-nanometer range

    International Nuclear Information System (INIS)

    Schmidt, H.; Gupta, M.; Gutberlet, T.; Stahn, J.; Bruns, M.

    2008-01-01

    Self-diffusion of the atomic constituents in the solid state is a fundamental transport process that controls various materials properties. With established methods of diffusivity determination it is only possible to measure diffusion processes on a length scale down to 10 nm at corresponding diffusivities of 10 -23 m 2 s -1 . However, for complex materials like amorphous or nano-structured solids the given values are often not sufficient for a proper characterization. Consequently, it is necessary to detect diffusion length well below 1 nm. Here, we present the method of neutron reflectometry on isotope multilayers. For two model systems, an amorphous semiconductor and an amorphous metallic alloy, the efficiency of this method is demonstrated to detect minimum diffusion lengths of only 0.6-0.7 nm. It is further shown that diffusivities can be derived which are more than two orders of magnitude lower than those obtainable with conventional methods. Prospects of this method in order to solve actual kinetic problems in materials science are given

  1. New development on electrochemical etching processes at the Atomic Energy Organization of Iran

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1999-01-01

    Some highlights of new developments made in our laboratory at the Atomic Energy Organization of Iran on chemical and electrochemical etching (ECE) of polymer track detectors like polycarbonate (PC) are presented. They include introduction of new ECE chamber systems and methods for production of ECE signs and symbols, and a new versatile ECE chamber (VECE) system for multi-purpose, multi-size, and/or multi-shape detector processing; determination of photoneutron doses in and around high-energy X-ray beams of a 20 MV medical accelerator; verification of the Smythe and Mason equations for ECE of tracks in polymers; ECE of alpha and recoil tracks in PC using PMW, PEW and PEMW etchants; introduction of a novel method using ethylene diamine for treatment of PC detectors with its applications, for example in precision removal of surface layers of PC (e.g. bulk removal rates of about 0.04, 0.15, 0.36, 0.66, and 1.33 mm min -1 for 60%, 65%, 70%, 75% and 80% ethylene diamine solution (v/v) in water respectively, with no effects on its transparency), and in significant reduction of background track density of PC detectors, in alpha energy discrimination and alpha spectrometry; and development of an image processing system for track counting and measurements; etc. Some main results are reviewed and discussed

  2. In situ studies on controlling an atomically-accurate formation process of gold nanoclusters.

    Science.gov (United States)

    Yang, Lina; Cheng, Hao; Jiang, Yong; Huang, Ting; Bao, Jie; Sun, Zhihu; Jiang, Zheng; Ma, Jingyuan; Sun, Fanfei; Liu, Qinghua; Yao, Tao; Deng, Huijuan; Wang, Shuxin; Zhu, Manzhou; Wei, Shiqiang

    2015-09-14

    Knowledge of the molecular formation mechanism of metal nanoclusters is essential for developing chemistry for accurate control over their synthesis. Herein, the "top-down" synthetic process of monodisperse Au13 nanoclusters via HCl etching of polydisperse Aun clusters (15 ≤ n ≤ 65) is traced by a combination of in situ X-ray/UV-vis absorption spectroscopy and time-dependent mass spectrometry. It is revealed experimentally that the HCl-induced synthesis of Au13 is achieved by accurately controlling the etching process with two distinctive steps, in sharp contrast to the traditional thiol-etching mechanism through release of the Au(i) complex. The first step involves the direct fragmentation of the initial larger Aun clusters into metastable intermediate Au8-Au13 smaller clusters. This is a critical step, which allows for the secondary size-growth step of the intermediates toward the atomically monodisperse Au13 clusters via incorporating the reactive Au(i)-Cl species in the solution. Such a secondary-growth pathway is further confirmed by the successful growth of Au13 through reaction of isolated Au11 clusters with AuClPPh3 in the HCl environment. This work addresses the importance of reaction intermediates in guiding the way towards controllable synthesis of metal nanoclusters.

  3. Conventional oil and gas, gathering and processing systems and facilities

    International Nuclear Information System (INIS)

    2002-01-01

    Accounting for 13 per cent of natural gas production in Canada, British Columbia is the second largest producing province in the country. The northeastern region of the province is where the bulk of petroleum activity takes place. The expenditures in the sector in 2001 totalled $4.3 billion and 850 wells were drilled over the same period. The document presents an overview of the industry and a discussion of the following topics: land resource requirements and sensitivities; investment requirements; infrastructure; the market; the labour force; capacity; the regulatory regime; government revenues; and, regional cost variations. An input-output table was also included. 15 refs., 5 tabs

  4. Kinetics and mechanism of the gas-phase reaction of Cl atoms and OH radicals with fluorobenzene at 296 K

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Nielsen, Ole John; Hurley, MD

    2002-01-01

    Smog chamber/FTIR techniques were used to study the kinetics and mechanism of the reaction of Cl atoms and OH radicals with fluorobenzene, C6H5F, in 700 Torr of N-2 or air diluent at 296 K. Reaction of Cl atoms with C6H5F proceeds via two pathways: H-atom abstraction to give HCl and the C6H4F...

  5. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process.

    Science.gov (United States)

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A

    2001-02-05

    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.

  6. Engineering Economic Analysis for Feed Gas Cooler (Cold box: a Case of a Gas Processing Complex in Malaysia

    Directory of Open Access Journals (Sweden)

    Ghazali Zulkipli

    2014-07-01

    Full Text Available This study examine the economic feasibility of a proposal to replace an existing Feed Gas Cooler (Cold Box with a new unit in a gas processing complex in Malaysia. Economic justification is essential to make the decision on the feasibility of this undertaking because of the high capital investment. The mathematical model presented in the paper includes net present worth, payback period, rate of return, investment balance analysis, and sensitivity analysis. Critical analyses on four factors of the estimates were done to assess their influence on the overall economic justification of the proposal. The results indicate an acceptable return on investment. However, the proposal is susceptible to the variation in demand of the Feed Gas Load.

  7. Effects of Natural Gas Compositions on CNG Fast Filling Process for Buffer Storage System

    Directory of Open Access Journals (Sweden)

    Farzaneh-Gord M.

    2013-02-01

    Full Text Available The accurate modeling of the fast-fill process occurring in Compressed Natural Gas (CNG fuelled vehicle storage cylinders is a complex process and should be thoroughly studied. Final in-cylinder conditions should meet appropriate cylinder safety standards. The composition of natural gas plays an important role on its thermodynamic properties and consequently, on the fast-fill process and the final conditions. Here, a theoretical analysis has been developed to study the effects of the natural gas composition on the filling process of an onboard Natural Gas Vehicle (NGV cylinder. The cylinder is assumed as a lumped system. The analysis is based on laws of thermodynamics and mass balance. Based on AGA8 Equation of State (EOS and thermodynamics relationships, the required properties of natural gas mixtures have been calculated. The results are presented for an adiabatic system. The results show that the compositions of natural gas have great effects on the filling process and final in-cylinder conditions. Furthermore, the gas with less methane percentage in its composition is more suitable for the filling process.

  8. H/sub 2/S-removal processes for low-Btu coal gas

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M. S.

    1979-01-01

    Process descriptions are provided for seven methods of removing H/sub 2/S from a low-Btu coal-derived gas. The processes include MDEA, Benfield, Selexol, Sulfinol, Stretford, MERC Iron Oxide, and Molecular Sieve. Each of these processes was selected as representing a particular category of gas treating (e.g., physical solvent systems). The open literature contains over 50 processes for H/sub 2/S removal, of which 35 were briefly characterized in the literature survey. Using a technical evaluation of these 35 processes, 21 were eliminated as unsuitable for the required application. The remaining 14 processes represent six categories of gas treating. A seventh category, low-temperature solid sorption, was subsequently added. The processes were qualitatively compared within their respective categories to select a representative process in each of the seven categories.

  9. METHODS FOR ORGANIZATION OF WORKING PROCESS FOR GAS-DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    G. A. Vershina

    2017-01-01

    Full Text Available Over the past few decades reduction in pollutant emissions has become one of the main directions for further deve- lopment of engine technology. Solution of such problems has led to implementation of catalytic post-treatment systems, new technologies of fuel injection, technology for regulated phases of gas distribution, regulated turbocharger system and, lately, even system for variable compression ratio of engine. Usage of gaseous fuel, in particular gas-diesel process, may be one of the means to reduce air pollution caused by toxic substances and meet growing environmental standards and regulations. In this regard, an analysis of methods for organization of working process for a gas-diesel engine has been conducted in the paper. The paper describes parameters that influence on the nature of gas diesel process, it contains graphics of specific total heat consumption according to ignition portion of diesel fuel and dependence of gas-diesel indices on advance angle for igni-tion portion injection of the diesel fuel. A modern fuel system of gas-diesel engine ГД-243 has been demonstrated in the pa- per. The gas-diesel engine has better environmental characteristics than engines running on diesel fuel or gasoline. According to the European Natural & bio Gas Vehicle Association a significant reduction in emissions is reached at a 50%-substitution level of diesel fuel by gas fuel (methane and in such a case there is a tendency towards even significant emission decrease. In order to ensure widespread application of gaseous fuel as fuel for gas-diesel process it is necessary to develop a new wor- king process, to improve fuel equipment, to enhance injection strategy and fuel supply control. A method for organization of working process for multi-fuel engine has been proposed on the basis of the performed analysis. An application has been submitted for a patent.

  10. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Harvey, Karen [ORNL; Ferrada, Juan J [ORNL

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  11. Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Belafi-Bako, K.; Bucsu, D. [Research Institute of Chemical and Process Engineering, University of Veszprem, Egyetem u. 2., 8200 Veszprem (Hungary); Pientka, Z. [Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2., Prague (Czech Republic); Balint, B.; Herbel, Z.; Kovacs, K.L. [Department of Biotechnology and Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, University of Szeged, Temesvari krt. 62., 6726 Szeged (Hungary); Wessling, M. [Membrane Technology Group, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2006-09-15

    An integrated system for biohydrogen production and separation was designed, constructed and operated where biohydrogen was fermented by Thermococcus litoralis, a heterotrophic archaebacterium, and a two-step gas separation process was coupled to recover and concentrate hydrogen. A special liquid seal system was built to deliver, compress and collect the laboratory scale, low volume gas mixtures consisting of hydrogen, nitrogen and carbon dioxide. As a result, gas mixture with 73% high hydrogen content was produced by a combination of a porous and a non-porous gas separation membrane. (author)

  12. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  13. Ceramics in gas turbine: Powder and process characterization

    Science.gov (United States)

    Dutta, S.

    1977-01-01

    Some of the intrinsic properties of various forms of Si3N4 and SiC are listed and limitations of such materials' availability are pointed out. The essential features/parameters to characterize a batch of powder are discussed including the standard techniques for such characterization. In process characterization, parameters in sintering, reaction sintering, and hot pressing processes are discussed including the factors responsible for strength limitations in ceramic bodies. Significant improvements in material properties can be achieved by reducing or eliminating the strength limiting factors with consistent powder and process characterization along with process control.

  14. Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaaeid Lokhandwala

    2005-12-22

    The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology Group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group first found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produced about 1 MMscfd of gas containing 24% nitrogen. The membrane unit was built to bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid was built by ABB. NTE ordered the required compressor and MTR made the membrane modules for a December 2004 delivery. However, the gas supply was not steady enough for field testing, and MTR/ABB have now located other sites for field testing and commercial development.

  15. Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaaeid Lokhandwala

    2005-12-15

    The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is now working with the company's Randall Gas Technology Group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group first found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produced about 1 MMscfd of gas containing 24% nitrogen. The membrane unit was built to bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid was built by ABB. NTE ordered the required compressor and MTR made the membrane modules for a December 2004 delivery. However, the gas supply was not steady enough for field testing, and MTR/ABB have now located other sites for field testing and commercial development.

  16. Optimization of Simplex Atomizer Inlet Port Configuration through Computational Fluid Dynamics and Experimental Study for Aero-Gas Turbine Applications

    Science.gov (United States)

    Marudhappan, Raja; Chandrasekhar, Udayagiri; Hemachandra Reddy, Koni

    2017-10-01

    The design of plain orifice simplex atomizer for use in the annular combustion system of 1100 kW turbo shaft engine is optimized. The discrete flow field of jet fuel inside the swirl chamber of the atomizer and up to 1.0 mm downstream of the atomizer exit are simulated using commercial Computational Fluid Dynamics (CFD) software. The Euler-Euler multiphase model is used to solve two sets of momentum equations for liquid and gaseous phases and the volume fraction of each phase is tracked throughout the computational domain. The atomizer design is optimized after performing several 2D axis symmetric analyses with swirl and the optimized inlet port design parameters are used for 3D simulation. The Volume Of Fluid (VOF) multiphase model is used in the simulation. The orifice exit diameter is 0.6 mm. The atomizer is fabricated with the optimized geometric parameters. The performance of the atomizer is tested in the laboratory. The experimental observations are compared with the results obtained from 2D and 3D CFD simulations. The simulated velocity components, pressure field, streamlines and air core dynamics along the atomizer axis are compared to previous research works and found satisfactory. The work has led to a novel approach in the design of pressure swirl atomizer.

  17. Gas generation in deep radioactive waste repositories: a review of processes, controls and models

    International Nuclear Information System (INIS)

    Jones, M.A.

    1990-10-01

    Gas generation within radioactive waste repositories may produce two general problems: 1) breaching of engineered and natural barriers due to high gas pressures; 2) enhanced radiological risk due to reduced groundwater travel times and/or greater aqueous or gaseous activities reaching the biosphere. As a result of these concerns, HMIP must be aware of the current status of relevant research, together with any associated deficiencies. This report addresses the current status of published research on near-field gas generation from worldwide sources and documents the important gas generating processes, the factors controlling them and models available to simulate them. In the absence of suitable models, outline technical specifications for corrosion and microbial degradation gas generation models are defined and the deficiencies in the current understanding of gas generation are highlighted; a conceptual research programme to correct these deficiencies is presented. (author)

  18. Work of gas during the process of seam destruction by rock bursts

    Energy Technology Data Exchange (ETDEWEB)

    Borisenko, A.A.; Tkachenko, E.S.

    1980-06-01

    Evaluates the results of investigation on the process of coal destruction by gas pressure, carried out in the IGD im. Skochinski Institute. Samples were prepared from coals from seams liable to bursts and from seams without burst hazard. Coal briquets were produced from coal grains and colophony was used as the binder. To prevent gas sorbtion helium was used as the gas which acts on coal samples. One hundred tests were carried out. The results are given in a table. Construction of an apparatus used for coal sample destruction by gas pressure is also described. Tests show that gas pressure in coal seams liable to rock bursts plays the same role as mechanical stresses: it provides the reserves of potential elastic energy necessary for coal destruction. The strength properties of coal play the predominant role. It is also suggested that the safe level of gas pressure in disturbed coal seams is 2.5 kg/cmat2. (2 refs.) (In Russian)

  19. New development on electrochemical etching processes at the Atomic Energy Organization of Iran

    CERN Document Server

    Sohrabi, M

    1999-01-01

    Some highlights of new developments made in our laboratory at the Atomic Energy Organization of Iran on chemical and electrochemical etching (ECE) of polymer track detectors like polycarbonate (PC) are presented. They include introduction of new ECE chamber systems and methods for production of ECE signs and symbols, and a new versatile ECE chamber (VECE) system for multi-purpose, multi-size, and/or multi-shape detector processing; determination of photoneutron doses in and around high-energy X-ray beams of a 20 MV medical accelerator; verification of the Smythe and Mason equations for ECE of tracks in polymers; ECE of alpha and recoil tracks in PC using PMW, PEW and PEMW etchants; introduction of a novel method using ethylene diamine for treatment of PC detectors with its applications, for example in precision removal of surface layers of PC (e.g. bulk removal rates of about 0.04, 0.15, 0.36, 0.66, and 1.33 mm min sup - sup 1 for 60%, 65%, 70%, 75% and 80% ethylene diamine solution (v/v) in water respectivel...

  20. Direct processes in ion-atom collisions at intermediate and high energies

    International Nuclear Information System (INIS)

    Rodriguez Chariarse, V.D.

    1990-01-01

    This thesis deals with direct processes induced by Zp charge ion impact on one or two electron atoms and ions at intermediate energies. At a first step, a one-dimensional collision model is used in order to prove the different theoretical methods available to study collisions at such energy range, such as: perturbative and related variational principles, and distorted wave methods. The best description of both, symmetric and asymmetric collision type, is achieved by the distorted wave methods, particularly the ones using the exact impulsive wave function. As a next step, the appropriate formulations of the wave functions employed in the one-dimensional model to describe the real 3-dimensional Coulomb interaction case are examined by using the Eikonal and impulse hypothesis. In this way, the VPS and Eikonal wave functions are reviewed, and furtherly, the Eikonal form of the extended impulse wave function is derived. The Eikonal impulse approximation (EIA) is introduced. This is a distorted wave method using the Eikonal and extended impulse wave functions. The choice of the EIA prior version, i.e., the one using extended impulse wave function in the final channel for excitation is widely discussed and justified. (Author) [es

  1. Atomic Power

    African Journals Online (AJOL)

    that atom-produced electricity began to be more economic than electricity produced by conventional means. In the A.G.R., the uranium metal fuel elements are replaced by uranium dioxide, the higher gas temperatures permitting a more efficient steam cycle and allowing several economies. Initially a reactor of this type was ...

  2. Process integration methodology for natural gas-fueled heat pumps and cogeneration systems

    Science.gov (United States)

    Rossiter, Alan P.

    1988-11-01

    A process integration methodology was developed for analyzing industrial processes, identifying those that will benefit from natural gas fueled heat pumps and cogeneration system as well as novel, process-specific opportunities for further equipment improvements, including performance targets. The development included the writing of software to assist in implementing the methodology and application of the procedures in studies using both literature data and plant operating data. These highlighted potential applications for gas fueled heat pumps in ethylene processes and liquor distilling plants, and slightly less attractive opportunities in a number of other plants. Many of the processes studied showed excellent potentials for cogeneration applications.

  3. Transport and transformation of mercury during wet flue gas cleaning process of nonferrous metal smelting.

    Science.gov (United States)

    Liu, Zhilou; Wang, Dongli; Peng, Bing; Chai, Liyuan; Liu, Hui; Yang, Shu; Yang, Bentao; Xiang, Kaisong; Liu, Cao

    2017-10-01

    Reducing mercury emission is hot topic for international society. The first step for controlling mercury in fuel gas is to investigate mercury distribution and during the flue gas treatment process. The mercury transport and transformation in wet flue gas cleaning process of nonferrous smelting industry was studied in the paper with critical important parameters, such as the solution temperature, Hg 0 concentration, SO 2 concentration, and Hg 2+ concentration at the laboratory scale. The mass ratio of the mercury distribution in the solution, flue gas, sludge, and acid fog from the simulated flue gas containing Hg 2+ and Hg 0 was 49.12~65.54, 18.34~35.42, 11.89~14.47, and 1.74~3.54%, respectively. The primary mercury species in the flue gas and acid fog were gaseous Hg 0 and dissolved Hg 2+ . The mercury species in the cleaning solution were dissolved Hg 2+ and colloidal mercury, which accounted for 56.56 and 7.34% of the total mercury, respectively. Various mercury compounds, including Hg 2 Cl 2 , HgS, HgCl 2 , HgSO 4 , and HgO, existed in the sludge. These results for mercury distribution and speciation are highly useful in understanding mercury transport and transformation during the wet flue gas cleaning process. This research is conducive for controlling mercury emissions from nonferrous smelting flue gas and by-products.

  4. Population inversion of two atoms under the phase decoherence in the multiphoton process

    International Nuclear Information System (INIS)

    Zhang Dongxia; Sa Chuerfu; Mu Qier

    2011-01-01

    By means of the quantum theory, the population inversion of two atoms in the system of two two-level atoms coupled to a light field in the Binomial Optical Field are investigated in the presence of phase decoherence in the multiphoton Tavis-Cumming Model. The influences of the phase decoherence coefficient, the parameters η of the binomial optical field, the maximum number of photons and the number of the transitional photons on the properties of the population inversion of two atoms have been discussed. The results show that the phase decoherence reduced the oscillation amplitude of the population inversion of two atoms and destroyed the atomic quantum characteristic. Changing the number of the transitional photons, evolved cycle and evolved intensity the population inversion of two atoms can be changed. The phenomena of collapse and revival disappear as photon number increase. When the binomial optical state changes from a coherent state to a Fock state, the oscillation frequency of the atomic population reduces gradually, the phenomena of collapse and revival vanishes gradually. (authors)

  5. Primary processes and ionic reactions in the chemistry of recoiling silicon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Boo, B.H.; Stewart, G.W.

    1993-01-01

    Hot atom chemistry has permitted the elucidation of the chemistry of free atoms, and these include the polyvalent atoms of refractory group 14 elements, that is, carbon, silicon and germanium. Since no more than two bonds are formed normally in a single reactive collision of free atoms, the study on the chemistry of atoms like C, Si and Ge that require the formation of more than two bonds to saturate their chemical valence necessarily involves the study of reactive intermediates. By the studies on the chemistry of recoiling 31 Si atoms, the mechanistic conclusions reached are reported. The most important unanswered questions concerning the reaction of recoiling 31 Si atoms in the systems are shown, and progress has been made toward the answering. By using tetramethyl silane as a trapping agent for silicon ions, it has been established that the reaction of 31 Si ions contributes significantly to the formation of products in recoil systems. The studies by various researchers on this theme are reported. (K.I.)

  6. Construction of intelligent decision support system in control of gas compression process

    Directory of Open Access Journals (Sweden)

    Леонид Михайлович Замиховский

    2015-04-01

    Full Text Available The necessity to construct the intelligent decision support systems (IDSS in the control of the gas compression process with inclusion in structure of the training module is substantiated. А block diagram of human-computer interaction in the system "Dispatcher - IDSS - ASC GCU - CS" is shown, and the functions of the separate blocks of the intellectual decision support system in the control of the gas compression process are defined

  7. Flow and gas exchange processes after leaks in the primary circuit of high temperature reactors

    International Nuclear Information System (INIS)

    Breitbach, G.; David, H.P.; Nickel, M.; Wolters, J.

    1988-10-01

    The occurrence of leaks in the pressurized enclosure of an Helium cooled High Temperature Reactor (HTR module) leads in a first step to a rapid outflow of the cooling gas. After loss of pressure gas exchange processes start governed by convection, diffusion and the so called 'breathing' of the primary circuit. Theoretical models for the treatment of the processes are presented. Further experimental investigations are reported. The phenomena are discussed and theory and experiments are compared. (orig./HP) [de

  8. Method and apparatus for rapid adjustment of process gas inventory in gaseous diffusion cascades

    International Nuclear Information System (INIS)

    Dyer, R.H.; Fowler, A.H.; Vanstrum, P.R.

    1977-01-01

    The invention relates to an improved method and system for making relatively large and rapid adjustments in the process gas inventory of an electrically powered gaseous diffusion cascade in order to accommodate scheduled changes in the electrical power available for cascade operation. In the preferred form of the invention, the cascade is readied for a decrease in electrical input by simultaneously withdrawing substreams of the cascade B stream into respective process-gas-freezing and storage zones while decreasing the datum-pressure inputs to the positioning systems for the cascade control valves in proportion to the weight of process gas so removed. Consequently, the control valve positions are substantially unchanged by the reduction in invention, and there is minimal disturbance of the cascade isotopic gradient. The cascade is readied for restoration of the power cut by simultaneously evaporating the solids in the freezing zones to regenerate the process gas substreams and introducing them to the cascade A stream while increasing the aforementioned datum pressure inputs in proportion to the weight of process gas so returned. In the preferred form of the system for accomplishing these operations, heat exchangers are provided for freezing, storing, and evaporating the various substreams. Preferably, the heat exchangers are connected to use existing cascade auxiliary systems as a heat sink. A common control is employed to adjust and coordinate the necessary process gas transfers and datum pressure adjustments

  9. Parametric Design within an Atomic Design Process (ADP) applied to Spacecraft Design

    Science.gov (United States)

    Ramos Alarcon, Rafael

    This thesis describes research investigating the development of a model for the initial design of complex systems, with application to spacecraft design. The design model is called an atomic design process (ADP) and contains four fundamental stages (specifications, configurations, trade studies and drivers) that constitute the minimum steps of an iterative process that helps designers find a feasible solution. Representative design models from the aerospace industry are reviewed and are compared with the proposed model. The design model's relevance, adaptability and scalability features are evaluated through a focused design task exercise with two undergraduate teams and a long-term design exercise performed by a spacecraft payload team. The implementation of the design model is explained in the context in which the model has been researched. This context includes the organization (a student-run research laboratory at the University of Michigan), its culture (academically oriented), members that have used the design model and the description of the information technology elements meant to provide support while using the model. This support includes a custom-built information management system that consolidates relevant information that is currently being used in the organization. The information is divided in three domains: personnel development history, technical knowledge base and laboratory operations. The focused study with teams making use of the design model to complete an engineering design exercise consists of the conceptual design of an autonomous system, including a carrier and a deployable lander that form the payload of a rocket with an altitude range of over 1000 meters. Detailed results from each of the stages of the design process while implementing the model are presented, and an increase in awareness of good design practices in the teams while using the model are explained. A long-term investigation using the design model consisting of the

  10. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    Science.gov (United States)

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2012-05-15

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  11. Charge amplification and transfer processes in the gas electron multiplier

    International Nuclear Information System (INIS)

    Bachmann, S.; Bressan, A.; Ropelewski, L.; Sauli, F.; Sharma, A.; Moermann, D.

    1999-01-01

    We report the results of systematic investigations on the operating properties of detectors based on the gas electron multiplier (GEM). The dependence of gain and charge collection efficiency on the external fields has been studied in a range of values for the hole diameter and pitch. The collection efficiency of ionization electrons into the multiplier, after an initial increase, reaches a plateau extending to higher values of drift field the larger the GEM voltage and its optical transparency. The effective gain, fraction of electrons collected by an electrode following the multiplier, increases almost linearly with the collection field, until entering a steeper parallel plate multiplication regime. The maximum effective gain attainable increases with the reduction in the hole diameter, stabilizing to a constant value at a diameter approximately corresponding to the foil thickness. Charge transfer properties appear to depend only on ratios of fields outside and within the channels, with no interaction between the external fields. With proper design, GEM detectors can be optimized to satisfy a wide range of experimental requirements: tracking of minimum ionizing particles, good electron collection with small distortions in high magnetic fields, improved multi-track resolution and strong ion feedback suppression in large volume and time-projection chambers

  12. The Use of natural fatty acids in processing tritium gas

    International Nuclear Information System (INIS)

    El-Sharnouby, A.K.; Abdelgeleel, M.; Eskander, S.B.

    1997-01-01

    Natural unsaturated fatty acid (e.g cotton, corn, litmus, castor and palm oils) were used to fix tritium gas. The data obtained show that the affinity of the different used natural oils fixation of hydrogen (tritium) was in the following order: cotton oils> corn oil> litmus oil> castor oil> palm oil. The quantity of hydrogen (tritium) which can be fixed by one gram cotton oil is about 5.824 ml H 2 (5.56 x 10 1 1 Bq tritium) while one gram corn oil can fix only 5.04 ml H 2 (4.811 x 10 1 1 Bq tritium). Tritiated cotton oil and corn oil can be solidified using an epoxy resin (Araldite-B-W-1193), the polymer sample can contain up to 5% by weight from hydrogenated (tritiated) oils. The results obtained show that the compressive strength measurements of the final solid waste forms (fatty acid/epoxy) increased with increasing curing time and decreased with increasing fatty acid content. The leachability of tritium from the final solid waste forms increased with increasing fatty acid content in the polymer matrix. The cumulative leach fraction of tritium varied between 4.00 x 10 -3 cm and 6.60 x 10 -3 cm according to the experimental conditions. 15 figs., 1 tab

  13. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Berman, Paul R; Arimondo, Ennio

    2006-01-01

    Volume 54 of the Advances Series contains ten contributions, covering a diversity of subject areas in atomic, molecular and optical physics. The article by Regal and Jin reviews the properties of a Fermi degenerate gas of cold potassium atoms in the crossover regime between the Bose-Einstein condensation of molecules and the condensation of fermionic atom pairs. The transition between the two regions can be probed by varying an external magnetic field. Sherson, Julsgaard and Polzik explore the manner in which light and atoms can be entangled, with applications to quantum information processing

  14. A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, T.C.; Turk, B.S.; Gupta, R.P.; Cicero, D.C.; Jain, S.C.

    2002-09-20

    The overall objective of this project is to develop technologies for cleaning/conditioning IGCC generated syngas to meet contaminant tolerance limits for fuel cell and chemical production applications. The specific goals are to develop processes for (1) removal of reduced sulfur species to sub-ppm levels using a hybrid process consisting of a polymer membrane and a regenerable ZnO-coated monolith or a mixed metal oxide sorbent; (2) removal of hydrogen chloride vapors to sub-ppm levels using an inexpensive, high-surface-area material; and (3) removal of NH3 with acidic adsorbents followed by conversion of this NH3 into nitrogen and water. Existing gasification technologies can effectively and efficiently convert a wide variety of carbonaceous feedstocks (coal, petcoke, resids, biomass, etc.) into syngas, which predominantly contains carbon monoxide and hydrogen. Unfortunately, the impurities present in these carbonaceous feedstocks are converted to gaseous contaminants such as H2S, COS, HCl, NH3, alkali macromolecules and heavy metal compounds (such as Hg) during the gasification process. Removal of these contaminants using conventional processes is thermally inefficient and capital intensive. This research and development effort is focused on investigation of modular processes for removal of sulfur, chlorine, nitrogen and mercury compounds from syngas at elevated temperature and pressures at significantly lower costs than conventional technologies.

  15. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Science.gov (United States)

    2010-07-01

    ...) National Emission Standards for Closed Vent Systems, Control Devices, Recovery Devices and Routing to a Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Fuel gas systems and processes to...

  16. An Experimental Study of the Fluorescence Spectrum of Cesium Atoms in the Presence of a Buffer Gas

    Science.gov (United States)

    Davydov, V. G.; Kulyasov, V. N.

    2018-01-01

    A direct experiment is performed to determine the quantum efficiency of a cesium fluorescence filter. The fluorescence spectra of cesium atoms are recorded under excitation of the upper states of the second resonance doublet with a Bell-Bloom cesium lamp. Introduction of different noble gases into the cell with cesium leads to the appearance of additional fluorescence photons. It is found that a fluorescence filter based on atomic cesium vapor with addition of helium in the working cell has the highest efficiency and response rate of all known fluorescence filters based on alkali-metal atomic vapors.

  17. The thermalization process of an atom with the thermal radiation field

    International Nuclear Information System (INIS)

    Flores-Hidalgo, G

    2007-01-01

    We study the time evolution of an atom suddenly coupled to a thermal radiation field. As a simplified model of the atom-electromagnetic field system we use a system composed of a harmonic oscillator linearly coupled to a scalar field in the framework of the recently introduced dressed coordinates and dressed states. We show that the time evolution of the thermal expectation values for the occupation number operators depends exclusively on the probabilities associated with the emission and absorption of field quanta. In particular, the time evolution of the number operator associated with the atom is given in terms of the probability of remaining in the first excited state and the decay probabilities from this state by emission of field quanta of frequencies ω k . Also, it is shown that independent of the initial state of the atom, it thermalizes with the thermal radiation field in a time scale of the order of the inverse coupling constant

  18. Fuel from the synthesis gas - the role of process engineering

    Energy Technology Data Exchange (ETDEWEB)

    Stelmachowski, Marek; Nowicki, Lech [Technical Univ. of Lodz, Dept. of Environmental Engineering Systems, Lodz (Poland)

    2003-02-01

    The paper presents the conclusions obtained in the investigations of methanol synthesis, Fischer-Tropsch synthesis, and higher alcohols synthesis from syngas as a raw material in slurry reactors. The overview of the role of process engineering was made on the basis of the experience in optimizing process conditions, modeling reactors and working out new technologies. Experimental data, obtained with a laboratory-stirred autoclave and theoretical considerations were used to develop the kinetic models that can describe the product formation and the model of the simultaneous phase and chemical equilibrium for the methanol and Fischer-Tropsch syntheses in the slurry reactors. These models were employed in modeling of the bubble-column slurry reactor (BCSR). Based on these considerations, a computer simulation of the low-pressure methanol synthesis for the pilot-scale, BCSR, was devised. The results of the calculations and the conclusions could be employed in the process for designing an industrial plant. (Author)

  19. Ultrafast Processes in Atoms and Molecules: Integrated treatment of electronic and nuclear motion in ultrashort XUV pulses

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, C. William [Univ. of California, Davis, CA (United States). Dept. of

    2017-12-14

    This project made use of Multiconfiguration Time-Dependent Hartree-Fock method developed earlier in the McCurdy group in a series of novel applications of the method to ultrafast spectroscopic processes. MCTDHF treats the dynamics of a molecule or atom under the influence of an external field in manner that has all electrons active. That property distinguishes this method from the more popular (and much less computationally demanding) approaches for treating the electron dynamics of atoms and molecules in fields, such as the time-dependent “Configuration Interaction Singles” approximation or approaches that limit the treatment to either one or two-electron models.

  20. Molecular Processes Studied at a Single-Molecule Level Using DNA Origami Nanostructures and Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Ilko Bald

    2014-09-01

    Full Text Available DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates.

  1. Studies of photoionization processes from ground-state and excited-state atoms and molecules

    International Nuclear Information System (INIS)

    Ederer, D.L.; Parr, A.C.; West, J.B.

    1982-01-01

    Recent triply-differential photoelectron spectroscopy experiments designed for the study of correlation effects in atoms and molecules are described. Final-state symmetry of the n=2 state of helium has been determined. The non-Franck-Condon behavior of vibrational branching ratios and large variations of the angular asymmetry parameter has been observed for shape resonances and autoionizing resonances in CO and other molecules. Recent observations of the photoionization of excited sodium atoms are also described

  2. Mathematical simulation of kinetic processes in moving irradiated by neutrons gas medium containing uranium nanoparticles

    Science.gov (United States)

    Alexeeva, I. V.; Budnik, A. P.; Sipachev, A. V.; Slyunyaev, M. N.

    2017-02-01

    The theoretical model and program complex for mathematical simulation of processes of transformation the nuclear energy into optical radiation energy was developed. The model includes the equations of gas dynamics, as well as the equations describing the kinetic processes in the non-equilibrium plasma excited by uranium fission fragments. The kinetic processes in the moving irradiated by neutrons argon-xenon gas medium containing uranium nanoparticles was investigated. The space-time evolution of this medium in nonuniform changing over time neutron field was studied. The space-time evolution of the gas parameters (temperature, density, velocity, pressure), as well as the distribution of the concentration of uranium nanoparticles under different initial velocities of the gas and the size of the nanoparticles was calculated. The amplifying properties of a laser-active space-nonuniform nuclear-excited moving argon-xenon medium, containing uranium nanoparticles and irradiated by neutrons, was studied.

  3. Combined process of pyrolyzer/combuster for gas production and power generation; Chugoku ni okeru chukibo hatsuden to toshi gas seizo no tame no fukugo process no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ooka, I. [The University of Tokushima, Tokushima (Japan); Ma, T.

    1997-10-30

    In China, they are using a lot of coal by direct firing for domestic cooking, space heating and industrial use. Therefore air pollution is the big problem in every cities in winter season. And at moment, they do not have enough infrastructure for supplying energy such as gas and electric power. There is a great need for facilities for supplying gas and electric power from coal in big cities with much less pollution. This paper d a combined process of medium size plant of gas production and power generation by using fluidized circulation bed pyrolizer and combuster, to contribute to the energy supply which greatly reduces air and water polution and coal consumption. 1 ref., 1 fig., 3 tabs.

  4. Main reaction process simulation of hydrogen gas discharge in a ...

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... ... reactions of hydrogen discharge in small electric vacuum components at low pressure and weak ionization were confirmed. Among the 21 types of reactions in hydrogen discharge process, 11 of them play importnat roles under low pressure and weak ionization in cold cathode electric vacuum device.

  5. reaction process simulation of hydrogen gas discharge in a cold ...

    Indian Academy of Sciences (India)

    Abstract. Based on the related theory of plasma discharge process and the COMSOL multi- physics software, and considering the corresponding boundary conditions, the related reaction types in the hydrogen plasma discharge were simulated and analysed, and the main reactions of hydrogen discharge in small electric ...

  6. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes.

    Science.gov (United States)

    Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu

    2018-02-01

    Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Application of exergy analysis for improving energy efficiency of natural gas liquids recovery processes

    International Nuclear Information System (INIS)

    Shin, Jihoon; Yoon, Sekwang; Kim, Jin-Kuk

    2015-01-01

    Thermodynamic analysis and optimization method is applied to provide design guidelines for improving energy efficiency and cost-effectiveness of natural gas liquids recovery processes. Exergy analysis is adopted in this study as a thermodynamic tool to evaluate the loss of exergy associated with irreversibility in natural gas liquids recovery processes, with which conceptual understanding on inefficient design feature or equipment can be obtained. Natural gas liquids processes are modeled and simulated within UniSim ® simulator, with which detailed thermodynamic information are obtained for calculating exergy loss. The optimization framework is developed by minimizing overall exergy loss, as an objective function, subject to product specifications and engineering constraints. The optimization is carried out within MATLAB ® with the aid of a stochastic solver based on genetic algorithms. The process simulator is linked and interacted with the optimization solver, in which optimal operating conditions can be determined. A case study is presented to illustrate the benefit of using exergy analysis for the design and optimization of natural gas liquids processes and to demonstrate the applicability of design method proposed in this paper. - Highlights: • Application of exergy analysis for natural gas liquids (NGL) recovery processes. • Minimization of exergy loss for improving energy efficiency. • A systematic optimization framework for the design of NGL recovery processes

  8. Role of iron modifier on boron atomization process using graphite furnace-atomic absorption spectrometry based on speciation of iron using X-ray absorption fine structure

    Science.gov (United States)

    Yamamoto, Yuhei; Tagami, Azusa; Shiarasaki, Toshihiro; Yonetani, Akira; Yamamoto, Takashi; Imai, Shoji

    2018-04-01

    The role of an Fe modifier on boron atomization process using graphite furnace-atomic absorbance spectrometry was investigated using a spectroscopic approach. The initial state of the Fe modifier in a pyrolytic graphite (PG) furnace was trivalent. With an increase in pyrolysis temperature, the Fe modifier was reduced in a stepwise manner. Fe2O3 and Fe3O4 were dominant at pyrolysis temperatures below 1300 K. From 1300 to 1500 K, FeO was dominant. At temperatures higher than 1700 K, Fe metal was dominant. After a drying step, 17.7% of the initial B remained in the PG furnace. After the pyrolysis step at 773 K, the residual fraction of B was similar to that after the drying step. After the pyrolysis step at a temperature of 1073 K, the residual fraction was 11.7%. At pyrolysis temperatures > 1738 K, the residual fraction was <3.3% (

  9. Adipic acid enhanced limestone flue gas desulfurization process - an assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mobley, J.D.; Chang, J.C.S.

    1981-12-01

    Adipic acid, when used as an additive in a limestone FGD system, greatly increases both SO/sub 2/ removal and limestone utilization. Most existing limestone scrubbers would benefit from adipic acid addition without major process changes. No significant operating problems or adverse environmental impacts have been identified. The adipic acid enhanced system is economically attractive. Waste dibasic acids and glycolic acid appear to provide benefits similar to adipic acid at a lower cost.

  10. Influences of additives on the gas hydrate cool storage process in a new gas hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi Yuehong; Guo Tingwei; Zhu Tingying; Zhang Liang; Chen Lingen

    2006-01-01

    Experimental research on the crystallization process of the gas hydrate HCFC141b is performed for this paper. The influences of different proportions of calcium hypochlorite or benzenesulfonic acid sodium salt on the crystallization process are studied. The results show that the degree of subcooling of formation is obviously decreased, and the formation rate of the gas hydrate is greatly accelerated by adding reasonable proportions of the additives. The degree of subcooling of formation decreases 0.78 deg. C by adding benzenesulfonic acid sodium salt of 0.03%, and the formation rate of the gas hydrate increases 0.2 g/s by adding calcium hypochlorite of 0.08%. In the cool storage system, clathrate hydrates can be formed effectively, and thermal energy can be stored efficiently. When adding benzenesulfonic acid sodium salt of 0.03%, the cold energy stored is 4.74 MJ, and the cool storage density is 206.07 MJ/m 3 . The performance of this cool storage system can meet the needs of practical air conditioning engineering

  11. Effects of microbial processes on gas generation under expected WIPP repository conditions: Annual report through 1992

    International Nuclear Information System (INIS)

    Francis, A.J.; Gillow, J.B.

    1993-09-01

    Microbial processes involved in gas generation from degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository are being investigated at Brookhaven National Laboratory. These laboratory studies are part of the Sandia National Laboratories -- WIPP Gas Generation Program. Gas generation due to microbial degradation of representative cellulosic waste was investigated in short-term ( 6 months) experiments by incubating representative paper (filter paper, paper towels, and tissue) in WIPP brine under initially aerobic (air) and anaerobic (nitrogen) conditions. Samples from the WIPP surficial environment and underground workings harbor gas-producing halophilic microorganisms, the activities of which were studied in short-term experiments. The microorganisms metabolized a variety of organic compounds including cellulose under aerobic, anaerobic, and denitrifying conditions. In long-term experiments, the effects of added nutrients (trace amounts of ammonium nitrate, phosphate, and yeast extract), no nutrients, and nutrients plus excess nitrate on gas production from cellulose degradation

  12. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  13. Characterization of Biogenic Gas and Mineral Formation Process by Denitrification in Porous Media

    Science.gov (United States)

    Hall, C. A.; Kim, D.; Mahabadi, N.; van Paassen, L. A.

    2017-12-01

    Biologically mediated processes have been regarded and developed as an alternative approach to traditional ground improvement techniques. Denitrification has been investigated as a potential ground improvement process towards liquefaction hazard mitigation. During denitrification, microorganisms reduce nitrate to dinitrogen gas and facilitate calcium carbonate precipitation as a by-product under adequate environmental conditions. The formation of dinitrogen gas desaturates soils and allows for potential pore pressure dampening during earthquake events. While, precipitation of calcium carbonate can improve the mechanical properties by filling the voids and cementing soil particles. As a result of small changes in gas and mineral phases, the mechanical properties of soils can be significantly affected. Prior research has primarily focused on quantitative analysis of overall residual calcium carbonate mineral and biogenic gas products in lab-scale porous media. However, the distribution of these products at the pore-scale has not been well-investigated. In this research, denitrification is activated in a microfluidic chip simulating a homogenous pore structure. The denitrification process is monitored by sequential image capture, where gas and mineral phase changes are evaluated by image processing. Analysis of these images correspond with previous findings, which demonstrate that biogenic gas behaviour at the pore scale is affected by the balance between reaction, diffusion, and convection rates.

  14. The entanglement of two moving atoms interacting with a single-mode field via a three-photon process

    International Nuclear Information System (INIS)

    Chao, Wu; Mao-Fa, Fang

    2010-01-01

    In this paper, the entanglement of two moving atoms induced by a single-mode field via a three-photon process is investigated. It is shown that the entanglement is dependent on the category of the field, the average photon number N, the number p of half-wave lengths of the field mode and the atomic initial state. Also, the sudden death and the sudden birth of the entanglement are detected in this model and the results show that the existence of the sudden death and the sudden birth depends on the parameter and the category of the mode field. In addition, the three-photon process is a higher order nonlinear process. (general)

  15. Relativistic elementary atoms

    International Nuclear Information System (INIS)

    Mrowczynski, S.

    1989-01-01

    The physics of relativistic elementary atoms,i.e. of Coulomb bound states of elementary particles, like positronium, pionium or an atom of μ + π - , is presented. The atom lifetimes and processes, in which the atoms are produced, are discussed. The interaction of the atoms with matter is also described. A simple derivation of most results is given. 33 refs. (author)

  16. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies.

    Science.gov (United States)

    Davis, Barry M; McCaffrey, John G

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  17. On the atomization and combustion of liquid biofuels in gas turbines: towards the application of biomass-derived pyrolysis oil

    NARCIS (Netherlands)

    Sallevelt, J.L.H.P.

    2015-01-01

    The combustion of liquid biofuels in gas turbines is an efficient way of generating heat and power from biomass. Gas turbines play a major role in the global energy supply and are suitable for a wide range of applications. However, biofuels generally have different properties compared to

  18. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    Science.gov (United States)

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  19. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Science.gov (United States)

    Schiro, Fabio; Stoppato, Anna; Benato, Alberto

    2017-11-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  20. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Directory of Open Access Journals (Sweden)

    Schiro Fabio

    2017-01-01

    Full Text Available The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen. Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.