WorldWideScience

Sample records for gas analysis method

  1. Characteristic Value Method of Well Test Analysis for Horizontal Gas Well

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Li

    2014-01-01

    Full Text Available This paper presents a study of characteristic value method of well test analysis for horizontal gas well. Owing to the complicated seepage flow mechanism in horizontal gas well and the difficulty in the analysis of transient pressure test data, this paper establishes the mathematical models of well test analysis for horizontal gas well with different inner and outer boundary conditions. On the basis of obtaining the solutions of the mathematical models, several type curves are plotted with Stehfest inversion algorithm. For gas reservoir with closed outer boundary in vertical direction and infinite outer boundary in horizontal direction, while considering the effect of wellbore storage and skin effect, the pseudopressure behavior of the horizontal gas well can manifest four characteristic periods: pure wellbore storage period, early vertical radial flow period, early linear flow period, and late horizontal pseudoradial flow period. For gas reservoir with closed outer boundary both in vertical and horizontal directions, the pseudopressure behavior of the horizontal gas well adds the pseudosteady state flow period which appears after the boundary response. For gas reservoir with closed outer boundary in vertical direction and constant pressure outer boundary in horizontal direction, the pseudopressure behavior of the horizontal gas well adds the steady state flow period which appears after the boundary response. According to the characteristic lines which are manifested by pseudopressure derivative curve of each flow period, formulas are developed to obtain horizontal permeability, vertical permeability, skin factor, reservoir pressure, and pore volume of the gas reservoir, and thus the characteristic value method of well test analysis for horizontal gas well is established. Finally, the example study verifies that the new method is reliable. Characteristic value method of well test analysis for horizontal gas well makes the well test analysis

  2. Establishment of analysis method for methane detection by gas chromatography

    Science.gov (United States)

    Liu, Xinyuan; Yang, Jie; Ye, Tianyi; Han, Zeyu

    2018-02-01

    The study focused on the establishment of analysis method for methane determination by gas chromatography. Methane was detected by hydrogen flame ionization detector, and the quantitative relationship was determined by working curve of y=2041.2x+2187 with correlation coefficient of 0.9979. The relative standard deviation of 2.60-6.33% and the recovery rate of 96.36%∼105.89% were obtained during the parallel determination of standard gas. This method was not quite suitable for biogas content analysis because methane content in biogas would be over the measurement range in this method.

  3. Development Optimization and Uncertainty Analysis Methods for Oil and Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ettehadtavakkol, Amin, E-mail: amin.ettehadtavakkol@ttu.edu [Texas Tech University (United States); Jablonowski, Christopher [Shell Exploration and Production Company (United States); Lake, Larry [University of Texas at Austin (United States)

    2017-04-15

    Uncertainty complicates the development optimization of oil and gas exploration and production projects, but methods have been devised to analyze uncertainty and its impact on optimal decision-making. This paper compares two methods for development optimization and uncertainty analysis: Monte Carlo (MC) simulation and stochastic programming. Two example problems for a gas field development and an oilfield development are solved and discussed to elaborate the advantages and disadvantages of each method. Development optimization involves decisions regarding the configuration of initial capital investment and subsequent operational decisions. Uncertainty analysis involves the quantification of the impact of uncertain parameters on the optimum design concept. The gas field development problem is designed to highlight the differences in the implementation of the two methods and to show that both methods yield the exact same optimum design. The results show that both MC optimization and stochastic programming provide unique benefits, and that the choice of method depends on the goal of the analysis. While the MC method generates more useful information, along with the optimum design configuration, the stochastic programming method is more computationally efficient in determining the optimal solution. Reservoirs comprise multiple compartments and layers with multiphase flow of oil, water, and gas. We present a workflow for development optimization under uncertainty for these reservoirs, and solve an example on the design optimization of a multicompartment, multilayer oilfield development.

  4. Development Optimization and Uncertainty Analysis Methods for Oil and Gas Reservoirs

    International Nuclear Information System (INIS)

    Ettehadtavakkol, Amin; Jablonowski, Christopher; Lake, Larry

    2017-01-01

    Uncertainty complicates the development optimization of oil and gas exploration and production projects, but methods have been devised to analyze uncertainty and its impact on optimal decision-making. This paper compares two methods for development optimization and uncertainty analysis: Monte Carlo (MC) simulation and stochastic programming. Two example problems for a gas field development and an oilfield development are solved and discussed to elaborate the advantages and disadvantages of each method. Development optimization involves decisions regarding the configuration of initial capital investment and subsequent operational decisions. Uncertainty analysis involves the quantification of the impact of uncertain parameters on the optimum design concept. The gas field development problem is designed to highlight the differences in the implementation of the two methods and to show that both methods yield the exact same optimum design. The results show that both MC optimization and stochastic programming provide unique benefits, and that the choice of method depends on the goal of the analysis. While the MC method generates more useful information, along with the optimum design configuration, the stochastic programming method is more computationally efficient in determining the optimal solution. Reservoirs comprise multiple compartments and layers with multiphase flow of oil, water, and gas. We present a workflow for development optimization under uncertainty for these reservoirs, and solve an example on the design optimization of a multicompartment, multilayer oilfield development.

  5. A Stirling engine analysis method based upon moving gas nodes

    Science.gov (United States)

    Martini, W. R.

    1986-01-01

    A Lagrangian nodal analysis method for Stirling engines (SEs) is described, validated, and applied to a conventional SE and an isothermalized SE (with fins in the hot and cold spaces). The analysis employs a constant-mass gas node (which moves with respect to the solid nodes during each time step) instead of the fixed gas nodes of Eulerian analysis. The isothermalized SE is found to have efficiency only slightly greater than that of a conventional SE.

  6. Simple gas chromatographic method for furfural analysis.

    Science.gov (United States)

    Gaspar, Elvira M S M; Lopes, João F

    2009-04-03

    A new, simple, gas chromatographic method was developed for the direct analysis of 5-hydroxymethylfurfural (5-HMF), 2-furfural (2-F) and 5-methylfurfural (5-MF) in liquid and water soluble foods, using direct immersion SPME coupled to GC-FID and/or GC-TOF-MS. The fiber (DVB/CAR/PDMS) conditions were optimized: pH effect, temperature, adsorption and desorption times. The method is simple and accurate (RSDfurfurals will contribute to characterise and quantify their presence in the human diet.

  7. Development of conjugate methods with gas chromatography for inorganic compounds analysis

    International Nuclear Information System (INIS)

    Baccan, N.

    1975-01-01

    The application of gas chromatography combined with mass spectrometry or with nuclear methods for the analysis of inorganic compounds is studied. The advantages of the use of a gas chromatograph coupled with a quadrupole mass spectrometer or with a high resolution radiation detector, are discussed. We also studied the formation and solvent extraction of metal chelates; an aliquot of the organic phase was directly injected into the gas chromatograph and the eluted compounds were detected by mass spectrometry or, when radioactive, by nuclear methods. (author)

  8. Gas Analysis and Control Methods for Thermal Batteries

    Science.gov (United States)

    2013-09-01

    when using highly efficient microporous thermal insulation packages. An easily implemented method of H2 gas removal from vendor thermal batteries is... microporous thermal insulation packages (1, 4, 5) or reduce volume requirements significantly. More rigorous gas control methods combined with...measured from the DCM pressures and known internal volumes of the 3 GHS that were measured using the ideal gas law with a 10-cc internal volume SS

  9. Gas-phase polynuclear aromatic hydrocarbons (PAH) in vehicle exhaust: A method for collection and analysis

    International Nuclear Information System (INIS)

    Seigl, W.O.; Chladek, E.

    1990-01-01

    Gas-phase polynuclear aromatic hydrocarbons (PAH) are emitted at low levels in vehicle exhaust compared to other hydrocarbon emissions. A method has been developed involving the trapping of gas phase emissions on Tenax, a macrorecticular porous polymer, followed by thermal desorption onto a capillary gas chromatography column. Gas chromatography/mass spectrometry (GC/MS) was used for the chemical analysis. A detection limit of 0.05 ng was achieved for several gas-phase PAH. This high sensitivity enables the speciation and quantitation of gas-phase PAH collected from a dilution tube during standard driving (test) cycles. The method was demonstrated for the analysis of 9 PAH in the exhaust from a 1987 vehicle (with and without catalyst) during the hot start transient phase of the EPA urban dynamometer driving schedule. The PAH measured include naphthalene, 2-methyl- and 1-methylnaphthalene, biphenyl, fluorene, phenanthrene, anthracene, fluoranthene and pyrene. The four most abundant PAH observed are naphthalene, 2-methyl and 1-methylnaphthalene, and biphenyl, in that order

  10. Separation and determination of high-carbon alcohols using method of column chromatographic and gas-chromatographic analysis

    International Nuclear Information System (INIS)

    Kang Zhongrong; Li Biping; Zeng Yongchang

    1988-01-01

    This paper describes the separation and determination of high-carbon alcohols from amine extractant by using the method of column chromatography of aluminium oxide and gas-chromatographic analysis. The total conent of high-carbon alcohols is determined by the method of column chromatography, while the components of the high-carbon alcohols and their relative contents are determined by the method of gas-chromatography. A simple reliable and practical method is provided for the analysis of high-carbon alcohol from the amine extractant in this paper

  11. Development of a new method for hydrogen isotope analysis of trace hydrocarbons in natural gas samples

    Directory of Open Access Journals (Sweden)

    Xibin Wang

    2016-12-01

    Full Text Available A new method had been developed for the analysis of hydrogen isotopic composition of trace hydrocarbons in natural gas samples by using solid phase microextraction (SPME combined with gas chromatography-isotope ratio mass spectrometry (GC/IRMS. In this study, the SPME technique had been initially introduced to achieve the enrichment of trace content of hydrocarbons with low abundance and coupled to GC/IRMS for hydrogen isotopic analysis. The main parameters, including the equilibration time, extraction temperature, and the fiber type, were systematically optimized. The results not only demonstrated that high extraction yield was true but also shows that the hydrogen isotopic fractionation was not observed during the extraction process, when the SPME device fitted with polydimethylsiloxane/divinylbenzene/carbon molecular sieve (PDMS/DVB/CAR fiber. The applications of SPME-GC/IRMS method were evaluated by using natural gas samples collected from different sedimentary basins; the standard deviation (SD was better than 4‰ for reproducible measurements; and also, the hydrogen isotope values from C1 to C9 can be obtained with satisfying repeatability. The SPME-GC/IRMS method fitted with PDMS/DVB/CAR fiber is well suited for the preconcentration of trace hydrocarbons, and provides a reliable hydrogen isotopic analysis for trace hydrocarbons in natural gas samples.

  12. Comparative Study of Gas Reconstruction Robust Methods for Multicomponent Gas Mixtures

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2015-01-01

    Full Text Available When using laser methods of gas analysis, one of the arising problems is instability in results of defining a quantitative composition of gases under control of multicomponent mixes in the conditions of real noise of measurements. It leads to demand for using the special algorithms to process results of laser measurements.For multicomponent gaseous mixes, when solving a problem of quantitative gas analysis based on the results of multispectral laser measurements, use of methods for solving incorrect mathematical tasks is efficient.If mix is stationary (i.e. there is a possibility for a series of measurements it is possible to use a much simpler method to determine concentration of gases, i.e. the least-squares method based on the minimization of residual function.However, the estimates obtained by the least-squares method are effective if distribution of measurement errors is according to the normal law. In practice, the law of errors distribution is often non-normal, and loss of estimate efficiency achieved by the least-squares method occurs even at a small share of bursts.With bursts available in the measuring signal, it is necessary to use the stationary estimation methods allowing the significantly reduced impact on the estimate of considerable bursts.To estimate an efficiency of the robust methods for defining a quantitative composition of the multicomponent stationary gas mixes from multispectral laser measurements a mathematical simulation was performed. A gas mixture was considered to be stationary, and n measurements (at each wavelength were taken ( n were specified from 2 to 6 to define a quantitative composition of gases in the mixture. Simulation was implemented for gas mixes with the number of components from 4 to 6.Results of mathematical simulation show that the robust estimate based on the residual function ( x  arctg x , allows us, in conditions of the bursts of a variable signal, to reduce significantly the error of

  13. Sensitive method for the analysis of carbohydrates by gas chromatography of 3H-labeled alditol acetates

    International Nuclear Information System (INIS)

    Prehm, P.; Scheid, A.

    1978-01-01

    A highly sensitive method has been developed for the analysis of carbohydrates from glycoproteins or lipopolysaccharides. The method is based on labeling the carbohydrates with [ 3 H] sodium borohydride, acetylating the resulting alditols and separating them by gas chromatography. The gas effluent is fractionated by trapping on silicone-coated glass beads and the amount of radioactivity is determined. This permits the quantitation of as little as 0.2 nmoles monosaccharide with an accuracy of 10 to 15%. (Auth)

  14. Metaphysics methods development for high temperature gas cooled reactor analysis

    International Nuclear Information System (INIS)

    Seker, V.; Downar, T. J.

    2007-01-01

    Gas cooled reactors have been characterized as one of the most promising nuclear reactor concepts in the Generation-IV technology road map. Considerable research has been performed on the design and safety analysis of these reactors. However, the calculational tools being used to perform these analyses are not state-of-the-art and are not capable of performing detailed three-dimensional analyses. This paper presents the results of an effort to develop an improved thermal-hydraulic solver for the pebble bed type high temperature gas cooled reactors. The solution method is based on the porous medium approach and the momentum equation including the modified Ergun's resistance model for pebble bed is solved in three-dimensional geometry. The heat transfer in the pebble bed is modeled considering the local thermal non-equilibrium between the solid and gas, which results in two separate energy equations for each medium. The effective thermal conductivity of the pebble-bed can be calculated both from Zehner-Schluender and Robold correlations. Both the fluid flow and the heat transfer are modeled in three dimensional cylindrical coordinates and can be solved in steady-state and time dependent. The spatial discretization is performed using the finite volume method and the theta-method is used in the temporal discretization. A preliminary verification was performed by comparing the results with the experiments conducted at the SANA test facility. This facility is located at the Institute for Safety Research and Reactor Technology (ISR), Julich, Germany. Various experimental cases are modeled and good agreement in the gas and solid temperatures is observed. An on-going effort is to model the control rod ejection scenarios as described in the OECD/NEA/NSC PBMR-400 benchmark problem. In order to perform these analyses PARCS reactor simulator code will be coupled with the new thermal-hydraulic solver. Furthermore, some of the other anticipated accident scenarios in the benchmark

  15. A Novel Acoustic Liquid Level Determination Method for Coal Seam Gas Wells Based on Autocorrelation Analysis

    Directory of Open Access Journals (Sweden)

    Ximing Zhang

    2017-11-01

    Full Text Available In coal seam gas (CSG wells, water is periodically removed from the wellbore in order to keep the bottom-hole flowing pressure at low levels, facilitating the desorption of methane gas from the coal bed. In order to calculate gas flow rate and further optimize well performance, it is necessary to accurately monitor the liquid level in real-time. This paper presents a novel method based on autocorrelation function (ACF analysis for determining the liquid level in CSG wells under intense noise conditions. The method involves the calculation of the acoustic travel time in the annulus and processing the autocorrelation signal in order to extract the weak echo under high background noise. In contrast to previous works, the non-linear dependence of the acoustic velocity on temperature and pressure is taken into account. To locate the liquid level of a coal seam gas well the travel time is computed iteratively with the non-linear velocity model. Afterwards, the proposed method is validated using experimental laboratory investigations that have been developed for liquid level detection under two scenarios, representing the combination of low pressure, weak signal, and intense noise generated by gas flowing and leakage. By adopting an evaluation indicator called Crest Factor, the results have shown the superiority of the ACF-based method compared to Fourier filtering (FFT. In the two scenarios, the maximal measurement error from the proposed method was 0.34% and 0.50%, respectively. The latent periodic characteristic of the reflected signal can be extracted by the ACF-based method even when the noise is larger than 1.42 Pa, which is impossible for FFT-based de-noising. A case study focused on a specific CSG well is presented to illustrate the feasibility of the proposed approach, and also to demonstrate that signal processing with autocorrelation analysis can improve the sensitivity of the detection system.

  16. Analysis of Off Gas From Disintegration Process of Graphite Matrix by Electrochemical Method

    International Nuclear Information System (INIS)

    Tian Lifang; Wen Mingfen; Chen Jing

    2010-01-01

    Using electrochemical method with salt solutions as electrolyte, some gaseous substances (off gas) would be generated during the disintegration of graphite from high-temperature gas-cooled reactor fuel elements. The off gas is determined to be composed of H 2 , O 2 , N 2 , CO 2 and NO x by gas chromatography. Only about 1.5% graphite matrix is oxidized to CO 2 . Compared to the direct burning-graphite method, less off gas,especially CO 2 , is generated in the disintegration process of graphite by electrochemical method and the treatment of off gas becomes much easier. (authors)

  17. Evaluation and analysis method for natural gas hydrate storage and transportation processes

    International Nuclear Information System (INIS)

    Hao Wenfeng; Wang Jinqu; Fan Shuanshi; Hao Wenbin

    2008-01-01

    An evaluation and analysis method is presented to investigate an approach to scale-up a hydration reactor and to solve some economic problems by looking at the natural gas hydrate storage and transportation process as a whole. Experiments with the methane hydration process are used to evaluate the whole natural gas hydrate storage and transportation process. The specific contents and conclusions are as follows: first, batch stirring effects and load coefficients are studied in a semi-continuous stirred-tank reactor. Results indicate that batch stirring and appropriate load coefficients are effective in improving hydrate storage capacity. In the experiments, appropriate values for stirring velocity, stirring time and load coefficient were found to be 320 rpm, 30 min and 0.289, respectively. Second, throughput and energy consumption of the reactor for producing methane hydrates are calculated by mass and energy balance. Results show that throughput of this is 1.06 kg/d, with a product containing 12.4% methane gas. Energy consumption is 0.19 kJ, while methane hydrates containing 1 kJ heat are produced. Third, an energy consumption evaluation parameter is introduced to provide a single energy consumption evaluation rule for different hydration reactors. Parameter analyses indicate that process simplicity or process integration can decrease energy consumption. If experimental gas comes from a small-scale natural gas field and the energy consumption is 0.02 kJ when methane hydrates containing 1 kJ heat are produced, then the decrease is 87.9%. Moreover, the energy consumption evaluation parameter used as an economic criterion is converted into a process evaluation parameter. Analyses indicate that the process evaluation parameter is relevant to technology level and resource consumption for a system, which can make it applicable to economic analysis and venture forecasting for optimal capital utilization

  18. Method for optical 15N analysis of small amounts of nitrogen gas released from an automatic nitrogen analyzer

    International Nuclear Information System (INIS)

    Arima, Yasuhiro

    1981-01-01

    A method of optical 15 N analysis is proposed for application to small amounts of nitrogen gas released from an automatic nitrogen analyzer (model ANA-1300, Carlo Erba, Milano) subjected to certain set modifications. The ANA-1300 was combined with a vacuum line attached by a molecular sieve 13X column. The nitrogen gas released from the ANA-1300 was introduced with a carrier gas of helium into the molecular sieve column which was pre-evacuated at 10 -4 Torr and cooled with outer liquid nitrogen. After removal of the helium by evacuation, the nitrogen gas fixed on the molecular sieve was released by warming the column, and then, it was sealed into pre-evacuated pyrex glass tubes at 4.5 - 5.0 Torr. In the preparation of discharge tubes, contamination of unlabelled nitrogen occurred from the carrier gas of standard grade helium, and the relative lowering of the 15 N value by it was estimated to be less than 1% when over 700 μg nitrogen was charged on the ANA-1300; when 200 μg nitrogen was charged, it was about 3.5%. However, the effect of the contamination could be corrected for by knowing the amount of contaminant nitrogen. In the analysis of plant materials by the proposed method, the coefficient of variation was less than 2%, and no significant difference was observed between results given by the present method and by the ordinary method in which samples were directly pyrolyzed in the discharge tubes by the Dumas method. The present method revealed about 1.5 μg of cross-contaminated nitrogen and was applicable to more than 200 μg of sample nitrogen. (author)

  19. Improved machine learning method for analysis of gas phase chemistry of peptides

    Directory of Open Access Journals (Sweden)

    Ahn Natalie

    2008-12-01

    Full Text Available Abstract Background Accurate peptide identification is important to high-throughput proteomics analyses that use mass spectrometry. Search programs compare fragmentation spectra (MS/MS of peptides from complex digests with theoretically derived spectra from a database of protein sequences. Improved discrimination is achieved with theoretical spectra that are based on simulating gas phase chemistry of the peptides, but the limited understanding of those processes affects the accuracy of predictions from theoretical spectra. Results We employed a robust data mining strategy using new feature annotation functions of MAE software, which revealed under-prediction of the frequency of occurrence in fragmentation of the second peptide bond. We applied methods of exploratory data analysis to pre-process the information in the MS/MS spectra, including data normalization and attribute selection, to reduce the attributes to a smaller, less correlated set for machine learning studies. We then compared our rule building machine learning program, DataSqueezer, with commonly used association rules and decision tree algorithms. All used machine learning algorithms produced similar results that were consistent with expected properties for a second gas phase mechanism at the second peptide bond. Conclusion The results provide compelling evidence that we have identified underlying chemical properties in the data that suggest the existence of an additional gas phase mechanism for the second peptide bond. Thus, the methods described in this study provide a valuable approach for analyses of this kind in the future.

  20. The Huber’s Method-based Gas Concentration Reconstruction in Multicomponent Gas Mixtures from Multispectral Laser Measurements under Noise Overshoot Conditions

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2016-01-01

    Full Text Available Laser gas analysers are the most promising for the rapid quantitative analysis of gaseous air pollution. A laser gas analysis problem is that there are instable results in reconstruction of gas mixture components concentration under real noise in the recorded laser signal. This necessitates using the special processing algorithms. When reconstructing the quantitative composition of multi-component gas mixtures from the multispectral laser measurements are efficiently used methods such as Tikhonov regularization, quasi-solution search, and finding of Bayesian estimators. These methods enable using the single measurement results to determine the quantitative composition of gas mixtures under measurement noise. In remote sensing the stationary gas formations or in laboratory analysis of the previously selected (when the gas mixture is stationary air samples the reconstruction procedures under measurement noise of gas concentrations in multicomponent mixtures can be much simpler. The paper considers a problem of multispectral laser analysis of stationary gas mixtures for which it is possible to conduct a series of measurements. With noise overshoots in the recorded laser signal (and, consequently, overshoots of gas concentrations determined by a single measurement must be used stable (robust estimation techniques for substantial reducing an impact of the overshoots on the estimate of required parameters. The paper proposes the Huber method to determine gas concentrations in multicomponent mixtures under signal overshoot. To estimate the value of Huber parameter and the efficiency of Huber's method to find the stable estimates of gas concentrations in multicomponent stationary mixtures from the laser measurements the mathematical modelling was conducted. Science & Education of the Bauman MSTU 108 The mathematical modelling results show that despite the considerable difference among the errors of the mixture gas components themselves a character of

  1. Quantitative analysis of deuterium by gas chromatography

    International Nuclear Information System (INIS)

    Isomura, Shohei; Kaetsu, Hayato

    1981-01-01

    An analytical method for the determination of deuterium concentration in water and hydrogen gas by gas chromatography is described. HD and D 2 in a hydrogen gas sample were separated from H 2 by a column packed with Molecular Sieve 13X, using extra pure hydrogen gas as carrier. A thermal conductivity detector was used. Concentrations of deuterium were determined by comparison with standard samples. The error inherent to the present method was less a 1% on the basis of the calibration curves obtained with the standard samples. The average time required for the analysis was about 3 minutes. (author)

  2. On-line gas chromatographic analysis of airborne particles

    Science.gov (United States)

    Hering, Susanne V [Berkeley, CA; Goldstein, Allen H [Orinda, CA

    2012-01-03

    A method and apparatus for the in-situ, chemical analysis of an aerosol. The method may include the steps of: collecting an aerosol; thermally desorbing the aerosol into a carrier gas to provide desorbed aerosol material; transporting the desorbed aerosol material onto the head of a gas chromatography column; analyzing the aerosol material using a gas chromatograph, and quantizing the aerosol material as it evolves from the gas chromatography column. The apparatus includes a collection and thermal desorption cell, a gas chromatograph including a gas chromatography column, heated transport lines coupling the cell and the column; and a quantization detector for aerosol material evolving from the gas chromatography column.

  3. Applications of laser-photoacoustic gas analysis method; Fotoakustisen kaasuanalyysin sovelluksia. Fotoakustiset mittaukset paineistetussa poelyvirtausreaktorissa

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Stenberg, J. [Tampere Univ. of Technology (Finland). Lab. of Plasma Technology

    1997-10-01

    Laser induced photoacoustic spectroscopy has been developed in LIEKKI and LIEKKI 2 research programs. The method is intended for In-Situ analysis of gaseous components in hot and reactive environments such as combustion conditions. The method and the instrumentation developed in this project have been calibrated for SO{sub 2}, NO, NO{sub 2}, NH{sub 3}, N{sub 2}O, and H{sub 2}S between 20 and 860 deg C at atmospheric pressure. Calibrations at elevated pressures have been performed for NO{sub 2}, NO, SO{sub 2}, NH{sub 3} and N{sub 2}O. Calibration for OH radical has also been performed. A known concentration of OH was generated by thermally decomposing H{sub 2}O at temperatures between 900 and 1050 deg C. The photoacoustic method has earlier been applied to the chemical analysis of burning CH{sub 4}/HCN/O{sub 2}/N{sub 2} flame at pressures between 1 and 6 bar. The formation of NO and NH{sub 3} measured in post-flame conditions. The relative concentration of OH in the reactive zone of the flame was measured between 1 and 6 bar pressures. The method was also applied to measurements in circulating fluidized bed (CFB). Time resolved gas concentrations were measured at three different heights above the air distributor with a specialized probe. In this project the photoacoustic method is applied in studies regarding the effect of chlorine (Cl) on combustion chemistry. The second goal of this project is to make In-Situ measurements of the formation of NO{sub 2} in combustion. The formation of NO{sub 2} increases strongly at elevated pressures. Due to the instability of NO{sub 2} the analysis is prone to errors with conventional gas sampling probes

  4. Materials For Gas Capture, Methods Of Making Materials For Gas Capture, And Methods Of Capturing Gas

    KAUST Repository

    Polshettiwar, Vivek

    2013-06-20

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to materials that can be used for gas (e.g., CO.sub.2) capture, methods of making materials, methods of capturing gas (e.g., CO.sub.2), and the like, and the like.

  5. Supercompressibility factor program. A new calculation method for real gas factors developed by the American Gas Association/Gas Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Luebbe, D.

    1987-07-01

    The innovative US calculation method for natural gas real gas factors is applicable to great pressure and temperature ranges and does not involve any restrictions as to the quality of natural gas. The results obtained for natural gas coming from Northern Germany or for imported natural gas are well consistent with actual measuring results. The model can therefore be applied as a rule for computing in a new technical recommendation and determine real gas factors whenever they are relevant to trading. The respective calculations must be preceded by a complete analysis characterizing the quality of gases. However, the new method allows for the alternative calculation of real gas factors on the basis of a small number of easily measurable factors (for example H/sub 0/, d, CO/sub 2/). This quality seams to be all the more attractive as it allows for an automatic translation of parametric sets at changing gas qualities which for the first time can manage without an expensive online gas chromatography or density translators, respectively.

  6. Vibrational methods of the overhead gas-pipelines technological equipment diagnostics

    International Nuclear Information System (INIS)

    Zakhezin, A.M.; Malysheva, T.V.

    2001-01-01

    The diagnostic methods of overhead gas-pipelines of the technical equipment of gas-compressor station are considered in this article by carrying out registration certification documentation. Some faults of overhead technical gas-pipelines have been proposed. This paper is devoted to the diagnostic methods of the whole gas- pipelines and their parts for some faults during expert checking fulfillment and carrying out registration certification documentation. The analysis of all defects allows to determine a 'between-repairs interval', to develop some operations to avoid these faults and to estimate the repair operation quality, to reduce failure probability. As an example of the effectiveness of technical condition service of vibrational methods by expertise fulfillment have been considered for some defects of the overhead pipelines. (author)

  7. Method for the routine quantitative gas chromatographic analysis of major free fatty acids in butter and cream.

    Science.gov (United States)

    Woo, A H; Lindsay, R C

    1980-07-01

    A rapid quantiative method was developed for routine analysis of the major, even carbon-numbered free fatty acids in butter and cream. Free fatty acids were isolated directly from intact samples by a modified silicic acid-potassium hydroxide arrestant column and were separated by gas chromatography with a 1.8 m x 2 mm inner diameter glass column packed with 10% neopentyl glycol adipate on 80/100 Chromosorb W. Purified, formic acid-saturated carrier gas was required for minimal peak tailing and extended column life. The accuracy and reproducibility of the mmethod was established through quantitative recovery studies of free fatty acid mixtures, free fatty acids added to butter, and replicate analysis of butter and cream samples.

  8. Development, optimization, validation and application of faster gas chromatography - flame ionization detector method for the analysis of total petroleum hydrocarbons in contaminated soils.

    Science.gov (United States)

    Zubair, Abdulrazaq; Pappoe, Michael; James, Lesley A; Hawboldt, Kelly

    2015-12-18

    This paper presents an important new approach to improving the timeliness of Total Petroleum Hydrocarbon (TPH) analysis in the soil by Gas Chromatography - Flame Ionization Detector (GC-FID) using the CCME Canada-Wide Standard reference method. The Canada-Wide Standard (CWS) method is used for the analysis of petroleum hydrocarbon compounds across Canada. However, inter-laboratory application of this method for the analysis of TPH in the soil has often shown considerable variability in the results. This could be due, in part, to the different gas chromatography (GC) conditions, other steps involved in the method, as well as the soil properties. In addition, there are differences in the interpretation of the GC results, which impacts the determination of the effectiveness of remediation at hydrocarbon-contaminated sites. In this work, multivariate experimental design approach was used to develop and validate the analytical method for a faster quantitative analysis of TPH in (contaminated) soil. A fractional factorial design (fFD) was used to screen six factors to identify the most significant factors impacting the analysis. These factors included: injection volume (μL), injection temperature (°C), oven program (°C/min), detector temperature (°C), carrier gas flow rate (mL/min) and solvent ratio (v/v hexane/dichloromethane). The most important factors (carrier gas flow rate and oven program) were then optimized using a central composite response surface design. Robustness testing and validation of model compares favourably with the experimental results with percentage difference of 2.78% for the analysis time. This research successfully reduced the method's standard analytical time from 20 to 8min with all the carbon fractions eluting. The method was successfully applied for fast TPH analysis of Bunker C oil contaminated soil. A reduced analytical time would offer many benefits including an improved laboratory reporting times, and overall improved clean up

  9. Application of advanced data reduction methods to gas turbine dynamic analysis

    International Nuclear Information System (INIS)

    Juhl, P.B.

    1978-01-01

    This paper discusses the application of advanced data reduction methods to the evaluation of dynamic data from gas turbines and turbine components. The use of the Fast Fourier Transform and of real-time spectrum analyzers is discussed. The use of power spectral density and probability density functions for analyzing random data is discussed. Examples of the application of these modern techniques to gas turbine testing are presented. The use of the computer to automate the data reduction procedures is discussed. (orig.) [de

  10. RPC gas recovery by open loop method

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Avinash [Alpha Pneumatics, 11, Krishna Kutir, Madanlal Dhigra Road, Panch Pakhadi (India)], E-mail: alpha_pneumatics@hotmail.com

    2009-05-01

    RPC detectors require to be flushed with small but continuous flow of gas mixture. Dealing with large number of detectors, gas consumption to very large volumes. Gas flow is a running expense and constituent gases are too expensive to be treated as consumables. Exhaust gas mixture from detectors is a potential environmental hazard if discharged directly into the atmosphere. Storage of gases on a large scale also leads to inventory- and safety-related problems. A solution to these problems is the recovery and reuse of exhaust gas mixture from RPC detectors. Close loop method employs recirculation of exhausted gas mixture after purification, analysis and addition of top-up quantities. In open loop method, under consideration here, individual component gases are separated from gas mixture and reused as source. During open loop process, gases liquefiable at low pressures are separated from ones liquefiable at high pressure. The gas phase components within each group are successively separated by either fractional condensation or gravity separation. Gas mixture coming from RPC exhaust is first desiccated by passage through molecular sieve adsorbent type (3A+4A). Subsequent scrubbing over basic activated alumina removes toxic and acidic contaminants such as S{sub 2}F{sub 10} produced during corona (arcing) discharge. In the first stage of separation isobutane and freon are concentrated by diffusion and liquefied by fractional condensation by cooling upto -30 deg. C. Liquefied gases are returned to source tanks. In the second stage of separation, argon and sulphur hexafluoride, the residual gases, are concentrated by settling due to density difference. SF{sub 6} is stored for recovery by condensation at high pressure while argon is further purified by thermal cracking of crossover impurities at 1000 deg. C followed by wet scrubbing.

  11. RPC gas recovery by open loop method

    International Nuclear Information System (INIS)

    Joshi, Avinash

    2009-01-01

    RPC detectors require to be flushed with small but continuous flow of gas mixture. Dealing with large number of detectors, gas consumption to very large volumes. Gas flow is a running expense and constituent gases are too expensive to be treated as consumables. Exhaust gas mixture from detectors is a potential environmental hazard if discharged directly into the atmosphere. Storage of gases on a large scale also leads to inventory- and safety-related problems. A solution to these problems is the recovery and reuse of exhaust gas mixture from RPC detectors. Close loop method employs recirculation of exhausted gas mixture after purification, analysis and addition of top-up quantities. In open loop method, under consideration here, individual component gases are separated from gas mixture and reused as source. During open loop process, gases liquefiable at low pressures are separated from ones liquefiable at high pressure. The gas phase components within each group are successively separated by either fractional condensation or gravity separation. Gas mixture coming from RPC exhaust is first desiccated by passage through molecular sieve adsorbent type (3A+4A). Subsequent scrubbing over basic activated alumina removes toxic and acidic contaminants such as S 2 F 10 produced during corona (arcing) discharge. In the first stage of separation isobutane and freon are concentrated by diffusion and liquefied by fractional condensation by cooling upto -30 deg. C. Liquefied gases are returned to source tanks. In the second stage of separation, argon and sulphur hexafluoride, the residual gases, are concentrated by settling due to density difference. SF 6 is stored for recovery by condensation at high pressure while argon is further purified by thermal cracking of crossover impurities at 1000 deg. C followed by wet scrubbing.

  12. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    Science.gov (United States)

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  13. Performance Analysis of 20MW gas turbine power plant by Energy and Exergy Methods

    International Nuclear Information System (INIS)

    Lebele-Alawa, B. T.; Asuo, J. M.

    2013-01-01

    Energy and exergy analysis were conducted to evaluate the optimal performance of a 20 MW gas turbine power plant. The energy analysis was based on First Law of Thermodynamics, while the exergy method used both First and Second Laws of Thermodynamics. The locations and magnitude of losses which inhibited the performance of the power plant were identified by balance system equations. The internal losses associated with each plant component were estimated for improvement to be made to such component for maximum power output. The energy efficiency was 20.73 %, while the exergeric efficiency was 16.39 %; but the exergy loss of 38.62 % in the combustor was the largest among the components of plant. (au)

  14. Isotope-dilution gas chromatography-mass spectrometry method for the analysis of hydroxyurea.

    Science.gov (United States)

    Garg, Uttam; Scott, David; Frazee, Clint; Kearns, Gregory; Neville, Kathleen

    2015-06-01

    Hydroxyurea is used in the treatment of various malignancies and sickle cell disease. There are limited studies on the pharmacokinetics of hydroxyurea, particularly in pediatric patients. An accurate, precise, and sensitive method is needed to support such studies and to monitor therapeutic adherence. We describe a novel gas chromatography-mass spectrometry (GC-MS) method for the determination of hydroxyurea concentration in plasma using stable labeled hydroxyurea C N2 as an internal standard. The method involved an organic extraction followed by the preparation of trimethylsilyl (TMS) derivatives of hydroxyurea for GC-MS selected ion-monitoring analysis. The following mass-to-charge (m/z) ratio ions for silated hydroxyurea and hydroxyurea C N2 were monitored: hydroxyurea-quantitative ion 277, qualifier ions 292 and 249; hydroxyurea C N2-quantitative ion 280, qualifier ion 295. This method was evaluated for reportable range, accuracy, within-run and between-run imprecisions, and limits of quantification. The reportable range for the method was 0.1-100 mcg/mL. All results were accurate within an allowable error of 15%. Within-run and between-run imprecisions were hydroxyurea described here is accurate, sensitive, precise, and robust. Its characteristics make the method suitable for supporting pharmacokinetic studies and/or clinical therapeutic monitoring.

  15. Using Willie's Acid-Base Box for Blood Gas Analysis

    Science.gov (United States)

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  16. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    Science.gov (United States)

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  17. A new method for calculating gas saturation of low-resistivity shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Jinyan Zhang

    2017-09-01

    Full Text Available The Jiaoshiba shale gas field is located in the Fuling area of the Sichuan Basin, with the Upper Ordovician Wufeng–Lower Silurian Longmaxi Fm as the pay zone. At the bottom of the pay zone, a high-quality shale gas reservoir about 20 m thick is generally developed with high organic contents and gas abundance, but its resistivity is relatively low. Accordingly, the gas saturation calculated by formulas (e.g. Archie using electric logging data is often much lower than the experiment-derived value. In this paper, a new method was presented for calculating gas saturation more accurately based on non-electric logging data. Firstly, the causes for the low resistivity of shale gas reservoirs in this area were analyzed. Then, the limitation of traditional methods for calculating gas saturation based on electric logging data was diagnosed, and the feasibility of the neutron–density porosity overlay method was illustrated. According to the response characteristics of neutron, density and other porosity logging in shale gas reservoirs, a model for calculating gas saturation of shale gas was established by core experimental calibration based on the density logging value, the density porosity and the difference between density porosity and neutron porosity, by means of multiple methods (e.g. the dual-porosity overlay method by optimizing the best overlay coefficient. This new method avoids the effect of low resistivity, and thus can provide normal calculated gas saturation of high-quality shale gas reservoirs. It works well in practical application. This new method provides a technical support for the calculation of shale gas reserves in this area. Keywords: Shale gas, Gas saturation, Low resistivity, Non-electric logging, Volume density, Compensated neutron, Overlay method, Reserves calculation, Sichuan Basin, Jiaoshiba shale gas field

  18. Standard test method for isotopic analysis of uranium hexafluoride by double standard single-collector gas mass spectrometer method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This is a quantitative test method applicable to determining the mass percent of uranium isotopes in uranium hexafluoride (UF6) samples with 235U concentrations between 0.1 and 5.0 mass %. 1.2 This test method may be applicable for the entire range of 235U concentrations for which adequate standards are available. 1.3 This test method is for analysis by a gas magnetic sector mass spectrometer with a single collector using interpolation to determine the isotopic concentration of an unknown sample between two characterized UF6 standards. 1.4 This test method is to replace the existing test method currently published in Test Methods C761 and is used in the nuclear fuel cycle for UF6 isotopic analyses. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appro...

  19. Reduction of gas flow nonuniformity in gas turbine engines by means of gas-dynamic methods

    Science.gov (United States)

    Matveev, V.; Baturin, O.; Kolmakova, D.; Popov, G.

    2017-08-01

    Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and as a consequence to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity as the source of dynamic stresses in the rotor blades. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. On the basis of existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.

  20. Experimental substantiation of combined methods for designing processes for the commercial preparation of gas at gas condensate fields

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, G R; Karlinskii, E D; Posypkina, T V

    1977-04-01

    An analysis is made of the possibility of using two analytical methods for studying vapor--liquid equilibrium of hydrocarbon mixtures that are used in designing the separation of natural gas and the stabilization of condensate--the Chao and Sider method, which uses computations by equilibrium constants. A combined computational method is proposed for describing a unified process of natural gas separation and condensate stabilization. The method of preparing the original data for the computation of the separation and stabilization processes can be significantly simplified. 10 references, 1 table.

  1. Gas analysis by computer-controlled microwave rotational spectrometry

    International Nuclear Information System (INIS)

    Hrubesh, L.W.

    1978-01-01

    Microwave rotational spectrometry has inherently high resolution and is thus nearly ideal for qualitative gas mixture analysis. Quantitative gas analysis is also possible by a simplified method which utilizes the ease with which molecular rotational transitions can be saturated at low microwave power densities. This article describes a computer-controlled microwave spectrometer which is used to demonstrate for the first time a totally automated analysis of a complex gas mixture. Examples are shown for a complete qualitative and quantitative analysis, in which a search of over 100 different compounds is made in less than 7 min, with sensitivity for most compounds in the 10 to 100 ppm range. This technique is expected to find increased use in view of the reduced complexity and increased reliabiity of microwave spectrometers and because of new energy-related applications for analysis of mixtures of small molecules

  2. Gas-Dynamic Methods to Reduce Gas Flow Nonuniformity from the Annular Frames of Gas Turbine Engines

    Science.gov (United States)

    Kolmakova, D.; Popov, G.

    2018-01-01

    Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and consequently to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. Based on existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.

  3. Possibilities of gas-phase radio-chromatography application to permanent-gas analysis

    International Nuclear Information System (INIS)

    Dupuis, M.C.; Charrier, G.; Alba, C.; Massimino, D.

    1970-01-01

    The gas-phase radio-chromatography technique has been applied to the rapid analysis of permanent gases (H 2 , O 2 , N 2 , A, Kr, Xe, CO, CH 4 ) labelled with radioactive indicators ( 3 H, 37 A, 85 Kr, 133 Xe). After calibration, the components of such a mixture can be identified and their concentrations measured in less than two hours, using a sample volume of from 0.1 to 10 cm 3 . The minimum detectable activity is of the order of 10 -4 μC for each radioactive isotope. The measurements are reproducible to about 2 to 3 per cent. This work has been mainly concerned with the influence of parameters affecting the response of the radioactivity detector (ionization chamber or gas flow proportional counter). The method has very numerous applications both theoretically, for the study of chromatographic phenomena under ideal conditions (infinitesimal concentrations made possible by the use of radioactive tracers), and practically, for rapid and accurate radiochemical analysis of radioactive gas mixtures. (authors) [fr

  4. Acrylamide analysis in food by liquid chromatographic and gas chromatographic methods.

    Science.gov (United States)

    Elbashir, Abdalla A; Omar, Mei M Ali; Ibrahim, Wan Aini Wan; Schmitz, Oliver J; Aboul-Enein, Hassan Y

    2014-01-01

    Acrylamide (AA) is a compound classified as carcinogenic to humans by the International Agency for Research on Cancer. It was first discovered to be present in certain heated processed food by the Swedish National Food Administration (SNFA) and University of Stockholm in early 2002. The major pathway for AA formation in food is the Maillard reaction between reducing sugar and the amino acid asparagine at high temperature. Since the discovery of AA's presence in food, many analytical methods have been developed for determination of AA contents in different food matrices. Also, several studies have been conducted to develop extraction procedures for AA from difficult food matrices. AA is a small, highly polar molecule, which makes its extraction and analysis challenging. Many articles and reviews have been published dealing with AA in food. The aim of the review is to discuss AA formation in food, the factors affecting AA formation and removal, AA exposure assessment, AA extraction and cleanup from food samples, and analytical methods used in AA determination, such as high-performance liquid chromatography (HPLC) and gas chromatography (GC). Special attention is given to sample extraction and cleanup procedures and analytical techniques used for AA determination.

  5. Method for online measurement of the CHON composition of raw gas from biomass gasifier

    International Nuclear Information System (INIS)

    Neves, Daniel; Thunman, Henrik; Tarelho, Luís; Larsson, Anton; Seemann, Martin; Matos, Arlindo

    2014-01-01

    Highlights: • Measuring the CHON composition of a raw gas by current methods is challenging. • An alternative method is to burn the raw gas before measuring the CHON composition. • The CHON contents of the raw gas can be accurately measured by the alternative method. • Measuring the CHON contents of the raw gas is now performed in a “one-step” analysis. • The new method is used to evaluate the operation of a dual fluidised bed gasifier. - Abstract: For unattended biomass gasification processes, rapid methods for monitoring the elemental composition (CHON) of the raw gas leaving the gasifier are needed. Conventional methods rely on time-consuming and costly laboratory procedures for analysing the condensable part of the raw gas. An alternative method, presented in this work, assesses the CHON composition of raw gas in a “one step” analysis without the need to previously characterise its chemical species composition. Our method is based on the quantitative conversion of a raw gas of complex chemical composition into CO 2 , H 2 O, and N 2 in a small combustor. The levels of these simple species can be measured with high accuracy and good time resolution, and the CHON composition of the raw gas can be determined from the mass balance across the combustor. To evaluate this method, an online combustion facility was built and used to analyse the raw gas from the Chalmers 2-MW th dual fluidised bed steam gasifier. Test runs of the developed facility demonstrated complete combustion of the raw gas and the measurements were both fast and reliable. The new method used in combination with zero-dimensional reactor modelling provides valuable data for the operational monitoring of gasification processes, such as the degree of fuel conversion, composition of the char exiting the gasifier, oxygen transport by catalytic bed material, and amount of condensables in raw gas

  6. METHODS FOR ORGANIZATION OF WORKING PROCESS FOR GAS-DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    G. A. Vershina

    2017-01-01

    Full Text Available Over the past few decades reduction in pollutant emissions has become one of the main directions for further deve- lopment of engine technology. Solution of such problems has led to implementation of catalytic post-treatment systems, new technologies of fuel injection, technology for regulated phases of gas distribution, regulated turbocharger system and, lately, even system for variable compression ratio of engine. Usage of gaseous fuel, in particular gas-diesel process, may be one of the means to reduce air pollution caused by toxic substances and meet growing environmental standards and regulations. In this regard, an analysis of methods for organization of working process for a gas-diesel engine has been conducted in the paper. The paper describes parameters that influence on the nature of gas diesel process, it contains graphics of specific total heat consumption according to ignition portion of diesel fuel and dependence of gas-diesel indices on advance angle for igni-tion portion injection of the diesel fuel. A modern fuel system of gas-diesel engine ГД-243 has been demonstrated in the pa- per. The gas-diesel engine has better environmental characteristics than engines running on diesel fuel or gasoline. According to the European Natural & bio Gas Vehicle Association a significant reduction in emissions is reached at a 50%-substitution level of diesel fuel by gas fuel (methane and in such a case there is a tendency towards even significant emission decrease. In order to ensure widespread application of gaseous fuel as fuel for gas-diesel process it is necessary to develop a new wor- king process, to improve fuel equipment, to enhance injection strategy and fuel supply control. A method for organization of working process for multi-fuel engine has been proposed on the basis of the performed analysis. An application has been submitted for a patent.

  7. Correlation between arterial blood gas analysis and peripheral blood gas analysis in acid-base unbalance state

    Directory of Open Access Journals (Sweden)

    Hyun Lee Kim

    2012-06-01

    Full Text Available Acid-base unbalance is most common problem in severe ill patient, especially in condition of abnormal renal function state. Acid-base unbalances are respiratory acidosis, respiratory alkalosis, metabolic acidosis, and metabolic alkalosis. Metabolic acidosis is frequently appeared in clinical state. Arterial blood gas analysis is considered as a basic test to the intensive care unit patient and emergency state. Recently some researches were done, comparing with arterial blood gas analysis and venous blood gas analysis. Because of venous blood sampling is safer than arterial blood gas analysis, and beside not so different among them for detecting pH, pCO2, HCO3, except pO2 measuring. This research was done in emergency room, and for explaining no different between arterial blood gas analysis and peripheral blood gas analysis result in acid-base unbalance state patient. Especially in kidney functions decreased state. : The study was done from March, 2010 to January, 2011. The object was 89 peoples who came to emergency room for treating internal medicine problem. (Women 53, average age: 66.7±12.1 Then compare between arterial blood gas analysis and peripheral blood gas analysis. Result: The mean arterial minus venous difference for pH, pCO2, and bicarbonate was −0.0170, 2.6528, and 0.6124. Bland-Altman plot was done for predicting agreement of two groups, and the scale was pH −2.95 to 4.17, pCO2 −4.45 to 9.76, bicarbonate −2.95 to 4.16, in 95% relative. Conclusion: The peripheral blood gas pH, pCO2, bicarbonate level is almost same as arterial blood gas analysis results. And enough to measuring acid-base unbalance state, in absent of arterial blood testing.

  8. A Sensitive Method Approach for Chromatographic Analysis of Gas Streams in Separation Processes Based on Columns Packed with an Adsorbent Material

    Directory of Open Access Journals (Sweden)

    I. A. A. C. Esteves

    2016-01-01

    Full Text Available A sensitive method was developed and experimentally validated for the in-line analysis and quantification of gaseous feed and product streams of separation processes under research and development based on column chromatography. The analysis uses a specific mass spectrometry method coupled to engineering processes, such as Pressure Swing Adsorption (PSA and Simulated Moving Bed (SMB, which are examples of popular continuous separation technologies that can be used in applications such as natural gas and biogas purifications or carbon dioxide sequestration. These processes employ column adsorption equilibria on adsorbent materials, thus requiring real-time gas stream composition quantification. For this assay, an internal standard is assumed and a single-point calibration is used in a simple mixture-specific algorithm. The accuracy of the method was found to be between 0.01% and 0.25% (-mol for mixtures of CO2, CH4, and N2, tested as case-studies. This makes the method feasible for streams with quality control levels that can be used as a standard monitoring and analyzing procedure.

  9. Comparison of gas dehydration methods based on energy ...

    African Journals Online (AJOL)

    Comparison of gas dehydration methods based on energy consumption. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... This study compares three conventional methods of natural gas (Associated Natural Gas) dehydration to carry out ...

  10. Analysis of residual toluene in food packaging via headspace extraction method using gas chromatography

    International Nuclear Information System (INIS)

    Lim, Ying Chin; Mohd Marsin Sanagi

    2008-01-01

    Polymeric materials are used in many food contact applications as packaging material. The presence of residual toluene in this food packaging material can migrate into food and thus affect the quality of food. In this study, a manual headspace analysis was successfully designed and developed. The determination of residual toluene was carried out with standard addition method and multiple headspace extraction, MHE) method using gas chromatography-flame ionization detector, GC-FID). Identification of toluene was performed by comparison of its retention time with standard toluene and GC-MS. It was found that the suitable heating temperature was 180 degree Celsius with an optimum heating time of 10 minutes. The study also found that the concentration of residual toluene in multicolored sample was higher compared to mono colored sample whereas residual toluene in sample analyzed using standard addition method was higher compared to MHE method. However, comparison with the results obtained from De Paris laboratory, France found that MHE method gave higher accuracy for sample with low analyte concentration. On the other hand, lower accuracy was obtained for sample with high concentration of residual toluene due to systematic errors. Comparison between determination methods showed that MHE method is more precise compared to standard addition method. (author)

  11. Gas stream analysis using voltage-current time differential operation of electrochemical sensors

    Science.gov (United States)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay; Wang, Gangqiang; Henderson, Brett Tamatea; Lourdhusamy, Anthoniraj; Steppan, James John; Allmendinger, Klaus Karl

    2018-01-02

    A method for analysis of a gas stream. The method includes identifying an affected region of an affected waveform signal corresponding to at least one characteristic of the gas stream. The method also includes calculating a voltage-current time differential between the affected region of the affected waveform signal and a corresponding region of an original waveform signal. The affected region and the corresponding region of the waveform signals have a sensitivity specific to the at least one characteristic of the gas stream. The method also includes generating a value for the at least one characteristic of the gas stream based on the calculated voltage-current time differential.

  12. Trends in the analysis of natural gas by capillary gas chromatography

    NARCIS (Netherlands)

    Cramers, C.A.M.G.; Rossum, van G.J.

    1986-01-01

    The importance of correct determination of physical and chemical properties of natural gas is evident. The calculation of calorific value or hydrocarbon dew point requires detailed analysis as can be provided by gas chromatography. Analysis by gas chromatography is a necessary complement to direct

  13. An analysis of main factors in electron beam flue gas purification

    International Nuclear Information System (INIS)

    Zhang Ming; Xu Guang

    2003-01-01

    Electron beam flue gas purification method is developing very quickly in recent years. Based on the experiment setting for electron beam flue gas purification in Institute of Nuclear Energy and Technology, Tsinghua University, how the technique factors affect the ratio of desulphurization and denitrogenation are described. Radiation dose (D), temperature (T), humidity (H), pour ammonia quantity (α) and initial concentration of SO 2 (C SO 2 ) and NO x (C NO x ) are main factors influencing flue gas purification. Using the methods of correlation analysis and regression analysis, the primary effect factors are found out and the regression equations are set to optimize the system process, predigest the system structure and to forecast the experimental results. (authors)

  14. Adapting Human Reliability Analysis from Nuclear Power to Oil and Gas Applications

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory

    2015-09-01

    ABSTRACT: Human reliability analysis (HRA), as currently used in risk assessments, largely derives its methods and guidance from application in the nuclear energy domain. While there are many similarities be-tween nuclear energy and other safety critical domains such as oil and gas, there remain clear differences. This paper provides an overview of HRA state of the practice in nuclear energy and then describes areas where refinements to the methods may be necessary to capture the operational context of oil and gas. Many key distinctions important to nuclear energy HRA such as Level 1 vs. Level 2 analysis may prove insignifi-cant for oil and gas applications. On the other hand, existing HRA methods may not be sensitive enough to factors like the extensive use of digital controls in oil and gas. This paper provides an overview of these con-siderations to assist in the adaptation of existing nuclear-centered HRA methods to the petroleum sector.

  15. High-resolution gas chromatography/mas spectrometry method for characterization and quantitative analysis of ginkgolic acids in ginkgo biloba plants, extracts, and dietary supplements

    Science.gov (United States)

    A high resolution GC/MS with Selected Ion Monitor (SIM) method focusing on the characterization and quantitative analysis of ginkgolic acids (GAs) in Ginkgo biloba L. plant materials, extracts and commercial products was developed and validated. The method involved sample extraction with (1:1) meth...

  16. Methods for the analysis of SO/sub 2/, SO/sub 3/ and H/sub 2/S in flue gas and the calculation of the acid dew point

    Energy Technology Data Exchange (ETDEWEB)

    Albertyn, C.H.

    1986-02-01

    Methods are given for the analysis of SO/sub 2/, SO/sub 3/, and H/sub 2/S in flue gas. Two methods are described for the determination of SO/sub 2/. The method to be used depends on whether or not H/sub 2/S is present in the gas stream. An equation for the calculation of acid dew point is given as well.

  17. Gas centrifuge purge method

    Science.gov (United States)

    Theurich, Gordon R.

    1976-01-01

    1. In a method of separating isotopes in a high speed gas centrifuge wherein a vertically oriented cylindrical rotor bowl is adapted to rotate about its axis within an evacuated chamber, and wherein an annular molecular pump having an intake end and a discharge end encircles the uppermost portion of said rotor bowl, said molecular pump being attached along its periphery in a leak-tight manner to said evacuated chamber, and wherein end cap closure means are affixed to the upper end of said rotor bowl, and a process gas withdrawal and insertion system enters said bowl through said end cap closure means, said evacuated chamber, molecular pump and end cap defining an upper zone at the discharge end of said molecular pump, said evacuated chamber, molecular pump and rotor bowl defining a lower annular zone at the intake end of said molecular pump, a method for removing gases from said upper and lower zones during centrifuge operation with a minimum loss of process gas from said rotor bowl, comprising, in combination: continuously measuring the pressure in said upper zone, pumping gas from said lower zone from the time the pressure in said upper zone equals a first preselected value until the pressure in said upper zone is equal to a second preselected value, said first preselected value being greater than said second preselected value, and continuously pumping gas from said upper zone from the time the pressure in said upper zone equals a third preselected value until the pressure in said upper zone is equal to a fourth preselected value, said third preselected value being greater than said first, second and fourth preselected values.

  18. Fractal analysis of the dark matter and gas distributions in the Mare-Nostrum universe

    International Nuclear Information System (INIS)

    Gaite, José

    2010-01-01

    We develop a method of multifractal analysis of N-body cosmological simulations that improves on the customary counts-in-cells method by taking special care of the effects of discreteness and large scale homogeneity. The analysis of the Mare-Nostrum simulation with our method provides strong evidence of self-similar multifractal distributions of dark matter and gas, with a halo mass function that is of Press-Schechter type but has a power-law exponent -2, as corresponds to a multifractal. Furthermore, our analysis shows that the dark matter and gas distributions are indistinguishable as multifractals. To determine if there is any gas biasing, we calculate the cross-correlation coefficient, with negative but inconclusive results. Hence, we develop an effective Bayesian analysis connected with information theory, which clearly demonstrates that the gas is biased in a long range of scales, up to the scale of homogeneity. However, entropic measures related to the Bayesian analysis show that this gas bias is small (in a precise sense) and is such that the fractal singularities of both distributions coincide and are identical. We conclude that this common multifractal cosmic web structure is determined by the dynamics and is independent of the initial conditions

  19. Method of processing radioactive gas

    International Nuclear Information System (INIS)

    Saito, Masayuki.

    1978-01-01

    Purpose: To reduce the quantity of radioactive gas discharged at the time of starting a nuclear power plant. Method: After the stoppage of a nuclear power plant air containing a radioactive gas is extracted from a main condenser by operating an air extractor. The air is sent into a gaseous waste disposal device, and then introduced into the activated carbon adsorptive tower of a rare gas holdup device where xenon and krypton are trapped. Thereafter, the air passes through pipelines and returned to the main condenser. In this manner, the radioactive gas contained in air within the main condenser is removed during the stoppage of the operation of the nuclear power plant. After the plant has been started, when it enters the normal operation, a flow control valve is closed and another valve is opened, and a purified gas exhausted from the rare gas holdup device is discharged into the atmosphere through an exhaust cylinder. (Aizawa, K.)

  20. Failure analysis of natural gas buried X65 steel pipeline under deflection load using finite element method

    International Nuclear Information System (INIS)

    Liu, P.F.; Zheng, J.Y.; Zhang, B.J.; Shi, P.

    2010-01-01

    A 3D parametric finite element model of the pipeline and soil is established using finite element method to perform the failure analysis of natural gas buried X65 steel pipeline under deflection load. The pipeline is assumed to be loaded in a parabolic deflection displacement along the axial direction. Based on the true stress-strain constitutive relationship of X65 steel, the elastic-plastic finite element analysis employs the arc-length algorithm and non-linear stabilization algorithm respectively to simulate the strain softening properties of pipeline after plastic collapse. Besides, effects of the soil types and model sizes on the maximum deflection displacement of pipeline are investigated. The proposed finite element method serves as a base available for the safety design and evaluation as well as engineering acceptance criterion for the failure of pipeline due to deflection.

  1. Materials For Gas Capture, Methods Of Making Materials For Gas Capture, And Methods Of Capturing Gas

    KAUST Repository

    Polshettiwar, Vivek; Patil, Umesh

    2013-01-01

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to materials that can be used for gas (e.g., CO.sub.2) capture, methods of making

  2. Life-cycle analysis of shale gas and natural gas.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  3. Research on the analytical method about influence of gas leakage and explosion on subway

    Science.gov (United States)

    Ji, Wendong; Yang, Ligong; Chen, Lin

    2018-05-01

    With the construction and development of city subway, the cross impact of underground rail transit and gas pipe network is becoming more and more serious, but there is no analytical method for the impact of gas explosions on the subway. According to this paper, the gas leakage is equivalent to the TNT explosion equivalent, based on which, the calculation of the explosive impact load is carried out. On the basis of the concrete manifestation of gas explosion, it is more convenient to carry out the subsequent calculation by equivalently treating the explosive impact load as a uniform load within a certain range. The overlying soil of the subway station has played a protective role for the subway, making the displacement of the subway structure in the explosion process significantly reduced. The analysis on the actual case shows that this method can be successfully applied to the quantitative analysis of such accidents.

  4. Calibration strategy for semi-quantitative direct gas analysis using inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Gerdes, Kirk; Carter, Kimberly E.

    2011-01-01

    A process is described by which an ICP-MS equipped with an Octopole Reaction System (ORS) is calibrated using liquid phase standards to facilitate direct analysis of gas phase samples. The instrument response to liquid phase standards is analyzed to produce empirical factors relating ion generation and transmission efficiencies to standard operating parameters. Empirical factors generated for liquid phase samples are then used to produce semi-quantitative analysis of both mixed liquid/gas samples and pure gas samples. The method developed is similar to the semi-quantitative analysis algorithms in the commercial software, which have here been expanded to include gas phase elements such as Xe and Kr. Equations for prediction of relative ionization efficiencies and isotopic transmission are developed for several combinations of plasma operating conditions, which allows adjustment of limited parameters between liquid and gas injection modes. In particular, the plasma temperature and electron density are calculated from comparison of experimental results to the predictions of the Saha equation. Comparisons between operating configurations are made to determine the robustness of the analysis to plasma conditions and instrument operating parameters. Using the methods described in this research, the elemental concentrations in a liquid standard containing 45 analytes and treated as an unknown sample were quantified accurately to ± 50% for most elements using 133 Cs as a single internal reference. The method is used to predict liquid phase mercury within 12% of the actual concentration and gas phase mercury within 28% of the actual concentration. The results verify that the calibration method facilitates accurate semi-quantitative, gas phase analysis of metal species with sufficient sensitivity to quantify metal concentrations lower than 1 ppb for many metallic analytes.

  5. Applications of laser-photoacoustic gas analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Stenberg, J. [Tampere Univ. of Technology (Finland). Dept. of Physics

    1996-12-01

    The dynamic behavior of a circulating fluidized bed boiler (CFB) was studied using two high speed gas analysis systems during combustion of coal, peat and wood chips. Time resolved concentrations of some pollutants (SO{sub 2}, NO, NH{sub 3} and H{sub 2}S) were measured using laser induced photoacoustic spectroscopy (LIPS). A zirkonia cell based probe (lambda-probe) was used in synchronization with the LIPS-probe to measure fluctuations between reducing and oxidizing conditions. The two probes were positioned in the same measurement volume on the center-line of the combustion chamber of the CFB. The purpose of the measurements was to investigate the behavior of the LIPS in a combustion chamber containing large amounts of other unburnt hydrocarbons. The correlations between oxidizing and reducing conditions and concentrations at three locations in the combustion chamber are presented. The best correlations were found in the upper part of the CFB combustion chamber. In some cases the correlations between reducing conditions and the LIPS signal were caused by hydrocarbons. Comparison of the average values obtained by the LIPS-system for NO and SO{sub 2} with the result from a sampling probe system connected to on-line analysers was also carried out. (author)

  6. System and method for treatment of a flue gas

    Science.gov (United States)

    Spiry, Irina Pavlovna; Wood, Benjamin Rue; Singh, Surinder Prabhjot; Perry, Robert James; McDermott, John Brian

    2017-09-19

    A method for treatment of a flue gas involves feeding the flue gas and a lean solvent to an absorber. The method further involves reacting the flue gas with the lean solvent within the absorber to generate a clean flue gas and a rich solvent. The method also involves feeding the clean flue gas from the absorber and water from a source, to a wash tower to separate a stripped portion of the lean solvent from the clean flue gas to generate a washed clean flue gas and a mixture of the water and the stripped portion of the lean solvent. The method further involves treating at least a portion of the mixture of the water and the stripped portion of the lean solvent via a separation system to separate the water from the stripped portion of the lean solvent.

  7. Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method

    Science.gov (United States)

    Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.

  8. Buffer gas cooling and mixture analysis

    Science.gov (United States)

    Patterson, David S.; Doyle, John M.

    2018-03-06

    An apparatus for spectroscopy of a gas mixture is described. Such an apparatus includes a gas mixing system configured to mix a hot analyte gas that includes at least one analyte species in a gas phase into a cold buffer gas, thereby forming a supersaturated mixture to be provided for spectroscopic analysis.

  9. Comparison study on qualitative and quantitative risk assessment methods for urban natural gas pipeline network.

    Science.gov (United States)

    Han, Z Y; Weng, W G

    2011-05-15

    In this paper, a qualitative and a quantitative risk assessment methods for urban natural gas pipeline network are proposed. The qualitative method is comprised of an index system, which includes a causation index, an inherent risk index, a consequence index and their corresponding weights. The quantitative method consists of a probability assessment, a consequences analysis and a risk evaluation. The outcome of the qualitative method is a qualitative risk value, and for quantitative method the outcomes are individual risk and social risk. In comparison with previous research, the qualitative method proposed in this paper is particularly suitable for urban natural gas pipeline network, and the quantitative method takes different consequences of accidents into consideration, such as toxic gas diffusion, jet flame, fire ball combustion and UVCE. Two sample urban natural gas pipeline networks are used to demonstrate these two methods. It is indicated that both of the two methods can be applied to practical application, and the choice of the methods depends on the actual basic data of the gas pipelines and the precision requirements of risk assessment. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  10. Application of the FTA and ETA Method for Gas Hazard Identification for the Performance of Safety Systems in the Industrial Department

    Science.gov (United States)

    Ignac-Nowicka, Jolanta

    2018-03-01

    The paper analyzes the conditions of safe use of industrial gas systems and factors influencing gas hazards. Typical gas installation and its basic features have been characterized. The results of gas threat analysis in an industrial enterprise using FTA error tree method and ETA event tree method are presented. Compares selected methods of identifying hazards gas industry with respect to the scope of their use. The paper presents an analysis of two exemplary hazards: an industrial gas catastrophe (FTA) and an explosive gas explosion (ETA). In both cases, technical risks and human errors (human factor) were taken into account. The cause-effect relationships of hazards and their causes are presented in the form of diagrams in the drawings.

  11. Novel Method of Production Decline Analysis

    Science.gov (United States)

    Xie, Shan; Lan, Yifei; He, Lei; Jiao, Yang; Wu, Yong

    2018-02-01

    ARPS decline curves is the most commonly used in oil and gas field due to its minimal data requirements and ease application. And prediction of production decline which is based on ARPS analysis rely on known decline type. However, when coefficient index are very approximate under different decline type, it is difficult to directly recognize decline trend of matched curves. Due to difficulties above, based on simulation results of multi-factor response experiments, a new dynamic decline prediction model is introduced with using multiple linear regression of influence factors. First of all, according to study of effect factors of production decline, interaction experimental schemes are designed. Based on simulated results, annual decline rate is predicted by decline model. Moreover, the new method is applied in A gas filed of Ordos Basin as example to illustrate reliability. The result commit that the new model can directly predict decline tendency without needing recognize decline style. From arithmetic aspect, it also take advantage of high veracity. Finally, the new method improves the evaluation method of gas well production decline in low permeability gas reservoir, which also provides technical support for further understanding of tight gas field development laws.

  12. Residual gas analysis

    International Nuclear Information System (INIS)

    Berecz, I.

    1982-01-01

    Determination of the residual gas composition in vacuum systems by a special mass spectrometric method was presented. The quadrupole mass spectrometer (QMS) and its application in thin film technology was discussed. Results, partial pressure versus time curves as well as the line spectra of the residual gases in case of the vaporization of a Ti-Pd-Au alloy were demonstrated together with the possible construction schemes of QMS residual gas analysers. (Sz.J.)

  13. Anomaly Detection in Gas Turbine Fuel Systems Using a Sequential Symbolic Method

    Directory of Open Access Journals (Sweden)

    Fei Li

    2017-05-01

    Full Text Available Anomaly detection plays a significant role in helping gas turbines run reliably and economically. Considering the collective anomalous data and both sensitivity and robustness of the anomaly detection model, a sequential symbolic anomaly detection method is proposed and applied to the gas turbine fuel system. A structural Finite State Machine is used to evaluate posterior probabilities of observing symbolic sequences and the most probable state sequences they may locate. Hence an estimation-based model and a decoding-based model are used to identify anomalies in two different ways. Experimental results indicate that both models have both ideal performance overall, but the estimation-based model has a strong robustness ability, whereas the decoding-based model has a strong accuracy ability, particularly in a certain range of sequence lengths. Therefore, the proposed method can facilitate well existing symbolic dynamic analysis- based anomaly detection methods, especially in the gas turbine domain.

  14. Gas Chromatographic-Mass Spectrometric Analysis of Essential Oil ...

    African Journals Online (AJOL)

    Purpose: To analyze the essential oil composition of the flower of Jasminum officinale L. var. grandifloroum L. (Jasminum grandiflorum) by gas chromatography-mass spectrometry (GC-MS). Methods: The optimum GC-MS conditions used for the analysis were 250 oC inlet temperature, 150 oC MSD detector temperature, ...

  15. An in situ method for real-time monitoring of soil gas diffusivity

    Science.gov (United States)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect

  16. Selective gas exhaustion method

    International Nuclear Information System (INIS)

    Hirano, Yoichi

    1998-01-01

    The present invention provides a method capable of evacuating gases at an exhaustion rate which varies depending on the kind of gases. For example, in a thermonuclear experimental device, a hydrogen gas exhaustion rate is determined to 0 and an exhaustion rate for other impure gases is made greater. Namely, a baffle plate is cooled to a temperature to a level at which the vapor pressure of gases to evacuate a baffle plate is required in a pump incorporating a baffle plate, for example, a cryopump or a sorption pump. In this case, the level of the vapor pressure required for evacuating the exhaustion gas ingredients is 1 x 10 -8 Torr or less, preferably, 1 x 10 -9 Torr. In a thermonuclear experimental device, a gas having a lower boiling point next to hydrogen is neon, but neon is scarcely present in natural world. Nitrogen has a lower boiling point next thereto, and if the temperature is lowered to such a level that the vapor pressure for evacuating gases such as nitrogen, and carbon monoxide, oxygen, fluorine, argon or methane having a boiling point at or lower than nitrogen is required. Then, evacuation rate sufficient for gases other than hydrogen gas can be obtained. (I.S.)

  17. A Survey of Methods for Gas-Lift Optimization

    Directory of Open Access Journals (Sweden)

    Kashif Rashid

    2012-01-01

    Full Text Available This paper presents a survey of methods and techniques developed for the solution of the continuous gas-lift optimization problem over the last two decades. These range from isolated single-well analysis all the way to real-time multivariate optimization schemes encompassing all wells in a field. While some methods are clearly limited due to their neglect of treating the effects of inter-dependent wells with common flow lines, other methods are limited due to the efficacy and quality of the solution obtained when dealing with large-scale networks comprising hundreds of difficult to produce wells. The aim of this paper is to provide an insight into the approaches developed and to highlight the challenges that remain.

  18. Neonatal blood gas sampling methods | Goenka | South African ...

    African Journals Online (AJOL)

    There is little published guidance that systematically evaluates the different methods of neonatal blood gas sampling, where each method has its individual benefits and risks. This review critically surveys the available evidence to generate a comparison between arterial and capillary blood gas sampling, focusing on their ...

  19. Gas Bubbles Investigation in Contaminated Water Using Optical Tomography Based on Independent Component Analysis Method

    Directory of Open Access Journals (Sweden)

    Mohd Taufiq Mohd Khairi

    2016-01-01

    Full Text Available This paper presents the results of concentration profiles for gas bubble flow in a vertical pipeline containing contaminated water using an optical tomography system. The concentration profiles for the bubble flow quantities are investigated under five different flows conditions, a single bubble, double bubbles, 25% of air opening, 50% of air opening, and 100% of air opening flow rates where a valve is used to control the gas flow in the vertical pipeline. The system is aided by the independent component analysis (ICA algorithm to reconstruct the concentration profiles of the liquid-gas flow. The behaviour of the gas bubbles was investigated in contaminated water in which the water sample was prepared by adding 25 mL of colour ingredients to 3 liters of pure water. The result shows that the application of ICA has enabled the system to detect the presence of gas bubbles in contaminated water. This information provides vital information on the flow inside the pipe and hence could be very significant in increasing the efficiency of the process industries.

  20. Analytical method validation of GC-FID for the simultaneous measurement of hydrocarbons (C2-C4) in their gas mixture

    OpenAIRE

    Oman Zuas; Harry budiman; Muhammad Rizky Mulyana

    2016-01-01

    An accurate gas chromatography coupled to a flame ionization detector (GC-FID) method was validated for the simultaneous analysis of light hydrocarbons (C2-C4) in their gas mixture. The validation parameters were evaluated based on the ISO/IEC 17025 definition including method selectivity, repeatability, accuracy, linearity, limit of detection (LOD), limit of quantitation (LOQ), and ruggedness. Under the optimum analytical conditions, the analysis of gas mixture revealed that each target comp...

  1. Impact of comprehensive two-dimensional gas chromatography with mass spectrometry on food analysis.

    Science.gov (United States)

    Tranchida, Peter Q; Purcaro, Giorgia; Maimone, Mariarosa; Mondello, Luigi

    2016-01-01

    Comprehensive two-dimensional gas chromatography with mass spectrometry has been on the separation-science scene for about 15 years. This three-dimensional method has made a great positive impact on various fields of research, and among these that related to food analysis is certainly at the forefront. The present critical review is based on the use of comprehensive two-dimensional gas chromatography with mass spectrometry in the untargeted (general qualitative profiling and fingerprinting) and targeted analysis of food volatiles; attention is focused not only on its potential in such applications, but also on how recent advances in comprehensive two-dimensional gas chromatography with mass spectrometry will potentially be important for food analysis. Additionally, emphasis is devoted to the many instances in which straightforward gas chromatography with mass spectrometry is a sufficiently-powerful analytical tool. Finally, possible future scenarios in the comprehensive two-dimensional gas chromatography with mass spectrometry food analysis field are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Method of determining the depth of gas entry into the lifter of a gas lift well

    Energy Technology Data Exchange (ETDEWEB)

    Mishalov, N F; Popov, V A

    1981-01-01

    A method is proposed for determining the depth of gas entry into the lifter of a gas lift well, based on the data for measuring downhole and effective pressures. The method is used when analyzing and selecting operating conditions for gas lift wells at the Pravdinsk field.

  3. PIXE analysis of exhaust gas from diesel engine

    International Nuclear Information System (INIS)

    Miyake, Hirosi; Michijima, Masami; Onishi, Masayuki; Fujitani, Tatsuya.

    1986-01-01

    The variation of elemental concentrations in exhaust gas of a Diesel engine with the outputs was studied. Particulates in high temperature gas were collected on silica fiber filters and analyzed by PIXE method. Concentrations of S and V were nearly proportional to particulate masses and fuel consumption rates per discharging rates of exhaust gas respectively. While, concentrations of Fe and Mn were markedly increased together with engine outputs, and Mn/Fe ratios were nearly equal to those of the material of piston rings and the cylinder liner. Concentrations of the elements contained in lubricant, such as Ca and Mo, were also conspicuously increased with the outputs. It was shown that PIXE analysis is a useful tool for engine diagonostics owing to its high sensitive multi-elemental availability without chemical treatments. (author)

  4. Mixed gamma emitting gas standard and method

    International Nuclear Information System (INIS)

    McFarland, R.C.; McFarland, P.A.

    1986-01-01

    The invention in one aspect pertains to a method of calibrating gamma spectroscopy systems for gas counting in a variety of counting containers comprising withdrawing a precision volume of a mixed gamma-emitting gas standard from a precision volume vial and delivering the withdrawn precision volume of the gas standard to the interior of a gas counting container. Another aspect of the invention pertains to a mixed gamma-emitting gas standard, comprising a precision spherical vial of predetermined volume, multiple mixed emitting gas components enclosed within the vial, and means for withdrawing from the vial a predetermined amount of the components wherein the gas standard is used to calibrate a gamma spectrometer system for gas counting over a wide energy range without the use of additional standards. A third aspect comprehends a gamma spectrometer calibration system for gas counting, comprising a precision volume spherical glass vial for receiving mixed multiisotope gas components, and two tubular arms extending from the vial. A ground glass stopcock is positioned on each arm, and the outer end of one arm is provided with a rubber septum port

  5. Leakage analysis of fuel gas pipe in large LNG carrier engine room

    Directory of Open Access Journals (Sweden)

    CEN Zhuolun

    2017-10-01

    Full Text Available [Objectives] The electric propulsion dual-fuel engine is becoming dominant in newly built Liquefied Natural Gas(LNGcarriers. To avoid the potential risks that accompany the use of flammable and explosive boil-off gas,the performance of precise safety and reliability assessments is indispensable. [Methods] This research concerns the engine rooms of large LNG carriers which are propelled electrically by a dual-fuel engine. Possible fuel gas(natural gasleak cases in different areas of the engine room are simulated and analyzed. Five representative leak cases defined by leak form,leak location and leak rate are entered into a Computational Fluid Dynamics(CFDsimulation,in which the Reynolds stress model of Fluent software is adopted as the turbulence model. The results of the leaked gas distribution and ventilation velocity field are analyzed in combination to obtain the diffusion tendency and concentration distribution of leaked gas in different areas.[Results] Based on an analysis of the results,an optimized arrangement of flammable gas detectors is provided for the engine room, and the adoption of an explosion-proof exhaust fan is proven to be unnecessary.[Conclusions] These analysis methods can provide a reference for similar gas leakage scenarios occurring in confined ventilated spaces. In addition, the simulation results can be used to quantitatively assess potential fire or explosion damage in order to guide the design of structural reinforcements.

  6. Method of controlling weld chamber purge and cover gas atmosphere

    International Nuclear Information System (INIS)

    Yeo, D.

    1992-01-01

    A method of controlling the gas atmosphere in a welding chamber includes detecting the absence of a fuel rod from the welding chamber and, in response thereto, initiating the supplying of a flow of argon gas to the chamber to purge air therefrom. Further, the method includes detecting the entry of a fuel rod in the welding chamber and, in response thereto, terminating the supplying of the flow of argon gas to the chamber and initiating the supplying of a flow of helium gas to the chamber to purge argon gas therefrom and displace the argon gas in the chamber. Also, the method includes detecting the withdrawal of the fuel rod from the welding chamber and, in response thereto, terminating the supplying of the flow of helium gas to the chamber and initiating the supplying of argon to the chamber to purge the air therefrom. The method also includes detecting the initiation of a weld cycle and, in response thereto, momentarily supplying a flow of argon gas to the welding electrode tip for initiating the welding arc. (Author)

  7. Transient Analysis and Design Improvement of a Gas Turbine Rotor Based on Thermal-Mechanical Method

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-01-01

    Full Text Available The rotor is the core component of a gas turbine, and more than 80% of the failures in gas turbines occur in the rotor system, especially during the start-up period. Therefore, the safety assessment of the rotor during the start-up period is essential for the design of the gas turbine. In this paper, the transient equivalent stress of a gas turbine rotor under the cold start-up condition is investigated and the novel tie rod structure is introduced to reduce the equivalent stress. Firstly, a three-dimensional finite element model of the gas turbine rotor is built, and nonlinear contact behaviors such as friction are taken into account. Secondly, the convective heat transfer coefficients of the gas turbine rotor under the cold start-up condition are calculated using thermal dynamic theory. The transient analysis of the gas turbine rotor is conducted considering the thermal load, the centrifugal load, and the pretightening force. The temperature and stress distributions of the rotor under the cold start-up condition are shown in detail. In particular, the generation mechanism of maximum equivalent stress for tie rods and the change tendency of the pretightening force are illustrated in detail. The tie rod holes of the rear shaft and the turbine tie rod are the dangerous locations during the start-up period. Finally, a novel tie rod is proposed to reduce the maximum equivalent stress at the dangerous location. The maximum equivalent stress at this location is decreased by 15%. This paper provides some reference for the design of the gas turbine rotor.

  8. Method and apparatus for preventing overspeed in a gas turbine

    Science.gov (United States)

    Walker, William E.

    1976-01-01

    A method and apparatus for preventing overspeed in a gas turbine in response to the rapid loss of applied load is disclosed. The method involves diverting gas from the inlet of the turbine, bypassing the same around the turbine and thereafter injecting the diverted gas at the turbine exit in a direction toward or opposing the flow of gas through the turbine. The injected gas is mixed with the gas exiting the turbine to thereby minimize the thermal shock upon equipment downstream of the turbine exit.

  9. Method for improved gas-solids separation

    Science.gov (United States)

    Kusik, C.L.; He, B.X.

    1990-11-13

    Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from where it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs.

  10. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  11. Thermodynamic analysis of turbine blade cooling on the performance of gas turbine cycle

    International Nuclear Information System (INIS)

    Sarabchi, K.; Shokri, M.

    2002-01-01

    Turbine inlet temperature strongly affects gas turbine performance. Today blade cooling technologies facilitate the use of higher inlet temperatures. Of course blade cooling causes some thermodynamic penalties that destroys to some extent the positive effect of higher inlet temperatures. This research aims to model and evaluate the performance of gas turbine cycle with air cooled turbine. In this study internal and transpiration cooling methods has been investigated and the penalties as the result of gas flow friction, cooling air throttling, mixing of cooling air flow with hot gas flow, and irreversible heat transfer have been considered. In addition, it is attempted to consider any factor influencing actual conditions of system in the analysis. It is concluded that penalties due to blade cooling decrease as permissible temperature of the blade surface increases. Also it is observed that transpiration method leads to better performance of gas turbine comparing to internal cooling method

  12. Application of gas chromatography to analysis of spirit-based alcoholic beverages.

    Science.gov (United States)

    Wiśniewska, Paulina; Śliwińska, Magdalena; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek

    2015-01-01

    Spirit-based beverages are alcoholic drinks; their production processes are dependent on the type and origin of raw materials. The composition of this complex matrix is difficult to analyze, and scientists commonly choose gas chromatography techniques for this reason. With a wide selection of extraction methods and detectors it is possible to provide qualitative and quantitative analysis for many chemical compounds with various functional groups. This article describes different types of gas chromatography techniques and their most commonly used associated extraction techniques (e.g., LLE, SPME, SPE, SFE, and SBME) and detectors (MS, TOFMS, FID, ECD, NPD, AED, O or EPD). Additionally, brief characteristics of internationally popular spirit-based beverages and application of gas chromatography to the analysis of selected alcoholic drinks are presented.

  13. Improvement of gas entrainment prediction method. Introduction of surface tension effect

    International Nuclear Information System (INIS)

    Ito, Kei; Sakai, Takaaki; Ohshima, Hiroyuki; Uchibori, Akihiro; Eguchi, Yuzuru; Monji, Hideaki; Xu, Yongze

    2010-01-01

    A gas entrainment (GE) prediction method has been developed to establish design criteria for the large-scale sodium-cooled fast reactor (JSFR) systems. The prototype of the GE prediction method was already confirmed to give reasonable gas core lengths by simple calculation procedures. However, for simplification, the surface tension effects were neglected. In this paper, the evaluation accuracy of gas core lengths is improved by introducing the surface tension effects into the prototype GE prediction method. First, the mechanical balance between gravitational, centrifugal, and surface tension forces is considered. Then, the shape of a gas core tip is approximated by a quadratic function. Finally, using the approximated gas core shape, the authors determine the gas core length satisfying the mechanical balance. This improved GE prediction method is validated by analyzing the gas core lengths observed in simple experiments. Results show that the analytical gas core lengths calculated by the improved GE prediction method become shorter in comparison to the prototype GE prediction method, and are in good agreement with the experimental data. In addition, the experimental data under different temperature and surfactant concentration conditions are reproduced by the improved GE prediction method. (author)

  14. Molecular structure determination of cyclooctane by Ab Initio and electron diffraction methods in the gas phase

    International Nuclear Information System (INIS)

    Almeida, Wagner B. de

    2000-01-01

    The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can make a significant contribution for an unambiguous determination of the geometrical parameters. In this article the determination for an unambiguous determination of the geometrical parameters. In this article the determination of the molecular structure of the cyclooctane molecule by electron diffraction in the gas phase an initio calculations will be addressed, providing an example of a comparative analysis of theoretical and experimental predictions. (author)

  15. Experiments to Evaluate and Implement Passive Tracer Gas Methods to Measure Ventilation Rates in Homes

    Energy Technology Data Exchange (ETDEWEB)

    Lunden, Melissa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Heredia, Elizabeth [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cohn, Sebastian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dickerhoff, Darryl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Noris, Federico [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Logue, Jennifer [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-10-01

    This report documents experiments performed in three homes to assess the methodology used to determine air exchange rates using passive tracer techniques. The experiments used four different tracer gases emitted simultaneously but implemented with different spatial coverage in the home. Two different tracer gas sampling methods were used. The results characterize the factors of the execution and analysis of the passive tracer technique that affect the uncertainty in the calculated air exchange rates. These factors include uncertainties in tracer gas emission rates, differences in measured concentrations for different tracer gases, temporal and spatial variability of the concentrations, the comparison between different gas sampling methods, and the effect of different ventilation conditions.

  16. A gas conditioning and analysis system

    International Nuclear Information System (INIS)

    Busch, F.R.

    1974-01-01

    A system for carrying out a rapid analysis of explosive gas-mixtures is described. This system comprises a conduit connecting a sample taking point to a detection chamber, said chamber containing a mass of liquid into which the gas sample is discharged and being provided with a detecting unit for analyzing gases and with separate gas exit and liquid exit. The liquid is sent to a level-regulating chamber, whereas said gas exit sends the gas to a gas-stopping chamber which is in turn, connected to the conduit leading to a discharge point, and a vacuum pump for drawing up the gas sample into the system. This can be apply to nuclear power stations [fr

  17. Method of separating radioactive krypton gas

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Awada, Yoshihisa.

    1975-01-01

    Object: To effectively and safely separate and recover Kr-85, which requires a long storage period for attenuating radioactivity, from a mixture gas consisting of Kr-85 and Xe by a liquefaction distillation method. Structure: A mixture gas consisting of Kr and Xe is subjected to heat exchange in a cooler with Freon gas from a plurality of distillation towers for its temperature reduction from normal temperature to a lower temperature, and then it is supplied to a distillation tower. The distillation tower is held at a pressure above 15 ata, preferably around 20 ata, and a condenser provided at the top of the distillation tower is furnished with Freon as cooling medium. The rare mixture gas is distilled by liquefaction within a distillation tower, and Kr-85 is obtained from a top duct while obtaining Xe from a bottom duct. Xe after separation by liquefaction is returned to a rare mixture gas supply inlet of a liquefaction distillation means for repeated refinement in the distillation tower. (Kamimura, M.)

  18. Generalized Energy Flow Analysis Considering Electricity Gas and Heat Subsystems in Local-Area Energy Systems Integration

    Directory of Open Access Journals (Sweden)

    Jiaqi Shi

    2017-04-01

    Full Text Available To alleviate environmental pollution and improve the efficient use of energy, energy systems integration (ESI—covering electric power systems, heat systems and natural gas systems—has become an important trend in energy utilization. The traditional power flow calculation method, with the object as the power system, will prove difficult in meeting the requirements of the coupled energy flow analysis. This paper proposes a generalized energy flow (GEF analysis method which is suitable for an ESI containing electricity, heat and gas subsystems. First, the models of electricity, heat, and natural gas networks in the ESI are established. In view of the complexity of the conventional method to solve the gas network including the compressor, an improved practical equivalent method was adopted based on different control modes. On this basis, a hybrid method combining homotopy and the Newton-Raphson algorithm was executed to compute the nonlinear equations of GEF, and the Jacobi matrix reflecting the coupling relationship of multi-energy was derived considering the grid connected mode and island modes of the power system in the ESI. Finally, the validity of the proposed method in multi-energy flow calculation and the analysis of interacting characteristics was verified using practical cases.

  19. Method for treating a nuclear process off-gas stream

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.-C.

    1981-01-01

    A method is described for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. The method involves a sequence of adsorption and desorption steps which are specified. Particular reference is made to the separation of xenon and krypton from the off-gas stream, and to the use of silver-exchanged mordenite as the adsorbent. (U.K.)

  20. Molecular structure determination of cyclootane by ab initio and electron diffraction methods in the gas phase

    OpenAIRE

    De Almeida, Wagner B.

    2000-01-01

    The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can ma...

  1. Study on nuclear analysis method for high temperature gas-cooled reactor and its nuclear design (Thesis)

    International Nuclear Information System (INIS)

    Goto, Minoru

    2015-03-01

    An appropriate configuration of fuel and reactivity control equipment in a nuclear reactor core, which allows the design of the nuclear reactor core for low cost and high performance, is performed by nuclear design with high accuracy. The accuracy of nuclear design depends on a nuclear data library and a nuclear analysis method. Additionally, it is one of the most important issues for the nuclear design of a High Temperature Gas-cooled Reactor (HTGR) that an insertion depth of control rods into the reactor core should be retained shallow by reducing excess reactivity with a different method to keep fuel temperature below its limitation thorough a burn-up period. In this study, using experimental data of the High Temperature engineering Test Reactor (HTTR), which is a Japan's HTGR with 30 MW of thermal power, the following issues were investigated: applicability of nuclear data libraries to nuclear analysis for HTGRs; applicability of the improved nuclear analysis method for HTGRs; and effectiveness of a rod-type burnable poison on HTGR reactivity control. A nuclear design of a small-sized HTGR with 50 MW of thermal power (HTR50S) was performed using these results. In the nuclear design of the HTR50S, we challenged to decrease the kinds of the fuel enrichments and to increase the power density compared with the HTTR. As a result, the nuclear design was completed successfully by reducing the kinds of the fuel enrichment to only three from twelve of the HTTR and increasing the power density by 1.4 times as much as that of the HTTR. (author)

  2. Method for filtering radon from a gas system

    International Nuclear Information System (INIS)

    Sowinski, R.F.

    1992-01-01

    This patent describes a method of filtering, adjacent to an end user-customer's residence, or business in which at least a single gas appliance is located, a natural gas stream in which benz-a-anthracene has been concentrated at sufficient levels to be a health threat in a natural gas gathering and distributing network. It comprises introducing the natural gas stream to a filter selected from a group that includes impingement, passing the filtered natural gas stream to the customer's gas appliance wherein safe use of the energy associated with the stream occurs, periodically and safely removing the filter for disposing of captured benz-a-anthracene, inserting a new filter in place of the removed filter of step

  3. Gas-cooled reactor safety and accident analysis

    International Nuclear Information System (INIS)

    1985-12-01

    The Specialists' Meeting on Gas-Cooled Reactor Safety and Accident Analysis was convened by the International Atomic Energy Agency in Oak Ridge on the invitation of the Department of Energy in Washington, USA. The meeting was hosted by the Oak Ridge National Laboratory. The purpose of the meeting was to provide an opportunity to compare and discuss results of safety and accident analysis of gas-cooled reactors under development, construction or in operation, to review their lay-out, design, and their operational performance, and to identify areas in which additional research and development are needed. The meeting emphasized the high safety margins of gas-cooled reactors and gave particular attention to the inherent safety features of small reactor units. The meeting was subdivided into four technical sessions: Safety and Related Experience with Operating Gas-Cooled Reactors (4 papers); Risk and Safety Analysis (11 papers); Accident Analysis (9 papers); Miscellaneous Related Topics (5 papers). A separate abstract was prepared for each of these papers

  4. Analytical method validation of GC-FID for the simultaneous measurement of hydrocarbons (C2-C4 in their gas mixture

    Directory of Open Access Journals (Sweden)

    Oman Zuas

    2016-09-01

    Full Text Available An accurate gas chromatography coupled to a flame ionization detector (GC-FID method was validated for the simultaneous analysis of light hydrocarbons (C2-C4 in their gas mixture. The validation parameters were evaluated based on the ISO/IEC 17025 definition including method selectivity, repeatability, accuracy, linearity, limit of detection (LOD, limit of quantitation (LOQ, and ruggedness. Under the optimum analytical conditions, the analysis of gas mixture revealed that each target component was well-separated with high selectivity property. The method was also found to be precise and accurate. The method linearity was found to be high with good correlation coefficient values (R2 ≥ 0.999 for all target components. It can be concluded that the GC-FID developed method is reliable and suitable for determination of light C2-C4 hydrocarbons (including ethylene, propane, propylene, isobutane, and n-butane in their gas mixture. The validated method has successfully been applied to the estimation of hydrocarbons light C2-C4 hydrocarbons in natural gas samples, showing high performance repeatability with relative standard deviation (RSD less than 1.0% and good selectivity with no interference from other possible components could be observed.

  5. Rio Vista gas leak study: Belleaire Gas Field, California

    International Nuclear Information System (INIS)

    Wilkey, P.L.

    1992-08-01

    The Rio Vista gas leak study evaluated methods for remotely sensing gas leaks from buried pipelines and developed methods to elucidate methane transport and microbial oxidation in soils. Remote-sensing methods were evaluated by singing gas leaks along an abandoned Pacific Gas and Electric (PG ampersand E) gas field collection line in northern California and applying surface-based and airborne remote-sensing techniques in the field, including thermal imaging, laser imaging, and multispectral imagery. The remote-sensing techniques exhibited limitations in range and in their ability to correlate with ground truth data. To elucidate methane transport and microbial oxidation in soils, a study of a controlled leak permitted field testing of methods so that such processes could be monitored and evaluated. Monitoring and evaluation techniques included (1) field measurement of soil-gas concentrations, temperatures, and pressures; (2) laboratory measurement of soil physical/chemical properties and activity of methane-oxidizing microorganisms by means of field samples; and (3) development of a preliminary numerical analysis technique for combined soil-gas transport/methane oxidation. Soil-gas concentrations at various depths responded rapidly to the high rate of gas leakage. The number of methane-oxidizing microorganisms in site soils rapidly increased when the gas leak was initiated and decreased after the leak was terminated. The preliminary field, laboratory, and numerical analysis techniques tested for this study of a controlled gas leak could be successfully applied to future studies of gas leaks. Because soil-gas movement is rapid and temporally variable, the use of several complementary techniques that permit generalization of site-specific results is favored

  6. Method and equipment for the analysis of gases

    International Nuclear Information System (INIS)

    Bailitis, E.

    1978-01-01

    The density of the gas is determined by the average molecular velocity. The gas and the reference gas flow at known pressure from one volume to the other through a Knudsen-flow, where for example, the pressure increase is measured. After a spontaneous change of the cross section of the Knudsen-flow the measurement is repeated and for example the density is determined from the measured values. A SIMS-Auger-vacuum chamber serves as device after the installation of two secondary valves. The tested gas is CCl 4 for example. The measurement method is also suitable for the gas analysis of coal gassing by means of the determination of the molecular weight. (RW) [de

  7. Theoretical analysis of stack gas emission velocity measurement by optical scintillation

    International Nuclear Information System (INIS)

    Yang Yang; Dong Feng-Zhong; Ni Zhi-Bo; Pang Tao; Zeng Zong-Yong; Wu Bian; Zhang Zhi-Rong

    2014-01-01

    Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously. (general)

  8. Commercial sector gas cooling technology frontier and market share analysis

    International Nuclear Information System (INIS)

    Pine, G.D.; Mac Donald, J.M.; McLain, H.A.

    1990-01-01

    This paper describes a method, developed for the Gas Research Institute of the United States, that can assist planning for commercial sector natural gas cooling systems R and D. These systems are higher in first cost than conventional electric chillers. Yet, engine-driven chiller designs exist which are currently competitive in U.S. markets typified by high electricity or demand charges. Section II describes a scenario analysis approach used to develop and test the method. Section III defines the technology frontier, a conceptual tool for identifying new designs with sales potential. Section IV describes a discrete choice method for predicting market shares of technologies with sales potential. Section V shows how the method predicts operating parameter, cost, and/or performance goals for technologies without current sales potential (or for enhancing a frontier technology's sales potential). Section VI concludes with an illustrative example for the Chicago office building retrofit market

  9. Validation of an analytical method for simultaneous high-precision measurements of greenhouse gas emissions from wastewater treatment plants using a gas chromatography-barrier discharge detector system.

    Science.gov (United States)

    Pascale, Raffaella; Caivano, Marianna; Buchicchio, Alessandro; Mancini, Ignazio M; Bianco, Giuliana; Caniani, Donatella

    2017-01-13

    Wastewater treatment plants (WWTPs) emit CO 2 and N 2 O, which may lead to climate change and global warming. Over the last few years, awareness of greenhouse gas (GHG) emissions from WWTPs has increased. Moreover, the development of valid, reliable, and high-throughput analytical methods for simultaneous gas analysis is an essential requirement for environmental applications. In the present study, an analytical method based on a gas chromatograph (GC) equipped with a barrier ionization discharge (BID) detector was developed for the first time. This new method simultaneously analyses CO 2 and N 2 O and has a precision, measured in terms of relative standard of variation RSD%, equal to or less than 6.6% and 5.1%, respectively. The method's detection limits are 5.3ppm v for CO 2 and 62.0ppb v for N 2 O. The method's selectivity, linearity, accuracy, repeatability, intermediate precision, limit of detection and limit of quantification were good at trace concentration levels. After validation, the method was applied to a real case of N 2 O and CO 2 emissions from a WWTP, confirming its suitability as a standard procedure for simultaneous GHG analysis in environmental samples containing CO 2 levels less than 12,000mg/L. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Validation of Analysis Method of pesticides in fresh tomatoes by Gas Chromatography associated to a liquid scintillation counting

    International Nuclear Information System (INIS)

    Dhib, Ahlem

    2011-01-01

    Pesticides are nowadays considered as toxic for human health. The maximum residues levels (MRL) in foodstuff are more and more strict. Therefore, selective analytical techniques are necessary for their identification and their quantification. The aim of this study is to set up a multi residue method for the determination of pesticides in tomatoes by gas chromatography with μECD detector (GC/μECD) associated to liquid scintillation counting. A global analytical protocol consisting of a QuECHERS version of the extraction step followed by purification step of the resulting extract on a polymeric sorbent was set up. The 14 C-chloropyrifos used as an internal standard proved excellent to control the different steps needed for the sample preparation. The method optimized is specific, selective with a recovery averaged more than 70 pour cent, repetitive and reproducible. Although some others criteria need to be checked regarding validation before its use in routine analysis, the potential of the method has been demonstrated.

  11. Analysis of Polycyclic Aromatic Hydrocarbons in Ambient Aerosols by Using One-Dimensional and Comprehensive Two-Dimensional Gas Chromatography Combined with Mass Spectrometric Method: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Yun Gyong Ahn

    2018-01-01

    Full Text Available Advanced separation technology paired with mass spectrometry is an ideal method for the analysis of atmospheric samples having complex chemical compositions. Due to the huge variety of both natural and anthropogenic sources of organic compounds, simultaneous quantification and identification of organic compounds in aerosol samples represents a demanding analytical challenge. In this regard, comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS has become an effective analytical method. However, verification and validation approaches to quantify these analytes have not been critically evaluated. We compared the performance of gas chromatography with quadrupole mass spectrometry (GC-qMS and GC×GC-TOFMS for quantitative analysis of eighteen target polycyclic aromatic hydrocarbons (PAHs. The quantitative obtained results such as limits of detection (LODs, limits of quantification (LOQs, and recoveries of target PAHs were approximately equivalent based on both analytical methods. Furthermore, a larger number of analytes were consistently identified from the aerosol samples by GC×GC-TOFMS compared to GC-qMS. Our findings suggest that GC×GC-TOFMS would be widely applicable to the atmospheric and related sciences with simultaneous target and nontarget analysis in a single run.

  12. Greenhouse gas emission measurement and economic analysis of Iran natural gas fired power plants

    International Nuclear Information System (INIS)

    Shahsavari Alavijeh, H.; Kiyoumarsioskouei, A.; Asheri, M.H.; Naemi, S.; Shahsavari Alavije, H.; Basirat Tabrizi, H.

    2013-01-01

    This study attempts to examine the natural gas fired power plants in Iran. The required data from natural gas fired power plants were gathered during 2008. The characteristics of thirty two gas turbine power plants and twenty steam power plants have been measured. Their emission factor values were then compared with the standards of Energy Protection Agency, Euro Union and World Bank. Emission factors of gas turbine and steam power plants show that gas turbine power plants have a better performance than steam power plants. For economic analysis, fuel consumption and environmental damages caused by the emitted pollutants are considered as cost functions; and electricity sales revenue are taken as benefit functions. All of these functions have been obtained according to the capacity factor. Total revenue functions show that gas turbine and steam power plants are economically efficient at 98.15% and 90.89% of capacity factor, respectively; this indicates that long operating years of power plants leads to reduction of optimum capacity factor. The stated method could be implemented to assess the economic status of a country’s power plants where as efficient capacity factor close to one means that power plant works in much better condition. - Highlights: • CO 2 and NO x emissions of Iran natural gas fired power plants have been studied. • CO 2 and NO x emission factors are compared with EPA, EU and World Bank standards. • Costs and benefit as economic functions are obtained according to capacity factor. • Maximum economic profit is obtained for gas turbine and steam power plants. • Investment in CO 2 reduction is recommended instead of investment in NO x reduction

  13. Risk assessment of failure modes of gas diffuser liner of V94.2 siemens gas turbine by FMEA method

    Science.gov (United States)

    Mirzaei Rafsanjani, H.; Rezaei Nasab, A.

    2012-05-01

    Failure of welding connection of gas diffuser liner and exhaust casing is one of the failure modes of V94.2 gas turbines which are happened in some power plants. This defect is one of the uncertainties of customers when they want to accept the final commissioning of this product. According to this, the risk priority of this failure evaluated by failure modes and effect analysis (FMEA) method to find out whether this failure is catastrophic for turbine performance and is harmful for humans. By using history of 110 gas turbines of this model which are used in some power plants, the severity number, occurrence number and detection number of failure determined and consequently the Risk Priority Number (RPN) of failure determined. Finally, critically matrix of potential failures is created and illustrated that failure modes are located in safe zone.

  14. Use of nonlocal helium microplasma for gas impurities detection by the collisional electron spectroscopy method

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, Anatoly A., E-mail: akud@ak2138.spb.edu [St. Petersburg State University, 7-9 Universitetskaya nab., 199034 St. Petersburg (Russian Federation); Stefanova, Margarita S.; Pramatarov, Petko M. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria)

    2015-10-15

    The collisional electron spectroscopy (CES) method, which lays the ground for a new field for analytical detection of gas impurities at high pressures, has been verified. The CES method enables the identification of gas impurities in the collisional mode of electron movement, where the advantages of nonlocal formation of the electron energy distribution function (EEDF) are fulfilled. Important features of dc negative glow microplasma and probe method for plasma diagnostics are applied. A new microplasma gas analyzer design is proposed. Admixtures of 0.2% Ar, 0.6% Kr, 0.1% N{sub 2}, and 0.05% CO{sub 2} are used as examples of atomic and molecular impurities to prove the possibility for detecting and identifying their presence in high pressure He plasma (50–250 Torr). The identification of the particles under analysis is made from the measurements of the high energy part of the EEDF, where maxima appear, resulting from the characteristic electrons released in Penning reactions of He metastable atoms with impurity particles. Considerable progress in the development of a novel miniature gas analyzer for chemical sensing in gas phase environments has been made.

  15. Chemically modified glasses for analysis of hydrogen isotopes by gas-chromatography

    International Nuclear Information System (INIS)

    Stanciu, Vasile; Stefanescu, Doina

    1999-01-01

    Hydrogen isotope separation process by such methods as cryogenic distillation or thermal diffusion method is one of the key technologies of the tritium separation from heavy water of CANDU reactors and in the tritium fuel cycle for a thermonuclear fusion reactor. In each process, the analytical techniques for measuring contents of hydrogen isotope mixture are necessary. An extensive experimental research has been carried out in order to produce the most suitable absorbent and define the best operating conditions for selective separation and analysis of hydrogen isotope by gas-chromatography. This paper describes the preparation of adsorbent materials utilised as stationary phase in the gas-chromatographic column for hydrogen isotope separation and treatment (activation) of stationary phase. Modified thermo-resisting glass with Fe(NH 4 ) 2 (SO 4 ) 2 6H 2 O and Cr 2 O 3 , respectively, have been experimentally investigated at 77 K for H 2 , HD and D 2 separation and the results of chromatographic runs are also reported and discussed. The gas-chromatographic apparatus used is composed of a Hewlett-Packard 7620A gas-chromatograph equipped with a gas carrier flow rate controller and a thermal conductivity detector (TCD). The apparatus comprises also a Dewar vessel containing the separation column. The hydrogen isotopes H 2 , HD, D 2 and their mixture have been obtained in our laboratories. The best operating conditions of the adsorbent column Fe (III)/glass and Cr 2 O 3 /glass, i.e. granulometry, column length, pressure-drop along the column, carrier gas flow rate, sample volume have been studied by means of the analysis of the retention times, separation factors and HETP. (authors)

  16. A new cyber security risk evaluation method for oil and gas SCADA based on factor state space

    International Nuclear Information System (INIS)

    Yang, Li; Cao, Xiedong; Li, Jie

    2016-01-01

    Based on comprehensive analysis of the structure and the potential safety problem of oil and gas SCADA(Supervisor control and data acquisition) network, aiming at the shortcomings of traditional evaluation methods, combining factor state space and fuzzy comprehensive evaluation method, a new network security risk evaluation method of oil and gas SCADA is proposed. First of all, formal description of factor state space and its complete mathematical definition were presented; secondly, factor fuzzy evaluation steps were discussed; then, using analytic hierarchy method, evaluation index system for oil and gas SCADA system was established, the index weights of all factors were determined by two-two comparisons; structure design of three layers in reasoning machine was completed. Experiments and tests show that the proposed method is accurate, reliable and practical. Research results provide the template and the new method for the other industries.

  17. A versatile gas interface for routine radiocarbon analysis with a gas ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, L., E-mail: wacker@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Fahrni, S.M. [Department of Chemistry and Biochemistry, University of Bern, 3012 Berne (Switzerland); Oeschger Centre for Climate Change Research, University of Bern, 3012 Berne (Switzerland); Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland); Hajdas, I. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Molnar, M. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Institute of Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Synal, H.-A. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Szidat, S. [Department of Chemistry and Biochemistry, University of Bern, 3012 Berne (Switzerland); Oeschger Centre for Climate Change Research, University of Bern, 3012 Berne (Switzerland); Zhang, Y.L. [Department of Chemistry and Biochemistry, University of Bern, 3012 Berne (Switzerland); Oeschger Centre for Climate Change Research, University of Bern, 3012 Berne (Switzerland); Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland)

    2013-01-15

    In 2010 more than 600 radiocarbon samples were measured with the gas ion source at the MIni CArbon DAting System (MICADAS) at ETH Zurich and the number of measurements is rising quickly. While most samples contain less than 50 {mu}g C at present, the gas ion source is attractive as well for larger samples because the time-consuming graphitization is omitted. Additionally, modern samples are now measured down to 5 per-mill counting statistics in less than 30 min with the recently improved gas ion source. In the versatile gas handling system, a stepping-motor-driven syringe presses a mixture of helium and sample CO{sub 2} into the gas ion source, allowing continuous and stable measurements of different kinds of samples. CO{sub 2} can be provided in four different ways to the versatile gas interface. As a primary method, CO{sub 2} is delivered in glass or quartz ampoules. In this case, the CO{sub 2} is released in an automated ampoule cracker with 8 positions for individual samples. Secondly, OX-1 and blank gas in helium can be provided to the syringe by directly connecting gas bottles to the gas interface at the stage of the cracker. Thirdly, solid samples can be combusted in an elemental analyzer or in a thermo-optical OC/EC aerosol analyzer where the produced CO{sub 2} is transferred to the syringe via a zeolite trap for gas concentration. As a fourth method, CO{sub 2} is released from carbonates with phosphoric acid in septum-sealed vials and loaded onto the same trap used for the elemental analyzer. All four methods allow complete automation of the measurement, even though minor user input is presently still required. Details on the setup, versatility and applications of the gas handling system are given.

  18. Humidity independent mass spectrometry for gas phase chemical analysis via ambient proton transfer reaction.

    Science.gov (United States)

    Zhu, Hongying; Huang, Guangming

    2015-03-31

    In this work, a humidity independent mass spectrometric method was developed for rapid analysis of gas phase chemicals. This method is based upon ambient proton transfer reaction between gas phase chemicals and charged water droplets, in a reaction chamber with nearly saturate humidity under atmospheric pressure. The humidity independent nature enables direct and rapid analysis of raw gas phase samples, avoiding time- and sample-consuming sample pretreatments in conventional mass spectrometry methods to control sample humidity. Acetone, benzene, toluene, ethylbenzene and meta-xylene were used to evaluate the analytical performance of present method. The limits of detection for benzene, toluene, ethylbenzene and meta-xylene are in the range of ∼0.1 to ∼0.3 ppbV; that of benzene is well below the present European Union permissible exposure limit for benzene vapor (5 μg m(-3), ∼1.44 ppbV), with linear ranges of approximately two orders of magnitude. The majority of the homemade device contains a stainless steel tube as reaction chamber and an ultrasonic humidifier as the source of charged water droplets, which makes this cheap device easy to assemble and facile to operate. In addition, potential application of this method was illustrated by the real time identification of raw gas phase chemicals released from plants at different physiological stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Comprehensive two-dimensional gas chromatography for biogas and biomethane analysis.

    Science.gov (United States)

    Hilaire, F; Basset, E; Bayard, R; Gallardo, M; Thiebaut, D; Vial, J

    2017-11-17

    The gas industry is going to be revolutionized by being able to generate bioenergy from biomass. The production of biomethane - a green substitute of natural gas - is growing in Europe and the United-States of America. Biomethane can be injected into the gas grid or used as fuel for vehicles after compression. Due to various biomass inputs (e.g. agricultural wastes, sludges from sewage treatment plants, etc.), production processes (e.g. anaerobic digestion, municipal solid waste (MSW) landfills), seasonal effects and purification processes (e.g. gas scrubbers, pressure swing adsorption, membranes for biogas upgrading), the composition and quality of biogas and biomethane produced is difficult to assess. All previous publications dealing with biogas analysis reported that hundreds of chemicals from ten chemical families do exist in trace amounts in biogas. However, to the best of our knowledge, no study reported a detailed analysis or the implementation of comprehensive two-dimensional gas chromatography (GC×GC) for biogas matrices. This is the reason why the benefit of implementing two-dimensional gas chromatography for the characterization of biogas and biomethane samples was evaluated. In a first step, a standard mixture of 89 compounds belonging to 10 chemical families, representative of those likely to be found, was used to optimize the analytical method. A set consisting of a non-polar and a polar columns, respectively in the first and the second dimension, was used with a modulation period of six seconds. Applied to ten samples of raw biogas, treated biogas and biomethane collected on 4 industrial sites (two MSW landfills, one anaerobic digester on a wastewater treatment plant and one agricultural biogas plant), this analytical method provided a "fingerprint" of the gases composition at the molecular level in all biogas and biomethane samples. Estimated limits of detection (far below the μgNm -3 ) coupled with the resolution of GC×GC allowed the comparison

  20. Thermodynamic Analysis of Supplementary-Fired Gas Turbine Cycles

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Henriksen, Ulrik Birk; Qvale, Einar Bjørn

    2002-01-01

    This paper presents an analysis of the possibilities for improving the efficiency of an indirectly biomass-fired gas turbine (IBFGT) by supplementary direct gas-firing. The supplementary firing may be based on natural gas, biogas, or pyrolysis gas. {The interest in this cycle arise from a recent...... demonstration of a two-stage gasification process through construction of several plants.} A preliminary analysis of the ideal recuperated Brayton cycle shows that for this cycle any supplementary firing will have a marginal efficiency of unity per extra unit of fuel. The same result is obtained...

  1. Power-generation method using combined gas and steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C; Radtke, K; Keller, H J

    1997-03-20

    The invention concerns a method of power generation using a so-called COGAS (combined gas and steam) turbine installation, the aim being to improve the method with regard to the initial costs and energy consumption so that power can be generated as cheaply as possible. This is achieved by virtue of the fact that air taken from the surrounding atmosphere is splint into an essentially oxygen-containing stream and an essentially nitrogen-containing stream and the two streams fed further at approximately atmospheric pressure. The essentially nitrogen-containing stream is mixed with an air stream to form a mixed nitrogen/air stream and the mixed-gas stream thus produced is brought to combustion chamber pressure in the compressor of the gas turbine, the combustion of the combustion gases in the combustion chamber of the gas turbine being carried out with the greater part of this compressed mixed-gas stream. (author) figs.

  2. Integrated failure probability estimation based on structural integrity analysis and failure data: Natural gas pipeline case

    International Nuclear Information System (INIS)

    Dundulis, Gintautas; Žutautaitė, Inga; Janulionis, Remigijus; Ušpuras, Eugenijus; Rimkevičius, Sigitas; Eid, Mohamed

    2016-01-01

    In this paper, the authors present an approach as an overall framework for the estimation of the failure probability of pipelines based on: the results of the deterministic-probabilistic structural integrity analysis (taking into account loads, material properties, geometry, boundary conditions, crack size, and defected zone thickness), the corrosion rate, the number of defects and failure data (involved into the model via application of Bayesian method). The proposed approach is applied to estimate the failure probability of a selected part of the Lithuanian natural gas transmission network. The presented approach for the estimation of integrated failure probability is a combination of several different analyses allowing us to obtain: the critical crack's length and depth, the failure probability of the defected zone thickness, dependency of the failure probability on the age of the natural gas transmission pipeline. A model's uncertainty analysis and uncertainty propagation analysis are performed, as well. - Highlights: • Degradation mechanisms of natural gas transmission pipelines. • Fracture mechanic analysis of the pipe with crack. • Stress evaluation of the pipe with critical crack. • Deterministic-probabilistic structural integrity analysis of gas pipeline. • Integrated estimation of pipeline failure probability by Bayesian method.

  3. Reliability analysis of hydrologic containment of liquefied petroleum gas within unlined rock caverns.

    Science.gov (United States)

    Gao, X.; Yan, E. C.; Yeh, T. C. J.; Wang, Y.; Liang, Y.; Hao, Y.

    2017-12-01

    Notice that most of the underground liquefied petroleum gas (LPG) storage caverns are constructed in unlined rock caverns (URCs), where the variability of hydraulic properties (in particular, hydraulic conductivity) has significant impacts on hydrologic containment performance. However, it is practically impossible to characterize the spatial distribution of these properties in detail at the site of URCs. This dilemma forces us to cope with uncertainty in our evaluations of gas containment. As a consequence, the uncertainty-based analysis is deemed more appropriate than the traditional deterministic analysis. The objectives of this paper are 1) to introduce a numerical first order method to calculate the gas containment reliability within a heterogeneous, two-dimensional unlined rock caverns, and 2) to suggest a strategy for improving the gas containment reliability. In order to achieve these goals, we first introduced the stochastic continuum representation of saturated hydraulic conductivity (Ks) of fractured rock and analyzed the spatial variability of Ks at a field site. We then conducted deterministic simulations to demonstrate the importance of heterogeneity of Ks in the analysis of gas tightness performance of URCs. Considering the uncertainty of the heterogeneity in the real world situations, we subsequently developed a numerical first order method (NFOM) to determine the gas tightness reliability at crucial locations of URCs. Using the NFOM, the effect of spatial variability of Ks on gas tightness reliability was investigated. Results show that as variance or spatial structure anisotropy of Ks increases, most of the gas tightness reliability at crucial locations reduces. Meanwhile, we compare the results of NFOM with those of Monte Carlo simulation, and we find the accuracy of NFOM is mainly affected by the magnitude of the variance of Ks. At last, for improving gas containment reliability at crucial locations at this study site, we suggest that vertical

  4. A prediction method of natural gas hydrate formation in deepwater gas well and its application

    Directory of Open Access Journals (Sweden)

    Yanli Guo

    2016-09-01

    Full Text Available To prevent the deposition of natural gas hydrate in deepwater gas well, the hydrate formation area in wellbore must be predicted. Herein, by comparing four prediction methods of temperature in pipe with field data and comparing five prediction methods of hydrate formation with experiment data, a method based on OLGA & PVTsim for predicting the hydrate formation area in wellbore was proposed. Meanwhile, The hydrate formation under the conditions of steady production, throttling and shut-in was predicted by using this method based on a well data in the South China Sea. The results indicate that the hydrate formation area decreases with the increase of gas production, inhibitor concentrations and the thickness of insulation materials and increases with the increase of thermal conductivity of insulation materials and shutdown time. Throttling effect causes a plunge in temperature and pressure in wellbore, thus leading to an increase of hydrate formation area.

  5. Hanford gas dispersion analysis

    International Nuclear Information System (INIS)

    Fujita, R.K.; Travis, J.R.

    1994-01-01

    An analysis was performed to verify the design of a waste gas exhauster for use in support of rotary core sampling activities at the Westinghouse Hanford Waste Tank Farm. The exhauster was designed to remove waste gases from waste storage tanks during the rotary core drilling process of the solid materials in the tank. Some of the waste gases potentially are very hazardous and must be monitored during the exhauster's operation. If the toxic gas concentrations in specific areas near the exhauster exceed minimum Threshold Limit Values (TLVs), personnel must be excluded from the area. The exhauster stack height is of interest because an increase in stack height will alter the gas concentrations at the critical locations. The exhaust stack is currently ∼4.6 m (15 ft) high. An equipment operator will be located within a 6.1 m (20 ft) radius of the exhaust stack, and his/her head will be at an elevation 3.7 m (12 ft) above ground level (AGL). Therefore, the maximum exhaust gas concentrations at this location must be below the TLV for the toxic gases. Also, the gas concentrations must be within the TLV at a 61 m (200 ft) radius from the stack. If the calculated gas concentrations are above the TLV, where the operator is working below the stack at the 61 m (200 ft) radius location, the stack height may need to be increased

  6. TOXRISK, Toxic Gas Release Accident Analysis

    International Nuclear Information System (INIS)

    Bennett, D.E.; Chanin, D.I.; Shiver, A.W.

    1993-01-01

    1 - Description of program or function: TOXRISK is an interactive program developed to aid in the evaluation of nuclear power plant control room habitability in the event of a nearby toxic material release. The program uses a model which is consistent with the approach described in the NRC Regulatory Guide 1.78. Release of the gas is treated as an initial puff followed by a continuous plume. The relative proportions of these as well as the plume release rate are supplied by the user. Transport of the gas is modeled as a Gaussian distribution and occurs through the action of a constant velocity, constant direction wind. Great flexibility is afforded the user in specifying the release description, meteorological conditions, relative geometry of the accident and plant, and the plant ventilation system characteristics. Two types of simulation can be performed: multiple case (parametric) studies and probabilistic analyses. Upon execution, TOXRISK presents a menu, and the user chooses between the Data Base Manager, the Multiple Case program, and the Probabilistic Study Program. The Data Base Manager provides a convenient means of storing, retrieving, and modifying blocks of data required by the analysis programs. The Multiple Case program calculates resultant gas concentrations inside the control room and presents a summary of information that describes the event for each set of conditions given. Optimally, a time history profile of inside and outside concentrations can also be produced. The Probabilistic Study program provides a means for estimating the annual probability of operator incapacitation due to toxic gas accidents on surrounding transportation routes and storage sites. 2 - Method of solution: Dispersion or diffusion of the gas during transport is described by modified Pasquill-Gifford dispersion coefficients

  7. Robust Design of SAW Gas Sensors by Taguchi Dynamic Method

    Directory of Open Access Journals (Sweden)

    Hsun-Heng Tsai

    2009-02-01

    Full Text Available This paper adopts Taguchi’s signal-to-noise ratio analysis to optimize the dynamic characteristics of a SAW gas sensor system whose output response is linearly related to the input signal. The goal of the present dynamic characteristics study is to increase the sensitivity of the measurement system while simultaneously reducing its variability. A time- and cost-efficient finite element analysis method is utilized to investigate the effects of the deposited mass upon the resonant frequency output of the SAW biosensor. The results show that the proposed methodology not only reduces the design cost but also promotes the performance of the sensors.

  8. ASSESSMENT OF DIVERSITY OF POLISH VOIVODSHIPS BY LEVEL OF GAS PIPELINE INFRASTRUCTURE DEVELOPMENT USING MULTIDIMENSIONAL COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Marek URBANIK

    2016-06-01

    Full Text Available In the paper differentiation of gas pipeline infrastructure development in the Polish voivodships was presented. To illustrate this diversity the method of cluster analysis is used, obtained on the basis of statistical data collected by the Central Statistical Office (CSO. In order to conduct a preliminary review procedure for classification of individual provinces in relation to the assessment of the development of gas pipeline infrastructure linear classification was used, involved determining synthetic measure, which is the average of the variable components, through which voivodships were ordered. In order to estimate the distance between the clusters the variance analysis was used with the implementation of the Ward method. The analysis was performed on the basis of the following indicators: average increase in length of the gas network (an average for the total voivodoship 164.2 km, growth of the gas network in comparison to the first year of observation (123%, number of gas connections per 1 km of gas pipe (18.87 no∙km-1, the length of the network per unit area (5.37 m∙ha-1, intensity of network loading (84.15 m3∙d-1∙km-1, inhabitants having access to the gas system in % of total population (51.33%. In the analysis five clusters were grouped. Critical value was determined and segregation of individual clusters was made, taking into account the dominant parameters.

  9. Nanoparticle-based gas sensors and methods of using the same

    Science.gov (United States)

    Mickelson, William; Zettl, Alex

    2017-10-17

    Gas sensors are provided. The gas sensors include a gas sensing element having metal oxide nanoparticles and a thin-film heating element. Systems that include the gas sensors, as well as methods of using the gas sensors, are also provided. Embodiments of the present disclosure find use in a variety of different applications, including detecting whether an analyte is present in a gaseous sample.

  10. Probabilistic Steady-State Operation and Interaction Analysis of Integrated Electricity, Gas and Heating Systems

    Directory of Open Access Journals (Sweden)

    Lun Yang

    2018-04-01

    Full Text Available The existing studies on probabilistic steady-state analysis of integrated energy systems (IES are limited to integrated electricity and gas networks or integrated electricity and heating networks. This paper proposes a probabilistic steady-state analysis of integrated electricity, gas and heating networks (EGH-IES. Four typical operation modes of an EGH-IES are presented at first. The probabilistic energy flow problem of the EGS-IES considering its operation modes and correlated uncertainties in wind/solar power and electricity/gas/heat loads is then formulated and solved by the Monte Carlo method based on Latin hypercube sampling and Nataf transformation. Numerical simulations are conducted on a sample EGH-IES working in the “electricity/gas following heat” mode to verify the probabilistic analysis proposed in this paper and to study the effects of uncertainties and correlations on the operation of the EGH-IES, especially uncertainty transmissions among the subnetworks.

  11. Calibration method based on direct radioactivity measurement for radioactive gas monitoring instruments

    International Nuclear Information System (INIS)

    Yoshida, Makoto; Ohi, Yoshihiro; Chida, Tohru; Wu, Youyang.

    1993-01-01

    A calibration method for radioactive gas monitoring instruments was studied. In the method, gaseous radioactivity standards were provided on the basis of the direct radioactivity measurement by the diffusion-in long proportional counter method (DLPC method). The radioactivity concentration of the gas mixture through a monitoring instrument was determined by sampling the known volume of the gas mixture into the proportional counter used for the DLPC method. Since oxygen in the gas mixture decreased the counting efficiency in a proportional counter, the influence on calibration was experimentally estimated. It was not serious and able to be easily corrected. By the present method, the relation between radioactivity concentration and ionization current was determined for a gas-flow ionization chamber with 1.5 l effective volume. It showed good agreement with the results in other works. (author)

  12. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    Science.gov (United States)

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  13. Analysis of senior high school student understanding on gas kinetic theory material

    Science.gov (United States)

    Anri, Y.; Maknun, J.; Chandra, D. T.

    2018-05-01

    The purpose of this research conducted to find out student understanding profile about gas kinetic theory. Particularly, on ideal gas law material, ideal gas equations and kinetic energy of ideal gas. This research was conducted on student of class XII in one of the schools in Bandung. This research is a descriptive research. The data of this research collected by using test instrument which was the essay that has been developed by the researcher based on Bloom’s Taxonomy revised. Based on the analysis result to student answer, this research discovered that whole student has low understanding in the material of gas kinetic theory. This low understanding caused of the misconception of the student, student attitude on physic subjects, and teacher teaching method who are less helpful in obtaining clear pictures in material being taught.

  14. Thermodynamic DFT analysis of natural gas.

    Science.gov (United States)

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  15. Hermetic conditions for the gas-in-oil analysis. Testing of transformer oil; Hermetische Bedingungen fuer die Gas-in-Oel-Analyse. Pruefung von Transformatorenoel

    Energy Technology Data Exchange (ETDEWEB)

    Braesel, Eckhard; Braesel, Olaf [Gatron GmbH, Greifswald (Germany); Sasum, Ute [Forschungszentrum Sensorik Greifswald e.V., Greifswald (Germany)

    2012-06-25

    The protection of hermetic conditions for the gas-in-oil analysis is performed as an innovative method of sampling with integrated gas extraction. It also is controllable with a criterion derived from online monitoring. The importance is in the utilization of all individual gases in the diagnosis and in the determination of the accuracy of DGA results as well as the laboratory control.

  16. Methods of Off-Gas Flammability Control for DWPF Melter Off-Gas System at Savannah River Site

    International Nuclear Information System (INIS)

    Choi, A.S.; Iverson, D.C.

    1996-01-01

    Several key operating variables affecting off-gas flammability in a slurry-fed radioactive waste glass melter are discussed, and the methods used to prevent potential off-gas flammability are presented. Two models have played a central role in developing such methods. The first model attempts to describe the chemical events occurring during the calcining and melting steps using a multistage thermodynamic equilibrium approach, and it calculates the compositions of glass and calcine gases. Volatile feed components and calcine gases are fed to the second model which then predicts the process dynamics of the entire melter off-gas system including off-gas flammability under both steady state and various transient operating conditions. Results of recent simulation runs are also compared with available data

  17. Method of storing radioactive rare gas. [gas occupies spaces in the zeolite crystal lattice

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, H; Miharada, H; Takiguchi, Y; Kanazawa, T; Soya, M

    1975-05-15

    A method is provided to prevent dispersion of radioactive rare gas atoms by sealing them in a pressurised state within zeolite and thereby confining them in position within the zeolite crystal lattice. Radioactive rare gas is separated from exhaust gas and concentrated by using a low temperature adsorption means or liquefaction distillation means and necessary accessory means, and then it is temporarily stored in a gas holder. When a predetermined quantity of storage is reached, the gas is led to a sealing tank containing zeolite heated to 300 to 400/sup 0/C and held at 3,000 to 4,000 atmospheres, and under this condition radioactive rare gas is brought to occupy the spaces in the zeolite crystal lattice. After equilibrium pressure is reached by the pressure in the tank at that temperature, the gas is cooled in the pressurised state down to room temperature. Subsequently, the rare gas remaining in the tank and duct is recovered by a withdrawal pump into the gas holder. Thereafter, the zeolite with radioactive rare gas sealed in it is taken out from the tank and sealed within a long period storage container, which is then housed in a predetermined place for storage.

  18. Method for treating a nuclear process off-gas stream

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.C.

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO /SUB x/ , hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140 0 to -160 0 C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140 0 to -160 0 C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton

  19. Method for treating a nuclear process off-gas stream

    Science.gov (United States)

    Pence, Dallas T.; Chou, Chun-Chao

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

  20. Socioeconomic effects of the DOE Gas Centrifuge Enrichment Plant. Volume 1: methodology and analysis

    International Nuclear Information System (INIS)

    1979-01-01

    The socioeconomic effects of the Gas Centrifuge Enrichment Plant being built in Portsmouth, Ohio were studied. Chapters are devoted to labor force, housing, population changes, economic impact, method for analysis of services, analysis of service impacts, schools, and local government finance

  1. Thermal hydrodynamic analysis of a countercurrent gas centrifuge

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de

    1999-01-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  2. Instrumental methods of analysis, 7th edition

    International Nuclear Information System (INIS)

    Willard, H.H.; Merritt, L.L. Jr.; Dean, J.A.; Settle, F.A. Jr.

    1988-01-01

    The authors have prepared an organized and generally polished product. The book is fashioned to be used as a textbook for an undergraduate instrumental analysis course, a supporting textbook for graduate-level courses, and a general reference work on analytical instrumentation and techniques for professional chemists. Four major areas are emphasized: data collection and processing, spectroscopic instrumentation and methods, liquid and gas chromatographic methods, and electrochemical methods. Analytical instrumentation and methods have been updated, and a thorough citation of pertinent recent literature is included

  3. Safety analysis of a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shimazu, Akira; Morimoto, Toshio

    1975-01-01

    In recent years, in order to satisfy the social requirements of environment and safety and also to cope with the current energy stringency, the installation of safe nuclear power plants is indispensable. Herein, safety analysis and evaluation to confirm quantitatively the safety design of a nuclear power plant become more and more important. The safety analysis and its methods for a high temperature gas-cooled reactor are described, with emphasis placed on the practices by Fuji Electric Manufacturing Co. Fundamental rule of securing plant safety ; safety analysis in normal operation regarding plant dynamic characteristics and radioactivity evaluation ; and safety analysis at the time of accidents regarding plant response to the accidents and radioactivity evaluation are explained. (Mori, K.)

  4. Catalyst-Free Vapor-Phase Method for Direct Integration of Gas Sensing Nanostructures with Polymeric Transducing Platforms

    Directory of Open Access Journals (Sweden)

    Stella Vallejos

    2014-01-01

    Full Text Available Tungsten oxide nanoneedles (NNs are grown and integrated directly with polymeric transducing platforms for gas sensors via aerosol-assisted chemical vapor deposition (AACVD method. Material analysis shows the feasibility to grow highly crystalline nanomaterials in the form of NNs with aspect ratios between 80 and 200 and with high concentration of oxygen vacancies at the surface, whereas gas testing demonstrates moderate sensing responses to hydrogen at concentrations between 10 ppm and 50 ppm, which are comparable with results for tungsten oxide NNs grown on silicon transducing platforms. This method is demonstrated to be an attractive route to fabricate next generation of gas sensors devices, provided with flexibility and functionality, with great potential in a cost effective production for large-scale applications.

  5. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry.

    Science.gov (United States)

    Duemichen, E; Braun, U; Senz, R; Fabian, G; Sturm, H

    2014-08-08

    For analysis of the gaseous thermal decomposition products of polymers, the common techniques are thermogravimetry, combined with Fourier transformed infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS). These methods offer a simple approach to the decomposition mechanism, especially for small decomposition molecules. Complex spectra of gaseous mixtures are very often hard to identify because of overlapping signals. In this paper a new method is described to adsorb the decomposition products during controlled conditions in TGA on solid-phase extraction (SPE) material: twisters. Subsequently the twisters were analysed with thermal desorption gas chromatography mass spectrometry (TDS-GC-MS), which allows the decomposition products to be separated and identified using an MS library. The thermoplastics polyamide 66 (PA 66) and polybutylene terephthalate (PBT) were used as example polymers. The influence of the sample mass and of the purge gas flow during the decomposition process was investigated in TGA. The advantages and limitations of the method were presented in comparison to the common analysis techniques, TGA-FTIR and TGA-MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Method of optimization of the natural gas refining process

    Energy Technology Data Exchange (ETDEWEB)

    Sadykh-Zade, E.S.; Bagirov, A.A.; Mardakhayev, I.M.; Razamat, M.S.; Tagiyev, V.G.

    1980-01-01

    The SATUM (automatic control system of technical operations) system introduced at the Shatlyk field should assure good quality of gas refining. In order to optimize the natural gas refining processes and experimental-analytical method is used in compiling the mathematical descriptions. The program, compiled in Fortran language, in addition to parameters of optimal conditions gives information on the yield of concentrate and water, concentration and consumption of DEG, composition and characteristics of the gas and condensate. The algorithm for calculating optimum engineering conditions of gas refining is proposed to be used in ''advice'' mode, and also for monitoring progress of the gas refining process.

  7. Method of making an aero-derivative gas turbine engine

    Science.gov (United States)

    Wiebe, David J.

    2018-02-06

    A method of making an aero-derivative gas turbine engine (100) is provided. A combustor outer casing (68) is removed from an existing aero gas turbine engine (60). An annular combustor (84) is removed from the existing aero gas turbine engine. A first row of turbine vanes (38) is removed from the existing aero gas turbine engine. A can annular combustor assembly (122) is installed within the existing aero gas turbine engine. The can annular combustor assembly is configured to accelerate and orient combustion gasses directly onto a first row of turbine blades of the existing aero gas turbine engine. A can annular combustor assembly outer casing (108) is installed to produce the aero-derivative gas turbine engine (100). The can annular combustor assembly is installed within an axial span (85) of the existing aero gas turbine engine vacated by the annular combustor and the first row of turbine vanes.

  8. An optimization method for gas refrigeration cycle based on the combination of both thermodynamics and entransy theory

    International Nuclear Information System (INIS)

    Chen, Qun; Xu, Yun-Chao; Hao, Jun-Hong

    2014-01-01

    Highlights: • An optimization method for practical thermodynamic cycle is developed. • The entransy-based heat transfer analysis and thermodynamic analysis are combined. • Theoretical relation between system requirements and design parameters is derived. • The optimization problem can be converted into conditional extremum problem. • The proposed method provides several useful optimization criteria. - Abstract: A thermodynamic cycle usually consists of heat transfer processes in heat exchangers and heat-work conversion processes in compressors, expanders and/or turbines. This paper presents a new optimization method for effective improvement of thermodynamic cycle performance with the combination of entransy theory and thermodynamics. The heat transfer processes in a gas refrigeration cycle are analyzed by entransy theory and the heat-work conversion processes are analyzed by thermodynamics. The combination of these two analysis yields a mathematical relation directly connecting system requirements, e.g. cooling capacity rate and power consumption rate, with design parameters, e.g. heat transfer area of each heat exchanger and heat capacity rate of each working fluid, without introducing any intermediate variable. Based on this relation together with the conditional extremum method, we theoretically derive an optimization equation group. Simultaneously solving this equation group offers the optimal structural and operating parameters for every single gas refrigeration cycle and furthermore provides several useful optimization criteria for all the cycles. Finally, a practical gas refrigeration cycle is taken as an example to show the application and validity of the newly proposed optimization method

  9. The determination of frequency response function of the RSG Gas by laplace transform analysis

    International Nuclear Information System (INIS)

    Tukiran, S.; Surian, P.; Jujuratisbela, U.

    1997-01-01

    The response function of the RSG-GAS reactor system to the reactivity perturbations is necessary to be analyzed due to the interrelation with reliability and safety of reactor operation. the response depends on the power frequency response function H(s), while H(s) depends on the zero power frequency response function Z(s) and dynamic power coefficient of reactivity Kp(s) determination of the frequency response function of the RSG-GAS reactor was done by Fourier transform analysis method. Z(s) was obtained by fourier transform of P(t) and Cj(t) became P(S) and Cj(s) in point kinetic equations. Second order of simpson rule was used for completion of its numerical integration. then. LYMPR (Laplace transform for multipurpose reactor) code was made with fortran 77 computer language in vax 8550 system. the LTMPR code is able to determine the frequency response function and period-reactivity relation of RSG-GAS reactor by rod drop method. Profile of power as rod drop, zero power (without reactivity feedback) was used for determination frequency response of RSG-GAS reactor. The results of calculations are in a good agreement with experiment result, so the LTMPR code can be used for analysis response frequency of the RSG-GAS reactor

  10. Using discriminant analysis as a nucleation event classification method

    Directory of Open Access Journals (Sweden)

    S. Mikkonen

    2006-01-01

    Full Text Available More than three years of measurements of aerosol size-distribution and different gas and meteorological parameters made in Po Valley, Italy were analysed for this study to examine which of the meteorological and trace gas variables effect on the emergence of nucleation events. As the analysis method, we used discriminant analysis with non-parametric Epanechnikov kernel, included in non-parametric density estimation method. The best classification result in our data was reached with the combination of relative humidity, ozone concentration and a third degree polynomial of radiation. RH appeared to have a preventing effect on the new particle formation whereas the effects of O3 and radiation were more conductive. The concentration of SO2 and NO2 also appeared to have significant effect on the emergence of nucleation events but because of the great amount of missing observations, we had to exclude them from the final analysis.

  11. Evaluation of three gas chromatography and two direct mass spectrometry techniques for aroma analysis of dried red bell peppers

    NARCIS (Netherlands)

    Ruth, van S.M.; Boscaini, E.; Mayr, D.; Pugh, J.; Posthumus, M.A.

    2003-01-01

    Three gas chromatography methods and two direct mass spectrometry techniques were compared for the analysis of the aroma of rehydrated diced red bell peppers. Gas chromatography methods included systems with olfactometry detection (GC-O), flame ionisation detection (GC-FID) and mass spectrometry

  12. Analysis of Radioactivity Contamination Level of Kartini Reactor Efluen Gas to the Environment

    International Nuclear Information System (INIS)

    Suratman; Purwanto; Aminjoyo, S

    1996-01-01

    The analysis of radioactivity contamination level of Kartini reactor efluen gas to the environment has been done from 13-10-'95 until 8-2-'96. The aim of this research is to determine the radioactivity contamination level on the environment resulted from the release of Kartini reactor efluen gas and other facilities at Yogyakarta Nuclear Research Centre through stack. The analysis methods is the student t-test, the first count factor test and the gamma spectrometry. The gas sampling were carried out in the stack reactor, reactor room, environment and in other room for comparison. Efluen gas was sucked through a filter by a high volume vacuum pump. The filter was counted for beta, gamma and alpha activities. The radioactivity contamination level of the efluen gas passing through the stack to the environment was measured between 0.57 - 1.34 Bq/m3, which was equal to the airborne radioactivity in environment between 0.69 - 1.12 Bq/m3. This radioactivity comes from radon daughter, decay products result from the natural uranium and thorium series of the materials of the building

  13. Primer on gas integrated resource planning

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

    1993-12-01

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

  14. The Seepage Simulation of Single Hole and Composite Gas Drainage Based on LB Method

    Science.gov (United States)

    Chen, Yanhao; Zhong, Qiu; Gong, Zhenzhao

    2018-01-01

    Gas drainage is the most effective method to prevent and solve coal mine gas power disasters. It is very important to study the seepage flow law of gas in fissure coal gas. The LB method is a simplified computational model based on micro-scale, especially for the study of seepage problem. Based on fracture seepage mathematical model on the basis of single coal gas drainage, using the LB method during coal gas drainage of gas flow numerical simulation, this paper maps the single-hole drainage gas, symmetric slot and asymmetric slot, the different width of the slot combined drainage area gas flow under working condition of gas cloud of gas pressure, flow path diagram and flow velocity vector diagram, and analyses the influence on gas seepage field under various working conditions, and also discusses effective drainage method of the center hole slot on both sides, and preliminary exploration that is related to the combination of gas drainage has been carried on as well.

  15. Risk Analysis on Leakage Failure of Natural Gas Pipelines by Fuzzy Bayesian Network with a Bow-Tie Model

    OpenAIRE

    Shan, Xian; Liu, Kang; Sun, Pei-Liang

    2017-01-01

    Pipeline is the major mode of natural gas transportation. Leakage of natural gas pipelines may cause explosions and fires, resulting in casualties, environmental damage, and material loss. Efficient risk analysis is of great significance for preventing and mitigating such potential accidents. The objective of this study is to present a practical risk assessment method based on Bow-tie model and Bayesian network for risk analysis of natural gas pipeline leakage. Firstly, identify the potential...

  16. Probabilistic Analysis of Gas Turbine Field Performance

    Science.gov (United States)

    Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.

    2002-01-01

    A gas turbine thermodynamic cycle was computationally simulated and probabilistically evaluated in view of the several uncertainties in the performance parameters, which are indices of gas turbine health. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design, enhance performance, increase system availability and make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in the gas turbine health determination and to the identification of both the most critical measurements and parameters. Probabilistic analysis aims at unifying and improving the control and health monitoring of gas turbine aero-engines by increasing the quality and quantity of information available about the engine's health and performance.

  17. Infrared video based gas leak detection method using modified FAST features

    Science.gov (United States)

    Wang, Min; Hong, Hanyu; Huang, Likun

    2018-03-01

    In order to detect the invisible leaking gas that is usually dangerous and easily leads to fire or explosion in time, many new technologies have arisen in the recent years, among which the infrared video based gas leak detection is widely recognized as a viable tool. However, all the moving regions of a video frame can be detected as leaking gas regions by the existing infrared video based gas leak detection methods, without discriminating the property of each detected region, e.g., a walking person in a video frame may be also detected as gas by the current gas leak detection methods.To solve this problem, we propose a novel infrared video based gas leak detection method in this paper, which is able to effectively suppress strong motion disturbances.Firstly, the Gaussian mixture model(GMM) is used to establish the background model.Then due to the observation that the shapes of gas regions are different from most rigid moving objects, we modify the Features From Accelerated Segment Test (FAST) algorithm and use the modified FAST (mFAST) features to describe each connected component. In view of the fact that the statistical property of the mFAST features extracted from gas regions is different from that of other motion regions, we propose the Pixel-Per-Points (PPP) condition to further select candidate connected components.Experimental results show that the algorithm is able to effectively suppress most strong motion disturbances and achieve real-time leaking gas detection.

  18. Bubble parameters analysis of gas-liquid two-phase sparse bubbly flow based on image method

    International Nuclear Information System (INIS)

    Zhou Yunlong; Zhou Hongjuan; Song Lianzhuang; Liu Qian

    2012-01-01

    The sparse rising bubbles of gas-liquid two-phase flow in vertical pipe were measured and studied based on image method. The bubble images were acquired by high-speed video camera systems, the characteristic parameters of bubbles were extracted by using image processing techniques. Then velocity variation of rising bubbles were drawn. Area and centroid variation of single bubble were also drawn. And then parameters and movement law of bubbles were analyzed and studied. The test results showed that parameters of bubbles had been analyzed well by using image method. (authors)

  19. Mass spectrometric methods for trace analysis of metals

    International Nuclear Information System (INIS)

    Bahr, U.; Schulten, H.R.

    1981-01-01

    A brief outline is given of the principles of mass spectrometry (MS) and the fundamentals of qualitative and quantitative mass spectrometric analysis emphasizing recent developments and results. Classical methods of the analysis of solids, i.e. spark-source MS and thermal ionization MS, as well as recent methods of metal analysis are described. Focal points in this survey of recently developed techniques include secondary ion MS, laser probe MS, plasma ion source MS, gas discharge MS and field desorption MS. Here, a more detailed description is given and the merits of these emerging methods are discussed more explicitly. In particular, the results of the field desorption techniques in elemental analyses are reviewed and critically evaluated

  20. Emission quantification using the tracer gas dispersion method: The influence of instrument, tracer gas species and source simulation

    DEFF Research Database (Denmark)

    Delre, Antonio; Mønster, Jacob; Samuelsson, Jerker

    2018-01-01

    The tracer gas dispersion method (TDM) is a remote sensing method used for quantifying fugitive emissions by relying on the controlled release of a tracer gas at the source, combined with concentration measurements of the tracer and target gas plumes. The TDM was tested at a wastewater treatment...... plant for plant-integrated methane emission quantification, using four analytical instruments simultaneously and four different tracer gases. Measurements performed using a combination of an analytical instrument and a tracer gas, with a high ratio between the tracer gas release rate and instrument...... precision (a high release-precision ratio), resulted in well-defined plumes with a high signal-to-noise ratio and a high methane-to-tracer gas correlation factor. Measured methane emission rates differed by up to 18% from the mean value when measurements were performed using seven different instrument...

  1. Method Development for the Determination of Fluorotelomer Alcohols in Soils by Gas Chromatography Mass Spectrometry

    Science.gov (United States)

    Fluorotelomer alcohols (FTOHs) have been widely studied as precursors to perfluorocarboxylates, e.g. 8:2 FTOH degrades to perfluorooctanoic acid (PFOA). This presentation describes an analytical method for the extraction and analysis of 6:2, 8:2, and 10:2 FTOHs. Gas chromatograph...

  2. Certain questions about analysis of natural gas disolved in brine

    Energy Technology Data Exchange (ETDEWEB)

    Tezuka, M; Nakamura, M; Omi, K

    1983-01-01

    The composition of the gaseous phase of stratum brines is determined and the analysis technique is described. Ordinary analysis is performed with the assumptions that the contents of small components (excluding C02 and N2) are ignorably small and that the gas contains no 02. The determined concentrations of 02 and the proportional share of N2 are calculated from results of analysis as bound with pollutants. The high sensitivity of modern analytical methods makes it possible to identify quite small and trace concentrations of components, but corrections for air contamination may partially depreciate these results. Data are cited from gas chromatographic identifications of the components of gases disolved in the stratum brines of a Japanese deposit. C2H6 is established in all samples and C3H8 in two thirds of the samples, where H2 and helium were not detected anywhere. The concentrations of the gas phase on the whole in the brine were low. 02 falls into the samples in a water dissolved state; this demands the use of unconventional proportion of 02 to N2 (1 to 3.55), which is characteristic for air and a proportion of 1 to 2 which is characteristic for disolved air. With the conventional ordinary technique the consideration of the air contamination leads to a substantial underestimate of the N2 results. At the same time, the incorrect introduction of corrections for N2 has no effect on the heat creativity of the disolved gas.

  3. Pseudo-absolute quantitative analysis using gas chromatography – Vacuum ultraviolet spectroscopy – A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ling [Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States); Smuts, Jonathan; Walsh, Phillip [VUV Analytics, Inc., Cedar Park, TX (United States); Qiu, Changling [Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States); McNair, Harold M. [Department of Chemistry, Virginia Tech, Blacksburg, VA (United States); Schug, Kevin A., E-mail: kschug@uta.edu [Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States)

    2017-02-08

    The vacuum ultraviolet detector (VUV) is a new non-destructive mass sensitive detector for gas chromatography that continuously and rapidly collects full wavelength range absorption between 120 and 240 nm. In addition to conventional methods of quantification (internal and external standard), gas chromatography - vacuum ultraviolet spectroscopy has the potential for pseudo-absolute quantification of analytes based on pre-recorded cross sections (well-defined absorptivity across the 120–240 nm wavelength range recorded by the detector) without the need for traditional calibration. The pseudo-absolute method was used in this research to experimentally evaluate the sources of sample loss and gain associated with sample introduction into a typical gas chromatograph. Standard samples of benzene and natural gas were used to assess precision and accuracy for the analysis of liquid and gaseous samples, respectively, based on the amount of analyte loaded on-column. Results indicate that injection volume, split ratio, and sampling times for splitless analysis can all contribute to inaccurate, yet precise sample introduction. For instance, an autosampler can very reproducibly inject a designated volume, but there are significant systematic errors (here, a consistently larger volume than that designated) in the actual volume introduced. The pseudo-absolute quantification capability of the vacuum ultraviolet detector provides a new means for carrying out system performance checks and potentially for solving challenging quantitative analytical problems. For practical purposes, an internal standardized approach to normalize systematic errors can be used to perform quantitative analysis with the pseudo-absolute method. - Highlights: • Gas chromatography diagnostics and quantification using VUV detector. • Absorption cross-sections for molecules enable pseudo-absolute quantitation. • Injection diagnostics reveal systematic errors in hardware settings. • Internal

  4. Pseudo-absolute quantitative analysis using gas chromatography – Vacuum ultraviolet spectroscopy – A tutorial

    International Nuclear Information System (INIS)

    Bai, Ling; Smuts, Jonathan; Walsh, Phillip; Qiu, Changling; McNair, Harold M.; Schug, Kevin A.

    2017-01-01

    The vacuum ultraviolet detector (VUV) is a new non-destructive mass sensitive detector for gas chromatography that continuously and rapidly collects full wavelength range absorption between 120 and 240 nm. In addition to conventional methods of quantification (internal and external standard), gas chromatography - vacuum ultraviolet spectroscopy has the potential for pseudo-absolute quantification of analytes based on pre-recorded cross sections (well-defined absorptivity across the 120–240 nm wavelength range recorded by the detector) without the need for traditional calibration. The pseudo-absolute method was used in this research to experimentally evaluate the sources of sample loss and gain associated with sample introduction into a typical gas chromatograph. Standard samples of benzene and natural gas were used to assess precision and accuracy for the analysis of liquid and gaseous samples, respectively, based on the amount of analyte loaded on-column. Results indicate that injection volume, split ratio, and sampling times for splitless analysis can all contribute to inaccurate, yet precise sample introduction. For instance, an autosampler can very reproducibly inject a designated volume, but there are significant systematic errors (here, a consistently larger volume than that designated) in the actual volume introduced. The pseudo-absolute quantification capability of the vacuum ultraviolet detector provides a new means for carrying out system performance checks and potentially for solving challenging quantitative analytical problems. For practical purposes, an internal standardized approach to normalize systematic errors can be used to perform quantitative analysis with the pseudo-absolute method. - Highlights: • Gas chromatography diagnostics and quantification using VUV detector. • Absorption cross-sections for molecules enable pseudo-absolute quantitation. • Injection diagnostics reveal systematic errors in hardware settings. • Internal

  5. Innovative method for carbon dioxide determination in human postmortem cardiac gas samples using headspace-gas chromatography–mass spectrometry and stable labeled isotope as internal standard

    International Nuclear Information System (INIS)

    Varlet, V.; Smith, F.; Froidmont, S. de; Dominguez, A.; Rinaldi, A.; Augsburger, M.; Mangin, P.; Grabherr, S.

    2013-01-01

    Graphical abstract: -- Highlights: •We developed a method for CO 2 analysis in cardiac samples and quantification by 13 CO 2 . •This method was fully validated by accuracy profile. •We have applied this method to perform CO 2 precise quantification for forensic applications. •Context of the death could be documented following CO 2 concentrations. -- Abstract: A novel approach to measure carbon dioxide (CO 2 ) in gaseous samples, based on a precise and accurate quantification by 13 CO 2 internal standard generated in situ is presented. The main goal of this study was to provide an innovative headspace-gas chromatography–mass spectrometry (HS-GC–MS) method applicable in the routine determination of CO 2 . The main drawback of the GC methods discussed in the literature for CO 2 measurement is the lack of a specific internal standard necessary to perform quantification. CO 2 measurement is still quantified by external calibration without taking into account analytical problems which can often occur considering gaseous samples. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in situ an internal labeled standard gas ( 13 CO 2 ) on the basis of the stoichiometric formation of CO 2 by the reaction of hydrochloric acid (HCl) with sodium hydrogen carbonate (NaH 13 CO 3 ). This method allows a precise measurement of CO 2 concentration and was validated on various human postmortem gas samples in order to study its efficiency

  6. Minimum detectable gas concentration performance evaluation method for gas leak infrared imaging detection systems.

    Science.gov (United States)

    Zhang, Xu; Jin, Weiqi; Li, Jiakun; Wang, Xia; Li, Shuo

    2017-04-01

    Thermal imaging technology is an effective means of detecting hazardous gas leaks. Much attention has been paid to evaluation of the performance of gas leak infrared imaging detection systems due to several potential applications. The minimum resolvable temperature difference (MRTD) and the minimum detectable temperature difference (MDTD) are commonly used as the main indicators of thermal imaging system performance. This paper establishes a minimum detectable gas concentration (MDGC) performance evaluation model based on the definition and derivation of MDTD. We proposed the direct calculation and equivalent calculation method of MDGC based on the MDTD measurement system. We build an experimental MDGC measurement system, which indicates the MDGC model can describe the detection performance of a thermal imaging system to typical gases. The direct calculation, equivalent calculation, and direct measurement results are consistent. The MDGC and the minimum resolvable gas concentration (MRGC) model can effectively describe the performance of "detection" and "spatial detail resolution" of thermal imaging systems to gas leak, respectively, and constitute the main performance indicators of gas leak detection systems.

  7. Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis

    Directory of Open Access Journals (Sweden)

    Martin J. Süess

    2016-04-01

    Full Text Available We report on the dynamic behavior of dual-wavelength distributed feedback (DFB quantum cascade lasers (QCLs in continuous wave and intermittent continuous wave operation. We investigate inherent etaloning effects based on spectrally resolved light-current-voltage (LIV characterization and perform time-resolved spectral analysis of thermal chirping during long (>5 µs current pulses. The theoretical aspects of the observed behavior are discussed using a combination of finite element method simulations and transfer matrix method calculations of dual-section DFB structures. Based on these results, we demonstrate how the internal etaloning can be minimized using anti-reflective (AR coatings. Finally, the potential and benefits of these devices for high precision trace gas analysis are demonstrated using a laser absorption spectroscopic setup. Thereby, the atmospherically highly relevant compounds CO2 (including its major isotopologues, CO and N2O are simultaneously determined with a precision of 0.16 ppm, 0.22 ppb and 0.26 ppb, respectively, using a 1-s integration time and an optical path-length of 36 m. This creates exciting new opportunities in the development of compact, multi-species trace gas analyzers.

  8. Gas measuring apparatus with standardization means, and method therefor

    International Nuclear Information System (INIS)

    Typpo, P.M.

    1980-01-01

    An apparatus and a method for standardizing a gas measuring device has a source capable of emitting a beam of radiation aligned to impinge a detector. A housing means encloses the beam. The housing means has a plurality of apertures permitting the gas to enter the housing means, to intercept the beam, and to exit from the housing means. The device further comprises means for closing the apertures and a means for purging said gas from the housing means

  9. A review on measuring methods of gas-liquid flow rates

    International Nuclear Information System (INIS)

    Minemura, Kiyoshi; Yamashita, Masato

    2000-01-01

    This paper presents a review on the state of current measuring techniques for gas-liquid multiphase flow rates. After briefly discussing the basic idea on measuring methods for single-phase and two-phase flows, existing methods for the two-phase flow rates are classified into several types, that is, with or without a homogenizing device, single or combined method of several techniques, with intrusive or non-intrusive sensors, and physical or software method. Each methods are comparatively reviewed in view of measuring accuracy and manageability. Its scope also contains the techniques developed for petroleum-gas-water flow rates. (author)

  10. Economic analysis of multiple-module high temperature gas-cooled reactor (MHTR) nuclear power plants

    International Nuclear Information System (INIS)

    Liu Yu; Dong Yujie

    2011-01-01

    In recent years, as the increasing demand of energy all over the world, and the pressure on greenhouse emissions, there's a new opportunity for the development of nuclear energy. Modular High Temperature Gas-cooled Reactor (MHTR) received recognition for its inherent safety feature and high outlet temperature. Whether the Modular High Temperature Gas-cooled Reactor would be accepted extensively, its economy is a key point. In this paper, the methods of qualitative analysis and the method of quantitative analysis, the economic models designed by Economic Modeling Working Group (EMWG) of the Generation IV International Forum (GIF), as well as the HTR-PM's main technical features, are used to analyze the economy of the MHTR. A prediction is made on the basis of summarizing High Temperature Gas-cooled Reactor module characteristics, construction cost, total capital cost, fuel cost and operation and maintenance (O and M) cost and so on. In the following part, comparative analysis is taken measures to the economy and cost ratio of different designs, to explore the impacts of modularization and standardization on the construction of multiple-module reactor nuclear power plant. Meanwhile, the analysis is also adopted in the research of key factors such as the learning effect and yield to find out their impacts on the large scale development of MHTR. Furthermore, some reference would be provided to its wide application based on these analysis. (author)

  11. The Use of Gas Chromatography for Biogas Analysis

    Science.gov (United States)

    Andersen, Amanda; Seeley, John; Aurandt, Jennifer

    2010-04-01

    Energy from natural gas accounts for 24 percent of energy consumed in the US. Natural gas is a robust form of energy which is rich in methane content and is low in impurities. This quality suggests that it is a very clean and safe gas; it can be used in providing heat, a source for cooking, and in powering vehicles. The downside is that it is a non-renewable resource. On the contrary, methane rich gas that is produced by the breakdown of organic material in an anaerobic environment, called biogas, is a renewable energy source. This research focuses on the gas analysis portion of the creation of the anaerobic digestion and verification laboratory where content and forensic analysis of biogas is performed. Gas Chromatography is implemented as the optimal analytical tool for quantifying the components of the biogas including methane, carbon dioxide, hydrogen sulfide and siloxanes. In addition, the problems associated with the undesirable components are discussed. Anaerobic digestion of primary sludge has consistently produced about 55 percent methane; future goals of this research include studying different substrates to increase the methane yield and decrease levels of impurities in the gas.

  12. Method of measuring density of gas in a vessel

    International Nuclear Information System (INIS)

    Shono, Kosuke.

    1981-01-01

    Purpose: To accurately measure the density of a gas in a vessel even at a loss-of-coolant accident in a BWR type reactor. Method: When at least one of the pressure or the temperature of gas in a vessel exceeds the usable range of a gas density measuring instrument due to a loss-of-coolant accident, the gas in the vessel is sampled, and the pressure or the temperature of the sampled gas are measured by matching them to the usable conditions of the gas density measuring instrument. Hydrogen gas and oxygen gas densities exceeding the usable range of the gas density measuring instrument are calculated by the following formulae based on the measured values. C'sub(O) = P sub(T).C sub(O)/P sub(T), C'sub(H) = C''sub(H).C'sub(O)/C''sub(O), where C sub(O), P sub(T), C'sub(H) represent the oxygen density, the total pressure and the hydrogen density of the internal pressure gas of the vessel after the respective gas density measuring instruments exceed the usable ranges; C sub(O), P sub(T) represent the oxygen density and the total pressure of the gas in the vessel before the gas density measuring instruments exceeded the usable range, and C''sub(H), C''sub(O) represent the hydrogen density and oxygen density of the respective sampled gases. (Kamimura, M.)

  13. A comprehensive environmental impact assessment method for shale gas development

    Directory of Open Access Journals (Sweden)

    Renjin Sun

    2015-03-01

    Full Text Available The great success of US commercial shale gas exploitation stimulates the shale gas development in China, subsequently, the corresponding supporting policies were issued in the 12th Five-Year Plan. But from the experience in the US shale gas development, we know that the resulted environmental threats are always an unavoidable issue, but no uniform and standard evaluation system has yet been set up in China. The comprehensive environment refers to the combination of natural ecological environment and external macro-environment. In view of this, we conducted a series of studies on how to set up a comprehensive environmental impact assessment system as well as the related evaluation methodology and models. First, we made an in-depth investigation into shale gas development procedures and any possible environmental impacts, and then compared, screened and modified environmental impact assessment methods for shale gas development. Also, we established an evaluating system and assessment models according to different status of the above two types of environment: the correlation matrix method was employed to assess the impacts on natural ecological environment and the optimization distance method was modified to evaluate the impacts on external macro-environment. Finally, we substitute the two subindexes into the comprehensive environmental impact assessment model and achieved the final numerical result of environmental impact assessment. This model can be used to evaluate if a shale gas project has any impact on environment, compare the impacts before and after a shale gas development project, or the impacts of different projects.

  14. Rate transient analysis for homogeneous and heterogeneous gas reservoirs using the TDS technique

    International Nuclear Information System (INIS)

    Escobar, Freddy Humberto; Sanchez, Jairo Andres; Cantillo, Jose Humberto

    2008-01-01

    In this study pressure test analysis in wells flowing under constant wellbore flowing pressure for homogeneous and naturally fractured gas reservoir using the TDS technique is introduced. Although, constant rate production is assumed in the development of the conventional well test analysis methods, constant pressure production conditions are sometimes used in the oil and gas industry. The constant pressure technique or rate transient analysis is more popular reckoned as decline curve analysis under which rate is allows to decline instead of wellbore pressure. The TDS technique, everyday more used even in the most recognized software packages although without using its trade brand name, uses the log-log plot to analyze pressure and pressure derivative test data to identify unique features from which exact analytical expression are derived to easily estimate reservoir and well parameters. For this case, the fingerprint characteristics from the log-log plot of the reciprocal rate and reciprocal rate derivative were employed to obtain the analytical expressions used for the interpretation analysis. Many simulation experiments demonstrate the accuracy of the new method. Synthetic examples are shown to verify the effectiveness of the proposed methodology

  15. Consistency Analysis and Data Consultation of Gas System of Gas-Electricity Network of Latvia

    Science.gov (United States)

    Zemite, L.; Kutjuns, A.; Bode, I.; Kunickis, M.; Zeltins, N.

    2018-02-01

    In the present research, the main critical points of gas transmission and storage system of Latvia have been determined to ensure secure and reliable gas supply among the Baltic States to fulfil the core objectives of the EU energy policies. Technical data of critical points of the gas transmission and storage system of Latvia have been collected and analysed with the SWOT method and solutions have been provided to increase the reliability of the regional natural gas system.

  16. Interring Gas Dynamic Analysis of Piston in a Diesel Engine considering the Thermal Effect

    Directory of Open Access Journals (Sweden)

    Wanyou Li

    2015-01-01

    Full Text Available Understanding the interaction between ring dynamics and gas transport in ring pack systems is crucial and needs to be imperatively studied. The present work features detailed interring gas dynamics of piston ring pack behavior in internal combustion engines. The model is developed for a ring pack with four rings. The dynamics of ring pack are simulated. Due to the fact that small changes in geometry of the grooves and lands would have a significant impact on the interring gas dynamics, the thermal deformation of piston has been considered during the ring pack motion analysis in this study. In order to get the temperature distribution of piston head more quickly and accurately, an efficient method utilizing the concept of inverse heat conduction is presented. Moreover, a sensitive analysis based on the analysis of partial regression coefficients is presented to investigate the effect of groove parameters on blowby.

  17. Carbohydrate analysis of hemicelluloses by gas chromatography-mass spectrometry of acteylated methyl glycosides

    DEFF Research Database (Denmark)

    Sárossy, Zsuzsa; Plackett, David; Egsgaard, Helge

    2012-01-01

    A method based on gas chromatography–mass spectrometry analysis of acetylated methyl glycosides was developed in order to analyze monosaccharides obtained from various hemicelluloses. The derivatives of monosaccharide standards, arabinose, glucose, and xylose were studied in detail and 13C...

  18. Analysis of natural gas supply strategies at Fort Drum

    International Nuclear Information System (INIS)

    Stucky, D.J.; Shankle, S.A.; Anderson, D.M.

    1992-07-01

    This analysis investigates strategies for Fort Drum to acquire a reliable natural gas supply while reducing its gas supply costs. The purpose of this study is to recommend an optimal supply mix based on the life-cycle costs of each strategy analyzed. In particular, this study is intended to provide initial guidance as to whether or not the building and operating of a propane-air mixing station is a feasible alternative to the current gas acquisition strategy. The analysis proceeded by defining the components of supply (gas purchase, gas transport, supplemental fuel supply); identifying alternative options for each supply component; constructing gas supply strategies from different combinations of the options available for each supply component and calculating the life-cycle costs of each supply strategy under a set of different scenarios reflecting the uncertainty of future events

  19. Application of multivariable analysis methods to the quantitative detection of gas by tin dioxide micro-sensors; Application des methodes d'analyse multivariables a la detection quantitative de gaz par microcapteurs a base de dioxyde d'etain

    Energy Technology Data Exchange (ETDEWEB)

    Perdreau, N.

    2000-01-17

    The electric conductivity of tin dioxide depends on the temperature of the material and on the nature and environment of the surrounding gas. This work shows that the treatment by multivariable analysis methods of electric conductance signals of one sensor allows to determine concentrations of binary or ternary mixtures of ethanol (0-80 ppm), carbon monoxide (0-300 ppm) and methane (0-1000 ppm). A part of this study has consisted of the design and the implementation of an automatic testing bench allowing to acquire the electric conductance of four sensors in thermal cycle and under gaseous cycles. It has also revealed some disturbing effects (humidity,..) of the measurement. Two techniques of sensor fabrication have been used to obtain conductances (depending of temperature) distinct for each gas, reproducible for the different sensors and enough stable with time to allow the exploitation of the signals by multivariable analysis methods (tin dioxide under the form of thin layers obtained by reactive evaporation or under the form of sintered powder bars). In a last part, it has been shown that the quantitative determination of gas by the application of chemo-metry methods is possible although the relation between the electric conductances in one part and the temperatures and concentrations in another part is non linear. Moreover, the modelling with the 'Partial Least Square' method and a pretreatment allows to obtain performance data comparable to those obtained with neural networks. (O.M.)

  20. Designing and analysis study of uranium enrichment with gas centrifuge

    International Nuclear Information System (INIS)

    Tsunetoshi Kai

    2006-01-01

    This note concerns a designing and analysis study of uranium enrichment with a gas centrifuge. At first, one dimensional model is presented and a conventional analytical method is applied to grasp the general idea of a centrifuge performance. Secondly, two-dimensional numerical method is adopted to describe the diffusion phenomena with assumption of simple flow patterns. Parametric surveys are made on the dimension of a centrifuge rotor, the gas feed, withdrawal and circulation system, and operation variables such as feed flow rate, cut and so on. Thirdly, full numerical solutions are obtained for the flow and diffusion equations in static state, using a modified version of the Newton method without neglect of any non-linear term. The numerical results are compared with the experimental data made by Beams et al. and Zippe, and found to be in good agreement. Further, the theoretical pressure and separative power are compared respectively with experimental ones on a comparatively recent centrifuge. The results reveal that the characteristics of separation performance of a centrifuge can be fully described by the present method. Some of inevitable problems are tackled regarding UF 6 gas isotope separation by centrifugation. To examine the influence of the extraneous light gas, the diffusion equations for ternary mixture are solved and also the flow field of binary mixture with large mass difference is obtained to simultaneously solve the Navier-Stokes equations and the diffusion equation.for binary case. Since the gas in the interior region of the rotor is so rarefied that the Navier-Stokes equations cease to be valid, the Burnett equations are solved.for gas flow in a rotating cylinder. Considering that the uranium recovered at a reprocessing plant includes 236 U besides 235 U and 238 U, the concentration distributions of the ternary gas isotopes are determined and a value function is defined for the evaluation of separative work for the multi-component mixture

  1. Numerical analysis of gas puff modulation experiment on JT-60U

    International Nuclear Information System (INIS)

    Nagashima, Keisuke; Sakasai, Akira

    1992-03-01

    In tokamak transport physics, source modulation experiments are one of the most effective methods. For an analysis of these modulation experiments, a simple numerical method was developed to solve the general transport equations. This method was applied to gas puff modulation experiments on JT-60U. From the comparison between the measured and calculated density perturbations, it was found that the particle diffusion coefficient is about 0.8 m 2 /sec in the edge region and 0.1-0.2 m 2 /sec in the central region. (author)

  2. The Precise Mechanisms of a High-Speed Ultrasound Gas Sensor and Detecting Human-Specific Lung Gas Exchange

    Directory of Open Access Journals (Sweden)

    Hideki Toda

    2012-12-01

    Full Text Available In this paper, we propose and develop a new real-time human respiration process analysis method using a high-time-sampling gas concentration sensor based on ultrasound. A unique point about our proposed gas concentration sensor is its 1 kHz gas concentration sampling speed. This figure could not have been attained by previously proposed gas concentration measurement methods such as InfraRed, semiconductor gas sensors, or GC-MS, because the gas analysis speeds were a maximum of a few hundred milliseconds. First, we describe the proposed new ultrasound sound speed measurement method and the signal processing, and present the measurement circuit diagram. Next, we analyse the human respiration gas variation patterns of five healthy subjects using a newly developed gas-mask-type respiration sensor. This reveals that the rapid gas exchange from H2O to CO2 contains air specific to the human being. In addition, we also measured medical symptoms in subjects suffering from asthma, hyperventilation and bronchial asthma. The millisecond level high-speed analysis of the human respiration process will be useful for the next generation of healthcare, rehabilitation and sports science technology.

  3. OPIC Greenhouse Gas Emissions Analysis Details

    Data.gov (United States)

    Overseas Private Investment Corporation — Summary project inventory with independent analysis to quantify the greenhouse gas ("GHG") emissions directly attributable to projects to which the Overseas Private...

  4. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis.

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-05

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Innovative method for carbon dioxide determination in human postmortem cardiac gas samples using headspace-gas chromatography–mass spectrometry and stable labeled isotope as internal standard

    Energy Technology Data Exchange (ETDEWEB)

    Varlet, V., E-mail: vincent.varlet@chuv.ch [Toxicology and Forensic Chemistry Unit, University Center of Legal Medicine Lausanne – Geneva, CH-1011 Lausanne (Switzerland); Smith, F. [Toxicology and Forensic Chemistry Unit, University Center of Legal Medicine Lausanne – Geneva, CH-1011 Lausanne (Switzerland); Froidmont, S. de; Dominguez, A.; Rinaldi, A. [Forensic Medicine Unit, University Center of Legal Medicine Lausanne – Geneva, CH-1011 Lausanne (Switzerland); Augsburger, M. [Toxicology and Forensic Chemistry Unit, University Center of Legal Medicine Lausanne – Geneva, CH-1011 Lausanne (Switzerland); Mangin, P.; Grabherr, S. [Forensic Medicine Unit, University Center of Legal Medicine Lausanne – Geneva, CH-1011 Lausanne (Switzerland)

    2013-06-19

    Graphical abstract: -- Highlights: •We developed a method for CO{sub 2} analysis in cardiac samples and quantification by {sup 13}CO{sub 2}. •This method was fully validated by accuracy profile. •We have applied this method to perform CO{sub 2} precise quantification for forensic applications. •Context of the death could be documented following CO{sub 2} concentrations. -- Abstract: A novel approach to measure carbon dioxide (CO{sub 2}) in gaseous samples, based on a precise and accurate quantification by {sup 13}CO{sub 2} internal standard generated in situ is presented. The main goal of this study was to provide an innovative headspace-gas chromatography–mass spectrometry (HS-GC–MS) method applicable in the routine determination of CO{sub 2}. The main drawback of the GC methods discussed in the literature for CO{sub 2} measurement is the lack of a specific internal standard necessary to perform quantification. CO{sub 2} measurement is still quantified by external calibration without taking into account analytical problems which can often occur considering gaseous samples. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in situ an internal labeled standard gas ({sup 13}CO{sub 2}) on the basis of the stoichiometric formation of CO{sub 2} by the reaction of hydrochloric acid (HCl) with sodium hydrogen carbonate (NaH{sup 13}CO{sub 3}). This method allows a precise measurement of CO{sub 2} concentration and was validated on various human postmortem gas samples in order to study its efficiency.

  6. The application of a coupled artificial neural network and fault tree analysis model to predict coal and gas outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Ruilin, Zhang [School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, PR (China); Lowndes, Ian S. [Process and Environmental Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2010-11-01

    This paper proposes the use of a coupled fault tree analysis (FTA) and artificial neural network (ANN) model to improve the prediction of the potential risk of coal and gas outburst events during the underground mining of thick and deep Chinese coal seams. The model developed has been used to investigate the gas emission characteristics and the geological conditions that exist within the Huaibei coal mining region, Anhui province, China. The coal seams in this region exhibit a high incidence of coal and gas outbursts. An analysis of the results obtained from an initial application of an FTA model, identified eight dominant model parameters related to the gas content or geological conditions of the coal seams, which characterize the potential risk of in situ coal and gas outbursts. The eight dominant model parameters identified by the FTA method were subsequently used as input variables to an ANN model. The results produced by the ANN model were used to develop a qualitative risk index to characterize the potential risk level of occurrence of coal and gas outburst events. Four different potential risk alarm levels were defined: SAFE, POTENTIAL, HIGH and STRONG. Solutions to the prediction model were obtained using a combination of quantitative and qualitative data including the gas content or gas pressure and the geological and geotechnical conditions of coal seams. The application of this combined solution method identified more explicit and accurate model relationships between the in situ geological conditions and the potential risk of coal and gas outbursts. An analysis of the model solutions concluded that the coupled FTA and ANN model may offer a reliable alternative method to forecast the potential risk of coal and gas outbursts. (author)

  7. Simulations of Micro Gas Flows by the DS-BGK Method

    KAUST Repository

    Li, Jun

    2011-01-01

    For gas flows in micro devices, the molecular mean free path is of the same order as the characteristic scale making the Navier-Stokes equation invalid. Recently, some micro gas flows are simulated by the DS-BGK method, which is convergent

  8. Method for eliminating gas blocking in electrokinetic pumping systems

    Science.gov (United States)

    Arnold, Don W.; Paul, Phillip H.; Schoeniger, Joseph S.

    2001-09-11

    A method for eliminating gas bubble blockage of current flow during operation of an electrokinetic pump. By making use of the ability to modify the surface charge on the porous dielectric medium used in electrokinetic pumps, it becomes possible to place electrodes away from the pressurized region of the electrokinetic pump. While gas is still generated at the electrodes they are situated such that the generated gas can escape into a larger buffer reservoir and not into the high pressure region of the pump where the gas bubbles can interrupt current flow. Various combinations of porous dielectric materials and ionic conductors can be used to create pumps that have desirable electrical, material handling, and flow attributes.

  9. Innovation of fission gas release and thermal conductivity measurement methods

    International Nuclear Information System (INIS)

    Van der Meer, K.; Soboler, V.

    1998-01-01

    This presentation described two innovative measurement methods being currently developed at SCK-CEN in order to support the modeling of fuel performance. The first one is an acoustic method to measure the fission gas release in a fuel rod in a non destructive way. The total rod pressure is determined by generating a heat pulse causing a pressure wave that propagates through the gas to an ultrasound transducer. The final pulse width being proportional to the pressure, the latter can thus be determined. The measurement of the acoustic resonance frequency at fixed temperatures enables the distinction between different gas components. The second method is a non-stationary technique to investigate the thermal properties of the fuel rod, like thermal conductivity, diffusivity and heat capacity. These properties are derived from the amplitude and the phase shift of the fuel centre temperature response induced by a periodic temperature variation. These methods did not reveal any physical limitations for the practical applicability. Furthermore, they are rather simple. Preliminary investigations have proven both methods to be more accurate than techniques usually utilized. (author)

  10. A METHOD FOR EXERGY ANALYSIS OF SUGARCANE BAGASSE BOILERS

    Directory of Open Access Journals (Sweden)

    CORTEZ L.A.B.

    1998-01-01

    Full Text Available This work presents a method to conduct a thermodynamic analysis of sugarcane bagasse boilers. The method is based on the standard and actual reactions which allows the calculation of the enthalpies of each process subequation and the exergies of each of the main flowrates participating in the combustion. The method is presented using an example with real data from a sugarcane bagasse boiler. A summary of the results obtained is also presented together based on the 1st Law of Thermodynamics analysis, the exergetic efficiencies, and the irreversibility rates. The method presented is very rigorous with respect to data consistency, particularly for the flue gas composition.

  11. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis

    Science.gov (United States)

    Jeffrey, Alan

    1971-01-01

    The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)

  12. Methods of analysis-Determination of pesticides in sediment using gas chromatography/mass spectrometry

    Science.gov (United States)

    Hladik, Michelle; McWayne, Megan M.

    2012-01-01

    A method for the determination of 119 pesticides in environmental sediment samples is described. The method was developed by the U.S. Geological Survey (USGS) in support of the National Water Quality Assessment (NAWQA) Program. The pesticides included in this method were chosen through prior prioritization. Herbicides, insecticides, and fungicides along with degradates are included in this method and span a variety of chemical classes including, but not limited to, chloroacetanilides, organochlorines, organophosphates, pyrethroids, triazines, and triazoles. Sediment samples are extracted by using an accelerated solvent extraction system (ASE®, and the compounds of interest are separated from co-extracted matrix interferences (including sulfur) by passing the extracts through high performance liquid chromatography (HPLC) with gel-permeation chromatography (GPC) along with the use of either stacked graphitized carbon and alumina solid-phase extraction (SPE) cartridges or packed Florisil®. Chromatographic separation, detection, and quantification of the pesticides from the sediment-sample extracts are done by using gas chromatography with mass spectrometry (GC/MS). Recoveries in test sediment samples fortified at 10 micrograms per kilogram (μg/kg) dry weight ranged from 75 to 102 percent; relative standard deviations ranged from 3 to 13 percent. Method detection limits (MDLs), calculated by using U.S. Environmental Protection Agency procedures (40 CFR 136, Appendix B), ranged from 0.6 to 3.4 μg/kg dry weight.

  13. System and method for producing substitute natural gas from coal

    Science.gov (United States)

    Hobbs, Raymond [Avondale, AZ

    2012-08-07

    The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

  14. Sustainability Assessment of the Natural Gas Industry in China Using Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Xiucheng Dong

    2015-05-01

    Full Text Available Under pressure toward carbon emission reduction and air protection, China has accelerated energy restructuring by greatly improving the supply and consumption of natural gas in recent years. However, several issues with the sustainable development of the natural gas industry in China still need in-depth discussion. Therefore, based on the fundamental ideas of sustainable development, industrial development theories and features of the natural gas industry, a sustainable development theory is proposed in this thesis. The theory consists of five parts: resource, market, enterprise, technology and policy. The five parts, which unite for mutual connection and promotion, push the gas industry’s development forward together. Furthermore, based on the theoretical structure, the Natural Gas Industry Sustainability Index in China is established and evaluated via the Principal Component Analysis (PCA method. Finally, a conclusion is reached: that the sustainability of the natural gas industry in China kept rising from 2008 to 2013, mainly benefiting from increasing supply and demand, the enhancement of enterprise profits, technological innovation, policy support and the optimization and reformation of the gas market.

  15. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-01

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.

  16. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    Science.gov (United States)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  17. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    Science.gov (United States)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  18. Numerical Analysis on Transient of Steam-gas Pressurizer

    International Nuclear Information System (INIS)

    Kim, Jong-Won; Lee, Yeon-Gun; Park, Goon-Cherl

    2008-01-01

    In nuclear reactors, various pressurizers are adopted to satisfy their characteristics and uses. The additional active systems such as heater, pressurizer cooler, spray and insulator are essential for a steam or a gas pressurizer. With a steam-gas pressurizer, additional systems are not required due to the use of steam and non-condensable gas as pressure-buffering materials. The steam-gas pressurizer in integrated small reactors experiences very complicated thermal-hydraulic phenomena. To ensure the integrity of this pressurizer type, the analysis on the transient behavior of the steam-gas pressure is indispensable. For this purpose, the steam-gas pressurizer model is introduced to predict the accurate system pressure. The proposed model includes bulk flashing, rainout, inter-region heat and mass transfer and wall condensation with non-condensable gas. However, the ideal gas law is not applied because of significant interaction at high pressure between steam and non-condensable gas. The results obtained from this proposed model agree with those from pressurizer tests. (authors)

  19. A case study to optimum selection of deliquification method for gas condensate well design: South Pars gas field

    Directory of Open Access Journals (Sweden)

    Ehsan Khamehchi

    2016-06-01

    Today, the most effective liquid-removal devices are pumping, the combination of liquid-diverter with gas lift and velocity string. Considering mentioned complexities, the most efficient method of liquid removal is different from one well to the others. This paper discusses a multi-criteria decision making (MCDM strategy for ranking these methods based on ELECTRE and TOPSIS techniques in a gas condensate reservoir. The most efficient model in this case, regarding its high efficiency and level of reliability is continuous gas lift. These procedures can be extended to other cases easily by changing the comparison matrix and user defined weights.

  20. State and trends of ionization gas analysis. 3

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Grosse, H.J.; Popp, P.

    1980-01-01

    Theory, properties, and main fields of application of noble gas detectors are discussed. The theory and design of the indirect electron mobility detector is presented. Conclusions are drawn with regard to possibilities of further development of detectors for the ionization gas analysis

  1. Comparison of an Electronic Nose Based on Ultrafast Gas Chromatography, Comprehensive Two-Dimensional Gas Chromatography, and Sensory Evaluation for an Analysis of Type of Whisky

    Directory of Open Access Journals (Sweden)

    Paulina Wiśniewska

    2017-01-01

    Full Text Available Whisky is one of the most popular alcoholic beverages. There are many types of whisky, for example, Scotch, Irish, and American whisky (called bourbon. The whisky market is highly diversified, and, because of this, it is important to have a method which would enable rapid quality evaluation and authentication of the type of whisky. The aim of this work was to compare 3 methods: an electronic nose based on the technology of ultrafast gas chromatography (Fast-GC, comprehensive two-dimensional gas chromatography (GC × GC, and sensory evaluation. The selected whisky brands included 6 blended whiskies from Scotland, 4 blended whiskies from Ireland, and 4 bourbons produced in the USA. For data analysis, peak heights of chromatograms were used. The panelists who took part in sensory evaluations included 4 women and 4 men. The obtained data were analyzed by 2 chemometric methods: partial least squares discriminant analysis (PLS-DA and discrimination function analysis (DFA. E-nose and GC × GC allowed for differentiation between whiskies by type. Sensory analysis did not allow for differentiation between whiskies by type, but it allowed giving consumer preferences.

  2. Exergy analysis of waste emissions from gas flaring

    Directory of Open Access Journals (Sweden)

    Olawale Saheed ISMAIL

    2016-07-01

    Full Text Available Gas flaring produces a stream of waste gases at high temperature and pressure which contains carbon monoxide, Hydrogen Sulphide etc. The resultant effect of which is detrimental to our planet and, consequently, to the life of both the living and the non-living things. It’s well known that gas flaring contributes in no small measure to the global warming. Exergy analysis is applied in this work to analyze waste emissions from gas flaring so as to have a model through which impact of gas flaring can be measured. The study considers both the thermo-mechanical exergy and the chemical exergy of these gases. Relevant data on gas flaring activities in the Niger-Delta region of Nigeria between the periods of fifteen (15 years was obtained from the Nigerian National Petroleum Corporation (NNPC. A computer program (Exergy Calculator was developed based on the equations generated in the Model. Exergy associated with gas flaring activities in Nigeria between the periods of 1998 through 2012 was calculated. The results show that 1 mscf (in thousand cubic feet of flared gases generate 0.000041 MWh of energy leading to a value of 440158.607 MWh of energy for the period under review.The analysis provides important conclusions and recommendations for improving oil platforms operationsin in order to safeguard the environment, health of the populace, and maximize recovered exergy from gas flaring.

  3. Method for the removal of elemental mercury from a gas stream

    Science.gov (United States)

    Mendelsohn, Marshall H.; Huang, Hann-Sheng

    1999-01-01

    A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents.

  4. Gas phase collision dynamics by means of pulse-radiolysis methods

    International Nuclear Information System (INIS)

    Hatano, Yoshihiko

    1989-01-01

    After a brief survey of recent advances in gas-phase collision dynamics studies using pulse radiolysis methods, the following two topics in our research programs are presented with emphasis on the superior advantages of the pulse radiolysis methods over the various methods of gas-phase collision dynamics, such as beam methods, swarm methods and flow methods. One of the topics is electron attachment to van der Waals molecules. The attachment rates of thermal electrons to O 2 and other molecules in dense gases have been measured in wide ranges of both gas temperatures and pressures, from which experimental evidence has been obtained for electron attachment to van der Waals molecules. The results have been compared with theories and discussed in terms of the effect of van der Waals interaction on the electron attachment resonance. The obtained conclusions have been related with investigations of electron attachment, solvation and localization in the condensed phase. The other is Penning ionization and its related processes. The rate constants for the de-excitation of He(2 1 P), He(2 3 S), Ne( 3 P 0 ), Ne( 3 P 1 ), Ne( 3 P 2 ), Ar( 1 P 1 ), Ar( 3 P 1 ), by atoms and molecules have been measured in the temperature range from 100 to 300 K, thus obtaining the collisional energy dependence of the de-excitation cross sections. The results are compared in detail with theories classified according to the excited rare gas atoms in the metastable and resonance states. (author)

  5. Methods of Si based ceramic components volatilization control in a gas turbine engine

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    2016-09-06

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  6. Microstructuring of piezoresistive cantilevers for gas detection and analysis

    International Nuclear Information System (INIS)

    Sarov, Y.; Sarova, V.; Bitterlich, Ch.; Richter, O.; Guliyev, E.; Zoellner, J.-P.; Rangelow, I. W.; Andok, R.; Bencurova, A.

    2011-01-01

    In this work we report on a design and fabrication of cantilevers for gas detection and analysis. The cantilevers have expanded area of interaction with the gas, while the signal transduction is realized by an integrated piezoresistive deflection sensor, placed at the narrowed cantilever base with highest stress along the cantilever. Moreover, the cantilevers have integrated bimorph micro-actuator detection in a static and dynamic mode. The cantilevers are feasible as pressure, temperature and flow sensors and under chemical functionalization - for gas recognition, tracing and composition analysis. (authors)

  7. Sensitivity analysis of the Two Geometry Method

    International Nuclear Information System (INIS)

    Wichers, V.A.

    1993-09-01

    The Two Geometry Method (TGM) was designed specifically for the verification of the uranium enrichment of low enriched UF 6 gas in the presence of uranium deposits on the pipe walls. Complications can arise if the TGM is applied under extreme conditions, such as deposits larger than several times the gas activity, small pipe diameters less than 40 mm and low pressures less than 150 Pa. This report presents a comprehensive sensitivity analysis of the TGM. The impact of the various sources of uncertainty on the performance of the method is discussed. The application to a practical case is based on worst case conditions with regards to the measurement conditions, and on realistic conditions with respect to the false alarm probability and the non detection probability. Monte Carlo calculations were used to evaluate the sensitivity for sources of uncertainty which are experimentally inaccessible. (orig.)

  8. On the accuracy of Whitham's method. [for steady ideal gas flow past cones

    Science.gov (United States)

    Zahalak, G. I.; Myers, M. K.

    1974-01-01

    The steady flow of an ideal gas past a conical body is studied by the method of matched asymptotic expansions and by Whitham's method in order to assess the accuracy of the latter. It is found that while Whitham's method does not yield a correct asymptotic representation of the perturbation field to second order in regions where the flow ahead of the Mach cone of the apex is disturbed, it does correctly predict the changes of the second-order perturbation quantities across a shock (the first-order shock strength). The results of the analysis are illustrated by a special case of a flat, rectangular plate at incidence.

  9. Thermal Stress FE Analysis of Large-scale Gas Holder Under Sunshine Temperature Field

    Science.gov (United States)

    Li, Jingyu; Yang, Ranxia; Wang, Hehui

    2018-03-01

    The temperature field and thermal stress of Man type gas holder is simulated by using the theory of sunshine temperature field based on ASHRAE clear-sky model and the finite element method. The distribution of surface temperature and thermal stress of gas holder under the given sunshine condition is obtained. The results show that the thermal stress caused by sunshine can be identified as one of the important factors for the failure of local cracked oil leakage which happens on the sunny side before on the shady side. Therefore, it is of great importance to consider the sunshine thermal load in the stress analysis, design and operation of large-scale steel structures such as the gas holder.

  10. Multi-spectral temperature measurement method for gas turbine blade

    Science.gov (United States)

    Gao, Shan; Feng, Chi; Wang, Lixin; Li, Dong

    2016-02-01

    One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.

  11. Method for the removal of elemental mercury from a gas stream

    Science.gov (United States)

    Mendelsohn, M.H.; Huang, H.S.

    1999-05-04

    A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents. 7 figs.

  12. Evaluation And Analysis of Natural Gas Rates

    International Nuclear Information System (INIS)

    Taheri, Ali Akbar

    1999-01-01

    Natural gas is considered as a preferred fuel and its utility is growing every day in the country (Iran). The usage of natural gas has increased from 3.5 to 44 billion cubic meters from 1980 to 1997, respectively. Currently, 4 million residences and most of the industrial sector are being provided with the pipelined natural gas. Because of the tremendous increase in consumption, it is necessary to give the needed considerations to natural gas rate structure. The objective of the paper is to 1.Evaluate the fundamentals and principal methods used for rate structures. 2. Identification of effective components. 3. Analyze the current rates including connection fees and other customer charges

  13. Analysis of pollutants in air and water using gas chromatography and headspace gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, H.

    1980-01-01

    The combination 'personal sampling' with headspace gas chromatography to determine traces of formaldehyde, phenol and benzene in air is investigated in this work, with the aim of developing maximum workplace concentration values (MWL values). Further possible applications of gas chromatography in trace analysis in the environmentally protected area. The analysis of chromium in waste waters (Cr III as acetyl acetonate complex) is investigated as further possible application, whereby optimum conditions are obtained. A modified flame ionization detector was used to increase the detection sensitivity.

  14. A method for measuring the local gas pressure within a gas-flow stage in situ in the transmission electron microscope

    International Nuclear Information System (INIS)

    Colby, R.; Alsem, D.H.; Liyu, A.; Kabius, B.

    2015-01-01

    Environmental transmission electron microscopy (TEM) has enabled in situ experiments in a gaseous environment with high resolution imaging and spectroscopy. Addressing scientific challenges in areas such as catalysis, corrosion, and geochemistry can require pressures much higher than the ∼20 mbar achievable with a differentially pumped environmental TEM. Gas flow stages, in which the environment is contained between two semi-transparent thin membrane windows, have been demonstrated at pressures of several atmospheres. However, the relationship between the pressure at the sample and the pressure drop across the system is not clear for some geometries. We demonstrate a method for measuring the gas pressure at the sample by measuring the ratio of elastic to inelastic scattering and the defocus of the pair of thin windows. This method requires two energy filtered high-resolution TEM images that can be performed during an ongoing experiment, at the region of interest. The approach is demonstrated to measure greater than atmosphere pressures of N 2 gas using a commercially available gas-flow stage. This technique provides a means to ensure reproducible sample pressures between different experiments, and even between very differently designed gas-flow stages. - Highlights: • Method developed for measuring gas pressure within a gas-flow stage in the TEM. • EFTEM and CTF-fitting used to calculate amount and volume of gas. • Requires only a pair of images without leaving region of interest. • Demonstrated for P > 1 atm with a common commercial gas-flow stage

  15. Gas-chromatographic separation of hydrogen isotopic mixtures

    International Nuclear Information System (INIS)

    Preda, Anisoara; Bidica, Nicolae

    2005-01-01

    Full text: Gas chromatographic separation of hydrogen isotopes have been reported in the literature since late of 1950's. Gas chromatography is primarily an analytical method, but because of its properties it may be used in many other fields with excellent results. A simple method is proposed for the gas-chromatographic analysis of complex gas mixtures containing hydrogen isotopes; the method is based on the substantial difference in the thermal conductivity of these isotopes. One of the main disadvantages of the conventional gas chromatography is the long retention times required for the analysis of hydrogen gas mixtures while the column is operated at very low temperature. The method described in this paper was based on using a capillary molecular sieve 5A column operated for this kind of separation at 173 K. The carrier gas was Ne and the detector was TCD. In the paper chromatograms for various carrier flow rates and various hydrogen isotope mixtures are presented. (authors)

  16. Simulations of Micro Gas Flows by the DS-BGK Method

    KAUST Repository

    Li, Jun

    2011-01-01

    For gas flows in micro devices, the molecular mean free path is of the same order as the characteristic scale making the Navier-Stokes equation invalid. Recently, some micro gas flows are simulated by the DS-BGK method, which is convergent to the BGK equation and very efficient for low-velocity cases. As the molecular reflection on the boundary is the dominant effect compared to the intermolecular collisions in micro gas flows, the more realistic boundary condition, namely the CLL reflection model, is employed in the DS-BGK simulation and the influence of the accommodation coefficients used in the molecular reflection model on the results are discussed. The simulation results are verified by comparison with those of the DSMC method as criteria. Copyright © 2011 by ASME.

  17. Comprehensive two-dimensional gas chromatography applied to illicit drug analysis.

    Science.gov (United States)

    Mitrevski, Blagoj; Wynne, Paul; Marriott, Philip J

    2011-11-01

    Multidimensional gas chromatography (MDGC), and especially its latest incarnation--comprehensive two-dimensional gas chromatography (GC × GC)--have proved advantageous over and above classic one-dimensional gas chromatography (1D GC) in many areas of analysis by offering improved peak capacity, often enhanced sensitivity and, especially in the case of GC × GC, the unique feature of 'structured' chromatograms. This article reviews recent advances in MDGC and GC × GC in drug analysis with special focus on ecstasy, heroin and cocaine profiling. Although 1D GC is still the method of choice for drug profiling in most laboratories because of its simplicity and instrument availability, GC × GC is a tempting proposition for this purpose because of its ability to generate a higher net information content. Effluent refocusing due to the modulation (compression) process, combined with the separation on two 'orthogonal' columns, results in more components being well resolved and therefore being analytically and statistically useful to the profile. The spread of the components in the two-dimensional plots is strongly dependent on the extent of retention 'orthogonality' (i.e. the extent to which the two phases possess different or independent retention mechanisms towards sample constituents) between the two columns. The benefits of 'information-driven' drug profiling, where more points of reference are usually required for sample differentiation, are discussed. In addition, several limitations in application of MDGC in drug profiling, including data acquisition rate, column temperature limit, column phase orthogonality and chiral separation, are considered and discussed. Although the review focuses on the articles published in the last decade, a brief chronological preview of the profiling methods used throughout the last three decades is given.

  18. A Gas-kinetic Discontinuous Galerkin Method for Viscous Flow Equations

    International Nuclear Information System (INIS)

    Liu, Hongwei; Xu, Kun

    2007-01-01

    This paper presents a Runge-Kutta discontinuous Galerkin (RKDG) method for viscous flow computation. The construction of the RKDG method is based on a gas-kinetic formulation, which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous representation in the flux evaluation at the cell interface through a simple hybrid gas distribution function. Due to the intrinsic connection between the gaskinetic BGK model and the Navier-Stokes equations, the Navier-Stokes flux is automatically obtained by the present method. Numerical examples for both one dimensional (10) and two dimensional(20) compressible viscous flows are presented to demonstrate the accuracy and shock capturing capability of the current RKDG method

  19. Method development for the analysis of 1,4-dioxane in drinking water using solid-phase extraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Grimmett, Paul E; Munch, Jean W

    2009-01-01

    1,4-Dioxane has been identified as a probable human carcinogen and an emerging contaminant in drinking water. The United States Environmental Protection Agency's (U.S. EPA) National Exposure Research Laboratory (NERL) has developed a method for the analysis of 1,4-dioxane in drinking water at ng/L concentrations. The method consists of an activated carbon solid-phase extraction of 500-mL or 100-mL water samples using dichloromethane as the elution solvent. The extracts are analyzed by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode. In the NERL laboratory, recovery of 1,4-dioxane ranged from 94-110% in fortified laboratory reagent water and recoveries of 96-102% were demonstrated for fortified drinking water samples. The relative standard deviations for replicate analyses were less than 6% at concentrations exceeding the minimum reporting level.

  20. New Jersey's natural gas shortage: a policy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, J.L.; Morell, D.

    1976-12-01

    The public policy problems associated with New Jersey's natural gas shortage are extremely complex and rather difficult to examine. They involve a blend of technology, politics and economics; of regulatory mandates and profit-motivated initiatives; of Federal and state interaction and conflict. To understand the state's gas shortage and to lay the basis for recommending measures to deal with it, information about the basic technology, the organization of the gas industry, the national regulatory posture, and the possible causes of the gas shortage encompasses Part I of the overall study. In Part II, the analysis turns from the national level to a direct examination of New Jersey's gas situation. In Part III, Chapter VIII, the following are considered: the state's supply of natural gas, distribution of these supply volumes within New Jersey by the four major gas utilities, and gas consumption patterns within the state as a whole and then for each major consuming sector (electric utility, industrial, commercial, and residential). This chapter concludes with an analysis of the impacts of the gas shortage to date in New Jersey, and of its probable effects in the near-term. In the final chapter, some tentative conclusions and broad suggestions are advanced for public policies to mitigate the gravity of the state's position with respect to natural gas. Analysis proceeds, in turn, through consideration of possible state actions in several areas: increasing total interstate gas supplies; increasing New Jersey's share of whatever national total exists; making greater (or more effective) use of alternate fuels; and moderating demand for gas through aggressive conservation policies. Some short-term measures to cope better with whatever level of gas shortage exists in the state at any particular time are suggested. 151 references. (MCW)

  1. Multiple Criteria Decision Making by Generalized Data Envelopment Analysis Introducing Aspiration Level Method

    International Nuclear Information System (INIS)

    Yun, Yeboon; Arakawa, Masao; Hiroshi, Ishikawa; Nakayama, Hirotaka

    2002-01-01

    It has been proved in problems with 2-objective functions that genetic algorithms (GAs) are well utilized for generating Pareto optimal solutions, and then decision making can be easily performed on the basis of visualized Pareto optimal solutions. However, GAs are difficult to visualize Pareto optimal solutions in cases in which the number of objective function is more than 4. Hence, it is trouble some to grasp the trade-off among many objective functions, and decision makers hesitate to choose a final solution from a number of Pareto optimal solutions. In order to solve these problems, we suggest an aspiration level approach to the method using the generalized data envelopment analysis and GAs. We show that the proposed method supports decision makers to choose their desirable solution from many Pareto optimal solutions. Furthermore, it will be seen that engineering design can be effectively done by the proposed method, which makes generation of several Pareto optimal solutions close to the aspiration level and trade-off analysis easily

  2. Natural gas product and strategic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Layne, A.W.; Duda, J.R.; Zammerilli, A.M.

    1993-12-31

    Product and strategic analysis at the Department of Energy (DOE)/Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry. This includes the supply, transportation, and end-use sectors of the natural-gas market. Projects in the Natural Gas Resource and Extraction supply program have been integrated into a new product focus. Product development facilitates commercialization and technology transfer through DOE/industry cost-shared research, development, and demonstration (RD&D). Four products under the Resource and Extraction program include Resource and Reserves; Low Permeability Formations; Drilling, Completion, and Stimulation: and Natural Gas Upgrading. Engineering process analyses have been performed for the Slant Hole Completion Test project. These analyses focused on evaluation of horizontal-well recovery potential and applications of slant-hole technology. Figures 2 and 3 depict slant-well in situ stress conditions and hydraulic fracture configurations. Figure 4 presents Paludal Formation coal-gas production curves used to optimize the hydraulic fracture design for the slant well. Economic analyses have utilized data generated from vertical test wells to evaluate the profitability of horizontal technology for low-permeability formations in Yuma County, Colorado, and Maverick County, Texas.

  3. Gas Hydrate-Sediment Morphologies Revealed by Pressure Core Analysis

    Science.gov (United States)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M.

    2006-12-01

    Analysis of HYACINTH pressure cores collected on IODP Expedition 311 and NGHP Expedition 1 showed gas hydrate layers, lenses, and veins contained in fine-grained sediments as well as gas hydrate contained in coarse-grained layers. Pressure cores were recovered from sediments on the Cascadia Margin off the North American West Coast and in the Krishna-Godavari Basin in the Western Bay of Bengal in water depths of 800- 1400 meters. Recovered cores were transferred to laboratory chambers without loss of pressure and nondestructive measurements were made at in situ pressures and controlled temperatures. Gamma density, P-wave velocity, and X-ray images showed evidence of grain-displacing and pore-filling gas hydrate in the cores. Data highlights include X-ray images of fine-grained sediment cores showing wispy subvertical veins of gas hydrate and P-wave velocity excursions corresponding to grain-displacing layers and pore-filling layers of gas hydrate. Most cores were subjected to controlled depressurization experiments, where expelled gas was collected, analyzed for composition, and used to calculate gas hydrate saturation within the core. Selected cores were stored under pressure for postcruise analysis and subsampling.

  4. New mathematical method for the solution of gas-gas equilibria with special application to HTGR primary-coolant environments

    International Nuclear Information System (INIS)

    Bongartz, K.

    1983-07-01

    A new mathematical method and corresponding computer program have been developed that provide a general method for the numerical solution of an equilibrium problem involving the chemical interactions of gaseous species. The method and computer code were developed to calculate the equilibrium concentrations of impurity gases, such as CO, CO 2 , H 2 , H 2 O, CH 4 , and O 2 , which may be approached as the result of gaseous chemical reactions occurring within the hot primary coolant helium of a high-temperature gas-cooled reactor (HTGR). The method, however, can be applied to any gas mixture

  5. Integration of gas chromatography mass spectrometry methods for differentiating ricin preparation methods.

    Science.gov (United States)

    Wunschel, David S; Melville, Angela M; Ehrhardt, Christopher J; Colburn, Heather A; Victry, Kristin D; Antolick, Kathryn C; Wahl, Jon H; Wahl, Karen L

    2012-05-07

    The investigation of crimes involving chemical or biological agents is infrequent, but presents unique analytical challenges. The protein toxin ricin is encountered more frequently than other agents and is found in the seeds of Ricinus communis, commonly known as the castor plant. Typically, the toxin is extracted from castor seeds utilizing a variety of different recipes that result in varying purity of the toxin. Moreover, these various purification steps can also leave or differentially remove a variety of exogenous and endogenous residual components with the toxin that may indicate the type and number of purification steps involved. We have applied three gas chromatography-mass spectrometry (GC-MS) based analytical methods to measure the variation in seed carbohydrates and castor oil ricinoleic acid, as well as the presence of solvents used for purification. These methods were applied to the same samples prepared using four previously identified toxin preparation methods, starting from four varieties of castor seeds. The individual data sets for seed carbohydrate profiles, ricinoleic acid, or acetone amount each provided information capable of differentiating different types of toxin preparations across seed types. However, the integration of the data sets using multivariate factor analysis provided a clear distinction of all samples based on the preparation method, independent of the seed source. In particular, the abundance of mannose, arabinose, fucose, ricinoleic acid, and acetone were shown to be important differentiating factors. These complementary tools provide a more confident determination of the method of toxin preparation than would be possible using a single analytical method.

  6. Study on Method of Ultrasonic Gas Temperature Measure Based on FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Wen, S H; Xu, F R [Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004 (China)

    2006-10-15

    It is always a problem to measure instantaneous temperature of high-temperature and high-pressure gas. There is difficulty for the conventional method of measuring temperature to measure quickly and exactly, and the measuring precision is low, the ability of anti-jamming is bad, etc. So the article introduces a method of measuring burning gas temperature using ultrasonic based on Field-Programmable Gate Array (FPGA). The mathematic model of measuring temperature is built with the relation of velocity of ultrasonic transmitting and gas Kelvin in the ideal gas. The temperature can be figured out by measuring the difference of ultrasonic frequency {delta}f. FPGA is introduced and a high-precision data acquisition system based on digital phase-shift technology is designed. The feasibility of proposed above is confirmed more by measuring pressure of burning gas timely. Experimental result demonstrates that the error is less than 12.. and the precision is heightened to 0.8%.

  7. Global mass conservation method for dual-continuum gas reservoir simulation

    KAUST Repository

    Wang, Yi; Sun, Shuyu; Gong, Liang; Yu, Bo

    2018-01-01

    In this paper, we find that the numerical simulation of gas flow in dual-continuum porous media may generate unphysical or non-robust results using regular finite difference method. The reason is the unphysical mass loss caused by the gas compressibility and the non-diagonal dominance of the discretized equations caused by the non-linear well term. The well term contains the product of density and pressure. For oil flow, density is independent of pressure so that the well term is linear. For gas flow, density is related to pressure by the gas law so that the well term is non-linear. To avoid these two problems, numerical methods are proposed using the mass balance relation and the local linearization of the non-linear source term to ensure the global mass conservation and the diagonal dominance of discretized equations in the computation. The proposed numerical methods are successfully applied to dual-continuum gas reservoir simulation. Mass conservation is satisfied while the computation becomes robust. Numerical results show that the location of the production well relative to the large-permeability region is very sensitive to the production efficiency. It decreases apparently when the production well is moved from the large-permeability region to the small-permeability region, even though the well is very close to the interface of the two regions. The production well is suggested to be placed inside the large-permeability region regardless of the specific position.

  8. Global mass conservation method for dual-continuum gas reservoir simulation

    KAUST Repository

    Wang, Yi

    2018-03-17

    In this paper, we find that the numerical simulation of gas flow in dual-continuum porous media may generate unphysical or non-robust results using regular finite difference method. The reason is the unphysical mass loss caused by the gas compressibility and the non-diagonal dominance of the discretized equations caused by the non-linear well term. The well term contains the product of density and pressure. For oil flow, density is independent of pressure so that the well term is linear. For gas flow, density is related to pressure by the gas law so that the well term is non-linear. To avoid these two problems, numerical methods are proposed using the mass balance relation and the local linearization of the non-linear source term to ensure the global mass conservation and the diagonal dominance of discretized equations in the computation. The proposed numerical methods are successfully applied to dual-continuum gas reservoir simulation. Mass conservation is satisfied while the computation becomes robust. Numerical results show that the location of the production well relative to the large-permeability region is very sensitive to the production efficiency. It decreases apparently when the production well is moved from the large-permeability region to the small-permeability region, even though the well is very close to the interface of the two regions. The production well is suggested to be placed inside the large-permeability region regardless of the specific position.

  9. Comparison of photoacoustic radiometry to gas chromatography/mass spectrometry methods for monitoring chlorinated hydrocarbons

    International Nuclear Information System (INIS)

    Sollid, J.E.; Trujillo, V.L.; Limback, S.P.; Woloshun, K.A.

    1996-01-01

    A comparison of two methods of gas chromatography mass spectrometry (GCMS) and a nondispersive infrared technique, photoacoustic radiometry (PAR), is presented in the context of field monitoring a disposal site. First is presented an historical account describing the site and early monitoring to provide an overview. The intent and nature of the monitoring program changed when it was proposed to expand the Radiological Waste Site close to the Hazardous Waste Site. Both the sampling methods and analysis techniques were refined in the course of this exercise

  10. Method of treating final products from flue gas desulfurization

    International Nuclear Information System (INIS)

    Bloss, W.; Mohn, U.

    1984-01-01

    A method of treating final products from a flue gas desulfurization. The flue gas desulfurization is carried out by the absorption of sulfur oxide in a spray dryer with a suspension which contains lime, or in a reactor with a dry, fine-grained, absorbent which contains lime. Prior to desulfurization, the fly ash carried along by the flue gas which is to be desulfurized is separated entirely, partially, or not at all from the flue gas, and the final products from the flue gas desulfurization, prior to any further treatment thereof, amount to 1-99% by weight, preferably 1-70% by weight, of fly ash, and 1-99% by weight, preferably 30-99% by weight, of the sum of the desulfurization products, preferably calcium sulfite hemihydrate, and/or calcium sulfite, and/or calcium sulfate dyhydrate, and/or calcium sulfate hemihydrate, and/or calcium sulfate, as well as residue of the absorbent. The reduction of the amount of calcium sulfite is implemented by a dry oxidation with air

  11. The Energy Conversion Analysis of HTR Gas Turbine System

    International Nuclear Information System (INIS)

    Utaja

    2000-01-01

    The energy conversion analysis of HTR gas turbine system by hand calculation is tedious work and need much time. This difficulty comes from the repeated thermodynamic process calculation, both on compression or expansion of the cycle. To make the analysis faster and wider variable analyzed, HTR-1 programme is used. In this paper, the energy conversion analysis of HTR gas turbine system by HTR-1 will be described. The result is displayed as efficiency curve and block diagram with the input and output temperature of the component. This HTR-1 programme is developed by Basic language programming and be compiled by Visual Basic 5.0 . By this HTR-1 programme, the efficiency, specific power and effective compression of the amount of gas can be recognized fast. For example, for CO 2 gas between 40 o C and 700 o C, the compression on maximum efficiency is 4.6 and the energy specific is 18.9 kcal/kg, while the temperature changing on input and output of the component can be traced on monitor. This process take less than one second, while the manual calculation take more than one hour. It can be concluded, that the energy conversion analysis of the HTR gas turbine system by HTR-1 can be done faster and more variable analyzed. (author)

  12. A continuous flow isotope ratio mass spectrometry method for high precision determination of dissolved gas ratios and isotopic composition

    DEFF Research Database (Denmark)

    Charoenpong, C. N.; Bristow, L. A.; Altabet, M. A.

    2014-01-01

    ratio mass spectrometer (IRMS). A continuous flow of He carrier gas completely degasses the sample, and passes through the preparation and purification system before entering the IRMS for analysis. The use of this continuous He carrier permits short analysis times (less than 8 min per sample......) as compared with current high-precision methods. In addition to reference gases, calibration is achieved using air-equilibrated water standards of known temperature and salinity. Assessment of reference gas injections, air equilibrated standards, as well as samples collected in the field shows the accuracy...

  13. Thermodynamic analysis of steam-injected advanced gas turbine cycles

    Science.gov (United States)

    Pandey, Devendra; Bade, Mukund H.

    2017-12-01

    This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.

  14. Method and apparatus for producing synthesis gas

    Science.gov (United States)

    Hemmings, John William; Bonnell, Leo; Robinson, Earl T.

    2010-03-03

    A method and apparatus for reacting a hydrocarbon containing feed stream by steam methane reforming reactions to form a synthesis gas. The hydrocarbon containing feed is reacted within a reactor having stages in which the final stage from which a synthesis gas is discharged incorporates expensive high temperature materials such as oxide dispersed strengthened metals while upstream stages operate at a lower temperature allowing the use of more conventional high temperature alloys. Each of the reactor stages incorporate reactor elements having one or more separation zones to separate oxygen from an oxygen containing feed to support combustion of a fuel within adjacent combustion zones, thereby to generate heat to support the endothermic steam methane reforming reactions.

  15. Environmental risk analysis for offshore oil and gas activities

    Energy Technology Data Exchange (ETDEWEB)

    Brude, Odd Willy; Aspholm, Ole O.; Rudberg, Anders [Det Norske Veritas (Brazil)

    2008-07-01

    Offshore oil and gas activities always have a risk for environmental impact due to potential accidental releases of oil and gas. The environmental risk can be calculated as a combination of the frequency of such accidents to occur and their environmental consequences in terms of environmental damage to habitats or populations. A method for conducting environmental risk analysis has been in use in Norwegian offshore waters for a decade, with a continuously refinement of methodology over the past years. This paper outlines the principles in the MIRA method and gives examples and discussions regarding use in different environmental compartments. The risk assessment starts with identification of oil spill scenarios with frequencies of potential release rates and spill durations. The next step is to model the oil drift for each accidental oil spill scenario. Drift and fate of oil is modeled probabilistic. Based on the oil spill scenarios and their probability of oil pollution, the potential environmental damage is quantified for each scenario. The endpoint of environmental damage is reduction of a population and the resulting recovery time (in years) for various species and habitats. Environmental risk levels are then evaluated against the operating companies' environmental acceptance criteria. (author)

  16. Sensitivity of Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations

    Science.gov (United States)

    2016-06-12

    Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations Venkatesh Babu, Kumar Kulkarni, Sanjay...buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) and (2) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The...DEM_PGM and identify the limitations/strengths compared to the ALE method. Discrete Element Method (DEM) can model individual particle directly, and

  17. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results

    Science.gov (United States)

    Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

    2013-01-01

    Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

  18. Analysis of multicriteria models application for selection of an optimal artificial lift method in oil production

    Directory of Open Access Journals (Sweden)

    Crnogorac Miroslav P.

    2016-01-01

    Full Text Available In the world today for the exploitation of oil reservoirs by artificial lift methods are applied different types of deep pumps (piston, centrifugal, screw, hydraulic, water jet pumps and gas lift (continuous, intermittent and plunger. Maximum values of oil production achieved by these exploitation methods are significantly different. In order to select the optimal exploitation method of oil well, the multicriteria analysis models are used. In this paper is presented an analysis of the multicriteria model's application known as VIKOR, TOPSIS, ELECTRE, AHP and PROMETHEE for selection of optimal exploitation method for typical oil well at Serbian exploration area. Ranking results of applicability of the deep piston pumps, hydraulic pumps, screw pumps, gas lift method and electric submersible centrifugal pumps, indicated that in the all above multicriteria models except in PROMETHEE, the optimal method of exploitation are deep piston pumps and gas lift.

  19. An automated method for the analysis of phenolic acids in plasma based on ion-pairing micro-extraction coupled on-line to gas chromatography/mass spectrometry with in-liner derivatisation

    NARCIS (Netherlands)

    Peters, S.; Kaal, E.; Horsting, I.; Janssen, H.-G.

    2012-01-01

    A new method is presented for the analysis of phenolic acids in plasma based on ion-pairing ‘Micro-extraction in packed sorbent’ (MEPS) coupled on-line to in-liner derivatisation-gas chromatography-mass spectrometry (GC-MS). The ion-pairing reagent served a dual purpose. It was used both to improve

  20. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  1. Leak Rate Quantification Method for Gas Pressure Seals with Controlled Pressure Differential

    Science.gov (United States)

    Daniels, Christopher C.; Braun, Minel J.; Oravec, Heather A.; Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    An enhancement to the pressure decay leak rate method with mass point analysis solved deficiencies in the standard method. By adding a control system, a constant gas pressure differential across the test article was maintained. As a result, the desired pressure condition was met at the onset of the test, and the mass leak rate and measurement uncertainty were computed in real-time. The data acquisition and control system were programmed to automatically stop when specified criteria were met. Typically, the test was stopped when a specified level of measurement uncertainty was attained. Using silicone O-ring test articles, the new method was compared with the standard method that permitted the downstream pressure to be non-constant atmospheric pressure. The two methods recorded comparable leak rates, but the new method recorded leak rates with significantly lower measurement uncertainty, statistical variance, and test duration. Utilizing this new method in leak rate quantification, projects will reduce cost and schedule, improve test results, and ease interpretation between data sets.

  2. Suitability of selected free-gas and dissolved-gas sampling containers for carbon isotopic analysis.

    Science.gov (United States)

    Eby, P; Gibson, J J; Yi, Y

    2015-07-15

    Storage trials were conducted for 2 to 3 months using a hydrocarbon and carbon dioxide gas mixture with known carbon isotopic composition to simulate typical hold times for gas samples prior to isotopic analysis. A range of containers (both pierced and unpierced) was periodically sampled to test for δ(13)C isotopic fractionation. Seventeen containers were tested for free-gas storage (20°C, 1 atm pressure) and 7 containers were tested for dissolved-gas storage, the latter prepared by bubbling free gas through tap water until saturated (20°C, 1 atm) and then preserved to avoid biological activity by acidifying to pH 2 with phosphoric acid and stored in the dark at 5°C. Samples were extracted using valves or by piercing septa, and then introduced into an isotope ratio mass spectrometer for compound-specific δ(13)C measurements. For free gas, stainless steel canisters and crimp-top glass serum bottles with butyl septa were most effective at preventing isotopic fractionation (pierced and unpierced), whereas silicone and PTFE-butyl septa allowed significant isotopic fractionation. FlexFoil and Tedlar bags were found to be effective only for storage of up to 1 month. For dissolved gas, crimp-top glass serum bottles with butyl septa were again effective, whereas silicone and PTFE-butyl were not. FlexFoil bags were reliable for up to 2 months. Our results suggest a range of preferred containers as well as several that did not perform very well for isotopic analysis. Overall, the results help establish better QA/QC procedures to avoid isotopic fractionation when storing environmental gas samples. Recommended containers for air transportation include steel canisters and glass serum bottles with butyl septa (pierced and unpierced). Copyright © 2015 John Wiley & Sons, Ltd.

  3. Statistical data analysis method for multi-zonal airflow measurement using multiple kinds of perfluorocarbon tracer gas

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Hiroyasu; Onishi, Yoshinori [Institute of Technology, Shimizu Corporation, 4-17, Etchujima 3-chome, Koto-ku, Tokyo 135-8530 (Japan); Tanabe, Shin-ichi [School of Science and Engineering, Department of Architecture, Waseda University, 3-4-1 Okubo, Shinjyuku-ku, Tokyo 169-8555 (Japan); Kashihara, Seiichi [R and D Laboratories, Asahi Kasei Homes Corporation, 2-1, Samejima Fuji-shi, Shizuoka 416-8501 (Japan)

    2009-03-15

    Conventional multi-zonal ventilation measurement methods by multiple types of perfluorocarbon tracers use a number of different gases equal to the number of zones (n). The possible n x n+n airflows are estimated from the mass balance of the gases and the airflow balance. However, some airflows may not occur because of inter-zonal geometry, and the introduction of unnecessary, unknown parameters can impair the accuracy of the estimation. Also, various error factors often yield an irrational negative airflow rate. Conventional methods are insufficient for the evaluation of error. This study describes a way of using the least-squares technique to improve the precision of estimation and to evaluate reliability. From the equations' residual, the error variance-covariance matrix {lambda}{sub q} of the estimated airflow rate error is deduced. In addition, the coefficient of determinant using the residual sum of squares and total variation is introduced. Furthermore, the error matrix{sub m}{lambda}{sub q} from the measurement errors in the gas concentration and gas emission rate is deduced. The discrepancy ratio of the model premises is defined by dividing the diagonal elements of the former by those of the latter. Moreover, the index of irrationality of the estimated negative airflow rate is defined, based on the different results of the three estimation methods. Some numerical experiments are also carried out to verify the flow rate estimation and the reliability evaluation theory. (author)

  4. Optical methods to study the gas exchange processes in large diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S.; Hattar, C. [Wartsila Diesel International Oy, Vaasa (Finland); Hernberg, R.; Vattulainen, J. [Tampere Univ. of Technology, Tampere (Finland). Plasma Technology Lab.

    1996-12-01

    To be able to study the gas exchange processes in realistic conditions for a single cylinder of a large production-line-type diesel engine, a fast optical absorption spectroscopic method was developed. With this method line-of-sight UV-absorption of SO{sub 2} contained in the exhaust gas was measured as a function of time in the exhaust port area in a continuously fired medium speed diesel engine type Waertsilae 6L20. SO{sub 2} formed during the combustion from the fuel contained sulphur was used as a tracer to study the gas exchange as a function of time in the exhaust channel. In this case of a 4-stroke diesel engine by assuming a known concentration of SO{sub 2} in the exhaust gas after exhaust valve opening and before inlet and exhaust valve overlap period, the measured optical absorption was used to determine the gas density and further the instantaneous exhaust gas temperature during the exhaust cycle. (author)

  5. State and trends of ionization gas analysis. 1

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Grosse, H.J.; Popp, P.

    1980-01-01

    The ionization gas analysis makes use of the fact that the ionization-induced conductivity of gases and gas mixtures changes with the composition of such mixtures. A general description is given of ionization detectors based on this principle and theory, properties, and main fields of application of electron capture detectors are discussed

  6. In situ analysis of thin film deposition processes using time-of-flight (TOF) ion beam analysis methods

    International Nuclear Information System (INIS)

    Im, J.; Lin, Y.; Schultz, J.A.; Auciello, O.H.; Chang, R.P.H.

    1995-05-01

    Non-destructive, in situ methods for characterization of thin film growth phenomena is key to understand thin film growth processes and to develop more reliable deposition procedures, especially for complex layered structures involving multi-phase materials. However, surface characterization methods that use either electrons (e.g. AES or XPS) or low energy ions (SIMS) require an UHV environment and utilize instrumentation which obstructs line of sight access to the substrate and are therefore incompatible with line of sight deposition methods and thin film deposition processes which introduce gas, either part of the deposition or in order to produce the desired phase. We have developed a means of differentially pumping both the ion beam source and detectors of a TOF ion beam surface analysis spectrometer that does not interfere with the deposition process and permits compositional and structural analysis of the growing film in the present system, at pressures up to several mTorr. Higher pressures are feasible with modified source-detector geometry. In order to quantify the sensitivity of Ion Scattering Spectroscopy (ISS) and Direct Recoil Spectroscopy (DRS), we have measured the signal intensity for stabilized clean metals in a variety of gas environments as a function of the ambient gas species and pressure, and ion beam species and kinetic energy. Results are interpreted in terms of collision cross sections which are compared with known gas phase scattering data and provide an apriori basis for the evaluation of time-of-flight ion scattering and recoil spectroscopies (ToF-ISARS) for various industrial processing environments which involve both inert and reactive cases. The cross section data for primary ion-gas molecule and recoiled atom-gas molecule interactions are also provided. from which the maximum operating pressure in any experimental configuration can be obtained

  7. Assessment of oil weathering by gas chromatography-mass spectrometry, time warping and principal component analysis

    DEFF Research Database (Denmark)

    Malmquist, Linus M.V.; Olsen, Rasmus R.; Hansen, Asger B.

    2007-01-01

    weathering state and to distinguish between various weathering processes is investigated and discussed. The method is based on comprehensive and objective chromatographic data processing followed by principal component analysis (PCA) of concatenated sections of gas chromatography–mass spectrometry...

  8. Method and means for filtering polychlorinated biphenyls from a gas stream

    International Nuclear Information System (INIS)

    Sowinski, R.F.

    1992-01-01

    This patent describes a method of filtering, adjacent to an end user-customer's residence or business in which at least a single gas appliance is located, a natural gas stream in which polychlorinated biphenyls (PCB's) and degraded PCB products have been concentrated at sufficient levels to be a health threat in a natural gas gathering and distributing network. It comprises: introducing the natural gas stream to a filter selected from a group that includes impingement, absorbing and adsorbing media whereby PCB's and degraded PCB products concentrated in the gas stream at sufficient levels to be a health threat by a periodic loading of the natural gas within the gathering and distributing network, are filtered from the gas stream and captured irrespective of mode of transport, passing the filtered natural gas stream to the customer's gas appliance wherein safe use of the energy associated with the stream occurs; periodically and safely removing the filter, inserting a new filter in place of the removed filter

  9. Semi-continuous high speed gas analysis of generated vapors of chemical warfare agents

    NARCIS (Netherlands)

    Trap, H.C.; Langenberg, J.P.

    1999-01-01

    A method is presented for the continuous analysis of generated vapors of the nerve agents soman and satin and the blistering agent sulfur mustard. By using a gas sampling valve and a very short (15 cm) column connected to an on-column injector with a 'standard length' column, the system can either

  10. Hydrogen extraction from liquid lithium-lead alloy by gas-liquid contact method

    International Nuclear Information System (INIS)

    Xie Bo; Weng Kuiping; Hou Jianping; Yang Guangling; Zeng Jun

    2013-01-01

    Hydrogen extraction experiment from liquid lithium-lead alloy by gas-liquid contact method has been carried out in own liquid lithium-lead bubbler (LLLB). Experimental results show that, He is more suitable than Ar as carrier gas in the filler tower. The higher temperature the tower is, the greater hydrogen content the tower exports. Influence of carrier gas flow rate on the hydrogen content in the export is jagged, no obvious rule. Although the difference between experimental results and literature data, but it is feasible that hydrogen isotopes extraction experiment from liquid lithium-lead by gas-liquid contact method, and the higher extraction efficiency increases with the growth of the residence time of the alloy in tower. (authors)

  11. Methods for the analysis of overlapped peaks in analytical gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Sterlinski, S.; Wasek, M.

    1989-01-01

    A review of critical evaluation of simple methods for the analysis of overlapped peaks from the point of view of their applicability in activation analysis are described. These methods are adopted from other spectroscopic techniques and gas chromatography. The experimental verification has been carried out for gamma-ray spectra in the energy range 120 KeV - 3 MeV. 28 refs., 8 figs., 3 tabs. (author)

  12. Mixed Finite Element Simulation with Stability Analysis for Gas Transport in Low-Permeability Reservoirs

    Directory of Open Access Journals (Sweden)

    Mohamed F. El-Amin

    2018-01-01

    Full Text Available Natural gas exists in considerable quantities in tight reservoirs. Tight formations are rocks with very tiny or poorly connected pors that make flow through them very difficult, i.e., the permeability is very low. The mixed finite element method (MFEM, which is locally conservative, is suitable to simulate the flow in porous media. This paper is devoted to developing a mixed finite element (MFE technique to simulate the gas transport in low permeability reservoirs. The mathematical model, which describes gas transport in low permeability formations, contains slippage effect, as well as adsorption and diffusion mechanisms. The apparent permeability is employed to represent the slippage effect in low-permeability formations. The gas adsorption on the pore surface has been described by Langmuir isotherm model, while the Peng-Robinson equation of state is used in the thermodynamic calculations. Important compatibility conditions must hold to guarantee the stability of the mixed method by adding additional constraints to the numerical discretization. The stability conditions of the MFE scheme has been provided. A theorem and three lemmas on the stability analysis of the mixed finite element method (MFEM have been established and proven. A semi-implicit scheme is developed to solve the governing equations. Numerical experiments are carried out under various values of the physical parameters.

  13. Analysis of technologies for natural gas transportation in Brazil: results comparison of the application of payback and NPV (Net Present Value) methods; Analise de tecnologias de transporte de gas natural no Brasil: comparacao dos resultados da aplicacao dos metodos 'payback' e VPL (Valor Presente Liquido)

    Energy Technology Data Exchange (ETDEWEB)

    Baioco, Juliana Souza; Santarem, Clarissa Andrade [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia de Petroleo; Bone, Rosemarie Broeker; Ferreira Filho, Virgilio Jose Martins [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Industrial

    2008-07-01

    The increased demand for natural gas leads to global integration of markets, leading to decisions that cover the various technologies of transportation, noting the specific locations. The transport of natural gas considered more traditional (Liquefied Natural Gas and Pipeline) often unviable economically areas of operation due to cost. In this case, there are alternative technologies to reduce those costs. The article is to compare the technologies of transport, using the methodology of the Net Present Value (VPL) to identify one that has more positive VPL, which is the most profitable. Thus, in search of validate the results of SUBERO et al. (2004) for gas transport by Pipelines, Liquefied Natural Gas and Compressed Natural Gas. In addition, they are compared these results with the method of VPL and with the economic analysis presented in using the payback period of CHANG (2001) and SANTAREM et al. (2007). It was found that the results obtained in Brazil were identical to those obtained by CHANG (2001) and SUBERO et al. (2007), saving only some differences in magnitude due to the specific characteristics of the Brazilian economy. In other words, for the Brazilian case, the technology of Compressed Natural Gas (CNG) was the most economically viable with the method of VPL, followed by technology, Pipeline and Liquefied Natural Gas (LNG), regardless of the interest rates of 10% and 6.5% and periods of 20 and 30 years. The contribution of this work is to show that despite of the method, payback or VPL, the various alternatives for transporting natural gas to Brazil have the same ranking and economic viability. (author)

  14. Summary on experimental methods for statistical transient analysis of two-phase gas-liquid flow

    International Nuclear Information System (INIS)

    Delhaye, J.M.; Jones, O.C. Jr.

    1976-06-01

    Much work has been done in the study of two-phase gas-liquid flows. Although it has been recognized superficially that such flows are not homogeneous in general, little attention has been paid to the inherent discreteness of the two-phase systems. Only relatively recently have fluctuating characteristics of two-phase flows been studied in detail. As a result, new experimental devices and techniques have been developed for use in measuring quantities previously ignored. This report reviews and summarizes most of these methods in an effort to emphasize the importance of the fluctuating nature of these flows and as a guide to further research in this field

  15. Analysis of benzene, toluene, ethylbenzene and xylenes in soils by headspace and gas chromatography/flame ionization detector

    Directory of Open Access Journals (Sweden)

    Jurandir Pereira Pinto

    2006-02-01

    Full Text Available The constituents of gasoline: benzene, toluene, ethylbenzene and xylenes (BTEX are frequently found in soils due to leaks in fuel storage tanks and they present chronic toxicity. In this work it was developed and validated a methodology of BTEX analysis in soil by gas chromatography/ flame ionization detector and static headspace. The recovery of BTEX in soil samples was evaluated using soils with different textures (sandy and loamy. The analysis method showed good resolution, in a low time of analysis (less than 30 minutes. Limits of quantification of 0.05 mg Kg¯¹ soil for benzene, toluene, ethylbenzene and xylenes are below the guiding values that range from 0.15 to 95 mg Kg¯¹ soil, established to determine soil quality. It was verified that the methodology enables the use of this method for BTEX analysis of soil samples for passive environmental identification of gas stations.

  16. Method for manufacturing raw mass for gas concrete

    Energy Technology Data Exchange (ETDEWEB)

    Hellestam, C J.S.

    1949-06-30

    A method is described for processing a raw mass of oil shale and limestone directly useable for the production of gas concrete, characterized in that the processing is divided into three partial processes, of which the first comprises a pyrolysis with extraction of oil, shale gas, hydrogen sulfide and shale coke; the second, burning of the shale coke while preventing the fusing temperature from being exceeded; and the third partial process is a continued burning at higher temperature in the range of 1100/sup 0/C after the addition of limestone and, if required, extra fuel.

  17. Performance analysis of solar energy integrated with natural-gas-to-methanol process

    International Nuclear Information System (INIS)

    Yang, Sheng; Liu, Zhiqiang; Tang, Zhiyong; Wang, Yifan; Chen, Qianqian; Sun, Yuhan

    2017-01-01

    Highlights: • Solar energy integrated with natural-gas-to-methanol process is proposed. • The two processes are modeled and simulated. • Performance analysis of the two processes are conducted. • The proposed process can cut down the greenhouse gas emission. • The proposed process can save natural gas consumption. - Abstract: Methanol is an important platform chemical. Methanol production using natural gas as raw material has short processing route and well developed equipment and technology. However, natural gas reserves are not large in China. Solar energy power generation system integrated with natural-gas-to-methanol (NGTM) process is developed, which may provide a technical routine for methanol production in the future. The solar energy power generation produces electricity for reforming unit and system consumption in solar energy integrated natural-gas-to-methanol system (SGTM). Performance analysis of conventional natural-gas-to-methanol process and solar energy integrated with natural-gas-to-methanol process are presented based on simulation results. Performance analysis was conducted considering carbon efficiency, production cost, solar energy price, natural gas price, and carbon tax. Results indicate that solar energy integrated with natural-gas-to-methanol process is able to cut down the greenhouse gas (GHG) emission. In addition, solar energy can replace natural gas as fuel. This can reduce the consumption of natural gas, which equals to 9.2% of the total consumed natural gas. However, it is not economical considering the current technology readiness level, compared with conventional natural-gas-to-methanol process.

  18. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    Energy Technology Data Exchange (ETDEWEB)

    Pucker, J.; Jungmeier, G. [JOANNEUM RESEARCH Forschungsgesellschaft mbH, RESOURCES - Institute for Water, Energy and Sustainability, Steyrergasse 17, 8010 Graz (Austria); Zwart, R. [Energy Research Centre of The Netherlands (ECN), Westerduinweg 3, 1755 LE Petten (Netherlands)

    2012-03-15

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO{sub 2}-eq.) - carbon dioxide, methane and nitrous oxide - and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O{sub 2}-blown entrained flow, O{sub 2}-blown circulating fluidised bed and air-steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air-steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO{sub 2}-eq. 32 kg MWh{sup -1} of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O{sub 2}-blown entrained flow and O{sub 2}-blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO{sub 2}-eq. 41 to 75 kg MWh{sup -1} of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO2-eq. 57-75 kg MWh{sup -1} of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59-2.13 MWh MWh{sup -1} of heat output) than for the reference systems (in 1.37-1.51 MWh MWh{sup -1} of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by

  19. Method and system to facilitate sealing in gas turbines

    Science.gov (United States)

    Morgan, Victor John; Foster, Gregory Thomas; Sarawate, Neelesh Nandkumar

    2017-09-12

    A method and system for sealing between components within a gas turbine is provided. A first recess defined in a first component receives a seal member. A second recess defined in a second component adjacent the first component also receives the seal member. The first and second recesses are located proximate a hot gas path defined through the gas turbine, and define circumferential paths about the turbine axis. The seal member includes a sealing face that extends in a direction substantially parallel to the turbine axis. The seal member also includes a plurality of seal layers, wherein at least one of the seal layers includes at least one stress relief region for facilitating flexing of the first seal member.

  20. Increasing the pump-up rate to polarize 3He gas using spin-exchange optical pumping method

    International Nuclear Information System (INIS)

    Lee, W.T.; Tong Xin; Rich, Dennis; Liu Yun; Fleenor, Michael; Ismaili, Akbar; Pierce, Joshua; Hagen, Mark; Dadras, Jonny; Robertson, J. Lee

    2009-01-01

    In recent years, polarized 3 He gas has increasingly been used as neutron polarizers and polarization analyzers. Two of the leading methods to polarize the 3 He gas are the spin-exchange optical pumping (SEOP) method and the meta-stable exchange optical pumping (MEOP) method. At present, the SEOP setup is comparatively compact due to the fact that it does not require the sophisticated compressor system used in the MEOP method. The temperature and the laser power available determine the speed, at which the SEOP method polarizes the 3 He gas. For the quantity of gas typically used in neutron scattering work, this speed is independent of the quantity of the gas required, whereas the polarizing time using the MEOP method is proportional to the quantity of gas required. Currently, using the SEOP method to polarize several bar-liters of 3 He to 70% polarization would require 20-40 h. This is an order of magnitude longer than the MEOP method for the same quantity of gas and polarization. It would therefore be advantageous to speed up the SEOP process. In this article, we analyze the requirements for temperature, laser power, and the type of alkali used in order to shorten the time required to polarize 3 He gas using the SEOP method.

  1. An Introduction to the Material Point Method using a Case Study from Gas Dynamics

    International Nuclear Information System (INIS)

    Tran, L. T.; Kim, J.; Berzins, M.

    2008-01-01

    The Material Point Method (MPM) developed by Sulsky and colleagues is currently being used to solve many challenging problems involving large deformations and/or fragementations with considerable success as part of the Uintah code created by the CSAFE project. In order to understand the properties of this method an analysis of the considerable computational properties of MPM is undertaken in the context of model problems from gas dynamics. One aspect of the MPM method in the form used here is shown to have first order accuracy. Computational experiments using particle redistribution are described and show that smooth results with first order accuracy may be obtained.

  2. Regional versus detailed velocity analysis to quantify hydrate and free gas in marine sediments : the south Shetland margin case study

    Energy Technology Data Exchange (ETDEWEB)

    Tinivella, U.; Loreto, M.F.; Accaino, F. [Inst. Nazionale di Oceanografia di Geofisica Sperimentale, Trieste (Italy)

    2008-07-01

    The presence of gas hydrate and free gas within marine sediments, deposited along the South Shetland margin, offshore the Antarctic Peninsula, was confirmed by low and high resolution geophysical data, acquired during three research cruises in 1989-1990. Seismic data analysis has demonstrated the presence of a bottom simulating reflector that is very strong and continuous in the eastern part of the margin. This seismic dataset was used in the past to extract detailed velocity information of the shallow structures by using traditional tomographic inversion and jointly tomographic inversion and pre-stack depth migration tool. This paper presented a method to obtain a regional seismic velocity field and information about hydrate and free gas presence in the marine sediments, by using an improved method of the standard analysis of the pre-stack depth migration output. The velocity field was obtained with a layer stripping approach and tomographic inversion of the reflections observed in common image gathering. The paper presented the seismic data and regional and detailed velocity analysis. The results of residual semblance analyses were also presented. Gas phase concentrations were then discussed. The velocity analysis revealed the presence of three main layers characterizing the first kilometer of sediments below the sea floor. In addition, velocity models and related gas-phase sections showed that gas was concentrated in different parts of the profile than where the hydrate was concentrated. This observation confirmed that geological structures and sedimentary processes controlled the gas and hydrate distribution, as observed along other margins. 7 refs., 5 figs.

  3. Thermal analysis elements of liquefied gas storage tanks

    Science.gov (United States)

    Yanvarev, I. A.; Krupnikov, A. V.

    2017-08-01

    Tasks of solving energy and resource efficient usage problems, both for oil producing companies and for companies extracting and transporting natural gas, are associated with liquefied petroleum gas technology development. Improving the operation efficiency of liquefied products storages provides for conducting structural, functional, and appropriate thermal analysis of tank parks in the general case as complex dynamic thermal systems.

  4. Analysis of GRI North American Regional Gas Supply-Demand Model

    International Nuclear Information System (INIS)

    Nesbitt, D.M.; Singh, J.; Pine, G.D.; Kline, D.; Barron, M.; Cheung, P.D.

    1989-01-01

    This paper summarizes the results from the GRI North American Regional Gas Supply-Demand Model using the four scenarios defined for the Energy Modeling Forum Number 9 (EMF-9) described in EMF-9 Working Paper 9.4 (1987). The analysis is designed both to showcase the GRI North American Regional model as well as to infer meaningful results about the North American natural gas system. The focus of the analysis is not R ampersand D per se; R ampersand D analysis using the model is conducted regularly by GRI and described elsewhere. Rather, the objective is to analyze some of the major uncertainties in the North American gas market, uncertainties that potentially affect all players including GRI. In particular, the authors seek to quantify the overall economic environment in which production, transmission, distribution, consumption, and R ampersand D decisions will be made and how different that overall environment might be under alternative assumptions. An attendant objective of this analysis has been to enlist economists from a range of organizations (producers, regulators, GRI, and consultants) to carefully scrutinize the GRI North American Regional model and results. In particular, the coauthors were assembled from diverse organizations to review and evaluate model outputs, applying their particular experience and perspective. The four EMF-9 scenarios upon which this paper is based are described in detail later in this document. Briefly, scenario one represents a world with a surfeit of gas and a relatively high oil price projection; scenario two considers a lower oil price forecast; scenario three assumes a pessimistic outlook for the gas resource base with the same oil prices as scenario one; and scenario four examines a higher level of demand for gas in the North American gas market. An important objective of this analysis is to illustrate the predictive power of multi-scenario comparisons (as contrasted with detailed analysis of any individual scenario)

  5. An investigation of the matrix sensitivity of refinery gas analysis using gas chromatography with flame ionisation detection.

    Science.gov (United States)

    Ferracci, Valerio; Brown, Andrew S; Harris, Peter M; Brown, Richard J C

    2015-02-27

    The response of a flame ionisation detector (FID) on a gas chromatograph to methane, ethane, propane, i-butane and n-butane in a series of multi-component refinery gas standards was investigated to assess the matrix sensitivity of the instrument. High-accuracy synthetic gas standards, traceable to the International System of Units, were used to minimise uncertainties. The instrument response exhibited a small dependence on the component amount fraction: this behaviour, consistent with that of another FID, was thoroughly characterised over a wide range of component amount fractions and was shown to introduce a negligible bias in the analysis of refinery gas samples, provided a suitable reference standard is employed. No significant effects of the molar volume, density and viscosity of the gas mixtures on the instrument response were observed, indicating that the FID is suitable for the analysis of refinery gas mixtures over a wide range of component amount fractions provided that appropriate drift-correction procedures are employed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Steady State Structural Analysis of High Pressure Gas Turbine Blade using Finite Element Analysis

    Science.gov (United States)

    Mazarbhuiya, Hussain Mahamed Sahed Mostafa; Murari Pandey, Krishna

    2017-08-01

    In gas turbines the major portion of performance dependency lies upon turbine blade design. Turbine blades experience very high centrifugal, axial and tangential force during power generation. While withstanding these forces blades undergo elongation. Different methods have proposed for better enhancement of the mechanical properties of blade to withstand in extreme condition. Present paper describes the stress and elongation for blades having properties of different materials. Steady state structural analysis have performed in the present work for different materials (In 625, In 718, In 738, In 738 LC, MAR M246, Ni-Cr, Ti-alloy, Ti-Al, Ti-T6, U500). Remarkable finding is that the root of the blade is subjected to maximum stress for all blade materials and the blade made of MAR M246 has less stress and deformation among all other blade materials which can be selected as a suitable material for gas turbine blade.

  7. Comparison of two derivatization methods for the analysis of fatty acids and trans fatty acids in bakery products using gas chromatography.

    Science.gov (United States)

    Salimon, Jumat; Omar, Talal A; Salih, Nadia

    2014-01-01

    Two different procedures for the methylation of fatty acids (FAs) and trans fatty acids (TFAs) in food fats were compared using gas chromatography (GC-FID). The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl) and the base-catalyzed followed by (trimethylsilyl)diazomethane (TMS-DM) method were used to prepare FA methyl esters (FAMEs) from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r) between the methods were relatively small (ranging from 0.86 to 0.99) and had a high level of agreement for the most abundant FAs. The significant differences (P = 0.05) can be observed for unsaturated FAs (UFAs), specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R) and higher variation (from 84% to 112%), especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%), and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp.) than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples.

  8. Comparison of Two Derivatization Methods for the Analysis of Fatty Acids and Trans Fatty Acids in Bakery Products Using Gas Chromatography

    Science.gov (United States)

    Salimon, Jumat; Omar, Talal A.; Salih, Nadia

    2014-01-01

    Two different procedures for the methylation of fatty acids (FAs) and trans fatty acids (TFAs) in food fats were compared using gas chromatography (GC-FID). The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl) and the base-catalyzed followed by (trimethylsilyl)diazomethane (TMS–DM) method were used to prepare FA methyl esters (FAMEs) from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r) between the methods were relatively small (ranging from 0.86 to 0.99) and had a high level of agreement for the most abundant FAs. The significant differences (P = 0.05) can be observed for unsaturated FAs (UFAs), specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R) and higher variation (from 84% to 112%), especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%), and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp.) than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples. PMID:24719581

  9. Comparison of Two Derivatization Methods for the Analysis of Fatty Acids and Trans Fatty Acids in Bakery Products Using Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Jumat Salimon

    2014-01-01

    Full Text Available Two different procedures for the methylation of fatty acids (FAs and trans fatty acids (TFAs in food fats were compared using gas chromatography (GC-FID. The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl and the base-catalyzed followed by (trimethylsilyldiazomethane (TMS–DM method were used to prepare FA methyl esters (FAMEs from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r between the methods were relatively small (ranging from 0.86 to 0.99 and had a high level of agreement for the most abundant FAs. The significant differences (P=0.05 can be observed for unsaturated FAs (UFAs, specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R and higher variation (from 84% to 112%, especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%, and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp. than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples.

  10. Benchmark calculations for evaluation methods of gas volumetric leakage rate

    International Nuclear Information System (INIS)

    Asano, R.; Aritomi, M.; Matsuzaki, M.

    1998-01-01

    A containment function of radioactive materials transport casks is essential for safe transportation to prevent the radioactive materials from being released into environment. Regulations such as IAEA standard determined the limit of radioactivity to be released. Since is not practical for the leakage tests to measure directly the radioactivity release from a package, as gas volumetric leakages rates are proposed in ANSI N14.5 and ISO standards. In our previous works, gas volumetric leakage rates for several kinds of gas from various leaks were measured and two evaluation methods, 'a simple evaluation method' and 'a strict evaluation method', were proposed based on the results. The simple evaluation method considers the friction loss of laminar flow with expansion effect. The strict evaluating method considers an exit loss in addition to the friction loss. In this study, four worked examples were completed for on assumed large spent fuel transport cask (Type B Package) with wet or dry capacity and at three transport conditions; normal transport with intact fuels or failed fuels, and an accident in transport. The standard leakage rates and criteria for two kinds of leak test were calculated for each example by each evaluation method. The following observations are made based upon the calculations and evaluations: the choked flow model of ANSI method greatly overestimates the criteria for tests ; the laminar flow models of both ANSI and ISO methods slightly overestimate the criteria for tests; the above two results are within the design margin for ordinary transport condition and all methods are useful for the evaluation; for severe condition such as failed fuel transportation, it should pay attention to apply a choked flow model of ANSI method. (authors)

  11. Gas permeation measurement under defined humidity via constant volume/variable pressure method

    KAUST Repository

    Jan Roman, Pauls

    2012-02-01

    Many industrial gas separations in which membrane processes are feasible entail high water vapour contents, as in CO 2-separation from flue gas in carbon capture and storage (CCS), or in biogas/natural gas processing. Studying the effect of water vapour on gas permeability through polymeric membranes is essential for materials design and optimization of these membrane applications. In particular, for amine-based CO 2 selective facilitated transport membranes, water vapour is necessary for carrier-complex formation (Matsuyama et al., 1996; Deng and Hägg, 2010; Liu et al., 2008; Shishatskiy et al., 2010) [1-4]. But also conventional polymeric membrane materials can vary their permeation behaviour due to water-induced swelling (Potreck, 2009) [5]. Here we describe a simple approach to gas permeability measurement in the presence of water vapour, in the form of a modified constant volume/variable pressure method (pressure increase method). © 2011 Elsevier B.V.

  12. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    International Nuclear Information System (INIS)

    Pucker, Johanna; Zwart, Robin; Jungmeier, Gerfried

    2012-01-01

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO 2 -eq.) – carbon dioxide, methane and nitrous oxide – and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O 2 -blown entrained flow, O 2 -blown circulating fluidised bed and air–steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air–steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO 2 -eq. 32 kg MWh −1 of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O 2 -blown entrained flow and O 2 -blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO 2 -eq. 41 to 75 kg MWh −1 of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO 2 -eq. 57–75 kg MWh −1 of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59–2.13 MWh MWh −1 of heat output) than for the reference systems (in 1.37–1.51 MWh MWh −1 of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by 92% when air

  13. Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Fang, Jiakun; Li, Jinghua

    2016-01-01

    Nowadays, the electric power system and natural gas network are becoming increasingly coupled and interdependent. A harmonized integration of natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables in terms of system...... flexibility. This work focuses on the steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion. A unified energy flow formulation is developed to describe the nodal balance and branch flow in both systems and it is solved with the Newton......–Raphson method. Both the unification of units and the per-unit system are proposed to simplify the system description and to enhance the computation efficiency. The applicability of the proposed method is demonstrated by analyzing an IEEE-9 test system integrated with a 7-node natural gas network. Later, time...

  14. Reliability Analysis of RSG-GAS Primary Cooling System to Support Aging Management Program

    Science.gov (United States)

    Deswandri; Subekti, M.; Sunaryo, Geni Rina

    2018-02-01

    Multipurpose Research Reactor G.A. Siwabessy (RSG-GAS) which has been operating since 1987 is one of the main facilities on supporting research, development and application of nuclear energy programs in BATAN. Until now, the RSG-GAS research reactor has been successfully operated safely and securely. However, because it has been operating for nearly 30 years, the structures, systems and components (SSCs) from the reactor would have started experiencing an aging phase. The process of aging certainly causes a decrease in reliability and safe performances of the reactor, therefore the aging management program is needed to resolve the issues. One of the programs in the aging management is to evaluate the safety and reliability of the system and also screening the critical components to be managed.One method that can be used for such purposes is the Fault Tree Analysis (FTA). In this papers FTA method is used to screening the critical components in the RSG-GAS Primary Cooling System. The evaluation results showed that the primary isolation valves are the basic events which are dominant against the system failure.

  15. Improvement of gas chromatographic analysis for organic acids and ...

    African Journals Online (AJOL)

    Yomi

    2010-08-27

    Aug 27, 2010 ... short retention time and fair recognition peak of the compounds were obtained under the ... GC for acid and solvent analysis from ABE fermentation ... FID was kept at 230°C. Nitrogen gas was used as a carrier gas at a.

  16. Comparative Analysis of Volatile Defensive Secretions of Three Species of Pyrrhocoridae (Insecta: Heteroptera by Gas Chromatography-Mass Spectrometric Method.

    Directory of Open Access Journals (Sweden)

    Jan Krajicek

    Full Text Available The true bugs (Hemiptera: Heteroptera have evolved a system of well-developed scent glands that produce diverse and frequently strongly odorous compounds that act mainly as chemical protection against predators. A new method of non-lethal sampling with subsequent separation using gas chromatography with mass spectrometric detection was proposed for analysis of these volatile defensive secretions. Separation was performed on Rtx-200 column containing fluorinated polysiloxane stationary phase. Various mechanical irritation methods (ultrasonics, shaking, pressing bugs with plunger of syringe were tested for secretion sampling with a special focus on non-lethal irritation. The preconcentration step was performed by sorption on solid phase microextraction (SPME fibers with different polarity. For optimization of sampling procedure, Pyrrhocoris apterus was selected. The entire multi-parameter optimization procedure of secretion sampling was performed using response surface methodology. The irritation of bugs by pressing them with a plunger of syringe was shown to be the most suitable. The developed method was applied to analysis of secretions produced by adult males and females of Pyrrhocoris apterus, Pyrrhocoris tibialis and Scantius aegyptius (all Heteroptera: Pyrrhocoridae. The chemical composition of secretion, particularly that of alcohols, aldehydes and esters, is species-specific in all three pyrrhocorid species studied. The sexual dimorphism in occurrence of particular compounds is largely limited to alcohols and suggests their epigamic intraspecific function. The phenetic overall similarities in composition of secretion do not reflect either relationship of species or similarities in antipredatory color pattern. The similarities of secretions may be linked with antipredatory strategies. The proposed method requires only a few individuals which remain alive after the procedure. Thus secretions of a number of species including even the rare

  17. Determination and discrimination of biodiesel fuels by gas chromatographic and chemometric methods

    Science.gov (United States)

    Milina, R.; Mustafa, Z.; Bojilov, D.; Dagnon, S.; Moskovkina, M.

    2016-03-01

    Pattern recognition method (PRM) was applied to gas chromatographic (GC) data for a fatty acid methyl esters (FAME) composition of commercial and laboratory synthesized biodiesel fuels from vegetable oils including sunflower, rapeseed, corn and palm oils. Two GC quantitative methods to calculate individual fames were compared: Area % and internal standard. The both methods were applied for analysis of two certified reference materials. The statistical processing of the obtained results demonstrates the accuracy and precision of the two methods and allows them to be compared. For further chemometric investigations of biodiesel fuels by their FAME-profiles any of those methods can be used. PRM results of FAME profiles of samples from different vegetable oils show a successful recognition of biodiesels according to the feedstock. The information obtained can be used for selection of feedstock to produce biodiesels with certain properties, for assessing their interchangeability, for fuel spillage and remedial actions in the environment.

  18. A multilevel particle method for gas dynamics: application to multi-fluids simulation

    International Nuclear Information System (INIS)

    Weynans, Lisl

    2006-12-01

    In inertial confinement fusion, laser implosions require to know hydrodynamic flow in presence of shocks. This work is devoted to the evaluation of the ability of a particle-mesh method, inspired from Vortex-In-Cell methods, to simulate gas dynamics, especially multi-fluids. First, we develop a particle method, associated with a conservative re-meshing step, which is performed with high order interpolating kernels. We study theoretically and numerically this method. This analysis gives evidence of a strong relationship between the particle method and high order Lax-Wendroff-like finite difference schemes. We introduce a new scheme for the advection of particles. Then we implement a multilevel technique, inspired from AMR, which allows us to increase locally the accuracy of the computations. Finally we develop a level set-like technique, discretized on the particles, to simulate the interface between compressible flows. We use the multilevel technique to improve the interface resolution and the conservation of partial masses. (author)

  19. Determination and discrimination of biodiesel fuels by gas chromatographic and chemometric methods

    Directory of Open Access Journals (Sweden)

    Milina R.

    2016-03-01

    Full Text Available Pattern recognition method (PRM was applied to gas chromatographic (GC data for a fatty acid methyl esters (FAME composition of commercial and laboratory synthesized biodiesel fuels from vegetable oils including sunflower, rapeseed, corn and palm oils. Two GC quantitative methods to calculate individual fames were compared: Area % and internal standard. The both methods were applied for analysis of two certified reference materials. The statistical processing of the obtained results demonstrates the accuracy and precision of the two methods and allows them to be compared. For further chemometric investigations of biodiesel fuels by their FAME-profiles any of those methods can be used. PRM results of FAME profiles of samples from different vegetable oils show a successful recognition of biodiesels according to the feedstock. The information obtained can be used for selection of feedstock to produce biodiesels with certain properties, for assessing their interchangeability, for fuel spillage and remedial actions in the environment.

  20. Applications of stable isotope analysis to atmospheric trace gas budgets

    Directory of Open Access Journals (Sweden)

    Brenninkmeijer C. A.M.

    2009-02-01

    Full Text Available Stable isotope analysis has become established as a useful method for tracing the budgets of atmospheric trace gases and even atmospheric oxygen. Several new developments are briefly discussed in a systematic way to give a practical guide to the scope of recent work. Emphasis is on applications and not on instrumental developments. Processes and reactions are less considered than applications to resolve trace gas budgets. Several new developments are promising and applications hitherto not considered to be possible may allow new uses.

  1. Gas Chromatography-Mass Spectrometric Analysis and Insecticidal ...

    African Journals Online (AJOL)

    HP

    Original Research Article. Gas Chromatography-Mass Spectrometric Analysis and ... into a natural fumigant/insecticide for the control of stored product insects. Keywords: Mallotus ..... stability as well as reduce cost. ACKNOWLEDGEMENT.

  2. Numerical simulation of interface movement in gas-liquid two-phase flows with Level Set method

    International Nuclear Information System (INIS)

    Li Huixiong; Chinese Academy of Sciences, Beijing; Deng Sheng; Chen Tingkuan; Zhao Jianfu; Wang Fei

    2005-01-01

    Numerical simulation of gas-liquid two-phase flow and heat transfer has been an attractive work for a quite long time, but still remains as a knotty difficulty due to the inherent complexities of the gas-liquid two-phase flow resulted from the existence of moving interfaces with topology changes. This paper reports the effort and the latest advances that have been made by the authors, with special emphasis on the methods for computing solutions to the advection equation of the Level set function, which is utilized to capture the moving interfaces in gas-liquid two-phase flows. Three different schemes, i.e. the simple finite difference scheme, the Superbee-TVD scheme and the 5-order WENO scheme in combination with the Runge-Kutta method are respectively applied to solve the advection equation of the Level Set. A numerical procedure based on the well-verified SIMPLER method is employed to numerically calculate the momentum equations of the two-phase flow. The above-mentioned three schemes are employed to simulate the movement of four typical interfaces under 5 typical flowing conditions. Analysis of the numerical results shows that the 5-order WENO scheme and the Superbee-TVD scheme are much better than the simple finite difference scheme, and the 5-order WENO scheme is the best to compute solutions to the advection equation of the Level Set. The 5-order WENO scheme will be employed as the main scheme to get solutions to the advection equations of the Level Set when gas-liquid two-phase flows are numerically studied in the future. (authors)

  3. Environmental analysis of natural gas life cycle

    International Nuclear Information System (INIS)

    Riva, A.; D'Angelosante, S.; Trebeschi, C.

    2000-01-01

    Life Cycle Assessment is a method aimed at identifying the environmental effects connected with a given product, process or activity during its whole life cycle. The evaluation of published studies and the application of the method to electricity production with fossil fuels, by using data from published databases and data collected by the gas industry, demonstrate the importance and difficulties to have reliable and updated data required for a significant life cycle assessment. The results show that the environmental advantages of natural gas over the other fossil fuels in the final use stage increase still further if the whole life cycle of the fuels, from production to final consumption, is taken into account [it

  4. Risk Analysis on Leakage Failure of Natural Gas Pipelines by Fuzzy Bayesian Network with a Bow-Tie Model

    Directory of Open Access Journals (Sweden)

    Xian Shan

    2017-01-01

    Full Text Available Pipeline is the major mode of natural gas transportation. Leakage of natural gas pipelines may cause explosions and fires, resulting in casualties, environmental damage, and material loss. Efficient risk analysis is of great significance for preventing and mitigating such potential accidents. The objective of this study is to present a practical risk assessment method based on Bow-tie model and Bayesian network for risk analysis of natural gas pipeline leakage. Firstly, identify the potential risk factors and consequences of the failure. Then construct the Bow-tie model, use the quantitative analysis of Bayesian network to find the weak links in the system, and make a prediction of the control measures to reduce the rate of the accident. In order to deal with the uncertainty existing in the determination of the probability of basic events, fuzzy logic method is used. Results of a case study show that the most likely causes of natural gas pipeline leakage occurrence are parties ignore signage, implicit signage, overload, and design defect of auxiliaries. Once the leakage occurs, it is most likely to result in fire and explosion. Corresponding measures taken on time will reduce the disaster degree of accidents to the least extent.

  5. A novel methylation derivatization method for δ(18)O analysis of individual carbohydrates by gas chromatography/pyrolysis-isotope ratio mass spectrometry.

    Science.gov (United States)

    Lehmann, Marco M; Fischer, Maria; Blees, Jan; Zech, Michael; Siegwolf, Rolf T W; Saurer, Matthias

    2016-01-15

    The oxygen isotope ratio (δ(18)O) of carbohydrates derived from animals, plants, sediments, and soils provides important information about biochemical and physiological processes, past environmental conditions, and geographical origins, which are otherwise not available. Nowadays, δ(18)O analyses are often performed on carbohydrate bulk material, while compound-specific δ(18)O analyses remain challenging and methods for a wide range of individual carbohydrates are rare. To improve the δ(18)O analysis of individual carbohydrates by gas chromatography/pyrolysis-isotope ratio mass spectrometry (GC/Pyr-IRMS) we developed a new methylation derivatization method. Carbohydrates were fully methylated within 24 h in an easy-to-handle one-pot reaction in acetonitrile, using silver oxide as proton acceptor, methyl iodide as methyl group carrier, and dimethyl sulfide as catalyst. The precision of the method ranged between 0.12 and 1.09‰ for the δ(18)O values of various individual carbohydrates of different classes (mono-, di-, and trisaccharides, alditols), with an accuracy of a similar order of magnitude, despite high variation in peak areas. Based on the δ(18)O values of the main isomers, important monosaccharides such as glucose and fructose could also be precisely analyzed for the first time. We tested the method on standard mixtures, honey samples, and leaf carbohydrates extracted from Pinus sylvestris, showing that the method is also applicable to different carbohydrate mixtures. The new methylation method shows unrivalled accuracy and precision for δ(18)O analysis of various individual carbohydrates; it is fast and easy-to-handle, and may therefore find wide-spread application. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Year Ahead Demand Forecast of City Natural Gas Using Seasonal Time Series Methods

    Directory of Open Access Journals (Sweden)

    Mustafa Akpinar

    2016-09-01

    Full Text Available Consumption of natural gas, a major clean energy source, increases as energy demand increases. We studied specifically the Turkish natural gas market. Turkey’s natural gas consumption increased as well in parallel with the world‘s over the last decade. This consumption growth in Turkey has led to the formation of a market structure for the natural gas industry. This significant increase requires additional investments since a rise in consumption capacity is expected. One of the reasons for the consumption increase is the user-based natural gas consumption influence. This effect yields imbalances in demand forecasts and if the error rates are out of bounds, penalties may occur. In this paper, three univariate statistical methods, which have not been previously investigated for mid-term year-ahead monthly natural gas forecasting, are used to forecast natural gas demand in Turkey’s Sakarya province. Residential and low-consumption commercial data is used, which may contain seasonality. The goal of this paper is minimizing more or less gas tractions on mid-term consumption while improving the accuracy of demand forecasting. In forecasting models, seasonality and single variable impacts reinforce forecasts. This paper studies time series decomposition, Holt-Winters exponential smoothing and autoregressive integrated moving average (ARIMA methods. Here, 2011–2014 monthly data were prepared and divided into two series. The first series is 2011–2013 monthly data used for finding seasonal effects and model requirements. The second series is 2014 monthly data used for forecasting. For the ARIMA method, a stationary series was prepared and transformation process prior to forecasting was done. Forecasting results confirmed that as the computation complexity of the model increases, forecasting accuracy increases with lower error rates. Also, forecasting errors and the coefficients of determination values give more consistent results. Consequently

  7. Gas Chromatography-Mass Spectroscopic (GC-MS) Analysis of n ...

    African Journals Online (AJOL)

    tuber-regium (synonym Pleurotus tuber regium) using gas chromatography-mass spectroscopic (GC-. MS) techniques. Methods: The n-hexane extract of the sclerotia ... Soxhlet extraction and analysed using gas chromatography-mass spectroscopic (MS) techniques. ..... Phytochemical composition of Pleurotus tuber regium.

  8. Sensitivity analysis of P-waves and S-waves to gas hydrate in the Shenhu area using OBS

    Science.gov (United States)

    Xing, Lei; Liu, Xueqin; Zhang, Jin; Liu, Huaishan; Zhang, Jing; Li, Zizheng; Wang, Jianhua

    2018-02-01

    Compared to towed streamers, ocean-bottom seismometers (OBS) obtain both S-wave data and richer wavefield information. In this paper, the induced polarization method is used to conduct wavefield separation on OBS data obtained from the Shenhu area in the South China Sea. A comparison of the changes in P- and S-waves, and a comprehensive analysis of geological factors within the area, enable analysis and description of the occurrence of natural gas hydrate in the study area. Results show an increase in P-wave velocity when natural gas hydrate exists in the formation, whereas the S-wave velocity remains almost constant, as S-waves can only propagate through the rock skeleton. Therefore, the bottom-simulating reflection (BSR) response of the P-wave is better than that of the S-wave in the frequency analysis profile. In a wide-angle section, the refractive wave of the hydrate layer is evident when using P-wave components but identification is difficult with S-wave components. This velocity model illustrates the sensitivity of P- and S-wave components to gas hydrate. The use of this polarization method and results of analysis provide technical and theoretical support for research on hydrate deposits and other geological features in the Shenhu area.

  9. REVIEW ARTICLE: MODELLING AND ANALYSIS OF A GASOLINE ENGINE EXHAUST GAS SYSTEMS

    OpenAIRE

    Barhm Mohamad

    2018-01-01

    The engine exhaust gas behaviour is strongly influencing the engine performance. This paper presents the modelling and analysis of four stroke - gasoline engine exhaust gas systems. An automotive example is considered whereby the pulsating exhausts gas flow through an exhaust pipe and silencer are considered over a wide range of speeds. Analytical procedures are outlined enabling the general analysis and modelling of vehicle engine exhaust gas systems also in this paper present...

  10. Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property

    International Nuclear Information System (INIS)

    Tian, Yu; Li, Jinchai; Xiong, Hui; Dai, Jiangnan

    2012-01-01

    Highlights: ► Zn powder as precursor template for synthesis ZnO hollow spheres. ► Different precursor templates result in different ZnO nanostructures. ► Different experimental conditions enable growth of different surface morphologies of ZnO sphere. ► ZnO hollow sphere materials have good gas sensing performance for detecting ethanol gas. - Abstract: Using Zn powder as precursor templates, ZnO hollow microspheres were successfully prepared by thermal evaporation method and characterized by X-ray diffraction analysis, scanning electron microscope and transmission electron microscope. It was found that different size and shape of precursor resulted in different ZnO nanostructures. When varying experimental conditions, such as air flow rate and working pressure, ZnO hollow spheres with different surface morphologies could be obtained. The advantages of the present synthetic technology are simple, relatively low cost, and high reproducibility. A gas sensor was fabricated from the as-prepared ZnO hollow microspheres and tested to the ethanol gas at different operating temperatures.

  11. Nondestructive fission gas release measurement and analysis

    International Nuclear Information System (INIS)

    O'Leary, P.M.; Packard, D.R.

    1993-01-01

    Siemens Power Corporation (SPC) has performed reactor poolside gamma scanning measurements of fuel rods for fission gas release (FGR) detection for more than 10 yr. The measurement system has been previously described. Over the years, the data acquisition system, the method of spectrum analysis, and the means of reducing spectrum interference have been significantly improved. A personal computer (PC)-based multichannel analyzer (MCA) package is used to collect, display, and store high-resolution gamma-ray spectra measured in the fuel rod plenum. A PC spread sheet is used to fit the measured spectra and compute sample count rates after Compton background subtraction. A Zircaloy plenum spacer is often used to reduce positron annihilation interference that can arise from the INCONEL reg-sign plenum spring used in SPC-manufactured fuel rods

  12. Headspace gas chromatographic method for the measurement of difluoroethane in blood.

    Science.gov (United States)

    Broussard, L A; Broussard, A; Pittman, T; Lafferty, D; Presley, L

    2001-01-01

    To develop a gas chromatographic assay for the analysis of difluoroethane, a volatile substance, in blood and to determine assay characteristics including linearity, limit of quantitation, precision, and specificity. Referral toxicology laboratory Difluoroethane, a colorless, odorless, highly flammable gas used as a refrigerant blend component and aerosol propellant, may be abused via inhalation. A headspace gas chromatographic procedure for the identification and quantitation of difluoroethane in blood is presented. A methanolic stock standard prepared from pure gaseous difluoroethane was used to prepare whole blood calibrators. Quantitation of difluoroethane was performed using a six-point calibration curve and an internal standard of 1-propanol. The assay is linear from 0 to 115 mg/L including a low calibrator at 4 mg/L, the limit of quantitation. Within-run coefficients of variation at mean concentrations of 13.8 mg/L and 38.5 mg/L were 5.8% and 6.8% respectively. Between-run coefficients of variation at mean concentrations of 15.9 mg/L and 45.7 mg/L were 13.4% and 9.8% respectively. Several volatile substances were tested as potential interfering compounds with propane having a retention time identical to that of difluoroethane. This method requires minimal sample preparation, is rapid and reproducible, can be modified for the quantitation of other volatiles, and could be automated using an automatic sampler/injector system.

  13. Multielement methods of atomic fluorescence analysis of enviromental samples

    International Nuclear Information System (INIS)

    Rigin, V.I.

    1985-01-01

    A multielement method of atomic fluorescence analysis of environmental samples based on sample decomposition by autoclave fluorination and gas-phase atomization of volatile compounds in inductive araon plasma using a nondispersive polychromator is suggested. Detection limits of some elements (Be, Sr, Cd, V, Mo, Te, Ru etc.) for different sample forms introduced in to an analyzer are given

  14. Method and apparatus for isotope separation from a gas stream

    International Nuclear Information System (INIS)

    Szoke, A.

    1978-01-01

    A method and apparatus are described for isotope separation and in particular for separating the desired isotope from the gas in which it is contained by irradiating it with a laser. The laser selectively provides kinetic energy to the isotope through inelastic events, monomolecular or bimolecular, in order to cause it to segregate within or fly out of the gas stream in which it is contained

  15. LHCb: A novel method for an absolute luminosity measurement at LHCb using beam-gas imaging

    CERN Multimedia

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used van der Meer scan method (VDM). This poster presents the principles of the Beam Gas Imaging method used to measure the beam overlap integral. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch.

  16. Gas generation and migration analysis for TRU waste disposal system

    International Nuclear Information System (INIS)

    Ando, Kenichi; Noda, Masaru; Yamamoto, Mikihiko; Mihara, Morihiro

    2005-09-01

    In TRU waste disposal system, significant quantities of gases may be generated due to metal corrosion, radiolysis effect and microorganism activities. It is therefore recommended that the potential impact of gas generation and migration on TRU waste repository should be evaluated. In this study, gas generation rates were calculated in the repository and gas migration analysis in the disposal system were carried out using two phase flow model with results of gas generation rates. First, the time dependencies of gas generation rate in each TRU waste repositories were evaluated based on amounts of metal, organic matter and radioactivity. Next, the accumulation pressure of gases and expelled pore water volume nuclides in the repository were calculated by TOUGH2 code. After that, the results showed that the increase of gas pressure was the range of 1.3 to 1.4 MPa. In the repository with and without buffer, the rate of expelled pore water was 0.006 - 0.009 m 3 /y and 0.018 - 0.24m 3 /y, respectively. In addition, the radioactive gas migration through the repository and geosphere are evaluated. And re-saturation analysis is also performed to evaluate the initial condition of the system. (author)

  17. Gas Chromatography-Mass Spectrometric Analysis of Nematicidal ...

    African Journals Online (AJOL)

    Gas Chromatography-Mass Spectrometric Analysis of Nematicidal Essential Oil of Valeriana ... Tropical Journal of Pharmaceutical Research ... have a potential to be developed to natural nematicides for the control of cereal cyst nematodes.

  18. Gas analysis during the chemical vapor deposition of carbon

    International Nuclear Information System (INIS)

    Lieberman, M.L.; Noles, G.T.

    1973-01-01

    Gas chromatographic analyses were performed during the chemical vapor deposition of carbon in both isothermal and thermal gradient systems. Such data offer insight into the gas phase processes which occur during deposition and the interrelations which exist between gas composition, deposition rate, and resultant structure of the deposit. The results support a carbon CVD model presented previously. The application of chromatographic analysis to research, development, and full-scale facilities is shown. (U.S.)

  19. Design and performance analysis of gas and liquid radial turbines

    Science.gov (United States)

    Tan, Xu

    In the first part of the research, pumps running in reverse as turbines are studied. This work uses experimental data of wide range of pumps representing the centrifugal pumps' configurations in terms of specific speed. Based on specific speed and specific diameter an accurate correlation is developed to predict the performances at best efficiency point of the centrifugal pump in its turbine mode operation. The proposed prediction method yields very good results to date compared to previous such attempts. The present method is compared to nine previous methods found in the literature. The comparison results show that the method proposed in this paper is the most accurate. The proposed method can be further complemented and supplemented by more future tests to increase its accuracy. The proposed method is meaningful because it is based both specific speed and specific diameter. The second part of the research is focused on the design and analysis of the radial gas turbine. The specification of the turbine is obtained from the solar biogas hybrid system. The system is theoretically analyzed and constructed based on the purchased compressor. Theoretical analysis results in a specification of 100lb/min, 900ºC inlet total temperature and 1.575atm inlet total pressure. 1-D and 3-D geometry of the rotor is generated based on Aungier's method. 1-D loss model analysis and 3-D CFD simulations are performed to examine the performances of the rotor. The total-to-total efficiency of the rotor is more than 90%. With the help of CFD analysis, modifications on the preliminary design obtained optimized aerodynamic performances. At last, the theoretical performance analysis on the hybrid system is performed with the designed turbine.

  20. Methods to assess high-resolution subsurface gas concentrations and gas fluxes in wetland ecosystems

    DEFF Research Database (Denmark)

    Elberling, Bo; Kühl, Michael; Glud, Ronnie Nøhr

    2013-01-01

    The need for measurements of soil gas concentrations and surface fluxes of greenhouse gases at high temporal and spatial resolution in wetland ecosystem has lead to the introduction of several new analytical techniques and methods. In addition to the automated flux chamber methodology for high-re...

  1. Optimal Energy Consumption Analysis of Natural Gas Pipeline

    Science.gov (United States)

    Liu, Enbin; Li, Changjun; Yang, Yi

    2014-01-01

    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent. PMID:24955410

  2. Quantitative analysis of bowel gas by plain abdominal radiograph combined with computer image processing

    International Nuclear Information System (INIS)

    Gao Yan; Peng Kewen; Zhang Houde; Shen Bixian; Xiao Hanxin; Cai Juan

    2003-01-01

    Objective: To establish a method for quantitative analysis of bowel gas by plain abdominal radiograph and computer graphics. Methods: Plain abdominal radiographs in supine position from 25 patients with irritable bowel syndrome (IBS) and 20 health controls were studied. A gastroenterologist and a radiologist independently conducted the following procedure on each radiograph. After the outline of bowel gas was traced by axe pen, the radiograph was digitized by a digital camera and transmitted to the computer with Histogram software. The total gas area was determined as the pixel value on images. The ratio of the bowel gas quantity to the pixel value in the region surrounded by a horizontal line tangential to the superior pubic symphysis margin, a horizontal line tangential to the tenth dorsal vertebra inferior margin, and the lateral line tangential to the right and left anteriosuperior iliac crest, was defined as the gas volume score (GVS). To examine the sequential reproducibility, a second plain abdominal radiograph was performed in 5 normal controls 1 week later, and the GVS were compared. Results: Bowel gas was easily identified on the plain abdominal radiograph. Both large and small intestine located in the selected region. Both observers could finish one radiographic measurement in less than 10 mins. The correlation coefficient between the two observers was 0.986. There was no statistical difference on GVS between the two sequential radiographs in 5 health controls. Conclusion: Quantification of bowel gas based on plain abdominal radiograph and computer is simple, rapid, and reliable

  3. Appropriate xenon-inhalation speed in xenon-enhanced CT using the end-tidal gas-sampling method

    International Nuclear Information System (INIS)

    Suga, Sadao; Toya, Shigeo; Kawase, Takeshi; Koyama, Hideki; Shiga, Hayao

    1986-01-01

    This report describes some problems when end-tidal xenon gas is substituted for the arterial xenon concentration in xenon-enhanced CT. The authors used a newly developed xenon inhalator with a xenon-gas-concentration analyzer and performed xenon-enhanced CT by means of the ''arterio-venous shunt'' method and the ''end-tidal gas-sampling'' method simultaneously. By the former method, the arterial build-up rate (K) was obtained directly from the CT slices of a blood circuit passing through the phantom. By the latter method, it was calculated from the xenon concentration of end-tidal gas sampled from the mask. The speed of xenon supply was varied between 0.6 - 1.2 L/min. in 11 patients with or without a cerebral lesion. The results revealed that rapid xenon inhalation caused a discrepancy in the arterial K between the ''shunt'' method and the ''end-tidal'' method. This discrepancy may be responsible for the mixing of inhalated gas and expired gas in respiratory dead space, such as the nasal cavity or the mask. The cerebral blood flow was underestimated because of the higher arterial K in the latter method. Too much slow inhalation, however, was timewasting, and it increased the body motion in the subanesthetic state. Therefore, an inhalation speed of the arterial K of as much as 0.2 was ideal to represent the end-tidal xenon concentration for the arterial K in the ''end-tidal gas-sampling'' method. When attention is given to this point, this method may offer a reliable absolute value in xenon-enhanced CT. (author)

  4. Application of geoelectric methods for man-caused gas deposit mapping and monitoring

    Science.gov (United States)

    Yakymchuk, M. A.; Levashov, S. P.; Korchagin, I. N.; Syniuk, B. B.

    2009-04-01

    The rather new application of original geoelectric methods of forming of short-pulsed electromagnetic field (FSPEF) and vertical electric-resonance sounding (VERS) (FSPEF-VERS technology) (Levashov et al., 2003; 2004) is discussed. In 2008 the FSPEF-VERS methods were used for ascertaining the reasons of serious man-caused accident on gas field. The emission of water with gas has occurred near an operational well on one gas field. The assumption was discussed, that some part of gas from producing horizons has got into the upper horizons, in aquiferous stratum layers. It promoted creation of superfluous pressure in aquiferous stratums which has led to accident on the field. Operative geophysical investigations within an accident site were carried out by FSPEF and VERS geoelectric methods on 07.10.08 and 13.10.08 on the first stage. The primary goal of executed works was detection and mapping of gas penetration zones in aquiferous stratums of cross-section upper part, and also the determination of bedding depths and a total area of distribution of gas in upper aquiferous stratums. The anomalous zone were revealed and mapped by FSPEF survey. It is caused by raised migration of water in upper horizons of a cross-section. The depths of anomalous polarized layers (APL) of "gas" and „aquiferous stratum" type were defined by VERS method. The VERS data are presented by sounding diagram's and columns, by vertical cross-sections lengthways and transversely of gas penetration zones, by map of thicknesses of man-caused gas "deposit". The perforation on depths of 450 and 310 m was spent in a producing borehole on the first day investigation data. Gas discharges were received from 450 and 310 m depths. Three degassing boreholes have been drilled on 08.11.08 working day. Depths of wells are about 340 m. Gas inflows were received from 330 m depth. Drilling of fourth well was conducted. The anomalous zone area has decreased twice in comparison with two previous surveys. So, the

  5. A Fisher’s Criterion-Based Linear Discriminant Analysis for Predicting the Critical Values of Coal and Gas Outbursts Using the Initial Gas Flow in a Borehole

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2017-01-01

    Full Text Available The risk of coal and gas outbursts can be predicted using a method that is linear and continuous and based on the initial gas flow in the borehole (IGFB; this method is significantly superior to the traditional point prediction method. Acquiring accurate critical values is the key to ensuring accurate predictions. Based on ideal rock cross-cut coal uncovering model, the IGFB measurement device was developed. The present study measured the data of the initial gas flow over 3 min in a 1 m long borehole with a diameter of 42 mm in the laboratory. A total of 48 sets of data were obtained. These data were fuzzy and chaotic. Fisher’s discrimination method was able to transform these spatial data, which were multidimensional due to the factors influencing the IGFB, into a one-dimensional function and determine its critical value. Then, by processing the data into a normal distribution, the critical values of the outbursts were analyzed using linear discriminant analysis with Fisher’s criterion. The weak and strong outbursts had critical values of 36.63 L and 80.85 L, respectively, and the accuracy of the back-discriminant analysis for the weak and strong outbursts was 94.74% and 92.86%, respectively. Eight outburst tests were simulated in the laboratory, the reverse verification accuracy was 100%, and the accuracy of the critical value was verified.

  6. Gas-kinetic analysis of multicomponent vacuum systems by the method of equivalent surfaces

    International Nuclear Information System (INIS)

    Ershov, B.D.; Sakaganskii, G.L.

    A method is proposed for the analysis of molecular flows in complicated vacuum systems. Essentially, it involves the transposition of solutions for a number of elemental structural components. The basic analytic relationships and tables are given and the method is illustrated by analyzing a specific system

  7. Electron probe micro-analysis of gas bubbles in solids: a novel approach

    International Nuclear Information System (INIS)

    Verwerft, M.; Vos, B.

    1999-01-01

    The local analysis of retained noble gas in nuclear fuel is inherently difficult since the physical form under which it is stored varies from atomically dispersed to bubbles with a diameter of several hundreds of nanometers. One of the techniques that has been applied since pore than twenty years is EPMA. Although many important results have been obtained with this technique, its application to the analysis of highly inhomogeneous materials is limited. The EPMA technique is indeed difficult to apply to samples that are not homogeneous on the scale of the electron-solid interaction volume. The paper discusses the development of a method to analyse a system of as bubbles distributed in a solid matrix. This method has been based on a multiple voltage EPMA measurement combined with a scanning Electron Microscopic analysis of the bubble size distribution

  8. Potential application of gas chromatography to the analysis of hydrogen isotopes

    International Nuclear Information System (INIS)

    Warner, D.K.; Sprague, R.E.; Bohl, D.R.

    1976-01-01

    Gas chromatography is used at Mound Laboratory for the analysis of hydrogen isotopic impurities in gas mixtures. This instrumentation was used to study the applicability of the gas chromatography technique to the determination of the major components of hydrogen isotopic gas mixtures. The results of this study, including chromatograms and precision data, are presented

  9. Quantitative analysis of higher hydrocarbons in natural gas using coupled solid-phase extraction / supercritiacal fluid extraction with on-line GC analysis

    NARCIS (Netherlands)

    Janssen, J.G.M.; Cramers, C.A.M.G.; Meulen-Kuijk, van der L.; Smit, A.L.C.; Sandra, P.; Devos, G.

    1993-01-01

    Characterisation of natural gas with respect to the hydrocarbon content is a challenging analytical problem due to the extremely low concentrations and the complexity of the matrix. In this publication a method is described for fully on-line preconcentration and analysis of n-nonane and higher

  10. Modulation method of scroll compressor based on suction gas bypass

    International Nuclear Information System (INIS)

    Wang Baolong; Han Linjun; Shi Wenxing; Li Xianting

    2012-01-01

    The air conditioners and heat pumps tend to work in much mild environments and part load situations rather than provide the rated full capacity under severe rated testing conditions. Both the capacity and inner compression ratio of the compressor should be regulated according to the working condition for higher energy efficiency and occupants’ comfort. A potential modulating technology of the scroll compressor, suction gas bypass, is investigated in this paper. The principle and operation method are illuminated and the adaptability is validated by experiments and simulations. As a conclusion, an appropriate suction gas bypass can reduce the inner compression loss of the scroll compressor under over compression conditions, enhance the system COP and also largely decrease the heating/cooling capacity of the refrigeration/heat pump system. - Highlights: ► Suction gas bypass (SGB) is an effective regulating method of scroll compressor. ► SGB reduces the inner compression loss under over compression conditions. ► SGB largely decreases the heating/cooling capacity of the refrigeration system.

  11. Thermal performance of gas turbine power plant based on exergy analysis

    International Nuclear Information System (INIS)

    Ibrahim, Thamir K.; Basrawi, Firdaus; Awad, Omar I.; Abdullah, Ahmed N.; Najafi, G.; Mamat, Rizlman; Hagos, F.Y.

    2017-01-01

    Highlights: • Modelling theoretical framework for the energy and exergy analysis of the Gas turbine. • Investigated the effects of ambient temperature on the energy and exergy performance. • The maximum exergy loss occurs in the gas turbine components. - Abstract: This study is about energy and exergy analysis of gas turbine power plant. Energy analysis is more quantitatively while exergy analysis is about the same but with the addition of qualitatively. The lack quality of the thermodynamic process in the system leads to waste of potential energy, also known as exergy destruction which affects the efficiency of the power plant. By using the first and second law of thermodynamics, the model for the gas turbine power plant is built. Each component in the thermal system which is an air compressor, combustion chamber and gas turbine play roles in affecting the efficiency of the gas turbine power plant. The exergy flow rate for the compressor (AC), the combustion chamber (CC) and the gas turbine (GT) inlet and outlet are calculated based on the physical exergy and chemical exergy. The exergy destruction calculation based on the difference between the exergy flow in and exergy flow out of the component. The combustion chamber has the highest exergy destruction. The air compressor has 94.9% and 92% of exergy and energy efficiency respectively. The combustion chamber has 67.5% and 61.8% of exergy and energy efficiency respectively while gas turbine has 92% and 82% of exergy and energy efficiency respectively. For the overall efficiency, the plant has 32.4% and 34.3% exergy and energy efficiency respectively. To enhance the efficiency, the intake air temperature should be reduced, modify the combustion chamber to have the better air-fuel ratio and increase the capability of the gas turbine to receive high inlet temperature.

  12. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    International Nuclear Information System (INIS)

    William S. Charlton

    1999-01-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels

  13. Analysis of gas turbine systems for sustainable energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Anheden, Marie

    2000-02-01

    Increased energy demands and fear of global warming due to the emission of greenhouse gases call for development of new efficient power generation systems with low or no carbon dioxide (CO{sub 2}) emissions. In this thesis, two different gas turbine power generation systems, which are designed with these issues in mind, are theoretically investigated and analyzed. In the first gas turbine system, the fuel is combusted using a metal oxide as an oxidant instead of oxygen in the air. This process is known as Chemical Looping Combustion (CLC). CLC is claimed to decrease combustion exergy destruction and increase the power generation efficiency. Another advantage is the possibility to separate CO{sub 2} without a costly and energy demanding gas separation process. The system analysis presented includes computer-based simulations of CLC gas turbine systems with different metal oxides as oxygen carriers and different fuels. An exergy analysis comparing the exergy destruction of the gas turbine system with CLC and conventional combustion is also presented. The results show that it is theoretically possible to increase the power generation efficiency of a simple gas turbine system by introducing CLC. A combined gas/steam turbine cycle system with CLC is, however, estimated to reach a similar efficiency as the conventional combined cycle system. If the benefit of easy and energy-efficient CO{sub 2} separation is accounted for, a CLC combined cycle system has a potential to be favorable compared to a combined cycle system with CO{sub 2} separation. In the second investigation, a solid, CO{sub 2}-neutral biomass fuel is used in a small-scale externally fired gas turbine system for cogeneration of power and district heating. Both open and closed gas turbines with different working fluids are simulated and analyzed regarding thermodynamic performance, equipment size, and economics. The results show that it is possible to reach high power generation efficiency and total (power

  14. Economic impact analysis of natural gas development and the policy implications

    International Nuclear Information System (INIS)

    De Silva, P.N.K.; Simons, S.J.R.; Stevens, P.

    2016-01-01

    In the US, the shale gas revolution ensured that the development costs of unconventional natural gas plummeted to the levels of $2–3/Mcf. This success has motivated the development of shale gas in other regions, including Australia and Europe. This study, focussing primarily on aspects of economic impact analysis, estimates the development costs of shale gas extraction in both Australia and Europe, based on both direct and fiscal costs, and also suggests policy initiatives. The increasing liquefied natural gas (LNG) developments in Australia are already straining domestic gas supplies. Hence, the development of more natural gas resources has been given a high priority. However, a majority of the Australian shale resources is non-marine in origin and significantly different to the marine-type shales in the US. In addition, the challenges of high development costs and the lack of infrastructure, service capacity and effective government policy are inhibiting shale gas development. Increasing the attractiveness of low risk investment by new, local, developers is critical for Australian shale gas success, which will simultaneously increase domestic gas security. In the European context, unconventional gas development will be challenged by direct, rather than fiscal costs. High direct costs will translate into average overall gas development costs over $13/Mcf, which is well over the existing market price. - Highlights: • The shale gas development potential of US, Europe and Australia are compared. • An economic impact analysis of shale gas development in Europe and Australia. • Factors important for shale gas development are discussed. • Policy pathways are suggested for shale gas development

  15. Analytical resource assessment method for continuous (unconventional) oil and gas accumulations - The "ACCESS" Method

    Science.gov (United States)

    Crovelli, Robert A.; revised by Charpentier, Ronald R.

    2012-01-01

    The U.S. Geological Survey (USGS) periodically assesses petroleum resources of areas within the United States and the world. The purpose of this report is to explain the development of an analytic probabilistic method and spreadsheet software system called Analytic Cell-Based Continuous Energy Spreadsheet System (ACCESS). The ACCESS method is based upon mathematical equations derived from probability theory. The ACCESS spreadsheet can be used to calculate estimates of the undeveloped oil, gas, and NGL (natural gas liquids) resources in a continuous-type assessment unit. An assessment unit is a mappable volume of rock in a total petroleum system. In this report, the geologic assessment model is defined first, the analytic probabilistic method is described second, and the spreadsheet ACCESS is described third. In this revised version of Open-File Report 00-044 , the text has been updated to reflect modifications that were made to the ACCESS program. Two versions of the program are added as appendixes.

  16. Analysis of graphite dust deposition in hot gas duct of HTGR

    International Nuclear Information System (INIS)

    Peng Wei; Zhen Ya'nan; Yang Xiaoyong; Ye Ping

    2013-01-01

    The behavior of the graphite dust is important to the safety of high-temperature gas-cooled reactor (HTGR). The temperature field in hot gas duct was obtained using computational fluid dynamics (CFD) method. Further analysis to the thermo-phoretic deposition and turbulent deposition shows that as the dust particle diameter increases, the thermo-phoretic deposition efficiency decreases, and the turbulent deposition efficiency initially decreases and then increases. The comparisons of calculation results for two reactor powers, namely 30% FP (full power) and 100 % FP, indicate that the thermo-phoretic deposition efficiency is higher at 30% FP than that at 100% FP. while the turbulent deposition efficiency grows more rapidly at 100% FP. Besides, the results also demonstrate that the thermo-phoretic deposition and the turbulent deposition are nearly equivalent when particle sizes are small, while the turbulent deposition becomes dominant when particle sizes are fairly large. The calculation results by using the most probable distribution of particle size show that the total deposition of graphite dusts in hot gas duct is limited. (authors)

  17. Laser Gas-Analyser for Monitoring a Source of Gas Pollution

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2015-01-01

    Full Text Available Currently, the problem of growing air pollution of the Earth is of relevance. Many countries have taken measures to protect the environment in order to limit the negative anthropogenic impacts.In such a situation an objective information on the actual content of pollutants in the atmosphere is of importance. For operational inspection of the pollutant concentrations and for monitoring pollution sources, it is necessary to create high-speed high-sensitivity gas analysers.Laser meters are the most effective to provide operational remote and local inspection of gas pollution of the Earth atmosphere.Laser meter for routine gas analysis should conduct operational analysis of the gas mixture (air. For this a development of appropriate information support is required.Such information support should include a database with absorption coefficients of pollutants (specific to potential sources of pollution at possible measuring wavelengths (holding data for a particular emitter of the laser meter and an efficient algorithms to search the measuring wavelengths and conduct a quantitative analysis of gas mixtures.Currently, the issues, important for practice and related to the development of information support for the laser gas analyzer to conduct important for practice routine measurements remain unclear.In this paper we develop an algorithm to provide an operational search of the measuring wavelengths of laser gas analyser and an algorithm to recover quantitively the gaseous component concentrations of controlled gas mixture from the laser multi-spectral measurements that take into account a priori information about the source-controlled gas pollution and do not require a large amount of computation. The method of mathematical simulation shows the effectiveness of the algorithms described both for seach of measuring wavelengths and for quantitative analysis of gas releases.

  18. Rotordynamic analysis for stepped-labyrinth gas seals using moody's friction-factor model

    International Nuclear Information System (INIS)

    Ha, Tae Woong

    2001-01-01

    The governing equations are derived for the analysis of a stepped labyrinth gas seal generally used in high performance compressors, gas turbines, and steam turbines. The bulk-flow is assumed for a single cavity control volume set up in a stepped labyrinth cavity and the flow is assumed to be completely turbulent in the circumferential direction. The Moody's wall-friction-factor model is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the stepped labyrinth gas seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the stepped labyrinth gas seal. The resulting leakage and rotordynamic characteristics of the stepped labyrinth gas seal are presented and compared with Scharrer's theoretical analysis using Blasius' wall-friction-factor model. The present analysis shows a good qualitative agreement of leakage characteristics with Scharrer's analysis, but underpredicts by about 20 %. For the rotordynamic coefficients, the present analysis generally yields smaller predicted values compared with Scharrer's analysis

  19. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  20. A multi-residue method for the analysis of pesticides and pesticide degradates in water using HLB solid-phase extraction and gas chromatography-ion trap mass spectrometry

    Science.gov (United States)

    Hladik, M.L.; Smalling, K.L.; Kuivila, K.M.

    2008-01-01

    A method was developed for the analysis of over 60 pesticides and degradates in water by HLB solid-phase extraction and gas-chromatography/mass spectrometry. Method recoveries and detection limits were determined using two surface waters with different dissolved organic carbon (DOC) concentrations. In the lower DOC water, recoveries and detection limits were 80%-108% and 1-12 ng/L, respectively. In the higher DOC water, the detection limits were slightly higher (1-15 ng/L). Additionally, surface water samples from four sites were analyzed and 14 pesticides were detected with concentrations ranging from 4 to 1,200 ng/L. ?? 2008 Springer Science+Business Media, LLC.

  1. Analysis of Maisotsenko open gas turbine bottoming cycle

    International Nuclear Information System (INIS)

    Saghafifar, Mohammad; Gadalla, Mohamed

    2015-01-01

    Maisotsenko gas turbine cycle (MGTC) is a recently proposed humid air turbine cycle. An air saturator is employed for air heating and humidification purposes in MGTC. In this paper, MGTC is integrated as the bottoming cycle to a topping simple gas turbine as Maisotsenko bottoming cycle (MBC). A thermodynamic optimization is performed to illustrate the advantages and disadvantages of MBC as compared with air bottoming cycle (ABC). Furthermore, detailed sensitivity analysis is reported to present the effect of different operating parameters on the proposed configurations' performance. Efficiency enhancement of 3.7% is reported which results in more than 2600 tonne of natural gas fuel savings per year. - Highlights: • Developed an accurate air saturator model. • Introduced Maisotsenko bottoming cycle (MBC) as a power generation cycle. • Performed Thermodynamic optimization for MBC and air bottoming cycle (ABC). • Performed detailed sensitivity analysis for MBC under different operating conditions. • MBC has higher efficiency and specific net work output as compared to ABC

  2. A purge-and-trap capillary column gas chromatographic method for the measurement of halocarbons in water and air

    Energy Technology Data Exchange (ETDEWEB)

    Happell, J.D.; Wallace, D.W.R.; Wills, K.D.; Wilke, R.J.; Neill, C.C.

    1996-06-01

    This report describes an automated, accurate, precise and sensitive capillary column purge- and -trap method capable of quantifying CFC-12, CFC-11, CFC-113, CH{sub 3}CCL{sub 3}, and CCL{sub 4} during a single chromatographic analysis in either water or gas phase samples.

  3. Off-gas processing method in reprocessing plant

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji.

    1990-01-01

    Off-gases containing a radioactive Kr gas generated in a nuclear fuel reprocessing plant are at first sent to a Kr gas separator. Then, the radioactive Kr gas extracted there is introduced to a Kr gas fixing device. A pretreatment and a post-treatment are applied by using a non-radioactive clean inert gas except for the Kr gas as a purge gas. If the radioactive Kr gas is contained in the off-gases discharged from the Kr gas fixing device after applying the post-treatment, the off gases are returned to the Kr gas separator. Accordingly, in a case where the radioactive Kr gas is contained in the off-gases discharged from the Kr gas fixing device, it is not necessary to apply the fixing treatment to all of the off gases. In view of the above, increase of the amount of processing gases can be suppressed and the radioactive Kr gas can be fixed efficiently and economically. (I.N.)

  4. Analysis of trace levels of impurities and hydrogen isotopes in helium purge gas using gas chromatography for tritium extraction system of an Indian lead lithium ceramic breeder test blanket module.

    Science.gov (United States)

    Devi, V Gayathri; Sircar, Amit; Yadav, Deepak; Parmar, Jayraj

    2018-01-12

    In the fusion fuel cycle, the accurate analysis and understanding of the chemical composition of any gas mixture is of great importance for the efficient design of a tritium extraction and purification system or any tritium handling system. Methods like laser Raman spectroscopy and gas chromatography with thermal conductivity detector have been considered for hydrogen isotopes analyses in fuel cycles. Gas chromatography with a cryogenic separation column has been used for the analysis of hydrogen isotopes gas mixtures in general due to its high reliability and ease of operation. Hydrogen isotopes gas mixture analysis with cryogenic columns has been reported earlier using different column materials for percentage level composition. In the present work, trace levels of hydrogen isotopes (∼100 ppm of H 2 and D 2 ) have been analyzed with a Zeolite 5A and a modified γ-Al 2 O 3 column. Impurities in He gas (∼10 ppm of H 2 , O 2 , and N 2 ) have been analyzed using a Zeolite 13-X column. Gas chromatography with discharge ionization detection has been utilized for this purpose. The results of these experiments suggest that the columns developed were able to separate ppm levels of the desired components with a small response time (<6 min) and good resolution in both cases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Bifurcation and nonlinear dynamic analysis of a flexible rotor supported by relative short gas journal bearings

    International Nuclear Information System (INIS)

    Wang, C.-C.; Jang, M.-J.; Yeh, Y.-L.

    2007-01-01

    This paper studies the bifurcation and nonlinear behaviors of a flexible rotor supported by relative short gas film bearings. A time-dependent mathematical model for gas journal bearings is presented. The finite difference method with successive over relation method is employed to solve the Reynolds' equation. The system state trajectory, Poincare maps, power spectra, and bifurcation diagrams are used to analyze the dynamic behavior of the rotor and journal center in the horizontal and vertical directions under different operating conditions. The analysis reveals a complex dynamic behavior comprising periodic and subharmonic response of the rotor and journal center. This paper shows how the dynamic behavior of this type of system varies with changes in rotor mass and rotational velocity. The results of this study contribute to a further understanding of the nonlinear dynamics of gas film rotor-bearing systems

  6. Retained Gas Sampler Calibration and Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)

    CRAWFORD, B.A.

    2000-01-05

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis.

  7. Retained Gas Sampler Calibration and Simulant Tests

    International Nuclear Information System (INIS)

    CRAWFORD, B.A.

    2000-01-01

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis

  8. Standard test methods for analysis of sintered gadolinium oxide-uranium dioxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 These test methods cover procedures for the analysis of sintered gadolinium oxide-uranium dioxide pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Section Carbon (Total) by Direct CombustionThermal Conductivity Method C1408 Test Method for Carbon (Total) in Uranium Oxide Powders and Pellets By Direct Combustion-Infrared Detection Method Chlorine and Fluorine by Pyrohydrolysis Ion-Selective Electrode Method C1502 Test Method for Determination of Total Chlorine and Fluorine in Uranium Dioxide and Gadolinium Oxide Gadolinia Content by Energy-Dispersive X-Ray Spectrometry C1456 Test Method for Determination of Uranium or Gadolinium, or Both, in Gadolinium Oxide-Uranium Oxide Pellets or by X-Ray Fluorescence (XRF) Hydrogen by Inert Gas Fusion C1457 Test Method for Determination of Total Hydrogen Content of Uranium Oxide Powders and Pellets by Carrier Gas Extraction Isotopic Uranium Composition by Multiple-Filament Surface-Ioni...

  9. Methods for analysis of PAH and BTEX in groundwater from gas stations: a case study in Campo Grande, MS, Brazil

    International Nuclear Information System (INIS)

    Gebara, Samya Soler; Re-Poppi, Nilva; Nascimento, Andre Luiz Carneiro Soares; Raposo Junior, Jorge Luiz

    2013-01-01

    Two methods using headspace solid-phase microextraction and gas chromatography–mass spectrometry were developed for the determination of polycyclic aromatic hydrocarbons (PAH) and BTEX. Best results were obtained using DVB/CAR/PDMS fiber, with 10 min extraction at 25 °C and 0.15 min desorption at 260 °C (BTEX), and PDMS/DVB fiber, with 60 min extraction at 90 °C, 10% NaCl and 5 min desorption at 270 °C (PAH). LOD intervals were 3x10 -2 – 5x10 -2 μg L -1 (BTEX) and 1.6x10 -3 - 1.4 μg L -1 (PAH). The methods were applied to forty-five groundwater samples from monitoring wells of gas stations and only benzene level exceeded the limit established by Brazilian regulations. (author)

  10. Method of separation of gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, M.A.; Potapov, V.F.; Potapova, M.S.

    1980-04-05

    Gas mixtures are separated in a rectification tower by repeated counterflow contact of the heated gas flow and cool condensate as the pressure drops in each stage of separation (StR) and when condensate is added from StR with lower pressure to the StR with higher pressure. In order to reduce energy consumption noncondensing gas in amounts of 5-15 percent by weight of the amount of incoming gases are added. Hydrocarbon or carbon dioxide gas can be used as the latter. Example. To separate natural gas of the Shatlyk deposit of composition, percent by mo1: C1 -- 94.960; C2 -- 4.260; C3 -- 0.200; C4 -- 0.08; C4+B -- 0.51. It is enriched with carbon dioxide gas in an amount of 10 percent by weight. Upon rectification of the enriched hydrocarbon mixture separation is achieved at lower pressures of the gas mixture and less cold. This leads to reduction of energy consumption by 10-12 percent.

  11. Emanation thermal analysis. Principle of the method, preparation of samples and apparatus

    International Nuclear Information System (INIS)

    Balek, V.; Pentinghaus, H.J.

    1993-12-01

    Principles of the title method are outlined and the sample preparation procedures and instrumental designs are described. The publication is divided into chapters as follows: (I) Introduction; (II) Sample labelling: (II.1) Introducing parent nuclides as a source of inert gas in solid; Distribution of inert gas in the sample; (II.2) Introducing inert gases without parent nuclides (using the recoil effect of nuclear reactions and using ion bombardment); (II.3) Choice of the suitable labelling technique; (III) Equipment for emanation thermal analysis: (III.1) Inert gas detection and measurement of inert gas release rate; (III.2) System of carrier gas flow and stabilization; (IV) Determination of the optimal conditions for radon release rate measurement; (V) Example of ETA measurement. (P.A.). 1 tab., 10 figs. 5 refs

  12. Optical design of multi-multiple expander structure of laser gas analysis and measurement device

    Science.gov (United States)

    Fu, Xiang; Wei, Biao

    2018-03-01

    The installation and debugging of optical circuit structure in the application of carbon monoxide distributed laser gas analysis and measurement, there are difficult key technical problems. Based on the three-component expansion theory, multi-multiple expander structure with expansion ratio of 4, 5, 6 and 7 is adopted in the absorption chamber to enhance the adaptability of the installation environment of the gas analysis and measurement device. According to the basic theory of aberration, the optimal design of multi-multiple beam expander structure is carried out. By using image quality evaluation method, the difference of image quality under different magnifications is analyzed. The results show that the optical quality of the optical system with the expanded beam structure is the best when the expansion ratio is 5-7.

  13. Gas analysis modeling system forecast for the Energy Modeling Forum North American Natural Gas Market Study

    International Nuclear Information System (INIS)

    Mariner-Volpe, B.; Trapmann, W.

    1989-01-01

    The Gas Analysis Modeling System is a large computer-based model for analyzing the complex US natural gas industry, including production, transportation, and consumption activities. The model was developed and first used in 1982 after the passage of the NGPA, which initiated a phased decontrol of most natural gas prices at the wellhead. The categorization of gas under the NGPA and the contractual nature of the natural gas market, which existed at the time, were primary factors in the development of the basic structure of the model. As laws and regulations concerning the natural gas market have changed, the model has evolved accordingly. Recent increases in competition in the wellhead market have also led to changes in the model. GAMS produces forecasts of natural gas production, consumption, and prices annually through 2010. It is an engineering-economic model that incorporates several different mathematical structures in order to represent the interaction of the key groups involved in the natural gas market. GAMS has separate supply and demand components that are equilibrated for each year of the forecast by means of a detailed transaction network

  14. Flow injection gas chromatography with sulfur chemiluminescence detection for the analysis of total sulfur in complex hydrocarbon matrixes.

    Science.gov (United States)

    Hua, Yujuan; Hawryluk, Myron; Gras, Ronda; Shearer, Randall; Luong, Jim

    2018-01-01

    A fast and reliable analytical technique for the determination of total sulfur levels in complex hydrocarbon matrices is introduced. The method employed flow injection technique using a gas chromatograph as a sample introduction device and a gas phase dual-plasma sulfur chemiluminescence detector for sulfur quantification. Using the technique described, total sulfur measurement in challenging hydrocarbon matrices can be achieved in less than 10 s with sample-to-sample time ideal for fast analysis or trace sulfur analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Cross-Calibration of Secondary Electron Multiplier in Noble Gas Analysis

    Science.gov (United States)

    Santato, Alessandro; Hamilton, Doug; Deerberg, Michael; Wijbrans, Jan; Kuiper, Klaudia; Bouman, Claudia

    2015-04-01

    case the known isotopic ratio is measured on different pairs of detectors and the true value of the isotopic ratio of interest can be determined by a specific equation. In noble gas analysis, due to the decay of the ion beam during the measurement as well as the special isotopic systematic of the gases themselves, the cross-calibration of the SEM using these techniques becomes more complex and other methods should be investigated. In this work we present a comparison between different approaches to cross-calibrate multiple SEM's in noble gas analysis in order to evaluate the most suitable and reliable method. References: [1] Mark et al. (2009) Geochem. Geophys. Geosyst. 10, 1-9. [2] Mark et al. (2011) Geochim. Cosmochim. 75, 7494-7501. [3] Phillips and Matchan (2013) Geochimica et Cosmochimica Acta 121, 229-239. [4] Koornneef et al. (2014) Journal of Analytical Atomic Spectrometry 28, 749-754.

  16. Gas chromatographic analysis of extractive solvent in reprocessing plants

    International Nuclear Information System (INIS)

    Marlet, B.

    1984-01-01

    Operation of a reprocessing plant using the Purex process is recalled and analytical controls for optimum performance are specified. The aim of this thesis is the development of analytical methods using gas chromatography required to follow the evolution of the extraction solvent during spent fuel reprocessing. The solvent at different concentrations, is analysed along the reprocessing lines in organic or aqueous phases. Solvent degradation interferes with extraction and decomposition products are analysed. The solvent becomes less and less efficient, also it is distilled and quality is checked. Traces of solvent should also be checked in waste water. Analysis are made as simple as possible to facilitate handling of radioactive samples [fr

  17. A multi vector energy analysis for interconnected power and gas systems

    International Nuclear Information System (INIS)

    Devlin, Joseph; Li, Kang; Higgins, Paraic; Foley, Aoife

    2017-01-01

    Highlights: • The first multi vector energy system analysis for Britain and Ireland is performed. • Extreme weather driven gas demands were utilised to increase gas system stress. • GB gas system is capable of satisfying demand but restricts gas generator ramping. • Irish gas system congestion causes a 40% increase in gas generator short run cost. • Gas storage in Ireland relieved congestion reduced operational costs by 14%. - Abstract: This paper presents the first multi vector energy analysis for the interconnected energy systems of Great Britain (GB) and Ireland. Both systems share a common high penetration of wind power, but significantly different security of supply outlooks. Ireland is heavily dependent on gas imports from GB, giving significance to the interconnected aspect of the methodology in addition to the gas and power interactions analysed. A fully realistic unit commitment and economic dispatch model coupled to an energy flow model of the gas supply network is developed. Extreme weather events driving increased domestic gas demand and low wind power output were utilised to increase gas supply network stress. Decreased wind profiles had a larger impact on system security than high domestic gas demand. However, the GB energy system was resilient during high demand periods but gas network stress limited the ramping capability of localised generating units. Additionally, gas system entry node congestion in the Irish system was shown to deliver a 40% increase in short run costs for generators. Gas storage was shown to reduce the impact of high demand driven congestion delivering a reduction in total generation costs of 14% in the period studied and reducing electricity imports from GB, significantly contributing to security of supply.

  18. Impact Analysis of Generalized Audit Software (GAS Utilization to Auditor Performances

    Directory of Open Access Journals (Sweden)

    Aries Wicaksono

    2016-09-01

    Full Text Available This study aimed to understand whether the use of Generalized Audit Software (GAS in the audit process had an impact on the auditors performance and to acquire conclusions in the evaluation form towards GAS audit process to provide a positive impact on the performance of auditors. The models used to evaluate the impact of GAS were Quantity of Work, Quality of Work, Job Knowledge, Creativeness, Cooperation, Dependability, Initiative, and Personal Qualities. The method used in this research was a qualitative method of analytical descriptive and evaluative, by analyzing the impact of the GAS implementation to the components of the user’s performance. The results indicate that the use of GAS has a positive impact on user’s performance components.

  19. Corrective actions to gas accumulation in safety injection system pipings of PWRs and gas void detection method

    International Nuclear Information System (INIS)

    Maki, Nobuo

    2000-01-01

    In the US, gas accumulation events of safety injection systems of PWRs during plant operation are continuously reported. As the events may result in loss of safety function, the USNRC is alerting licensees by Information Notices. The cause of the events is coolant leakage to interfacing systems with lower pressure, or gas dissolution of primary coolant by partial pressure drop. In this study, it was clarified by the evaluation of the cause of the events of US plants, gas accumulation in piping between an accumulator and Residual Heat Removal System should be quantitatively investigated regarding Japanese plants. Also, effectiveness of ultrasonic testing which is used for monthly gas accumulation surveillance in US plants was demonstrated using a model loop. In addition, the method was confirmed applicable by an experiment carried out at INSS to detect cavitation voids in piping systems. (author)

  20. Comprehensive Analysis of the Gas- and Particle-Phase Products of VOC Oxidation

    Science.gov (United States)

    Bakker-Arkema, J.; Ziemann, P. J.

    2017-12-01

    Controlled environmental chamber studies are important for determining atmospheric reaction mechanisms and gas and aerosol products formed in the oxidation of volatile organic compounds (VOCs). Such information is necessary for developing detailed chemical models for use in predicting the atmospheric fate of VOCs and also secondary organic aerosol (SOA) formation. However, complete characterization of atmospheric oxidation reactions, including gas- and particle-phase product yields, and reaction branching ratios, are difficult to achieve. In this work, we investigated the reactions of terminal and internal alkenes with OH radicals in the presence of NOx in an attempt to fully characterize the chemistry of these systems while minimizing and accounting for the inherent uncertainties associated with environmental chamber experiments. Gas-phase products (aldehydes formed by alkoxy radical decomposition) and particle-phase products (alkyl nitrates, β-hydroxynitrates, dihydroxynitrates, 1,4-hydroxynitrates, 1,4-hydroxycarbonyls, and dihydroxycarbonyls) formed through pathways involving addition of OH to the C=C double bond as well as H-atom abstraction were identified and quantified using a suite of analytical techniques. Particle-phase products were analyzed in real time with a thermal desorption particle beam mass spectrometer; and off-line by collection onto filters, extraction, and subsequent analysis of functional groups by derivatization-spectrophotometric methods developed in our lab. Derivatized products were also separated by liquid chromatography for molecular quantitation by UV absorbance and identification using chemical ionization-ion trap mass spectrometry. Gas phase aldehydes were analyzed off-line by collection onto Tenax and a 5-channel denuder with subsequent analysis by gas chromatography, or by collection onto DNPH-coated cartridges and subsequent analysis by liquid chromatography. The full product identification and quantitation, with careful

  1. A novel method for producing multiple ionization of noble gas

    International Nuclear Information System (INIS)

    Wang Li; Li Haiyang; Dai Dongxu; Bai Jiling; Lu Richang

    1997-01-01

    We introduce a novel method for producing multiple ionization of He, Ne, Ar, Kr and Xe. A nanosecond pulsed electron beam with large number density, which could be energy-controlled, was produced by incidence a focused 308 nm laser beam onto a stainless steel grid. On Time-of-Flight Mass Spectrometer, using this electron beam, we obtained multiple ionization of noble gas He, Ne, Ar and Xe. Time of fight mass spectra of these ions were given out. These ions were supposed to be produced by step by step ionization of the gas atoms by electron beam impact. This method may be used as a ideal soft ionizing point ion source in Time of Flight Mass Spectrometer

  2. Method of collecting helium cover gas for heavy water moderated reactor

    International Nuclear Information System (INIS)

    Miyamoto, Keiji; Ueda, Hiroshi.

    1981-01-01

    Purpose: To reduce the systematic facility cost in a heavy water moderated reactor by contriving the simplification of a helium cover gas collecting intake system. Method: A detachable low pressure metal tank and a neoprene balloon are prepared for a vacuum pump in a permanent vacuum drying facility. When all of the helium cover gas is collected from a heavy water moderated reactor, a large capacity of neoprene balloon capable of temporarily storing it under low pressure is connected to the exhaust of the vacuum pump. On the other hand, while the reactor is operating, a suitable amount of the low pressure tank or neoprene balloon is connected to the exhaust side of the pump, thereby regulating the pressure of the helium cover gas. When refeeding the cover gas, the balloon, with a large capacity for collecting and storing the cover gas is connected to the intake side of the pump. Thus, the pressure regulation, collection of all of the cover gas and refeeding of the cover gas can be conducted without using a high discharge pump and high pressure tank. (Kamimura, M.)

  3. Method of gas separation

    International Nuclear Information System (INIS)

    Weltner, W.W.

    1980-01-01

    In order to separate a mixture of gases having widely different partial pressures at a given temperature, a chamber is employed. A batch of gas mixture is passed into the chamber. The walls of the chamber are cooled by a refrigerant which passes through coils in heat exchange relationship with the walls. By this means the temperature of the chamber is cooled to a temperature (and held at such temperature until equilibrium is reached) at which all the components of the gas mixture have changed state, at least one being solidified and at least one liquefied. The liquid constituents are removed first. Then the chamber is warmed to facilitate removal of the previously solidified constituents. In an example, the gas mixture comprises nitrogen, argon, krypton and xenon, and the walls of the chamber are cooled by liquid nitrogen, the argon and nitrogen being liquefied and the xenon and krypton being solidified. (author)

  4. The analysis of coolant-velocity distribution in plat-typed fuel element using CFD method for RSG-GAS research reactor

    International Nuclear Information System (INIS)

    Muhammad Subekti; Darwis Isnaini; Endiah Puji Hastuti

    2013-01-01

    The measurement experiment for coolant-velocity distribution in the subchannel of fuel element of RSG-GAS research reactor is difficult to be carried out due to too narrow channel and subchannel placed inside the fuel element. Hence, the calculation is required to predict the coolant-velocity distribution inside subchannel to confirm that the handle presence does not ruin the velocity distribution into every subchannel. This calculation utilizes CFD method, which respect to 3-dimension interior. Moreover, the calculation of coolant-velocity distribution inside subchannel was not ever carried out. The research object is to investigate the distribution of coolant-velocity in plat-typed fuel element using 3-dimension CFD method for RSG-GAS research reactor. This research is required as a part of the development of thermalhydraulic design of fuel element for innovative research reactor as well. The modeling uses ½ model in Gambit software and calculation uses turbulence equation in FLUENT 6.3 software. Calculation result of 3D coolant-velocity in subchannel using CFD method is lower about 4.06 % than 1D calculation result due to 1D calculation obeys handle availability. (author)

  5. Probabilistic methods in fire-risk analysis

    International Nuclear Information System (INIS)

    Brandyberry, M.D.

    1989-01-01

    The first part of this work outlines a method for assessing the frequency of ignition of a consumer product in a building and shows how the method would be used in an example scenario utilizing upholstered furniture as the product and radiant auxiliary heating devices (electric heaters, wood stoves) as the ignition source. Deterministic thermal models of the heat-transport processes are coupled with parameter uncertainty analysis of the models and with a probabilistic analysis of the events involved in a typical scenario. This leads to a distribution for the frequency of ignition for the product. In second part, fire-risk analysis as currently used in nuclear plants is outlines along with a discussion of the relevant uncertainties. The use of the computer code COMPBRN is discussed for use in the fire-growth analysis along with the use of response-surface methodology to quantify uncertainties in the code's use. Generalized response surfaces are developed for temperature versus time for a cable tray, as well as a surface for the hot gas layer temperature and depth for a room of arbitrary geometry within a typical nuclear power plant compartment. These surfaces are then used to simulate the cable tray damage time in a compartment fire experiment

  6. Numerical Analysis of Dusty-Gas Flows

    Science.gov (United States)

    Saito, T.

    2002-02-01

    This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.

  7. Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits

    Science.gov (United States)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswel, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.B.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.A.

    2011-01-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas-hydrate (GH) petroleum system; to discuss advances, requirements, and suggested practices in GH prospecting and GH deposit characterization; and to review the associated technical, economic, and environmental challenges and uncertainties, which include the following: accurate assessment of producible fractions of the GH resource; development of methods for identifying suitable production targets; sampling of hydrate-bearing sediments (HBS) and sample analysis; analysis and interpretation of geophysical surveys of GH reservoirs; well-testing methods; interpretation of well-testing results; geomechanical and reservoir/well stability concerns; well design, operation, and installation; field operations and extending production beyond sand-dominated GH reservoirs; monitoring production and geomechanical stability; laboratory investigations; fundamental knowledge of hydrate behavior; the economics of commercial gas production from hydrates; and associated environmental concerns. ?? 2011 Society of Petroleum Engineers.

  8. Method to make accurate concentration and isotopic measurements for small gas samples

    Science.gov (United States)

    Palmer, M. R.; Wahl, E.; Cunningham, K. L.

    2013-12-01

    Carbon isotopic ratio measurements of CO2 and CH4 provide valuable insight into carbon cycle processes. However, many of these studies, like soil gas, soil flux, and water head space experiments, provide very small gas sample volumes, too small for direct measurement by current constant-flow Cavity Ring-Down (CRDS) isotopic analyzers. Previously, we addressed this issue by developing a sample introduction module which enabled the isotopic ratio measurement of 40ml samples or smaller. However, the system, called the Small Sample Isotope Module (SSIM), does dilute the sample during the delivery with inert carrier gas which causes a ~5% reduction in concentration. The isotopic ratio measurements are not affected by this small dilution, but researchers are naturally interested accurate concentration measurements. We present the accuracy and precision of a new method of using this delivery module which we call 'double injection.' Two portions of the 40ml of the sample (20ml each) are introduced to the analyzer, the first injection of which flushes out the diluting gas and the second injection is measured. The accuracy of this new method is demonstrated by comparing the concentration and isotopic ratio measurements for a gas sampled directly and that same gas measured through the SSIM. The data show that the CO2 concentration measurements were the same within instrument precision. The isotopic ratio precision (1σ) of repeated measurements was 0.16 permil for CO2 and 1.15 permil for CH4 at ambient concentrations. This new method provides a significant enhancement in the information provided by small samples.

  9. [The elaboration of gas chromatographic method of the determination of N-nitrosamines (N-nitrosodimethylamine, N-nitrosodiethylamine) in biological samples (urine)].

    Science.gov (United States)

    Zaytseva, N V; Ulanova, T S; Nurislamova, T V; Popova, N A

    2014-01-01

    The issues of the elaboration of a method for the determination of N-nitrosamines (N-nitrosodimethylamine, N-nitrosodiethylamine) in urine by means of the method of capillary gas chromatography with the use of a thermionic detector are considered. There were performed investigations on the study of the efficacy of the extraction of N-nitrosamines from the urine by steam distillation and gas chromatographic detection of headspace. With the aim of the maximal recovery of N-nitrosamines from the urine and setting parameters of the extraction two method were used to prepare the bioassay for the analysis the alkalization with potassium hydroxide and the addition of salting out reagent--neutral salts of alkali and alkaline earth metals. During the process of performed studies there was found that the greatest degree of extraction of N-nitrosamines from the urine by the method of headspace analysis is achieved if using the salting-out agent in an amount of 16 g of sodium sulfate and for N-nitrosodimethylamine is 99%, for N-nitrosodiethylamine--100%.

  10. ATTA - A new method of ultrasensitive isotope trace analysis

    International Nuclear Information System (INIS)

    Bailey, K.; Chen, C.Y.; Du, X.; Li, Y.M.; Lu, Z.-T.; O'Connor, T.P.; Young, L.

    2000-01-01

    A new method of ultrasensitive isotope trace analysis has been developed. This method, based on the technique of laser manipulation of neutral atoms, has been used to count individual 85 Kr and 81 Kr atoms present in a natural krypton gas sample with isotopic abundances in the range of 10 -11 and 10 -13 , respectively. This method is free of contamination from other isotopes and elements and can be applied to various different isotope tracers for a wide range of applications. The demonstrated detection efficiency is 1x10 -7 . System improvements could increase the efficiency by many orders of magnitude

  11. Technical and Feasibility Analysis of Gasoline and Natural Gas Fuelled Vehicles

    Directory of Open Access Journals (Sweden)

    Charalambos Chasos

    2014-03-01

    Full Text Available There is recent interest for the utilisation of natural gas for empowering the internal combustion engines (ICE of vehicles. The production of novel natural gas ICE for vehicles, as well as the conversion of existing gasoline fuelled ICE of vehicles to natural gas fuelled ICE are new technologies which require to be analysed and assessed. The objective of the present study is to examine the adaptation of natural gas as vehicle fuel and carry out a technical analysis and an economical feasibility analysis of the two types of ICE vehicles, namely gasoline and natural gas fuelled vehicles. The technical model uses the physical properties of the two fuels and the performance factors of internal combustion engines including brake thermal efficiency. The resulting exhaust gas emissions are also estimated by the technical model using combustion calculations which provide the expected levels of exhaust gas emissions. Based on the analysis with the technical model, comparisons of the two types of engines are performed. Furthermore, the estimated performance characteristics of the two types of engines, along with local statistical data on annual fuel imports and annual fuel consumption for transportation and data on the vehicles fleet for the case study of Cyprus are used as input in the economical model. For the base year 2013, data of natural gas price is also used in the economical model. The economical model estimates the capital cost, the carbon dioxide emissions avoidance of fines, the net present value and the internal rate of return of the investment of large scale adaptation of natural gas fuelled vehicles for the case study. From the results and comparisons, conclusions are drawn and recommendations are provided for the adaptation of natural gas vehicles which can provide improved performance with reduced pollutant emissions.

  12. Study on atmospheric hydrogen enrichment by cryopump method and isotope separation by gas chromatography

    International Nuclear Information System (INIS)

    Taniyama, Yuki; Momoshima, Noriyuki

    2001-01-01

    To obtain the information of source of atmospheric hydrogen tritium an analysis of tritium isotopes is thought to be effective. So an atmospheric hydrogen enrichment apparatus and a cryogenic gas chromatographic column were made. Experiments were carried out to study the performance of cryopump to enrich atmospheric hydrogen and the column to separate hydrogen isotopes that obtained by cryopump method. The cryopump was able to process about 1000 1 atmosphere and the column was able to separate hydrogen isotopes with good resolution. (author)

  13. Method and system for gas flow mitigation of molecular contamination of optics

    Science.gov (United States)

    Delgado, Gildardo; Johnson, Terry; Arienti, Marco; Harb, Salam; Klebanoff, Lennie; Garcia, Rudy; Tahmassebpur, Mohammed; Scott, Sarah

    2018-01-23

    A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and a purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.

  14. Analysis of hollow fibre membrane systems for multicomponent gas separation

    KAUST Repository

    Khalilpour, Rajab; Abbas, Ali; Lai, Zhiping; Pinnau, Ingo

    2013-01-01

    nonlinear differential algebraic equation system is solved via a combination of backward differentiation and Gauss-Seidel methods. Natural gas sweetening problem is investigated as a case study. Model parametric analyses of variables, namely feed gas quality

  15. ANALYSIS AND IDENTIFICATION SPIKING CHEMICAL COMPOUNDS RELATED TO CHEMICAL WEAPON CONVENTION IN UNKNOWN WATER SAMPLES USING GAS CHROMATOGRAPHY AND GAS CHROMATOGRAPHY ELECTRON IONIZATION MASS SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Harry Budiman

    2010-06-01

    Full Text Available The identification and analysis of chemical warfare agents and their degradation products is one of important component for the implementation of the convention. Nowadays, the analytical method for determination chemical warfare agent and their degradation products has been developing and improving. In order to get the sufficient analytical data as recommended by OPCW especially in Proficiency Testing, the spiking chemical compounds related to Chemical Weapon Convention in unknown water sample were determined using two different techniques such as gas chromatography and gas chromatography electron-impact ionization mass spectrometry. Neutral organic extraction, pH 11 organic extraction, cation exchanged-methylation, triethylamine/methanol-silylation were performed to extract the chemical warfare agents from the sample, before analyzing with gas chromatography. The identification of chemical warfare agents was carried out by comparing the mass spectrum of chemicals with mass spectrum reference from the OPCW Central Analytical Database (OCAD library while the retention indices calculation obtained from gas chromatography analysis was used to get the confirmation and supported data of  the chemical warfare agents. Diisopropyl methylphosphonate, 2,2-diphenyl-2-hydroacetic acid and 3-quinuclidinol were found in unknown water sample. Those chemicals were classified in schedule 2 as precursor or reactant of chemical weapons compound in schedule list of Chemical Weapon Convention.   Keywords: gas chromatography, mass spectrometry, retention indices, OCAD library, chemical warfare agents

  16. Energy analysis and design of mixed CO{sub 2}/steam gas turbine cycles

    Energy Technology Data Exchange (ETDEWEB)

    Bram, S; De Ruyck, J [Vrije Universiteit Brussel, Brussels (Belgium). Dept. of Mechanics

    1995-06-01

    The capturing and disposal of CO{sub 2} from power plant exhaust gases is a possible route for reducing CO{sub 2} emissions. The present paper investigates the full recirculation of exhaust gases in a gas turbine cycle, combined with the injection of steam or water. Such recirculation leads to an exhaust gas with very high CO{sub 2} concentration (95% or more). Different regenerative cycle layouts are proposed and analyzed for efficiency, exergy destruction and technical feasibility. Pinch Technology methods are next applied to find the best configuration for heat regeneration and injection of water. From this analysis, dual pressure evaporation with water injection in the intercooler emerges as an interesting option. 3 refs., 2 figs., 1 tab.

  17. Towards Breath Gas Analysis Based on Millimeter-Wave Molecular Spectroscopy

    Science.gov (United States)

    Rothbart, Nick; Hübers, Heinz-Wilhelm; Schmalz, Klaus; Borngräber, Johannes; Kissinger, Dietmar

    2018-03-01

    Breath gas analysis is a promising non-invasive tool for medical diagnosis as there are thousands of Volatile Organic Compounds (VOCs) in human breath that can be used as health monitoring markers. Millimeter-wave/terahertz molecular spectroscopy is highly suitable for breath gas analysis due to unique fingerprint spectra of many VOCs in that frequency range. We present our recent work on sensor systems for gas spectroscopy based on integrated transmitters (TX) and receivers (RX) fabricated in IHP's 0.13 μm SiGe BiCMOS technology. For a single-band system, spectroscopic measurements and beam profiles are presented. The frequency is tuned by direct voltage-frequency tuning and by a fractional-n PLL, respectively. The spectroscopic system includes a folded gas absorption cell with gas pre-concentration abilities demonstrating the detection of a 50 ppm mixture of ethanol in ambient air corresponding to a minimum detectable concentration of 260 ppb. Finally, the design of a 3-band system covering frequencies from 225 to 273 GHz is introduced.

  18. Numerical Method based on SIMPLE Algorithm for a Two-Phase Flow with Non-condensable Gas

    International Nuclear Information System (INIS)

    Kim, Jong Tae

    2009-08-01

    In this study, a numerical method based on SIMPLE algorithm for a two-phase flow with non-condensable gas has been developed in order to simulate thermal hydraulics in a containment of a nuclear power plant. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields include gas, drops, and continuous liquid. The gas field can contains vapor and non-condensable gases such as air and hydrogen. In order to resolve mixing phenomena of gas species, gas transport equations for each species base on the gas mass fractions are solved with gas phase governing equations such as mass, momentum and energy equations. Methods to evaluate the properties of the gas species were implemented in the code. They are constant or polynomial function based a user input and a property library from Chemkin and JANAF table for gas specific heat. Properties for the gas mixture which are dependent on mole fractions of the gas species were evaluated by a mix rule

  19. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    Science.gov (United States)

    Mendelsohn, Marshall H [Downers Grove, IL; Livengood, C David [Lockport, IL

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  20. Development of a sample preparation method for the analysis of current-use pesticides in sediment using gas chromatography.

    Science.gov (United States)

    Wang, Dongli; Weston, Donald P; Ding, Yuping; Lydy, Michael J

    2010-02-01

    Pyrethroid insecticides have been implicated as the cause of sediment toxicity to Hyalella azteca in both agricultural and urban areas of California; however, for a subset of these toxic sediments (approximately 30%), the cause of toxicity remains unidentified. This article describes the analytical method development for seven additional pesticides that are being examined to determine if they might play a role in the unexplained toxicity. A pressurized liquid extraction method was optimized to simultaneously extract diazinon, methyl parathion, oxyfluorfen, dicofol, fenpropathrin, pyraclostrobin, and indoxacarb from sediment, and the extracts were cleaned using a two-step solid-phase extraction procedure. The final extract was analyzed for the target pesticides by gas chromatography/nitrogen-phosphorus detector (GC/NPD), and gas chromatography/electron capture detector (GC/ECD), after sulfur was removed by shaking with copper and cold crystallization. Three sediments were used as reference matrices to assess method accuracy and precision. Method detection limits were 0.23-1.8 ng/g dry sediment using seven replicates of sediment spiked at 1.0 ng/g dry sediment. Recoveries ranged from 61.6 to 118% with relative standard deviations of 2.1-17% when spiked at 5.0 and 50 ng/g dry sediment. The three reference sediments, spiked with 50 ng/g dry weight of the pesticide mixture, were aged for 0.25, 1, 4, 7, and 14 days. Recoveries of the pesticides in the sediments generally decreased with increased aging time, but the magnitude of the decline was pesticide and sediment dependent. The developed method was applied to field-collected sediments from the Central Valley of California.

  1. A new in-situ method to determine the apparent gas diffusion coefficient of soils

    Science.gov (United States)

    Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin

    2015-04-01

    Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.

  2. Development of a natural Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    Godec, M.; Haas, M.; Pepper, W.; Rose, J.

    1993-01-01

    Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE's upstream as well as downstream natural gas R ampersand D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE's Natural Gas Strategic Plan requires that its R ampersand D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R ampersand D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R ampersand D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R ampersand D programs

  3. Ion transport membrane reactor systems and methods for producing synthesis gas

    Science.gov (United States)

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  4. Optimization analysis of the motor cooling method in semi-closed single screw refrigeration compressor

    Science.gov (United States)

    Wang, Z. L.; Shen, Y. F.; Wang, Z. B.; Wang, J.

    2017-08-01

    Semi-closed single screw refrigeration compressors (SSRC) are widely used in refrigeration and air conditioning systems owing to the advantages of simple structure, balanced forces on the rotor, high volumetric efficiency and so on. In semi-closed SSRCs, motor is often cooled by suction gas or injected refrigerant liquid. Motor cooling method will changes the suction gas temperature, this to a certain extent, is an important factor influencing the thermal dynamic performance of a compressor. Thus the effects of motor cooling method on the performance of the compressor must be studied. In this paper mathematical models of motor cooling process by using these two methods were established. Influences of motor cooling parameters such as suction gas temperature, suction gas quantity, temperature of the injected refrigerant liquid and quantity of the injected refrigerant liquid on the thermal dynamic performance of the compressor were analyzed. The performances of the compressor using these two kinds of motor cooling methods were compared. The motor cooling capacity of the injected refrigerant liquid is proved to be better than the suction gas. All analysis results obtained can be useful for optimum design of the motor cooling process to improve the efficiency and the energy efficiency of the compressor.

  5. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    Science.gov (United States)

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-03

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Soil Gas Sampling

    Science.gov (United States)

    Field Branches Quality System and Technical Procedures: This document describes general and specific procedures, methods and considerations to be used and observed when collecting soil gas samples for field screening or laboratory analysis.

  7. Indoor air quality inspection and analysis system based on gas sensor array

    Science.gov (United States)

    Gao, Xiang; Wang, Mingjiang; Fan, Binwen

    2017-08-01

    A detection and analysis system capable of measuring the concentration of four major gases in indoor air is designed. It uses four gas sensors constitute a gas sensor array, to achieve four indoor gas concentration detection, while the detection of data for further processing to reduce the cross-sensitivity between the gas sensor to improve the accuracy of detection.

  8. Method and apparatus for continuously detecting and monitoring the hydrocarbon dew-point of gas

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, G.J.; Pritchard, F.R.

    1987-08-04

    This patent describes a method and apparatus for continuously detecting and monitoring the hydrocarbon dew-point of a gas. A gas sample is supplied to a dew-point detector and the temperature of a portion of the sample gas stream to be investigated is lowered progressively prior to detection until the dew-point is reached. The presence of condensate within the flowing gas is detected and subsequently the supply gas sample is heated to above the dew-point. The procedure of cooling and heating the gas stream continuously in a cyclical manner is repeated.

  9. Method and apparatus for manufacturing gas tags

    International Nuclear Information System (INIS)

    Gross, K.C.; Laug, M.T.

    1996-01-01

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs

  10. Analysis of Mechanical Seals for High-Speed Centrifugal Gas Compressors

    OpenAIRE

    K.N. Nwaigwe; P.E. Ugwuoke; E.E. Anyanwu; D.P.S. Abam

    2012-01-01

    A study aimed at seal selection efficiency for centrifugal pumps in the oil and gas industry is presented. A detailed analysis of mechanical seals in use in exploration and production activities of the oil and gas sector was undertaken. The approach of analysis was using seal design equations as mathematical models for simulating the performance of the mechanical seal. The results showed a mechanical seal with balance value of 0.5, an increased surface area between mating surfaces; provided w...

  11. Measuring method for amount of fissionable gas in spent fuel pellet

    International Nuclear Information System (INIS)

    Kashibe, Shinji.

    1992-01-01

    The method of the present invention separately measures the amount of both of a fission product (FP) gas accumulated in bubbles at the crystal grain boundary of spent fuel pellets and an FP gas accumulated in the crystal grains. That is, in a radial position of the spent fuel pellet, a microfine region is mechanically destroyed. The amount of the FP gas released by the destruction from the crystal grains is measured by using a mass analyzer. Then, when the destroyed pieces formed by the destruction are recovered and dissolved, FP gas accumulated in the crystal grains of the pellet is released. The amount released is measured by the mass analyzer. With such procedures, the amount of FP gas accumulated in the bubbles at the crystal grain boundary and in the crystal grains at the radial position of the spent fuel pellet can be measured discriminately. Accordingly, the integrity of the fuel pellet can be recognized appropriately. (I.S.)

  12. The element analysis of high purity beryllium by method of laser mass-spectrometry

    International Nuclear Information System (INIS)

    Virich, V.D.; Kisel', O.V.; Kovtun, K.V.; Pugachev, N.S.; Yakobson, L.A.

    2003-01-01

    The operation is devoted to examination of a possibility of the analysis of element composition pure and high purity model of a beryllium is model by a method of laser mass spectrometry. The advantages of a method in a part of finding of a small amount of admixtures in comparison with other modes of the analysis are exhibited. The possibility of quantitative definition of a content in beryllium samples of gas-making admixtures-C,N,O surveyed

  13. Feasibility of flare gas reformation to practical energy in Farashband gas refinery: no gas flaring.

    Science.gov (United States)

    Rahimpour, Mohammad Reaza; Jokar, Seyyed Mohammad

    2012-03-30

    A suggested method for controlling the level of hazardous materials in the atmosphere is prevention of combustion in flare. In this work, three methods are proposed to recover flare gas instead of conventional gas-burning in flare at the Farashband gas refinery. These methods aim to minimize environmental and economical disadvantages of burning flare gas. The proposed methods are: (1) gas to liquid (GTL) production, (2) electricity generation with a gas turbine and, (3) compression and injection into the refinery pipelines. To find the most suitable method, the refinery units that send gas to the flare as well as the required equipment for the three aforementioned methods are simulated. These simulations determine the amount of flare gas, the number of GTL barrels, the power generated by the gas turbine and the required compression horsepower. The results of simulation show that 563 barrels/day of valuable GTL products is produced by the first method. The second method provides 25 MW electricity and the third method provides a compressed natural gas with 129 bar pressure for injection to the refinery pipelines. In addition, the economics of flare gas recovery methods are studied and compared. The results show that for the 4.176MMSCFD of gas flared from the Farashband gas refinery, the electricity production gives the highest rate of return (ROR), the lowest payback period, the highest annual profit and mild capital investment. Therefore, the electricity production is the superior method economically. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Conventional natural gas resources of the Western Canada Sedimentary Basin

    International Nuclear Information System (INIS)

    Bowers, B.

    1999-01-01

    The use of decline curve analysis to analyse and extrapolate the production performance of oil and gas reservoirs was discussed. This mathematical analytical tool has been a valid method for estimating the conventional crude oil resources of the Western Canada Sedimentary Basin (WCSB). However, it has failed to provide a generally acceptable estimate of the conventional natural gas resources of the WCSB. This paper proposes solutions to this problem and provides an estimate of the conventional natural gas resources of the basin by statistical analysis of the declining finding rates. Although in the past, decline curve analysis did not reflect the declining finding rates of natural gas in the WCSB, the basin is now sufficiently developed that estimates of conventional natural gas resources can be made by this analytical tool. However, the analysis must take into account the acceleration of natural gas development drilling that has occurred over the lifetime of the basin. It was concluded that ultimate resources of conventional marketable natural gas of the WCSB estimated by decline analysis amount to 230 tcf. It was suggested that further research be done to explain why the Canadian Gas Potential Committee (CGPC) estimate for Alberta differs from the decline curve analysis method. 6 refs., 35 figs

  15. Validation of an analytical method for nitrous oxide (N2O) laughing gas by headspace gas chromatography coupled to mass spectrometry (HS-GC-MS): forensic application to a lethal intoxication.

    Science.gov (United States)

    Giuliani, N; Beyer, J; Augsburger, M; Varlet, V

    2015-03-01

    Drug abuse is a widespread problem affecting both teenagers and adults. Nitrous oxide is becoming increasingly popular as an inhalation drug, causing harmful neurological and hematological effects. Some gas chromatography-mass spectrometry (GC-MS) methods for nitrous oxide measurement have been previously described. The main drawbacks of these methods include a lack of sensitivity for forensic applications; including an inability to quantitatively determine the concentration of gas present. The following study provides a validated method using HS-GC-MS which incorporates hydrogen sulfide as a suitable internal standard allowing the quantification of nitrous oxide. Upon analysis, sample and internal standard have similar retention times and are eluted quickly from the molecular sieve 5Å PLOT capillary column and the Porabond Q column therefore providing rapid data collection whilst preserving well defined peaks. After validation, the method has been applied to a real case of N2O intoxication indicating concentrations in a mono-intoxication. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. [Establishment and assessment of QA/QC method for sampling and analysis of atmosphere background CO2].

    Science.gov (United States)

    Liu, Li-xin; Zhou, Ling-xi; Xia, Ling-jun; Wang, Hong-yang; Fang, Shuang-xi

    2014-12-01

    To strengthen scientific management and sharing of greenhouse gas data obtained from atmospheric background stations in China, it is important to ensure the standardization of quality assurance and quality control method for background CO2 sampling and analysis. Based on the greenhouse gas sampling and observation experience of CMA, using portable sampling observation and WS-CRDS analysis technique as an example, the quality assurance measures for atmospheric CO,sampling and observation in the Waliguan station (Qinghai), the glass bottle quality assurance measures and the systematic quality control method during sample analysis, the correction method during data processing, as well as the data grading quality markers and data fitting interpolation method were systematically introduced. Finally, using this research method, the CO2 sampling and observation data at the atmospheric background stations in 3 typical regions were processed and the concentration variation characteristics were analyzed, indicating that this research method could well catch the influences of the regional and local environmental factors on the observation results, and reflect the characteristics of natural and human activities in an objective and accurate way.

  17. Use of the Keele injector for sample introduction for gas chromatographic analysis of vinclozolin in lettuces.

    Science.gov (United States)

    Shim, J H; Lee, Y S; Kim, M R; Lee, C J; Kim, I S

    2003-10-10

    We examined a Keele injector for sample introduction for gas chromatographic analysis of vinclozolin treated in lettuces. Samples in milligram quantity were introduced into a glass tube in a Keele injector at a gas chromatograph injection port. The glass tube was then crushed to allow the sample to carry onto a capillary column in a normal manner. The standard calibration curve for quantitative detection of vinclozolin was obtained by determining vinclozolin spiked in samples at variable concentrations. The calibration curve showed a linear response to vinclozolin ranging from 0.05 to 1.0 microg/g, giving a slope value of 174.8, the y-intercept value of -2.8146 and the mean r2-value of 0.9994. Limit of quantification for vinclozolin was 0.05 microg/g by this method, comparable to 0.01 microg/g by a normal injector. When samples treated previously with vinclozolin were determined by the Keele injector, vinclozolin was found to be about 30% lower as compared to a normal method, suggesting about 70% recovery of the spiked vinclozolin by the Keele injector. From these results, the Keele injector was suggested to be potential for sample introduction in gas chromatographic analysis of vinclozolin in lettuce samples.

  18. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis of primary amines in water

    NARCIS (Netherlands)

    Krzyzaniak, A.; Weggemans, W.M.A.; Schuur, B.; Haan, de A.B.

    2011-01-01

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct

  19. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis or primary amines in water

    NARCIS (Netherlands)

    Krzyzaniak, A.; Weggemans, W.; Schuur, Boelo; de Haan, A.B.

    2011-01-01

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct

  20. Network reliability analysis of complex systems using a non-simulation-based method

    International Nuclear Information System (INIS)

    Kim, Youngsuk; Kang, Won-Hee

    2013-01-01

    Civil infrastructures such as transportation, water supply, sewers, telecommunications, and electrical and gas networks often establish highly complex networks, due to their multiple source and distribution nodes, complex topology, and functional interdependence between network components. To understand the reliability of such complex network system under catastrophic events such as earthquakes and to provide proper emergency management actions under such situation, efficient and accurate reliability analysis methods are necessary. In this paper, a non-simulation-based network reliability analysis method is developed based on the Recursive Decomposition Algorithm (RDA) for risk assessment of generic networks whose operation is defined by the connections of multiple initial and terminal node pairs. The proposed method has two separate decomposition processes for two logical functions, intersection and union, and combinations of these processes are used for the decomposition of any general system event with multiple node pairs. The proposed method is illustrated through numerical network examples with a variety of system definitions, and is applied to a benchmark gas transmission pipe network in Memphis TN to estimate the seismic performance and functional degradation of the network under a set of earthquake scenarios.

  1. Static Structural and Modal Analysis of Gas Turbine Blade

    Science.gov (United States)

    Ranjan Kumar, Ravi; Pandey, K. M., Prof.

    2017-08-01

    Gas turbine is one of the most versatile items of turbo machinery nowadays. It is used in different modes such as power generation, oil and gas, process plants, aviation, domestic and related small industries. This paper is based on the problems concerning blade profile selection, material selection and turbine rotor blade vibration that seriously impact the induced stress-deformation and structural functioning of developmental gas turbine engine. In this paper for generating specific power by rotating blade at specific RPM, blade profile and material has been decided by static structural analysis. Gas turbine rotating blade RPM is decided by Modal Analysis so that the natural frequency of blade should not match with the excitation frequency. For the above blade profile has been modeled in SOLIDWORKS and analysis has been done in ANSYS WORKBENCH 14. Existing NACA6409 profile has been selected as base model and then it is modified by bending it through 72.5° and 145°. Hence these three different blade profiles have been analyzed for three different materials viz. Super Alloy X, Nimonic 80A and Inconel 625 at three different speed viz. 20000, 40000 and 60000RPM. It is found that NACA6409 with 72.5° bent gives best result for all material at all speed. Among all the material Inconel 625 gives best result. Hence Blade of Inconel 625 having 72.5° bent profile is the best combination for all RPM.

  2. The gas-chromatographic and gas-chromatographic-mass-spectrometric identification of halogen-containing organic compounds

    Science.gov (United States)

    Gidaspov, B. V.; Zenkevich, I. G.; Rodin, A. A.

    1989-09-01

    The problem of identifying halogen-containing organic compounds in their gas-chromatographic and gas-chromatographic-mass-spectrometric (GC-MS) determination in different materials has been examined. Particular attention has been paid not to the complete characterisation of methods for carrying out this analysis but to the most important problem of increasing the selectivity at the stages of sampling, separation, and interpretation of the gas-chromatographic and GC-MS information. The bibliography contains 292 references.

  3. Strategic analysis on establishing a natural gas trading hub in China

    Directory of Open Access Journals (Sweden)

    Xiaoguang Tong

    2014-12-01

    Full Text Available Since 2010, the LNG importing price premium in the Asia–Pacific markets has become increasingly high, generating great effects on the economic development in China. In addition, the natural gas dependence degree is expanding continuously, making it extremely urgent to establish a natural gas trading hub in China, with the aim to ensure national energy security, to gain the pricing power, and to build the regional benchmark prices. Through a comparative analysis of internal strength/weakness and external competitiveness, we concluded that with intensively-issued supporting policies on the natural gas sector, the initiation of spot and futures markets, the rapid growth of gas production and highly-improved infrastructures, as well as Shanghai's advantageous location, China has more advantages in establishing an Asian Natural Gas Trading Hub than other counties like Singapore, Japan and Malaysia. Moreover, based on the SWOT (strength, weakness, opportunity and threat and the marketization process analysis, the following strategies were presented: to impel the establishment of a natural gas trading hub depending on the gas supply condition, to follow the policies to complete the gas storage system, to form regional communities by taking comparative advantages, and to reinforce the marketization reform and regulation system establishment with foreign experiences for reference. This study rationalized the necessity and practicality of establishing a natural gas trading hub in China and will help China make a proper decision and find a periodical strategic path in this sector.

  4. Gas flow parameter determination by molecular beam method

    International Nuclear Information System (INIS)

    Zarvin, A.E.; Sharafutdinov, R.G.

    1977-01-01

    This paper describes a molecular-beam system intended for studying nonequilibrium processes in supersonic rarefied gas flows. The system represented is a small molecular beam source placed inside the low intensity wind tunnel of the Institute of Thermophysics, Siberian Branch of the USSR Academy of Sciences. The time-of-flight method is used for measuring molecular velocity distribution functions on molecular beam axis. (Auth.)

  5. Gas stream cleaning system and method

    Science.gov (United States)

    Kunchal, S. Kumar; Erck, Louis J.; Harris, Harry A.

    1979-04-13

    An oil mist and solid particle laden gas from an oil shale retorting operation is initially treated with a temperature controlled oil spray and then by a coalescer to reduce the quantity of oil mist and remove most of the solid particle content of the gas stream and then finally treated by an electrostatic precipitator to essentially remove the oil mist remaining in the gas.

  6. A design method to isothermalize the core of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Takano, M.; Sawa, K.

    1987-01-01

    A practical design method is developed to isothermalize the core of block-type high-temperature gas-cooled reactors (HTGRs). Isothermalization plays an important role in increasing the design margin on fuel temperature. In this method, the fuel enrichment and the size and boron content of the burnable poison rod are determined over the core blockwise so that the axially exponential and radially flat power distribution are kept from the beginning to the end of core life. The method enables conventional HTGRs to raise the outlet gas temperature without increasing the maximum fuel temperature

  7. GAS CHROMATOGRAPHIC AND SPECTROSCOPIC ANALYSIS OF ...

    African Journals Online (AJOL)

    Peroxyformic acid prepared in-situ was employed for epoxidation of canola oil in the presence of toluene. Gas chromatographic analysis of the product revealed the following species: C16:0; C18:0; C18:1; C18:2; C18:3; monoepoxy C18:0; monoepoxy C18:1; monoepoxy C18:2; diepoxy C18:0; diepoxy C18:1 and triepoxy ...

  8. Breakdown Voltage of CF3CHCl2 gas an Alternative to SF6 Gas using HV Test and Bonding Energy Methods

    Science.gov (United States)

    Juliandhy, Tedy; Haryono, T.; Suharyanto; Perdana, Indra

    2018-04-01

    For more than two decades of Sulphur Hexafluoride (SF6) gases is used as a gas insulation in high voltage equipment especially in substations. In addition to getting an advantage as an insulating gas. SF6 gas is recognized as one of the greenhouse effect gases that cause global warming. Under the Kyoto Protocol, SF6 gas is one of those gases whose use is restricted and gradually reduced to the presence of a replacement gas for SF6 gas. One of the alternative gas alternatives which have the potential of replacing SF6 gas as an insulating gas in Gas Insulated Switchgear (GIS) equipment in the substation is Dichlorotrifluoroethane (CF3CHCl2) gas. The purpose of this paper is to enable a comparison of breakdown voltage with high voltage test and method of calculating Bonding energy to Dichlorotrifluoroethane gas as substitute gas for SF6 gas. At 0.1 bar gas pressure obtained an average breakdown voltage of 18.68 kV / mm at 25oC chamber temperature and has the highest breakdown voltage at 50oC with a breakdown voltage of 19.56 kV / mm. The CF3CHCl2 gas has great potential as an insulating gas because it has more insulation ability high of SF6 gas, and is part of the gas recommended under the Kyoto Protocol. Gas CF3CHCl2 has the capacity to double the value of electronegativity greater than SF6 gas as a major requirement of gas isolation and has a value of Global Warming Potential (GWP) and Ozone Depleting lower than from SF6 gas.

  9. Analysis of ways to control the supply of the blast, and their impact on gas-dynamic processes in the blast furnace

    Directory of Open Access Journals (Sweden)

    Віктор Петрович Кравченко

    2016-07-01

    Full Text Available The article presents the analysis of two methods of control over hot blast supply into a blast furnace with constant pressure and constant amount (consumption. The analysis of these two methods was performed with the aim of determining their influence upon changes in gas pressure in the blast furnace top. The blast furnace was considered as a unity of vessels (furnace hearth, the top and gas-dynamic resistance (a column of charge materials. A differential equation was obtained, with regard to the dynamic balance of gas flow at the inlet and outlet of the top; the equation relates the pressure and gas consumption at the top to the pressure and hot blast consumption at the inlet and outlet of the furnace and to the resistance of the column of charge materials. The column of charge materials is considered as n-th number of channels through which gas flow inside the furnace moves and which resist to the flow. By the analysis of this equation at steady state (automatic stabilization of gas pressure in the top, the conditions were obtained to be satisfied with the specified value of gas pressure in the top. This value is equal to a half of the sum of the value of hot blast pressure at the inlet into the furnace and the value of pressure inside the collector of blast furnace gas. This conclusion is verified by the operation practice of blast furnaces in Ukraine. While analyzing the second method of controlling the supply of blast supply-stabilization of consumption (amount of hot blast supplied into the furnace it has been shown that the method could be realized in condition of stabilization of the amount of blast furnace gas, going out of the furnace. As the resistance of the column of charge materials constantly changes it is necessary to change the hot blast pressure in order to ensure the constant amount of blast, supplied into the furnace. It is often connected with possible substantial pressure fluctuations of hot blast at the inlet of the

  10. A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Feng Lu

    2016-10-01

    Full Text Available Gas path fault diagnosis involves the effective utilization of condition-based sensor signals along engine gas path to accurately identify engine performance failure. The rapid development of information processing technology has led to the use of multiple-source information fusion for fault diagnostics. Numerous efforts have been paid to develop data-based fusion methods, such as neural networks fusion, while little research has focused on fusion architecture or the fusion of different method kinds. In this paper, a data hierarchical fusion using improved weighted Dempster–Shaffer evidence theory (WDS is proposed, and the integration of data-based and model-based methods is presented for engine gas-path fault diagnosis. For the purpose of simplifying learning machine typology, a recursive reduced kernel based extreme learning machine (RR-KELM is developed to produce the fault probability, which is considered as the data-based evidence. Meanwhile, the model-based evidence is achieved using particle filter-fuzzy logic algorithm (PF-FL by engine health estimation and component fault location in feature level. The outputs of two evidences are integrated using WDS evidence theory in decision level to reach a final recognition decision of gas-path fault pattern. The characteristics and advantages of two evidences are analyzed and used as guidelines for data hierarchical fusion framework. Our goal is that the proposed methodology provides much better performance of gas-path fault diagnosis compared to solely relying on data-based or model-based method. The hierarchical fusion framework is evaluated in terms to fault diagnosis accuracy and robustness through a case study involving fault mode dataset of a turbofan engine that is generated by the general gas turbine simulation. These applications confirm the effectiveness and usefulness of the proposed approach.

  11. Phase space analysis of some interacting Chaplygin gas models

    Energy Technology Data Exchange (ETDEWEB)

    Khurshudyan, M. [Academy of Sciences of Armenia, Institute for Physical Research, Ashtarak (Armenia); Tomsk State University of Control Systems and Radioelectronics, Laboratory for Theoretical Cosmology, Tomsk (Russian Federation); Tomsk State Pedagogical University, Department of Theoretical Physics, Tomsk (Russian Federation); Myrzakulov, R. [Eurasian National University, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan)

    2017-02-15

    In this paper we discuss a phase space analysis of various interacting Chaplygin gas models in general relativity. Linear and nonlinear sign changeable interactions are considered. For each case appropriate late time attractors of field equations are found. The Chaplygin gas is one of the dark fluids actively considered in modern cosmology due to the fact that it is a joint model of dark energy and dark matter. (orig.)

  12. Pigging analysis for gas-liquid two phase flow in pipelines

    International Nuclear Information System (INIS)

    Kohda, K.; Suzukawa, Y.; Furukawa, H.

    1988-01-01

    A new method to analyze transient phenomena caused by pigging in gas-liquid two-phase flow is developed. During pigging, a pipeline is divided into three sections by two moving boundaries, namely the pig and the leading edge of the liquid slug in front of the pig. The basic equations are mass, momentum and energy conservation equations. The boundary conditions at the moving boundaries are determined from the mass conservation across the boundaries, etc. A finite difference method is used to solve the equations numerically. The method described above is also capable of analyzing transient two-phase flow caused by pressure and flow rate changes. Thus the over-all analysis of transient two-phase flow in pipelines becomes possible. A series of air-water two-phase flow pigging experiments was conducted using 105.3 mm diameter and 1436.5 m long test pipeline. The agreement between the measured and the calculated results is very good

  13. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  14. Glass bottle sampling solid phase microextraction gas chromatography mass spectrometry for breath analysis of drug metabolites.

    Science.gov (United States)

    Lu, Yan; Niu, Wenqi; Zou, Xue; Shen, Chengyin; Xia, Lei; Huang, Chaoqun; Wang, Hongzhi; Jiang, Haihe; Chu, Yannan

    2017-05-05

    Breath analysis is a non-invasive approach which may be applied to disease diagnosis and pharmacokinetic study. In the case of offline analysis, the exhaled gas needs to be collected and the sampling bag is often used as the storage vessel. However, the sampling bag usually releases some extra compounds, which may interfere with the result of the breath test. In this study, a novel breath sampling glass bottle was developed with a syringe needle sampling port for solid phase microextraction (SPME). Such a glass bottle scarcely liberates compounds and can be used to collect exhaled gas for ensuing analysis by gas chromatography-mass spectrometry (GC-MS). The glass bottle sampling SPME-GC-MS analysis was carried out to investigate the breath metabolites of myrtol, a multicompound drug normally used in the treatment of bronchitis and sinusitis. Four compounds, α-pinene, 2,3-dehydro-1,8-cineole, d-limonene and 1,8-cineole were found in the exhaled breath of all eight volunteers who had taken the myrtol. While for other ten subjects who had not used the myrtol, these compounds were undetectable. In the SPME-GC-MS analysis of the headspace of myrtol, three compounds were detected including α-pinene, d-limonene and 1,8-cineole. Comparing the results of breath and headspace analysis, it indicates that 2,3-dehydro-1,8-cineole in the breath is the metabolite of 1,8-cineole. It is the first time that this metabolite was identified in human breath. The study demonstrates that the glass bottle sampling SPME-GC-MS method is applicable to exhaled gas analysis including breath metabolites investigation of drugs like myrtol. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Nitrocarburising in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammoniapropene- hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere...... microscopy and X-ray diffraction analysis. It is shown that the use of unsaturated hydrocarbon gas in nitrocarburising processes is a viable alternative to traditional nitrocarburising methods....

  16. APPLICATIONS OF CFD METHOD TO GAS MIXING ANALYSIS IN A LARGE-SCALED TANK

    International Nuclear Information System (INIS)

    Lee, S; Richard Dimenna, R

    2007-01-01

    The computational fluid dynamics (CFD) modeling technique was applied to the estimation of maximum benzene concentration for the vapor space inside a large-scaled and high-level radioactive waste tank at Savannah River site (SRS). The objective of the work was to perform the calculations for the benzene mixing behavior in the vapor space of Tank 48 and its impact on the local concentration of benzene. The calculations were used to evaluate the degree to which purge air mixes with benzene evolving from the liquid surface and its ability to prevent an unacceptable concentration of benzene from forming. The analysis was focused on changing the tank operating conditions to establish internal recirculation and changing the benzene evolution rate from the liquid surface. The model used a three-dimensional momentum coupled with multi-species transport. The calculations included potential operating conditions for air inlet and exhaust flows, recirculation flow rate, and benzene evolution rate with prototypic tank geometry. The flow conditions are assumed to be fully turbulent since Reynolds numbers for typical operating conditions are in the range of 20,000 to 70,000 based on the inlet conditions of the air purge system. A standard two-equation turbulence model was used. The modeling results for the typical gas mixing problems available in the literature were compared and verified through comparisons with the test results. The benchmarking results showed that the predictions are in good agreement with the analytical solutions and literature data. Additional sensitivity calculations included a reduced benzene evolution rate, reduced air inlet and exhaust flow, and forced internal recirculation. The modeling results showed that the vapor space was fairly well mixed and that benzene concentrations were relatively low when forced recirculation and 72 cfm ventilation air through the tank boundary were imposed. For the same 72 cfm air inlet flow but without forced recirculation

  17. System analysis and planning of a gas distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Edwin F.M.; Farias, Helio Monteiro [AUTOMIND, Rio de Janeiro, RJ (Brazil); Costa, Carla V.R. [Universidade Salvador (UNIFACS), BA (Brazil)

    2009-07-01

    The increase in demand by gas consumers require that projects or improvements in gas distribution networks be made carefully and safely to ensure a continuous, efficient and economical supply. Gas distribution companies must ensure that the networks and equipment involved are defined and designed at the appropriate time to attend to the demands of the market. To do that a gas distribution network analysis and planning tool should use distribution networks and transmission models for the current situation and the future changes to be implemented. These models are used to evaluate project options and help in making appropriate decisions in order to minimize the capital investment in new components or simple changes in operational procedures. Gas demands are increasing and it is important that gas distribute design new distribution systems to ensure this growth, considering financial constraints of the company, as well as local legislation and regulation. In this study some steps of developing a flexible system that attends to those needs will be described. The analysis of distribution requires geographically referenced data for the models as well as an accurate connectivity and the attributes of the equipment. GIS systems are often used as a deposit center that holds the majority of this information. GIS systems are constantly updated as distribution network equipment is modified. The distribution network modeling gathered from this system ensures that the model represents the current network condition. The benefits of this architecture drastically reduce the creation and maintenance cost of the network models, because network components data are conveniently made available to populate the distribution network. This architecture ensures that the models are continually reflecting the reality of the distribution network. (author)

  18. Numerical analysis of exhaust gas flow during the gas exchange process and the design optimization; Haiki manihorudonai no hiteijo nagare kaiseki gijutsu to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, K; Takeyama, S; Sakai, E; Tanzawa, K [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    A simulation method was developed to estimate exhaust gas flow during the gas exchange process. In this simulation, one dimensional in-cylinder gas flow calculation and three dimensional exhaust gas flow calculation were combined. Gas flow inside the exhaust manifold catalyst during gas exchange was agreed in experiments. A simulation method was applied to select oxygen sensor location. A prediction of the oxygen sensor sensitivity of each cylinder gas was presented. The possibility of selecting oxygen sensor location in the exhaust manifold using calculation was proved. 5 refs., 10 figs., 1 tab.

  19. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    Science.gov (United States)

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods. © The Author(s) 2016.

  20. Fracture mapping in clays: the design and application of a mobile gas geochemistry laboratory for the analysis of soil gases

    International Nuclear Information System (INIS)

    Gregory, R.G.

    1988-02-01

    Integrated soil gas analyses for helium, radon, carbon dioxide, oxygen and organic gases allow the accurate interpretation of soil gas signatures as indicators of underlying structure. The most important features observed in the patterns of soil gas behaviour are large variations over faults and fractures. Structures such as these provide channelways for fluid movement in the upper crust. The construction of a mobile gas geochemistry laboratory for the analysis of soil gases at field investigation sites, and the subsequent trials carried out to evaluate the laboratory, clearly show that the soil gas investigation technique is accurate and viable as an independent site investigation method for the study of fracturing and groundwater movement around potential waste repository sites. (author)

  1. Parametric economic analysis of natural gas reburn technologies. Topical report, June 1991-June 1992

    International Nuclear Information System (INIS)

    Bluestein, J.

    1992-06-01

    The report presents a parametric economic analysis of natural gas reburn technologies used for control of nitrogen oxides emissions in coal-fired utility boilers. It is a competitive assessment of the economics of gas reburn performed in the context of regulatory requirements and competing conventional technologies. The reburn technologies examined are basic gas reburn, reburn with sorbent injection and advanced gas reburn. The analysis determined the levelized costs of these technologies in $/ton of NOx removed with respect to a gas-coal price differential in $/MMBtu of energy input. For those niches in which reburn was less economical, a breakeven capital cost analysis was carried out to determine the R ampersand D goals which would make reburn more cost competitive

  2. Theoretical analysis and experimental study of spray degassing method

    International Nuclear Information System (INIS)

    Wu Ruizhi; Shu Da; Sun Baode; Wang Jun; Li Fei; Chen Haiyan; Lu YanLing

    2005-01-01

    A new hydrogen-removal method of aluminum melt, spray degassing, is presented. The thermodynamic and kinetic analysis of the method are discussed. A comparison between the thermodynamics and kinetics of the spray degassing method and rotary impellor degassing method is made. The thermodynamic analysis shows that the relationship between the final hydrogen content of the aluminum melt and the ratio of purge gas flow rate to melt flow rate is linear. The result of thermodynamic calculation shows that, in spray degassing, when the ratio of G/q is larger than 2.2 x 10 -6 , the final hydrogen content will be less than 0.1 ml/100 g Al. From the kinetic analysis, the degassing effect is affected by both the size of melt droplets and the time that melt droplets move from sprayer to the bottom of the treatment tank. In numerical calculation, the hydrogen in aluminum melt can be degassed to 0.05 ml/100 g Al from 0.2 ml/100 g Al in 0.02 s with the spray degassing method. Finally, the water-model experiments are presented with the spray degassing method and rotary impellor degassing method. Melt experiments are also presented. Both the water-model experiments and the melt experiments show that the degassing effect of the spray degassing method is better than that of the rotary impeller method

  3. Statistical methods to monitor the West Valley off-gas system

    International Nuclear Information System (INIS)

    Eggett, D.L.

    1990-01-01

    This paper reports on the of-gas system for the ceramic melter operated at the West Valley Demonstration Project at West Valley, NY, monitored during melter operation. A one-at-a-time method of monitoring the parameters of the off-gas system is not statistically sound. Therefore, multivariate statistical methods appropriate for the monitoring of many correlated parameters will be used. Monitoring a large number of parameters increases the probability of a false out-of-control signal. If the parameters being monitored are statistically independent, the control limits can be easily adjusted to obtain the desired probability of a false out-of-control signal. The principal component (PC) scores have desirable statistical properties when the original variables are distributed as multivariate normals. Two statistics derived from the PC scores and used to form multivariate control charts are outlined and their distributional properties reviewed

  4. Retained gas inventory comparison

    International Nuclear Information System (INIS)

    BARTON, W.B.

    1999-01-01

    Gas volume data derived from four different analytical methods were collected and analyzed for comparison to volumes originally used in the technical basis for the Basis for Interim Operations (BIO). The original volumes came from Hodgson (1996) listed in the reference section of this document. Hodgson (1996) screened all 177 single and double-shell tanks for the presence of trapped gas in waste via two analytical methods: Surface Level Rise (SLR), and Barometric Pressure Effect (BPE). More recent gas volume projections have been calculated using different analytical techniques along with updates to the parameters used as input to the SLR and BPE models. Gas volumes derived from new analytical instruments include those as measured by the Void Fraction Instrument (VFI) and Retained Gas Sampler (RGS). The results of this comparison demonstrate that the original retained gas volumes of Hodgson (1996) used as a technical basis in developing the BIO were conservative, and were conservative from a safety analysis standpoint. These results represent only comparisons to the original reported volumes using the limited set of newly acquired data that is available

  5. Gas phase fractionation method using porous ceramic membrane

    Science.gov (United States)

    Peterson, Reid A.; Hill, Jr., Charles G.; Anderson, Marc A.

    1996-01-01

    Flaw-free porous ceramic membranes fabricated from metal sols and coated onto a porous support are advantageously used in gas phase fractionation methods. Mean pore diameters of less than 40 .ANG., preferably 5-20 .ANG. and most preferably about 15 .ANG., are permeable at lower pressures than existing membranes. Condensation of gases in small pores and non-Knudsen membrane transport mechanisms are employed to facilitate and increase membrane permeability and permselectivity.

  6. Abnormal tyrosine and phenylalanine metabolism in patients with tyrosyluria and phenylketonuria; gas-liquid chromatographic analysis of urinary metabolites

    NARCIS (Netherlands)

    Wadman, S.K.; Heiden, C. van der; Ketting, D.; Sprang, F.J. van

    Gas-liquid chromatographic methods have been developed for the analysis of: urinary phenylalanine metabolites (I) in patients with phenylketonuria, tyrosine metabolites (II) in patients with a disturbed tyrosine metabolism at the level of p-hydroxyphenylpyruvate hydroxylase, and homogentisic acid in

  7. A miniaturized optical gas sensor for natural gas analysis

    NARCIS (Netherlands)

    Ayerden, N.P.

    2016-01-01

    The depletion of domestic reserves and the growing use of sustainable resources forces a transition from the locally produced natural gas with a well-known composition toward the ‘new’ gas with a more flexible composition in the Netherlands. For safe combustion and proper billing, the natural gas

  8. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis of primary amines in water.

    Science.gov (United States)

    Krzyżaniak, Agnieszka; Weggemans, Wilko; Schuur, Boelo; de Haan, André B

    2011-12-16

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct analysis of aliphatic amines and diamines in aqueous samples by gas chromatography (GC) with silanol deactivation using ionic liquids (ILs). ILs including trihexyl(tetradecyl)phosphonium bis 2,4,4-(trimethylpentyl)phosphinate (Cyphos IL-104), 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [pmim][Tf(2)N] and N″-ethyl-N,N,N',N'-tetramethylguanidinium tris(pentafluoroethyl)trifluorophosphate [etmg][FAP] were tested as deactivating media for the GC liner. Solutions of these ILs in methanol were injected in the system prior to the analysis of primary amines. Butane-1,4-diamine (putrescine, BDA) was used as a reference amine. The best results were obtained using the imidazolium IL [pmim][Tf(2)N]. With this deactivator, excellent reproducibility of the analysis was achieved, and the detection limit of BDA was as low as 1mM. The applicability of the method was proven for the analysis of two different primary amines (C4-C5) and pentane-1,5-diamine. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Evaluation method of gas leakage rate from transportation casks of radioactive materials (gas leakage rates from scratches on O-ring surface)

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Li Ninghua; Asano, Ryoji; Kawa, Tsunemichi

    2004-01-01

    A sealing function is essential for transportation and/or storage casks of radioactive materials under both normal and accidental operating conditions in order to prevent radioactive materials from being released into the environment. In the safety analysis report, the release rate of radioactive materials into the environment is evaluated using the correlations specified in the ANSI N14.5, 1987. The purposes of the work are to reveal the underlying problems on the correlations specified in the ANSI N14.5 related to gas leakage rates from a scratch on O-ring surface and from multi-leak paths, to offer a data base to study the evaluation method of the leakage rate and to propose the evaluation method. In this paper, the following insights were obtained and clarified: 1. If a characteristic value of a leak path is defined as D 4 /a ('D' is the diameter and 'a' is the length), a scratch on the O-ring surface can be evaluated as a circular tube. 2. It is proper to use the width of O-ring groove on the flange as the leak path length for elastomer O-rings. 3. Gas leakage rates from multi leak paths of the transportation cask can be evaluated in the same manner as a single leak path if an effective D4/a is introduced. (author)

  10. Gas Chromatography-Mass Spectrometric Analysis of Nematicidal ...

    African Journals Online (AJOL)

    Purpose: To investigate the chemical composition and nematicidal activity of the essential oil of. Valeriana amurensis ... Methods: The essential oil of V. amurensis roots was obtained by hydrodistillation and analyzed by gas chromatography (GC) ..... Aβ1-40 and Caspase-3 in Alzheimer's disease model rat's brain. J Chin ...

  11. Method for mapping a natural gas leak

    Science.gov (United States)

    Reichardt, Thomas A [Livermore, CA; Luong, Amy Khai [Dublin, CA; Kulp, Thomas J [Livermore, CA; Devdas, Sanjay [Albany, CA

    2009-02-03

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formatted into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimposed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  12. Comparative Analysis of Hydrogen Production Methods with Nuclear Reactors

    International Nuclear Information System (INIS)

    Morozov, Andrey

    2008-01-01

    Hydrogen is highly effective and ecologically clean fuel. It can be produced by a variety of methods. Presently the most common are through electrolysis of water and through the steam reforming of natural gas. It is evident that the leading method for the future production of hydrogen is nuclear energy. Several types of reactors are being considered for hydrogen production, and several methods exist to produce hydrogen, including thermochemical cycles and high-temperature electrolysis. In the article the comparative analysis of various hydrogen production methods is submitted. It is considered the possibility of hydrogen production with the nuclear reactors and is proposed implementation of research program in this field at the IPPE sodium-potassium eutectic cooling high temperature experimental facility (VTS rig). (authors)

  13. Trace Analysis in End-Exhaled Air Using Direct Solvent Extraction in Gas Sampling Tubes: Tetrachloroethene in Workers as an Example

    Directory of Open Access Journals (Sweden)

    Chris-Elmo Ziener

    2014-01-01

    Full Text Available Simple and cost-effective analytical methods are required to overcome the barriers preventing the use of exhaled air in routine occupational biological monitoring. Against this background, a new method is proposed that simplifies the automation and calibration of the analytical measurements. End-exhaled air is sampled using valveless gas sampling tubes made of glass. Gaseous analytes are transferred to a liquid phase using a microscale solvent extraction performed directly inside the gas sampling tubes. The liquid extracts are analysed using a gas chromatograph equipped, as usual, with a liquid autosampler, and liquid standards are used for calibration. For demonstration purposes, the method’s concept was applied to the determination of tetrachloroethene in end-exhaled air, which is a biomarker for occupational tetrachloroethene exposure. The method’s performance was investigated in the concentration range 2 to 20 μg tetrachloroethene/L, which corresponds to today’s exposure levels. The calibration curve was linear, and the intra-assay repeatability and recovery rate were sufficient. Analysis of real samples from dry-cleaning workers occupationally exposed to tetrachloroethene and from nonexposed subjects demonstrated the method’s utility. In the case of tetrachloroethene, the method can be deployed quickly, requires no previous experiences in gas analysis, provides sufficient analytical reliability, and addresses typical end-exhaled air concentrations from exposed workers.

  14. Technical note: Rapid image-based field methods improve the quantification of termite mound structures and greenhouse-gas fluxes

    Directory of Open Access Journals (Sweden)

    P. A. Nauer

    2018-06-01

    Full Text Available Termite mounds (TMs mediate biogeochemical processes with global relevance, such as turnover of the important greenhouse gas methane (CH4. However, the complex internal and external morphology of TMs impede an accurate quantitative description. Here we present two novel field methods, photogrammetry (PG and cross-sectional image analysis, to quantify TM external and internal mound structure of 29 TMs of three termite species. Photogrammetry was used to measure epigeal volume (VE, surface area (AE and mound basal area (AB by reconstructing 3-D models from digital photographs, and compared against a water-displacement method and the conventional approach of approximating TMs by simple geometric shapes. To describe TM internal structure, we introduce TM macro- and micro-porosity (θM and θμ, the volume fractions of macroscopic chambers, and microscopic pores in the wall material, respectively. Macro-porosity was estimated using image analysis of single TM cross sections, and compared against full X-ray computer tomography (CT scans of 17 TMs. For these TMs we present complete pore fractions to assess species-specific differences in internal structure. The PG method yielded VE nearly identical to a water-displacement method, while approximation of TMs by simple geometric shapes led to errors of 4–200 %. Likewise, using PG substantially improved the accuracy of CH4 emission estimates by 10–50 %. Comprehensive CT scanning revealed that investigated TMs have species-specific ranges of θM and θμ, but similar total porosity. Image analysis of single TM cross sections produced good estimates of θM for species with thick walls and evenly distributed chambers. The new image-based methods allow rapid and accurate quantitative characterisation of TMs to answer ecological, physiological and biogeochemical questions. The PG method should be applied when measuring greenhouse-gas emissions from TMs to avoid large errors from inadequate shape

  15. Doping control analysis of anabolic steroids in equine urine by gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Wong, April S Y; Leung, Gary N W; Leung, David K K; Wan, Terence S M

    2017-09-01

    Anabolic steroids are banned substances in equine sports. Gas chromatography-mass spectrometry (GC-MS) has been the traditional technique for doping control analysis of anabolic steroids in biological samples. Although liquid chromatography-mass spectrometry (LC/MS) has become an important technique in doping control, the detection of saturated hydroxysteroids by LC-MS remains a problem due to their low ionization efficiency under electrospray. The recent development in fast-scanning gas-chromatography-triple-quadrupole mass spectrometry (GC-MS/MS) has provided a better alternative with a significant reduction in chemical noise by means of selective reaction monitoring. Herein, we present a sensitive and selective method for the screening of over 50 anabolic steroids in equine urine using gas chromatography-tandem mass spectrometry (GC-MS/MS). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Methods and systems for detecting gas flow by photoacoustic signal generation

    Science.gov (United States)

    Choudhury, Niloy; Challener, William Albert

    2018-03-06

    A method for the detection of a gas flowing from a location in a structure is described. A hollow-core optical fiber is placed in a position adjacent the structure. The fiber includes a sound-conductive cladding layer; and further includes at least one aperture extending into its cross-sectional diameter. A beam of pulsed, optical is transmitted into the fiber with a tunable laser. The optical energy is characterized by a wavelength that can be absorbed by the gas that flows into the fiber through the aperture. This causes a temperature fluctuation in the region of gas absorption, which in turn generates an acoustic wave in the absorption region. The acoustic wave travels through the cladding layer, and can be detected with a microphone, so as to provide the location of gas flow, based on the recorded position and movement of the acoustic wave. A related system is also described.

  17. Analysis of the process of raising the temperature in the spark channel at a discharge in gas

    CERN Document Server

    Korytchenko, K V; Chumakov, V I

    2001-01-01

    Analysis of the process of raising the temperature in the spark channel at a discharge in gas is performed. The quantitative evaluation was made in main for the air. The effect of steadying a thermodynamic equilibrium in gas,as well as the influence of power discharge parameters on the process of temperature increasing was analyzed. The quantitative evaluation of time parameters of the processes of rotary, oscillatory relaxation, dissociation and ionization has allowed to reveal the influence of each of them on temperature increasing in the spark channel. The problems arising in the course of practical realization of a spark discharge which influence on the process of temperature raising are detected,and the ways for their solution are determined. The results obtained can be put in a basis of developing the methods to design devices for intensive increase of temperatures in gas media using the electrical discharge,as well as for analysis of a dependence of shock wave intensity on dynamic parameters of the ele...

  18. Sizing of Compression Coil Springs Gas Regulators Using Modern Methods CAD and CAE

    Directory of Open Access Journals (Sweden)

    Adelin Ionel Tuţă

    2010-10-01

    Full Text Available This paper presents a method for compression coil springs sizing by gas regulators composition, using CAD techniques (Computer Aided Design and CAE (Computer Aided Engineering. Sizing is to optimize the functioning of the regulators under dynamic industrial and house-hold. Gas regulator is a device that automatically and continuously adjusted to maintain pre-set limits on output gas pressure at varying flow and input pressure. The performances of the pressure regulators like automatic systems depend on their behaviour under dynamic opera-tion. Time constant optimization of pneumatic actuators, which drives gas regulators, leads to a better functioning under their dynamic.

  19. A new method in predicting productivity of multi-stage fractured horizontal well in tight gas reservoirs

    Directory of Open Access Journals (Sweden)

    Yunsheng Wei

    2016-10-01

    Full Text Available The generally accomplished technique for horizontal wells in tight gas reservoirs is by multi-stage hydraulic fracturing, not to mention, the flow characteristics of a horizontal well with multiple transverse fractures are very intricate. Conventional methods, well as an evaluation unit, are difficult to accurately predict production capacity of each fracture and productivity differences between wells with a different number of fractures. Thus, a single fracture sets the minimum evaluation unit, matrix, fractures, and lateral wellbore model that are then combined integrally to approximate horizontal well with multiple transverse hydraulic fractures in tight gas reservoirs. This paper presents a new semi-analytical methodology for predicting the production capacity of a horizontal well with multiple transverse hydraulic fractures in tight gas reservoirs. Firstly, a mathematical flow model used as a medium, which is disturbed by finite conductivity vertical fractures and rectangular shaped boundaries, is established and explained by the Fourier integral transform. Then the idea of a single stage fracture analysis is incorporated to establish linear flow model within a single fracture with a variable rate. The Fredholm integral numerical solution is applicable for the fracture conductivity function. Finally, the pipe flow model along the lateral wellbore is adapted to couple multi-stages fracture mathematical models, and the equation group of predicting productivity of a multi-stage fractured horizontal well. The whole flow process from the matrix to bottom-hole and production interference between adjacent fractures is also established. Meanwhile, the corresponding iterative algorithm of the equations is given. In this case analysis, the productions of each well and fracture are calculated under the different bottom-hole flowing pressure, and this method also contributes to obtaining the distribution of pressure drop and production for every

  20. A gas chromatography-mass spectrometry (GC-MS) method for the detection and quantitation of monofluoroacetate in plants toxic to livestock

    Science.gov (United States)

    Monofluoroacetate (MFA) is a potent toxin that occurs in over 50 plant species in Africa, Australia, and South America and is responsible for significant livestock deaths in these regions. A gas chromatography–mass spectrometry (GC-MS) method for the analysis of MFA in plants based on the derivatiza...

  1. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi, Yuehong; Liu, Xiao; Jiang, Minghe

    2014-01-01

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  2. Environmental analysis for pipeline gas demonstration plants

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, L.H.

    1978-09-01

    The Department of Energy (DOE) has implemented programs for encouraging the development and commercialization of coal-related technologies, which include coal gasification demonstration-scale activities. In support of commercialization activities the Environmental Analysis for Pipeline Gas Demonstration Plants has been prepared as a reference document to be used in evaluating potential environmental and socioeconomic effects from construction and operation of site- and process-specific projects. Effluents and associated impacts are identified for six coal gasification processes at three contrasting settings. In general, impacts from construction of a high-Btu gas demonstration plant are similar to those caused by the construction of any chemical plant of similar size. The operation of a high-Btu gas demonstration plant, however, has several unique aspects that differentiate it from other chemical plants. Offsite development (surface mining) and disposal of large quantities of waste solids constitute important sources of potential impact. In addition, air emissions require monitoring for trace metals, polycyclic aromatic hydrocarbons, phenols, and other emissions. Potential biological impacts from long-term exposure to these emissions are unknown, and additional research and data analysis may be necessary to determine such effects. Possible effects of pollutants on vegetation and human populations are discussed. The occurrence of chemical contaminants in liquid effluents and the bioaccumulation of these contaminants in aquatic organisms may lead to adverse ecological impact. Socioeconomic impacts are similar to those from a chemical plant of equivalent size and are summarized and contrasted for the three surrogate sites.

  3. Nitrocarburizing in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2011-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammonia-propene-hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere...... microscopy and X-ray diffraction analysis. It is shown that the use of unsaturated hydrocarbon gas in nitrocarburising processes is a viable alternative to traditional nitrocarburising methods....

  4. Gas chromatographic analysis of reactive carbonyl compounds formed from lipids upon UV-irradiation

    International Nuclear Information System (INIS)

    Dennis, K.J.; Shibamoto, T.

    1990-01-01

    Peroxidation of lipids produces carbonyl compounds; some of these, e.g., malonaldehyde and 4-hydroxynonenal, are genotoxic because of their reactivity with biological nucleophiles. Analysis of the reactive carbonyl compounds is often difficult. The methylhydrazine method developed for malonaldehyde analysis was applied to simultaneously measure the products formed from linoleic acid, linolenic acid, arachidonic acid, and squalene upon ultraviolet-irradiation (UV-irradiation). The photoreaction products, saturated monocarbonyl, alpha,beta-unsaturated carbonyls, and beta-dicarbonyls, were derivatized with methylhydrazine to give hydrazones, pyrazolines, and pyrazoles, respectively. The derivatives were analyzed by gas chromatography and gas chromatography-mass spectrometry. Lipid peroxidation products identified included formaldehyde, acetaldehyde, acrolein, malonaldehyde, n-hexanal, and 4-hydroxy-2-nonenal. Malonaldehyde levels formed upon 4 hr of irradiation were 0.06 micrograms/mg from squalene, 2.4 micrograms/mg from linolenic acid, and 5.7 micrograms/mg from arachidonic acid. Significant levels of acrolein (2.5 micrograms/mg) and 4-hydroxy-2-nonenal (0.17 micrograms/mg) were also produced from arachidonic acid upon 4 hr irradiation

  5. Molecular gas analysis by Raman scattering in intracavity laser configuration

    International Nuclear Information System (INIS)

    Benner, R.E.; Andrade, J.D.; Van Wagenen, R.A.; Westenskow, D.R.

    1987-01-01

    A system is described for the near simultaneous analysis and quantitation of selected multiple polyatomic gases in a gas sample by Raman light scattering comprising in combination: (a) laser means capable of producing a polarized laser beam of a selected wavelength containing a laser cavity the laser cavity containing a plasma tube and wherein one end of the laser cavity contains a high reflectivity output coupler mirror; (b) a gas sampling cell located within the laser cavity between the plasma tube and the output coupler mirror, the cell having opposing parallel end windows interconnected by a continuous sidewall. The end windows and sidewall define a longitudinal gas chamber oriented such that, when the laser beam is activated, the laser beam is coincident with and traverses the axis of the longitudinal gas chamber, the end windows being positioned to be substantially normal to the axis of the longitudinal gas cell chamber. The cell also has opposing, aligned side windows in the sidewall parallel to and on either side of the axis of the longitudinal gas chamber. The gas cell further contains inlet and outlet means communicating with the chamber to pass a sample gas through the cell

  6. Data acquisition and quantitative analysis of stable hydrogen isotope in liquid and gas in the liquid phase catalytic exchange process

    International Nuclear Information System (INIS)

    Choi, H. J.; Lee, H. S.; Kim, K. R.; Cheong, H. S.; Ahn, D. H.; Lee, S. H.; Paek, S. W.; Kang, H. S.; Kim, J. G.

    2001-01-01

    A pilot plant for the Liquid Phase Catalytic Exchange process was built and has been operating to test the hydrophobic catalyst developed to remove the tritium generated at the CANDU nuclear power plants. The methods of quantitative analysis of hydrogen stable isotope were compared. Infrared spectroscopy was used for the liquid samples, and gas chromatography with hydrogen carrier gas showed the best result for gas samples. Also, a data acquisition system was developed to record the operation parameters. This record was very useful to investigate the causes of the system trip

  7. Regular pipeline maintenance of gas pipeline using technical operational diagnostics methods

    Energy Technology Data Exchange (ETDEWEB)

    Volentic, J [Gas Transportation Department, Slovensky plynarensky priemysel, Slovak Gas Industry, Bratislava (Slovakia)

    1998-12-31

    Slovensky plynarensky priemysel (SPP) has operated 17 487 km of gas pipelines in 1995. The length of the long-line pipelines reached 5 191 km, distribution network was 12 296 km. The international transit system of long-line gas pipelines ranged 1 939 km of pipelines of various dimensions. The described scale of transport and distribution system represents a multibillion investments stored in the ground, which are exposed to the environmental influences and to pipeline operational stresses. In spite of all technical and maintenance arrangements, which have to be performed upon operating gas pipelines, the gradual ageing takes place anyway, expressed in degradation process both in steel tube, as well as in the anti-corrosion coating. Within a certain time horizon, a consistent and regular application of methods and means of in-service technical diagnostics and rehabilitation of existing pipeline systems make it possible to save substantial investment funds, postponing the need in funds for a complex or partial reconstruction or a new construction of a specific gas section. The purpose of this presentation is to report on the implementation of the programme of in-service technical diagnostics of gas pipelines within the framework of regular maintenance of SPP s.p. Bratislava high pressure gas pipelines. (orig.) 6 refs.

  8. Regular pipeline maintenance of gas pipeline using technical operational diagnostics methods

    Energy Technology Data Exchange (ETDEWEB)

    Volentic, J. [Gas Transportation Department, Slovensky plynarensky priemysel, Slovak Gas Industry, Bratislava (Slovakia)

    1997-12-31

    Slovensky plynarensky priemysel (SPP) has operated 17 487 km of gas pipelines in 1995. The length of the long-line pipelines reached 5 191 km, distribution network was 12 296 km. The international transit system of long-line gas pipelines ranged 1 939 km of pipelines of various dimensions. The described scale of transport and distribution system represents a multibillion investments stored in the ground, which are exposed to the environmental influences and to pipeline operational stresses. In spite of all technical and maintenance arrangements, which have to be performed upon operating gas pipelines, the gradual ageing takes place anyway, expressed in degradation process both in steel tube, as well as in the anti-corrosion coating. Within a certain time horizon, a consistent and regular application of methods and means of in-service technical diagnostics and rehabilitation of existing pipeline systems make it possible to save substantial investment funds, postponing the need in funds for a complex or partial reconstruction or a new construction of a specific gas section. The purpose of this presentation is to report on the implementation of the programme of in-service technical diagnostics of gas pipelines within the framework of regular maintenance of SPP s.p. Bratislava high pressure gas pipelines. (orig.) 6 refs.

  9. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    Science.gov (United States)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery

  10. Finite Element Optimised Back Analysis of In Situ Stress Field and Stability Analysis of Shaft Wall in the Underground Gas Storage

    Directory of Open Access Journals (Sweden)

    Yifei Yan

    2016-01-01

    Full Text Available A novel optimised back analysis method is proposed in this paper. The in situ stress field of an underground gas storage (UGS reservoir in a Turkey salt cavern is analysed by the basic theory of elastic mechanics. A finite element method is implemented to optimise and approximate the objective function by systematically adjusting boundary loads. Optimising calculation is performed based on a novel method to reduce the error between measurement and calculation as much as possible. Compared with common back analysis methods such as regression method, the method proposed can further improve the calculation precision. By constructing a large circular geometric model, the effect of stress concentration is eliminated and a minimum difference between computed and measured stress can be guaranteed in the rectangular objective region. The efficiency of the proposed method is investigated and confirmed by its capability on restoring in situ stress field, which agrees well with experimental results. The characteristics of stress distribution of chosen UGS wells are obtained based on the back analysis results and by applying the corresponding fracture criterion, the shaft walls are proven safe.

  11. Decomposition analysis of gas consumption in the residential sector in Ireland

    International Nuclear Information System (INIS)

    Rogan, Fionn; Cahill, Caiman J.; Ó Gallachóir, Brian P.

    2012-01-01

    To-date, decomposition analysis has been widely used at the macro-economic level and for in-depth analyses of the industry and transport sectors; however, its application in the residential sector has been rare. This paper uses the Log-Mean Divisia Index I (LMDI-I) methodology to decompose gas consumption trends in the gas-connected residential sector in Ireland from 1990 to 2008, which despite an increasing number of energy efficiency policies, experienced total final consumption growth of 470%. The analysis decomposes this change in gas consumption into a number of effects, examining the impact over time of market factors such as a growing customer base, varying mix of dwelling types, changing share of vacant dwellings, changing size of new dwellings, the impact of building regulations policy and other factors such as the weather. The analysis finds the most significant effects are changing customer numbers and changing intensity; the analysis also quantifies the impact of building regulations and compares it with other effects such as changing size of new dwellings. By comparing the historical impact on gas consumption of policy factors and non-policy factors, this paper highlights the challenge for policy-makers in achieving overall energy consumption reduction. - Highlights: ► Contribution to a gap in the literature with a residential sector decomposition analysis of gas TFC. ► Activity effect had the largest impact and was cumulatively the best explainer of total TFC change. ► Intensity effect was the second biggest effect with a 19% share of total TFC change. ► In line with rising surface temperatures, the weather effect is declining over time. ► Building regulations are having a diminishing impact but are being negated by larger dwellings.

  12. Analysis Of The Effect Of Fuel Enrichment Error On Neutronic Properties Of The RSG-GAS Core

    International Nuclear Information System (INIS)

    Saragih, Tukiran; Pinem, Surian

    2002-01-01

    The analysis of the fuel enrichment error effect on neutronic properties has been carried out. The fuel enrichment could be improperly done because of wrong fabrication. Therefore it is necessary to analyze the fuel enrichment error effect to determine how many percents the fuel enrichment maximum can be accepted in the core. The analysis was done by simulation method The RSG-GAS core was simulated with 5 standard fuels and 1 control element having wrong enrichment when inserted into the core. Fuel enrichment error was then simulated from 20%, 25% and 30% and the simulation was done using WIMSD/4 and Batan-2DIFF codes. The cross section of core material of the RSG-GAS was generated by WIMSD/4 code in 1-D, X-Y geometry and 10 energy neutron group. Two dimensions, diffusion calculation based on finite element method was done by using Batan-2DIFF code. Five fuel elements and one control element changed the enrichment was finally arranged as a new core of the RSG-Gas reactor. The neutronic properties can be seen from eigenvalues (k eff ) as well as from the kinetic properties based on moderator void reactivity coefficient. The calculated results showed that the error are still acceptable by k eff 1,097 even until 25% fuel enrichment but not more than 25,5%

  13. Gas chromatography at the Tritium Laboratory Karlsruhe

    International Nuclear Information System (INIS)

    Laesser, R.; Gruenhagen, S.

    2003-08-01

    Among the analytical techniques (mass spectrometry, laser Raman spectroscopy, gas chromatography, use of ionisation chambers) employed at the Tritium Laboratory Karlsruhe (TLK), gas chromatography plays a prominent role. The main reasons for that are the simplicity of the gas chromatographic separation process, the small space required for the equipment, the low investment costs in comparison to other methods, the robustness of the equipment, the simple and straightforward analysis and the fact that all gas species of interest (with the exception of water) can easily be detected by gas chromatographic means. The conventional gas chromatographs GC1 and GC2 used in the Tritium Measurement Techniques (TMT) System of the TLK and the gas chromatograph GC3 of the experiment CAPER are presented in detail, by discussing their flow diagrams, their major components, the chromatograms measured by means of various detectors, shortcomings and possible improvements. One of the main disadvantages of the conventional gas chromatography is the long retention times required for the analysis of hydrogen gas mixtures. To overcome this disadvantage, micro gas chromatography for hydrogen analysis was developed. Reduction of the retention times by one order of magnitude was achieved. (orig.)

  14. Flammable gas safety program. Analytical methods development: FY 1994 progress report

    International Nuclear Information System (INIS)

    Campbell, J.A.; Clauss, S.; Grant, K.; Hoopes, V.; Lerner, B.; Lucke, R.; Mong, G.; Rau, J.; Wahl, K.; Steele, R.

    1994-09-01

    This report describes the status of developing analytical methods to account for the organic components in Hanford waste tanks, with particular focus on tanks assigned to the Flammable Gas Watch List. The methods that have been developed are illustrated by their application to samples obtained from Tank 241-SY-101 (Tank 101-SY)

  15. Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements

    NARCIS (Netherlands)

    Yin, X.; Sun, Z.; Struik, P.C.; Gu, J.

    2011-01-01

    Day respiration (R(d)) is an important parameter in leaf ecophysiology. It is difficult to measure directly and is indirectly estimated from gas exchange (GE) measurements of the net photosynthetic rate (A), commonly using the Laisk method or the Kok method. Recently a new method was proposed to

  16. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    Science.gov (United States)

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Economic Impacts Analysis of Shale Gas Investment in China

    Science.gov (United States)

    Han, Shangfeng; Zhang, Baosheng; Wang, Xuecheng

    2018-01-01

    Chinese government has announced an ambitious shale gas extraction plan, which requires significant investment. This has the potential to draw investment from other areas and may affect the whole China’s economy. There is few study to date has quantified these shale gas investment’s effects on Chinese economy. The aim of this paper is to quantify the economic effect and figures out whether shale gas investment in China is a good choice or not. Input-output analysis has been utilized in this study to estimate the economic impacts in four different Chinese regions. Our findings show that shale gas investment will result in approximately 868, 427, 115 and 42 Billion RMB economic impacts in Sichuan, Chongqing, Inner Mongolia and Guizhou, respectively. The total economic impact is only around 1453 Billion RMB, which is not significant compared to the economic impact of coalbed methane investment. Considering the potential risks of environmental issues, we suggest that it may be a better strategy for the government, at least in the current situation, to slow down shale gas development investment.

  18. Correlation dimension estimate and its potential use in analysis of gas-solid flows

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2005-01-01

    Gas-solid flows are nonlinear systems. Therefore state-space analysis, a tool developed within the framework of nonlinear dynamics, could provide more useful insights into complex gas-solid flows. One of the positive aspects of state-space analysis is that the major properties of a system can be ...

  19. Just fracking: a distributive environmental justice analysis of unconventional gas development in Pennsylvania, USA

    Science.gov (United States)

    Clough, Emily; Bell, Derek

    2016-02-01

    This letter presents a distributive environmental justice analysis of unconventional gas development in the area of Pennsylvania lying over the Marcellus Shale, the largest shale gas formation in play in the United States. The extraction of shale gas using unconventional wells, which are hydraulically fractured (fracking), has increased dramatically since 2005. As the number of wells has grown, so have concerns about the potential public health effects on nearby communities. These concerns make shale gas development an environmental justice issue. This letter examines whether the hazards associated with proximity to wells and the economic benefits of shale gas production are fairly distributed. We distinguish two types of distributive environmental justice: traditional and benefit sharing. We ask the traditional question: are there a disproportionate number of minority or low-income residents in areas near to unconventional wells in Pennsylvania? However, we extend this analysis in two ways: we examine income distribution and level of education; and we compare before and after shale gas development. This contributes to discussions of benefit sharing by showing how the income distribution of the population has changed. We use a binary dasymetric technique to remap the data from the 2000 US Census and the 2009-2013 American Communities Survey and combine that data with a buffer containment analysis of unconventional wells to compare the characteristics of the population living nearer to unconventional wells with those further away before and after shale gas development. Our analysis indicates that there is no evidence of traditional distributive environmental injustice: there is not a disproportionate number of minority or low-income residents in areas near to unconventional wells. However, our analysis is consistent with the claim that there is benefit sharing distributive environmental injustice: the income distribution of the population nearer to shale gas wells

  20. Automated metabolic gas analysis systems: a review.

    Science.gov (United States)

    Macfarlane, D J

    2001-01-01

    The use of automated metabolic gas analysis systems or metabolic measurement carts (MMC) in exercise studies is common throughout the industrialised world. They have become essential tools for diagnosing many hospital patients, especially those with cardiorespiratory disease. Moreover, the measurement of maximal oxygen uptake (VO2max) is routine for many athletes in fitness laboratories and has become a defacto standard in spite of its limitations. The development of metabolic carts has also facilitated the noninvasive determination of the lactate threshold and cardiac output, respiratory gas exchange kinetics, as well as studies of outdoor activities via small portable systems that often use telemetry. Although the fundamental principles behind the measurement of oxygen uptake (VO2) and carbon dioxide production (VCO2) have not changed, the techniques used have, and indeed, some have almost turned through a full circle. Early scientists often employed a manual Douglas bag method together with separate chemical analyses, but the need for faster and more efficient techniques fuelled the development of semi- and full-automated systems by private and commercial institutions. Yet, recently some scientists are returning back to the traditional Douglas bag or Tissot-spirometer methods, or are using less complex automated systems to not only save capital costs, but also to have greater control over the measurement process. Over the last 40 years, a considerable number of automated systems have been developed, with over a dozen commercial manufacturers producing in excess of 20 different automated systems. The validity and reliability of all these different systems is not well known, with relatively few independent studies having been published in this area. For comparative studies to be possible and to facilitate greater consistency of measurements in test-retest or longitudinal studies of individuals, further knowledge about the performance characteristics of these

  1. Analysis of gas turbine cogeneration plants in Italy; Indagine sulla funzionalita` degli impianti di cogenerazione conturbina a gas operanti in Italia

    Energy Technology Data Exchange (ETDEWEB)

    Romani, Rino; Vignati, Sigfrido [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Energia

    1997-10-01

    The purpose of this study is to improve, by random analysis, the current knowledge about functional and running data of gas turbine cogeneration plants in Italy. The analysis consider simple and combined cycle gas turbines plant with electric power less 30.000 k W per unit and involves a sample of 44 units according to a randomized model consisting of 112 gas turbines. The collected data show different plant selection criteria, energy performances, reliability and availability values as well as maintenance costs. These data support some general suggestions and recommendations for a better selection and utilization of these plants.

  2. METHOD OF CONVERSION OF HIGH- AND MIDDLE-SPEED DIESEL ENGINES INTO GAS DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Mikhail G. Shatrov

    2017-12-01

    Full Text Available The paper aims at the development of fuel supply and electronic control systems for boosted high- and middle-speed transport engines. A detailed analysis of different ways of converting diesel engine to operate on natural gas was carried out. The gas diesel process with minimized ignition portion of diesel fuel injected by the Common Rail (CR system was selected. Electronic engine control and modular gas feed systems which can be used both on high- and middle-speed gas diesel engines were developed. Also diesel CR fuel supply systems were developed in cooperation with the industrial partner, namely, those that can be mounted on middle-speed diesel and gas diesel engines. Electronic control and gas feed systems were perfected using modeling and engine tests. The high-speed diesel engine was converted into a gas diesel one. After perfection of the gas feed and electronic control systems, bench tests of the high-speed gas diesel engine were carried out showing a high share of diesel fuel substitution with gas, high fuel efficiency and significant decrease of NOх and СО2 emissions.

  3. Chemical characteristics of fine particles emitted from different gas cooking methods

    Science.gov (United States)

    See, Siao Wei; Balasubramanian, Rajasekhar

    Gas cooking is an important indoor source of fine particles (PM 2.5). The chemical characteristics of PM 2.5 emitted from different cooking methods, namely, steaming, boiling, stir-frying, pan-frying and deep-frying were investigated in a domestic kitchen. Controlled experiments were conducted to measure the mass concentration of PM 2.5 and its chemical constituents (elemental carbon (EC), organic carbon (OC), polycyclic aromatic hydrocarbons (PAHs), metals and ions) arising from these five cooking methods. To investigate the difference in particle properties of different cooking emissions, the amount and type of food, and the heat setting on the gas stove were kept constant during the entire course of the experiments. Results showed that deep-frying gave rise to the largest amount of PM 2.5 and most chemical components, followed by pan-frying, stir-frying, boiling, and steaming. Oil-based cooking methods released more organic pollutants (OC, PAHs, and organic ions) and metals, while water-based cooking methods accounted for more water-soluble (WS) ions. Their source profiles are also presented and discussed.

  4. Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Mao, Tianzhi; Sui, Jun; Jin, Hongguang

    2015-01-01

    Co-firing biomass and fossil energy is a cost-effective and reliable way to use renewable energy and offer advantages in flexibility, conversion efficiency and commercial possibility. This study proposes a co-fired CCHP (combined cooling, heating and power) system based on natural gas and biomass gasification gas that contains a down-draft gasifier, ICE (internal combustion engine), absorption chiller and heat exchangers. Thermodynamic models are constructed based on a modifying gasification thermochemical equilibrium model and co-fired ICE model for electricity and heat recovery. The performance analysis for the volumetric mixture ratio of natural gas and product gas indicates that the energy and exergy efficiencies are improved by 9.5% and 13.7%, respectively, for an increasing mixture ratio of 0–1.0. Furthermore, the costs of multi-products, including electricity, chilled water and hot water, based on exergoeconomic analysis are analyzed and discussed based on the influences of the mixture ratio of the two gas fuels, investment cost and biomass cost. - Highlights: • Propose a co-fired CCHP system by natural gas and biomass gasification gas. • Modify biomass gasification and co-fired ICE models. • Present the thermodynamic analysis of the volumetric mixture ratios of two gas fuels. • Energy and exergy efficiencies are improved 9.5% and 13.7%. • Discuss multi-products’ costs influenced by investment and fuel costs.

  5. Time series analysis applied to construct US natural gas price functions for groups of states

    International Nuclear Information System (INIS)

    Kalashnikov, V.V.; Matis, T.I.; Perez-Valdes, G.A.

    2010-01-01

    The study of natural gas markets took a considerably new direction after the liberalization of the natural gas markets during the early 1990s. As a result, several problems and research opportunities arose for those studying the natural gas supply chain, particularly the marketing operations. Consequently, various studies have been undertaken about the econometrics of natural gas. Several models have been developed and used for different purposes, from descriptive analysis to practical applications such as price and consumption forecasting. In this work, we address the problem of finding a pooled regression formula relating the monthly figures of price and consumption volumes for each state of the United States during the last twenty years. The model thus obtained is used as the basis for the development of two methods aimed at classifying the states into groups sharing a similar price/consumption relationship: a dendrogram application, and an heuristic algorithm. The details and further applications of these grouping techniques are discussed, along with the ultimate purpose of using this pooled regression model to validate data employed in the stochastic optimization problem studied by the authors.

  6. US Department of Energy investments in natural gas R ampersand D: An analysis of the gas industry proposal

    International Nuclear Information System (INIS)

    Sutherland, R.J.

    1992-01-01

    The natural gas industry has proposed an increase in the DOE gas R ampersand D budget from about $100 million to about $250 million per year for each of the next 10 years. The proposal includes four programs: natural gas supplies, fuel cells, natural gas vehicles and stationary combustion systems. This paper is a qualitative assessment of the gas industry proposal and recommends a natural gas R ampersand D strategy for the DOE. The methodology is a conceptual framework based on an analysis of market failures and the energy policy objectives of the DOE's (1991) National Energy Strategy. This framework would assist the DOE in constructing an R ampersand D portfolio that achieves energy policy objectives. The natural gas supply program is recommended to the extent that it contributes to energy price stability. Stationary combustion programs are supported on grounds of economic efficiency and environmental quality. The fuel cell program is supported on grounds of environmental quality. The natural gas vehicle program may potentially contribute to environmental quality and energy price stability. The R ampersand D programs in natural gas vehicles and in fuel cells should be complemented with policies that encourage the commercialization and use of the technology, not merely its development

  7. Methods of increasing thermal efficiency of steam and gas turbine plants

    Science.gov (United States)

    Vasserman, A. A.; Shutenko, M. A.

    2017-11-01

    Three new methods of increasing efficiency of turbine power plants are described. Increasing average temperature of heat supply in steam turbine plant by mixing steam after overheaters with products of combustion of natural gas in the oxygen. Development of this idea consists in maintaining steam temperature on the major part of expansion in the turbine at level, close to initial temperature. Increasing efficiency of gas turbine plant by way of regenerative heating of the air by gas after its expansion in high pressure turbine and before expansion in the low pressure turbine. Due to this temperature of air, entering combustion chamber, is increased and average temperature of heat supply is consequently increased. At the same time average temperature of heat removal is decreased. Increasing efficiency of combined cycle power plant by avoiding of heat transfer from gas to wet steam and transferring heat from gas to water and superheated steam only. Steam will be generated by multi stage throttling of the water from supercritical pressure and temperature close to critical, to the pressure slightly higher than condensation pressure. Throttling of the water and separation of the wet steam on saturated water and steam does not require complicated technical devices.

  8. Cost-Benefit Analysis applied to the natural gas program for vehicles in the Metropolitan Area of the Aburra Valley

    International Nuclear Information System (INIS)

    Saldarriaga Isaza, Carlos Adrian; Vasquez Sanchez, Edison; Chavarria Munera, Sergio

    2011-01-01

    This article presents the evaluation of the natural gas program for vehicles applied in Metropolitan Area of the Aburra Valley. By using the Cost- Benefit Analysis method, four cost variables were identified: private, fiscal, gas tax, and conversion tax; and three types of benefits: private, fiscal and social. For the environmental social benefit estimation the benefit transfer technique was employed, carrying out meta-analysis function estimation. The cost-benefit net outcome is positive and favors the program application in the study site; in real terms the total profits are about COP$ 803265 million for the complete eight year period it took place (2001- 2008).

  9. Gas flaring: Carbon dioxide contribution to global warming ...

    African Journals Online (AJOL)

    Journal Home > Vol 20, No 2 (2016) > ... The quantitative method of analysis showed that carbon dioxide from gas ... gas flaring cause environmental degradation, health risks and constitute financial loss to the local oil producing communities.

  10. Insights into pyrolysis and co-pyrolysis of biomass and polystyrene: Thermochemical behaviors, kinetics and evolved gas analysis

    International Nuclear Information System (INIS)

    Özsin, Gamzenur; Pütün, Ayşe Eren

    2017-01-01

    Highlights: • TGA/MS/FT-IR was used to explore effect of polystyrene on pyrolytic decomposition of biomass. • The model-free iso-conversional methods were used for kinetic analysis. • Interactions occurred depending on the characteristics of the biomass. • TGA/MS and TGA/FT-IR coupling were used for gas analysis of co-pyrolysis for the first time. - Abstract: The purpose of this study was to investigate the effect on polystyrene (PS) during co-pyrolysis with biomass through thermal decomposition. The model-free iso-conversional methods (Kissinger, Friedman, Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, Starink and Vyazovkin) were adopted to calculate activation energy of the pyrolysis and co-pyrolysis process of two biomass samples (walnut shell: WS and peach stones: PST) with PS. It is found that biomass blending to PS decreased activation energy values and resulted in multi-step reaction mechanisms. Furthermore, changes in the evolution profiles of methyl, water, methoxy, carbon dioxide, benzene and styrene was monitored through evolved gas analysis via TGA/FT-IR and TGA/MS. Detection of temperature dependent release of volatiles indicated the differences occur as a result of compositional differences of biomass.

  11. Prediction of forage intake using in vitro gas production methods: Comparison of multiphase fermentation kinetics measured in an automated gas test, and combined gas volume and substrate degradability measurements in a manual syringe system

    NARCIS (Netherlands)

    Blümmel, M.; Cone, J.W.; Gelder, van A.H.; Nshalai, I.; Umunna, N.N.; Makkar, H.P.S.; Becker, K.

    2005-01-01

    This study investigated two approaches to in vitro analysis of gas production data, being a three phase model with long (¿72 h) incubation times, to obtain kinetics and asymptotic values of gas production, and combination of gas volume measurements with residue determinations after a relatively

  12. Thermoeconomic and exegetic analysis of a cogeneration proposal by using natural gas in breweries; Analise termoeconomica e exergetica de uma proposta de cogeracao usando gas natural em cervejarias

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, Antonio Garrido; Martins, Gilberto [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara do Oeste, SP (Brazil). Faculdade de Engenharia Mecanica e de Producao]. E-mail: agallego@unimep.br; gmartins@unimep.br; Nebra, Silvia Azucena [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica]. E-mail: sanebra@fem.unicamp.br

    2000-07-01

    In this work the thermo economic method is used for analysis of the cost distribution in a cogeneration power plant proposed for a brewery in the Campinas - state of Sao Paulo, Brazil. The thermal process energy demands were considered for beer production in 1997. The proposed cogeneration system consists of two gas turbines with recovering boiler and ammonium compression cooling system. The present power generation configuration and the cogeneration proposed performance were simulated in a monthly basis, considering the month steam and refrigeration requests. The gas turbines were simulated considering the nominal load and the energy surplus sold to the concessionaire.

  13. Exergy based methods for economic and risk design optimization of energy systems: Application to a gas turbine

    International Nuclear Information System (INIS)

    Cassetti, G.; Rocco, M.V.; Colombo, E.

    2014-01-01

    Exergy based analyses are considered by the scientific community appropriate tools for the design and the performance evaluation and improvements of energy systems. Moreover, they are today recognized as proper instruments to assess economic, environmental and social externalities of energy systems. This paper presents the results of a study in which different exergy analysis methods are adopted to determine the optimal design configuration of a gas turbine operating in simple Joule Brayton cycle. Standard exergy and Thermoeconomic analyses are performed to identify the highest thermodynamic efficiency and minimum economic cost configurations of the system, while for the environmental analysis Authors propose an innovative method in which the exergy analysis is combined with a Risk Analysis. With this method the total risk associated to the system is used as objective function in the same way as monetary cost is for standard Thermoeconomic analysis. These three methods aims therefore to determine the optimal design configurations of the system with respect to their specific objective functions, respectively: exergy cost (J/J), monetary (exergoeconomic) cost (€/J) and risk (injured/J) of the product. Results lead to three different optimal design parameters for the system, according to the objective of each analysis procedure. - Highlights: • An original implementation of Thermoeconomic framework is proposed. • Standard Exergy and Thermoeconomic analysis are performed on a case study. • A new model using exergy as allocation criteria for Risk Analysis is performed. • Different optimal configurations are obtained and compared

  14. Lattice gas methods for predicting intrinsic permeability of porous media

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.O.E.; Philippi, P.C. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Propriedades Termofisicas e Meios Porosos)]. E-mail: emerich@lmpt.ufsc.br; philippi@lmpt.ufsc.br; Damiani, M.C. [Engineering Simulation and Scientific Software (ESSS), Florianopolis, SC (Brazil). Parque Tecnologico]. E-mail: damiani@lmpt.ufsc.br

    2000-07-01

    This paper presents a method for predicting intrinsic permeability of porous media based on Lattice Gas Cellular Automata methods. Two methods are presented. The first is based on a Boolean model (LGA). The second is Boltzmann method (LB) based on Boltzmann relaxation equation. LGA is a relatively recent method developed to perform hydrodynamic calculations. The method, in its simplest form, consists of a regular lattice populated with particles that hop from site to site in discrete time steps in a process, called propagation. After propagation, the particles in each site interact with each other in a process called collision, in which the number of particles and momentum are conserved. An exclusion principle is imposed in order to achieve better computational efficiency. In despite of its simplicity, this model evolves in agreement with Navier-Stokes equation for low Mach numbers. LB methods were recently developed for the numerical integration of the Navier-Stokes equation based on discrete Boltzmann transport equation. Derived from LGA, LB is a powerful alternative to the standard methods in computational fluid dynamics. In recent years, it has received much attention and has been used in several applications like simulations of flows through porous media, turbulent flows and multiphase flows. It is important to emphasize some aspects that make Lattice Gas Cellular Automata methods very attractive for simulating flows through porous media. In fact, boundary conditions in flows through complex geometry structures are very easy to describe in simulations using these methods. In LGA methods simulations are performed with integers needing less resident memory capability and boolean arithmetic reduces running time. The two methods are used to simulate flows through several Brazilian reservoir petroleum rocks leading to intrinsic permeability prediction. Simulation is compared with experimental results. (author)

  15. Solar-gas systems impact analysis study

    Science.gov (United States)

    Neill, C. P.; Hahn, E. F.; Loose, J. C.; Poe, T. E.; Hirshberg, A. S.; Haas, S.; Preble, B.; Halpin, J.

    1984-07-01

    The impacts of solar/gas technologies on gas consumers and on gas utilities were measured separately and compared against the impacts of competing gas and electric systems in four climatic regions of the U.S. A methodology was developed for measuring the benefits or penalties of solar/gas systems on a combined basis for consumers sand distribution companies. It is shown that the combined benefits associated with solar/gas systems are generally greatest when the systems are purchased by customers who would have otherwise chosen high-efficiency electric systems (were solar/gas systems not available in the market place). The role of gas utilities in encouraging consumer acceptance of solar/gas systems was also examined ion a qualitative fashion. A decision framework for analyzing the type and level of utility involvement in solar/gas technologies was developed.

  16. WAG (water-alternating-gas) as a method for petroleum advanced recovering

    International Nuclear Information System (INIS)

    Campozana, Fernando P.; Mato, Luiz F.

    2000-01-01

    Water-Alternating-Gas (WAG) injection is an oil recovery method that has been more and more applied worldwide. Oil recovery has been increased up to 20 % (over conventional waterflooding) in field-scale WAG projects. This additional recovery has been attributed to improved sweep and areal efficiency as well as microscopic displacement efficiency. Field results have shown that not only WAG method combines the advantages of gas and water injection but also leads to more stable fronts and better mobility control. Moreover, three-phase flow usually leads to a lower residual oil saturation when compared to that of two-phase flow. In this study, we show some theoretical aspects of WAG as well as some results obtained from numerical simulation of a pilot project to be implemented in Aracas field, Bahia, Brazil. (author)

  17. Gas Hydrate Investigations Using Pressure Core Analysis: Current Practice

    Science.gov (United States)

    Schultheiss, P.; Holland, M.; Roberts, J.; Druce, M.

    2006-12-01

    Recently there have been a number of major gas hydrate expeditions, both academic and commercially oriented, that have benefited from advances in the practice of pressure coring and pressure core analysis, especially using the HYACINTH pressure coring systems. We report on the now mature process of pressure core acquisition, pressure core handling and pressure core analysis and the results from the analysis of pressure cores, which have revealed important in situ properties along with some remarkable views of gas hydrate morphologies. Pressure coring success rates have improved as the tools have been modified and adapted for use on different drilling platforms. To ensure that pressure cores remain within the hydrate stability zone, tool deployment, recovery and on-deck handling procedures now mitigate against unwanted temperature rises. Core analysis has been integrated into the core transfer protocol and automated nondestructive measurements, including P-wave velocity, gamma density, and X-ray imaging, are routinely made on cores. Pressure cores can be subjected to controlled depressurization experiments while nondestructive measurements are being made, or cores can be stored at in situ conditions for further analysis and subsampling.

  18. Improved method for minimizing sulfur loss in analysis of particulate organic sulfur.

    Science.gov (United States)

    Park, Ki-Tae; Lee, Kitack; Shin, Kyoungsoon; Jeong, Hae Jin; Kim, Kwang Young

    2014-02-04

    The global sulfur cycle depends primarily on the metabolism of marine microorganisms, which release sulfur gas into the atmosphere and thus affect the redistribution of sulfur globally as well as the earth's climate system. To better quantify sulfur release from the ocean, analysis of the production and distribution of organic sulfur in the ocean is necessary. This report describes a wet-based method for accurate analysis of particulate organic sulfur (POS) in the marine environment. The proposed method overcomes the considerable loss of sulfur (up to 80%) that occurs during analysis using conventional methods involving drying. Use of the wet-based POS extraction procedure in conjunction with a sensitive sulfur analyzer enabled accurate measurements of cellular POS. Data obtained using this method will enable accurate assessment of how rapidly sulfur can transfer among pools. Such information will improve understanding of the role of POS in the oceanic sulfur cycle.

  19. NG09 And CTBT On-Site Inspection Noble Gas Sampling and Analysis Requirements

    Science.gov (United States)

    Carrigan, Charles R.; Tanaka, Junichi

    2010-05-01

    A provision of the Comprehensive Test Ban Treaty (CTBT) allows on-site inspections (OSIs) of suspect nuclear sites to determine if the occurrence of a detected event is nuclear in origin. For an underground nuclear explosion (UNE), the potential success of an OSI depends significantly on the containment scenario of the alleged event as well as the application of air and soil-gas radionuclide sampling techniques in a manner that takes into account both the suspect site geology and the gas transport physics. UNE scenarios may be broadly divided into categories involving the level of containment. The simplest to detect is a UNE that vents a significant portion of its radionuclide inventory and is readily detectable at distance by the International Monitoring System (IMS). The most well contained subsurface events will only be detectable during an OSI. In such cases, 37 Ar and radioactive xenon cavity gases may reach the surface through either "micro-seepage" or the barometric pumping process and only the careful siting of sampling locations, timing of sampling and application of the most site-appropriate atmospheric and soil-gas capturing methods will result in a confirmatory signal. The OSI noble gas field tests NG09 was recently held in Stupava, Slovakia to consider, in addition to other field sampling and analysis techniques, drilling and subsurface noble gas extraction methods that might be applied during an OSI. One of the experiments focused on challenges to soil-gas sampling near the soil-atmosphere interface. During withdrawal of soil gas from shallow, subsurface sample points, atmospheric dilution of the sample and the potential for introduction of unwanted atmospheric gases were considered. Tests were designed to evaluate surface infiltration and the ability of inflatable well-packers to seal out atmospheric gases during sample acquisition. We discuss these tests along with some model-based predictions regarding infiltration under different near

  20. Horizon Expansion of Thermal-Hydraulic Activities into HTGR Safety Analysis Including Gas-Turbine Cycle and Hydrogen Plant

    International Nuclear Information System (INIS)

    No, Hee Cheon; Yoon, Ho Joon; Kim, Seung Jun; Lee, Byeng Jin; Kim, Ji Hwan; Kim, Hyeun Min; Lim, Hong Sik

    2009-01-01

    We present three nuclear/hydrogen-related R and D activities being performed at KAIST: air-ingressed LOCA analysis code development, gas turbine analysis tool development, and hydrogen-production system analysis model development. The ICE numerical technique widely used for the safety analysis of water-reactors is successfully implemented into GAMMA, with which we solve the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of 6 species (He, N2, O2, CO, CO2, and H2O). GAMMA has been extensively validated using data from 14 test facilities. We developed a tool to predict the characteristics of HTGR helium turbines based on the through flow calculation with a Newton- Raphson method that overcomes the weakness of the conventional method based on the successive iteration scheme. It is found that the current method reaches stable and quick convergence even under the off-normal condition with the same degree of accuracy. The dynamic equations for the distillation column of HI process are described with 4 material components involved in the HI process: H2O, HI, I2, H2. For the HI process we improved the Neumann model based on the NRTL (Non-Random Two-Liquid) model. The improved Neumann model predicted a total pressure with 8.6% maximum relative deviation from the data and 2.5% mean relative deviation, and liquid-liquid-separation with 9.52% maximum relative deviation from the data

  1. Development of a neutronics code based on analytic function expansion nodal method for pebble-type High Temperature Gas-cooled Reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Zin; Lee, Joo Hee; Lee, Jae Jun; Yu, Hui; Lee, Gil Soo [Korea Advanced Institute of Science and Tehcnology, Daejeon (Korea, Republic of)

    2006-03-15

    There is growing interest in developing Pebble Bed Reactors(PBRs) as a candidate of Very High Temperature gas-cooled Reactors(VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. And other existing nodal cannot be adapted for this kind of reactors because of transverse integration problem. In this project, we developed the TOPS code in three dimensional cylindrical geometry based on Analytic Function Expansion Nodal (AFEN) method developed at KAIST. The TOPS code showed better results in computing time than FDM and MCNP. Also TOPS showed very accurate results in reactor analysis.

  2. Development of a neutronics code based on analytic function expansion nodal method for pebble-type High Temperature Gas-cooled Reactor design

    International Nuclear Information System (INIS)

    Cho, Nam Zin; Lee, Joo Hee; Lee, Jae Jun; Yu, Hui; Lee, Gil Soo

    2006-03-01

    There is growing interest in developing Pebble Bed Reactors(PBRs) as a candidate of Very High Temperature gas-cooled Reactors(VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. And other existing nodal cannot be adapted for this kind of reactors because of transverse integration problem. In this project, we developed the TOPS code in three dimensional cylindrical geometry based on Analytic Function Expansion Nodal (AFEN) method developed at KAIST. The TOPS code showed better results in computing time than FDM and MCNP. Also TOPS showed very accurate results in reactor analysis

  3. Mainstream Smoke Gas Phase Filtration Performance of Adsorption Materials Evaluated With A Puff-by-Puff Multiplex GC-MS Method

    Directory of Open Access Journals (Sweden)

    Xue L

    2014-12-01

    Full Text Available The mainstream smoke filtration performance of activated carbon, silica gel and polymeric aromatic resins for gas-phase components was evaluated using a puff-by-puff multiplex gas chromatography-mass spectrometry (GC-MS analysis method (1. The sample 1R4F Kentucky reference cigarettes were modified by placing the adsorbents in a plug/space/plug filter configuration. Due to differences in surface area and structural characteristics, the adsorbent materials studied showed different levels of filtration activities for the twenty-six constituents monitored. Activated carbon had significant adsorption activity for all the gas-phase smoke constituents observed except ethane and carbon dioxide, while silica gel had significant activities for polar components such as aldehydes, acrolein, ketones, and diacetyl. XAD-16 polyaromatic resins showed varied levels of activity for aromatic compounds, cyclic dienes and ketones.

  4. A method for the determination of gas diffusion coefficients in undisturbed Boom Clay

    International Nuclear Information System (INIS)

    Jacops, E.; Volckaert, G.; Maes, N.; Weetjens, E.; Maes, T.; Vandervoort, F.

    2010-01-01

    Document available in extended abstract form only. The main mechanisms by which gas will be generated in deep geological repositories are: anaerobic corrosion of metals in wastes and packaging; radiolysis of water and organic materials in the packages, and microbial degradation of various organic wastes. Corrosion and radiolysis yield mainly hydrogen while microbial degradation leads to methane and carbon dioxide. The gas generated in the near field of a geological repository in clay will dissolve in the ground water and be transported away from the repository by diffusion as dissolved species. However if the gas generation rate is larger than the diffusive flux, the pore water will get over-saturated and a free gas phase will be formed. This will lead to a gas pressure build-up and finally to an advective gas flux. The latter might influence the performance of the repository. Therefore it is important to assess whether or not gas production rates can exceed the capacity of the near field to store and dissipate these gases by dissolution and diffusion only. The current available gas diffusion parameters for hydrogen in Boom Clay, obtained from the MEGAS project, suffer from an uncertainty of 1 to 2 orders of magnitude. Sensitivity calculations performed by Weetjens et al. (2006) for the disposal of vitrified high-level waste showed that with this uncertainty on the diffusion coefficient, the formation of a free gas phase cannot be excluded. Furthermore, recent re-evaluations of the MEGAS experiments by Krooss (2008) and Aertsens (2008) showed that the applied technique does not allow precise determination of the diffusion coefficient. Therefore a new method was developed to determine more precisely the gas diffusion coefficient for dissolved gases (especially dissolved hydrogen) in Boom Clay. This should allow for a more realistic assessment of the gas flux evolution of a repository as function of the estimated gas generation rates. The basic idea is to perform a

  5. Decision analysis for the exploration of gas reserves: merging todim and thor

    Directory of Open Access Journals (Sweden)

    Carlos Francisco Simões Gomes

    2010-12-01

    Full Text Available This article approaches the problem of selecting the non-dominated alternative for the destination of the natural gas reserves in the Mexilhão field in the Santos Basin, Brazil. Major aims of the case study reported here were to create a mechanism for assisting in the process of analyzing and selecting the best options for the destination of natural gas, and to enable the decision agent to choose the investment options best aligned to the expectations and objectives observed in the company strategies. The decision analysis employed in the study made use of the TODIM method and the THOR multicriteria decision support system. The application of both demonstrated that a decision analytic framework can be extremely useful when recommending options for upstream projects, owing to the fact that it can clearly identify the most important alternatives in the face of the scenarios tested and in relation to the criteria expressed.

  6. The promising gas-dynamic schemes of vacuum deposition from the supersonic gas mixture flows

    International Nuclear Information System (INIS)

    Maltsev, R V; Rebrov, A K

    2008-01-01

    Gas jet deposition (GJD) becomes promising method of thin film and nanoparticle deposition. This paper is focused on elaboration of new methods of GJD based on different gas dynamic schemes of flow formation and interaction with substrate. Using direct statistical simulation method, the analysis was performed for: a) interaction of the jet from the sonic nozzle with a substrate; b) fan flow in the result of interaction of two opposite jets; c) convergent flow from the ring nozzle, directional to the axis; d) interaction of the jet after convergent flow with the substrate; e) fan flow in the result of interaction of two opposite jets after convergent expansion

  7. Simulation of neutral gas flow in a tokamak divertor using the Direct Simulation Monte Carlo method

    International Nuclear Information System (INIS)

    Gleason-González, Cristian; Varoutis, Stylianos; Hauer, Volker; Day, Christian

    2014-01-01

    Highlights: • Subdivertor gas flows calculations in tokamaks by coupling the B2-EIRENE and DSMC method. • The results include pressure, temperature, bulk velocity and particle fluxes in the subdivertor. • Gas recirculation effect towards the plasma chamber through the vertical targets is found. • Comparison between DSMC and the ITERVAC code reveals a very good agreement. - Abstract: This paper presents a new innovative scientific and engineering approach for describing sub-divertor gas flows of fusion devices by coupling the B2-EIRENE (SOLPS) code and the Direct Simulation Monte Carlo (DSMC) method. The present study exemplifies this with a computational investigation of neutral gas flow in the ITER's sub-divertor region. The numerical results include the flow fields and contours of the overall quantities of practical interest such as the pressure, the temperature and the bulk velocity assuming helium as model gas. Moreover, the study unravels the gas recirculation effect located behind the vertical targets, viz. neutral particles flowing towards the plasma chamber. Comparison between calculations performed by the DSMC method and the ITERVAC code reveals a very good agreement along the main sub-divertor ducts

  8. Extractive method for obtaining gas inclusions from ice

    International Nuclear Information System (INIS)

    Strauch, G.; Kowski, P.

    1982-01-01

    Doubtless important for glaciological investigations of firn and ice is the knowledge about the chemical composition of gases included in ice. A method for quantitative extraction of gases from about 30 kg ice under vacuum is presented in this paper. The procedure was tested with ice cores from a thermoelectrical drill hole near Soviet Antarctic station Novolazarevskaya. The chemical compositions of inclusion gases and the specific gas contents from 6 horizons are pointed out by a table and some graphics. (author)

  9. A Novel Method for Determining the Gas Transfer Velocity of Carbon Dioxide in Streams

    Science.gov (United States)

    McDowell, M. J.; Johnson, M. S.

    2016-12-01

    Characterization of the global carbon cycle relies on the accurate quantification of carbon fluxes into and out of natural and human-dominated ecosystems. Among these fluxes, carbon dioxide (CO2) evasion from surface water has received increasing attention in recent years. However, limitations of current methods, including determination of the gas transfer velocity (k), compromise our ability to evaluate the significance of CO2 fluxes between freshwater systems and the atmosphere. We developed an automated method to determine gas transfer velocities of CO2 (kCO2), and tested it under a range of flow conditions for a first-order stream of a headwater catchment in southwestern British Columbia, Canada. Our method uses continuous in situ measurements of CO2 concentrations using two non-dispersive infrared (NDIR) sensors enclosed in water impermeable, gas permeable membranes (Johnson et al., 2010) downstream from a gas diffuser. CO2 was injected into the stream at regular intervals via a compressed gas tank connected to the diffuser. CO2 injections were controlled by a datalogger at fixed time intervals and in response to storm-induced changes in streamflow. Following the injection, differences in CO2 concentrations at known distances downstream from the diffuser relative to pre-injection baseline levels allowed us to calculate kCO2. Here we present relationships between kCO2 and hydro-geomorphologic (flow velocity, streambed slope, stream width, stream depth), atmospheric (wind speed and direction), and water quality (stream temperature, pH, electrical conductivity) variables. This method has advantages of being automatable and field-deployable, and it does not require supplemental gas chromatography, as is the case for propane injections typically used to determine k. The dataset presented suggests the potential role of this method to further elucidate the role that CO2 fluxes from headwater streams play in the global carbon cycle. Johnson, M. S., Billett, M. F

  10. Spectroscopic analysis of femtosecond laser-induced gas breakdown

    International Nuclear Information System (INIS)

    Hermann, J.; Bruneau, S.; Sentis, M.

    2004-01-01

    The plasma generated by the interaction of a femtosecond laser pulse with gas has been analyzed using time- and space-resolved emission spectroscopy. The laser beam has been focused with a microscope objective into different gases (air, Ar, He) at pressures ranging from 10 2 to 10 5 Pa. From the analysis of spectral line emission from ions and neutral atoms, the plasma parameters and the plasma composition have been determined as a function of time and space. Furthermore, the generation of fast electrons and/or VUV radiation by the femtosecond laser interaction with the gas was brought to the fore. From the time- and space-evolution of the plasma parameters, a rough estimation of initial values of electron density and refraction index in the focal volume has been performed. These results are compared to analysis of the laser beam transmitted by the plasma. The latter show that only a small fraction of the laser energy is absorbed by the plasma while the spatial distribution of the transmitted laser beam is strongly perturbed by the plasma, which acts like a defocusing lens. However, in ambient helium, the plasma defocusing is weak due to the high ionization potential of helium. The understanding of femtosecond laser-induced gas breakdown is useful for process optimization in femtosecond laser applications like micromachining or surface microanalysis, etc

  11. Gas Flaring: Carbon dioxide Contribution to Global Warming ...

    African Journals Online (AJOL)

    PROF HORSFALL

    emissions resulting from high consumption of fossil fuels. Flaring been a ... method of analysis showed that carbon dioxide from gas flaring constitute 1% of the total ... Although of these, methane is potentially the most .... in some gas plants.

  12. Comparative analysis of monetizing technologies for the use of offshore natural gas; Analise comparativa das tecnologias embarcadas de aproveitamento de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Biruel Junior, Jose

    2008-09-15

    The growing world need for natural gas, the issue of offshore oil and associated gas exploration in regions constantly farther from the consumer market, and the law restrictions due to greenhouses gases emissions have stimulated the development of technologies intended to monetizing stranded gas reserves. In order to compare these technologies, a Multi Criteria Decision Analysis Methodology, based on fuzzy parameters, has been developed. The Methodology enables specialists to define analysis dimensions and criteria as well as to assign weight and ratings by means of linguistic variables, resulting in a general performance index for each technology. The Methodology has been applied in a case study to compare the floating technologies FCNG (Floating Compressed Natural Gas), FLNG (Floating Liquefied Natural Gas), FGTL (Floating Gas-to-Liquid) and FGTW (Floating Gas-to- Wire). The efficacy of the Methodology depends on the comprehensiveness and quality of the information provided. Therefore, this dissertation presents a study of these technologies, placing strong emphasis on the Technological Dimension. The Methodology allows for the identification of the drawbacks of each technology so as to especially conduct R and D efforts to improve their competitiveness. (author)

  13. Quantitative risk analysis preoperational of gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Manfredi, Carlos; Bispo, Gustavo G.; Esteves, Alvaro [Gie S.A., Buenos Aires (Argentina)

    2009-07-01

    The purpose of this analysis is to predict how it can be affected the individual risk and the public's general security due to the operation of a gas pipeline. In case that the single or social risks are considered intolerable, compared with the international standards, to be recommended measures of mitigation of the risk associated to the operation until levels that can be considered compatible with the best practices in the industry. The quantitative risk analysis calculates the probability of occurrence of an event based on the frequency of occurrence of the same one and it requires a complex mathematical treatment. The present work has as objective to develop a calculation methodology based on the previously mentioned publication. This calculation methodology is centered in defining the frequencies of occurrence of events, according to representative database of each case in study. Besides, it settles down the consequences particularly according to the considerations of each area and the different possibilities of interferences with the gas pipeline in study. For each one of the interferences a typical curve of ignition probabilities is developed in function from the distance to the pipe. (author)

  14. Development of high frequency tungsten inert gas welding method

    International Nuclear Information System (INIS)

    Morisada, Yoshiaki; Fujii, Hidetoshi; Inagaki, Fuminori; Kamai, Masayoshi

    2013-01-01

    Highlights: ► A new ultrasonic wave TIG welding method was developed. ► The area of the blowholes decreased to less than about 1/8 in the normal TIG weld. ► The number of blowholes decreased with the decreasing frequency. ► The number of blowholes increased when the frequency was less than 15 kHz. ► The microstructure of the weld was refined by ultrasonic wave. -- Abstract: A new welding method, called high frequency tungsten inert gas (TIG) welding, was developed to decrease blowholes in a weld. A1050 aluminum alloy plates (100 mm l × 50 mm w × 5 mm t ) were welded at a frequency from 10 to 40 kHz. An Ar-1% hydrogen mixture was used as the shielding gas to generate blowholes in the experiments. The welding was performed in the horizontal position so that the blowholes can easily be a problem. For comparison, a normal TIG welding was also performed at 60 Hz. After welding, the distribution of the blowholes in the welds was observed in order to evaluate the effect of the sonic wave. The number of blowholes changed with the frequency. A frequency near 15 kHz is the most suitable to decrease the blowholes. Using this new method, the area of blowholes is decreased to less than about 1/8 of the normal TIG weld. This method is much more effective for decreasing the number of blowholes, compared with an ultrasonic wave vibrator which is directly fixed to the sample.

  15. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres

    Science.gov (United States)

    Valentin, J. R.

    1989-01-01

    -Cassini entry probe, which is being jointly planned by NASA and the European Space Agency (ESA), might be launched as early as 1994. As in the Pioneer mission, limited time--perhaps only 3-4 h--will be available for the completion of all analyses while the probe descends through the atmosphere. A conventional GC or GC-MS system would be able to analyze no more than two aerosol and two gas samples during the probe's descent. Conventional GC also is limited by the sensitivity of the detector and by the sample volume. For the Titan mission, the sensitivity problems will be worse because the atmospheric pressure at the time of instrument deployment is expected to be of such limitations, alternative GC analysis techniques have been investigated for future NASA missions. Multiplex gas chromatography has been investigated as a possible candidate for chemical analysis within a spacecraft or other restricted environment, and chemical modulators have been developed and used when needed with this technique to reduce the size and weight of the instrumentation. Also, several new multiplex techniques have been developed for use in specific applications.

  16. Formation evaluation in Devonian shale through application of new core and log analysis methods

    International Nuclear Information System (INIS)

    Luffel, D.L.; Guidry, F.K.

    1990-01-01

    In the Devonian shale of the Appalachian Basin all porosity in excess of about 2.5 percent is generally occupied by free hydrocarbons, which is mostly gas, based on results of new core and log analysis methods. In this study, sponsored by the Gas Research Institute, reservoir porosities averaged about 5 percent and free gas content averaged about 2 percent by bulk volume, based on analyses on 519 feet of conventional core in four wells. In this source-rich Devonian shale, which also provides the reservoir storage, the rock everywhere appears to be at connate, or irreducible, water saturation corresponding to two or three percent of bulk volume. This became evident when applying the new core and log analysis methods, along with a new plotting method relating bulk volume of pore fluids to porosity. This plotting method has proved to be a valuable tool: it provides useful insight on the fluid distribution present in the reservoir, it provides a clear idea of porosity required to store free hydrocarbons, it leads to a method of linking formation factor to porosity, and it provides a good quality control method to monitor core and log analysis results. In the Devonian shale an important part of the formation evaluation is to determine the amount of kerogen, since this appears as hydrocarbon-filled porosity to conventional logs. In this study Total Organic Carbon and pyrolysis analyses were made on 93 core samples from four wells. Based on these data a new method was used to drive volumetric kerogen and free oil content, and kerogen was found to range up to 26 percent by volume. A good correlation was subsequently developed to derive kerogen from the uranium response of the spectral gamma ray log. Another important result of this study is the measurement of formation water salinity directly on core samples. Results on 50 measurements in the four study wells ranged from 19,000 to 220,000 ppm NaCl

  17. NUTRITIONAL EVALUATION OF VARIOUS FEEDSTUFFS FOR LIVESTOCK PRODUCTION USING IN VITRO GAS METHOD

    Directory of Open Access Journals (Sweden)

    S. A. KHANUM, T. YAQOOB1, S. SADAF1, M. HUSSAIN, M. A. JABBAR1, H. N. HUSSAIN, R. KAUSAR AND S. REHMAN1

    2007-07-01

    Full Text Available A study was undertaken to evaluate the nutritional quality of some conventional and non-conventional feed resources by using in vitro gas method. Samples of various feedstuffs were analyzed chemically, as well as by in vitro gas method. The feedstuffs having different digestibilities showed significant (P<0.05 differences in the rate and amount of gas production, metabolizable energy (ME and digestibility of organic matter. Predicted metabolizable energy values were very low in feedstuffs having high fiber and low protein contents. These feedstuffs included various grasses, crop residues and wheal straw. Lowest ME value of 4.7 MJ/kg of dry matter (DM was found in wheat straw. Many of the roughages (Sorghum vulgare, Kochia indica, Leptochloa fusca studied were found to be deficient in fermentable carbohydrates, resulting in low organic matter digestibility. Concentrate feed stuffs like cotton seed meal, sunflower meal, cotton seed cakes, rice polish, rapeseed meal and Zea mays (maize grains had higher ME values (9.27 – 12.44 MJ/kg DM. The difference of ME of various feedstuffs reflects different contents of fermentable carbohydrates and available nitrogen in cereals and protein supplements. Among the non-conventional feedstuffs, Acacia ampliceps, Acacia nilotica, Sesbania aculeata, Leptochloa fusca and Prosopis juliflora were found potential fodders. Extensive use of in vitro gas method proved its potential as a tool to evaluate various ruminant feeds for energy component.

  18. Analysis of a multicomponent gas absorption system with carrier gas coabsorption

    International Nuclear Information System (INIS)

    Merriman, J.R.

    1975-03-01

    Conventional integrated versions of the packed gas absorber design equations do not account for significant coabsorption of the carrier gas along with the dilute transferring species. These equations, as a result, also neglect the relationship between dilute component transfer and carrier gas coabsorption. In the absorption of Kr and Xe from various carrier gases, using CCl 2 F 2 as the process solvent, carrier coabsorption is substantial. Consequently, a design package was developed to deal with multicomponent gas absorption in systems characterized by carrier gas coabsorption. Developed within the general film theory framework, the basic feature of this design approach is a view of dilute component mass-transfer as a conventional diffusive transfer superimposed on a net flux caused by carrier absorption. Other supporting elements of the design package include predictive techniques for various fluid properties, estimating procedures for carrier gas equilibrium constants, and correlations for carrier gas and dilute gas mass-transfer coefficients. When applied to systems using CCl 2 F 2 as the solvent; He, N 2 , air, or Ar as the carrier gas; and Kr or Xe as the dilute gas; the design approach gave good results, even when extended to conditions well beyond those of its development. (U.S.)

  19. PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions

    Science.gov (United States)

    Tacconi, L. J.; Genzel, R.; Saintonge, A.; Combes, F.; García-Burillo, S.; Neri, R.; Bolatto, A.; Contini, T.; Förster Schreiber, N. M.; Lilly, S.; Lutz, D.; Wuyts, S.; Accurso, G.; Boissier, J.; Boone, F.; Bouché, N.; Bournaud, F.; Burkert, A.; Carollo, M.; Cooper, M.; Cox, P.; Feruglio, C.; Freundlich, J.; Herrera-Camus, R.; Juneau, S.; Lippa, M.; Naab, T.; Renzini, A.; Salome, P.; Sternberg, A.; Tadaki, K.; Übler, H.; Walter, F.; Weiner, B.; Weiss, A.

    2018-02-01

    This paper provides an update of our previous scaling relations between galaxy-integrated molecular gas masses, stellar masses, and star formation rates (SFRs), in the framework of the star formation main sequence (MS), with the main goal of testing for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ∼1 mm dust photometry, in a large sample of 1444 star-forming galaxies between z = 0 and 4. The sample covers the stellar mass range log(M */M ⊙) = 9.0–11.8, and SFRs relative to that on the MS, δMS = SFR/SFR(MS), from 10‑1.3 to 102.2. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero-point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t depl, defined as the ratio of molecular gas mass to SFR, scales as (1 + z)‑0.6 × (δMS)‑0.44 and is only weakly dependent on stellar mass. The ratio of molecular to stellar mass μ gas depends on (1+z{)}2.5× {(δ {MS})}0.52× {({M}* )}-0.36, which tracks the evolution of the specific SFR. The redshift dependence of μ gas requires a curvature term, as may the mass dependences of t depl and μ gas. We find no or only weak correlations of t depl and μ gas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high z. Based on observations of an IRAM Legacy Program carried out with the NOEMA, operated by the Institute for Radio Astronomy in the Millimetre Range (IRAM), which is funded by a partnership of INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  20. Soil Gas Sampling Operating Procedure

    Science.gov (United States)

    EPA Region 4 Science and Ecosystem Support Division (SESD) document that describes general and specific procedures, methods, and considerations when collecting soil gas samples for field screening or laboratory analysis.

  1. Time series analysis of pressure fluctuation in gas-solid fluidized beds

    Directory of Open Access Journals (Sweden)

    C. Alberto S. Felipe

    2004-09-01

    Full Text Available The purpose of the present work was to study the differentiation of states of typical fluidization (single bubble, multiple bubble and slugging in a gas-solid fluidized bed, using spectral analysis of pressure fluctuation time series. The effects of the method of measuring (differential and absolute pressure fluctuations and the axial position of the probes in the fluidization column on the identification of each of the regimes studied were evaluated. Fast Fourier Transform (FFT was the mathematic tool used to analysing the data of pressure fluctuations, which expresses the behavior of a time series in the frequency domain. Results indicated that the plenum chamber was a place for reliable measurement and that care should be taken in measurement in the dense phase. The method allowed fluid dynamic regimes to be differentiated by their dominant frequency characteristics.

  2. Well-Being Analysis of Power Systems Considering Increasing Deployment of Gas Turbines

    Directory of Open Access Journals (Sweden)

    Bomiao Liang

    2017-07-01

    Full Text Available With the significant decrease in natural gas prices in many parts of the world, the employment of gas turbine (GT units has increased steadily in recent years. The ever-increasing deployment of GT units is strengthening the interconnections between electric power and natural gas systems, which could provide a higher level of operational flexibility and reliability. As a result, the planning and operation issues in the interconnected electric power and natural gas systems have aroused concern. In these circumstances, the impacts of increasing deployment of GT units in power system operation are studied and evaluated through well-being analysis (WBA. The fast responsive characteristics of GT units are analyzed first, and the definition and adaption of WBA in a power system with increasing deployment of GT units are addressed. Then the equivalent reserve capacity of GT units is estimated, taking demand fluctuations, commitment plans, and operational risks of GT units into account. The WBA of a power system with increasing deployment of GT units is conducted considering the uncertainties of system operation states and renewable energy sources. Finally, the proposed methods are validated through an integrated version of the IEEE 118-bus power system and a 10-bus natural gas system, and the impacts of GT units on power system security under various penetration levels are examined. Simulation results demonstrate that the role of a GT unit as a low-cost electricity producer may conflict with its role as a reserve provider, but through maintaining a proper proportion of idle GT capacities for reserve, the well-being performance of the power system concerned can be significantly improved.

  3. Gas quality analysis and evaluation program for project Gasbuggy

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C F [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Experimental results of the gas quality analysis program for Project Gasbuggy through August 1969 are presented graphically, addressing the questions raised by the preshot program goals. The chemical composition and the concentrations of tritium, krypton-85, carbon-14 and argon-37, 39 are presented as a function of time and gas production from the nuclear chimney. Chemically, the presence of CO{sub 2}, CO and H{sub 2} served to dilute the formation gas and caused reactions which significantly altered the gas composition at early times. The radionuclide content of the chimney gas at reentry was some 800 pCi/cm{sup 3} of which about 80% was CH{sub 3}T. Lesser quantities of tritium were observed as HT, C{sub 2}H{sub 5}T and C{sub 3}H{sub 7}T. The other major contaminant was Kr{sup 85} which was present at about one-fifth the level of CH{sub 3}T. Small quantities of carbon-14 and argon-39 were also identified. The only other radionuclides identified in the gas were relatively short-lived rare gases. During the production testing, about two and one-half chimney volumes of gas at formation pressure were removed. This removal, accompanied by dilution, has reduced the radionuclide concentrations to about 7% of their levels at reentry. The production characteristics of the Gasbuggy environment prevented an adequate test of the effectiveness of chimney flushing. However, the rapid drawdown concept is supported by the available data as an effective means of reducing contaminant levels. The changes in composition during production or testing are seen to be consistent with a model involving a non-uniform gas influx rate and flow distribution over the chimney region. Mixing times are estimated to be on the order of a few days, so that increasing concentrations following a sudden gas influx can be explained. (author)

  4. A Mathematical Pressure Transient Analysis Model for Multiple Fractured Horizontal Wells in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Yan Zeng

    2018-01-01

    Full Text Available Multistage fractured horizontal wells (MFHWs have become the main technology for shale gas exploration. However, the existing models have neglected the percolation mechanism in nanopores of organic matter and failed to consider the differences among the reservoir properties in different areas. On that account, in this study, a modified apparent permeability model was proposed describing gas flow in shale gas reservoirs by integrating bulk gas flow in nanopores and gas desorption from nanopores. The apparent permeability was introduced into the macroseepage model to establish a dynamic pressure analysis model for MFHWs dual-porosity formations. The Laplace transformation and the regular perturbation method were used to obtain an analytical solution. The influences of fracture half-length, fracture permeability, Langmuir volume, matrix radius, matrix permeability, and induced fracture permeability on pressure and production were discussed. Results show that fracture half-length, fracture permeability, and induced fracture permeability exert a significant influence on production. A larger Langmuir volume results in a smaller pressure and pressure derivative. An increase in matrix permeability increases the production rate. Besides, this model fits the actual field data relatively well. It has a reliable theoretical foundation and can preferably describe the dynamic changes of pressure in the exploration process.

  5. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    Science.gov (United States)

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling

  6. Measurements of hydrogen concentration in liquid sodium by using an inert gas carrier method

    International Nuclear Information System (INIS)

    Funada, T.; Nihei, I.; Yuhara, S.; Nakasuji, T.

    1979-01-01

    A technique was developed to measure the hydrogen level in liquid sodium using an inert gas carrier method. Hydrogen was extracted into an inert gas from sodium through a thin nickel membrane in the form of a helically wound tube. The amount of hydrogen in the inert gas was analyzed by gas chromatography. The present method is unique in that it can be used over the wide range of sodium temperatures (150 to 700 0 C) and has no problems associated with vacuum systems. The partial pressure of hydrogen in sodium was determined as a function of cold-trap temperature (T/sub c/). Sieverts' constant (K/sub s/) was determined as a function of sodium temperature (T). From Sieverts' constant, the solubility of hydrogen in sodium is calculated. It was found that other impurities in sodium, such as (O) and (OH), have little effect on the hydrogen pressure in the sodium loop

  7. Gas chromatographic isolation technique for compound-specific radiocarbon analysis

    International Nuclear Information System (INIS)

    Uchida, M.; Kumamoto, Y.; Shibata, Y.; Yoneda, M.; Morita, M.; Kawamura, K.

    2002-01-01

    Full text: We present here a gas chromatographic isolation technique for the compound-specific radiocarbon analysis of biomarkers from the marine sediments. The biomarkers of fatty acids, hydrocarbon and sterols were isolated with enough amount for radiocarbon analysis using a preparative capillary gas chromatograph (PCGC) system. The PCGC systems used here is composed of an HP 6890 GC with FID, a cooled injection system (CIS, Gerstel, Germany), a zero-dead-volume effluent splitter, and a cryogenic preparative collection device (PFC, Gerstel). For AMS analysis, we need to separate and recover sufficient quantity of target individual compounds (>50 μgC). Yields of target compounds from C 14 n-alkanes to C 40 to C 30 n-alkanes and approximately that of 80% for higher molecular weights compounds more than C 30 n-alkanes. Compound specific radiocarbon analysis of organic compounds, as well as compound-specific stable isotope analysis, provide valuable information on the origins and carbon cycling in marine system. Above PCGC conditions, we applied compound-specific radiocarbon analysis to the marine sediments from western north Pacific, which showed the possibility of a useful chronology tool for estimating the age of sediment using organic matter in paleoceanographic study, in the area where enough amounts of planktonic foraminifera for radiocarbon analysis by accelerator mass spectrometry (AMS) are difficult to obtain due to dissolution of calcium carbonate. (author)

  8. An Effective Fault Feature Extraction Method for Gas Turbine Generator System Diagnosis

    Directory of Open Access Journals (Sweden)

    Jian-Hua Zhong

    2016-01-01

    Full Text Available Fault diagnosis is very important to maintain the operation of a gas turbine generator system (GTGS in power plants, where any abnormal situations will interrupt the electricity supply. The fault diagnosis of the GTGS faces the main challenge that the acquired data, vibration or sound signals, contain a great deal of redundant information which extends the fault identification time and degrades the diagnostic accuracy. To improve the diagnostic performance in the GTGS, an effective fault feature extraction framework is proposed to solve the problem of the signal disorder and redundant information in the acquired signal. The proposed framework combines feature extraction with a general machine learning method, support vector machine (SVM, to implement an intelligent fault diagnosis. The feature extraction method adopts wavelet packet transform and time-domain statistical features to extract the features of faults from the vibration signal. To further reduce the redundant information in extracted features, kernel principal component analysis is applied in this study. Experimental results indicate that the proposed feature extracted technique is an effective method to extract the useful features of faults, resulting in improvement of the performance of fault diagnosis for the GTGS.

  9. Direct method gas-phase oxygen abundances of four Lyman break analogs

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jonathan S.; Croxall, Kevin V.; Pogge, Richard W. [Department of Astronomy, The Ohio State University, Columbus, OH 43201 (United States)

    2014-09-10

    We measure the gas-phase oxygen abundances in four Lyman break analogs using auroral emission lines to derive direct abundances. The direct method oxygen abundances of these objects are generally consistent with the empirically derived strong-line method values, confirming that these objects are low oxygen abundance outliers from the mass-metallicity (MZ) relation defined by star forming Sloan Digital Sky Survey galaxies. We find slightly anomalous excitation conditions (Wolf-Rayet features) that could potentially bias the empirical estimates toward high values if caution is not exercised in the selection of the strong-line calibration. The high rate of star formation and low oxygen abundance of these objects is consistent with the predictions of the fundamental metallicity relation, in which the infall of relatively unenriched gas simultaneously triggers an episode of star formation and dilutes the interstellar medium of the host galaxy.

  10. Development of a real-time absorption method for detecting the mercaptan odorizing mixture of natural gas

    NARCIS (Netherlands)

    Kireev, SV; Petrov, NG; Podolyako, EM; Shnyrev, SL

    The absorption of mercaptan mixtures used for odorizing natural gas and mixtures of natural gas is experimentally studied in the spectral range 2.5-20 mu m. An absorption method for the real-time detection of the odorant concentration is proposed. The method is based on intensity measurements of the

  11. Techno-economic analysis of seawater desalination using high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Wu Linchun; Qin Zhenya

    2001-01-01

    Our world, including China (especially in big cities and foreland), is facing the increased global shortage of potable water and pollution of water. It is ideal to promote seawater desalination to satisfy the potable water demand in these areas. Among the various processes, MED, RO and VC have proven well developed and promising. Due to the inherent safety and its vapor produced with high parameters and features of small size and modular design, HTGR (High Temperature Gas-cooled Reactor) of 2x200MW is chosen as the energy source for the desalination in dual production of clean water and power. This paper discusses the techno-economic feasibility of different seawater desalting systems using 2x200MW HTGR in the areas mentioned above, that is, ST-MED (Steam Turbine Cycle), RO, MED/TVC, RO/MED and GT-MED (Gas Turbine Cycle). The exergy concept is used in calculating availability to get cost of energy in desalination, and power credit method is used in economic assessment of different systems to get reasonable evaluating, while economic-life levelized cost method is adopted for calculating electricity cost of referred HTGR plant. In addition, sensitivity analysis on ST-MED economy is also presented. (author)

  12. Measurement of the surface tension by the method of maximum gas bubble pressure

    International Nuclear Information System (INIS)

    Dugne, Jean

    1971-01-01

    A gas bubble method for measuring surface tension was studied. Theoretical investigations demonstrated that the maximum pressure can be represented by the envelope of a certain family of curves and that the physical nature of the capillary tube imposes an upper limit to its useful radius. With a given tube and a specified liquid, the dynamic evolution of the gas bubble depends only upon the variation of the mass of gas contained with time; this fact may restrict the choice of tubes. The use of one single tube requires important corrections. Computer treatment of the problem led to some accurate equations for calculating γ. Schroedinger equations and Sudgen's table are examined. The choice of tubes, the necessary corrections, density measurement, and the accuracy attainable are discussed. Experiments conducted with water and mercury using the sessile drop method and continuous recording of the pressure verified the theoretical ideas. (author) [fr

  13. Stable carbon and hydrogen isotope analysis of methyl tert-butyl ether and tert-amyl methyl ether by purge and trap-gas chromatography-isotope ratio mass spectrometry: method evaluation and application.

    Science.gov (United States)

    Kujawinski, Dorothea M; Stephan, Manuel; Jochmann, Maik A; Krajenke, Karen; Haas, Joe; Schmidt, Torsten C

    2010-01-01

    In order to monitor the behaviour of contaminants in the aqueous environment effective enrichment techniques often have to be employed due to their low concentrations. In this work a robust and sensitive purge and trap-gas chromatography-isotope ratio mass spectrometry method for carbon and hydrogen isotope analysis of fuel oxygenates in water is presented. The method evaluation included the determination of method detection limits, accuracy and reproducibility of deltaD and delta(13)C values. Lowest concentrations at which reliable delta(13)C values could be determined were 5 microg L(-1) and 28 microg L(-1) for TAME and MTBE, respectively. Stable deltaD values for MTBE and TAME could be achieved for concentrations as low as 25 and 50 microg L(-1). Good long-term reproducibility of delta(13)C and deltaD values was obtained for all target compounds. But deltaD values varying more than 5 per thousand were observed using different thermal conversion tubes. Thus, a correction of deltaD values in the analysis of groundwater samples was necessary to guarantee comparability of the results. The applicability of this method was shown by the analysis of groundwater samples from a gasoline contaminated site. By two dimensional isotope analysis two locations within this site were identified at which anaerobic and aerobic degradation of methyl tert-butyl ether occurred.

  14. Environmental analysis of natural gas life cycle; Analisi ambientale del ciclo di vita del gas naturale

    Energy Technology Data Exchange (ETDEWEB)

    Riva, A.; D' Angelosante, S.; Trebeschi, C. [Snam SpA, Rome (Italy)

    2000-12-01

    Life Cycle Assessment is a method aimed at identifying the environmental effects connected with a given product, process or activity during its whole life cycle. The evaluation of published studies and the application of the method to electricity production with fossil fuels, by using data from published databases and data collected by the gas industry, demonstrate the importance and difficulties to have reliable and updated data required for a significant life cycle assessment. The results show that the environmental advantages of natural gas over the other fossil fuels in the final use stage increase still further if the whole life cycle of the fuels, from production to final consumption, is taken into account. [Italian] L'analisi del ciclo di vita e' una metodologia che consente di identificare gli effetti ambientali associati ad un prodotto, processo o attivita' lungo il loro ciclo di vita. La valutazione di studi pubblicati e l'applicazione della metodologia alla produzione di energia elettrica da combustibili fossili, utilizzando dati provenienti da banche dati di letteratura e raccolti dall'industria del gas, dimostrano l'importanza e la difficolta' di avere a disposizione dati affidabili ed aggiornati, necessari per un'analisi significativa del ciclo di vita. I risultati mostrano che i vantaggi ambientali del gas naturale rispetto agli altri combustibili fossili nella fase di utilizzo finale, aumentano ulteriormente se si considera l'intero ciclo di vita dei diversi combustibili, dalla produzione al consumo finale.

  15. Quantitative analysis of abused drugs in physiological fluids by gas chromatography/chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Foltz, R.L.

    1978-01-01

    Methods have been developed for quantitative analysis of commonly abused drugs in physiological fluids using gas chromatography/chemical ionization mass spectrometry. The methods are being evaluated in volunteer analytical and toxicological laboratories, and analytical manuals describing the methods are being prepared. The specific drug and metabolites included in this program are: Δ 9 -tetrahydrocannabinol, methadone, phencyclidine, methaqualone, morphine, amphetamine, methamphetamine, mescaline, 2,5-dimethoxy-4-methyl amphetamine, cocaine, benzoylecgonine, diazepam, and N-desmethyldiazepam. The current analytical methods utilize relatively conventional instrumentation and procedures, and are capable of measuring drug concentrations as low as 1 ng/ml. Various newer techniques such as sample clean-up by high performance liquid chromatography, separation by glass capillary chromatography, and ionization by negative ion chemical ionization are being investigated with respect to their potential for achieving higher sensitivity and specificity, as well as their ability to facilitate simultaneous analysis of more than one drug and metabolite. (Auth.)

  16. Development and validation of a comprehensive two-dimensional gas chromatography-mass spectrometry method for the analysis of phytosterol oxidation products in human plasma

    NARCIS (Netherlands)

    Menéndez-Carreño, M.; Steenbergen, H.; Janssen, H.-G.

    2012-01-01

    Phytosterol oxidation products (POPs) have been suggested to exert adverse biological effects similar to, although less severe than, their cholesterol counterparts. For that reason, their analysis in human plasma is highly relevant. Comprehensive two-dimensional gas chromatography (GC×GC) coupled

  17. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy.

    Science.gov (United States)

    Salter, Robert; Chu, Johnny; Hippler, Michael

    2012-10-21

    A variant of cavity-enhanced Raman spectroscopy (CERS) is introduced, in which diode laser radiation at 635 nm is coupled into an external linear optical cavity composed of two highly reflective mirrors. Using optical feedback stabilisation, build-up of circulating laser power by 3 orders of magnitude occurs. Strong Raman signals are collected in forward scattering geometry. Gas phase CERS spectra of H(2), air, CH(4) and benzene are recorded to demonstrate the potential for analytical applications and fundamental molecular studies. Noise equivalent limits of detection in the ppm by volume range (1 bar sample) can be achieved with excellent linearity with a 10 mW excitation laser, with sensitivity increasing with laser power and integration time. The apparatus can be operated with battery powered components and can thus be very compact and portable. Possible applications include safety monitoring of hydrogen gas levels, isotope tracer studies (e.g., (14)N/(15)N ratios), observing isotopomers of hydrogen (e.g., radioactive tritium), and simultaneous multi-component gas analysis. CERS has the potential to become a standard method for sensitive gas phase Raman spectroscopy.

  18. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    International Nuclear Information System (INIS)

    Biagioni, A.; Anania, M.P.; Bellaveglia, M.; Chiadroni, E.; Giovenale, D. Di; Pirro, G. Di; Ferrario, M.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Cianchi, A.; Filippi, F.; Mostacci, A.; Zigler, A.

    2016-01-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  19. Gas Classification Using Combined Features Based on a Discriminant Analysis for an Electronic Nose

    Directory of Open Access Journals (Sweden)

    Sang-Il Choi

    2016-01-01

    Full Text Available This paper proposes a gas classification method for an electronic nose (e-nose system, for which combined features that have been configured through discriminant analysis are used. First, each global feature is extracted from the entire measurement section of the data samples, while the same process is applied to the local features of the section that corresponds to the stabilization, exposure, and purge stages. The discriminative information amounts in the individual features are then measured based on the discriminant analysis, and the combined features are subsequently composed by selecting the features that have a large amount of discriminative information. Regarding a variety of volatile organic compound data, the results of the experiment show that, in a noisy environment, the proposed method exhibits classification performance that is relatively excellent compared to the other feature types.

  20. A robust and fast method of sampling and analysis of delta13C of dissolved inorganic carbon in ground waters.

    Science.gov (United States)

    Spötl, Christoph

    2005-09-01

    The stable carbon isotopic composition of dissolved inorganic carbon (delta13C(DIC)) is traditionally determined using either direct precipitation or gas evolution methods in conjunction with offline gas preparation and measurement in a dual-inlet isotope ratio mass spectrometer. A gas evolution method based on continuous-flow technology is described here, which is easy to use and robust. Water samples (100-1500 microl depending on the carbonate alkalinity) are injected into He-filled autosampler vials in the field and analysed on an automated continuous-flow gas preparation system interfaced to an isotope ratio mass spectrometer. Sample analysis time including online preparation is 10 min and overall precision is 0.1 per thousand. This method is thus fast and can easily be automated for handling large sample batches.