WorldWideScience

Sample records for gapa efficiently inhibits

  1. Novel agmatine analogue, γ-guanidinooxypropylamine (GAPA) efficiently inhibits proliferation of Leishmania donovani by depletion of intracellular polyamine levels

    International Nuclear Information System (INIS)

    Singh, Sushma; Jhingran, Anupam; Sharma, Ankur; Simonian, Alina R.; Soininen, Pasi; Vepsalainen, Jouko; Khomutov, Alex R.; Madhubala, Rentala

    2008-01-01

    The efficacy of γ-guanidinooxypropylamine (GAPA), a novel agmatine analogue against protozoan parasite, Leishmaniadonovani was evaluated. Wild-type and ornithine decarboxylase-overexpressors of L. donovani were used to study the effect and mode of action of this inhibitor. GAPA inhibited the growth of both promastigotes and amastigotes. Ornithine decarboxylase (ODC) activity and polyamine levels were markedly lower in cells treated with GAPA and proliferation was rescued by addition of putrescine or spermidine. GAPA inhibited L. donovani recombinant ODC with K i value of ∼60 μM. The ODC-overexpressors showed significant resistance to GAPA. GAPA has pK a 6.71 and at physiological pH the analogue can mimic protonated state of putrescine and can probably use putrescine transport system. Transport of putrescine in wild-type L. donovani promastigotes was inhibited by GAPA. We for the first time report that GAPA is a potential antileishmanial lead compound and it possibly inhibits L. donovani growth by depletion of intracellular polyamine levels

  2. The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1 in Neisseria meningitidis adherence to human cells

    Directory of Open Access Journals (Sweden)

    Wooldridge Karl G

    2010-11-01

    Full Text Available Abstract Background Glyceraldehyde 3-phosphate dehydrogenases (GAPDHs are cytoplasmic glycolytic enzymes, which although lacking identifiable secretion signals, have also been found localized to the surface of several bacteria (and some eukaryotic organisms; where in some cases they have been shown to contribute to the colonization and invasion of host tissues. Neisseria meningitidis is an obligate human nasopharyngeal commensal which can cause life-threatening infections including septicaemia and meningitis. N. meningitidis has two genes, gapA-1 and gapA-2, encoding GAPDH enzymes. GapA-1 has previously been shown to be up-regulated on bacterial contact with host epithelial cells and is accessible to antibodies on the surface of capsule-permeabilized meningococcal cells. The aims of this study were: 1 to determine whether GapA-1 was expressed across different strains of N. meningitidis; 2 to determine whether GapA-1 surface accessibility to antibodies was dependant on the presence of capsule; 3 to determine whether GapA-1 can influence the interaction of meningococci and host cells, particularly in the key stages of adhesion and invasion. Results In this study, expression of GapA-1 was shown to be well conserved across diverse isolates of Neisseria species. Flow cytometry confirmed that GapA-1 could be detected on the cell surface, but only in a siaD-knockout (capsule-deficient background, suggesting that GapA-1 is inaccessible to antibody in in vitro-grown encapsulated meningococci. The role of GapA-1 in meningococcal pathogenesis was addressed by mutational analysis and functional complementation. Loss of GapA-1 did not affect the growth of the bacterium in vitro. However, a GapA-1 deficient mutant showed a significant reduction in adhesion to human epithelial and endothelial cells compared to the wild-type and complemented mutant. A similar reduction in adhesion levels was also apparent between a siaD-deficient meningococcal strain and an

  3. Global Advocacy for Physical Activity (GAPA): global leadership towards a raised profile.

    Science.gov (United States)

    Blanchard, Claire; Shilton, Trevor; Bull, Fiona

    2013-12-01

    Physical inactivity has been recognised by the World Health Organization as one of the leading causes of death due to non-communicable disease (NCD), worldwide. The benefits of action over inactivity can cut across health, environment, transportation, sport, culture and the economy. Despite the evidence, the policies and strategies to increase population-wide participation in physical activity receive insufficient priority from across high, middle and low-income countries; where physical inactivity is a rapidly-emerging issue. There is an increased need for all countries to invest in policies, strategies and supportive environments that inform, motivate and support individuals and communities to be active in ways that are safe, accessible and enjoyable. This commentary presents some recent efforts towards physical activity promotion globally, led by the Global Advocacy for Physical Activity (GAPA). It provides an overview of the background and history of GAPA; describes GAPA and the council's key achievements and milestones; places physical activity promotion within the global NCD agenda; presents GAPA flagships; and reflects on the lessons learned, ingredients for success and the major challenges that remain. The commentary documents insights into the effectiveness and challenges faced by a small non-governmental organisation (NGO) in mounting global advocacy. These lessons may be transferrable to other areas of health promotion advocacy.

  4. GapA, a potential vaccine candidate antigen against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Zhang, Ze; Yu, Angen; Lan, Jiangfeng; Zhang, Hua; Hu, Minqiang; Cheng, Jiewei; Zhao, Lijuan; Lin, Li; Wei, Shun

    2017-04-01

    Streptococcosis due to the bacterium Streptococcus agalactiae (S. agalactiae) has resulted in enormous economic losses in aquaculture worldwide, especially in the tilapia culture industry. Previously, there were limited vaccines that could be employed against streptococcosis in tilapia. This study aimed to develop a vaccine candidate using the glyceraldehyde-phosphate dehydrogenase protein (GapA) of S. agalactiae encoded by the gapA gene. Tilapia were intraperitoneally injected with PBS, PBS + Freund's adjuvant, PBS + Montanide's adjuvant, GapA + Freund's adjuvant, GapA + Montanide's adjuvant, killed S. agalactiae whole cells (WC)+Freund's adjuvant, or killed S. agalactiae whole cells (WC)+ Montanide's adjuvant. They were then challenged with S. agalactiae, and the relative percentage survival (RPS) was monitored 14 days after the challenge. The highest RPSs were observed in the WC groups, with 76.7% in WC + Freund's adjuvant and 74.4% in WC + Montanide's adjuvant groups; these were followed by the GapA groups, with 63.3% in GapA + Freund's adjuvant and 45.6% in GapA + Montanide's adjuvant groups. The RPS of the PBS group was 0%, and those of PBS + Freund's adjuvant and PBS + Montanide's adjuvant groups were 6.7% and 3.3%, respectively. Additionally, the IgM antibody responses elicited in GapA groups and WC groups were significantly higher than those in PBS groups. Furthermore, the expressions of cytokine (IL-1β and TNF-α) mRNAs in the GapA groups and WC groups were significantly higher than those in the PBS groups. Taken together, these results reveal that the GapA protein is a promising vaccine candidate that could be used to prevent streptococcosis in tilapia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Proteome analysis of a Lactococcus lactis strain overexpressing gapA suggests that the gene product is an auxiliary glyceraldehyde 3-phosphate dehydrogenase

    DEFF Research Database (Denmark)

    Willemoes, Martin; Kilstrup, Mogens; Roepstorff, P.

    2002-01-01

    revealed two neighbouring protein spots, GapBI and GapBII, with amino terminal sequences identical to the product of gapA from the L. lactis subspecies cremoris strain LM0230 and that of the two IL1403 sequences. In order to assign the two protein spots to their respective genes we constructed an L. lactis...... was specific for NAD. No NADP dependent activity was detected. Proteome analysis of the gapA overexpressing strain revealed two new protein spots, GapAI and GapAII, not previously detected in proteome analysis of MG1363. Results from mass spectrometry analysis of GapA and GapB and comparison with the deduced......The sequence of the genome from the Lactococcus lactis subspecies lactis strain IL1403 shows the presence of two reading frames, gapA and gapB, putatively encoding glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Previous proteomic analysis of the L. lactis subspecies cremoris strain MG1363 has...

  6. Disputable issues in the application of the Administrative Procedure Act

    Directory of Open Access Journals (Sweden)

    Dimitrijević Predrag

    2014-01-01

    Full Text Available The reform of administrative procedure and the applicable General Administrative Procedure Act (GAPA calls for determining the 'open' and 'disputable' issues in the application of this Act. The process of reforming the administrative legislation does not only imply taking into account the EU standards but also considering the complex, abundant and diverse national administrative practice and case law. The Serbian administrative practice points to some 'open' questions in the application of the current GAPA which should be the cornerstones in the reform of administrative legislation. In that course, it is crucial to start from the current administrative legislation and administrative practice. It is worth noting that the GAPA is already subject to permanent reform through the process of amending the subject-specific substantive provisions governing special administrative proceedings. Such practice should be upheld because the area of special administrative procedure is a dynamic environment where the APA is actually being modeled by amending the special administrative proceedings but in full compliance with the fundamental GAPA principles. Thus, the GAPA should be subject to minimal reform, primarily in the regulation of those procedural matters which have already passed the application test in both national and comparative practice; these 'safe points of reference' significantly improve the process in line with the basic administrative principles and largely contribute to its efficiency, as opposed to other alternative proposals on procedural solutions. The basic presumption for a successful APA reform is the functional analysis of the Draft GAPA. Some of the disputable issues include the subject matter of the GAPA, the enactment of administrative acts and concluding administrative agreements. In case of expanding the scope of the GAPA subject matter, the legislator is obliged to expressly regulate the administrative proceeding for concluding

  7. Corrosion inhibition of mild steel in acidic media using newly synthesized heterocyclic organic molecules: Correlation between inhibition efficiency and chemical structure

    Energy Technology Data Exchange (ETDEWEB)

    Ouici, H. B., E-mail: ouici.houari@yahoo.fr; Guendouzi, A., E-mail: guendouzzi@yahoo.fr [Departement of Chimistry, Faculty of Sciences, University of Saïda (Algeria); Benali, O. [Department of Biology, Faculty of Science, University of Saida (Algeria)

    2015-03-30

    The corrosion inhibition of mild steel in 5% HCl solutions by some new synthesized organic compounds namely 3-(2-methoxyphenyl) 5-mercapto-1. 2. 4-triazole (2-MMT), 3-(3-methoxyphenyl) 5-mercapto-1. 2. 4-triazole (3-MMT) and 3-(2-hydroxyphenyl) 5-mercapto-1. 2. 4-triazole (2-HMT) was investigated using weight loss and potentiostatic polarization techniques. These measurements reveal that the inhibition efficiency obtained by these compounds increased by increasing their concentration. The inhibition efficiency follows the order 2-MMT >3-MMT >2-HMT. Polarization studies show that these compounds are of the mixed type but dominantly act as a cathodic inhibitors for mild steel in 5% HCl solutions. These inhibitors function through adsorption following Langmuir isotherm. Activation energy and Gibbs free energy for adsorption of inhibitors are calculated. Molecular modeling has been conducted to correlate the corrosion inhibition properties with the calculated quantum chemical parameters.

  8. Novel cationic surfactants from fatty acids and their corrosion inhibition efficiency for carbon steel pipelines in 1 M HCl

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2011-06-01

    Full Text Available Four fatty acids were used as a source of alkyl halides. Untraditionally tertiary amines were prepared by ethoxylation of aromatic and aliphatic fatty amines. These alkyl halide and tertiary amines were used to prepare 20 cationic quaternary ammonium surfactants (QASS. Their chemical structures were characterized and they tested as corrosion inhibitors for carbon steel in 1 M HCl solution. The corrosion inhibition efficiency was measured using, weight loss and potentiodynamic polarization methods. The inhibition efficiencies obtained from the two employed methods are nearly closed. From the obtained data it was found that, the inhibition efficiency increases with increasing the inhibitor concentration until the optimum one. Also, it was found that the inhibition efficiency of QASs which based on ethoxylated aromatic tertiary amine is greater than the obtained efficiencies by the QASs which based on ethoxylated aliphatic tertiary amines. The QASs based on alkyl halide C16 exhibited the maximum inhibition efficiency 98.8%. Adsorption of the inhibitors on the carbon steel surface was found to obey Langmuir’s adsorption isotherm. The quantum chemical calculations were done for some selected quaternary ammonium compounds based on their chemical structures QL1,4,5–QP3,4,5. The following quantum chemical indices such as the bond length, bond angle, charge density distribution, highest occupied molecular orbital (HOMO, lowest unoccupied molecular orbital (LUMO, energy gap ΔE = HOMO − LUMO, and dipole moment (u were considered. The relation between these parameters and the inhibition efficiencies was explained on the light of the chemical structure of the used inhibitors.

  9. Organic compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Elizandra C.S.; Chrisman, Erika C.A.N. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2009-12-19

    The use of inhibitors for mild steels corrosion control which are in contact with aggressive environment is an accepted practice in acid treatment of oil-wells. Organic compounds have been studied to evaluate their corrosion inhibition potential. Film-forming corrosion inhibitors, commonly used to protect oil-field equipment, can be absorbed on the steel surface to give structurally ordered layers. Therefore, the electrons should act as an important role for this adsorption. Studies reveal that organic compounds show significant inhibition efficiency. For this purpose, their molecules should contain N, O and S heteroatoms in various functional groups, long hydrocarbon linear or branched radical and anion and cation active components. However, most of these compounds are not only expensive but also toxic to living beings. According to the 'Green Chemistry' rules, corrosion inhibitors based on organic compounds should be cheap, with low toxicity and have high inhibition efficiency. In this study, the effects of some organic compounds with different groups such as amide, ether, phenyldiamine, anime and aminophenol on the corrosion behavior of mild steel in acidic media have been investigated. The experimental data were obtained by gravimetric measurements. The results show that these compounds reveal a promising corrosion inhibition where phenyldiamine is the most efficient. The effect of molecular structure on the corrosion inhibition efficiency was investigated by semi-empirical quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, and LUMO-HOMO energy gap orbital density were calculated. The relations between the inhibition efficiency and some quantum parameters are discussed and correlations are proposed. The highest values for the HOMO densities were found in the vicinity nitrogen atom, indicating that it is the most probable adsorption center

  10. Study on Corrosion Inhibition Efficiency of Stem Alkaloid Extract of Different Varieties of Holy Basil on Aluminium in HCl Solution

    Energy Technology Data Exchange (ETDEWEB)

    Kumpawat, Nutan; Chaturvedi, Alok; Upadhyay, R. K. [Synthetic and Surface Science Laboratory, Ajmer (India)

    2012-08-15

    Corrosion inhibition efficiencies of holy basil on Al in HCl solution were studied by weight loss and thermometric methods in presence and in absence of stem extract of three different varieties of holy basil viz. ocimum basilicum (E{sub B}), ocimum canum (E{sub C}) and ocimum sanctum (E{sub S}). Inhibition efficiency increases with the increasing concentration of stem extract and decreases with increases in acid strength. Results show that all varieties under study are good corrosion inhibitors, among which, E{sub B} is most effective. Maximum inhibition efficiency was found 97.09% in 0.5N HCl solution with 0.6% stem extract. The Langmuir adsorption isotherm indicates that surface coverage also increases with increasing in the concentration of extract of stem in HCl solution.

  11. Study on Corrosion Inhibition Efficiency of Stem Alkaloid Extract of Different Varieties of Holy Basil on Aluminium in HCl Solution

    International Nuclear Information System (INIS)

    Kumpawat, Nutan; Chaturvedi, Alok; Upadhyay, R. K.

    2012-01-01

    Corrosion inhibition efficiencies of holy basil on Al in HCl solution were studied by weight loss and thermometric methods in presence and in absence of stem extract of three different varieties of holy basil viz. ocimum basilicum (E B ), ocimum canum (E C ) and ocimum sanctum (E S ). Inhibition efficiency increases with the increasing concentration of stem extract and decreases with increases in acid strength. Results show that all varieties under study are good corrosion inhibitors, among which, E B is most effective. Maximum inhibition efficiency was found 97.09% in 0.5N HCl solution with 0.6% stem extract. The Langmuir adsorption isotherm indicates that surface coverage also increases with increasing in the concentration of extract of stem in HCl solution

  12. PreSMA stimulation changes task-free functional connectivity in the fronto-basal-ganglia that correlates with response inhibition efficiency.

    Science.gov (United States)

    Xu, Benjamin; Sandrini, Marco; Wang, Wen-Tung; Smith, Jason F; Sarlls, Joelle E; Awosika, Oluwole; Butman, John A; Horwitz, Barry; Cohen, Leonardo G

    2016-09-01

    Previous work using transcranial magnetic stimulation (TMS) demonstrated that the right presupplementary motor area (preSMA), a node in the fronto-basal-ganglia network, is critical for response inhibition. However, TMS influences interconnected regions, raising the possibility of a link between the preSMA activity and the functional connectivity within the network. To understand this relationship, we applied single-pulse TMS to the right preSMA during functional magnetic resonance imaging when the subjects were at rest to examine changes in neural activity and functional connectivity within the network in relation to the efficiency of response inhibition evaluated with a stop-signal task. The results showed that preSMA-TMS increased activation in the right inferior-frontal cortex (rIFC) and basal ganglia and modulated their task-free functional connectivity. Both the TMS-induced changes in the basal-ganglia activation and the functional connectivity between rIFC and left striatum, and of the overall network correlated with the efficiency of response inhibition and with the white-matter microstructure along the preSMA-rIFC pathway. These results suggest that the task-free functional and structural connectivity between the rIFCop and basal ganglia are critical to the efficiency of response inhibition. Hum Brain Mapp 37:3236-3249, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Synthesis, characterization and corrosion inhibition efficiency of N-(4-(Morpholinomethyl Carbamoyl Phenyl Furan-2-Carboxamide

    Directory of Open Access Journals (Sweden)

    N. Zulfareen

    2016-01-01

    Full Text Available A mannich base namely N-(4-(Morpholinomethyl Carbamoyl Phenyl Furan-2-Carboxamide (MFC was synthesized and characterized by FT-IR, 1H NMR, and 13C NMR. The molecular weight of MFC was confirmed by LC-MS. The inhibition effect of MFC on brass in 1 M HCl medium has been investigated by weight loss measurement, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS and cyclic voltametry (CV. Thermodynamic parameters such as free energy, entropy and enthalpy were calculated to describe the mechanism of corrosion inhibitor. The inhibition efficiency of MFC increases with increase in concentration and temperature ranges from 30 °C to 60 °C. Polarization measurements indicated that MFC acts as a mixed type corrosion inhibitor. AC impedance indicates that Rct value increases with increase in the concentration of inhibitor. CV reveals that the oxidation of the copper is controlled by the addition of inhibitor on the brass metal. Surface analysis using scanning electron microscope (SEM shows a significant morphological improvement on the brass surface with the addition of the inhibitor. The adsorption of MFC on brass obeys Langmuir adsorption isotherm. The molecular structure of MFC was distorted to quantum chemical indices using density functional theory (DFT which indicates that the inhibition efficiency of MFC is closely related to quantum parameters.

  14. Synergistic Effect on Corrosion Inhibition Efficiency of Ginger Affinale Extract in Controlling Corrosion of Mild Steel in Acid Medium

    International Nuclear Information System (INIS)

    Subramanian, Ananth Kumar; Arumugam, Sankar; Mallaiya, Kumaravel; Subramaniam, Rameshkumar

    2013-01-01

    The corrosion inhibition nature of Ginger affinale extract for the corrosion of mild steel in 0.5N H 2 SO 4 was investigated using weight loss, electrochemical impedance and potentiodynamic polarization methods. The results revealed that Ginger affinale extract acts as a good corrosion inhibitor in 0.5N H 2 SO 4 medium. The inhibition efficiency increased with an increase in inhibitor concentration. The inhibition could be attributed to the adsorption of the inhibitor on the steel surface

  15. Synergistic Effect on Corrosion Inhibition Efficiency of Ginger Affinale Extract in Controlling Corrosion of Mild Steel in Acid Medium

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Ananth Kumar; Arumugam, Sankar [Kandaswami Kandar' s College, Namakkal (India); Mallaiya, Kumaravel; Subramaniam, Rameshkumar [PSG College of Technology Peelamedu, Coimbatore (India)

    2013-12-15

    The corrosion inhibition nature of Ginger affinale extract for the corrosion of mild steel in 0.5N H{sub 2}SO{sub 4} was investigated using weight loss, electrochemical impedance and potentiodynamic polarization methods. The results revealed that Ginger affinale extract acts as a good corrosion inhibitor in 0.5N H{sub 2}SO{sub 4} medium. The inhibition efficiency increased with an increase in inhibitor concentration. The inhibition could be attributed to the adsorption of the inhibitor on the steel surface.

  16. Electrochemical evaluation of inhibition efficiency of ciprofloxacin on the corrosion of copper in acid media

    Energy Technology Data Exchange (ETDEWEB)

    Thanapackiam, P. [Department of Chemistry, Coimbatore Institute of Technology, Coimbatore, Tamilnadu, 641 014 (India); Rameshkumar, Subramaniam [Department of Chemistry, Sri Vasavi College, Erode, Tamilnadu, 638 316 (India); Subramanian, S.S. [Department of Chemistry, PSG College of Technology, Coimbatore, Tamilnadu, 641 004 (India); Mallaiya, Kumaravel, E-mail: mkvteam.research@gmail.com [Department of Chemistry, PSG College of Technology, Coimbatore, Tamilnadu, 641 004 (India)

    2016-05-01

    The inhibition efficiency of ciprofloxacin on the corrosion of copper was studied in 1.0MHNO{sub 3} and 0.5MH{sub 2}SO{sub 4} solutions by electrochemical impedance spectroscopy and potentiodynamic polarization techniques. The corrosion inhibition action of ciprofloxacin was observed to be of mixed type in both the acid media, but with more of a cathodic nature. The experimental data were found to fit well with the Langmuir adsorption isotherm. The thermodynamic parameters such as adsorption equilibrium constant(K{sub ads}), free energy of adsorption(ΔG{sub ads}), activation energy(E{sub a}) and potential of zero charge(PZC) showed that the adsorption of ciprofloxacin onto copper surface involves both physisorption and chemisorption. - Highlights: • The inhibitor efficiency increases with increase in ciprofloxacin concentration. • Polarization measurements show that ciprofloxacin acts as a mixed type inhibitor. • The adsorption of the inhibitor on copper surface follows Langmuir adsorption isotherm. • The negative values of ΔG{sub ads} indicates that the adsorption is spontaneous and exothermic.

  17. A bi-paratopic anti-EGFR nanobody efficiently inhibits solid tumour growth

    Science.gov (United States)

    Roovers, Rob C.; Vosjan, Maria J.W.D.; Laeremans, Toon; el Khoulati, Rachid; de Bruin, Renée C.G.; Ferguson, Kathryn M.; Verkleij, Arie J.; van Dongen, Guus A.M.S.; van Bergen en Henegouwen, Paul M. P.

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been shown to be a valid cancer target for antibody-based therapy. At present, several anti-EGFR monoclonal antibodies (mAbs) have been successfully used, among which cetuximab and matuzumab. X-ray crystallography data show that these antibodies bind to different epitopes on the ecto-domain of EGFR, providing a rationale for the combined use of these two antibody specificities. We have previously reported on the successful isolation of antagonistic anti-EGFR nanobodies. In the present study, we aimed to improve on these molecules by combining nanobodies with specificities similar to both cetuximab and matuzumab into a single bi-paratopic molecule. Carefully designed phage nanobody selections resulted in two sets of nanobodies that specifically blocked the binding of either matuzumab or of cetuximab to EGFR and that did not compete for each others binding. A combination of nanobodies from both epitope groups into the bi-paratopic nanobody CONAN-1 was shown to block EGFR activation more efficiently than monovalent or bivalent (monospecific) nanobodies. In addition, this bi-paratopic nanobody potently inhibited EGF-dependent cell proliferation. Importantly, in an in vivo model of athymic mice bearing A431 xenografts, CONAN-1 inhibited tumour outgrowth with an almost similar potency as the whole mAb cetuximab, despite the fact that CONAN-1 is devoid of an Fc portion that could mediate immune effector functions. Compared to therapy using bivalent, mono-specific nanobodies, CONAN-1 was clearly more potent in tumour growth inhibition. These results show that the rational design of bi-paratopic nanobody-based anti-cancer therapeutics may yield potent lead molecules for further development. PMID:21520037

  18. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection

    Science.gov (United States)

    Yang, Xiao Xi; Li, Chun Mei; Huang, Cheng Zhi

    2016-01-01

    Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition effect against respiratory syncytial virus (RSV) infection, giving a decrease of viral titers about two orders of magnitude at the concentration of cAgNPs under which no toxicity was found to the host cells. Mechanism investigations showed that cAgNPs could prevent RSV from infecting the host cells by inactivating the virus directly, indicating that cAgNPs are a novel promising efficient virucide for RSV.Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition

  19. A novel monoclonal anti-CD81 antibody produced by genetic immunization efficiently inhibits Hepatitis C virus cell-cell transmission.

    Directory of Open Access Journals (Sweden)

    Isabel Fofana

    Full Text Available Hepatitis C virus (HCV infection is a challenge to prevent and treat because of the rapid development of drug resistance and escape. Viral entry is required for initiation, spread, and maintenance of infection, making it an attractive target for antiviral strategies.Using genetic immunization, we produced four monoclonal antibodies (mAbs against the HCV host entry factor CD81. The effects of antibodies on inhibition of HCV infection and dissemination were analyzed in HCV permissive human liver cell lines.The anti-CD81 mAbs efficiently inhibited infection by HCV of different genotypes as well as a HCV escape variant selected during liver transplantation and re-infecting the liver graft. Kinetic studies indicated that anti-CD81 mAbs target a post-binding step during HCV entry. In addition to inhibiting cell-free HCV infection, one antibody was also able to block neutralizing antibody-resistant HCV cell-cell transmission and viral dissemination without displaying any detectable toxicity.A novel anti-CD81 mAb generated by genetic immunization efficiently blocks HCV spread and dissemination. This antibody will be useful to further unravel the role of virus-host interactions during HCV entry and cell-cell transmission. Furthermore, this antibody may be of interest for the development of antivirals for prevention and treatment of HCV infection.

  20. Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt).

    Science.gov (United States)

    Gong, Beini; Wu, Pingxiao; Huang, Zhujian; Li, Yuanyuan; Yang, Shanshan; Dang, Zhi; Ruan, Bo; Kang, Chunxi

    2016-11-15

    The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Efficient electroreduction of CO{sub 2} on bulk silver electrode in aqueous solution via the inhibition of hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Fengjiao; Xiong, Mubing; Jia, Falong, E-mail: fljia@mail.ccnu.edu.cn; Zhang, Lizhi

    2017-03-31

    Highlights: • High Faradic efficiency for CO (95%) is achieved on bulk Ag electrode. • The addition of DTAB contributes to enhanced CO{sub 2} conversion efficiency. • Hydrogen evolution is suppressed by the adsorbed DTAB on Ag electrode. - Abstract: Electrochemical CO{sub 2} reduction provides a desirable pathway to convert greenhouse gas into useful chemicals. It is a great challenge to reduce CO{sub 2} efficiently in aqueous solution, especially on commercial bulk metal electrodes. Here, we report substantial improvement in CO{sub 2} reduction on bulk silver electrode through the introduction of ionic surfactant in aqueous electrolyte. The hydrogen evolution on the electrode surface is greatly suppressed by the surfactant, while the catalytic ability of silver towards CO{sub 2} reduction is maintained. The Faradaic efficiency for CO is greatly enhanced from 50% to 95% after the addition of this low-cost surfactant. This study may provide new pathways towards efficient CO{sub 2} reduction through the inhibition of proton reduction.

  2. The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search.

    Science.gov (United States)

    Castel, Alan D; Pratt, Jay; Drummond, Emily

    2005-06-01

    The ability to efficiently search the visual environment is a critical function of the visual system, and recent research has shown that experience playing action video games can influence visual selective attention. The present research examined the similarities and differences between video game players (VGPs) and non-video game players (NVGPs) in terms of the ability to inhibit attention from returning to previously attended locations, and the efficiency of visual search in easy and more demanding search environments. Both groups were equally good at inhibiting the return of attention to previously cued locations, although VGPs displayed overall faster reaction times to detect targets. VGPs also showed overall faster response time for easy and difficult visual search tasks compared to NVGPs, largely attributed to faster stimulus-response mapping. The findings suggest that relative to NVGPs, VGPs rely on similar types of visual processing strategies but possess faster stimulus-response mappings in visual attention tasks.

  3. Effect of Adenine Concentration on the Corrosion Inhibition of Aisi ...

    African Journals Online (AJOL)

    This gave a surface coverage of 0.8956 and corrosion penetration rate of 0.022132mm/yr. Hence, the best adenine concentration for the corrosion inhibition of alloys 304L in 1.0M sulphuric acid solution to obtain optimum inhibition efficiency is 0.011M. Keywords: Corrosion, AISI 304L Steel, Inhibition efficiency, Degree of ...

  4. Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs

    International Nuclear Information System (INIS)

    Li, Fengfeng; Fan, Cunyi; Cheng, Tao; Jiang, Chaoyin; Zeng, Bingfang

    2009-01-01

    Transforming growth factor-β1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which ERK2 is supposed to be crucial. Based on these assumptions, lentivirus (LV)-mediated small interfering RNAs (siRNAs) targeting ERK2 were used to suppress the proliferation and collagen expression of rat joint adhesion tissue fibroblasts (RJATFs). Among four siRNAs examined, siRNA1 caused an 84% reduction in ERK2 expression (p < 0.01) and was selected as the most efficient siRNA for use in this study. In subsequent experiments, significant downregulation of types I and III collagen were observed by quantitative RT-PCR and Western blot analyses. MTT assays and flow cytometry revealed marked inhibition of RJATF proliferation, but no apoptosis. In conclusion, LV-mediated ERK2 siRNAs may represent novel therapies or drug targets for preventing joint adhesion formation.

  5. Corrosion Inhibition of Aluminium by Capparis deciduas in Acidic Media

    OpenAIRE

    P. Arora; S. Kumar; M. K. Sharma; S. P. Mathur

    2007-01-01

    The inhibition efficiency of ethanolic extract of different parts of Capparis deciduas (Ker) in acidic medium has been evaluated by mass loss and thermometric methods. Values of inhibition efficiency obtained from the two methods are in good agreement and are dependent upon the concentration of inhibitor and acid.

  6. Effects of Different End-Point Cooking Temperatures on the Efficiency of Encapsulated Phosphates on Lipid Oxidation Inhibition in Ground Meat.

    Science.gov (United States)

    Kılıç, B; Şimşek, A; Claus, J R; Atılgan, E; Aktaş, N

    2015-10-01

    Effects of 0.5% encapsulated (e) phosphates (sodium tripolyphosphate, STP; sodium hexametaphosphate, HMP; sodium pyrophosphate, SPP) on lipid oxidation during storage (0, 1, and 7 d) of ground meat (chicken, beef) after being cooked to 3 end-point cooking temperatures (EPCT; 71, 74, and 77 °C) were evaluated. The use of STP or eSTP resulted in lower (P cooking loss (CL) compared to encapsulated or unencapsulated forms of HMP and SPP. Increasing EPCT led to a significant increase in CL (P chicken compared to 74 and 71 °C (P chicken samples (P < 0.05). Findings suggest that encapsulated phosphates can be a strategy to inhibit lipid oxidation for meat industry and the efficiency of encapsulated phosphates on lipid oxidation inhibition can be enhanced by lowering EPCT. © 2015 Institute of Food Technologists®

  7. Corrosion Inhibition of Aluminium by Capparis deciduas in Acidic Media

    Directory of Open Access Journals (Sweden)

    P. Arora

    2007-01-01

    Full Text Available The inhibition efficiency of ethanolic extract of different parts of Capparis deciduas (Ker in acidic medium has been evaluated by mass loss and thermometric methods. Values of inhibition efficiency obtained from the two methods are in good agreement and are dependent upon the concentration of inhibitor and acid.

  8. Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, {alpha}-D-Glucose and Tannic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Ostovari, A. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of)], E-mail: A.Ostovari@gmail.com; Hoseinieh, S.M.; Peikari, M. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Shadizadeh, S.R. [Petroleum Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Hashemi, S.J. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of)

    2009-09-15

    The inhibitive action of henna extract (Lawsonia inermis) and its main constituents (lawsone, gallic acid, {alpha}-D-Glucose and tannic acid) on corrosion of mild steel in 1 M HCl solution was investigated through electrochemical techniques and surface analysis (SEM/EDS). Polarization measurements indicate that all the examined compounds act as a mixed inhibitor and inhibition efficiency increases with inhibitor concentration. Maximum inhibition efficiency (92.06%) is obtained at 1.2 g/l henna extract. Inhibition efficiency increases in the order: lawsone > henna extract > gallic acid > {alpha}-D-Glucose > tannic acid. Also, inhibition mechanism and thermodynamic parameters are discussed.

  9. Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, α-D-Glucose and Tannic acid)

    International Nuclear Information System (INIS)

    Ostovari, A.; Hoseinieh, S.M.; Peikari, M.; Shadizadeh, S.R.; Hashemi, S.J.

    2009-01-01

    The inhibitive action of henna extract (Lawsonia inermis) and its main constituents (lawsone, gallic acid, α-D-Glucose and tannic acid) on corrosion of mild steel in 1 M HCl solution was investigated through electrochemical techniques and surface analysis (SEM/EDS). Polarization measurements indicate that all the examined compounds act as a mixed inhibitor and inhibition efficiency increases with inhibitor concentration. Maximum inhibition efficiency (92.06%) is obtained at 1.2 g/l henna extract. Inhibition efficiency increases in the order: lawsone > henna extract > gallic acid > α-D-Glucose > tannic acid. Also, inhibition mechanism and thermodynamic parameters are discussed.

  10. Epitaxial nanowire formation in metamorphic GaAs/GaPAs short-period superlattices

    Science.gov (United States)

    Zheng, Nan; Ahrenkiel, S. Phillip

    2017-07-01

    Metamorphic growth presents routes to novel nanomaterials with unique properties that may be suitable for a range of applications. We discuss self-assembled, epitaxial nanowires formed during metalorganic chemical vapor deposition of metamorphic GaAs/GaPAs short-period superlattices. The heterostructures incorporate strain-engineered GaPAs compositional grades on 6°-B miscut GaAs substrates. Lateral diffusion within the SPS into vertically aligned, three-dimensional columns results in nanowires extending along A directions with a lateral period of 70-90 nm. The microstructure is probed by transmission electron microscopy to confirm the presence of coherent GaAs nanowires within GaPAs barriers. The compositional profile is inferred from analysis of {200} dark-field image contrast and lattice images.

  11. Inhibition and Adsorption impact of Leave Extracts of Cnidoscolus ...

    African Journals Online (AJOL)

    Corrosion inhibition in the presence of alokaloid and non alkaloid extracts of Cnidoscolus aconitifolius in 1M HCl was studied using the weight loss and hydrogen evolution techniques at 303, 313 and 333 K. The results obtained revealed that the inhibition efficiency decreased with increase in temperature. Inhibition ...

  12. Hydrodynamic Effect on the Inhibition for the Flow Accelerated Corrosion of an Elbow

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, L.; Zhang, G. A.; Guo, X. P. [Huazhong University of Science and Technology, Wuhan (China)

    2017-02-15

    The inhibition effect of thioureido imidazoline inhibitor (TAI) for flow accelerated corrosion (FAC) at different locations for an X65 carbon steel elbow was studied by array electrode and computational fluid dynamics (CFD) simulations. The distribution of the inhibition efficiency measured by electrochemical impedance spectroscopy (EIS) is in good accordance with the distribution of the hydrodynamic parameters at the elbow. The inhibition efficiencies at the outer wall are higher than those at the inner wall meaning that the lower inhibition efficiency is associated with a higher flow velocity, shear stress, and turbulent kinetic energy at the inner wall of the elbow, as well as secondary flow at the elbow rather than the mass transport of inhibitor molecules. Compared to the static condition, the inhibition efficiency of TAI for FAC was relatively low. It is also due to a drastic turbulence flow and high wall shear stress during the FAC test, which prevents the adsorption of inhibitor and/or damages the adsorbed inhibitor film.

  13. Country watch: Brazil.

    Science.gov (United States)

    Henriques, H

    1996-01-01

    Prior to the successful, low-cost, multimedia campaigns of GAPA-Bahia (GAPA-BA), a nongovernmental organization (NGO), campaigns to educate people about HIV, AIDS, and sexually transmitted diseases (STDs) were produced by the Brazilian National AIDS/STD Program. Their first campaign, in 1990, focused on fear; their second, in 1995, known as the Braulio campaign, targeted poor men with little education via a conversation between a man and his penis "which had its own will power, opinions about condoms, and a compulsion to have sex." Both campaigns failed. GAPA-BA, in 1990, joined the chorus protesting the campaigns; the NGO believed the messages failed because 1) frightening people drives them away from information and 2) frequent association of AIDS with death is depressing and carries a subliminal message of guilt to those infected. GAPA-BA became the first NGO to produce low-cost, multimedia campaigns nationwide. They focused on "the social responsibility of fighting the disease while emphasizing the value of life and individual sexual freedom." The first campaign, in 1993 and in 1994, used charismatic singers to send short messages encouraging individual responsibility in condom use. The second campaign, in 1995, used "elements from the local culture by affirming the Afro-Bahain heritage expressed in popular music and dance." The light-hearted prevention message during Carnival was "Don't hide from pleasure, avoid AIDS" as a condom was inflated. The 1996 campaign ("Don't rely on luck; use a condom") required five newspaper ads, radio spots, TV ads, 25,000 posters, billboards, and ads on public buses. Five HIV-infected or HIV-affected persons spoke about their lives. This was the first time people living with HIV/AIDS took on educational roles and shed their dangerous and frightening stereotypes. The campaigns are sponsored by donors or remain low in cost because community-based organizations have sensitized other social actors who respond through the community

  14. Gonadotropin-releasing hormone receptor activates GTPase RhoA and inhibits cell invasion in the breast cancer cell line MDA-MB-231

    International Nuclear Information System (INIS)

    Aguilar-Rojas, Arturo; Huerta-Reyes, Maira; Maya-Núñez, Guadalupe; Arechavaleta-Velásco, Fabián; Conn, P Michael; Ulloa-Aguirre, Alfredo; Valdés, Jesús

    2012-01-01

    Gonadotropin-releasing hormone (GnRH) and its receptor (GnRHR) are both expressed by a number of malignant tumors, including those of the breast. In the latter, both behave as potent inhibitors of invasion. Nevertheless, the signaling pathways whereby the activated GnRH/GnRHR system exerts this effect have not been clearly established. In this study, we provide experimental evidence that describes components of the mechanism(s) whereby GnRH inhibits breast cancer cell invasion. Actin polymerization and substrate adhesion was measured in the highly invasive cell line, MDA-MB-231 transiently expressing the wild-type or mutant DesK191 GnRHR by fluorometry, flow cytometric analysis, and confocal microscopy, in the absence or presence of GnRH agonist. The effect of RhoA-GTP on stress fiber formation and focal adhesion assembly was measured in MDA-MB-231 cells co-expressing the GnRHRs and the GAP domain of human p190Rho GAP-A or the dominant negative mutant GAP-Y1284D. Cell invasion was determined by the transwell migration assay. Agonist-stimulated activation of the wild-type GnRHR and the highly plasma membrane expressed mutant GnRHR-DesK191 transiently transfected to MDA-MB-231 cells, favored F-actin polymerization and substrate adhesion. Confocal imaging allowed detection of an association between F-actin levels and the increase in stress fibers promoted by exposure to GnRH. Pull-down assays showed that the effects observed on actin cytoskeleton resulted from GnRH-stimulated activation of RhoA GTPase. Activation of this small G protein favored the marked increase in both cell adhesion to Collagen-I and number of focal adhesion complexes leading to inhibition of the invasion capacity of MDA-MB-231 cells as disclosed by assays in Transwell Chambers. We here show that GnRH inhibits invasion of highly invasive breast cancer-derived MDA-MB-231 cells. This effect is mediated through an increase in substrate adhesion promoted by activation of RhoA GTPase and formation of

  15. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis II. Quantification of inhibition and suitability of membrane reactors

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    conversion are required for alleviation of glucose product inhibition. Supported by numerous calculations this review assesses the quantitative aspects of glucose product inhibition on enzyme-catalyzed cellulose degradation rates. The significance of glucose product inhibition on dimensioning of different......Product inhibition of cellulolytic enzymes affects the efficiency of the biocatalytic conversion of lignocellulosic biomass to ethanol and other valuable products. New strategies that focus on reactor designs encompassing product removal, notably glucose removal, during enzymatic cellulose...... reactor features, including system set-up, dilution rate, glucose output profile, and the problem of cellobiose are examined to illustrate the quantitative significance of the glucose product inhibition and the total glucose concentration on the cellulolytic conversion rate. Comprehensive overviews...

  16. Inhibition of Corrosion of Zinc in (HNO 3 + HCl) acid mixture by ...

    African Journals Online (AJOL)

    Corrosion of Zinc metal in (HNO3 + HCl) binary acid mixture and inhibition efficiency of aniline has been studied by weight loss method and polarization technique. Corrosion rate increases with the concentration of acid mixture and the temperature. Inhibition efficiency (I.E.) of aniline increases with the concentration of ...

  17. CORROSION INHIBITION OF ALUMINUM ALLOY 3SR IN HCl BY POLYVINYLPYRROLIDONE AND POLYACRYLAMIDE: EFFECT OF MOLECULAR STRUCTURE ON INHIBITION EFFICIENCY

    OpenAIRE

    S. A. UMOREN

    2009-01-01

    The inhibitive performance of two water soluble polymers–polyacrylamide (PA) and polyvinylpyrrolidone (PVP) on the corrosion behavior of aluminum alloy 3SR in HCl solution was investigated using weight loss, hydrogen evolution, and thermometric methods at 30–60°C. Results obtained indicate that both polymers inhibited acid-induced corrosion of aluminum at the temperatures studied. PVP was found to be a better corrosion inhibitor than PA. All measurements from the three techniques show that in...

  18. Efficient Recombinase-Mediated Cassette Exchange in hPSCs to Study the Hepatocyte Lineage Reveals AAVS1 Locus-Mediated Transgene Inhibition

    Directory of Open Access Journals (Sweden)

    Laura Ordovás

    2015-11-01

    Full Text Available Tools for rapid and efficient transgenesis in “safe harbor” loci in an isogenic context remain important to exploit the possibilities of human pluripotent stem cells (hPSCs. We created hPSC master cell lines suitable for FLPe recombinase-mediated cassette exchange (RMCE in the AAVS1 locus that allow generation of transgenic lines within 15 days with 100% efficiency and without random integrations. Using RMCE, we successfully incorporated several transgenes useful for lineage identification, cell toxicity studies, and gene overexpression to study the hepatocyte lineage. However, we observed unexpected and variable transgene expression inhibition in vitro, due to DNA methylation and other unknown mechanisms, both in undifferentiated hESC and differentiating hepatocytes. Therefore, the AAVS1 locus cannot be considered a universally safe harbor locus for reliable transgene expression in vitro, and using it for transgenesis in hPSC will require careful assessment of the function of individual transgenes.

  19. Inhibition Efficiency in Highly Proficient Bilinguals and Simultaneous Interpreters: Evidence from Language Switching and Stroop Tasks

    OpenAIRE

    Aparicio, X.; Heidlmayr, K.; Isel, F.

    2017-01-01

    The present behavioral study aimed to examine the impact of language control expertise on two domain-general control processes, i.e. active inhibition of competing representations and overcoming of inhibition. We compared how Simultaneous Interpreters (SI) and Highly Proficient Bilinguals—two groups assumed to differ in language control capacity—performed executive tasks involving specific inhibition processes. In Experiment 1 (language decision task), both active and overcoming of inhibition...

  20. Synthesis, spectroscopic characterization and a comparative study of the corrosion inhibitive efficiency of an α-aminophosphonate and Schiff base derivatives: Experimental and theoretical investigations

    Science.gov (United States)

    Benbouguerra, Khalissa; Chafaa, Salah; Chafai, Nadjib; Mehri, Mouna; Moumeni, Ouahiba; Hellal, Abdelkader

    2018-04-01

    New α-aminophosphonate (α-APD) and Schiff base (E-NDPIMA) derivatives have been prepared and their structures ware proved by IR, UV-Vis, 1H, 13C and 31P NMR spectroscopy. Their inhibitive capacities on the XC48 carbon steel corrosion in 0.5 mol L-1 H2SO4 solution were explored by weight loss, Tafel polarization, electrochemical impedance spectroscopy (EIS) and atomic force microscope (AFM). Experimental results illustrate that the synthesized compounds are an effectives inhibitors and the adsorption of inhibitors molecules on the carbon steel surface obeys Langmuir adsorption isotherm. In addition, quantum chemical calculations performed with density function theory (DFT) method have been used to correlate the inhibition efficiency established experimentally. Also, the molecular dynamics simulations have been utilized to simulate the interactions between the inhibitors molecules and Fe (100) surface in aqueous solution.

  1. Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel

    International Nuclear Information System (INIS)

    Oguzie, Emeka E.

    2008-01-01

    Corrosion inhibition of mild steel in 2 M HCl and 1 M H 2 SO 4 by extracts of selected plants was investigated using a gasometric technique at temperatures of 30 and 60 deg. C. The studied plants materials include leaf extracts Occimum viridis (OV), Telferia occidentalis (TO), Azadirachta indica (AI) and Hibiscus sabdariffa (HS) as well as extracts from the seeds of Garcinia kola (GK). The results indicate that all the extracts inhibited the corrosion process in both acid media by virtue of adsorption and inhibition efficiency improved with concentration. Synergistic effects increased the inhibition efficiency in the presence of halide additives. Inhibition mechanisms were deduced from the temperature dependence of the inhibition efficiency as well as from assessment of kinetic and activation parameters that govern the processes. Comparative analysis of the inhibitor adsorption behaviour in 2 M HCl and 1 M H 2 SO 4 as well as the effects of temperature and halide additives suggest that both protonated and molecular species could be responsible for the inhibiting action of the extracts

  2. Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Oguzie, Emeka E. [Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology, PMB 1526, Owerri (Nigeria)], E-mail: oguziemeka@yahoo.com

    2008-11-15

    Corrosion inhibition of mild steel in 2 M HCl and 1 M H{sub 2}SO{sub 4} by extracts of selected plants was investigated using a gasometric technique at temperatures of 30 and 60 deg. C. The studied plants materials include leaf extracts Occimum viridis (OV), Telferia occidentalis (TO), Azadirachta indica (AI) and Hibiscus sabdariffa (HS) as well as extracts from the seeds of Garcinia kola (GK). The results indicate that all the extracts inhibited the corrosion process in both acid media by virtue of adsorption and inhibition efficiency improved with concentration. Synergistic effects increased the inhibition efficiency in the presence of halide additives. Inhibition mechanisms were deduced from the temperature dependence of the inhibition efficiency as well as from assessment of kinetic and activation parameters that govern the processes. Comparative analysis of the inhibitor adsorption behaviour in 2 M HCl and 1 M H{sub 2}SO{sub 4} as well as the effects of temperature and halide additives suggest that both protonated and molecular species could be responsible for the inhibiting action of the extracts.

  3. Inhibiting and healing effects of potassium permanganate for silane films

    Energy Technology Data Exchange (ETDEWEB)

    She, Zuxin; Li, Qing, E-mail: liqingswu@yeah.net; Wang, Shaoyin; Luo, Fei; Chen, Funan; Li, Longqin

    2013-07-31

    In this study, the inhibiting and healing effects of potassium permanganate for silane films were investigated, and the optimal mole ratio of MnO{sub 4}{sup −}/Cl{sup −} was also obtained. The inhibiting process and healing mechanism were studied by electrochemical measurements and scanning electron microcopy coupled with energy dispersive spectroscopy. Results demonstrated that the introduction of potassium permanganate to electrolyte could stop the development of corrosion process and the optimal inhibiting mole ratio of MnO{sub 4}{sup −}/Cl{sup −} is 2 × 10{sup −1} with a protective efficiency about 99.24%. According to its high protective efficiency and the nice results of long-term immersion test, potassium permanganate as an inhibitor could prolong the lifetime of silane films and expand its scope of application. - Highlights: • Healing sol–gel film was obtained by adding KMnO{sub 4} into electrolyte. • An optimal inhibitor mole ratio of MnO{sub 4}{sup −}/Cl{sup −} for Si sol–gel was 2 × 10{sup −1}. • The best protective efficiency was approximately 99.24%. • The inhibiting effect may be due to production of insoluble manganese hydroxide/oxide.

  4. GAP--a PIC-type fluid code

    International Nuclear Information System (INIS)

    Marder, B.M.

    1975-01-01

    GAP, a PIC-type fluid code for computing compressible flows, is described and demonstrated. While retaining some features of PIC, it is felt that the GAP approach is conceptually and operationally simpler. 9 figures

  5. Exogenously triggered response inhibition in developmental stuttering.

    Science.gov (United States)

    Eggers, Kurt; De Nil, Luc F; Van den Bergh, Bea R H

    2018-06-01

    The purpose of the present study was to examine relations between children's exogenously triggered response inhibition and stuttering. Participants were 18 children who stutter (CWS; mean age = 9;01 years) and 18 children who not stutter (CWNS; mean age = 9;01 years). Participants were matched on age (±3 months) and gender. Response inhibition was assessed by a stop signal task (Verbruggen, Logan, & Stevens, 2008). Results suggest that CWS, compared to CWNS, perform comparable to CWNS in a task where response control is externally triggered. Our findings seem to indicate that previous questionnaire-based findings (Eggers, De Nil, & Van den Bergh, 2010) of a decreased efficiency of response inhibition cannot be generalized to all types of response inhibition. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Experimental and molecular dynamics study on the inhibition performance of some nitrogen containing compounds for iron corrosion

    International Nuclear Information System (INIS)

    Khaled, K.F.

    2010-01-01

    A molecular dynamics study for the adsorption of three benzimidazole derivatives and their inhibition characteristics was studied using chemical (weight loss) and electrochemical measurements (potentiodynamic polarization and electrochemical impedance spectroscopy, EIS). Electrochemical measurements results revealed that the inhibition efficiencies increased with the concentration of inhibitors. Results obtained from weight loss, dc polarization and ac impedance measurements are in reasonably good agreement and show increased inhibitor efficiency with increasing inhibitor concentration. The molecular dynamics calculations showed that the higher the binding energy between the inhibitor and metal surface, the higher the inhibition efficiency. Also, the higher the adsorption energy, the higher the inhibition efficiency. The molecular dynamics study revealed that the benzimidazole ring as well as the side chain are the active sites in these inhibitors and they can absorb on Fe surface by donating electrons to Fe d-orbital.

  7. Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells.

    Science.gov (United States)

    Correia, Alexandra; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Almeida, Sérgio; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2015-10-21

    Over the past decade, the potential of polymeric structures has been investigated to overcome many limitations related to nanosized drug carriers by modulating their toxicity, cellular interactions, stability, and drug-release kinetics. In this study, we have developed a successful nanocomposite consisting of undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with an anticancer drug, sorafenib, and surface-conjugated with heptakis(6-amino-6-deoxy)-β-cyclodextrin (HABCD) to show the impact of the surface polymeric functionalization on the physical and biological properties of the drug-loaded nanoparticles. Cytocompatibility studies showed that the UnTHCPSi-HABCD NPs were not toxic to breast cancer cells. HABCD also enhanced the suspensibility and both the colloidal and plasma stabilities of the UnTHCPSi NPs. UnTHCPSi-HABCD NPs showed a significantly increased interaction with breast cancer cells compared to bare NPs and also sustained the drug release. Furthermore, the sorafenib-loaded UnTHCPSi-HABCD NPs efficiently inhibited cell proliferation of the breast cancer cells.

  8. Anti-EGFR Antibody Efficiently and Specifically Inhibits Human TSC2−/− Smooth Muscle Cell Proliferation. Possible Treatment Options for TSC and LAM

    Science.gov (United States)

    Lesma, Elena; Grande, Vera; Ancona, Silvia; Carelli, Stephana; Di Giulio, Anna Maria; Gorio, Alfredo

    2008-01-01

    Background Tuberous sclerosis complex (TSC), a tumor syndrome caused by mutations in TSC1 or TSC2 genes, is characterized by the development of hamartomas. We previously isolated, from an angiomyolipoma of a TSC2 patient, a homogenous population of smooth muscle-like cells (TSC2−/− ASM cells) that have a mutation in the TSC2 gene as well as TSC2 loss of heterozygosity (LOH) and consequently, do not produce the TSC2 gene product, tuberin. TSC2−/− ASM cell proliferation is EGF-dependent. Methods and Findings Effects of EGF on proliferation of TSC2−/− ASM cells and TSC2−/− ASM cells transfected with TSC2 gene were determined. In contrast to TSC2−/− ASM cells, growth of TSC2-transfected cells was not dependent on EGF. Moreover, phosphorylation of Akt, PTEN, Erk and S6 was significantly decreased. EGF is a proliferative factor of TSC2−/− ASM cells. Exposure of TSC2−/− ASM cells to anti-EGFR antibodies significantly inhibited their proliferation, reverted reactivity to HMB45 antibody, a marker of TSC2−/− cell phenotype, and inhibited constitutive phosphorylation of S6 and ERK. Exposure of TSC2−/− ASM cells to rapamycin reduced the proliferation rate, but only when added at plating time. Although rapamycin efficiently inhibited S6 phosphorylation, it was less efficient than anti-EGFR antibody in reverting HMB45 reactivity and blocking ERK phosphorylation. In TSC2−/− ASM cells specific PI3K inhibitors (e.g. LY294002, wortmannin) and Akt1 siRNA had little effect on S6 and ERK phosphorylation. Following TSC2-gene transfection, Akt inhibitor sensitivity was observed. Conclusion Our results show that an EGF independent pathway is more important than that involving IGF-I for growth and survival of TSC−/− ASM cells, and such EGF-dependency is the result of the lack of tuberin. PMID:18958173

  9. Inhibition study of additives towards the corrosion of ferrous metal in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Sazzad, B.S.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2016-01-01

    Highlights: • TBA doped biodiesel exhibits fairly good corrosion inhibition efficiency. • TBA forms nitrogen-containing layer on metal surface and protects the corrosion. • Materials exposed to TBA doped biodiesel show less surface roughness. - Abstract: Some efforts have already been given by other researchers to characterize the corrosion behavior of different metals in biodiesel. However, there is very limited information on its remedial measure. Therefore, this study investigates the effects of tert-butylamine (TBA), benzotriazole (BTA), butylate-dhydroxytoluene (BHT), and pyrogallol (PY) on the corrosion of cast iron (CI) and low carbon steel (LCS) through an immersion test in palm biodiesel (B100) at 300 K. Result shows that TBA-doped biodiesel exhibits fairly good corrosion-inhibiting properties for materials exposed to B100. Inhibition efficiency of TBA is found to be 86.54% and 86.71% for CI and LCS, respectively which is far better than other tested additives in this study. The high inhibition efficiency could be attributed to the dominant physical adsorption of N-containing compound which creates a protective layer over the metal surface and prevents corrosion.

  10. Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition

    OpenAIRE

    I. B. Obot; N. O. Obi-Egbedi

    2010-01-01

    The effect of nizoral (NZR) on the corrosion inhibition of aluminium alloy AA 1060 in 2 M HCl solution was investigated using the mylius thermometric technique. Results of the study revealed that nizoral acts as corrosion inhibitor for aluminium in the acidic medium. In general, at constant acid concentration, the inhibition efficiency increases with increase in the inhibitor concentration. The addition of KI to the inhibitor enhanced the inhibition efficiency to a considerable extent. The ad...

  11. [Effect of five fungicides on growth of Glycyrrhiza uralensis and efficiency of mycorrhizal symbiosis].

    Science.gov (United States)

    Li, Peng-ying; Yang, Guang; Zhou, Xiu-teng; Zhou, Liane-yun; Shao, Ai-juan; Chen, Mei-lan

    2015-12-01

    In order to obtain the fungicides with minimal impact on efficiency of mycorrhizal symbiosis, the effect of five fungicides including polyoxins, jinggangmycins, thiophanate methylate, chlorothalonil and carbendazim on the growth of medicinal plant and efficiency of mycorrhizal symbiosis were studied. Pot cultured Glycyrrhiza uralensis was treated with different fungicides with the concentration that commonly used in the field. 60 d after treated with fungicides, infection rate, infection density, biomass indexes, photosyn- thetic index and the content of active component were measured. Experimental results showed that carbendazim had the strongest inhibition on mycorrhizal symbiosis effect. Carbendazim significantly inhibited the mycorrhizal infection rate, significantly suppressed the actual photosynthetic efficiency of G. uralensis and the most indicators of biomass. Polyoxins showed the lowest inhibiting affection. Polyoxins had no significant effect on mycorrhizal infection rate, the actual photosynthetic efficiency of G. uralensis and the most indicators of biomass. The other three fungicides also had an inhibitory effect on efficiency of mycorrhizal symbiosis, and the inhibition degrees were all between polyoxins's and carbendazim's. The author considered that fungicide's inhibition degree on mycorrhizal effect might be related with the species of fungicides, so the author suggested that the farmer should try to choose bio-fungicides like polyoxins.

  12. Corrosion Inhibition of Aluminium in Acid Media By Citrullus Colocynthis Extract

    OpenAIRE

    Chauhan, Rajkiran; Garg, Urvija; Tak, R. K.

    2011-01-01

    Inhibition of corrosion of aluminium in acid solution by methanol extract of Citrullus colocynthis plant has been studied using mass loss and thermometric measurements. It has been found that the plant extract act as a good corrosion inhibitor for aluminium in all concentrations of sulphuric and hydrochloric acid solution. The inhibition action depends on the concentration of acid and inhibitor. Results for mass loss and thermometric measurement indicate that inhibition efficiency increase wi...

  13. The Multiple Localized Glyceraldehyde-3-Phosphate Dehydrogenase Contributes to the Attenuation of the Francisella tularensis dsbA Deletion Mutant

    Directory of Open Access Journals (Sweden)

    Ivona Pavkova

    2017-12-01

    Full Text Available The DsbA homolog of Francisella tularensis was previously demonstrated to be required for intracellular replication and animal death. Disruption of the dsbA gene leads to a pleiotropic phenotype that could indirectly affect a number of different cellular pathways. To reveal the broad effects of DsbA, we compared fractions enriched in membrane proteins of the wild-type FSC200 strain with the dsbA deletion strain using a SILAC-based quantitative proteomic analysis. This analysis enabled identification of 63 proteins with significantly altered amounts in the dsbA mutant strain compared to the wild-type strain. These proteins comprise a quite heterogeneous group including hypothetical proteins, proteins associated with membrane structures, and potential secreted proteins. Many of them are known to be associated with F. tularensis virulence. Several proteins were selected for further studies focused on their potential role in tularemia's pathogenesis. Of them, only the gene encoding glyceraldehyde-3-phosphate dehydrogenase, an enzyme of glycolytic pathway, was found to be important for full virulence manifestations both in vivo and in vitro. We next created a viable mutant strain with deleted gapA gene and analyzed its phenotype. The gapA mutant is characterized by reduced virulence in mice, defective replication inside macrophages, and its ability to induce a protective immune response against systemic challenge with parental wild-type strain. We also demonstrate the multiple localization sites of this protein: In addition to within the cytosol, it was found on the cell surface, outside the cells, and in the culture medium. Recombinant GapA was successfully obtained, and it was shown that it binds host extracellular serum proteins like plasminogen, fibrinogen, and fibronectin.

  14. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    Achievement of efficient enzymatic degradation of cellulose to glucose is one of the main prerequisites and one of the main challenges in the biological conversion of lignocellulosic biomass to liquid fuels and other valuable products. The specific inhibitory interferences by cellobiose and glucose...... on enzyme-catalyzed cellulose hydrolysis reactions impose significant limitations on the efficiency of lignocellulose conversion especially at high-biomass dry matter conditions. To provide the base for selecting the optimal reactor conditions, this paper reviews the reaction kinetics, mechanisms......, and significance of this product inhibition, notably the cellobiose and glucose inhibition, on enzymatic cellulose hydrolysis. Particular emphasis is put on the distinct complexity of cellulose as a substrate, the multi-enzymatic nature of the cellulolytic degradation, and the particular features of cellulase...

  15. S-Carvone as a natural potato sprout inhibiting, fungistatic and bacteristatic compound.

    NARCIS (Netherlands)

    Oosterhaven, K.; Poolman, B.; Smid, E.J.

    1995-01-01

    S-Carvone, a common monoterpene found in caraway (Carum carvi L.), inhibits the sprouting of potatoes very efficiently at continuous low head space concentrations. The length growth of potato sprouts was inhibited within 2 days following exposure to S-carvone. Sprouts were able to convert S-carvone

  16. Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism.

    Science.gov (United States)

    Cullen, Joseph J; Hinkhouse, Marilyn M; Grady, Matthew; Gaut, Andrew W; Liu, Jingru; Zhang, Yu Ping; Weydert, Christine J Darby; Domann, Frederick E; Oberley, Larry W

    2003-09-01

    NADPH:quinone oxidoreductase (NQO(1)), a homodimeric, ubiquitous, flavoprotein, catalyzes the two-electron reduction of quinones to hydroquinones. This reaction prevents the one-electron reduction of quinones by cytochrome P450 reductase and other flavoproteins that would result in oxidative cycling with generation of superoxide (O(2)(.-)). NQO(1) gene regulation may be up-regulated in some tumors to accommodate the needs of rapidly metabolizing cells to regenerate NAD(+). We hypothesized that pancreatic cancer cells would exhibit high levels of this enzyme, and inhibiting it would suppress the malignant phenotype. Reverse transcription-PCR, Western blots, and activity assays demonstrated that NQO(1) was up-regulated in the pancreatic cancer cell lines tested but present in very low amounts in the normal human pancreas. To determine whether inhibition of NQO(1) would alter the malignant phenotype, MIA PaCa-2 pancreatic cancer cells were treated with a selective inhibitor of NQO(1), dicumarol. Dicumarol increased intracellular production of O(2)(.-), as measured by hydroethidine staining, and inhibited cell growth. Both of these effects were blunted with infection of an adenoviral vector containing the cDNA for manganese superoxide dismutase. Dicumarol also inhibited cell growth, plating efficiency, and growth in soft agar. We conclude that inhibition of NQO(1) increases intracellular O(2)(.-) production and inhibits the in vitro malignant phenotype of pancreatic cancer. These mechanisms suggest that altering the intracellular redox environment of pancreatic cancer cells may inhibit growth and delineate a potential strategy directed against pancreatic cancer.

  17. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Abhinav [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Venkatachalam, Avanthika [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India); Gideon, Daniel Andrew [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India)

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  18. Inhibition of urinary calculi -- a spectroscopic study

    Science.gov (United States)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis

    2008-10-01

    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  19. Application of calculated NMR parameters, aromaticity indices and wavefunction properties for evaluation of corrosion inhibition efficiency of pyrazine inhibitors

    Science.gov (United States)

    Behzadi, Hadi; Manzetti, Sergio; Dargahi, Maryam; Roonasi, Payman; Khalilnia, Zahra

    2018-01-01

    In light of the importance of developing novel corrosion inhibitors, a series of quantum chemical calculations were carried out to evaluate 15N chemical shielding CS tensors as well as aromaticity indexes including NICS, HOMA, FLU, and PDI of three pyrazine derivatives, 2-methylpyrazine (MP), 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP). The NICS parameters have been shown in previous studies to be paramount to the prediction of anti-corrosion properties, and have been combined here with HOMA, FLU and PDI and detailed wavefunction analysis to determine the effects from bromination and methylation on pyrazine. The results show that the electron density around the nitrogens, represented by CS tensors, can be good indicators of anti-corrosion efficiency. Additionally, the NICS, FLU and PDI, as aromaticity indicators of molecule, are well correlated with experimental corrosion inhibition efficiencies of the studied inhibitors. Bader sampling and detailed wavefunction analysis shows that the major effects from bromination on the pyrazine derivatives affect the Laplacian of the electron density of the ring, delocalizing the aromatic electrons of the carbon atoms into lone pairs and increasing polarization of the Laplacian values. This feature is well agreement with empirical studies, which show that ABP is the most efficient anti-corrosion compound followed by AP and MP, a property which can be attributed and predicted by derivation of the Laplacian of the electron density of the ring nuclei. This study shows the importance of devising DFT methods for development of new corrosion inhibitors, and the strength of electronic and nuclear analysis, and depicts most importantly how corrosion inhibitors composed of aromatic moieties may be modified to increase anti-corrosive properties.

  20. Catalytic efficiency is a better predictor of arsenic toxicity to soil alkaline phosphatase.

    Science.gov (United States)

    Wang, Ziquan; Tian, Haixia; Lu, Guannan; Zhao, Yiming; Yang, Rui; Megharaj, Mallavarapu; He, Wenxiang

    2018-02-01

    Arsenic (As) is an inhibitor of phosphatase, however, in the complex soil system, the substrate concentration effect and the mechanism of As inhibition of soil alkaline phosphatase (ALP) and its kinetics has not been adequately studied. In this work, we investigated soil ALP activity in response to As pollution at different substrate concentrations in various types of soils and explored the inhibition mechanism using the enzyme kinetics. The results showed that As inhibition of soil ALP activity was substrate concentration-dependent. Increasing substrate concentration decreased inhibition rate, suggesting reduced toxicity. This dependency was due to the competitive inhibition mechanism of As to soil ALP. The kinetic parameters, maximum reaction velocity (V max ) and Michaelis constant (K m ) in unpolluted soils were 0.012-0.267mMh -1 and 1.34-3.79mM respectively. The competitive inhibition constant (K ic ) was 0.17-0.70mM, which was lower than K m , suggesting higher enzyme affinity for As than for substrate. The ecological doses, ED 10 and ED 50 (concentration of As that results in 10% and 50% inhibition on enzyme parameter) for inhibition of catalytic efficiency (V max /K m ) were lower than those for inhibition of enzyme activity at different substrate concentrations. This suggests that the integrated kinetic parameter, catalytic efficiency is substrate concentration independent and more sensitive to As than ALP activity. Thus, catalytic efficiency was proposed as a more reliable indicator than ALP activity for risk assessment of As pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Inhibition of Mineralization of Urinary Stone Forming Minerals by Medicinal Plants

    Directory of Open Access Journals (Sweden)

    N. A. Mohamed Farook

    2009-01-01

    Full Text Available The inhibition of mineralization of urinary stone forming minerals by medicinal plants i.e. Achyranthes aspera Linn, Passiflora leschenaultii DC, Solena amplexicaulis (Lam. Gandhi, Scoparia dulcis Linn and Aerva lanata (Linn. been investigated. The inhibition efficiency was studied. Increased intake of fruits juice and seed extract of our plants would be helpful in urinary stone prophylaxis.

  2. Corrosion Inhibition in the Secondary Cooling System of ETRR-2, Egypt

    International Nuclear Information System (INIS)

    Aly, A.H.; Gad, M.M.A.; Abdel-Karim, R.; Abdel-Salam, O.F.

    2003-01-01

    The second Egyptian research reactor (ETRR-2) is a light water type of 22 MW thermal power. Proper cooling water treatment is necessary to set the water chemical characteristics within a specified window to avoid or minimize corrosion problems, scale formation, fouling, and microbiological contamination. Selection of a proper and economic corrosion inhibitor is of great importance. This selection depends, among other factors, on the availability as well as cost. The corrosion behaviour of water of ETRR-2 site and its inhibition by different inhibitors was studied in a special test rig designed for this purpose. Sodium salts of polyphosphate, phosphate, molybdate, and tungstate were used to treat and qualify the cooling water. Results showed that the corrosion resistance of the test material depends on both type and concentration of the applied inhibitor. Using 30-ppm tungstate, molybdate, and phosphate (as anodic inhibitors) reduced the corrosion rate, and inhibitor efficiencies of about 97% 86%, and 68% were achieved respectively. Accordingly, sodium tungstate could be ranked as the best anodic inhibitor used followed by molybdate. Sodium phosphate could be ranked as the least efficient one. Adding the same concentration of sodium polyphosphate (as a cathodic inhibitor) yields almost the same inhibition efficiency as tungstate type. However, at higher concentration(40 ppm), an inhibition efficiency of 100% was obtained, Which corresponds to almost zero-corrosion rate

  3. Corrosion inhibition of nickel in H2SO4 solution by alanine

    International Nuclear Information System (INIS)

    Hamed, E.; Abd El-REhim, S.S.; El-Shahat, M.F.; Shaltot, A.M.

    2012-01-01

    Highlights: ► Corrosion of Ni in 1 M H 2 SO 4 in the absence and the presence of alanine. ► Alanine acts as a moderate mixed type inhibitor. ► Physical adsorption of alanine and formation of protective film are on Ni surface. ► Addition of KI improves the inhibition efficiency (synergistic effect). ► EFM technique is in reasonably good agreement with the different techniques used. - Abstract: The effect of alanine, as a safe inhibitor, was studied by measuring the corrosion of Ni in aerated and stagnant 1 M H 2 SO 4 solution (pH ∼0.2). Measurements were performed under various conditions using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and the new electrochemical frequency modulation (EFM) methods. The obtained results showed that the addition of alanine alone gives a moderate inhibition and acts as an anodic-type inhibitor. The inhibition is due to physical adsorption of alanine on the metal surface. The inhibition efficiency enhances with increasing alanine concentration and immersion time but decreases with rise in temperature. The apparent activation energy, E a , is higher in the presence than in the absence of alanine. Addition of I − ions greatly improves the inhibition efficiency of alanine. The synergistic effect is due to enhanced adsorption of alanine cations by chemisorbed I − anions on the metal surface. The results obtained from polarization, EIS and EFM techniques are in good agreement indicating that EFM method can be used successfully for monitoring corrosion rate of Ni in H 2 SO 4 solution with and without alanine.

  4. Overexpression of Genes Encoding Glycolytic Enzymes in Corynebacterium glutamicum Enhances Glucose Metabolism and Alanine Production under Oxygen Deprivation Conditions

    Science.gov (United States)

    Yamamoto, Shogo; Gunji, Wataru; Suzuki, Hiroaki; Toda, Hiroshi; Suda, Masako; Jojima, Toru; Inui, Masayuki

    2012-01-01

    We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159–165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD+ ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses. PMID

  5. Inhibition effect of fatty amides with secondary compound on carbon steel corrosion in hydrodynamic condition

    Science.gov (United States)

    Ibrahim, I. M.; Jai, J.; Daud, M.; Hashim, Md A.

    2018-03-01

    The inhibition effect demonstrates an increase in the inhibition performance in presence of a secondary compound in the inhibited solution. This study introduces fatty amides as corrosion inhibitor and oxygen scavenger, namely, sodium sulphite as a secondary compound. The main objective is to determine the synergistic inhibition effect of a system by using fatty amides together with sodium sulphite in hydrodynamic condition. The synergistic inhibition of fatty amides and sodium sulphite on corrosion of carbon steel in 3.5 wt% sodium chloride solution had been studied using linear polarization resistance method and scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX). Electrochemical measurement was carried out using rotating cylinder electrode at different flow regimes (static, laminar, transition and turbulent). Linear polarization resistance experiments showed the changes in polarization resistance when the rotation speed increased. It found that, by addition of fatty amides together with sodium sulphite in test solution, the inhibition efficiency increased when rotation speed increased. The results collected from LPR experiment correlated with results from SEM-EDX. The results showed inhibition efficiency of system was enhanced when fatty amides and oxygen scavengers were present together.

  6. Synergistic effect of halide ions on the corrosion inhibition of aluminium in H2SO4 using 2-acetylphenothiazine

    International Nuclear Information System (INIS)

    Ebenso, E.E.

    2003-01-01

    The corrosion inhibition of aluminium in H 2 SO 4 in the presence of 2-acetylphenothiazine (2APTZ) at temperature range of 30-60 deg. C was studied using the weight loss and thermometric techniques. The effect of addition of halides (KCl, KBr, KI) is also reported. The inhibition efficiency (I, %) increased with increase in concentration of 2APTZ. The addition of the halides increased the inhibition efficiency to a considerable extent. The temperature increased the corrosion rate and inhibition efficiency in the range 30-60 deg. C in the absence and presence of the inhibitor and halides. Phenomenon of chemical adsorption is proposed. Flory-Huggins adsorption isotherm equation was obeyed at all the concentrations studied. The decrease in inhibition efficiency (and surface coverage values) was found to be in the order I - >Br - >Cl - which clearly indicates that the radii and the electronegativity of halides play a significant role in the adsorption process. All the data acquired reveal that 2APTZ acts as an inhibitor in the acid environment from the two techniques used. The synergistic effect of 2APTZ and halide ions is discussed

  7. Improved Inhibition of Telomerase by Short Twisted Intercalating Nucleic Acids under Molecular Crowding Conditions

    DEFF Research Database (Denmark)

    Agarwal, Tani; Pradhan, Devranjan; Géci, Imrich

    2012-01-01

    Human telomeric DNA has the ability to fold into a 4-stranded G-quadruplex structure. Several G-quadruplex ligands are known to stabilize the structure and thereby inhibit telomerase activity. Such ligands have demonstrated efficient telomerase inhibition in dilute conditions, but under molecular...

  8. Inhibition of mild steel corrosion in acidic medium using synthetic and naturally occurring polymers and synergistic halide additives

    Energy Technology Data Exchange (ETDEWEB)

    Umoren, S.A. [Department of Chemistry, Faculty of Science, University of Uyo, P.M.B 1017 Uyo (Nigeria)], E-mail: saviourumoren@yahoo.com; Ogbobe, O.; Igwe, I.O. [Department of Polymer and Textile Engineering, School of Engineering and Engineering Technology, Federal University of Technology, P.M.B. 1526 Owerri (Nigeria); Ebenso, E.E. [Department of Chemistry and Chemical Technology, National University of Lesotho, P. O. Roma180, Lesotho (South Africa)

    2008-07-15

    The corrosion inhibition of mild steel in H{sub 2}SO{sub 4} in the presence of gum arabic (GA) (naturally occurring polymer) and polyethylene glycol (PEG) (synthetic polymer) was studied using weight loss, hydrogen evolution and thermometric methods at 30-60 deg. C. PEG was found to be a better inhibitor for mild steel corrosion in acidic medium than GA. The effect of addition of halides (KCl, KBr and KI) was also studied. Results obtained showed that inhibition efficiency (I%) increased with increase in GA and PEG concentration, addition of halides and with increase in temperature. Increase in inhibition efficiency (I%) and degree of surface coverage ({theta}) was found to follow the trend Cl{sup -} < Br{sup -} < I{sup -} which indicates that the radii and electronegativity of the halide ions play a significant role in the adsorption process. GA and PEG alone and in combination with halides were found to obey Temkin adsorption isotherm. Phenomenon of chemical adsorption is proposed from the trend of inhibition efficiency with temperature and values {delta}G{sub ads}{sup 0} obtained. The synergism parameter, S{sub I} evaluated is found to be greater than unity indicating that the enhanced inhibition efficiency caused by the addition of halides is only due to synergism.

  9. Corrosion Inhibition by Sodium Gluconate-Zn2+-DTPMP System

    Directory of Open Access Journals (Sweden)

    P. Manjula

    2009-01-01

    Full Text Available The inhibition efficiency of a phosphonic acid, Diethylene Triamine Pentamethylene Phosphonic acid (DTPMP in controlling corrosion of carbon steel immersed in an aqueous solution containing 60 ppm of Cl- has been evaluated by weight loss method in the absence and presence of Zn2+. The formulation consisting of DTPMP and Zn2+ has excellent inhibition efficiency (IE. A synergistic effect is noticed between Zn2+ and DTPMP. Addition of sodium gluconate (SG enhances the IE of Zn2+ and DTPMP system. The DTPMP-Zn2+-SG system function as a mixed inhibitor as revealed by polarization study. AC impedance spectrum, optical and atomic force micrographs reveal the formation of a protective film on the metal surface. FTIR spectra reveal that the protective film consists of Fe2+-DTPMP complex, Fe2+-SG complex and Zn(OH2.

  10. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.

    Science.gov (United States)

    Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan

    2015-08-21

    The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential.

  11. Inhibition of aluminum corrosion using Opuntia extract

    International Nuclear Information System (INIS)

    El-Etre, A.Y.

    2003-01-01

    The inhibitive action of the mucilage extracted from the modified stems of prickly pears, toward acid corrosion of aluminum, is tested using weight loss, thermometry, hydrogen evolution and polarization techniques. It was found that the extract acts as a good corrosion inhibitor for aluminum corrosion in 2.0 M HCl solution. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm. It was found that the adsorption of the extract on aluminum surface is a spontaneous process. The inhibition efficiency (IE) increases as the extract concentration is increased. The effect of temperature on the IE was studied. It was found that the presence of extract increases the activation energy of the corrosion reaction. Moreover, the thermodynamic parameters of the adsorption process were calculated. It was found also that the Opuntia extract provides a good protection to aluminum against pitting corrosion in chloride ion containing solutions

  12. Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition

    Directory of Open Access Journals (Sweden)

    I. B. Obot

    2010-01-01

    Full Text Available The effect of nizoral (NZR on the corrosion inhibition of aluminium alloy AA 1060 in 2 M HCl solution was investigated using the mylius thermometric technique. Results of the study revealed that nizoral acts as corrosion inhibitor for aluminium in the acidic medium. In general, at constant acid concentration, the inhibition efficiency increases with increase in the inhibitor concentration. The addition of KI to the inhibitor enhanced the inhibition efficiency to a considerable extent. The adsorption of nizoral onto the aluminium surface was found to obey the Fruendlich adsorption isotherm. The value of the free energy for the adsorption process shows that the process is spontaneous.

  13. Agnus castus extracts inhibit prolactin secretion of rat pituitary cells.

    Science.gov (United States)

    Sliutz, G; Speiser, P; Schultz, A M; Spona, J; Zeillinger, R

    1993-05-01

    In our studies on prolactin inhibition by plant extracts we focused on the effects of extracts of Vitex agnus castus and its preparations on rat pituitary cells under basal and stimulated conditions in primary cell culture. Both extracts from Vitex agnus castus as well as synthetic dopamine agonists (Lisuride) significantly inhibit basal as well as TRH-stimulated prolactin secretion of rat pituitary cells in vitro and as a consequence inhibition of prolactin secretion could be blocked by adding a dopamine receptor blocker. Therefore because of its dopaminergic effect Agnus castus could be considered as an efficient alternative phytotherapeutic drug in the treatment of slight hyperprolactinaemia.

  14. Inhibition of the corrosion of mild steel in hydrochloric acid by isatin ...

    African Journals Online (AJOL)

    The inhibition of corrosion of mild steel in hydrochloric acid by isatin glycine (ING) and isatin (IN) at 30-60 oC and concentrations of 0.0001 M to 0.0005 M was studied via weight loss method. At the highest inhibitor concentration studied ING exhibited inhibition efficiency of 87% while IN exhibited 84% at 60 oC. A chemical ...

  15. Few-layer bismuth selenides exfoliated by hemin inhibit amyloid-β1–42 fibril formation

    Science.gov (United States)

    Peng, Jian; Xiong, Yunjing; Lin, Zhiqin; Sun, Liping; Weng, Jian

    2015-01-01

    Inhibiting amyloid-β (Aβ) fibril formation is the primary therapeutic strategy for Alzheimer’s disease. Several small molecules and nanomaterials have been used to inhibit Aβ fibril formation. However, insufficient inhibition efficiency or poor metabolization limits their further applications. Here, we used hemin to exfoliate few-layer Bi2Se3 in aqueous solution. Then we separated few-layer Bi2Se3 with different sizes and thicknesses by fractional centrifugation, and used them to attempt to inhibit Aβ1-42 aggregation. The results show that smaller and thinner few-layer Bi2Se3 had the highest inhibition efficiency. We further investigated the interaction between few-layer Bi2Se3 and Aβ1-42 monomers. The results indicate that the inhibition effect may be due to the high adsorption capacity of few-layer Bi2Se3 for Aβ1−42 monomers. Few-layer Bi2Se3 also decreased Aβ-mediated peroxidase-like activity and cytotoxicity according to in vitro neurotoxicity studies under physiological conditions. Therefore, our work shows the potential for applications of few-layer Bi2Se3 in the biomedical field. PMID:26018135

  16. Inhibition of lignin-derived phenolic compounds to cellulase.

    Science.gov (United States)

    Qin, Lei; Li, Wen-Chao; Liu, Li; Zhu, Jia-Qing; Li, Xia; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-01-01

    Lignin-derived phenolic compounds are universal in the hydrolysate of pretreated lignocellulosic biomass. The phenolics reduce the efficiency of enzymatic hydrolysis and increase the cost of ethanol production. We investigated inhibition of phenolics on cellulase during enzymatic hydrolysis using vanillin as one of the typical lignin-derived phenolics and Avicel as cellulose substrate. As vanillin concentration increased from 0 to 10 mg/mL, cellulose conversion after 72-h enzymatic hydrolysis decreased from 53 to 26 %. Enzyme deactivation and precipitation were detected with the vanillin addition. The enzyme concentration and activity consecutively decreased during hydrolysis, but the inhibition degree, expressed as the ratio of the cellulose conversion without vanillin to the conversion with vanillin (A 0 /A), was almost independent on hydrolysis time. Inhibition can be mitigated by increasing cellulose loading or cellulase concentration. The inhibition degree showed linear relationship with the vanillin concentration and exponential relationship with the cellulose loading and the cellulase concentration. The addition of calcium chloride, BSA, and Tween 80 did not release the inhibition of vanillin significantly. pH and temperature for hydrolysis also showed no significant impact on inhibition degree. The presence of hydroxyl group, carbonyl group, and methoxy group in phenolics affected the inhibition degree. Besides phenolics concentration, other factors such as cellulose loading, enzyme concentration, and phenolic structure also affect the inhibition of cellulose conversion. Lignin-blocking agents have little effect on the inhibition effect of soluble phenolics, indicating that the inhibition mechanism of phenolics to enzyme is likely different from insoluble lignin. The inhibition of soluble phenolics can hardly be entirely removed by increasing enzyme concentration or adding blocking proteins due to the dispersity and multiple binding sites of phenolics

  17. Electrodeposited Organic Layers Formed from Aryl Diazonium Salts for Inhibition of Copper Corrosion

    Directory of Open Access Journals (Sweden)

    Ana Chira

    2017-02-01

    Full Text Available Copper substrates deposed on a gold screen-printed electrode were covered with different aryl diazonium salts by electrodeposition at 0.25 mA for 30 or 300 s. Seven compounds were investigated: 4-aminophenylacetic acid, 4-aminophenethyl alcohol, 4-fluoroaniline, 4-(heptadecafluorooctylaniline, 4-aminoantipyrine, 4-(4-aminophenylbutyric acid and 3,4,5-trimethoxyaniline. Quantitative monitoring of the electrodeposition process was carried out by electrogravimetry using quartz crystal microbalance (QCM. The electrodeposited mass varies between 26 ng/cm2 for 4-fluoroaniline formed during 30 s to 442 ng/cm2 for 4-phenylbutyric acid formed during 300 s. The corrosion inhibition properties of aryl-modified layers have been studied in buffer citrate with pH = 3 or 3.5% NaCl solutions using electrochemical noise (ECN and Tafel potentiodynamic polarization measurements. A corrosion inhibiting efficiency up to 90% was found. The highest corrosion inhibition was obtained for 4-(4-aminophenylbutyric acid and the lowest for 4-fluoroaniline. A relation between the inhibition efficiency and the chemical nature of the substituents in the protective layer was found.

  18. Electrodeposited Organic Layers Formed from Aryl Diazonium Salts for Inhibition of Copper Corrosion.

    Science.gov (United States)

    Chira, Ana; Bucur, Bogdan; Radu, Gabriel-Lucian

    2017-02-28

    Copper substrates deposed on a gold screen-printed electrode were covered with different aryl diazonium salts by electrodeposition at 0.25 mA for 30 or 300 s. Seven compounds were investigated: 4-aminophenylacetic acid, 4-aminophenethyl alcohol, 4-fluoroaniline, 4-(heptadecafluorooctyl)aniline, 4-aminoantipyrine, 4-(4-aminophenyl)butyric acid and 3,4,5-trimethoxyaniline. Quantitative monitoring of the electrodeposition process was carried out by electrogravimetry using quartz crystal microbalance (QCM). The electrodeposited mass varies between 26 ng/cm² for 4-fluoroaniline formed during 30 s to 442 ng/cm² for 4-phenylbutyric acid formed during 300 s. The corrosion inhibition properties of aryl-modified layers have been studied in buffer citrate with pH = 3 or 3.5% NaCl solutions using electrochemical noise (ECN) and Tafel potentiodynamic polarization measurements. A corrosion inhibiting efficiency up to 90% was found. The highest corrosion inhibition was obtained for 4-(4-aminophenyl)butyric acid and the lowest for 4-fluoroaniline. A relation between the inhibition efficiency and the chemical nature of the substituents in the protective layer was found.

  19. Working memory capacity and redundant information processing efficiency.

    Science.gov (United States)

    Endres, Michael J; Houpt, Joseph W; Donkin, Chris; Finn, Peter R

    2015-01-01

    Working memory capacity (WMC) is typically measured by the amount of task-relevant information an individual can keep in mind while resisting distraction or interference from task-irrelevant information. The current research investigated the extent to which differences in WMC were associated with performance on a novel redundant memory probes (RMP) task that systematically varied the amount of to-be-remembered (targets) and to-be-ignored (distractor) information. The RMP task was designed to both facilitate and inhibit working memory search processes, as evidenced by differences in accuracy, response time, and Linear Ballistic Accumulator (LBA) model estimates of information processing efficiency. Participants (N = 170) completed standard intelligence tests and dual-span WMC tasks, along with the RMP task. As expected, accuracy, response-time, and LBA model results indicated memory search and retrieval processes were facilitated under redundant-target conditions, but also inhibited under mixed target/distractor and redundant-distractor conditions. Repeated measures analyses also indicated that, while individuals classified as high (n = 85) and low (n = 85) WMC did not differ in the magnitude of redundancy effects, groups did differ in the efficiency of memory search and retrieval processes overall. Results suggest that redundant information reliably facilitates and inhibits the efficiency or speed of working memory search, and these effects are independent of more general limits and individual differences in the capacity or space of working memory.

  20. Corrosion inhibition of aluminum 6063 using some pharmaceutical compounds

    International Nuclear Information System (INIS)

    Fouda, A.S.; Al-Sarawy, A.A.; Ahmed, F.Sh.; El-Abbasy, H.M.

    2009-01-01

    The corrosion inhibition characteristics of some pharmaceutical compounds on aluminum 6063 in 0.5 mol l -1 H 3 PO 4 has been studied using weight loss and galvanostatic polarization techniques. Results showed that the inhibition occurs through adsorption of the inhibitor molecules on the metal surface. The inhibition efficiency increased with increasing inhibitor concentration, but decreased with increasing temperature. The adsorption of first group pharmaceutical compounds on the metal surface is found to obey Frumkin's adsorption isotherm, but the adsorption of second group pharmaceutical compounds is found to obey Temkin's adsorption isotherm. Thermodynamic parameters for adsorption process were determined. Galvanostatic polarization studies showed that first and second groups' pharmaceutical compounds are mixed-type inhibitors and the results obtained from the two techniques are in good agreement

  1. Corrosion Inhibition of Aluminium in Acid Media By Citrullus Colocynthis Extract

    Directory of Open Access Journals (Sweden)

    Rajkiran Chauhan

    2011-01-01

    Full Text Available Inhibition of corrosion of aluminium in acid solution by methanol extract of Citrullus colocynthis plant has been studied using mass loss and thermometric measurements. It has been found that the plant extract act as a good corrosion inhibitor for aluminium in all concentrations of sulphuric and hydrochloric acid solution. The inhibition action depends on the concentration of acid and inhibitor. Results for mass loss and thermometric measurement indicate that inhibition efficiency increase with increasing inhibitor concentration. The inhibition action of the plant extract is discussed in view of Langmuir adsorption isotherm. It has been observed that the adsorption of the extract on aluminium surface is a spontaneous process. The plant extract provides a good protection to aluminium against corrosion.

  2. Synergistic effect of halide ions on the corrosion inhibition of aluminium in H{sub 2}SO{sub 4} using 2-acetylphenothiazine

    Energy Technology Data Exchange (ETDEWEB)

    Ebenso, E.E

    2003-03-05

    The corrosion inhibition of aluminium in H{sub 2}SO{sub 4} in the presence of 2-acetylphenothiazine (2APTZ) at temperature range of 30-60 deg. C was studied using the weight loss and thermometric techniques. The effect of addition of halides (KCl, KBr, KI) is also reported. The inhibition efficiency (I, %) increased with increase in concentration of 2APTZ. The addition of the halides increased the inhibition efficiency to a considerable extent. The temperature increased the corrosion rate and inhibition efficiency in the range 30-60 deg. C in the absence and presence of the inhibitor and halides. Phenomenon of chemical adsorption is proposed. Flory-Huggins adsorption isotherm equation was obeyed at all the concentrations studied. The decrease in inhibition efficiency (and surface coverage values) was found to be in the order I{sup -}>Br{sup -}>Cl{sup -} which clearly indicates that the radii and the electronegativity of halides play a significant role in the adsorption process. All the data acquired reveal that 2APTZ acts as an inhibitor in the acid environment from the two techniques used. The synergistic effect of 2APTZ and halide ions is discussed.

  3. Community Screening for Preschool Child Inhibition to Offer the "Cool Little Kids" Anxiety Prevention Programme

    Science.gov (United States)

    Beatson, Ruth M.; Bayer, Jordana K.; Perry, Alexandra; Mathers, Megan; Hiscock, Harriet; Wake, Melissa; Beesley, Kate; Rapee, Ronald M.

    2014-01-01

    Temperamental inhibition has been identified as a key risk factor for childhood anxiety and internalizing problems. An efficacious early prevention programme for shy/inhibited children has been developed; however, accurate, efficient and acceptable screening is needed to support wider implementation. We explore community screening options in the…

  4. Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium

    International Nuclear Information System (INIS)

    Rajeswari, Velayutham; Kesavan, Devarayan; Gopiraman, Mayakrishnan; Viswanathamurthi, Periasamy; Poonkuzhali, Kaliyaperumal; Palvannan, Thayumanavan

    2014-01-01

    Graphical abstract: - Highlights: • Eleusine aegyptiaca and Croton rottleri are commonly available, less-toxic and eco-friendly inhibitors for cast iron corrosion. • The active constituents present in extracts adsorbed on the iron surface to inhibit the acidic corrosion. • The higher values of E a and ΔH * point out the higher inhibition efficiency noticed for the inhibitors. • Weight loss methods at various temperature and spectral data provides evidence for adsorption mechanism of inhibitors. - Abstract: The adsorption and corrosion inhibition activities of Eleusine aegyptiaca (E. aegyptiaca) and Croton rottleri (C. rottleri) leaf extracts on cast iron corrosion in 1 M hydrochloric acid solution were studied first time by weight loss and electrochemical techniques viz., Tafel polarization and electrochemical impedance spectroscopy. The results obtained from the weight loss and electrochemical methods showed that the inhibition efficiency increased with inhibitor concentrations. It was found that the extracts acted as mixed-type inhibitors. The addition of halide additives (KCl, KBr, and KI) on the inhibition efficiency has also been investigated. The adsorption of the inhibitors on cast iron surface both in the presence and absence of halides follows the Langmuir adsorption isotherm model. The inhibiting nature of the inhibitors was supported by FT-IR, UV–vis, Wide-angle X-ray diffraction and SEM methods

  5. Environmentally safe corrosion inhibition of Mg-Al-Zn alloy in chloride free neutral solutions by amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Helal, N.H. [Chemistry Department, Faculty of Science, Fayoum University, Fayoum (Egypt); Badawy, W.A., E-mail: wbadawy@cu.edu.eg [Chemistry Department, Faculty of Science, Cairo University, 12 613 Giza (Egypt)

    2011-07-30

    Highlights: > Phenyl alanine at a concentration of 2 x 10{sup -3} mol dm{sup -3} gives 93% corrosion inhibition efficiency for the corrosion of the Mg-Al-Zn alloy. > The corrosion inhibition process is based on the adsorption of the amino acid molecules on the active sites of the alloy surface by physical adsorption mechanism. > The adsorption free energy was 15.72 kJ mol{sup -1}. - Abstract: The corrosion inhibition of Mg-Al-Zn alloy was investigated in stagnant naturally aerated chloride free neutral solutions using amino acids as environmentally safe corrosion inhibitors. The corrosion rate was calculated in the absence and presence of the corrosion inhibitor using the polarization technique and electrochemical impedance spectroscopy. The experimental impedance data were fitted to theoretical data according to a proposed electronic circuit model to explain the behavior of the alloy/electrolyte interface under different conditions. The corrosion inhibition process was found to depend on the adsorption of the amino acid molecules on the metal surface. Phenyl alanine has shown remarkably high corrosion inhibition efficiency up to 93% at a concentration of 2 x 10{sup -3} mol dm{sup -3}. The corrosion inhibition efficiency was found to depend on the concentration of the amino acid and its structure. The mechanism of the corrosion inhibition process was discussed and different adsorption isotherms were investigated. The free energy of the adsorption process was calculated for the adsorption of different amino acids on the Mg-Al-Zn alloy and the obtained values reveal a physical adsorption of the inhibitor molecules on the alloy surface.

  6. Corrosion Inhibition and Adsorption Properties of Ethanolic Extract of Calotropis for Corrosion of Aluminium in Acidic Media

    OpenAIRE

    Sudesh Kumar; Suraj Prakash Mathur

    2013-01-01

    The corrosion inhibition of aluminium in sulfuric acid solution in the presence of different plant parts, namely, leaves, latex, and fruit was studied using weight loss method and thermometric method. The ethanolic extracts of Calotropis procera and Calotropis gigantea act as an inhibitor in the acid environment. The inhibition efficiency increases with increase in inhibitor concentration. The plant parts inhibit aluminium, and inhibition is attributed, due to the adsorption of the plant part...

  7. inhibition performance of mild ste thiophene ac rmance of mild steel

    African Journals Online (AJOL)

    userpc

    d Industrial Chemistry, Faculty of Physical Science, Bayero University, Kan. P. M. B. 3011 ..... chemical studies on the inhibition potentials of some ... Efficiency of Thiophene Derivatives on. Mild Steel : A QSAR Model. International. Journal.

  8. Inhibition of the corrosion of steel in hydrochloric acid solution by some organic molecules containing the methylthiophenyl moiety

    International Nuclear Information System (INIS)

    Nataraja, S.E.; Venkatesha, T.V.; Manjunatha, K.; Poojary, Boja; Pavithra, M.K.; Tandon, H.C.

    2011-01-01

    Highlights: → Acid corrosion inhibition. → Work in small concentration. → Effective at higher temperature. → Effect of different functional groups, cyclisation and aromaticity. - Abstract: The corrosion inhibition effect of 2-[4-(methylthio) phenyl] acetohydrazide (HYD), 2-{[4-(methylthio) phenyl] acetyl} hydrazinecarbothioamide (TAD) and 5-[4-(methylthio) benzyl]-4H-1,2,4-triazole-3-thiol (TRD) on steel in 1.0 M HCl was investigated by mass loss and electrochemical methods. The effect of concentration, temperature and immersion time was studied. The results indicated that the compounds are efficient, mixed type and pursue Flory-Huggins adsorption isotherm. The inhibition efficiency at lower concentration of inhibitor decreased with temperature while at higher concentration, it is retained and the calculated free energy attributes this to comprehensive adsorption. The efficiency stands in the order TRD > TAD > HYD and is confirmed by the Quantum studies.

  9. Corrosion Inhibition of Carbon Steel in HCl Solution by Some Plant Extracts

    Directory of Open Access Journals (Sweden)

    Ambrish Singh

    2012-01-01

    Full Text Available The strict environmental legislations and increasing ecological awareness among scientists have led to the development of “green” alternatives to mitigate corrosion. In the present work, literature on green corrosion inhibitors has been reviewed, and the salient features of our work on green corrosion inhibitors have been highlighted. Among the studied leaves, extract Andrographis paniculata showed better inhibition performance (98% than the other leaves extract. Strychnos nuxvomica showed better inhibition (98% than the other seed extracts. Moringa oleifera is reflected as a good corrosion inhibitor of mild steel in 1 M HCl with 98% inhibition efficiency among the studied fruits extract. Bacopa monnieri showed its maximum inhibition performance to be 95% at 600 ppm among the investigated stem extracts. All the reported plant extracts were found to inhibit the corrosion of mild steel in acid media.

  10. Photobiological hydrogen production : photochemical efficiency and bioreactor design

    NARCIS (Netherlands)

    Akkerman, I.; Janssen, M.; Rocha, J.; Wijffels, R.H.

    2002-01-01

    Biological production of hydrogen can be carried out by photoautotrophic or photoheterotrophic organisms. Here, the photosystems of both processes are described. The main drawback of the photoautotrophic hydrogen production process is oxygen inhibition. The few efficiencies reported on the

  11. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts

    Directory of Open Access Journals (Sweden)

    Samet Azman

    2015-03-01

    Full Text Available Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid.

  12. Inhibition of GRP78 abrogates radioresistance in oropharyngeal carcinoma cells after EGFR inhibition by cetuximab.

    Directory of Open Access Journals (Sweden)

    Chaonan Sun

    Full Text Available The EGFR-specific mAb cetuximab is one of the most effective treatments for oropharyngeal carcinoma, while patient responses to EGFR inhibitors given alone are modest. Combination treatment with radiation can improve the efficacy of treatment through increasing radiosensitivity, while resistance to radiation after administration of cetuximab limits its efficiency. Radiation and drugs can damage the endoplasmic reticulum (ER homeostatic state and result in ER stress (ERS, subsequently causing resistance to radiation and drugs. Whether the ERS pathway is involved in radioresistance after administration of cetuximab has not been reported. Herein, we show that cetuximab could increase the radiosensitivity of FaDu cells but not Detroit562 cells. In addition, cetuximab inhibited the radiation-induced activation of the ERS signalling pathway IRE1α/ATF6-GRP78 in FaDu cells, while this effect was absent in Detroit562 cells. Silencing GRP78 increased the radiosensitivity of oropharyngeal carcinoma cells and inhibited radiation-induced DNA double-strand-break (DSB repair and autophagy. More interestingly, silencing GRP78 abrogated resistance to cetuximab and radiation in Detroit562 cells and had a synergistic effect with cetuximab in increasing the radiosensitivity of FaDu cells. Immunohistochemistry showed that overexpression of both GRP78 and EGFR was associated with a poor prognosis in oropharyngeal carcinoma patients (P<0.05. Overall, the results of this study show that radioresistance after EGFR inhibition by cetuximab is mediated by the ERS signalling pathway IRE1α/ATF6-GRP78. This suppression was consequently unable to inhibit radiation-induced DSB repair and autophagy in oropharyngeal carcinoma cells, which conferred resistance to radiotherapy and cetuximab. These results suggest that the cooperative effects of radiotherapy and cetuximab could be further improved by inhibiting GRP78 in non-responsive oropharyngeal carcinoma patients.

  13. Novel combination treatment of type 2 diabetes DPP-4 inhibition + metformin

    Directory of Open Access Journals (Sweden)

    Bo Ahrén

    2008-04-01

    Full Text Available Bo AhrénDepartment of Clinical Sciences, Division of Medicine, Lund University, Lund, SwedenAbstract: Inhibition of dipeptidyl peptidase-4 (DPP-4 as a novel therapy for type 2 diabetes is based on prevention of the inactivation process of bioactive peptides, the most important in the context of treatment of diabetes of which is glucagon-like peptide-1 (GLP-1. Most clinical experience with DPP-4 inhibition is based on vildagliptin (GalvusR, Novartis and sitagliptin (JanuviaR, Merck. These compounds improve glycemic control both in monotherapy and in combination with other oral hyperglycemic agents. Both have also been shown to efficiently improve glycemic control when added to ongoing metformin therapy in patients with inadequate glycemic control. Under that condition, they reduce HbA1c levels by 0.65%–1.1% (baseline HbA1c 7.2–8.7% in studies up to 52 weeks of duration in combination versus continuous therapy with metformin alone. Sitagliptin has also been examined in initial combination therapy with metformin have; HbA1c was reduced by this combination by 2.1% (baseline HbA1c 8.8% after 24 weeks of treatment. Both fasting and prandial glucose are reduced by DPP-4 inhibition in combination with metformin in association with improvement of insulin secretion and insulin resistance and increase in concentrations of active GLP-1. The combination of DPP-4 inhibition and metformin has been shown to be highly tolerable with very low risk of hypoglycemia. Hence, DPP-4 inhibition in combination with metformin is an efficient, safe and tolerable combination therapy for type 2 diabetes.Keywords: DPP-4 inhibition, sitagliptin, vildagliptin, metformin, type 2 diabetes

  14. Trace element inhibition of phytase activity.

    Science.gov (United States)

    Santos, T; Connolly, C; Murphy, R

    2015-02-01

    Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.

  15. The inhibition effect and mechanism of L-cysteine on the corrosion of bronze covered with a CuCl patina

    International Nuclear Information System (INIS)

    Wang, Tianran; Wang, Julin; Wu, Yuqing

    2015-01-01

    Highlights: • CuCl patina was synthesized on bronze electrodes with electrochemical method. • L-cysteine was used as a green inhibitor for bronze covered with CuCl patina. • The inhibition efficiency reached above 90%. • The inhibition mechanism of L-cysteine on CuCl patina was investigated. - Abstract: CuCl patina was synthesized on bronze electrodes with electrochemical method. The inhibition effect and mechanism of L-cysteine (Cys) on bronze covered with CuCl patina have been studied with electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) techniques. The EIS results show that Cys stabilized the CuCl patina to a great extent. The hydrolysis reaction of CuCl was inhibited effectively and an inhibition efficiency of over 90% was achieved. The XPS analyses indicate that the chemisorption of Cys molecules on CuCl surface occurred through sulfur atom in thiol and nitrogen atom in amino group

  16. Targeted Radiosensitization of ETS Fusion-Positive Prostate Cancer through PARP1 Inhibition

    Directory of Open Access Journals (Sweden)

    Sumin Han

    2013-10-01

    Full Text Available ETS gene fusions, which result in overexpression of an ETS transcription factor, are considered driving mutations in approximately half of all prostate cancers. Dysregulation of ETS transcription factors is also known to exist in Ewing's sarcoma, breast cancer, and acute lymphoblastic leukemia. We previously discovered that ERG, the predominant ETS family member in prostate cancer, interacts with the DNA damage response protein poly (ADP-ribose polymerase 1 (PARP1 in human prostate cancer specimens. Therefore, we hypothesized that the ERG-PARP1 interaction may confer radiation resistance by increasing DNA repair efficiency and that this radio-resistance could be reversed through PARP1 inhibition. Using lentiviral approaches, we established isogenic models of ERG overexpression in PC3 and DU145 prostate cancer cell lines. In both cell lines, ERG overexpression increased clonogenic survival following radiation by 1.25 (±0.07 fold (mean ± SEM and also resulted in increased PARP1 activity. PARP1 inhibition with olaparib preferentially radiosensitized ERG-positive cells by a factor of 1.52 (±0.03 relative to ERG-negative cells (P < .05. Neutral and alkaline COMET assays and immunofluorescence microscopy assessing γ-H2AX foci showed increased short- and long-term efficiencies of DNA repair, respectively, following radiation that was preferentially reversed by PARP1 inhibition. These findings were verified in an in vivo xenograft model. Our findings demonstrate that ERG overexpression confers radiation resistance through increased efficiency of DNA repair following radiation that can be reversed through inhibition of PARP1. These results motivate the use of PARP1 inhibitors as radiosensitizers in patients with localized ETS fusion-positive cancers.

  17. dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses.

    Science.gov (United States)

    Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min

    2017-08-04

    German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma.

  18. Inhibition effect on lipid oxidation of irradiated pork by adding hawthorn flavonoid extract

    International Nuclear Information System (INIS)

    Wang Xiaoming; Liu Chao; Cao Lei; Li Kexi

    2011-01-01

    The antioxidant activity of hawthorn flavonoid extract and its inhibition effect on irradiated pork lipid oxidant were investigated. The results showed that hawthorn flavonoids had efficient scavenging effect on DPPH free radicals (DPPH ·), and the scavenging rate reached 56% while 2 ml of 0.035 mg/ml hawthorn flavonoid extract was added. Hawthorn flavonoid extract can inhibition the lipid oxidation of irradiated pork effectively and it showed a stronger inhibition ability while the hawthorn flavonoid extract were used together with Vc. It is concluded that can decrease the lipid oxidation of pork, hawthorn flavonoid extract is a remarkable natural antioxidant. (authors)

  19. Corrosion Inhibition of Aluminium by Treculia Africana Leaves Extract in Acid Medium

    OpenAIRE

    Ejikeme, P.M.; Umana, S.G.; Onukwuli, O.D.

    2012-01-01

    The inhibitive effect of Treculia Africana leaves extract (TALE) in the corrosion of aluminium in HCl solution was studied using weight loss and thermometric methods at 30-60 °C. The results showed that TALE acted as a corrosion inhibitor of aluminium in HCl. Inhibition efficiency increased with increase in TALE concentration, but decreased with increase in temperature. TALE interaction with the metal surface was found to obey Freundlich and El-Awady adsorption isotherms. The obtained heats o...

  20. DMT efficiently inhibits hepatic gluconeogenesis by regulating the Gαq signaling pathway.

    Science.gov (United States)

    Zhou, Ting-Ting; Ma, Fei; Shi, Xiao-Fan; Xu, Xin; Du, Te; Guo, Xiao-Dan; Wang, Gai-Hong; Yu, Liang; Rukachaisirikul, Vatcharin; Hu, Li-Hong; Chen, Jing; Shen, Xu

    2017-08-01

    Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with complicated pathogenesis and targeting gluconeogenesis inhibition is a promising strategy for anti-diabetic drug discovery. G protein-coupled receptors (GPCRs) are classified as distinct families by heterotrimeric G proteins, primarily including Gαs, Gαi and Gαq. Gαs-coupled GPCRs function potently in the regulation of hepatic gluconeogenesis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway and Gαi-coupled GPCRs exhibit inhibitory effect on adenylyl cyclase and reduce intracellular cAMP level. However, little is known about the regulation of Gαq-coupled GPCRs in hepatic gluconeogenesis. Here, small-molecule 2-(2,4-dimethoxy-3-methylphenyl)-7-(thiophen-2-yl)-9-(trifluoromethyl)-2,3-dihydropyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4( 1H )-one (DMT) was determined to suppress hepatic glucose production and reduce mRNA levels of gluconeogenic genes. Treatment of DMT in db/db mice decreased fasting blood glucose and hemoglobin A1C (HbA1c) levels, while improved glucose tolerance and pyruvate tolerance. Mechanism study demonstrated that DMT-inhibited gluconeogenesis by regulating the Gαq/phospholipase C (PLC)/inositol-1,4,5-triphosphate receptor (IP3R)-mediated calcium (Ca 2+ )/calmodulin (CaM)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/forkhead box protein O1 (FOXO1) signaling pathway. To our knowledge, DMT might be the first reported small molecule able to suppress hepatic gluconeogenesis by regulating Gαq signaling, and our current work has also highlighted the potential of DMT in the treatment of T2DM. © 2017 Society for Endocrinology.

  1. Synergistic Effect of Azadirachta Indica Extract and Iodide Ions on the Corrosion Inhibition of Aluminium in Acid Media

    Energy Technology Data Exchange (ETDEWEB)

    Arab, S. T.; Al- Turkustani, A. M.; Al- Dhahiri, R. H. [King Abd El- Aziz University, Jeddah (Saudi Arabia)

    2008-06-15

    The synergistic action caused by iodide ions on the corrosion inhibition of aluminium (Al) in 0.5 M HCl in the presence of Azadirachta Indica (AZI) plant extract has been investigated using potintiodynamic polarization and impedance techniques. It is found that AZI extract inhibits the corrosion of aluminium in 0.5 M HCl. The inhibition efficiency increases with the increase in AZI extract concentration, until 24% v/v of AZI extract, then Inh.% is decreased with father increase in AZI extract concentration. The adsorption of this extract in the studied concentration is found to obey Frewendlish adsorption isotherm. The addition of iodide ions enhances the inhibition efficiency to a considerable extent. The increase in Inh.% values in presence of fixed concentration of iodide ions indicates that AZI extract forms an insoluble complex at lower AZI extract concentrations by undergoing a joint adsorption. But at higher concentrations of AZI extract, competitive adsorption is found between iodide ions and the formed complex leading to less Inh.%. The Inh.% decreased in presence of iodide ions with AZI extract than in presence of AZI extract alone at all studied iodide concentrations. The synergism parameter S {sub θ} is defined and calculated from surface coverage values. This parameter in the case of AZI extract is found to be more than unity, indicating that the enhanced inhibition efficiency caused by the addition of iodide ions.

  2. Electrochemical study of corrosion inhibition of stainless steel in phosphoric medium

    Energy Technology Data Exchange (ETDEWEB)

    Hnini, K.; Chtaini, A. [Laboratoire d' Electrochimie et de Bio Corrosion, Faculte des Sciences et Techniques, Beni-Mellal (Morocco); Khouili, M.; Elbouadili, A. [Laboratoire de Chimie Organique et Analytique, Faculte des Sciences et Techniques, Beni-Mellal (Morocco)

    2004-07-01

    The corrosion of metals represents a terrible waste of both natural resources and money, the failure of some stainless steel resulting from pitting corrosion is some times considered a technological problem, consequently, much effort has been expended in attempting to understand and overcome the corrosion therefore, many stainless steel/ environment combinations have been studied. The use of heterocyclic compounds as inhibitors is one of the most practical methods for protection against corrosion in acidic media. In continuation of our work on development of macrocyclic compounds as corrosion inhibitors we report in our study the corrosion inhibiting behaviour of organic compound Methoxy-2-Allyl-4 Phenol (MAP) containing coordinating and conjugation groups, at three forms (natural, polymerized and chemically treated) on the corrosion of stainless steel in phosphoric acid. This study focused on the comparison for corrosion inhibition proprieties of these different applications using potentiodynamic polarization, electrochemical impedance spectroscopy and SEM. The specimen was evaluated to determine change in his corrosion potential and resistance polarization; These MAP products have exhibited corrosion inhibition by maintaining a high resistance polarization (low corrosion rate) in each application. These results reveal that this compound is efficient inhibitor in all forms; the most inhibition efficiency is obtained with polymerized form. To further evaluate the test data, the steel surfaces were analyzed using scanning electron microscopy, SEM observations of surface treated concrete confirmed presence of inhibitor on the steel surfaces. (authors)

  3. Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression.

    Science.gov (United States)

    Tarasuk, Mayuri; Songprakhon, Pucharee; Chimma, Pattamawan; Sratongno, Panudda; Na-Bangchang, Kesara; Yenchitsomanus, Pa-Thai

    2017-08-15

    Since severe dengue virus (DENV) infection in humans associates with both high viral load and massive cytokine production - referred to as "cytokine storm", an ideal drug for treatment of DENV infection should efficiently inhibit both virus production and cytokine expression. In searching for such an ideal drug, we discovered that α-mangostin (α-MG), a major bioactive compound purified from the pericarp of the mangosteen fruit (Garcinia mangostana Linn), which has been used in traditional medicine for several conditions including trauma, diarrhea, wound infection, pain, fever, and convulsion, inhibits both DENV production in cultured hepatocellular carcinoma HepG2 and Huh-7 cells, and cytokine/chemokine expression in HepG2 cells. α-MG could also efficiently inhibit all four serotypes of DENV. Treatment of DENV-infected cells with α-MG (20μM) significantly reduced the infection rates of four DENV serotypes by 47-55%. α-MG completely inhibited production of DENV-1 and DENV-3, and markedly reduced production of DENV-2 and DENV-4 by 100 folds. Furthermore, it could markedly reduce cytokine (IL-6 and TNF-α) and chemokine (RANTES, MIP-1β, and IP-10) transcription. These actions of α-MG are more potent than those of antiviral agent (ribavirin) and anti-inflammatory drug (dexamethasone). Thus, α-MG is potential to be further developed as therapeutic agent for DENV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.

    Science.gov (United States)

    Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen

    2017-11-07

    Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.

  5. Studies on inhibition characteristics of corn steep liquor and black sulphite liquor on corrosion of mild steel in acid media

    Energy Technology Data Exchange (ETDEWEB)

    Deb, P C; Mukherjea, R N

    1968-06-01

    The purpose of this study was to economically reduce the attack by acid on the parent metal, during the process of removing mill scale by acid pickling. Two inhibitors, by-products of the starch industry and pulp industry, were studied due to their cheapness and availability in India. The inhibition efficiency of the corn steep liquor and black sulfite liquor was found to be below that of thiourea. For example, in 6.2% (w/w) H/sub 2/SO/sub 4/ (at 50/sup 0/C), an inhibition efficiency of 90.5% and 84.5% is reached for inhibitor concentrations of 10 g per liter in the case of corn steep liquor and black sulfite liquor, respectively, while a concentration of 0.25 g per liter of thiourea was required to reach an inhibition efficiency of 98.6%.

  6. Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphide

    International Nuclear Information System (INIS)

    Losev, Yu.P.; Amadyan, M.G.; Oganesyan, N.M.; Fedulov, A.S.; Abramyan, A.K.; Shagoyan, A.G.; Khachkavanktsyan, A.S.

    1999-01-01

    Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphade has been studied. Rats were exposed to X-rays in doses 4,8 and 5,25 Gy. Lipid peroxidation was analysed in blood plasma, membranes of erythrocytes and homogenates of liver and spleen tissues of rats. Polydisulphide of gallic acid was used as inhibitor of lipid peroxidation because of its effective antioxidant properties as have been reported previously. It has been demonstrated that gallic disulphide exhibited high inhibition efficiency in conditions of radiation-induced lipid peroxidation due to the effect of intra-molecular synergism

  7. Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources

    DEFF Research Database (Denmark)

    Iles-Smith, Jake; McCutcheon, Dara P. S.; Nazir, Ahsan

    2017-01-01

    in these systems in giving rise to trade-offs between indistinguishability and efficiency. We analyse the two source architectures most commonly employed: a QD embedded in a waveguide and a QD coupled to an optical cavity. For waveguides, we demonstrate that the broadband Purcell effect results in a simple inverse...... relationship, in which indistinguishability and efficiency cannot be simultaneously increased. For cavities, the frequency selectivity of the Purcell enhancement results in a more subtle trade-off, in which indistinguishability and efficiency can be increased simultaneously, although not arbitrarily, which...

  8. Corrosion inhibition efficiency of linear alkyl benzene derivatives for carbon steel pipelines in 1M HCl

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2011-06-01

    Full Text Available Linear alkyl benzene sulfonic acid (L and three of its ester derivatives (L1, L2, L3 were prepared, followed by quaternization of these esters (L1Q, L2Q, L3Q. The corrosion inhibition effect on carbon steel in 1 M HCl was studied using weight loss and potentiodynamic polarization measurements. The adsorption of the inhibitors on carbon steel surface obeyed the Langmuir’s adsorption isotherm. The associated activation energy of corrosion and other thermodynamic parameters such as enthalpy (ΔH∗, entropy (ΔS∗ of activation, adsorption–desorption equilibrium constant (Kads, standard free energy of adsorption (ΔGoads, heat (ΔHoads, and entropy of adsorption (ΔSoads were calculated to elaborate the corrosion inhibition mechanism.

  9. Effects of acute or chronic ethanol exposure during adolescence on behavioral inhibition and efficiency in a modified water maze task.

    Directory of Open Access Journals (Sweden)

    Shawn K Acheson

    Full Text Available Ethanol is well known to adversely affect frontal executive functioning, which continues to develop throughout adolescence and into young adulthood. This is also a developmental window in which ethanol is misused by a significant number of adolescents. We examined the effects of acute and chronic ethanol exposure during adolescence on behavioral inhibition and efficiency using a modified water maze task. During acquisition, rats were trained to find a stable visible platform onto which they could escape. During the test phase, the stable platform was converted to a visible floating platform (providing no escape and a new hidden platform was added in the opposite quadrant. The hidden platform was the only means of escape during the test phase. In experiment 1, adolescent animals received ethanol (1.0 g/kg 30 min before each session during the test phase. In experiment 2, adolescent animals received chronic intermittent ethanol (5.0 g/kg for 16 days (PND30 To PND46 prior to any training in the maze. At PND72, training was initiated in the same modified water maze task. Results from experiment 1 indicated that acute ethanol promoted behavioral disinhibition and inefficiency. Experiment 2 showed that chronic intermittent ethanol during adolescence appeared to have no lasting effect on behavioral disinhibition or new spatial learning during adulthood. However, chronic ethanol did promote behavioral inefficiency. In summary, results indicate that ethanol-induced promotion of perseverative behavior may contribute to the many adverse behavioral sequelae of alcohol intoxication in adolescents and young adults. Moreover, the long-term effect of adolescent chronic ethanol exposure on behavioral efficiency is similar to that observed after chronic exposure in humans.

  10. Native and tabun-inhibited cholinesterase interactions with oximes

    International Nuclear Information System (INIS)

    Kovarik, Z.; Katalinic, M.; Sinko, G.

    2009-01-01

    The phosphorylation of the serine hydroxyl group in the active site of acetylcholinesterase (AChE) inactivates this essential enzyme in neurotransmission. Its related enzyme butyrylcholinesterase (BChE) also interacts with organophosphorus compounds (OP) scavenging anti-cholinesterase agents and protects synaptic AChE from inhibition. Oximes are reactivators of AChE phosphorylated by OP including insecticides and nerve agents. The effectiveness of oxime-assisted reactivation is primarily attributed to the nucleophilic displacement rate of organophosphate, but efficiency varies with the structure of the bound organophosphate, the structure of the oxime as well as rates of several other cholinesterase's reactions. Besides reactivating cholinesterases, oximes also reversibly inhibit both cholinesterases and protect them from phosphorylation by OP. We tested oximes varying in the type of ring (pyridinium and/or imidazolium), the length and type of the linker between rings, and in the position of the oxime group on the ring to find more effective oximes to reactivate tabun-inhibited human erythrocyte AChE and plasma BChE. Herein we bring an overview of in vitro interactions of native and tabun-inhibited AChE and BChE with oximes together with conformational analysis of the oximes relating molecular properties to their reactivation potency.(author)

  11. Lipoplex size is a major determinant of in vitro lipofection efficiency.

    Science.gov (United States)

    Ross, P C; Hui, S W

    1999-04-01

    The inhibition effect of serum on the transfection efficiency of cationic liposome-DNA complexes (lipoplexes) is a major obstacle to the application of this gene delivery vector both in vitro and in vivo. The size of the lipoplexes, as they are presented to targeted cells, is found to be the major determinant of their effectiveness in transfection. The transfection efficiency and the cell association and uptake of lipoplexes with CHO cells was found to increase with increasing lipoplex size. The influence on the transfection efficiency of lipoplexes by their cationic lipid:DNA ratios, types of liposomes, incubation time in polyanion containing media, and time of serum addition, are mediated mainly through size. Lipoplexes at a 2:1 charge ratio grow in size in media containing polyanions. The size growth may be arrested by adding serum to the incubation media. By using large lipoplexes, especially those made from multilamellar vesicles, the serum inhibition effect may be overcome.

  12. Protein C inhibitor acts as a procoagulant by inhibiting the thrombomodulin-induced activation of protein C in human plasma

    NARCIS (Netherlands)

    Elisen, M. G.; von dem Borne, P. A.; Bouma, B. N.; Meijers, J. C.

    1998-01-01

    Protein C inhibitor (PCI), which was originally identified as an inhibitor of activated protein C, also efficiently inhibits coagulation factors such as factor Xa and thrombin. Recently it was found, using purified proteins, that the anticoagulant thrombin-thrombomodulin complex was also inhibited

  13. An interesting and efficient green corrosion inhibitor for aluminium ...

    African Journals Online (AJOL)

    An interesting and efficient green corrosion inhibitor for aluminium from extracts of ... Journal Home > Vol 13, No 1 (2014) > ... possible applications in metal surface anodizing and surface coating in industries. Keywords: Moringa oleifera, Aluminium, Hydrochloric acid, Langmuir isotherm, Plant extracts, Corrosion inhibition ...

  14. Correlating electronic structure with corrosion inhibition potentiality of some bis-benzimidazole derivatives for mild steel in hydrochloric acid: Combined experimental and theoretical studies

    International Nuclear Information System (INIS)

    Dutta, Alokdut; Saha, Sourav Kr.; Banerjee, Priyabrata; Sukul, Dipankar

    2015-01-01

    Highlights: • Bis-benzimidazole derivatives as good corrosion inhibitors for mild steel in acid. • Simultaneous both way electron-transfer is expected to occur during adsorption. • Role of molecular conformation on inhibition efficiency is demonstrated. • Good correlation between inhibition efficiency and molecular parameters established. • MD simulation results support experimental observations. - Abstract: Four different bis-benzimidazole (BBI) derivatives, tested as potential corrosion inhibitors for mild steel in 1 M HCl, have revealed good inhibition efficiency for long period of exposure. Inhibitors impart high resistance towards charge transfer across metal–electrolyte interface and behave broadly as mixed type. DFT calculations are used to correlate inhibition potentiality with intrinsic molecular parameters. From the optimized geometry of BBI derivatives, electron distribution in HOMO and LUMO and Fukui indices of each atom, possible modes of interaction of BBI derivatives with mild steel surface have been predicted. Energy corresponding to inhibitor-metal surface interaction is evaluated following molecular dynamics simulation

  15. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Mahat, Nur Akma; Othman, Norinsan Kamil [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Sahrani, Fathul Karim [School of Environment and Natural Resources Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  16. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    International Nuclear Information System (INIS)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-01-01

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces

  17. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    Science.gov (United States)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-09-01

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  18. Inhibitive Action of Ferrous Gluconate on Aluminum Alloy in Saline Environment

    Directory of Open Access Journals (Sweden)

    Patricia Abimbola Idowu Popoola

    2013-01-01

    Full Text Available The corrosion of aluminum in saline environment in the presence of ferrous gluconate was studied using weight loss and linear polarization methods. The corrosion rates were studied in different concentrations of ferrous gluconate 0.5, 1.0, 1.5, and 2.0 g/mL at 28°C. Experimental results revealed that ferrous gluconate in saline environment reduced the corrosion rate of aluminum alloy at the different concentrations studied. The minimum inhibition efficiency was obtained at 1.5 g/mL concentration of inhibitor while the optimum inhibition efficiency was achieved with 1.0 g/mL inhibitor concentration. The results showed that adsorption of ferrous gluconate on the aluminium alloy surface fits Langmuir adsorption isotherm. The potentiodynamic polarization results showed that ferrous gluconate is a mixed type inhibitor. Ferrous gluconate acted as an effective inhibitor for aluminium alloy within the temperature and concentration range studied. The data obtained from weight loss and potentiodynamic polarization methods were in good agreement.

  19. CORROSION INHIBITIVE PROPERTIES OF EXTRACT OF JATROPHA CURCAS LEAVES ON MILD STEEL IN HYDROCHLORIC ACID ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    J. Odusote

    2016-09-01

    Full Text Available Jatropha curcas leaves extract was tested as a green corrosion inhibitor for mild steel in aqueous hydrochloric acid solution using gravimetric and thermometric techniques. The results reveal that the inhibition efficiency vary with concentration of the leaf extract and the time of immersion. Maximum inhibition efficiency was found to be 95.92% in 2M HCl with 0.5 g/l concentration of the extract in gravimetric method, while 87.04% was obtained in thermometric method. The inhibiting effect was attributed to the presence of alkaloids, flavonoids, saponins, tannins and phenol in the extract. The adsorption processes of the Jatropha curcas leaves extract onto the mild steel is consistent with the assumptions of Langmuir isotherm model and also found to be spontaneous. From the results, a physical adsorption mechanism is proposed for the adsorption of Jatropha curcas leaves extract onto mild steel surface.

  20. Enhancement of the Inhibitor Efficiency of Atropine Methochloride in Corrosion Control of Mild Steel in Sulphuric Acid

    Directory of Open Access Journals (Sweden)

    Abida Begum

    2008-01-01

    Full Text Available The inhibition efficiency and synergistic behaviour of 10-4 M Atropine methochloride was carried out using mass loss and polarisation methods in the presence of (i metal ions, Ni2+ and Cu2+ between 10-2 M to 10-6 M concentrations, (ii different concentrations of metal ions and 10-3 M I-, 10-3 M Cl- and 10-3 M Br- solutions and (iii different metal ions, 10-3M I- and at three different temperatures. The analysis reveals that the inhibition efficiency of Atropine methochloride was maximum at 10-2 M in 5 hours of immersion period. Halides decreased the corrosion rate of mild steel in Sulphuric acid. The decrease is maximum with 10-3 M I-. As the temperature increased from 298K to 308K, the inhibition efficiency gradually decreased. The inhibitor was found to be effective up to 303K

  1. Inhibition of Mild Steel Corrosion in Sulfuric Acid Solution by New Schiff Base

    Directory of Open Access Journals (Sweden)

    Ahmed A. Al-Amiery

    2014-01-01

    Full Text Available The efficiency of Schiff base derived from 4-aminoantipyrine, namely 2-(1,5-dimethyl-4-(2-methylbenzylideneamino-2-phenyl-1H-pyrazol-3(2H-ylidene hydrazinecarbothioamide as a corrosion inhibitor on mild steel in 1.0 M H2SO4 was investigated using electrochemical impedance spectroscopy (EIS, potentiodynamic polarization (PD and electrochemical frequently modulation (EFM in addition to the adsorption isotherm, corrosion kinetic parameters and scanning electron microscopy (SEM. The results showed that this inhibitor behaved as a good corrosion inhibitor, even at low concentration, with a mean efficiency of 93% and, also, a reduction of the inhibition efficiency as the solution temperature increases. A polarization technique and EIS were tested for different concentrations and different temperatures to reveal that this compound is adsorbed on the mild steel, therefore blocking the active sites, and the adsorption follows the Langmuir adsorption isotherm model. The excellent inhibition effectiveness of 2-(1,5-dimethyl-4-(2-methylbenzylideneamino-2-phenyl-1H-pyrazol-3(2H-ylidenehydrazinecarbothioamide was also verified by scanning electron microscope (SEM.

  2. Inhibition of Mild Steel Corrosion in Sulfuric Acid Solution by New Schiff Base

    Science.gov (United States)

    Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Kadihum, Abdulhadi; Mohamad, Abu Bakar; How, Chong K.; Junaedi, Sutiana

    2014-01-01

    The efficiency of Schiff base derived from 4-aminoantipyrine, namely 2-(1,5-dimethyl-4-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene) hydrazinecarbothioamide as a corrosion inhibitor on mild steel in 1.0 M H2SO4 was investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PD) and electrochemical frequently modulation (EFM) in addition to the adsorption isotherm, corrosion kinetic parameters and scanning electron microscopy (SEM). The results showed that this inhibitor behaved as a good corrosion inhibitor, even at low concentration, with a mean efficiency of 93% and, also, a reduction of the inhibition efficiency as the solution temperature increases. A polarization technique and EIS were tested for different concentrations and different temperatures to reveal that this compound is adsorbed on the mild steel, therefore blocking the active sites, and the adsorption follows the Langmuir adsorption isotherm model. The excellent inhibition effectiveness of 2-(1,5-dimethyl-4-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene)hydrazinecarbothioamide was also verified by scanning electron microscope (SEM). PMID:28788488

  3. Anxiety and retrieval inhibition: support for an enhanced inhibition account.

    Science.gov (United States)

    Nuñez, Mia; Gregory, Josh; Zinbarg, Richard E

    2017-02-01

    Retrieval inhibition of negative associations is important for exposure therapy for anxiety, but the relationship between memory inhibition and anxiety is not well understood-anxiety could either be associated with enhanced or deficient inhibition. The present study tested these two competing hypotheses by measuring retrieval inhibition of negative stimuli by related neutral stimuli. Non-clinically anxious undergraduates completed measures of trait and state anxiety and completed a retrieval induced forgetting task. Adaptive forgetting varied with state anxiety. Low levels of state anxiety were associated with no evidence for retrieval inhibition for either threatening or non-threatening categories. Participants in the middle tertile of state anxiety scores exhibited retrieval inhibition for non-threatening categories but not for threatening categories. Participants in the highest tertile of state anxiety, however, exhibited retrieval inhibition for both threatening and non-threatening categories with the magnitude of retrieval inhibition being greater for threatening than non-threatening categories. The data are in line with the avoidance aspect of the vigilance-avoidance theory of anxiety and inhibition. Implications for cognitive behavioural therapy practices are discussed.

  4. The Effect of Perceptual Load on Attention-Induced Motion Blindness: The Efficiency of Selective Inhibition

    Science.gov (United States)

    Hay, Julia L.; Milders, Maarten M.; Sahraie, Arash; Niedeggen, Michael

    2006-01-01

    Recent visual marking studies have shown that the carry-over of distractor inhibition can impair the ability of singletons to capture attention if the singleton and distractors share features. The current study extends this finding to first-order motion targets and distractors, clearly separated in time by a visual cue (the letter X). Target…

  5. Feedforward inhibition and synaptic scaling--two sides of the same coin?

    Science.gov (United States)

    Keck, Christian; Savin, Cristina; Lücke, Jörg

    2012-01-01

    Feedforward inhibition and synaptic scaling are important adaptive processes that control the total input a neuron can receive from its afferents. While often studied in isolation, the two have been reported to co-occur in various brain regions. The functional implications of their interactions remain unclear, however. Based on a probabilistic modeling approach, we show here that fast feedforward inhibition and synaptic scaling interact synergistically during unsupervised learning. In technical terms, we model the input to a neural circuit using a normalized mixture model with Poisson noise. We demonstrate analytically and numerically that, in the presence of lateral inhibition introducing competition between different neurons, Hebbian plasticity and synaptic scaling approximate the optimal maximum likelihood solutions for this model. Our results suggest that, beyond its conventional use as a mechanism to remove undesired pattern variations, input normalization can make typical neural interaction and learning rules optimal on the stimulus subspace defined through feedforward inhibition. Furthermore, learning within this subspace is more efficient in practice, as it helps avoid locally optimal solutions. Our results suggest a close connection between feedforward inhibition and synaptic scaling which may have important functional implications for general cortical processing.

  6. Feedforward inhibition and synaptic scaling--two sides of the same coin?

    Directory of Open Access Journals (Sweden)

    Christian Keck

    Full Text Available Feedforward inhibition and synaptic scaling are important adaptive processes that control the total input a neuron can receive from its afferents. While often studied in isolation, the two have been reported to co-occur in various brain regions. The functional implications of their interactions remain unclear, however. Based on a probabilistic modeling approach, we show here that fast feedforward inhibition and synaptic scaling interact synergistically during unsupervised learning. In technical terms, we model the input to a neural circuit using a normalized mixture model with Poisson noise. We demonstrate analytically and numerically that, in the presence of lateral inhibition introducing competition between different neurons, Hebbian plasticity and synaptic scaling approximate the optimal maximum likelihood solutions for this model. Our results suggest that, beyond its conventional use as a mechanism to remove undesired pattern variations, input normalization can make typical neural interaction and learning rules optimal on the stimulus subspace defined through feedforward inhibition. Furthermore, learning within this subspace is more efficient in practice, as it helps avoid locally optimal solutions. Our results suggest a close connection between feedforward inhibition and synaptic scaling which may have important functional implications for general cortical processing.

  7. The drug ornidazole inhibits photosynthesis in a different mechanism described for protozoa and anaerobic bacteria.

    Science.gov (United States)

    Marcus, Yehouda; Tal, Noam; Ronen, Mordechai; Carmieli, Raanan; Gurevitz, Michael

    2016-12-01

    Ornidazole of the 5-nitroimidazole drug family is used to treat protozoan and anaerobic bacterial infections via a mechanism that involves preactivation by reduction of the nitro group, and production of toxic derivatives and radicals. Metronidazole, another drug family member, has been suggested to affect photosynthesis by draining electrons from the electron carrier ferredoxin, thus inhibiting NADP + reduction and stimulating radical and peroxide production. Here we show, however, that ornidazole inhibits photosynthesis via a different mechanism. While having a minute effect on the photosynthetic electron transport and oxygen photoreduction, ornidazole hinders the activity of two Calvin cycle enzymes, triose-phosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Modeling of ornidazole's interaction with ferredoxin of the protozoan Trichomonas suggests efficient electron tunneling from the iron-sulfur cluster to the nitro group of the drug. A similar docking site of ornidazole at the plant-type ferredoxin does not exist, and the best simulated alternative does not support such efficient tunneling. Notably, TPI was inhibited by ornidazole in the dark or when electron transport was blocked by dichloromethyl diphenylurea, indicating that this inhibition was unrelated to the electron transport machinery. Although TPI and GAPDH isoenzymes are involved in glycolysis and gluconeogenesis, ornidazole's effect on respiration of photoautotrophs is moderate, thus raising its value as an efficient inhibitor of photosynthesis. The scarcity of Calvin cycle inhibitors capable of penetrating cell membranes emphasizes on the value of ornidazole for studying the regulation of this cycle. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  8. Application of gold nanoparticles for improved drug efficiency

    Science.gov (United States)

    Shittu, K. O.; Bankole, M. T.; Abdulkareem, A. S.; Abubakre, O. K.; Ubaka, A. U.

    2017-09-01

    Due to increasing resistance of microorganisms towards current antibiotics, there is a need for new or enhanced antibiotics. Nanotechnology is a technology that enhances the use of gold nanoparticles (AuNP) in area of medical applications, especially as a drug carrier for targeted drug delivery. In this research, AuNPs was synthesized using biological method via bioreduction of Piper guineense aqueous leaf extract on tetra gold chloride, characterized using UV-Vis spectrophometer, DLS, TEM/EDS and FTIR. The synthesized AuNPs was covalently functionalized with polyethylene glycol and encapsulated with Lincomycin and in vitro dissolution methods was used to evaluate the potential performance of the formulated nanodrug. The nanodrug has highest release efficiency at the 9th minutes (23.4 mg ml-1 for 40 °C) and (29.5 mg ml-1 for 60 °C) compared with the non-nanodrug. The antibacterial potential of the nanodrug was seen on the gram-positive bacteria of Staphylococcus aureus and Streptococcus pyogenes with highest inhibitions of 18 mm (at 40 °C) and 16 mm (at 60 °C) for S. aureus, and 16 mm for S. pyogenes (both at 40 °C and 60 °C). The bacteria growth inhibition continued and lasted for 15 min, while that of non-nanodrug lasted for 9 min with lesser growth inhibition compared to the formulated nanodrug. This work shows that the presence of the AuNPs increased the release efficiency of lincomycin even at a lower concentration and also bacteria growth inhibition thereby suggesting the effectiveness of the nanodrug formulation.

  9. Adsorption and inhibitive properties of sildenafil (Viagra for zinc in hydrochloric acid solution

    Directory of Open Access Journals (Sweden)

    A.S. Fouda

    Full Text Available Sildenafil (Viagra was investigated as corrosion inhibitor for Zn in 1 M HCl solution using chemical and electrochemical methods at 25 °C. Electrochemical results showed that this drug is efficient inhibitor for Zn in HCl and the inhibition efficiency (IE reached to 91% at 300 ppm. The IE increases with the drug concentration and decreases with increasing temperature. The adsorption of this drug on Zn surface follows Langmuir adsorption isotherm. The polarization plots revealed that Sildenafil acts as a mixed-type inhibitor. The thermodynamic parameters of activation and adsorption were calculated and discussed. The surface morphology of the Zn specimens was evaluated using scanning electron microscope (SEM, energy dispersive X-ray (EDX, atomic force microscopy (AFM and Fourier transform infrared spectroscopy (FTIR techniques. Keywords: Zn, Corrosion inhibition, HCl, SEM, EDX, AFM, FTIR, Sildenafil drug

  10. Sequence-specific inhibition of duck hepatitis B virus reverse transcription by peptide nucleic acids (PNA)

    DEFF Research Database (Denmark)

    Robaczewska, Magdalena; Narayan, Ramamurthy; Seigneres, Beatrice

    2005-01-01

    BACKGROUND/AIMS: Peptide nucleic acids (PNAs) appear as promising new antisense agents, that have not yet been examined as hepatitis B virus (HBV) inhibitors. Our aim was to study the ability of PNAs targeting the duck HBV (DHBV) encapsidation signal epsilon to inhibit reverse transcription (RT...... in primary duck hepatocytes (PDH). RESULTS: Both PNAs reproducibly inhibited DHBV RT in a dose-dependent manner with IC(50) of 10nM, whereas up to 600-fold higher concentration of S-ODNs was required for similar inhibition. The PNA targeting the bulge and upper stem of epsilon appeared as more efficient RT...

  11. [Inhibition of oxidation of unsaturated fatty acid methyl esters by essential oils].

    Science.gov (United States)

    Misharina, T A; Alinkina, E S; Vorobjeva, A K; Terenina, M B; Krikunova, N I

    2016-01-01

    The essential oils from 16 various spice plants were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids methyl esters isolated from linseed oil. The content of methyl oleate, methyl linoleate, and methyl linolenoate after 1, 2, and 4 months of autooxidation were used as criteria to estimate the antioxidant efficiencies of essential oils. In 4 months, 92% of the methyl linolenoate and 79% of the methyl linoleate were oxidized in a control sample of a model system. It was found that the most effective antioxidants were essential oils from clove bud, cinnamon leaves, and oregano. They inhibited autooxidation of methyl linolenoate by 76–85%. The antioxidant properties of these essential oils were due to phenols— eugenol, carvacrol, and thymol. Essential oil from coriander did not contain phenols, but it inhibited methyl linolenoate oxidation by 38%. Essential oils from thyme, savory, mace, lemon, and tea tree inhibited methyl linolenoate oxidation by 17–24%. The other essential oils had no antioxidant properties.

  12. Thienoquinolins exert diuresis by strongly inhibiting UT-A urea transporters

    Science.gov (United States)

    Ren, Huiwen; Wang, Yanhua; Xing, Yongning; Ran, Jianhua; Liu, Ming; Lei, Tianluo; Zhou, Hong; Li, Runtao; Sands, Jeff M.

    2014-01-01

    Urea transporters (UT) play an important role in the urine concentration mechanism by mediating intrarenal urea recycling, suggesting that UT inhibitors could have therapeutic use as a novel class of diuretic. Recently, we found a thienoquinolin UT inhibitor, PU-14, that exhibited diuretic activity. The purpose of this study was to identify more potent UT inhibitors that strongly inhibit UT-A isoforms in the inner medullary collecting duct (IMCD). Efficient thienoquinolin UT inhibitors were identified by structure-activity relationship analysis. Urea transport inhibition activity was assayed in perfused rat terminal IMCDs. Diuretic activity of the compound was determined in rats and mice using metabolic cages. The results show that the compound PU-48 exhibited potent UT-A inhibition activity. The inhibition was 69.5% with an IC50 of 0.32 μM. PU-48 significantly inhibited urea transport in perfused rat terminal IMCDs. PU-48 caused significant diuresis in UT-B null mice, which indicates that UT-A is the target of PU-48. The diuresis caused by PU-48 did not change blood Na+, K+, or Cl− levels or nonurea solute excretion in rats and mice. No toxicity was detected in cells or animals treated with PU-48. The results indicate that thienoquinolin UT inhibitors induce a diuresis by inhibiting UT-A in the IMCD. This suggests that they may have the potential to be developed as a novel class of diuretics with fewer side effects than classical diuretics. PMID:25298523

  13. Characterization and Antioxidant Properties of Six Algerian Propolis Extracts: Ethyl Acetate Extracts Inhibit Myeloperoxidase Activity

    Directory of Open Access Journals (Sweden)

    Yasmina Mokhtaria Boufadi

    2014-02-01

    Full Text Available Because propolis contains many types of antioxidant compounds such as polyphenols and flavonoids, it can be useful in preventing oxidative damages. Ethyl acetate extracts of propolis from several Algerian regions show high activity by scavenging free radicals, preventing lipid peroxidation and inhibiting myeloperoxidase (MPO. By fractioning and assaying ethyl acetate extracts, it was observed that both polyphenols and flavonoids contribute to these activities. A correlation was observed between the polyphenol content and the MPO inhibition. However, it seems that kaempferol, a flavonoid, contributes mainly to the MPO inhibition. This molecule is in a high amount in the ethyl acetate extract and demonstrates the best efficiency towards the enzyme with an inhibiting concentration at 50% of 4 ± 2 µM.

  14. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, J. Ishwara [Mangalore Univ., Karnataka (India); Alva, Vijaya D. P. [Shree Devi Institute of Technology, Karnataka (India)

    2014-02-15

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum.

  15. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    International Nuclear Information System (INIS)

    Bhat, J. Ishwara; Alva, Vijaya D. P.

    2014-01-01

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum

  16. Inhibition of Alkaline Flocculation by Algal Organic Matter for Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Vandamme, Dries; Beuckels, Annelies; Vadelius, Eric; Depraetere, Orily; Noppe, Wim; Dutta, Abhishek; Foubert, Imogen; Laurens, Lieve; Muylaert, Koenraad

    2016-01-01

    Alkaline flocculation is a promising strategy for the concentration of microalgae for bulk biomass production. However, previous studies have shown that biological changes during the cultivation negatively affect flocculation efficiency. The influence of changes in cell properties and in the quality and composition of algal organic matter (AOM) were studied using Chlorella vulgaris as a model species. In batch cultivation, flocculation was increasingly inhibited over time and mainly influenced by changes in medium composition, rather than biological changes at the cell surface. Total carbohydrate content of the organic matter fraction sized bigger than 3 kDa increased over time and this fraction was shown to be mainly responsible for the inhibition of alkaline flocculation. The monosaccharide identification of this fraction mainly showed the presence of neutral and anionic monosaccharides. An addition of 30–50 mg L-1 alginic acid, as a model for anionic carbohydrate polymers containing uronic acids, resulted in a complete inhibition of flocculation. Furthermore, these results suggest that inhibition of alkaline flocculation was caused by interaction of anionic polysaccharides leading to an increased flocculant demand over time.

  17. Visual working memory supports the inhibition of previously processed information: evidence from preview search.

    Science.gov (United States)

    Al-Aidroos, Naseem; Emrich, Stephen M; Ferber, Susanne; Pratt, Jay

    2012-06-01

    In four experiments we assessed whether visual working memory (VWM) maintains a record of previously processed visual information, allowing old information to be inhibited, and new information to be prioritized. Specifically, we evaluated whether VWM contributes to the inhibition (i.e., visual marking) of previewed distractors in a preview search. We evaluated this proposal by testing three predictions. First, Experiments 1 and 2 demonstrate that preview inhibition is more effective when the number of previewed distractors is below VWM capacity than above; an effect that can only be observed at small preview set sizes (Experiment 2A) and when observers are allowed to move their eyes freely (Experiment 2B). Second, Experiment 3 shows that, when quantified as the number of inhibited distractors, the magnitude of the preview effect is stable across different search difficulties. Third, Experiment 4 demonstrates that individual differences in preview inhibition are correlated with individual differences in VWM capacity. These findings provide converging evidence that VWM supports the inhibition of previewed distractors. More generally, these findings demonstrate how VWM contributes to the efficiency of human visual information processing--VWM prioritizes new information by inhibiting old information from being reselected for attention.

  18. Opposite responses of rabbit and human globin mRNAs to translational inhibition by cap analogues

    International Nuclear Information System (INIS)

    Shakin, S.H.; Liebhaber, S.A.

    1987-01-01

    The translational efficiency of an mRNA may be determined at the step of translational initiation by the efficiency of its interaction with the cap binding protein complex. To further investigate the role of these interactions in translational control, the authors compare in vitro the relative sensitivities of rabbit and human α- and β-globin mRNAs to translational inhibition by cap analogues. They find that rabbit β-globin mRNA is more resistant to translational inhibition by cap analogues than rabbit α-globin mRNA, while in contrast, human β-globin mRNA is more sensitive to cap analogue inhibition than human α- and β-globin mRNAs is unexpected as direct in vivo and in vitro comparisons of polysome profiles reveal parallel translational handling of the α- and β-globin mRNAs from these two species. This discordance between the relative translational sensitivities of these mRNAs to cap analogues and their relative ribosome loading activities suggests that cap-dependent events may not be rate limiting in steady-state globin translation

  19. New high-performance, water-based fluid benefits Santos basin operations with excellent inhibition and drilling efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Tom; West, Gary [Halliburton Baroid, Santos, SP (Brazil)

    2004-07-01

    For decades drilling fluids companies have been striving to create a water-based fluid (WBF) that yields performance similar to that of an invert emulsion in the areas of hole stability, rate of penetration (ROP) and lubricity. The HYDRO-GUARD system is a new highly inhibitive WBF that can yield drilling performance approaching that of an invert emulsion system. The new system uses a new combination of polymeric additives designed to inhibit reactive clays, minimize colloidal solids buildup, and produce a lubricious, gauge wellbore. This paper compares the field performance of the HYDRO-GUARD system on two recent Santos Basin wells drilled to over 5,000 m with the performance of synthetic-based fluids (SBF) used historically in the same area. Bottom hole temperatures (BHT) on these wells exceeded 315 deg F (157 deg C). Performance measures such as hole cleaning, penetration rates, hole stability, and torque and drag will be reviewed as well as general system benefits. (author)

  20. Interphase APC/C-Cdc20 inhibition by cyclin A2-Cdk2 ensures efficient mitotic entry

    DEFF Research Database (Denmark)

    Hein, Jamin B; Nilsson, Jakob

    2016-01-01

    Proper cell-cycle progression requires tight temporal control of the Anaphase Promoting Complex/Cyclosome (APC/C), a large ubiquitin ligase that is activated by one of two co-activators, Cdh1 or Cdc20. APC/C and Cdc20 are already present during interphase but APC/C-Cdc20 regulation during...... this window of the cell cycle, if any, is unknown. Here we show that cyclin A2-Cdk2 binds and phosphorylates Cdc20 in interphase and this inhibits APC/C-Cdc20 activity. Preventing Cdc20 phosphorylation results in pre-mature activation of the APC/C-Cdc20 and several substrates, including cyclin B1 and A2......, are destabilized which lengthens G2 and slows mitotic entry. Expressing non-degradable cyclin A2 but not cyclin B1 restores mitotic entry in these cells. We have thus uncovered a novel positive feedback loop centred on cyclin A2-Cdk2 inhibition of interphase APC/C-Cdc20 to allow further cyclin A2 accumulation...

  1. Inhibition of MHC class I is a virulence factor in herpes simplex virus infection of mice.

    Directory of Open Access Journals (Sweden)

    Mark T Orr

    2005-09-01

    Full Text Available Herpes simplex virus (HSV has a number of genes devoted to immune evasion. One such gene, ICP47, binds to the transporter associated with antigen presentation (TAP 1/2 thereby preventing transport of viral peptides into the endoplasmic reticulum, loading of peptides onto nascent major histocompatibility complex (MHC class I molecules, and presentation of peptides to CD8 T cells. However, ICP47 binds poorly to murine TAP1/2 and so inhibits antigen presentation by MHC class I in mice much less efficiently than in humans, limiting the utility of murine models to address the importance of MHC class I inhibition in HSV immunopathogenesis. To address this limitation, we generated recombinant HSVs that efficiently inhibit antigen presentation by murine MHC class I. These recombinant viruses prevented cytotoxic T lymphocyte killing of infected cells in vitro, replicated to higher titers in the central nervous system, and induced paralysis more frequently than control HSV. This increase in virulence was due to inhibition of antigen presentation to CD8 T cells, since these differences were not evident in MHC class I-deficient mice or in mice in which CD8 T cells were depleted. Inhibition of MHC class I by the recombinant viruses did not impair the induction of the HSV-specific CD8 T-cell response, indicating that cross-presentation is the principal mechanism by which HSV-specific CD8 T cells are induced. This inhibition in turn facilitates greater viral entry, replication, and/or survival in the central nervous system, leading to an increased incidence of paralysis.

  2. Efficient dynamic molecular simulation using QSAR model to know inhibition activity in breast cancer medicine

    Science.gov (United States)

    Zharifah, A.; Kusumowardani, E.; Saputro, A.; Sarwinda, D.

    2017-07-01

    According to data from GLOBOCAN (IARC) at 2012, breast cancer was the highest rated of new cancer case by 43.3 % (after controlled by age), with mortality rated as high as 12.9 %. Oncology is a major field which focusing on improving the development of drug and therapeutics cancer in pharmaceutical and biotechnology companies. Nowadays, many researchers lead to computational chemistry and bioinformatic for pharmacophore generation. A pharmacophore describes as a group of atoms in the molecule which is considered to be responsible for a pharmacological action. Prediction of biological function from chemical structure in silico modeling reduces the use of chemical reagents so the risk of environmental pollution decreased. In this research, we proposed QSAR model to analyze the composition of cancer drugs which assumed to be homogenous in character and treatment. Atomic interactions which analyzed are learned through parameters such as log p as descriptors hydrophobic, n_poinas descriptor contour strength and molecular structure, and also various concentrations inhibitor (micromolar and nanomolar) from NCBI drugs bank. The differences inhibitor activity was observed by the presence of IC 50 residues value from inhibitor substances at various concentration. Then, we got a general overview of the state of safety for drug stability seen from its IC 50 value. In our study, we also compared between micromolar and nanomolar inhibitor effect from QSAR model results. The QSAR model analysis shows that the drug concentration with nanomolar is better than micromolar, related with the content of inhibitor substances concentration. This QSAR model got the equation: Log 1/IC50 = (0.284) (±0.195) logP + (0.02) (±0.012) n_poin + (-0.005) (±0.083) Inhibition10.2nanoM + (0.1) (±0.079) Inhibition30.5nanoM + (-0.016) (±0.045) Inhibition91.5nanoM + (-2.572) (±1.570) (n = 13; r = 0.813; r2 = 0.660; s = 0.764; F = 2.720; q2 = 0.660).

  3. Feedforward Inhibition and Synaptic Scaling – Two Sides of the Same Coin?

    Science.gov (United States)

    Lücke, Jörg

    2012-01-01

    Feedforward inhibition and synaptic scaling are important adaptive processes that control the total input a neuron can receive from its afferents. While often studied in isolation, the two have been reported to co-occur in various brain regions. The functional implications of their interactions remain unclear, however. Based on a probabilistic modeling approach, we show here that fast feedforward inhibition and synaptic scaling interact synergistically during unsupervised learning. In technical terms, we model the input to a neural circuit using a normalized mixture model with Poisson noise. We demonstrate analytically and numerically that, in the presence of lateral inhibition introducing competition between different neurons, Hebbian plasticity and synaptic scaling approximate the optimal maximum likelihood solutions for this model. Our results suggest that, beyond its conventional use as a mechanism to remove undesired pattern variations, input normalization can make typical neural interaction and learning rules optimal on the stimulus subspace defined through feedforward inhibition. Furthermore, learning within this subspace is more efficient in practice, as it helps avoid locally optimal solutions. Our results suggest a close connection between feedforward inhibition and synaptic scaling which may have important functional implications for general cortical processing. PMID:22457610

  4. In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J; Baptista, P V [Centro de Investigacao em Genetica Molecular Humana (CIGMH), Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); De la Fuente, J M, E-mail: pmvb@fct.unl.pt [Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)

    2010-12-17

    The use of gold nanoparticles (AuNPs) has been gaining momentum as vectors for gene silencing strategies, combining the AuNPs' ease of functionalization with DNA and/or siRNA, high loading capacity and fast uptake by target cells. Here, we used AuNP functionalized with thiolated oligonucleotides to specifically inhibit transcription in vitro, demonstrating the synergetic effect between AuNPs and a specific antisense sequence that blocks the T7 promoter region. Also, AuNPs efficiently protect the antisense oligonucleotide against nuclease degradation, which can thus retain its inhibitory potential. In addition, we demonstrate that AuNPs functionalized with a thiolated oligonucleotide complementary to the ribosome binding site and the start codon, effectively shut down in vitro translation. Together, these two approaches can provide for a simple yet robust experimental set up to test for efficient gene silencing of AuNP-DNA conjugates. What is more, these results show that appropriate functionalization of AuNPs can be used as a dual targeting approach to an enhanced control of gene expression-inhibition of both transcription and translation.

  5. In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles

    International Nuclear Information System (INIS)

    Conde, J; Baptista, P V; De la Fuente, J M

    2010-01-01

    The use of gold nanoparticles (AuNPs) has been gaining momentum as vectors for gene silencing strategies, combining the AuNPs' ease of functionalization with DNA and/or siRNA, high loading capacity and fast uptake by target cells. Here, we used AuNP functionalized with thiolated oligonucleotides to specifically inhibit transcription in vitro, demonstrating the synergetic effect between AuNPs and a specific antisense sequence that blocks the T7 promoter region. Also, AuNPs efficiently protect the antisense oligonucleotide against nuclease degradation, which can thus retain its inhibitory potential. In addition, we demonstrate that AuNPs functionalized with a thiolated oligonucleotide complementary to the ribosome binding site and the start codon, effectively shut down in vitro translation. Together, these two approaches can provide for a simple yet robust experimental set up to test for efficient gene silencing of AuNP-DNA conjugates. What is more, these results show that appropriate functionalization of AuNPs can be used as a dual targeting approach to an enhanced control of gene expression-inhibition of both transcription and translation.

  6. Energy Efficiency Financing for Low- and Moderate-Income Households: Current State of the Market, Issues, and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-01

    Although the need is great, many LMI households may not be able to afford efficiency improvements or may be inhibited from adopting efficiency for other reasons. Decision-makers across the country are currently exploring the challenges and potential solutions to ramping up adoption of efficiency in LMI households, including the use of financing.

  7. Synergistic inhibition between o-phenanthroline and chloride ion for steel corrosion in sulphuric acid

    International Nuclear Information System (INIS)

    Li Xueming; Tang Libin; Li Lin; Mu Guannan; Liu Guangheng

    2006-01-01

    The corrosion inhibition of cold rolled steel in 0.5 M sulphuric acid in the presence of o-phenanthroline and sodium chloride (NaCl) has been investigated by using weight loss and electrochemical techniques. The experimental data suggest that the inhibition efficiency increases with increasing NaCl concentration in the presence of 0.0002 M o-phenanthroline, but decreases with increasing temperature. A synergistic effect is observed when o-phenanthroline and chloride ions are used together to prevent cold rolled steel corrosion in 0.5 M sulphuric acid. The polarization curves showed that the complex of o-phenanthroline and NaCl acts as a mixed type inhibitor. The experimental results suggested that the presence of chloride ions in the solution stabilized the adsorption of o-phenanthroline molecules on the metal surface and improved the inhibition efficiency of o-phenanthroline. The adsorption of the complex accords with the Langmuir adsorption isotherm. Some thermodynamic parameters such as adsorption heat, adsorption entropy and adsorption free energy have been calculated by employing thermodynamic equations. Kinetic parameters such as apparent activation energy and pre-exponential factor have been calculated and discussed

  8. Polybrene increases the efficiency of gene transfer by lipofection.

    Science.gov (United States)

    Abe, A; Miyanohara, A; Friedmann, T

    1998-05-01

    Lipofection involves the introduction of foreign genetic information into mammalian cells through the use of lipophilic reagents that enhance cellular uptake of polynucleotides. Despite the use of currently optimized lipofection conditions, including the use of serum-depleted media, the efficiency of gene transfer is often low. We show here that, in a variety of cell lines, polybrene markedly enhances the efficiency of lipofection under standardized conditions and also compensates the serum-mediated inhibition of lipofection. Although the degree of the polybrene effect depends on the nature of the cell line, these results indicate that individually optimized concentrations of polybrene can be useful for increasing the efficiency of lipofectin-mediated gene transfer in vitro.

  9. Corrosion inhibition of carbon steel in acidic medium by orange peel extract and its main antioxidant compounds

    International Nuclear Information System (INIS)

    M’hiri, Nouha; Veys-Renaux, Delphine; Rocca, Emmanuel; Ioannou, Irina; Boudhrioua, Nourhéne Mihoubi; Ghoul, Mohamed

    2016-01-01

    Highlights: • Catechol and derived functions are responsible for flavonoids antioxidant activity. • Antioxidant activity of adsorbed molecules explains cathodic inhibition. • Orange peel extract inhibition is enhanced by the precipitation of a covering film. - Abstract: Chemical compounds of orange peel extracts were identified and their antioxidant activities were determined. The inhibiting effect on acidic steel corrosion brought by the extract and selected antioxidant compounds (neohesperidin, naringin, ascorbic acid) was evaluated separately by electrochemical methods. Whatever the extract concentration, a significant inhibition is observed, whereas selected antioxidant compounds show only a slight effect. Both electrochemical impedance spectroscopy results and scanning electron microscopy observations after immersion reveal that the inhibiting efficiency of orange peel extract is not only due to the antioxidant activity of its compounds but also to the precipitation of a surface film.

  10. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling

    DEFF Research Database (Denmark)

    Balic, Anamaria; Sørensen, Morten Dræby; Trabulo, Sara Maria

    2014-01-01

    effectively eliminating established tumors and improved overall survival. The inhibitory effect of chloroquine was not related to inhibition of autophagy, but was due to inhibition of CXCL12/CXCR4 signaling, resulting in reduced phosphorylation of ERK and STAT3. Furthermore, chloroquine showed potent...... is an effective adjuvant therapy to chemotherapy, offering more efficient tumor elimination and improved cure rates. Chloroquine should be further explored in the clinical setting as its success may help to more rapidly improve the poor prognosis of patients with pancreatic cancer...

  11. Ligand efficiency based approach for efficient virtual screening of compound libraries.

    Science.gov (United States)

    Ke, Yi-Yu; Coumar, Mohane Selvaraj; Shiao, Hui-Yi; Wang, Wen-Chieh; Chen, Chieh-Wen; Song, Jen-Shin; Chen, Chun-Hwa; Lin, Wen-Hsing; Wu, Szu-Huei; Hsu, John T A; Chang, Chung-Ming; Hsieh, Hsing-Pang

    2014-08-18

    Here we report for the first time the use of fit quality (FQ), a ligand efficiency (LE) based measure for virtual screening (VS) of compound libraries. The LE based VS protocol was used to screen an in-house database of 125,000 compounds to identify aurora kinase A inhibitors. First, 20 known aurora kinase inhibitors were docked to aurora kinase A crystal structure (PDB ID: 2W1C); and the conformations of docked ligand were used to create a pharmacophore (PH) model. The PH model was used to screen the database compounds, and rank (PH rank) them based on the predicted IC50 values. Next, LE_Scale, a weight-dependant LE function, was derived from 294 known aurora kinase inhibitors. Using the fit quality (FQ = LE/LE_Scale) score derived from the LE_Scale function, the database compounds were reranked (PH_FQ rank) and the top 151 (0.12% of database) compounds were assessed for aurora kinase A inhibition biochemically. This VS protocol led to the identification of 7 novel hits, with compound 5 showing aurora kinase A IC50 = 1.29 μM. Furthermore, testing of 5 against a panel of 31 kinase reveals that it is selective toward aurora kinase A & B, with <50% inhibition for other kinases at 10 μM concentrations and is a suitable candidate for further development. Incorporation of FQ score in the VS protocol not only helped identify a novel aurora kinase inhibitor, 5, but also increased the hit rate of the VS protocol by improving the enrichment factor (EF) for FQ based screening (EF = 828), compared to PH based screening (EF = 237) alone. The LE based VS protocol disclosed here could be applied to other targets for hit identification in an efficient manner. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. An Alginate/Cyclodextrin Spray Drying Matrix to Improve Shelf Life and Antioxidant Efficiency of a Blood Orange By-Product Extract Rich in Polyphenols: MMPs Inhibition and Antiglycation Activity in Dysmetabolic Diseases

    Directory of Open Access Journals (Sweden)

    Maria Rosaria Lauro

    2017-01-01

    Full Text Available Alginate and β-cyclodextrin were used to produce easily dosable and spray-dried microsystems of a dried blood orange extract with antidysmetabolic properties, obtained from a by-product fluid extract. The spray-dried applied conditions were able to obtain a concentrate dried extract without the loss of AOA and with TPC and TMA values of 35–40% higher than that of the starting material. They were also effective in producing microparticles with 80–100% of encapsulation efficiency. The 2% sodium alginate was capable of improving the extract shelf life, while the beta-cyclodextrin (1 : 1 molar ratio with dried extract prolonged the extract antioxidant efficiency by 6 hours. The good inhibition effect of the dried extract on the AGE formation and the MMP-2 and MMP-9 activity is presumably due to a synergic effect exerted by both anthocyanin and bioflavonoid extract compounds and was improved by the use of alginate and cyclodextrin.

  13. An Alginate/Cyclodextrin Spray Drying Matrix to Improve Shelf Life and Antioxidant Efficiency of a Blood Orange By-Product Extract Rich in Polyphenols: MMPs Inhibition and Antiglycation Activity in Dysmetabolic Diseases.

    Science.gov (United States)

    Lauro, Maria Rosaria; Crascì, Lucia; Giannone, Virgilio; Ballistreri, Gabriele; Fabroni, Simona; Sansone, Francesca; Rapisarda, Paolo; Panico, Anna Maria; Puglisi, Giovanni

    2017-01-01

    Alginate and β -cyclodextrin were used to produce easily dosable and spray-dried microsystems of a dried blood orange extract with antidysmetabolic properties, obtained from a by-product fluid extract. The spray-dried applied conditions were able to obtain a concentrate dried extract without the loss of AOA and with TPC and TMA values of 35-40% higher than that of the starting material. They were also effective in producing microparticles with 80-100% of encapsulation efficiency. The 2% sodium alginate was capable of improving the extract shelf life , while the beta-cyclodextrin (1 : 1 molar ratio with dried extract) prolonged the extract antioxidant efficiency by 6 hours. The good inhibition effect of the dried extract on the AGE formation and the MMP-2 and MMP-9 activity is presumably due to a synergic effect exerted by both anthocyanin and bioflavonoid extract compounds and was improved by the use of alginate and cyclodextrin.

  14. Investigation of adsorption and inhibitive effect of acid red GRE (183 dye on the corrosion of carbon steel in hydrochloric acid media

    Directory of Open Access Journals (Sweden)

    M. Abd El-raouf

    2015-09-01

    Full Text Available The adsorption and corrosion inhibitive effect of acid red GRE (183 dye on carbon steel alloy in 1 M HCl solutions was studied using various techniques. Results of weight loss, Tafel polarization measurements and electrochemical impedance spectroscopy (EIS techniques show that this compound has fairly good inhibiting properties for steel corrosion in acidic bath; with efficiency around 96% at a concentration of 50 ppm. The inhibition is of a mixed anodic–cathodic nature. Factors affecting the corrosion process have been calculated and discussed. Acid red GRE (183 dye was shown to be an inhibitor in the acidic corrosion. Inhibition efficiency increased with acid red GRE (183 dye concentration but decreased with rise in temperature, corrosion inhibition is attributed to the adsorption of acid red GRE (183 dye on the carbon steel surface via a physical adsorption mechanism. Langmuir isotherm is found to provide an accurate description of the adsorption behavior of the investigated azo compound. The nature of the protective film was investigated using SEM and EDX techniques.

  15. MEK-ERK inhibition potentiates WAY-600-induced anti-cancer efficiency in preclinical hepatocellular carcinoma (HCC) models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kaifeng, E-mail: kaifeng_wangdr@sina.com [Cancer center, the Affiliated Hospital of Hangzhou Normal University, Hangzhou (China); Fan, Yaohua [Oncology Department, No. 1 Hospital of Jiaxing, Zhejiang Province, Jiaxing (China); Chen, Gongying [Oncology Department, The Affiliated Hospital Hangzhou Normal University, Hangzhou (China); Wang, Zhengrong [Taizhou Hospital, Zhejiang Province, Taizhou (China); Kong, Dexin; Zhang, Peng [Oncology Department, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou (China)

    2016-05-27

    The search for novel anti-hepatocellular carcinoma (HCC) agents is important. Mammalian target of rapamycin (mTOR) hyper-activation plays a pivotal role in promoting HCC tumorigenesis and chemoresistance. The current preclinical study evaluated the potential anti-HCC activity by a potent mTOR kinase inhibitor, WAY-600. We showed that WAY-600 inhibited survival and proliferation of HCC cell lines (HepG2 and Huh7) and primary human HCC cells. Caspase-dependent apoptosis was activated by WAY-600 in above HCC cells. Reversely, caspase inhibitors largely attenuated WAY-600's lethality against HCC cells. At the signaling level, WAY-600 blocked mTOR complex 1/2 (mTORC1/2) assemble and activation, yet activated MEK-ERK pathway in HCC cells. MEK-ERK inhibitors, PD-98059 and MEK-162, or MEK1/2 shRNA significantly potentiated WAY-600's cytotoxicity in HCC cells. Further studies showed that WAY-600 intraperitoneal (i.p.) administration in nude mice inhibited p-AKT Ser-473 and displayed significant anti-cancer activity against HepG2 xenografts. Remarkably, co-administration of MEK-162 further potentiated WAY-600's anti-HCC activity in vivo. These preclinical results demonstrate the potent anti-HCC activity by WAY-600, either alone or with MEK-ERK inhibitors. -- Highlights: •WAY-600 inhibits HCC cell survival and proliferation in vitro. •WAY-600 activates caspase-dependent apoptosis in HCC cells. •WAY-600 blocks mTORC1/2 activation, but activates MEK-ERK in HCC cells. •MEK-ERK inhibitors or MEK1/2 shRNA enhances WAY-600's cytotoxicity against HCC cells. •MEK-162 co-administration potentiates WAY-600-induced the anti-HepG2 tumor efficacy.

  16. Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods

    International Nuclear Information System (INIS)

    Mendonça, Glaydson L.F.; Costa, Stefane N.; Freire, Valder N.; Casciano, Paulo N.S.; Correia, Adriana N.; Lima-Neto, Pedro de

    2017-01-01

    Highlights: • Corrosion inhibition of carbon steel and of copper by the amino acids was studied. • Inhibition efficiencies were experimentally achieved by electrochemical impedance. • DFT and Monte Carlo methods allowed correlating molecular properties with inhibition efficiency. • The corrosion inhibition followed the electron donation the electron-back donations process. - Abstract: Six amino acids were evaluated as corrosion inhibitors for carbon steel and copper in 0.5 mol L"−"1 H_2SO_4 solution by potentiodynamic polarization and electrochemical impedance techniques allied to Density Functional Theory (DFT) and Monte Carlo computations The corrosion inhibitor rankings were: Arg > Gln > Asn > Met > Cys > Ser, for copper, and Met > Cys > Ser > Arg > Gln > Asn, for carbon steel. The DFT approach failed to explain the corrosion inhibition rating based on the HOMO and LUMO energies of the isolated amino acid molecules, while the simpler classical Monte Carlo approach, performed considering the interaction energies between the corrosion inhibitor and the metallic substrate, was successful.

  17. Inhibition drives configural superiority of illusory Gestalt: Combined behavioral and drift-diffusion model evidence.

    Science.gov (United States)

    Nie, Qi-Yang; Maurer, Mara; Müller, Hermann J; Conci, Markus

    2016-05-01

    Illusory Kanizsa figures demonstrate that a perceptually completed whole is more than the sum of its composite parts. In the current study, we explored part/whole relationships in object completion using the configural superiority effect (CSE) with illusory figures (Pomerantz & Portillo, 2011). In particular, we investigated to which extent the CSE is modulated by closure in target and distractor configurations. Our results demonstrated a typical CSE, with detection of a configural whole being more efficient than the detection of a corresponding part-level target. Moreover, the CSE was more pronounced when grouped objects were presented in distractors rather than in the target. A follow-up experiment systematically manipulated closure in whole target or, respectively, distractor configurations. The results revealed the effect of closure to be again stronger in distractor, rather than in target configurations, suggesting that closure primarily affects the inhibition of distractors, and to a lesser extent the selection of the target. In addition, a drift-diffusion model analysis of our data revealed that efficient distractor inhibition expedites the rate of evidence accumulation, with closure in distractors particularly speeding the drift toward the decision boundary. In sum, our findings demonstrate that the CSE in Kanizsa figures derives primarily from the inhibition of closed distractor objects, rather than being driven by a conspicuous target configuration. Altogether, these results support a fundamental role of inhibition in driving configural superiority effects in visual search. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Synergistic Inhibition of Carbon Steel Corrosion by Inhibitor-Blends in Chloride-Containing Simulated Cooling Water

    Energy Technology Data Exchange (ETDEWEB)

    Shaban, Abdul; Felhosi, Ilona [Hungarian Academy of Sciences, Budapest (Hungary); Vastag, Gyongyi [University of Novi Sad, Novi Sad (Serbia)

    2017-06-15

    The objective of this work was to develop efficient synergistic inhibitor combinations comprising sodium nitrite (NaNO{sub 2}) and an inhibitor-blend code named (SN-50), keeping in view of their application in industrial cooling water systems. The electrochemical characteristics of the carbon steel working electrode in simulated cooling water (SCW), without and with the addition of different combinations of the inhibitors, were investigated using electrochemical impedance spectroscopy (EIS), open circuit potential (OCP). The electrode surface changes were followed by visual characterization methods. It was demonstrated in this study that all the combinations of the inhibitors exhibited synergistic benefit and higher inhibition efficiencies than did either of the individual inhibitors. The addition of SN-50 inhibitor to the SCW shifted the OCP to more anodic values and increased the polarization resistance (R{sub p}) values of carbon steel at all applied concentrations. The higher the applied sodium nitrite concentration (in the protection concentration range), the higher the obtained R{sub p} values and the inhibition efficiency improved by increasing the inhibitor concentration.

  19. Human-Phosphate-Binding-Protein inhibits HIV-1 gene transcription and replication

    Directory of Open Access Journals (Sweden)

    Candolfi Ermanno

    2011-07-01

    Full Text Available Abstract The Human Phosphate-Binding protein (HPBP is a serendipitously discovered lipoprotein that binds phosphate with high affinity. HPBP belongs to the DING protein family, involved in various biological processes like cell cycle regulation. We report that HPBP inhibits HIV-1 gene transcription and replication in T cell line, primary peripherical blood lymphocytes and primary macrophages. We show that HPBP is efficient in naïve and HIV-1 AZT-resistant strains. Our results revealed HPBP as a new and potent anti HIV molecule that inhibits transcription of the virus, which has not yet been targeted by HAART and therefore opens new strategies in the treatment of HIV infection.

  20. Phenformin-Induced Mitochondrial Dysfunction Sensitizes Hepatocellular Carcinoma for Dual Inhibition of mTOR.

    Science.gov (United States)

    Veiga, Sonia Rosa; Ge, Xuemei; Mercer, Carol A; Hernández-Alvarez, María Isabel; Thomas, Hala Elnakat; Hernández-Losa, Javier; Ramón Y Cajal, Santiago; Zorzano, Antonio; Thomas, George; Kozma, Sara C

    2018-04-24

    Hepatocellular carcinoma (HCC) ranks second in cancer mortality and has limited therapeutic options. We recently described the synergistic effect of allosteric and ATP-site competitive inhibitors against the mammalian target of rapamycin (mTOR) for the treatment of HCC. However, such inhibitors induce glycemia and increase mitochondrial efficiency. Here we determined whether the mitochondrial complex I inhibitor Phenformin could reverse both side effects, impose an energetic-stress on cancer cells and suppress the growth of HCC. Human HCC cell lines were used in vitro to access the signaling and energetic impact of mTOR inhibitors and Phenformin, either alone or in combination. Next, the therapeutic utility of these drugs alone or in combination was investigated pre-clinically in human orthotopic tumors implanted in mice, by analyzing their impact on the tumor burden and overall survival. We found Phenformin caused mitochondrial dysfunction and fragmentation, inducing a compensatory shift to glycolysis. In contrast, dual inhibition of mTOR impaired cell growth and glycolysis, while increasing mitochondrial fusion and efficiency. In a mouse model of human HCC, dual inhibition of mTOR, together with Phenformin, was highly efficacious in controlling tumor burden. However, more striking, pretreatment with Phenformin sensitized tumors to dual inhibition of mTOR, leading to a dramatic improvement in survival. Treatment of HCC cells in vitro with the biguanide Phenformin causes a metabolic shift to glycolysis, mitochondrial dysfunction and fragmentation, and dramatically sensitizes orthotopic liver tumors to dual inhibition of mTOR. We therefore propose this therapeutic approach should be tested clinically in HCC. Copyright ©2018, American Association for Cancer Research.

  1. PI3K inhibition enhances doxorubicin-induced apoptosis in sarcoma cells.

    Directory of Open Access Journals (Sweden)

    Diana Marklein

    Full Text Available We searched for a drug capable of sensitization of sarcoma cells to doxorubicin (DOX. We report that the dual PI3K/mTOR inhibitor PI103 enhances the efficacy of DOX in several sarcoma cell lines and interacts with DOX in the induction of apoptosis. PI103 decreased the expression of MDR1 and MRP1, which resulted in DOX accumulation. However, the enhancement of DOX-induced apoptosis was unrelated to DOX accumulation. Neither did it involve inhibition of mTOR. Instead, the combination treatment of DOX plus PI103 activated Bax, the mitochondrial apoptosis pathway, and caspase 3. Caspase 3 activation was also observed in xenografts of sarcoma cells in nude mice upon combination of DOX with the specific PI3K inhibitor GDC-0941. Although the increase in apoptosis did not further impact on tumor growth when compared to the efficient growth inhibition by GDC-0941 alone, these findings suggest that inhibition of PI3K may improve DOX-induced proapoptotic effects in sarcoma. Taken together with similar recent studies of neuroblastoma- and glioblastoma-derived cells, PI3K inhibition seems to be a more general option to sensitize tumor cells to anthracyclines.

  2. [Kinetic study on inhibition effects of dansyl-L-phenylalanine and L-phenylalanine on calf intestinal alkaline phosphatase].

    Science.gov (United States)

    Li, Li-Na; Wu, Yu-Qing; Buchet, René

    2009-10-01

    To evaluate the inhibition effect of dansyl-L-phenylalanine on calf intestinal alkaline phosphatase (CIAP), UV-Vis spectrophotometric method was employed. It was found that dansyl-L-phenylalanine can selectively inhibit CIAP. The kinetic inhibition processes of dansyl-L-phenylalanine and L-phenylalanine were comparatively studied. The authors' finding elucidates that at the optimized alkaline pH of alkaline phosphatase (pH 10.4) and 37 degrees C, dansyl-L-phenylalanine can inhibit alkaline phosphatase activity of CIAP efficiently and specifically, similar as L-phenylalanine. Both inhibition types were uncompetitive inhibition resulting from the double reciprocal curve fitting of upsilon versus substrate concentrations, and the inhibition constants Ki of both inhibitors were determined to be 2.3 and 1.1 mmol L(-1) respectively, both of which were at millimolar level. The investigation of the inhibition effect of dansyl modified L-phenylalanine on calf intestinal alkaline phosphatase not only helped get insight into the detailed inhibition mechanism of L-phenylalanine on tissue specific alkaline phosphatase, such as in the case of intestinal alkaline phosphatase, but also provided the possibility to employ fluorescence spectroscopy by labeling the specific inhibitors of alkaline phosphatase with chromophoric groups.

  3. ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo.

    Science.gov (United States)

    Yin, Gang; Fan, Jin; Zhou, Wei; Ding, Qingfeng; Zhang, Jun; Wu, Xuan; Tang, Pengyu; Zhou, Hao; Wan, Bowen; Yin, Guoyong

    2017-10-10

    mTOR is a valuable oncotarget for osteosarcoma. The anti-osteosarcoma activity by a novel mTOR kinase inhibitor, CZ415, was evaluated. We demonstrated that CZ415 potently inhibited survival and proliferation of known osteosarcoma cell lines (U2OS, MG-63 and SaOs2), and primary human osteosarcoma cells. Further, CZ415 provoked apoptosis and disrupted cell cycle progression in osteosarcoma cells. CZ415 treatment in osteosarcoma cells concurrently blocked mTORC1 and mTORC2 activation. Intriguingly, ERK-MAPK activation could be a major resistance factor of CZ415. ERK inhibition (by MEK162/U0126) or knockdown (by targeted ERK1/2 shRNAs) dramatically sensitized CZ415-induced osteosarcoma cell apoptosis. In vivo , CZ415 oral administration efficiently inhibited U2OS tumor growth in mice. Its activity was further potentiated with co-administration of MEK162. Collectively, we demonstrate that ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo . CZ415 could be further tested as a promising anti-osteosarcoma agent, alone or in combination of ERK inhibition.

  4. An efficient Trojan delivery of tetrandrine by poly(N-vinylpyrrolidone-block-poly(ε-caprolactone (PVP-b-PCL nanoparticles shows enhanced apoptotic induction of lung cancer cells and inhibition of its migration and invasion

    Directory of Open Access Journals (Sweden)

    Xu H

    2013-12-01

    Full Text Available Huae Xu,1,2 Zhibo Hou,3 Hao Zhang,4 Hui Kong,2 Xiaolin Li,4 Hong Wang,2 Weiping Xie21Department of Pharmacy, 2Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China; 3First Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, People's Republic of China; 4Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of ChinaAbstract: Earlier studies have demonstrated the promising antitumor effect of tetrandrine (Tet against a series of cancers. However, the poor solubility of Tet limits its application, while its hydrophobicity makes Tet a potential model drug for nanodelivery systems. We report on a simple way of preparing drug-loaded nanoparticles formed by amphiphilic poly(N-vinylpyrrolidone-block-poly(ε-caprolactone (PVP-b-PCL copolymers with Tet as a model drug. The mean diameters of Tet-loaded PVP-b-PCL nanoparticles (Tet-NPs were between 110 nm and 125 nm with a negative zeta potential slightly below 0 mV. Tet was incorporated into PVP-b-PCL nanoparticles with high loading efficiency. Different feeding ratios showed different influences on sizes, zeta potentials, and the drug loading efficiencies of Tet-NPs. An in vitro release study shows the sustained release pattern of Tet-NPs. It is shown that the uptake of Tet-NPs is mainly mediated by the endocytosis of nanoparticles, which is more efficient than the filtration of free Tet. Further experiments including fluorescence activated cell sorting and Western blotting indicated that this Trojan strategy of delivering Tet in PVP-b-PCL nanoparticles via endocytosis leads to enhanced induction of apoptosis in the non-small cell lung cancer cell A549 line; enhanced apoptosis is achieved by inhibiting the expression of anti-apoptotic Bcl-2 and Bcl-xL proteins. Moreover, Tet-NPs more efficiently inhibit the ability of cell migration and

  5. Proprotein convertase 1/3 inhibited macrophages: A novel therapeutic based on drone macrophages.

    Science.gov (United States)

    Duhamel, Marie; Rodet, Franck; Murgoci, Adriana; Wisztorski, Maxence; Day, Robert; Fournier, Isabelle; Salzet, Michel

    2016-06-01

    We demonstrated here thanks to proteomic, that proprotein convertase 1/3 knockdown macrophages present all the characteristic of activated pro-inflammatory macrophages. TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and antitumor factors. We can control their activation by controlling one enzyme, PC1/3. In a tumor context, PC1/3 inhibition in macrophages may reactivate them and lead to a cytokine storm after stimulation "at distance" with a TLR ligand. Therefore, we name these proprotein convertase inhibited macrophages the "drone macrophages". They constitute an innovative cell therapy to treat efficiently tumors.

  6. Inhibition of Pre-Supplementary Motor Area by Continuous Theta Burst Stimulation Leads to More Cautious Decision-making and More Efficient Sensory Evidence Integration.

    Science.gov (United States)

    Tosun, Tuğçe; Berkay, Dilara; Sack, Alexander T; Çakmak, Yusuf Ö; Balcı, Fuat

    2017-08-01

    Decisions are made based on the integration of available evidence. The noise in evidence accumulation leads to a particular speed-accuracy tradeoff in decision-making, which can be modulated and optimized by adaptive decision threshold setting. Given the effect of pre-SMA activity on striatal excitability, we hypothesized that the inhibition of pre-SMA would lead to higher decision thresholds and an increased accuracy bias. We used offline continuous theta burst stimulation to assess the effect of transient inhibition of the right pre-SMA on the decision processes in a free-response two-alternative forced-choice task within the drift diffusion model framework. Participants became more cautious and set higher decision thresholds following right pre-SMA inhibition compared with inhibition of the control site (vertex). Increased decision thresholds were accompanied by an accuracy bias with no effects on post-error choice behavior. Participants also exhibited higher drift rates as a result of pre-SMA inhibition compared with the vertex inhibition. These results, in line with the striatal theory of speed-accuracy tradeoff, provide evidence for the functional role of pre-SMA activity in decision threshold modulation. Our results also suggest that pre-SMA might be a part of the brain network associated with the sensory evidence integration.

  7. Inhibition of localized attack on the aluminium alloy AA 6351 in glycol/water solutions

    Energy Technology Data Exchange (ETDEWEB)

    Monticelli, C; Brunoro, G; Zucchi, F; Fagioli, F

    1989-06-01

    The objective of this work was to examine the feasibility of enhancing pitting resistance of AA 6351 (nominal composition: 1% Si, 0.6% Mg, 0.3% Mn, balance Al) by adding suitable inhibitors to the solutions. The compounds used were two inorganic salts: sodium molybdate and sodium tungstate and two derivatives of pyrimidine: 2-aminopyrimidine (2AP) and 2-hydroxypyrimidine (2HP). The inhibiting efficiencies of these substances were tested by both short-time electrochemical tests (galvanic coupling tests and polarization curves) and long-time immersions under experimental conditions causing the localized attack. Molybdate, tungstate and, to some extent, also 2AP efficiently inhibit AA 6351 localized corrosion in degraded solutions at 80/sup 0/C and in pure boiling solutions, for long exposure periods. The short-time electrochemical tests suggest that molybdate and tungstate are able to retard the electrochemical processes occurring on both the aluminium alloy and the small copper cathodic area produced by copper deposition. On the other hand, the 2AP efficiency is attributed to some complexing capability of this pyrimidine derivative towards dissolved copper ions, that are stabilized in solution. 2HP does not prevent AA 6351 localized attack. (orig./MM).

  8. RTEL1 Inhibits Trinucleotide Repeat Expansions and Fragility

    Directory of Open Access Journals (Sweden)

    Aisling Frizzell

    2014-03-01

    Full Text Available Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG repeat expansions and fragility, likely by unwinding problematic hairpins.

  9. The susceptibility of soil enzymes to inhibition by leaf litter tannins is dependent on the tannin chemistry, enzyme class and vegetation history.

    Science.gov (United States)

    Triebwasser, Daniella J; Tharayil, Nishanth; Preston, Caroline M; Gerard, Patrick D

    2012-12-01

    By inhibiting soil enzymes, tannins play an important role in soil carbon (C) and nitrogen (N) mineralization. The role of tannin chemistry in this inhibitory process, in conjunction with enzyme classes and isoforms, is less well understood. Here, we compared the inhibition efficiencies of mixed tannins (MTs, mostly limited to angiosperms) and condensed tannins (CTs, produced mostly by gymnosperms) against the potential activity of β-glucosidase (BG), N-acetyl-glucosaminidase (NAG), and peroxidase in two soils that differed in their vegetation histories. Compared with CTs, MTs exhibited 50% more inhibition of almond (Prunus dulcis) BG activity and greater inhibition of the potential NAG activity in the gymnosperm-acclimatized soils. CTs exhibited lower BG inhibition in the angiosperm-acclimated soils, whereas both types of tannins exhibited higher peroxidase inhibition in the angiosperm soils than in gymnosperm soils. At all of the tested tannin concentrations, irrespective of the tannin type and site history, the potential peroxidase activity was inhibited two-fold more than the hydrolase activity and was positively associated with the redox-buffering efficiency of tannins. Our finding that the inhibitory activities and mechanisms of MTs and CTs are dependent on the vegetative history and enzyme class is novel and furthers our understanding of the role of tannins and soil isoenzymes in decomposition. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  10. The effect of temperature and concentration on the corrosion inhibition mechanism of an amphiphilic amido-amine in CO2 saturated solution

    OpenAIRE

    Desimone, Paula Mariela; Gordillo, Gabriel Jorge; Simison, Silvia Noemi

    2017-01-01

    The corrosion inhibition mechanism of the N-[2-[(2-aminoethyl)amino]ethyl]-9-octadecenamide on mild steel surface in CO2-saturated 5% NaCl solution has been studied. The inhibition efficiency decreases with increasing temperature. Adsorption of the inhibitor studied is found to follow the Frumkin adsorption isotherm. EIS results show that the mechanism of its corrosion inhibition at concentrations higher than critical micelle concentration is by forming a protective porous bi-layer. The a...

  11. Evaluation of Corrosion Inhibition of Mild Steel in 1 M Hydrochloric Acid Solution by Mollugo cerviana

    Directory of Open Access Journals (Sweden)

    P. Arockiasamy

    2014-01-01

    Full Text Available The inhibiting effect of methanolic extract of Mollugo cerviana plant on the corrosion of mild steel in 1 M HCl solution has been investigated by different techniques like potentiodynamic polarization, electrochemical impedance spectroscopy, and weight loss methods for five different concentrations of plant extract ranging from 25 to 1000 mg/L. The results indicated that the corrosion inhibition efficiency increased on increasing plant extract concentration till 500 mg/L and decreased on further increasing concentration. The extract was a mixed type inhibitor with the optimum inhibition concentration of 500 mg/L in potentiodynamic polarization. The adsorption of the plant extract on the mild steel surface was found to obey Langmuir adsorption isotherm. Surface analysis was also carried out to find out the surface morphology of the mild steel in the presence and in the absence of the inhibitor to find out its efficiency. The obtained results showed that the Mollugo cerviana extract acts as a good inhibitor for the corrosion of mild steel in 1 M HCl solution.

  12. Efficient systemic DNA delivery to the tumor by self-assembled nanoparticle

    Science.gov (United States)

    Tang, Hailin; Xie, Xinhua; Guo, Jiaoli; Wei, Weidong; Wu, Minqing; Liu, Peng; Kong, Yanan; Yang, Lu; Hung, Mien-Chie; Xie, Xiaoming

    2014-01-01

    There are few delivery agents that could deliver gene with high efficiency and low toxicity, especially for animal experiments. Therefore, creating vectors with good delivery efficiency and safety profile is a meaningful work. We have developed a self-assembled gene delivery system (XM001), which can more efficiently deliver DNA to multiple cell lines and breast tumor, as compared to commercial delivery agents. In addition, systemically administrated XM001-BikDD (BikDD is a mutant form of proapoptotic gene Bik) significantly inhibited the growth of human breast cancer cells and prolonged the life span in implanted nude mice. This study demonstrates that XM001 is an efficient and widespread transfection agent, which could be a promising tumor delivery vector for cancer targeted therapy.

  13. Inhibition treatment of the corrosion of lead artefacts in atmospheric conditions and by acetic acid vapour: use of sodium decanoate

    International Nuclear Information System (INIS)

    Rocca, E.; Rapin, C.; Mirambet, F.

    2004-01-01

    The efficiency of linear sodium decanoate, CH 3 (CH 2 ) 8 COONa (noted NaC 10 ), as corrosion inhibitor of lead was determined by electrochemical techniques in two corrosive mediums: ASTM D1384 standard water and acetic acid-enriched solutions. Best results were obtained with 0.05 mol l -1 of NaC 10 solution. In these conditions, the inhibition efficiency can be estimated of 99.9%. The corrosion inhibition effect was confirmed by cyclic atmospheric tests in a climatic chamber in two different conditions: water saturated vapour, and acid acetic enriched vapour simulating the atmosphere in the wooden displays in museums. Surface analyses by SEM and X-ray diffraction indicate that the metal protection is due to the formation of a protective layer mainly composed of lead decanoate Pb(C 10 ) 2 (metallic soap). This inhibition treatment was applied on objects of metallic cultural heritage: gallo-roman sarcophagus in lead. Electrochemical methods confirm the efficiency of treatment on archaeological materials. In conclusion, this inhibitor treatment seems to be very promising against the atmospheric corrosion and the corrosion by organic acid vapour in museums

  14. Inhibition of ice recrystallization and cryoprotective activity of wheat proteins in liver and pancreatic cells.

    Science.gov (United States)

    Chow-Shi-Yée, Mélanie; Briard, Jennie G; Grondin, Mélanie; Averill-Bates, Diana A; Ben, Robert N; Ouellet, François

    2016-05-01

    Efficient cryopreservation of cells at ultralow temperatures requires the use of substances that help maintain viability and metabolic functions post-thaw. We are developing new technology where plant proteins are used to substitute the commonly-used, but relatively toxic chemical dimethyl sulfoxide. Recombinant forms of four structurally diverse wheat proteins, TaIRI-2 (ice recrystallization inhibition), TaBAS1 (2-Cys peroxiredoxin), WCS120 (dehydrin), and TaENO (enolase) can efficiently cryopreserve hepatocytes and insulin-secreting INS832/13 cells. This study shows that TaIRI-2 and TaENO are internalized during the freeze-thaw process, while TaBAS1 and WCS120 remain at the extracellular level. Possible antifreeze activity of the four proteins was assessed. The "splat cooling" method for quantifying ice recrystallization inhibition activity (a property that characterizes antifreeze proteins) revealed that TaIRI-2 and TaENO are more potent than TaBAS1 and WCS120. Because of their ability to inhibit ice recrystallization, the wheat recombinant proteins TaIRI-2 and TaENO are promising candidates and could prove useful to improve cryopreservation protocols for hepatocytes and insulin-secreting cells, and possibly other cell types. TaENO does not have typical ice-binding domains, and the TargetFreeze tool did not predict an antifreeze capacity, suggesting the existence of nontypical antifreeze domains. The fact that TaBAS1 is an efficient cryoprotectant but does not show antifreeze activity indicates a different mechanism of action. The cryoprotective properties conferred by WCS120 depend on biochemical properties that remain to be determined. Overall, our results show that the proteins' efficiencies vary between cell types, and confirm that a combination of different protection mechanisms is needed to successfully cryopreserve mammalian cells. © 2016 The Protein Society.

  15. Corrosion Inhibition and Adsorption Characteristics of Tarivid on Mild Steel in H2SO4

    Directory of Open Access Journals (Sweden)

    N. O. Eddy

    2010-01-01

    Full Text Available The corrosion inhibition and adsorption characteristics of (+/--9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl-7-oxo-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid (Tarivid on the corrosion of mild steel has been studied using thermometric and gasometric methods. The study reveals that tarivid inhibits the corrosion of mild steel in H2SO4. The values of inhibition efficiency of tarivid were found to increase as its concentration increased but decreased with increase in temperature. Activation energies of the inhibited corrosion of mild steel ranged from 39.05 to 50.61 kJ/mol. Values of enthalpy change and free energy of adsorption were negative which indicated exothermic and spontaneous adsorption process. Physical adsorption mechanism is proposed from the obtained kinetic and thermodynamic parameters. Langmuir adsorption isotherm model is obeyed from the fit of the experimental data.

  16. Efficacy of Cognitive Training in Older Adults with and without Subjective Cognitive Decline Is Associated with Inhibition Efficiency and Working Memory Span, Not with Cognitive Reserve.

    Science.gov (United States)

    López-Higes, Ramón; Martín-Aragoneses, María T; Rubio-Valdehita, Susana; Delgado-Losada, María L; Montejo, Pedro; Montenegro, Mercedes; Prados, José M; de Frutos-Lucas, Jaisalmer; López-Sanz, David

    2018-01-01

    The present study explores the role of cognitive reserve, executive functions, and working memory (WM) span, as factors that might explain training outcomes in cognitive status. Eighty-one older adults voluntarily participated in the study, classified either as older adults with subjective cognitive decline or cognitively intact. Each participant underwent a neuropsychological assessment that was conducted both at baseline (entailing cognitive reserve, executive functions, WM span and depressive symptomatology measures, as well as the Mini-Mental State Exam regarding initial cognitive status), and then 6 months later, once each participant had completed the training program (Mini-Mental State Exam at the endpoint). With respect to cognitive status the training program was most beneficial for subjective cognitive decline participants with low efficiency in inhibition at baseline (explaining a 33% of Mini-Mental State Exam total variance), whereas for cognitively intact participants training gains were observed for those who presented lower WM span.

  17. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition

    Directory of Open Access Journals (Sweden)

    Daniel Simon Razik

    2013-09-01

    Full Text Available In the central nervous system, GABA transporters (GATs very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity – termed network bursts and silent periods – in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM, reaching a level of 80% at 500-1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed towards an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists.

  18. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds.

    Science.gov (United States)

    Witte, Anne-Barbara; Anestål, Karin; Jerremalm, Elin; Ehrsson, Hans; Arnér, Elias S J

    2005-09-01

    Mammalian thioredoxin reductase (TrxR) is important for cell proliferation, antioxidant defense, and redox signaling. Together with glutathione reductase (GR) it is the main enzyme providing reducing equivalents to many cellular processes. GR and TrxR are flavoproteins of the same enzyme family, but only the latter is a selenoprotein. With the active site containing selenocysteine, TrxR may catalyze reduction of a wide range of substrates, but can at the same time easily be targeted by electrophilic compounds due to the extraordinarily high reactivity of a selenolate moiety. Here we addressed the inhibition of the enzyme by major anticancer alkylating agents and platinum-containing compounds and we compared it to that of GR. We confirmed prior studies suggesting that the nitrosourea carmustine can inhibit both GR and TrxR. We next found, however, that nitrogen mustards (chlorambucil and melphalan) and alkyl sulfonates (busulfan) efficiently inhibited TrxR while these compounds, surprisingly, did not inhibit GR. Inhibitions were concentration and time dependent and apparently irreversible. Anticancer anthracyclines (daunorubicin and doxorubicin) were, in contrast to the alkylating agents, not inhibitors but poor substrates of TrxR. We also found that TrxR, but not GR, was efficiently inhibited by both cisplatin, its monohydrated complex, and oxaliplatin. Carboplatin, in contrast, could not inhibit any of the two enzymes. These findings lead us to conclude that representative compounds of the major classes of clinically used anticancer alkylating agents and most platinum compounds may easily target TrxR, but not GR. The TrxR inhibition should thereby be considered as a factor that may contribute to the cytotoxicity seen upon clinical use of these drugs.

  19. Proactive modulation of long-interval intracortical inhibition during response inhibition

    Science.gov (United States)

    Cowie, Matthew J.; MacDonald, Hayley J.; Cirillo, John

    2016-01-01

    Daily activities often require sudden cancellation of preplanned movement, termed response inhibition. When only a subcomponent of a whole response must be suppressed (required here on Partial trials), the ensuing component is markedly delayed. The neural mechanisms underlying partial response inhibition remain unclear. We hypothesized that Partial trials would be associated with nonselective corticomotor suppression and that GABAB receptor-mediated inhibition within primary motor cortex might be responsible for the nonselective corticomotor suppression contributing to Partial trial response delays. Sixteen right-handed participants performed a bimanual anticipatory response inhibition task while single- and paired-pulse transcranial magnetic stimulation was delivered to elicit motor evoked potentials in the left first dorsal interosseous muscle. Lift times, amplitude of motor evoked potentials, and long-interval intracortical inhibition were examined across the different trial types (Go, Stop-Left, Stop-Right, Stop-Both). Go trials produced a tight distribution of lift times around the target, whereas those during Partial trials (Stop-Left and Stop-Right) were substantially delayed. The modulation of motor evoked potential amplitude during Stop-Right trials reflected anticipation, suppression, and subsequent reinitiation of movement. Importantly, suppression was present across all Stop trial types, indicative of a “default” nonselective inhibitory process. Compared with blocks containing only Go trials, inhibition increased when Stop trials were introduced but did not differ between trial types. The amount of inhibition was positively correlated with lift times during Stop-Right trials. Tonic levels of inhibition appear to be proactively modulated by task context and influence the speed at which unimanual responses occur after a nonselective “brake” is applied. PMID:27281744

  20. Efficient Inhibition of wear debris-induced inflammation by locally delivered siRNA

    International Nuclear Information System (INIS)

    Peng Xiaochun; Tao Kun; Cheng Tao; Zhu Junfeng; Zhang Xianlong

    2008-01-01

    Aseptic loosening is the most common long-term complication of total joint replacement, which is associated with the generation of wear debris. The purpose of this study was to investigate the inhibitory effect of small interfering RNA (siRNA) targeting tumor necrosis factor-α (TNF-α) on wear debris-induced inflammation. A local delivery of lentivirus-mediated TNF-α siRNA into the modified murine air pouch, which was stimulated by polymethylmethacrylate (PMMA) particles, resulted in significant blockage of TNF-α both in mRNA and protein levels for up to 4 weeks. In addition, significant down-regulation of interleukin-1 (IL-1) and interleukin-6 (IL-6) was observed in TNF-α siRNA-treated pouches. The safety profile of gene therapy was proven by Bioluminescent assay and quantitative fluorescent flux. Histological analysis revealed less inflammatory responses (thinner pouch membrane and decreased cellular infiltration) in TNF-α siRNA-treated pouches. These findings suggest that local delivery of TNF-α siRNA might be an excellent therapeutic candidate to inhibit particle-induced inflammation.

  1. The effect of temperature and concentration on the corrosion inhibition mechanism of an amphiphilic amido-amine in CO2 saturated solution

    International Nuclear Information System (INIS)

    Desimone, M.P.; Gordillo, G.; Simison, S.N.

    2011-01-01

    Highlights: → Behaviour of N-[2-[(2-aminoethyl)amino]ethyl]-9-octadecenamide (AAOA) as CO 2 corrosion inhibitor. → The adsorption of the AAOA corrosion inhibitor obeys a Frumkin adsorption isotherm. → The inhibition efficiency of the AAOA depends on temperature and concentration. → There is a change in the adsorption mode of the inhibitor with concentration. → AAOA is mainly physi- or chemisorbed for low or high concentrations, respectively. - Abstract: The corrosion inhibition mechanism of the N-[2-[(2-aminoethyl)amino]ethyl]-9-octadecenamide on mild steel surface in CO 2 -saturated 5% NaCl solution has been studied. The inhibition efficiency decreases with increasing temperature. Adsorption of the inhibitor studied is found to follow the Frumkin adsorption isotherm. EIS results show that the mechanism of its corrosion inhibition at concentrations higher than critical micelle concentration is by forming a protective porous bi-layer. The activation energy, thermodynamic parameters and electrochemical results reveal a change in the adsorption mode of the inhibitor studied: the inhibitor could primarily be physically adsorbed at low concentrations, while chemisorption is favoured as concentration increases.

  2. Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides

    International Nuclear Information System (INIS)

    Vegt, Erik; Eek, Annemarie; Oyen, Wim J.G.; Gotthardt, Martin; Boerman, Otto C.; Jong, Marion de

    2010-01-01

    In peptide-receptor radionuclide therapy (PRRT), the maximum activity dose that can safely be administered is limited by high renal uptake and retention of radiolabelled peptides. The kidney radiation dose can be reduced by coinfusion of agents that competitively inhibit the reabsorption of radiolabelled peptides, such as positively charged amino acids, Gelofusine, or trypsinised albumin. The aim of this study was to identify more specific and potent inhibitors of the kidney reabsorption of radiolabelled peptides, based on albumin. Albumin was fragmented using cyanogen bromide and six albumin-derived peptides with different numbers of electric charges were selected and synthesised. The effect of albumin fragments (FRALB-C) and selected albumin-derived peptides on the internalisation of 111 In-albumin, 111 In-minigastrin, 111 In-exendin and 111 In-octreotide by megalin-expressing cells was assessed. In rats, the effect of Gelofusine and albumin-derived peptides on the renal uptake and biodistribution of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide was determined. FRALB-C significantly reduced the uptake of all radiolabelled peptides in vitro. The albumin-derived peptides showed different potencies in reducing the uptake of 111 In-albumin, 111 In-exendin and 111 In-minigastrin in vitro. The most efficient albumin-derived peptide (peptide 6), was selected for in vivo testing. In rats, 5 mg of peptide 6 very efficiently inhibited the renal uptake of 111 In-minigastrin, by 88%. Uptake of 111 In-exendin and 111 In-octreotide was reduced by 26 and 33%, respectively. The albumin-derived peptide 6 efficiently inhibited the renal reabsorption of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide and is a promising candidate for kidney protection in PRRT. (orig.)

  3. Corrosion inhibition properties of pyrazolylindolenine compounds on copper surface in acidic media

    Directory of Open Access Journals (Sweden)

    Ebadi Mehdi

    2012-12-01

    Full Text Available Abstract Background The corrosion inhibition performance of pyrazolylindolenine compounds, namely 4-(3,3-dimethyl-3H-indol-2-yl-pyrazole-1-carbothioamide (InPzTAm, 4-(3,3-dimethyl-3H-indol-2-yl-1H-pyrazole-1-carbothiohydrazide (InPzTH and 3,3-dimethyl-2-(1-phenyl-1H-pyrazol-4-yl-3H-indole (InPzPh, on copper in 1M HCl solution is investigated by electrochemical impedance spectroscopy (EIS, open circuit potential (OCP and linear scan voltammetry (LSV techniques. Results The results show that the corrosion rate of copper is diminished by the compounds with the inhibition strength in the order of: InPzTAm> InPzTH > InPzPh. The corrosion inhibition efficiencies for the three inhibitors are 94.0, 91.4 and 79.3, for InPzTAm, InPzTH and InPzPh respectively with the same inhibitor concentration (2 mM. Conclusion From the EIS, OCP and LSV results it was concluded that pyrazolylindolenine compounds with S-atom (with an amine group have illustrated better corrosion inhibition performance compared to hydrazine and phenyl group.

  4. Mechanism of inhibition of catalase by nitro and nitroso compounds.

    Science.gov (United States)

    Titov, V Yu; Petrenko, Yu M; Vanin, A F

    2008-01-01

    Dinitrosyl iron complexes (DNIC) with thiolate ligands and S-nitrosothiols, which are NO and NO+ donors, share the earlier demonstrated ability of nitrite for inhibition of catalase. The efficiency of inhibition sharply (by several orders in concentration of these agents) increases in the presence of chloride, bromide, and thiocyanate. The nitro compounds tested--nitroarginine, nitroglycerol, nitrophenol, and furazolidone--gained the same inhibition ability after incubation with ferrous ions and thiols. This is probably the result of their transformation into DNIC. None of these substances lost the inhibitory effect in the presence of the well known NO scavenger oxyhemoglobin. This fact suggests that NO+ ions rather than neutral NO molecules are responsible for the enzyme inactivation due to nitrosation of its structures. The enhancement of catalase inhibition in the presence of halide ions and thiocyanate might be caused by nitrosyl halide formation. The latter protected nitrosonium ions against hydrolysis, thereby ensuring their transfer to the targets in enzyme molecules. The addition of oxyhemoglobin plus iron chelator o-phenanthroline destroying DNIC sharply attenuated the inhibitory effect of DNIC on catalase. o-Phenanthroline added alone did not influence this effect. Oxyhemoglobin is suggested to scavenge nitrosonium ions released from decomposing DNIC, thereby preventing catalase nitrosation. The mixture of oxyhemoglobin and o-phenanthroline did not affect the inhibitory action of nitrite or S-nitrosothiols on catalase.

  5. O-sulfated bacterial polysaccharides with low anticoagulant activity inhibit metastasis.

    Science.gov (United States)

    Borgenström, Marjut; Wärri, Anni; Hiilesvuo, Katri; Käkönen, Rami; Käkönen, Sanna; Nissinen, Liisa; Pihlavisto, Marjo; Marjamäki, Anne; Vlodavsky, Israel; Naggi, Annamaria; Torri, Giangiacomo; Casu, Benito; Veromaa, Timo; Salmivirta, Markku; Elenius, Klaus

    2007-07-01

    Heparin-like polysaccharides possess the capacity to inhibit cancer cell proliferation, angiogenesis, heparanase-mediated cancer cell invasion, and cancer cell adhesion to vascular endothelia via adhesion receptors, such as selectins. The clinical applicability of the antitumor effect of such polysaccharides, however, is compromised by their anticoagulant activity. We have compared the potential of chemically O-sulfated and N,O-sulfated bacterial polysaccharide (capsular polysaccharide from E. COLI K5 [K5PS]) species to inhibit metastasis of mouse B16-BL6 melanoma cells and human MDA-MB-231 breast cancer cells in two in vivo models. We demonstrate that in both settings, O-sulfated K5PS was a potent inhibitor of metastasis. Reducing the molecular weight of the polysaccharide, however, resulted in lower antimetastatic capacity. Furthermore, we show that O-sulfated K5PS efficiently inhibited the invasion of B16-BL6 cells through Matrigel and also inhibited the in vitro activity of heparanase. Moreover, treatment with O-sulfated K5PS lowered the ability of B16-BL6 cells to adhere to endothelial cells, intercellular adhesion molecule-1, and P-selectin, but not to E-selectin. Importantly, O-sulfated K5PSs were largely devoid of anticoagulant activity. These findings indicate that O-sulfated K5PS polysaccharide should be considered as a potential antimetastatic agent.

  6. Proprotein convertase 1/3 inhibited macrophages: A novel therapeutic based on drone macrophages

    Directory of Open Access Journals (Sweden)

    Marie Duhamel

    2016-06-01

    Full Text Available We demonstrated here thanks to proteomic, that proprotein convertase 1/3 knockdown macrophages present all the characteristic of activated pro-inflammatory macrophages. TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and antitumor factors. We can control their activation by controlling one enzyme, PC1/3. In a tumor context, PC1/3 inhibition in macrophages may reactivate them and lead to a cytokine storm after stimulation “at distance” with a TLR ligand. Therefore, we name these proprotein convertase inhibited macrophages the “drone macrophages”. They constitute an innovative cell therapy to treat efficiently tumors.

  7. The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium

    International Nuclear Information System (INIS)

    Obot, I.B.; Obi-Egbedi, N.O.; Umoren, S.A.

    2009-01-01

    The effect of iodide ions on the inhibitive performance of 2,3-diaminonaphthalene (2,3-DAN) in 1 M HCl for aluminium corrosion has been studied using hydrogen evolution (gasometry) measurements at 30 and 40 deg. C. Results obtained showed that the presence of 2,3-DAN molecules in the corrosive medium (1 M HCl solution) inhibits the corrosion process of aluminium and as the concentration of 2,3-DAN increases the inhibition efficiency also increased at the studied temperatures. A synergistic effect was observed between KI and 2,3-DAN. The experimental results suggest that the presence of iodide ions in the solutions stabilized the adsorption of 2,3-DAN molecules on the metal surfaces and, therefore improve the inhibition efficiency of 2,3-DAN. Phenomenon of physical adsorption is proposed for the inhibition and the process followed the Freundlich adsorption isotherm. The activation energy (E a ), heat of adsorption (Q ads ) and free energy of adsorption for the corrosion process (ΔG ads ) have been evaluated at the different temperatures and the values support the results obtained. Some quantum chemical parameters and the Mulliken charge densities for 2,3-diaminonaphthalene were calculated by the AM1 Semi-empirical method to provide further insight into the mechanism of inhibition of the corrosion process

  8. Inhibition of APOBEC3G Activity Impedes Double-Strand DNA Repair

    Science.gov (United States)

    Prabhu, Ponnandy; Shandilya, Shivender; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A.; Kotler, Moshe

    2015-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in dsDNA damage, such as ionizing irradiation (IR) and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases sensitivity of lymphoma cells to IR. In the current study, we show that additional peptides derived from Vif, A3G and A3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, while, replacing a single amino acid in the LYYF motif completely abrogate inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break (DSB) repair after radiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit DSB repair halts their propagation. These results suggest that A3G may be a potential therapeutic target amenable to peptide and peptidomimetic inhibition. PMID:26460502

  9. Inhibition of APOBEC3G activity impedes double-stranded DNA repair.

    Science.gov (United States)

    Prabhu, Ponnandy; Shandilya, Shivender M D; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A; Kotler, Moshe

    2016-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to ionizing radiation. In the current study, we show that additional peptides derived from Vif, A3G, and APOBEC3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, whereas replacing a single residue in the LYYF motif completely abrogates inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break repair after irradiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit double-strand break repair halts their propagation. These results suggest that A3G may be a potential therapeutic target that is amenable to peptide and peptidomimetic inhibition. © 2015 FEBS.

  10. Inhibition of glycolysis by misonidazole in hypoxic cells

    International Nuclear Information System (INIS)

    Ling, L.; Sutherland, R.

    1984-01-01

    Inhibition of glycolysis has been postulated to be a mechanism of misonidazole (MISO) toxicity in hypoxic cells. To investigate the effect of MISO on glycolysis, glucose transport and its consumption and lactate formation were measured. Exponential EMT6 cells (10/sup 6/ cells/ml) were made hypoxix by continuous gassing in 3% CO/sub 2/ in N/sub 2/. They were then treated with 5mM MISO for various times, then washed and analysed for their rates of anaerobic glycolysis. Glucose and lactate content were determined enzymatically. The rates of both glucose consumption and lactate formation decreased after 30 min hypoxic incubation with MISO. After 90 min, the rates were not measurable even though the cells still excluded Trypan Blue. There was, however, a parallel decrease in plating efficiency. These data suggest that the inhibition of glycolysis is an important mechanism of hypoxic toxicity of MISO. To locate the site of inhibition, studies were initiated to look at glucose transport by following the uptake of /sup 14/-C-3-0-methyl-glucose, a nonmetabolised glucose analog. Results obtained so far indicate that up to 90 min of hypoxic incubation with MISO, there was no change in the kinetics of the uptake of his analog. Therefore, the results showed that in hypoxic cells treated with MISO, the glucose transport system was unaffected. However, there was a rapid decrease in anaerobic glycolysis

  11. Energy-efficient buildings: Does the marketplace work?

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.

    1996-12-31

    For a variety of reasons, U.S. households, businesses, manufacturers, and government agencies all fail to take full advantage of cost-effective, energy-efficiency opportunities. Despite a growing environmental ethic among Americans and a concern for energy independence, consumers in this country are underinvesting in technologies, products, and practices that would cut their energy bills. The result is a large untapped potential for improving energy productivity, economic competitiveness, environmental quality, and energy security. The thesis of this paper is that the marketplace for energy efficiency, in general, is not operating perfectly, and the marketplace for energy-efficient buildings, in particular, is flawed. The reasons for underinvestments in cost-effective, energy efficiency are numerous and complicated. They also vary from sector to sector: the principal causes of energy inefficiencies in agriculture, manufacturing, and transportation are not the same as the causes of inefficiencies in homes and office buildings, although there are some similarities. One of the reasons for these differences is that the structure of marketplace for delivering new technologies and products in each sector differs. Energy-efficiency improvements in the buildings sector is critical to reducing greenhouse gas emissions, since most of the energy consumed in buildings comes from the burning of fossil fuels. This paper therefore begins by describing energy use and energy trends in the U.S. buildings sector. Characteristics of the marketplace for delivering energy efficiency technologies and products are then described in detail, arguing that this marketplace structure significantly inhibits rapid efficiency improvements.

  12. Lysionotin attenuates Staphylococcus aureus pathogenicity by inhibiting α-toxin expression.

    Science.gov (United States)

    Teng, Zihao; Shi, Dongxue; Liu, Huanyu; Shen, Ziying; Zha, Yonghong; Li, Wenhua; Deng, Xuming; Wang, Jianfeng

    2017-09-01

    α-Toxin, one of the best known pore-forming proteins produced by Staphylococcus aureus (S. aureus), is a critical virulence factor in multiple infections. The necessity of α-toxin for S. aureus pathogenicity suggests that this toxin is an important target for the development of a potential treatment strategy. In this study, we showed that lysionotin, a natural compound, can inhibit the hemolytic activity of culture supernatants by S. aureus by reducing α-toxin expression. Using real-time PCR analysis, we showed that transcription of hla (the gene encoding α-toxin) and agr (the locus regulating hla) was significantly inhibited by lysionotin. Lactate dehydrogenase and live/dead assays indicated that lysionotin effectively protected human alveolar epithelial cells against S. aureus, and in vivo studies also demonstrated that lysionotin can protect mice from pneumonia caused by S. aureus. These findings suggest that lysionotin is an efficient inhibitor of α-toxin expression and shows significant protection against S. aureus in vitro and in vivo. This study supports a potential strategy for the treatment of S. aureus infection by inhibiting the expression of virulence factors and indicates that lysionotin may be a potential treatment for S. aureus pneumonia.

  13. Corrosion inhibition of carbon steel XC70 in H 2 SO 4 solution by ...

    African Journals Online (AJOL)

    In this work, we studied the efficiency of corrosion inhibition of carbon steel XC70 in H2SO4 0.5 M aqueous solution using ferrocenyl derivatives synthesized in our laboratory, this compound is: 3-(ferrocenylmethylamine)benzonitrile. The inhibitory potential of this compound was determined by electrochemical techniques ...

  14. New Cinchona Oximes Evaluated as Reactivators of Acetylcholinesterase and Butyrylcholinesterase Inhibited by Organophosphorus Compounds

    Directory of Open Access Journals (Sweden)

    Maja Katalinić

    2017-07-01

    Full Text Available For the last six decades, researchers have been focused on finding efficient reactivators of organophosphorus compound (OP-inhibited acetylcholinesterase (AChE and butyrylcholinesterase (BChE. In this study, we have focused our research on a new oxime scaffold based on the Cinchona structure since it was proven to fit the cholinesterases active site and reversibly inhibit their activity. Three Cinchona oximes (C1, C2, and C3, derivatives of the 9-oxocinchonidine, were synthesized and investigated in reactivation of various OP-inhibited AChE and BChE. As the results showed, the tested oximes were more efficient in the reactivation of BChE and they reactivated enzyme activity to up to 70% with reactivation rates similar to known pyridinium oximes used as antidotes in medical practice today. Furthermore, the oximes showed selectivity towards binding to the BChE active site and the determined enzyme-oxime dissociation constants supported work on the future development of inhibitors in other targeted studies (e.g., in treatment of neurodegenerative disease. Also, we monitored the cytotoxic effect of Cinchona oximes on two cell lines Hep G2 and SH-SY5Y to determine the possible limits for in vivo application. The cytotoxicity results support future studies of these compounds as long as their biological activity is targeted in the lower micromolar range.

  15. Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: Experimental and theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Obot, I.B. [Department of Chemistry, Faculty of Science, University of Uyo, P.M.B. 1017, Uyo, Akwa Ibom State (Nigeria)], E-mail: proffoime@yahoo.com; Obi-Egbedi, N.O. [Department of Chemistry, University of Ibadan, Ibadan (Nigeria)

    2010-01-15

    Ketoconazole (KCZ) has been evaluated as a corrosion inhibitor for mild steel in aerated 0.1 M H{sub 2}SO{sub 4} by gravimetric method. The effect of KCZ on the corrosion rate was determined at various temperatures and concentrations. The inhibition efficiency increases with increase in inhibitor concentration but decrease with rise in temperature. Adsorption followed the Langmuir isotherm with negative values of {delta}G{sub ads}{sup 0}, suggesting a stable and a spontaneous inhibition process. Quantum chemical approach was further used to calculate some electronic properties of the molecule in order to ascertain any correlation between the inhibitive effect and molecular structure of ketoconazole.

  16. Mechanism insight of pollutant degradation and bromate inhibition by Fe-Cu-MCM-41 catalyzed ozonation.

    Science.gov (United States)

    Chen, Weirui; Li, Xukai; Tang, Yiming; Zhou, Jialu; Wu, Dan; Wu, Yin; Li, Laisheng

    2018-03-15

    A flexible catalyst, Fe-Cu-MCM-41, was employed to enhance diclofenac (DCF) mineralization and inhibit bromate formation in catalytic ozonation process. Greater TOC removal was achieved in Fe-Cu-MCM-41/O 3 process (78%) than those in Fe-MCM-41/O 3 (65%), Cu-MCM-41/O 3 (73%) and sole ozonation (42%). But it was interesting that both Cu-MCM-41/O 3 and Fe-MCM-41/O 3 achieved 93% bromate inhibition efficiency, only 71% inhibition efficiency was observed in Fe-Cu-MCM-41/O 3 . Influence of pH, TBA/NaHSO 3 and detection of by-products were conducted to explore the mechanism. By Pyridine adsorption-IR and XPS, a relationship was found among activity of catalysts, Lewis acid sites and electron transfer effect between Fe (II/III) and Cu (I/II). Fe-Cu-MCM-41 promoted ozone decomposition to generate OH, which accounted for enhanced DCF mineralization. The consumption of aqueous O 3 also suppressed the oxidative of Br - and HBrO/Br - . More HBrO/BrO - accumulated in catalytic ozonation process and less bromate generated. Bromate formation in Fe-Cu-MCM-41/O 3 process was sensitive with pH value, the acidic condition was not favor for bromate formation. Both DCF mineralization and bromate inhibition were influenced by surface reaction. Moreover, Fe-Cu-MCM-41 showed excellent catalytic performance in suppressing the accumulation of carboxylic acid, especially for oxalic acid. Nearly no oxalic acid was detected during Fe-Cu-MCM-41/O 3 process. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Kaempferol Identified by Zebrafish Assay and Fine Fractionations Strategy from Dysosma versipellis Inhibits Angiogenesis through VEGF and FGF Pathways

    Science.gov (United States)

    Liang, Fang; Han, Yuxiang; Gao, Hao; Xin, Shengchang; Chen, Shaodan; Wang, Nan; Qin, Wei; Zhong, Hanbing; Lin, Shuo; Yao, Xinsheng; Li, Song

    2015-01-01

    Natural products are a rich resource for the discovery of therapeutic substances. By directly using 504 fine fractions from isolated traditional Chinese medicine plants, we performed a transgenic zebrafish based screen for anti-angiogenesis substances. One fraction, DYVE-D3, was found to inhibit the growth of intersegmental vessels in the zebrafish vasculature. Bioassay-guided isolation of DYVE-D3 indicates that the flavonoid kaempferol was the active substance. Kaempferol also inhibited the proliferation and migration of HUVECs in vitro. Furthermore, we found that kaempferol suppressed angiogenesis through inhibiting VEGFR2 expression, which can be enhanced by FGF inhibition. In summary, this study shows that the construction of fine fraction libraries allows efficient identification of active substances from natural products. PMID:26446489

  18. Corrosion Inhibition of Aluminium using 3-Hydroxy flavone in the Presence of Quarternary Ammonium Salts in NaOH Medium

    International Nuclear Information System (INIS)

    Princey, J. Morris; Nagarajan, Prabavathi

    2012-01-01

    The anticorrosive effect of 3-Hydroxyflavone (3HF) in combination with quarternary ammonium bromide and iodide salts (QAB and QAI) for aluminium corrosion in NaOH medium was studied at the temperature range of 303K-323K using weight loss study, potentiodynamic polarization study and impedance spectroscopic measurements. The results revealed that the inhibition efficiency increases with the inhibitor concentration and it further increases on the addition of quarternary ammonium bromide and iodide salts. The enhanced inhibition efficiency of the inhibitor in the presence of quarternary ammonium salts may be due to synergistic effect. The adsorption process of 3HF on the aluminium surface obeys Langmuir's adsorption isotherm. The mechanism of adsorption is further supported by Scanning Electron Microscopic study (SEM)

  19. Critical significance of the region between Helix 1 and 2 for efficient dominant-negative inhibition by conversion-incompetent prion protein.

    Directory of Open Access Journals (Sweden)

    Yuzuru Taguchi

    Full Text Available Prion diseases are fatal infectious neurodegenerative disorders in man and animals associated with the accumulation of the pathogenic isoform PrP(Sc of the host-encoded prion protein (PrP(c. A profound conformational change of PrP(c underlies formation of PrP(Sc and prion propagation involves conversion of PrP(c substrate by direct interaction with PrP(Sc template. Identifying the interfaces and modalities of inter-molecular interactions of PrPs will highly advance our understanding of prion propagation in particular and of prion-like mechanisms in general. To identify the region critical for inter-molecular interactions of PrP, we exploited here dominant-negative inhibition (DNI effects of conversion-incompetent, internally-deleted PrP (ΔPrP on co-expressed conversion-competent PrP. We created a series of ΔPrPs with different lengths of deletions in the region between first and second α-helix (H1∼H2 which was recently postulated to be of importance in prion species barrier and PrP fibril formation. As previously reported, ΔPrPs uniformly exhibited aberrant properties including detergent insolubility, limited protease digestion resistance, high-mannose type N-linked glycans, and intracellular localization. Although formerly controversial, we demonstrate here that ΔPrPs have a GPI anchor attached. Surprisingly, despite very similar biochemical and cell-biological properties, DNI efficiencies of ΔPrPs varied significantly, dependant on location and inversely correlated with the size of deletion. This data demonstrates that H1∼H2 and the region C-terminal to it are critically important for efficient DNI. It also suggests that this region is involved in PrP-PrP interaction and conversion of PrP(C into PrP(Sc. To reconcile the paradox of how an intracellular PrP can exert DNI, we demonstrate that ΔPrPs are subject to both proteasomal and lysosomal/autophagic degradation pathways. Using autophagy pathways ΔPrPs obtain access to the locale

  20. AAV-Mediated Gene Targeting Is Significantly Enhanced by Transient Inhibition of Nonhomologous End Joining or the Proteasome In Vivo

    Science.gov (United States)

    Paulk, Nicole K.; Loza, Laura Marquez; Finegold, Milton J.

    2012-01-01

    Abstract Recombinant adeno-associated virus (rAAV) vectors have clear potential for use in gene targeting but low correction efficiencies remain the primary drawback. One approach to enhancing efficiency is a block of undesired repair pathways like nonhomologous end joining (NHEJ) to promote the use of homologous recombination. The natural product vanillin acts as a potent inhibitor of NHEJ by inhibiting DNA-dependent protein kinase (DNA-PK). Using a homology containing rAAV vector, we previously demonstrated in vivo gene repair frequencies of up to 0.1% in a model of liver disease hereditary tyrosinemia type I. To increase targeting frequencies, we administered vanillin in combination with rAAV. Gene targeting frequencies increased up to 10-fold over AAV alone, approaching 1%. Fah−/−Ku70−/− double knockout mice also had increased gene repair frequencies, genetically confirming the beneficial effects of blocking NHEJ. A second strategy, transient proteasomal inhibition, also increased gene-targeting frequencies but was not additive to NHEJ inhibition. This study establishes the benefit of transient NHEJ inhibition with vanillin, or proteasome blockage with bortezomib, for increasing hepatic gene targeting with rAAV. Functional metabolic correction of a clinically relevant disease model was demonstrated and provided evidence for the feasibility of gene targeting as a therapeutic strategy. PMID:22486314

  1. RTEL1 inhibits trinucleotide repeat expansions and fragility.

    Science.gov (United States)

    Frizzell, Aisling; Nguyen, Jennifer H G; Petalcorin, Mark I R; Turner, Katherine D; Boulton, Simon J; Freudenreich, Catherine H; Lahue, Robert S

    2014-03-13

    Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG) repeat expansions and fragility, likely by unwinding problematic hairpins. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Corrosion inhibition of iota-carrageenan natural polymer on aluminum in presence of zwitterion mediator in HCl media

    International Nuclear Information System (INIS)

    Fares, Mohammad M.; Maayta, A.K.; Al-Mustafa, Jamil A.

    2012-01-01

    Highlights: ► Inhibition of Al by ι-carrageenan in the presence of zwitterion mediator was investigated. ► Considerable improvement in inhibition efficiency observed in the presence of zwitterion mediator. ► Coherent physical adsorption layer was evidenced by kinetic and thermodynamic parameters. ► Small but consistent fractured island layers observed after acid exposure as revealed by SEM images. - Abstract: ι-Carrageenan a natural polymer has been used as corrosion inhibitor of aluminum in presence of pefloxacin mesylate, acting as zwitterionic mediator, in acidic medium. Considerable improvement in inhibition efficiency occurred in the presence of the mediator. Activation energy of corrosion and other thermodynamic parameters such as standard free energy, standard enthalpy, and standard entropy of the adsorption process revealed better and well-ordered physical adsorption layers in presence of pefloxacin. Adsorption isotherms in absence or presence of pefloxacin mediator appropriately fit in the Langmuir isotherms. The scanning electron microscope (SEM) images demonstrated smooth, glossy, and relatively coherent adsorption layers of the inhibitor on the metal surface in aqueous solution. After the exposure to 2.0 M HCl for 2 h, a smaller but consistent regular shaped fractured layer is obtained.

  3. Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions

    Directory of Open Access Journals (Sweden)

    Thabo Peme

    2015-09-01

    Full Text Available The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS, Amaranth (AM, Allura Red (AR, Tartrazine (TZ and Fast Green (FG, for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I− ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.

  4. Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions.

    Science.gov (United States)

    Peme, Thabo; Olasunkanmi, Lukman O; Bahadur, Indra; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E

    2015-09-02

    The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS), Amaranth (AM), Allura Red (AR), Tartrazine (TZ) and Fast Green (FG), for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I(-)) ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.

  5. Detoxification of Pesticide-Containing Wastewater with FeIII, Activated Carbon and Fenton Reagent and Its Control Using Three Standardized Bacterial Inhibition Tests

    Directory of Open Access Journals (Sweden)

    Eduard Rott

    2017-12-01

    Full Text Available Discharge of toxic industrial wastewaters into biological wastewater treatment plants may result in inhibition of activated sludge bacteria (ASB. In order to find an appropriate method of detoxification, the wastewater of a pesticide-processing plant in Vietnam was treated with three different methods (FeIII, powdered activated carbon (PAC, Fenton (FeII/H2O2 analyzing the detoxification effect with the nitrification inhibition test (NIT, respiration inhibition test (RIT and luminescent bacteria test (LBT. The heterotrophic ASB were much more resistant to the wastewater than the autotrophic nitrificants. The NIT turned out to be more suitable than the RIT since the NIT was less time-consuming and more reliable. In addition, the marine Aliivibrio fischeri were more sensitive than the nitrificants indicating that a lack of inhibition in the very practical and time-efficient LBT correlates with a lack of nitrification inhibition. With 95%, the Fenton method showed the highest efficiency regarding the chemical oxygen demand (COD removal. Although similar COD removal (60–65% was found for both the FeIII and the PAC method, the inhibitory effect of the wastewater was reduced much more strongly with PAC. Both the NIT and the LBT showed that the PAC and Fenton methods led to a similar reduction in the inhibitory effect.

  6. INHIBITION IN SPEAKING PERFORMANCE

    OpenAIRE

    Humaera, Isna

    2015-01-01

    The most common problem encountered by the learner in the languageacquisition process is learner inhibition. Inhibition refers to a temperamentaltendency to display wariness, fearfulness, or restrain in response tounfamiliar people, objects, and situations. There are some factors that causeinhibition, such as lack of motivation, shyness, self-confidence, self-esteem,and language ego. There are also levels of inhibition, it refers to kinds ofinhibition and caused of inhibition itself. Teacher ...

  7. Cytostatic versus cytocidal activities of chloroquine analogues and inhibition of hemozoin crystal growth.

    Science.gov (United States)

    Gorka, Alexander P; Alumasa, John N; Sherlach, Katy S; Jacobs, Lauren M; Nickley, Katherine B; Brower, Jonathan P; de Dios, Angel C; Roepe, Paul D

    2013-01-01

    We report an improved, nonhazardous, high-throughput assay for in vitro quantification of antimalarial drug inhibition of β-hematin (hemozoin) crystallization performed under conditions that are more physiological relative to previous assays. The assay uses the differential detergent solubility of crystalline and noncrystalline forms of heme and is optimized via the use of lipid catalyst. Using this assay, we quantify the effect of pH on the crystal growth-inhibitory activities of current quinoline antimalarials, evaluate the catalytic efficiencies of different lipids, and test for a possible correlation between hemozoin inhibition by drugs versus their antiplasmodial activity. Consistent with several previous reports, we found a good correlation between hemozoin inhibition potency versus cytostatic antiplasmodial potency (50% inhibitory concentration) for a series of chloroquine (CQ) analogues. However, we found no correlation between hemozoin inhibition potency and cytocidal antiplasmodial potency (50% lethal dose) for the same drugs, suggesting that cellular targets for these two layers of 4-aminoquinoline drug activity differ. This important concept is also explored further for QN and its stereoisomers in the accompanying paper (A. P. Gorka, K. S. Sherlach, A. C. de Dios, and P. D. Roepe, Antimicrob. Agents Chemother. 57:365-374, 2013).

  8. Oestrogen directly inhibits the cardiovascular L-type Ca2+ channel Cav1.2

    International Nuclear Information System (INIS)

    Ullrich, Nina D.; Koschak, Alexandra; MacLeod, Kenneth T.

    2007-01-01

    Oestrogen can modify the contractile function of vascular smooth muscle and cardiomyocytes. The negative inotropic actions of oestrogen on the heart and coronary vasculature appear to be mediated by L-type Ca 2+ channel (Ca v 1.2) inhibition, but the underlying mechanisms remain elusive. We tested the hypothesis that oestrogen directly inhibits the cardiovascular L-type Ca 2+ current, I CaL . The effect of oestrogen on I CaL was measured in Ca v 1.2-transfected HEK-293 cells using the whole-cell patch-clamp technique. The current revealed typical activation and inactivation profiles of nifedipine- and cadmium-sensitive I CaL . Oestrogen (50 μM) rapidly reduced I CaL by 50% and shifted voltage-dependent activation and availability to more negative potentials. Furthermore, oestrogen blocked the Ca 2+ channel in a rate-dependent way, exhibiting higher efficiency of block at higher stimulation frequencies. Our data suggest that oestrogen inhibits I CaL through direct interaction of the steroid with the channel protein

  9. Recent Advances for High-Efficiency Sources of Single Photons Based on Photonic Nanowires

    DEFF Research Database (Denmark)

    Gerard, J. M.; Claudon, J.; Munsch, M.

    2012-01-01

    Photonic nanowires have recently been used to tailor the spontaneous emission of embedded quantum dots, and to develop record efficiency single-photon sources. We will present recent developments in this field mainly 1) the observation of a strong inhibition of the spontaneous emission of quantum...

  10. Inhibition of lactation.

    Science.gov (United States)

    Llewellyn-Jones, D

    1975-01-01

    The mechanism and hormonal regulation of lactation is explained and illustrated with a schematic representation. Circulating estrogen above a critical amount seems to be the inhibitory factor controlling lactation during pregnancy. Once delivery occurs, the level of estrogen falls, that of prolactin rises, and lactation begins. Nonsuckling can be used to inhibit lactation. Estrogens can also be used to inhibit lactation more quickly and with less pain. The reported association between estrogens and puerperal thromboembolism cannot be considered conclusive due to defects in the reporting studies. There is no reason not to use estrogens in lactation inhibition except for women over 35 who experienced a surgical delivery. Alternative therapy is available for these women. The recently-developed drug, brom-ergocryptine, may replace other methods of lactation inhibition.

  11. On the relationship between corrosion inhibiting effect and molecular structure of 2,5-bis(n-pyridyl)-1,3,4-thiadiazole derivatives in acidic media: Ac impedance and DFT studies

    Energy Technology Data Exchange (ETDEWEB)

    Bentiss, F., E-mail: fbentiss@enscl.f [Laboratoire de Chimie de Coordination et d' Analytique (LCCA), Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Mernari, B. [Laboratoire de Chimie de Coordination et d' Analytique (LCCA), Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Traisnel, M. [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Vezin, H. [Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR-CNRS 8516, Universite des Sciences et Technologies de Lille, Batiment C5, F-59655 Villeneuve d' Ascq Cedex (France); Lagrenee, M., E-mail: michel.lagrenee@ensc-lille.f [Unite de Catalyse et de Chimie du Solide (UCCS), UMR-CNRS 8181, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France)

    2011-01-15

    Research highlights: {yields}2,5-Bis(n-pyridyl)-1,3,4-thiadiazoles (n-PTH) act as good inhibitors for the mild steel in acidic media. {yields}The inhibiting protection depends on the position of the nitrogen on the pyridinium substituent according to order 3-PTH > 2-PTH > 4-PTH. {yields}The adsorption of n-PTH is found to follow the Langmuir's adsorption isotherm. {yields}Data obtained from quantum chemical calculations using DFT method were correlated to the experimentally obtained inhibition efficiencies. - Abstract: The inhibition properties of 2,5-bis(n-pyridyl)-1,3,4-thiadiazoles (n-PTH) on corrosion of mild steel in different acidic media (1 M HCl, 0.5 M H{sub 2}SO{sub 4} and 1 M HClO{sub 4}) were analyzed by electrochemical impedance spectroscopy (EIS). The n-PTH derivatives exhibit good inhibition properties in different acidic solutions and the calculated values of {Delta}G{sub ads}{sup 0} revealed that the adsorption mechanism of n-PTH on steel surface is mainly due to chemisorption. While in 1 M HClO{sub 4}, both 2-PTH and 4-PTH isomers stimulate the corrosion process especially at low concentrations. Quantum chemical calculations using the density functional theory (DFT) were performed on n-PTH derivatives to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental inhibition efficiency were subjected to correlation analysis and indicate that the inhibition effects of n-PTH may be explained in terms of electronic properties.

  12. CXCL10 can inhibit endothelial cell proliferation independently of CXCR3.

    Directory of Open Access Journals (Sweden)

    Gabriele S V Campanella

    2010-09-01

    Full Text Available CXCL10 (or Interferon-inducible protein of 10 kDa, IP-10 is an interferon-inducible chemokine with potent chemotactic activity on activated effector T cells and other leukocytes expressing its high affinity G protein-coupled receptor CXCR3. CXCL10 is also active on other cell types, including endothelial cells and fibroblasts. The mechanisms through which CXCL10 mediates its effects on non-leukocytes is not fully understood. In this study, we focus on the anti-proliferative effect of CXCL10 on endothelial cells, and demonstrate that CXCL10 can inhibit endothelial cell proliferation in vitro independently of CXCR3. Four main findings support this conclusion. First, primary mouse endothelial cells isolated from CXCR3-deficient mice were inhibited by CXCL10 as efficiently as wildtype endothelial cells. We also note that the proposed alternative splice form CXCR3-B, which is thought to mediate CXCL10's angiostatic activity, does not exist in mice based on published mouse CXCR3 genomic sequences as an in-frame stop codon would terminate the proposed CXCR3-B splice variant in mice. Second, we demonstrate that human umbilical vein endothelial cells and human lung microvascular endothelial cells that were inhibited by CXL10 did not express CXCR3 by FACS analysis. Third, two different neutralizing CXCR3 antibodies did not inhibit the anti-proliferative effect of CXCL10. Finally, fourth, utilizing a panel of CXCL10 mutants, we show that the ability to inhibit endothelial cell proliferation correlates with CXCL10's glycosaminoglycan binding affinity and not with its CXCR3 binding and signaling. Thus, using a very defined system, we show that CXCL10 can inhibit endothelial cell proliferation through a CXCR3-independent mechanism.

  13. Mini-review: Inhibition of biofouling by marine microorganisms.

    Science.gov (United States)

    Dobretsov, Sergey; Abed, Raeid M M; Teplitski, Max

    2013-01-01

    Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.

  14. Inhibition of copper corrosion in sodium chloride solution by the self-assembled monolayer of sodium diethyldithiocarbamate

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Q.Q., E-mail: liaoqq1971@yahoo.com.c [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Yue, Z.W.; Yang, D. [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Wang, Z.H. [Department of Chemistry, Tongji University, Shanghai 200092 (China); Li, Z.H. [Department of Chemistry, Fudan University, Shanghai 200433 (China); Ge, H.H. [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Li, Y.J. [Department of Chemistry, Tongji University, Shanghai 200092 (China)

    2011-05-15

    Research highlights: DDTC is of low toxicity. DDTC SAM had good corrosion inhibition effects on copper in 3% NaCl solution. DDTC SAM was chemisorbed on copper surface by its S atoms. - Abstract: Sodium diethyldithiocarbamate (DDTC) self-assembled monolayer (SAM) on copper surface has been investigated by SERS and EDS and the results show that DDTC SAM is chemisorbed on copper surface by its S atoms with tilted orientation. Corrosion inhibition ability of DDTC SAM was measured in 3% NaCl solution using electrochemical methods. The impedance results indicate that the maximum inhibition efficiency of DDTC SAM can reach 99%. Quantum chemical calculations show that DDTC has relatively small {Delta}E between HOMO and LUMO and large negative charge in its two sulfur atoms, which facilitates the formation of a DDTC SAM on copper surface.

  15. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun; Zhuang, Wen-Fang

    2015-01-01

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice

  16. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun, E-mail: majuntongrensh1@126.com; Zhuang, Wen-Fang, E-mail: wenfangzhuangmd@163.com

    2015-05-15

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.

  17. A Biosurfactant-Sophorolipid Acts in Synergy with Antibiotics to Enhance Their Efficiency

    Directory of Open Access Journals (Sweden)

    Kasturi Joshi-Navare

    2013-01-01

    Full Text Available Sophorolipids (SLs, biosurfactants with antimicrobial properties, have been tried to address the problem of antibiotic resistance. The synergistic action of SL and antibiotics was checked using standard microdilution and spread plate methods. With Staphylococcus aureus, SL-tetracycline combination achieved total inhibition before 4 h of exposure while tetracycline alone couldnot achieve total inhibition till the end of 6 h. The inhibition caused by exposure of bacterium to SL-tetracycline mixture was ~25% more as compared to SL alone. In spite of known robustness of gram-negative bacteria, SL-cefaclor mixture proved to be efficient against Escherichia coli which showed ~48% more inhibition within 2 h of exposure as compared to cefaclor alone. Scanning electron microscopy of the cells treated with mixture revealed bacterial cell membrane damage and pore formation. Moreover, SLs being a type of asymmetric bola, they are expected to form self-assemblies with unique functionality. This led to the speculation that SLs being amphiphilic in nature can span through the structurally alike cell membrane and facilitate the entry of drug molecules.

  18. Synergistic Effect of L-Methionine and KI on Copper Corrosion Inhibition in HNO3 (1M

    Directory of Open Access Journals (Sweden)

    Amel SEDIK

    2014-05-01

    Full Text Available L-Methionine (L-Met efficiency as a non-toxic corrosion inhibitor for copper in 1M HNO3 has been studied by using electrochemical impedance spectroscopy (EIS and potentiodynamic polarization. Copper corrosion rate significant decrease was observed in the presence of L-Met at 10-4M. The Obtained Results from potentiodynamic polarization and impedance measurements are in good agreement. L-Methionine adsorption on copper surface follows Langmuir isotherm. L-Met free energy adsorption on copper (-30 KJ mol-1 reveals an inhibition strong physical adsorption on copper surface. In order to evaluate the L-Met effect, L-Met and iodide ion’synergistic effect was used to prevent copper corrosion in nitric acid. It was found that inhibitor efficiency (IE reached 98.27 % in 1M solution containing 10-4M L-Met and 10- 3 M KI. The synergistic effect was attributed to iodide ions adsorption on copper surface, which facilitated the L-Met adsorption and an inhibitive film formation.

  19. Nonpainful wide-area compression inhibits experimental pain.

    Science.gov (United States)

    Honigman, Liat; Bar-Bachar, Ofrit; Yarnitsky, David; Sprecher, Elliot; Granovsky, Yelena

    2016-09-01

    Compression therapy, a well-recognized treatment for lymphoedema and venous disorders, pressurizes limbs and generates massive non-noxious afferent sensory barrages. The aim of this study was to study whether such afferent activity has an analgesic effect when applied on the lower limbs, hypothesizing that larger compression areas will induce stronger analgesic effects, and whether this effect correlates with conditioned pain modulation (CPM). Thirty young healthy subjects received painful heat and pressure stimuli (47°C for 30 seconds, forearm; 300 kPa for 15 seconds, wrist) before and during 3 compression protocols of either SMALL (up to ankles), MEDIUM (up to knees), or LARGE (up to hips) compression areas. Conditioned pain modulation (heat pain conditioned by noxious cold water) was tested before and after each compression protocol. The LARGE protocol induced more analgesia for heat than the SMALL protocol (P < 0.001). The analgesic effect interacted with gender (P = 0.015). The LARGE protocol was more efficient for females, whereas the MEDIUM protocol was more efficient for males. Pressure pain was reduced by all protocols (P < 0.001) with no differences between protocols and no gender effect. Conditioned pain modulation was more efficient than the compression-induced analgesia. For the LARGE protocol, precompression CPM efficiency positively correlated with compression-induced analgesia. Large body area compression exerts an area-dependent analgesic effect on experimental pain stimuli. The observed correlation with pain inhibition in response to robust non-noxious sensory stimulation may suggest that compression therapy shares similar mechanisms with inhibitory pain modulation assessed through CPM.

  20. Development of poly(aspartic acid-co-malic acid) composites for calcium carbonate and sulphate scale inhibition.

    Science.gov (United States)

    Mithil Kumar, N; Gupta, Sanjay Kumar; Jagadeesh, Dani; Kanny, K; Bux, F

    2015-01-01

    Polyaspartic acid (PSI) is suitable for the inhibition of inorganic scale deposition. To enhance its scale inhibition efficiency, PSI was modified by reacting aspartic acid with malic acid (MA) using thermal polycondensation polymerization. This reaction resulted in poly(aspartic acid-co-malic acid) (PSI-co-MA) dual polymer. The structural, chemical and thermal properties of the dual polymers were analysed by using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and gel permeation chromatography. The effectiveness of six different molar ratios of PSI-co-MA dual polymer for calcium carbonate and calcium sulphate scale inhibition at laboratory scale batch experiments was evaluated with synthetic brine solution at selected doses of polymer at 65-70°C by the static scale test method. The performance of PSI-co-MA dual polymer for the inhibition of calcium carbonate and calcium sulphate precipitation was compared with that of a PSI single polymer. The PSI-co-MA exhibited excellent ability to control inorganic minerals, with approximately 85.36% calcium carbonate inhibition and 100% calcium sulphate inhibition at a level of 10 mg/L PSI-co-MA, respectively. Therefore, it may be reasonably concluded that PSI-co-MA is a highly effective scale inhibitor for cooling water treatment applications.

  1. Inhibition of benzodiazepine binding in vitro by amentoflavone, a constituent of various species of Hypericum.

    Science.gov (United States)

    Baureithel, K H; Büter, K B; Engesser, A; Burkard, W; Schaffner, W

    1997-06-01

    Flower extracts of Hypericum perforatum, Hypericum hirsutum, Hypericum patulum and Hypericum olympicum efficiently inhibited binding of [3H]flumazenil to rat brain benzodiazepine binding sites of the GABAA-receptor in vitro with IC50 values of 6.83, 6.97, 13.2 and 6.14 micrograms/ml, respectively. Single constituents of the extracts like hypericin, the flavones quercetin and luteolin, the glycosylated flavonoides rutin, hyperoside and quercitrin and the biflavone 13, II8-biapigenin did not inhibit binding up to concentrations of 1 microM. In contrast, amentoflavone revealed an IC50 = 14.9 +/- 1.9 nM on benzodiazepine binding in vitro. Comparative HPLC analyses of hypericin and amentoflavone in extracts of different Hypericum species revealed a possible correlation between the amentoflavone concentration and the inhibition of flumazenil binding. For hypericin no such correlation was observed. Our experimental data demonstrate that amentoflavone, in contrast to hypericin, presents a very active compound with regard to the inhibition of [3H]-flumazenil binding in vitro and thus might be involved in the antidepressant effects of Hypericum perforatum extracts.

  2. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Qingyi [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Qing, Yong, E-mail: qingyongxy@yahoo.co.jp [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Yang [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Hu, Xiaojuan; Jiang, Lei [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Xiaohua, E-mail: wuxh@scu.edu.cn [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China)

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  3. Should we stop thinking about inhibition? Searching for individual and age differences in inhibition ability.

    Science.gov (United States)

    Rey-Mermet, Alodie; Gade, Miriam; Oberauer, Klaus

    2018-04-01

    Inhibition is often conceptualized as a unitary construct reflecting the ability to ignore and suppress irrelevant information. At the same time, it has been subdivided into inhibition of prepotent responses (i.e., the ability to stop dominant responses) and resistance to distracter interference (i.e., the ability to ignore distracting information). The present study investigated the unity and diversity of inhibition as a psychometric construct, and tested the hypothesis of an inhibition deficit in older age. We measured inhibition in young and old adults with 11 established laboratory tasks: antisaccade, stop-signal, color Stroop, number Stroop, arrow flanker, letter flanker, Simon, global-local, positive and negative compatibility tasks, and n-2 repetition costs in task switching. In both age groups, the inhibition measures from individual tasks had good reliabilities, but correlated only weakly among each other. Structural equation modeling identified a 2-factor model with factors for inhibition of prepotent responses and resistance to distracter interference. Older adults scored worse in the inhibition of prepotent response, but better in the resistance to distracter interference. However, the model had low explanatory power. Together, these findings call into question inhibition as a psychometric construct and the hypothesis of an inhibition deficit in older age. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. Roles of nitric oxide, nitrite and myoglobin on myocardial efficiency in trout (Oncorthynchus mykiss) and goldfish (Carassius auratus): implications for hypoxia tolerance

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Faggiano, Serena; Helbo, Signe

    2010-01-01

    The roles of nitric oxide synthase activity (NOS), nitrite and myoglobin (Mb) in the regulation of myocardial function during hypoxia were examined in trout and goldfish, a hypoxia-intolerant and hypoxia-tolerant species, respectively. We measured the effect of NOS inhibition, adrenaline and nitr......The roles of nitric oxide synthase activity (NOS), nitrite and myoglobin (Mb) in the regulation of myocardial function during hypoxia were examined in trout and goldfish, a hypoxia-intolerant and hypoxia-tolerant species, respectively. We measured the effect of NOS inhibition, adrenaline...... in both trout and goldfish myocardium, with trout showing a significant increase in the O2 utilization efficiency, i.e. the ratio of twitch force to O2 consumption, suggesting an increased anaerobic metabolism. NOS inhibition enhanced myocardial O2 consumption and decreased efficiency, indicating...... that mitochondrial respiration is under a tone of NOS-produced NO. When trout myocardial twitch force and O2 consumption are enhanced by adrenaline, this NO tone disappears. Consistent with its conversion to NO, nitrite reduced O2 consumption and increased myocardial efficiency in trout but not in goldfish...

  5. Dietary Sodium Suppresses Digestive Efficiency via the Renin-Angiotensin System.

    Science.gov (United States)

    Weidemann, Benjamin J; Voong, Susan; Morales-Santiago, Fabiola I; Kahn, Michael Z; Ni, Jonathan; Littlejohn, Nicole K; Claflin, Kristin E; Burnett, Colin M L; Pearson, Nicole A; Lutter, Michael L; Grobe, Justin L

    2015-06-11

    Dietary fats and sodium are both palatable and are hypothesized to synergistically contribute to ingestive behavior and thereby obesity. Contrary to this hypothesis, C57BL/6J mice fed a 45% high fat diet exhibited weight gain that was inhibited by increased dietary sodium content. This suppressive effect of dietary sodium upon weight gain was mediated specifically through a reduction in digestive efficiency, with no effects on food intake behavior, physical activity, or resting metabolism. Replacement of circulating angiotensin II levels reversed the effects of high dietary sodium to suppress digestive efficiency. While the AT1 receptor antagonist losartan had no effect in mice fed low sodium, the AT2 receptor antagonist PD-123,319 suppressed digestive efficiency. Correspondingly, genetic deletion of the AT2 receptor in FVB/NCrl mice resulted in suppressed digestive efficiency even on a standard chow diet. Together these data underscore the importance of digestive efficiency in the pathogenesis of obesity, and implicate dietary sodium, the renin-angiotensin system, and the AT2 receptor in the control of digestive efficiency regardless of mouse strain or macronutrient composition of the diet. These findings highlight the need for greater understanding of nutrient absorption control physiology, and prompt more uniform assessment of digestive efficiency in animal studies of energy balance.

  6. Inhibition of mild steel corrosion by 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile and synergistic effect of halide ion in 0.5 M H{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mourya, Punita, E-mail: mouryapunita025@gmail.com [Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Singh, Praveen [Department of Chemistry, Banaras Hindu University, Varanasi 221005 (India); Rastogi, R.B.; Singh, M.M. [Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-09-01

    Highlights: • TODPCN is a good corrosion inhibitor for mild steel in 0.5 M H{sub 2}SO{sub 4} solution. • Addition of iodide ion increases the inhibition efficiency of the studied nitrile derivative. • Inhibition efficiency successively increases with concentration. • XPS study has revealed the chemical composition of the protective film. - Abstract: The effect of iodide ions on inhibitive performance of 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (TODPCN) on mild steel (MS) corrosion in 0.5 M H{sub 2}SO{sub 4} was studied using gravimetric and electrochemical measurements. TODPCN inhibits the corrosion of MS to the extent of 62.3% at its lowest concentration (0.5 mM) and its inhibition efficiency (η) further increases on increasing concentration at 298 K. The adsorption of TODPCN on MS was found to follow the Langmuir adsorption isotherm. The value of η increased on the addition of 2.0 mM KI. The value of synergism parameter being more than unity indicates that the enhanced η value in the presence of iodide ions is only due to synergism. Thus, a cooperative mechanism of inhibition exists between the iodide anion and TODPCN cations. The increase in surface coverage in the presence of KI indicates that iodide ions enhance the adsorption of TODPCN. The surface morphology of corroded/inhibited MS was studied by atomic force microscopy. X-ray photoelectron spectroscopy of inhibited MS surface was carried out to determine the composition of the adsorbed film. Some quantum chemical parameters and the Mulliken charge densities for TODPCN calculated by density functional theory provided further insight into the mechanism of inhibition.

  7. Separating intentional inhibition of prepotent responses and resistance to proactive interference in alcohol-dependent individuals.

    Science.gov (United States)

    Noël, Xavier; Van der Linden, Martial; Brevers, Damien; Campanella, Salvatore; Verbanck, Paul; Hanak, Catherine; Kornreich, Charles; Verbruggen, Frederick

    2013-03-01

    Impulsivity is a hallmark of addictive behaviors. Addicts' weakened inhibition of irrelevant prepotent responses is commonly thought to explain this association. However, inhibition is not a unitary mechanism. This study investigated the efficiency of overcoming competition due to irrelevant responses (i.e., inhibition of a prepotent response) and overcoming competition in memory (i.e., resistance to proactive interference) in sober and recently detoxified alcohol-dependent individuals. Three cognitive tasks assessing the inhibition of a prepotent response (Hayling task, anti-saccade task and Stroop task) and two tasks tapping into the capacity to resist proactive interference (cued recall, Brown-Peterson variant) were administered to 30 non-amnesic recently detoxified alcohol-dependent individuals and 30 matched healthy participants without alcohol dependency. In addition, possible confounds such as verbal updating in working memory was assessed. Alcohol-dependent subjects performed worse than healthy participants on the three cognitive tasks assessing the inhibition of irrelevant prepotent responses but group performance was similar in the tasks assessing overcoming proactive interference in memory, updating of working memory and abstract reasoning. These findings suggest that alcohol-dependence is mainly associated with impaired capacity to intentionally suppress irrelevant prepotent response information. Control of proactive interference from memory is preserved. Theoretical and clinical implications are discussed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Emilio M. Ungerfeld

    2015-02-01

    Full Text Available Maximizing the flow of metabolic hydrogen ([H] in the rumen away from CH4 and towards volatile fatty acids (VFA would increase the efficiency of ruminant production and decrease its environmental impact. The objectives of this meta-analysis were: i To quantify shifts in metabolic hydrogen sinks when inhibiting ruminal methanogenesis in vitro; and ii To understand the variation in shifts of metabolic hydrogen sinks among experiments and between batch and continuous cultures systems when methanogenesis is inhibited. Batch (28 experiments, N=193 and continuous (16 experiments, N=79 culture databases of experiments with at least 50% inhibition in CH4 production were compiled. Inhibiting methanogenesis generally resulted in less fermentation and digestion in most batch culture, but not in most continuous culture, experiments. Inhibiting CH4 production in batch cultures resulted in redirection of metabolic hydrogen towards propionate and H2 but not butyrate. In continuous cultures, there was no overall metabolic hydrogen redirection towards propionate or butyrate, and H2 as a proportion of metabolic hydrogen spared from CH4 production was numerically smaller compared to batch cultures. Dihydrogen accumulation was affected by type of substrate and methanogenesis inhibitor, with highly fermentable substrates resulting in greater redirection of metabolic hydrogen towards H2 when inhibiting methanogenesis, and some oils causing small or no H2 accumulation. In both batch and continuous culture, there was a decrease in metabolic hydrogen recovered as the sum of propionate, butyrate, CH4 and H2 when inhibiting methanogenesis, and it is speculated that as CH4 production decreases metabolic hydrogen could be increasingly incorporated into formate, microbial biomass, and, perhaps, reductive acetogenesis in continuous cultures. Energetic benefits of inhibiting methanogenesis depended on the inhibitor and its concentration and on the in vitro system.

  9. Inhibition of fungal growth with extreme low oxygen levels

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Haasum, Iben

    1998-01-01

    Fungal spoilage of foods is effectively controlled by removal of oxygen from the package, especially if this is combined with elevated carbon dioxide (CO2) levels. However, great uncertainty exist on just how low the residual oxygen levels in the package must be especially when carbon dioxide lev...... food with low CO2 levels. Active packaging with oxygen absorbers may be considered for these products. The packaging solution must also reflect the micro flora of the product.......Fungal spoilage of foods is effectively controlled by removal of oxygen from the package, especially if this is combined with elevated carbon dioxide (CO2) levels. However, great uncertainty exist on just how low the residual oxygen levels in the package must be especially when carbon dioxide...... Penicillia and Aspergilli were also inhibited by oxygen levels less than 0.5%, but less than 0.01% was required to efficiently inhibit these fungi. Most resistant to very low oxygen levels was the Fusarium species.These results shows that very low oxygen levels are required to avoid fungal growth in package...

  10. The corrosion inhibition of pure zinc in NH{sub 4}Cl aqueous solutions by N-Alkyl quaternary ammonium bromides

    Energy Technology Data Exchange (ETDEWEB)

    Branzoi, V.; Pilan, Luisa; Pruna, Alina [University ' Politehnica' of Bucharest, Faculty of Industrial Chemistry, Department of Physical Chemistry and Electrochemistry, Calea Grivitei, 132, Bucharest (Romania); Branzoi, Florina [Institute of Physical Chemistry Bucharest, Splaiul Independentei, 202, Bucharest (Romania)

    2004-07-01

    The corrosion of zinc in NH{sub 4}Cl solutions of different concentrations has been studied by potentiostatic and potentiodynamic methods and by impedance measurements. The results obtained in a potential region near the zinc corrosion potential showed that the cathodic reaction of hydrogen discharge does not fit a simple exponential law because the Tafel coefficient appears to be electrode potential dependent. At low overvoltages, in the anodic region, the corrosion process is under activation control, while at high overvoltages the process is under diffusion control. N-dodecyl, n-tetra-decyl and n-hexa-decyl ammonium bromides were used as organic inhibitors. The potentiostatic and potentiodynamic polarization studies and EIS measurements showed that each quaternary ammonium salt inhibits the corrosion of pure zinc in 1M NH{sub 4}Cl at 30 deg. C. The inhibition efficiency of the cations was discussed on the basis of Coulomb adsorption behaviour, using molecular coverage areas and polar substituent constant. The inhibition efficiency obtained from the corrosion currents was found to increase linearly with an increase in the molecular coverage area (A) for the series of tetra-alkyl ammonium ions. The efficiency of the cations increased with an increase in the positive charge of the nitrogen atom, which was due to the inductive effect of the electron-attractive groups. This effect on the Coulomb adsorption of the cations was, however, far less than that of the electron donating groups on the chemisorption of un-protonated amines. The steric requirements for the adsorption of the quaternaries with branched alkyl chains were small. Each organic compound exhibits Langmuir behaviour and inhibition increases with increasing alkyl chain length. This is attributed to cohesive Van der Waals forces between the positive head groups co-adsorbed with bromide ions on the positively charged zinc surface. (authors)

  11. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.

    Science.gov (United States)

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-08

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.

  12. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors.

    Science.gov (United States)

    Hassan, Refat M; Zaafarany, Ishaq A

    2013-06-17

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyeletrolyte pectates (PEC) as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  13. Crystal structure, phytochemical study and enzyme inhibition activity of Ajaconine and Delectinine

    Science.gov (United States)

    Ahmad, Shujaat; Ahmad, Hanif; Khan, Hidayat Ullah; Shahzad, Adnan; Khan, Ezzat; Ali Shah, Syed Adnan; Ali, Mumtaz; Wadud, Abdul; Ghufran, Mehreen; Naz, Humera; Ahmad, Manzoor

    2016-11-01

    The Crystal structure, comparative DFT study and phytochemical investigation of atisine type C-20 diterpenoid alkaloid ajaconine (1) and lycoctonine type C-19 diterpenoid alkaloid delectinine (2) is reported here. These compounds were isolated from Delphinium chitralense. Both the natural products 1 and 2 crystallize in orthorhombic crystal system with identical space group of P212121. The geometric parameters of both compounds were calculated with the help of DFT using B3LYP/6-31+G (p) basis set and HOMO-LUMO energies, optimized band gaps, global hardness, ionization potential, electron affinity and global electrophilicity are calculated. The compounds 1 and 2 were screened for acetyl cholinesterase and butyryl cholinesterase inhibition activities in a dose dependent manner followed by molecular docking to explore the possible inhibitory mechanism of ajaconine (1) and delectinine (2). The IC50 values of tested compounds against AChE were observed as 12.61 μM (compound 1) and 5.04 μM (compound 2). The same experiments were performed for inhibition of BChE and IC50 was observed to be 10.18 μM (1) and 9.21 μM (2). Promising inhibition activity was shown by both the compounds against AChE and BChE in comparison with standard drugs available in the market such as allanzanthane and galanthamine. The inhibition efficiency of both the natural products was determined in a dose dependent manner.

  14. A computational model of pattern separation efficiency in the dentate gyrus with implications in schizophrenia

    Science.gov (United States)

    Faghihi, Faramarz; Moustafa, Ahmed A.

    2015-01-01

    Information processing in the hippocampus begins by transferring spiking activity of the entorhinal cortex (EC) into the dentate gyrus (DG). Activity pattern in the EC is separated by the DG such that it plays an important role in hippocampal functions including memory. The structural and physiological parameters of these neural networks enable the hippocampus to be efficient in encoding a large number of inputs that animals receive and process in their life time. The neural encoding capacity of the DG depends on its single neurons encoding and pattern separation efficiency. In this study, encoding by the DG is modeled such that single neurons and pattern separation efficiency are measured using simulations of different parameter values. For this purpose, a probabilistic model of single neurons efficiency is presented to study the role of structural and physiological parameters. Known neurons number of the EC and the DG is used to construct a neural network by electrophysiological features of granule cells of the DG. Separated inputs as activated neurons in the EC with different firing probabilities are presented into the DG. For different connectivity rates between the EC and DG, pattern separation efficiency of the DG is measured. The results show that in the absence of feedback inhibition on the DG neurons, the DG demonstrates low separation efficiency and high firing frequency. Feedback inhibition can increase separation efficiency while resulting in very low single neuron’s encoding efficiency in the DG and very low firing frequency of neurons in the DG (sparse spiking). This work presents a mechanistic explanation for experimental observations in the hippocampus, in combination with theoretical measures. Moreover, the model predicts a critical role for impaired inhibitory neurons in schizophrenia where deficiency in pattern separation of the DG has been observed. PMID:25859189

  15. A Computational Model of Pattern Separation Efficiency in the Dentate Gyrus with Implications in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Faramarz eFaghihi

    2015-03-01

    Full Text Available Information processing in the hippocampus begins by transferring spiking activity of the Entorhinal Cortex (EC into the Dentate Gyrus (DG. Activity pattern in the EC is separated by the DG such that it plays an important role in hippocampal functions including memory. The structural and physiological parameters of these neural networks enable the hippocampus to be efficient in encoding a large number of inputs that animals receive and process in their life time. The neural encoding capacity of the DG depends on its single neurons encoding and pattern separation efficiency. In this study, encoding by the DG is modelled such that single neurons and pattern separation efficiency are measured using simulations of different parameter values. For this purpose, a probabilistic model of single neurons efficiency is presented to study the role of structural and physiological parameters. Known neurons number of the EC and the DG is used to construct a neural network by electrophysiological features of neuron in the DG. Separated inputs as activated neurons in the EC with different firing probabilities are presented into the DG. For different connectivity rates between the EC and DG, pattern separation efficiency of the DG is measured. The results show that in the absence of feedback inhibition on the DG neurons, the DG demonstrates low separation efficiency and high firing frequency. Feedback inhibition can increase separation efficiency while resulting in very low single neuron’s encoding efficiency in the DG and very low firing frequency of neurons in the DG (sparse spiking. This work presents a mechanistic explanation for experimental observations in the hippocampus, in combination with theoretical measures. Moreover, the model predicts a critical role for impaired inhibitory neurons in schizophrenia where deficiency in pattern separation of the DG has been observed.

  16. Thermometric Study of Inhibition of Aluminium Corrosion in Hydrochloric Acid Solution

    OpenAIRE

    Al Gaber, A.S. [امينة سلطان الجابر; Seliman, S. A.; Mourad, M.

    1997-01-01

    The use of 6- amino - 4- (4-phenyl)-l,4- dihydro -3- methylpyrano [2,3- c] pyrazole -5- carbonitrile and some related compounds as corrosion inhibitors for aluminium in 2 M HCl solution was studied by the thermometric method. The results indicate that the additives reduce the corrosion rate via weak adsorption through the cationic oxygen of the pyran ring. They act as mixed inhibitors and their adsorption was found to obey Frumkin's isotherm. The inhibition efficiency of the additives is rela...

  17. Inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex by reduced nicotinamide adenine dinucleotide in the presence or absence of calcium ion and effect of adenosine 5'-diphosphate on reduced nicotinamide adenine dinucleotide inhibition.

    Science.gov (United States)

    Lawlis, V B; Roche, T E

    1981-04-28

    Micromolar Ca2+ markedly reduces NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex [Lawlis, V. B., & Roche, T. E. (1980) Mol. Cell. Biochem. 32, 147-152]. Product inhibition patterns from initial velocity studies conducted at less than 10(-9) M or at 1.5 X 10(-5) M Ca2+ with NAD+, CoA, or alpha-ketoglutarate as the variable substrate showed that NADH was a noncompetitive inhibitor with respect to each of these substrates, except at high NAD+ concentrations, where reciprocal plots were nonlinear and the inhibition pattern for NADH vs. NAD+ changed from a noncompetitive to a competitive pattern. From slope and intercept replots, 2-fold to 12-fold higher inhibition constants were estimated for inhibition by NADH vs. the various substrates in the presence of 1.5 X 10(-5) M Ca2+ than for inhibition at less than 10(-9) M Ca2+. These inhibition patterns and the lack of an effect of Ca2+ on the inhibition of the dihydrolipoyl dehydrogenase component suggested that Ca2+-modulated NADH inhibition occurs at an allosteric site with competitive binding at the site by high levels of NAD+. Decarboxylation of alpha-keto[1-14C]glutarate by the resolved alpha-ketoglutarate dehydrogenase component was investigated in the presence of 5.0 mM glyoxylate which served as an efficient acceptor. NADH (0.2 mM) or 1.0 mM ATP inhibited the partial reaction whereas 15 muM Ca2+, 1.0 mM ADP, or 10 mM NAD+ stimulated the partial reaction and reduced NADH inhibition of this reaction. Thus these effectors alter the activity of the alpha-ketoglutarate dehydrogenase complex by binding at allosteric sites on the alpha-ketoglutarate dehydrogenase component. Inhibition by NADH over a wide range of NADH/NAD+ ratios was measured under conditions in which the level of alpha-ketoglutarate was adjusted to give matching control activities at less than 10(-9) M Ca2+ or 1.5 X 10(-5) M Ca2+ in either the presence or the absence of 1.6 mM ADP. These studies establish that both Ca2+ and ADP

  18. Eliminating inhibition of enzymatic hydrolysis by lignosulfonate in unwashed sulfite-pretreated aspen using metal salts

    Science.gov (United States)

    Hao Liu; Junyong Zhu

    2010-01-01

    This study demonstrated the efficiency of Ca(II) and Mg(II) in removing inhibition of enzymatic hydrolysis by lignosulfonate through non-productive adsorption of enzymes. Adding 1 mmol/g cellulose of either metal salt restores approximately 65% of the activity lost when a pure cellulose/cellulase solution is spiked with lignosulfonate. Addition of either Ca(II) or Mg(...

  19. End-joining inhibition at telomeres requires the translocase and polySUMO-dependent ubiquitin ligase Uls1.

    Science.gov (United States)

    Lescasse, Rachel; Pobiega, Sabrina; Callebaut, Isabelle; Marcand, Stéphane

    2013-03-20

    In eukaryotes, permanent inhibition of the non-homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non-essential Swi2/Snf2-related translocase and a Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere-telomere fusions. Uls1 requirement is alleviated by the absence of poly-SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly-SUMO conjugates. We propose that one of Uls1 functions is to clear non-functional poly-SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly-SUMOylated proteins on DNA in eukaryotes.

  20. Behavioral inhibition and obsessive-compulsive disorder.

    Science.gov (United States)

    Coles, Meredith E; Schofield, Casey A; Pietrefesa, Ashley S

    2006-01-01

    Behavioral inhibition is frequently cited as a vulnerability factor for development of anxiety. However, few studies have examined the unique relationship between behavioral inhibition and obsessive-compulsive disorder (OCD). Therefore, the current study addressed the relationship between behavioral inhibition and OCD in a number of ways. In a large unselected student sample, frequency of current OC symptoms was significantly correlated with retrospective self-reports of total levels of childhood behavioral inhibition. In addition, frequency of current OC symptoms was also significantly correlated with both social and nonsocial components of behavioral inhibition. Further, there was evidence for a unique relationship between behavioral inhibition and OC symptoms beyond the relationship of behavioral inhibition and social anxiety. In addition, results showed that reports of childhood levels of behavioral inhibition significantly predicted levels of OCD symptoms in adulthood. Finally, preliminary evidence suggested that behavioral inhibition may be more strongly associated with some types of OC symptoms than others, and that overprotective parenting may moderate the impact of behavioral inhibition on OC symptoms. The current findings suggest the utility of additional research examining the role of behavioral inhibition in the etiology of OCD.

  1. Corrosion Inhibition of Mild Steel in Hydrochloric Acid by Sodium Lauryl Sulfate (SLS)

    OpenAIRE

    Atul Kumar

    2008-01-01

    Effect of Sodium Lauryl Sulfate (SLS), a surfactant on corrosion of mild steel in 1 M hydrochloric acid was studied using three techniques namely: weight loss, electrochemical polarization and metallurgical research microscopy. Results obtained reveal that SLS is good inhibitor and shows very good corrosion inhibition efficiency (IE). The IE was found to vary with concentration of inhibitor and temperature. The electrochemical polarization result revealed that SLS is anodic in nature.

  2. Evaluation of Plants and Weeds Extract on the Corrosion Inhibition of Mild Steel in Sulphuric Acid

    Directory of Open Access Journals (Sweden)

    Abida Begum

    2011-01-01

    Full Text Available Experiments were performed in order to determine the inhibitive effects of extracts of plants and weeds namely Parthenium hysterophorus, Dathura stromonium, Azadirachta indica, Helianthus annuus leaves extract for mild steel in sulphuric acid by using weight loss and thermometric technique. Results demonstrated that, all the experimental inhibitors show an adsorption on steel surface according to Langmuir’s isotherm. The inhibition efficiency increased with increase in the concentration of all tested inhibitors to attain a maximum value at 1.0%. Free energy values for adsorption process show that the process is spontaneous. The kinetic treatment of the results shows first order kinetics.

  3. A comparative study of leaves extracts for corrosion inhibition effect on aluminium alloy in alkaline medium

    Directory of Open Access Journals (Sweden)

    Namrata Chaubey

    2017-12-01

    Full Text Available This paper deals with the comparative inhibition study of some plants leaves extract namely Cannabis sativa (CS, Rauwolfia serpentina (RS, Cymbopogon citratus (CC, Annona squamosa (AS and Adhatoda vasica (AV on the corrosion of aluminium alloy (AA in 1 M NaOH. The corrosion tests were performance by using gravimetric, electrochemical impedance spectroscopy (EIS, potentiodynamic polarization and linear polarization resistance (LPR techniques. RS showed maximum inhibition efficiency (η%, 97% at 0.2 g L−1. Potentiodynamic polarization curves justified that all the inhibitors are mixed-type. Surface morphology of AA is carried by scanning electron microscopy (SEM and atomic force microscopy (AFM.

  4. INHIBITION EFFECT OF FLAVONOID EXTRACT OF Euphorbia Guyoniana ON THE CORROSION OF MILD STEEL IN H2SO4 MEDIUM

    OpenAIRE

    S. Chihi; N. Gherraf; B. Alabed; S. Hameurlain

    2009-01-01

    The influence of flavonoids extracts of three parts of Euphorbia Guyoniana towards the corrosion of type API 5L X52 steel in 15% H2SO4 has been evaluated by weight loss method and polarization technique. The results showed that extracts are a good inhibitors for API 5L X52 steel in this medium. The corrosion inhibition efficiency increases on increasing plant extracts concentration. The inhibition is attributed to the adsorption of the surface of the metal. Potentiodynamic polarization result...

  5. Contribution of hydrogen peroxide to the inhibition of Staphylococcus aureus by Lactococcus garvieae in interaction with raw milk microbial community

    OpenAIRE

    Delbes, Céline; Dorchies, Géraud; Chaabna, Zineddine; Callon, Cecile; Montel, Marie-Christine

    2010-01-01

    The response of Staphylococcus aureus growth inhibition by Lactococcus garvieae to catalase and milk lactoperoxidase, and its efficiency in raw milk cheese were evaluated. S. aureus and L. garvieae were co-cultivated in broth buffered at pH 6.8, and in raw, pasteurized and microfiltered milk, in presence and absence of catalase. Although H(2)O(2) production by L garvieae was detected only in agitated broth, the inhibition of S. aureus by L garvieae was reduced by catalase both in stati...

  6. ELECTROCHEMICAL STUDIES FOR CORROSION INHIBITION OF MILD STEEL BY CHRYSOPHYLLUM ALBIDUM EXTRACT

    OpenAIRE

    Akoma Chigozie S.; Osarolube Eziaku; Abumere O. E.

    2018-01-01

    The corrosion behavior of mild steel in carbonated drinks produced by Nigerian Breweries (Fanta, Sprite and Coke) was studied in the presence and absence of an eco-friendly inhibitor, Chrysophyllum albidum using Potentiodynamic polarization technique at 25 °C. Results showed that Chrysophyllum albidum reduced the current density (icorr), which in turn means that the corrosion rate was reduced significantly. The inhibition efficiency was found to be 93%, 78.6% and 87.5% for Fanta, Sprite and C...

  7. Modelling and Optimization of Corrosion Inhibition of Mild Steel in Phosphoric Acid by Red Pomegranate Peels Aqueous Extract

    Directory of Open Access Journals (Sweden)

    Khalid Hamid Rashid

    2011-11-01

    Full Text Available Taguchi experimental design (TED is applied to find the optimum effectiveness of aqueous Red Pomegranate Peel (RPP extract as a green inhibitor for the corrosion of mild steel in 2M H3PO4 solution. The Taguchi methodology has been used to study the effects of changing, temperature, RPP concentration and contact period, at three levels. Weight-loss measurements were designed by construction a L9 orthogonal arrangement of experiments. Results of the efficiencies of inhibition were embraced for the signal to noise proportion & investigation of variance (ANOVA. The results were further processed with a MINITAB-17 software package to find the optimal conditions for inhibitor usage. Second order polynomial model was used for experimental data fitting. Optimum conditions for achieving the maximum corrosion inhibition efficiency are obtained from optimizing the above model and are found as follow: 39.66 °C temperature of acidic media, 38.29 ml/L inhibitor concentration and 2.95 h contact period. Results demonstrated that rate of corrosion was increased with temperature increasing & decreasing inhibitor concentration. It was concluded that the Taguchi design was adequately useful in the optimization of operating parameters and that RPP sufficiently inhibited the corrosion of steel at the range of variables studied.

  8. Inhibition of corrosion of carbon steel by heptane sulphonic acid – Zn2+ system

    Directory of Open Access Journals (Sweden)

    C. MARY ANBARAS

    2012-03-01

    Full Text Available Corrosion inhibition of carbon steel in dam water by sodium heptane sulphonate (SHS and zinc ion system was investigated using weight loss and potentiodynamic polarization methods. Results of weight loss method indicated that inhibition efficiency (IE increased as the inhibitor concentration increased. A synergistic effect existed between SHS and Zn2+. The influence of sodium potassium tartrate (SPT on the IE of the SHS-Zn2+ system was evaluated. As the immersion period increased, the IE decreased. Polarization study revealed that SHS-Zn2+ system functioned as a cathodic inhibitor. AC impedance spectra revealed that a protective film was formed on the metal surface. The nature of the metal surface was analyzed by FTIR spectra, SEM and AFM analyses.

  9. Inhibition of mild steel corrosion in acid solution by Pheniramine drug: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Ahamad, Ishtiaque; Prasad, Rajendra; Quraishi, M.A.

    2010-01-01

    Inhibition of mild steel corrosion in 1 M HCl solution by Pheniramine drug was studied using weight loss, electrochemical impedance spectroscopy, linear polarization resistance, and potentiodynamic polarization measurements. The values of activation energy (E a ) and different thermodynamic parameters such as adsorption equilibrium constant (K ads ), free energy of adsorption (ΔG ads o ), adsorption enthalpy (ΔH ads o ) and adsorption entropy (ΔS ads o ) were calculated and discussed. The adsorption process of studied drug on mild steel surface obeys the Langmuir adsorption isotherm. Potentiodynamic polarization measurements showed that Pheniramine is mixed-type inhibitor. Further, theoretical calculations were carried out and relations between computed parameters and experimental inhibition efficiency were discussed.

  10. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. I. Inhibition of de novo phosphatidylserine biosynthesis by exogenous phosphatidylserine and its efficient incorporation

    International Nuclear Information System (INIS)

    Nishijima, M.; Kuge, O.; Akamatsu, Y.

    1986-01-01

    The effect of phosphatidylserine exogenously added to the medium on de novo biosynthesis of phosphatidylserine was investigated in cultured Chinese hamster ovary cells. When cells were cultured for several generations in medium supplemented with phosphatidylserine and 32 Pi, the incorporation of 32 Pi into cellular phosphatidylserine was remarkably inhibited, the degree of inhibition being dependent upon the concentration of added phosphatidylserine. 32 Pi uptake into cellular phosphatidylethanolamine was also partly reduced by the addition of exogenous phosphatidylserine, consistent with the idea that phosphatidylethanolamine is biosynthesized via decarboxylation of phosphatidylserine. However, incorporation of 32 Pi into phosphatidylcholine, sphingomyelin, and phosphatidylinositol was not significantly affected. In contrast, the addition of either phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or phosphatidylinositol to the medium did not inhibit endogenous biosynthesis of the corresponding phospholipid. Radiochemical and chemical analyses of the cellular phospholipid composition revealed that phosphatidylserine in cells grown with 80 microM phosphatidylserine was almost entirely derived from the added phospholipid. Phosphatidylserine uptake was also directly determined by using [ 3 H]serine-labeled phospholipid. Pulse and pulse-chase experiments with L-[U- 14 C] serine showed that when cells were cultured with 80 microM phosphatidylserine, the rate of synthesis of phosphatidylserine was reduced 3-5-fold. Enzyme assaying of extracts prepared from cells grown with and without phosphatidylserine indicated that the inhibition of de novo phosphatidylserine biosynthesis by the added phosphatidylserine appeared not to be caused by a reduction in the level of the enzyme involved in the base-exchange reaction between phospholipids and serine

  11. Lectin enhancement of the lipofection efficiency in human lung carcinoma cells.

    Science.gov (United States)

    Yanagihara, K; Cheng, P W

    1999-10-18

    Poor transfection efficiency of human lung carcinoma cells by lipofection begs further development of more efficient gene delivery strategies. The purpose of this study was to determine whether lectins can improve the lipofection efficiency in lung carcinoma cells. A549, Calu3, and H292 cells grown to 90% confluence were transfected for 18 h with a plasmid DNA containing a beta-galactosidase reporter gene (pCMVlacZ) using lipofectin plus a lectin as the vector. Ten different lectins, which exhibit a wide range of carbohydrate-binding specificities, were examined for their abilities to enhance the efficiency of lipofection. The transfected cells were assessed for transfection efficiency by beta-galactosidase activity (units/microg protein) and % blue cells following X-Gal stain. Lipofectin supplemented with Griffonia simplicifolia-I (GS-I) yields largest enhancement of the lipofection efficiency in A549 and Calu3 cells (5.3- and 28-fold, respectively). Maackia amurensis gives the largest enhancement (6.5-fold) of lipofection efficiency in H292 cells. The transfection efficiency correlates with the amounts of DNA delivered to the nucleus. Binding of FITC-labeled GS-I and the enhancement of the lipofection efficiency by GS-I were inhibited by alpha-methyl-D-galactopyranoside, indicating an alpha-galactoside-mediated gene transfer to lung carcinoma cells. We conclude that lectin-facilitated lipofection is an efficient gene delivery strategy. Employment of cell type-specific lectins may allow for efficient cell type-specific gene targeting.

  12. Synaptic E-I Balance Underlies Efficient Neural Coding.

    Science.gov (United States)

    Zhou, Shanglin; Yu, Yuguo

    2018-01-01

    Both theoretical and experimental evidence indicate that synaptic excitation and inhibition in the cerebral cortex are well-balanced during the resting state and sensory processing. Here, we briefly summarize the evidence for how neural circuits are adjusted to achieve this balance. Then, we discuss how such excitatory and inhibitory balance shapes stimulus representation and information propagation, two basic functions of neural coding. We also point out the benefit of adopting such a balance during neural coding. We conclude that excitatory and inhibitory balance may be a fundamental mechanism underlying efficient coding.

  13. Adsorption and corrosion inhibiting effect of riboflavin on Q235 mild steel corrosion in acidic environments

    Energy Technology Data Exchange (ETDEWEB)

    Chidiebere, Maduabuchi A. [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology Owerri, PMB 1526 Owerri (Nigeria); Oguzie, Emeka E. [Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology Owerri, PMB 1526 Owerri (Nigeria); Liu, Li [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Li, Ying, E-mail: liying@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Wang, Fuhui [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China)

    2015-04-15

    The inhibiting effect of Riboflavin (RF) on Q235 mild steel corrosion in 1 M HCl and 0.5 M H{sub 2}SO{sub 4} at 30 °C temperature was investigated using electrochemical techniques (electrochemical impedance spectroscopy and potentiodynamic polarization). The obtained results revealed that RF inhibited the corrosion reaction in both acidic solutions. Maximum inhibition efficiency values in 1 M HCl and 0.5 M H{sub 2}SO{sub 4} were 83.9% and 71.4%, respectively, obtained for 0.0012 M RF. Polarization data showed RF to be a mixed-type inhibitor, while EIS results revealed that the RF species adsorbed on the metal surface. The adsorption of RF followed Langmuir adsorption isotherm. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies confirmed the formation of a protective layer adsorbed on the steel surface. Quantum chemical calculations were used to correlate the inhibition ability of RF with its electronic structural parameters. - Highlights: • The inhibitory mechanism was influenced by the nature of acid anions. • RF has reasonable inhibition effect especially in 1 M HCl solution. • Polarization studies showed that RF functioned as a mixed type inhibitor. • Improved surface morphology was observed in the presence of RF.

  14. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors

    Directory of Open Access Journals (Sweden)

    Refat M. Hassan

    2013-06-01

    Full Text Available Corrosion inhibition of aluminum (Al in hydrochloric acid by anionic polyeletrolyte pectates (PEC as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  15. Inhibition of CSF-1R supports T-cell mediated melanoma therapy.

    Directory of Open Access Journals (Sweden)

    Marjolein Sluijter

    Full Text Available Tumor associated macrophages (TAM can promote angiogenesis, invasiveness and immunosuppression. The cytokine CSF-1 (or M-CSF is an important factor of TAM recruitment and differentiation and several pharmacological agents targeting the CSF-1 receptor (CSF-1R have been developed to regulate TAM in solid cancers. We show that the kinase inhibitor PLX3397 strongly dampened the systemic and local accumulation of macrophages driven by B16F10 melanomas, without affecting Gr-1(+ myeloid derived suppressor cells. Removal of intratumoral macrophages was remarkably efficient and a modest, but statistically significant, delay in melanoma outgrowth was observed. Importantly, CSF-1R inhibition strongly enhanced tumor control by immunotherapy using tumor-specific CD8 T cells. Elevated IFNγ production by T cells was observed in mice treated with the combination of PLX3397 and immunotherapy. These results support the combined use of CSF-1R inhibition with CD8 T cell immunotherapy, especially for macrophage-stimulating tumors.

  16. Inhibition of polyphenoloxidase by sulfite

    International Nuclear Information System (INIS)

    Sayavedra-Soto, L.A.; Montgomery, M.W.

    1986-01-01

    When polyphenoloxidase (PPO) was exposed to sulfite prior to substrate addition, inhibition was irreversible. Trials to regenerate PPO activity, using extensive dialysis, column chromatography, and addition of copper salts were not successful. Increased concentrations of sulfite and pH levels less than 5 enhanced the inhibition of PPO by sulfite. At pH 4, concentrations greater than 0.04 mg/mL completely inhibited 1000 units of PPO activity almost instantaneously. This suggested that the HSO 3 - molecule was the main component in the sulfite system inhibiting PPO. Column chromatography, extensive dialysis, and gel electrophoresis did not demonstrate 35 SO 2 bound to purified pear PPO protein. Formation of extra protein bands of sulfite inhibited purified pear PPO fractions on gel electrophoresis was demonstrated. This and other evidence suggested that the major mode of direct irreversible inhibition of PPO was modification of the protein structure, with retention of its molecular unity

  17. Low-weight polyethylenimine cross-linked 2-hydroxypopyl-ß-cyclodextrin and folic acid as an efficient and nontoxic siRNA carrier for gene silencing and tumor inhibition by VEGF siRNA

    Directory of Open Access Journals (Sweden)

    Li JM

    2013-06-01

    inhibition of tumor growth and reduced VEGF protein expression in the tumors. Conclusion: Our results suggest that the FA-HP-β-CD-PEI complex is a nontoxic and highly efficient gene carrier with the potential to deliver siRNA for cancer gene therapy effectively in vitro and in vivo. Keywords: polyethyleneimine, 2-hydroxypropyl-β-cyclodextrin, folic acid, siRNA carrier, vascular endothelial growth factor, gene silencing

  18. Corrosion Inhibition of Mild Steel in Hydrochloric Acid by Sodium Lauryl Sulfate (SLS

    Directory of Open Access Journals (Sweden)

    Atul Kumar

    2008-01-01

    Full Text Available Effect of Sodium Lauryl Sulfate (SLS, a surfactant on corrosion of mild steel in 1 M hydrochloric acid was studied using three techniques namely: weight loss, electrochemical polarization and metallurgical research microscopy. Results obtained reveal that SLS is good inhibitor and shows very good corrosion inhibition efficiency (IE. The IE was found to vary with concentration of inhibitor and temperature. The electrochemical polarization result revealed that SLS is anodic in nature.

  19. ERK inhibition promotes neuroectodermal precursor commitment by blocking self-renewal and primitive streak formation of the epiblast.

    Science.gov (United States)

    Yu, Yang; Wang, Xiaoxiao; Zhang, Xiaoxin; Zhai, Yanhua; Lu, Xukun; Ma, Haixia; Zhu, Kai; Zhao, Tongbiao; Jiao, Jianwei; Zhao, Zhen-Ao; Li, Lei

    2018-01-05

    Pluripotent stem cells hold great promise for regenerative medicine. However, before clinical application, reproducible protocols for pluripotent stem cell differentiation should be established. Extracellular signal-regulated protein kinase (ERK) signaling plays a central role for the self-renewal of epiblast stem cells (EpiSCs), but its role for subsequent germ layer differentiation is still ambiguous. We proposed that ERK could modulate differentiation of the epiblast. PD0325901 was used to inhibit ERK activation during the differentiation of embryonic stem cells and EpiSCs. Immunofluorescence, western blot analysis, real-time PCR and flow cytometry were used to detect germ layer markers and pathway activation. We demonstrate that the ERK phosphorylation level is lower in neuroectoderm of mouse E7.5 embryos than that in the primitive streak. ERK inhibition results in neural lineage commitment of epiblast. Mechanistically, PD0325901 abrogates the expression of primitive streak markers by β-catenin retention in the cytoplasm, and inhibits the expression of OCT4 and NANOG during EpiSC differentiation. Thus, EpiSCs differentiate into neuroectodermal lineage efficiently under PD0325901 treatment. These results suggest that neuroectoderm differentiation does not require extrinsic signals, supporting the default differentiation of neural lineage. We report that a single ERK inhibitor, PD0325901, can specify epiblasts and EpiSCs into neural-like cells, providing an efficient strategy for neural differentiation.

  20. Cysteine protease inhibition by nitrile-based inhibitors: a computational study

    Science.gov (United States)

    Quesne, Matthew G.; Ward, Richard A.; de Visser, Sam P.

    2013-01-01

    Cysteine protease enzymes are important for human physiology and catalyze key protein degradation pathways. These enzymes react via a nucleophilic reaction mechanism that involves a cysteine residue and the proton of a proximal histidine. Particularly efficient inhibitors of these enzymes are nitrile-based, however, the details of the catalytic reaction mechanism currently are poorly understood. To gain further insight into the inhibition of these molecules, we have performed a combined density functional theory and quantum mechanics/molecular mechanics study on the reaction of a nitrile-based inhibitor with the enzyme active site amino acids. We show here that small perturbations to the inhibitor structure can have dramatic effects on the catalysis and inhibition processes. Thus, we investigated a range of inhibitor templates and show that specific structural changes reduce the inhibitory efficiency by several orders of magnitude. Moreover, as the reaction takes place on a polar surface, we find strong differences between the DFT and QM/MM calculated energetics. In particular, the DFT model led to dramatic distortions from the starting structure and the convergence to a structure that would not fit the enzyme active site. In the subsequent QM/MM study we investigated the use of mechanical vs. electronic embedding on the kinetics, thermodynamics and geometries along the reaction mechanism. We find minor effects on the kinetics of the reaction but large geometric and thermodynamics differences as a result of inclusion of electronic embedding corrections. The work here highlights the importance of model choice in the investigation of this biochemical reaction mechanism. PMID:24790966

  1. Molecular modeling of the inhibition of enzyme PLA2 from snake venom by dipyrone and 1-phenyl-3-methyl-5-pyrazolone

    Science.gov (United States)

    Silva, S. L. Da; Comar, M., Jr.; Oliveira, K. M. T.; Chaar, J. S.; Bezerra, E. R. M.; Calgarotto, A. K.; Baldasso, P. A.; Veber, C. L.; Villar, J. A. F. P.; Oliveira, A. R. M.; Marangoni, S.

    Phospholipases A2 (PLA2) are enzymes that trigger the degradation cascade of the arachidonic acid, leading to the formation of pro-inflammatory eicosanoids. The selective inhibition of PLA2s is crucial in the search for a more efficient anti-inflammatory drug with fewer side effects than the drugs currently used. Hence, we studied the influences caused by two pyrazolonic inhibitors: dipyrone (DIP) and 1-phenyl-3-methyl-5-pyrazolone (PMP) on the kinetic behavior of PLA2 from Crotalus adamanteus venom. Molecular modeling results, by DFT and MM approaches, showed that DIP is strongly associated to the active site of PLA2 through three hydrogen bonds, whereas PMP is associated to the enzyme just through hydrophobic interactions. In addition, only PMP presents an intramolecular hydrogen bond that make difficult the formation of more efficient interactions with PLA2. These results help in the understanding of the experimental observations. Experimentally, the results showed that PLA2 from C. adamanteus present a typical Michaelian behavior. In addition, the calculated kinetic parameters showed that, in the presence of DIP or PMP, the maximum enzymatic velocity (VMAX) value was kept constant, whereas the Michaelis constant (KM) values increased and the inhibition constant (KI) decreased, indicating competitive inhibition. These results show that the phenyl-pyrazolonic structures might help in the development and design of new drugs able to selectively inhibit PLA2.

  2. Induction and inhibition of film yeast from fermented bamboo shoot by seasoning plants

    Directory of Open Access Journals (Sweden)

    Jaruwan Maneesri

    2007-07-01

    Full Text Available Three samples of fermented bamboo shoot taken from a village in Amphur Kokpho, Pattani Province, were microbiologically examined. Total viable count was between at 104-105 cfu/ml while pH range was between 3.4-4.4. Isolation and identification of film yeast on surface of fermented liquid revealed Saccharomyces cerevisiae J1, Candida krusei J2 and Candida krusei J3. When film yeast was cultivated in liquid culture with different NaCl concentrations (0, 2.5, 5 and 7.5% (w/v, all species tolerated 2.5% NaCl addition. However, growth decreased depending on NaCl concentration. S. cerevisiae J1 grew faster than C. krusei J2 and C. krusei J3. The cultivation of film yeast in medium with different agar concentrations (0.3, 0.5, 1 and 1.5% (w/v within 24 h showed that 0.3% was the optimal agar concentration. Seasoning plants (garlic, ginger, galangal, lemon grass, lesser galangal, clove, kaffir lime, garcinia and shallot were extracted with water (3% (w/v and tested for growth inhibition. Results showed the clove extract inhibited all yeast strains within 12 h and after that the efficiency of inhibition was decreased. At low concentration of 0.75% (w/v clove extract could inhibit film yeast in fermented bamboo shoot.

  3. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin.

    Science.gov (United States)

    Peng, Minhua; Watanabe, Satoru; Chan, Kitti Wing Ki; He, Qiuyan; Zhao, Ya; Zhang, Zhongde; Lai, Xiaoping; Luo, Dahai; Vasudevan, Subhash G; Li, Geng

    2017-07-01

    In many countries afflicted with dengue fever, traditional medicines are widely used as panaceas for illness, and here we describe the systematic evaluation of a widely known natural product, luteolin, originating from the "heat clearing" class of herbs. We show that luteolin inhibits the replication of all four serotypes of dengue virus, but the selectivity of the inhibition was weak. In addition, ADE-mediated dengue virus infection of human cell lines and primary PBMCs was inhibited. In a time-of-drug-addition study, luteolin was found to reduce infectious virus particle formation, but not viral RNA synthesis, in Huh-7 cells. During the virus life cycle, the host protease furin cleaves the pr moiety from prM protein of immature virus particles in the trans-Golgi network to produce mature virions. Analysis of virus particles from luteolin-treated cells revealed that prM was not cleaved efficiently. Biochemical interrogation of human furin showed that luteolin inhibited the enzyme activity in an uncompetitive manner, with Ki value of 58.6 μM, suggesting that treatment may restrict the virion maturation process. Luteolin also exhibited in vivo antiviral activity in mice infected with DENV, causing reduced viremia. Given the mode of action of luteolin and its widespread source, it is possible that it can be tested in combination with other dengue virus inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Synthesis and inhibition of N-alkyl-2-(4-hydroxybut-2-ynyl) pyridinium bromide for mild steel in acid solution: Box–Behnken design optimization and mechanism probe

    International Nuclear Information System (INIS)

    Gu, Tianbin; Chen, Zhengjun; Jiang, Xiaohui; Zhou, Limei; Liao, Yunwen; Duan, Ming; Wang, Hu; Pu, Qiang

    2015-01-01

    Highlights: • N-alkyl-2-(4-hydroxybut-2-ynyl) pyridinium bromide prepared is new type of inhibitor. • Box–Behnken experiment design-based optimization model is used to maximize inhibition efficiency. • O-n adsorbing on X70 steel surface enhances the resistance of the steel to acid corrosion. • O-n acts as mix-type inhibitor to suppress both the anodic and cathodic reaction of X70 steel. - Abstract: N-alkyl-2-(4-hydroxybut-2-ynyl) pyridinium bromides (designated as O-n) was synthesized and characterized by 1 H and 13 C NMR and FTIR. Box–Behnken design (BBD)-based optimization was engaged to analyze the factors and the interaction of the factors that influence the corrosion inhibition efficiency of O-n for X70 steel. The inhibition mechanism was also probed by means of X-ray photoelectron spectroscopy (XPS), Tafel polarization and electrochemical impedance spectroscopy (EIS) techniques

  5. Evaluation of the efficiency of silicone polyether additives as foam inhibitor in crude oil

    International Nuclear Information System (INIS)

    Fraga, Assis K.; Santos, Raquel F.; Mansur, Claudia R.E.

    2011-01-01

    This work evaluates the chemical and physico-chemical properties of commercial anti-foam products based on silicone polyethers along with their efficiency in inhibiting foaming. The commercial surfactants were characterized by nuclear magnetic resonance (NMR) spectroscopy, size exclusion chromatography (SEC), determination of solubility in different solvents and measurement of the surface and interfacial tensions. A method to test the formation of foam in oil was used to mimic the operating conditions in gas-oil separators. The results show that the most polar additive was the most efficient in breaking up the foam. (author)

  6. The development and application of a Mycoplasma gallisepticum sequence database.

    Science.gov (United States)

    Armour, Natalie K; Laibinis, Victoria A; Collett, Stephen R; Ferguson-Noel, Naola

    2013-01-01

    Molecular analysis was conducted on 36 Mycoplasma gallisepticum DNA extracts from tracheal swab samples of commercial poultry in seven South African provinces between 2009 and 2012. Twelve unique M. gallisepticum genotypes were identified by polymerase chain reaction and sequence analysis of the 16S-23S rRNA intergenic spacer region (IGSR), M. gallisepticum cytadhesin 2 (mgc2), MGA_0319 and gapA genetic regions. The DNA sequences of these genotypes were distinct from those of M. gallisepticum isolates in a database composed of sequences from other countries, vaccine and reference strains. The most prevalent genotype (SA-WT#7) was detected in samples from commercial broilers, broiler breeders and layers in five provinces. South African M. gallisepticum sequences were more similar to those of the live vaccines commercially available in South Africa, but were distinct from that of F strain vaccine, which is not registered for use in South Africa. The IGSR, mgc2 or MGA_0319 sequences of three South African genotypes were identical to those of the ts-11 vaccine strain, necessitating a combination of mgc2 and IGSR targeted sequencing to differentiate South African wild-type genotypes from ts-11 vaccine. To identify and differentiate all 12 wild-types, mgc2, IGSR and MGA_0319 sequencing was required. Sequencing of gapA was least effective at strain differentiation. This research serves as a model for the development of an M. gallisepticum sequence database, and illustrates its application to characterize M. gallisepticum genotypes, select diagnostic tests and better understand the epidemiology of M. gallisepticum.

  7. Inhibitive action of some plant extracts on the corrosion of steel in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gaber, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)]. E-mail: ashrafmoustafa@yahoo.com; Abd-El-Nabey, B.A. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); Sidahmed, I.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); El-Zayady, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); Saadawy, M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)

    2006-09-15

    The effect of extracts of Chamomile (Chamaemelum mixtum L.), Halfabar (Cymbopogon proximus), Black cumin (Nigella sativa L.), and Kidney bean (Phaseolus vulgaris L.) plants on the corrosion of steel in aqueous 1 M sulphuric acid were investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. EIS measurements showed that the dissolution process of steel occurs under activation control. Potentiodynamic polarization curves indicated that the plant extracts behave as mixed-type inhibitors. The corrosion rates of steel and the inhibition efficiencies of the extracts were calculated. The results obtained show that the extract solution of the plant could serve as an effective inhibitor for the corrosion of steel in sulphuric acid media. Inhibition was found to increase with increasing concentration of the plant extract up to a critical concentration. The inhibitive actions of plant extracts are discussed on the basis of adsorption of stable complex at the steel surface. Theoretical fitting of different isotherms, Langmuir, Flory-Huggins, and the kinetic-thermodynamic model, were tested to clarify the nature of adsorption.

  8. Study of Temperature Effect on the Corrosion Inhibition of C38 Carbon Steel Using Amino-tris(Methylenephosphonic Acid in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Najoua Labjar

    2011-01-01

    Full Text Available Tafel polarization method was used to assess the corrosion inhibitive and adsorption behaviours of amino-tris(methylenephosphonic acid (ATMP for C38 carbon steel in 1 M HCl solution in the temperature range from 30 to 60∘C. It was shown that the corrosion inhibition efficiency was found to increase with increase in ATMP concentration but decreased with temperature, which is suggestive of physical adsorption mechanism. The adsorption of the ATMP onto the C38 steel surface was found to follow Langmuir adsorption isotherm model. The corrosion inhibition mechanism was further corroborated by the values of kinetic and thermodynamic parameters obtained from the experimental data.

  9. Investigating the Antioxidant and Acetylcholinesterase Inhibition Activities of Gossypium herbaceam

    Directory of Open Access Journals (Sweden)

    Haji Akber Aisa

    2013-01-01

    Full Text Available Our previous research showed that standardized extract from the flowers of the Gossypium herbaceam labeled GHE had been used in clinical trials for its beneficial effects on brain functions, particularly in connection with age-related dementia and Alzheimer’s disease (AD. The aim of this work was to determine the components of this herb and the individual constituents of GHE. In order to better understand this herb for AD treatment, we investigated the acetylcholinesterase (AChE inhibition and antioxidant activity of GHE as well as the protective effects to PC12 cells against cytotoxicity induced by tertiary butyl hydroperoxide (tBHP using in vitro assays. The antioxidant activities were assessed by measuring their capabilities for scavenging 1,1-diphenyl-2-picylhydrazyl (DPPH and 2-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS free radical as well as in inhibiting lipid peroxidation. Our data showed that GHE exhibited certain activities against AChE and also is an efficient free radical scavenger, which may be helpful in preventing or alleviating patients suffering from AD.

  10. Inhibition of photosynthesis by carbon monoxide and suspension of the carbon monoxide inhibition by light

    Energy Technology Data Exchange (ETDEWEB)

    Gewitz, H S; Voelker, W

    1963-08-01

    The experimental subject was the autotroph Chlorella pyrenoidosa. It was found that growth conditions determine whether the alga is inhibited by carbon monoxide or not. Respiration and photosynthesis are inhibited by carbon monoxide if the cells have grown rapidly under high light intensities. The inhibition of respiration and photosynthesis found in such cells is completely reversible. The inhibition depends not only on carbon monoxide pressure, but also on the oxygen pressure prevailing at the same time. 5 references, 1 figure, 3 tables.

  11. Age Differences in Text Processing: The Role of Working Memory, Inhibition, and Processing Speed

    OpenAIRE

    BORELLA ERIKA; GHISLETTA PAOLO; DE RIBAUPIERRE ANIK

    2011-01-01

    Objectives. Age-related changes in the efficiency of various general cognitive mechanisms have been evoked to account for age-related differences between young and older adults in text comprehension performance. Using structural equation modeling, we investigate the relationship between age, working memory (WM), inhibition-related mechanisms, processing speed, and text comprehension, focusing on surface and text-based levels of processing. Methods. Eighty-nine younger (M = 23.11 years) and 10...

  12. The Synergistic Effect of Iodide and Sodium Nitrite on the Corrosion Inhibition of Mild Steel in Bicarbonate–Chloride Solution

    Directory of Open Access Journals (Sweden)

    Gaius Debi Eyu

    2016-10-01

    Full Text Available The effect of potassium iodide (KI and sodium nitrite (NaNO2 inhibitor on the corrosion inhibition of mild steel in chloride bicarbonate solution has been studied using electrochemical techniques. Potentiodynamic polarisation data suggest that, when used in combination, KI and NaNO2 function together to inhibit reactions at both the anode and the cathode, but predominantly anodic. KI/NO2− concentration ratios varied from 2:1 to 2:5; inhibition efficiency was optimized for a ratio of 1:1. The surface morphology and corrosion products were analysed using scanning electron microscopy (SEM and X-ray diffractometry (XRD. The latter shows that the addition of I− to NO2 facilitates the formation of a passivating oxide (γ-Fe2O3 as compared to NO2− alone, decreasing the rate of metal dissolution observed in electrochemical testing. The synergistic effect of KI/NO2− inhibition was enhanced under the dynamic conditions associated with testing in a rotating disc electrode.

  13. Adsorption and inhibitive properties of sildenafil (Viagra) for zinc in hydrochloric acid solution

    Science.gov (United States)

    Fouda, A. S.; Ibrahim, H.; Atef, M.

    Sildenafil (Viagra) was investigated as corrosion inhibitor for Zn in 1 M HCl solution using chemical and electrochemical methods at 25 °C. Electrochemical results showed that this drug is efficient inhibitor for Zn in HCl and the inhibition efficiency (IE) reached to 91% at 300 ppm. The IE increases with the drug concentration and decreases with increasing temperature. The adsorption of this drug on Zn surface follows Langmuir adsorption isotherm. The polarization plots revealed that Sildenafil acts as a mixed-type inhibitor. The thermodynamic parameters of activation and adsorption were calculated and discussed. The surface morphology of the Zn specimens was evaluated using scanning electron microscope (SEM), energy dispersive X-ray (EDX), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) techniques.

  14. Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium

    International Nuclear Information System (INIS)

    Arslan, Taner; Kandemirli, Fatma; Ebenso, Eno E.; Love, Ian; Alemu, Hailemichael

    2009-01-01

    Quantum chemical calculations using the density functional theory (DFT) and some semi-empirical methods were performed on four sulphonamides (sulfaguanidine, sulfamethazine, sulfamethoxazole and sulfadiazine) used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental %IE were subjected to correlation analysis and indicate that their inhibition effect are closely related to E HOMO , E LUMO , hardness, polarizability, dipole moment and charges. The %IE increased with increase in the E HOMO and decrease in E HOMO - E LUMO . The negative sign of the E HOMO values and other kinetic and thermodynamic parameters indicates that the data obtained support physical adsorption mechanism

  15. Inhibition of β-catenin-mediated transactivation by flavanone in AGS gastric cancer cells

    International Nuclear Information System (INIS)

    Park, Chi Hoon; Hahm, Eun Ryeong; Lee, Ju Hyung; Jung, Kyung Chae; Yang, Chul Hak

    2005-01-01

    Recently, data which prove that Wnt pathway activation may be an early event in multistep carcinogenesis in the stomach have been accumulating. We examined the effect of flavanone against β-catenin/Tcf signaling in AGS gastric cancer cells. Reporter gene assay showed that flavanone inhibited β-catenin/Tcf signaling efficiently. In addition, the inhibition of β-catenin/Tcf signaling by flavanone in HEK293 cells transiently transfected with constitutively mutant β-catenin gene, whose product is not phosphorylated by GSK3β, indicates that its inhibitory mechanism was related to β-catenin itself or downstream components. To investigate the precise inhibitory mechanism, we performed immunofluorescence, Western blot, and EMSA. As a result, our data revealed that there is no change of β-catenin distribution and of nuclear β-catenin levels through flavanone. In addition, the binding of Tcf complexes to DNA is not influenced by flavanone. The β-catenin/Tcf transcriptional target gene cyclinD1 was downregulated by flavanone. These data suggest that flavanone inhibits the transcription of β-catenin/Tcf responsive genes, by modulating Tcf activity without disrupting β-catenin/Tcf complex formation

  16. The Inhibition Effect of Potassium Iodide on the Corrosion of Pure Iron in Sulphuric Acid

    Directory of Open Access Journals (Sweden)

    Tarik Attar

    2014-01-01

    Full Text Available The use of inorganic inhibitors as an alternative to organic compounds is based on the possibility of degradation of organic compounds with time and temperature. The inhibition effect of potassium iodide on the corrosion of pure iron in 0.5 M H2SO4 has been studied by weight loss. It has been observed from the results that the inhibition efficiency (IE% of KI increases from 82.17% to 97.51% with the increase in inhibitor concentration from 1·10−4 to 2·10−3 M. The apparent activation energy (Ea and the equilibrium constant of adsorption (Kads were calculated. The adsorption of the inhibitor on the pure iron surface is in agreement with Langmuir adsorption isotherm.

  17. Inhibition of mild steel corrosion in acid solution by Pheniramine drug: Experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Ahamad, Ishtiaque [Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi 221 005 (India); Prasad, Rajendra [Department of Chemistry, SGB Amravati University, Amravati 444 602 (India); Quraishi, M.A., E-mail: maquraishi@rediffmail.co [Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi 221 005 (India)

    2010-09-15

    Inhibition of mild steel corrosion in 1 M HCl solution by Pheniramine drug was studied using weight loss, electrochemical impedance spectroscopy, linear polarization resistance, and potentiodynamic polarization measurements. The values of activation energy (E{sub a}) and different thermodynamic parameters such as adsorption equilibrium constant (K{sub ads}), free energy of adsorption ({Delta}G{sub ads}{sup o}), adsorption enthalpy ({Delta}H{sub ads}{sup o}) and adsorption entropy ({Delta}S{sub ads}{sup o}) were calculated and discussed. The adsorption process of studied drug on mild steel surface obeys the Langmuir adsorption isotherm. Potentiodynamic polarization measurements showed that Pheniramine is mixed-type inhibitor. Further, theoretical calculations were carried out and relations between computed parameters and experimental inhibition efficiency were discussed.

  18. The pattern recognition molecule deleted in malignant brain tumors 1 (DMBT1) and synthetic mimics inhibit liposomal nucleic acid delivery

    DEFF Research Database (Denmark)

    Lund Hansen, Pernille; Blaich, Stephanie; End, Caroline

    2011-01-01

    Liposomal nucleic acid delivery is a preferred option for therapeutic settings. The cellular pattern recognition molecule DMBT1, secreted at high levels in various diseases, and synthetic mimics efficiently inhibit liposomal nucleic acid delivery to human cells. These findings may have relevance...

  19. Efficient Coding and Energy Efficiency Are Promoted by Balanced Excitatory and Inhibitory Synaptic Currents in Neuronal Network.

    Science.gov (United States)

    Yu, Lianchun; Shen, Zhou; Wang, Chen; Yu, Yuguo

    2018-01-01

    Selective pressure may drive neural systems to process as much information as possible with the lowest energy cost. Recent experiment evidence revealed that the ratio between synaptic excitation and inhibition (E/I) in local cortex is generally maintained at a certain value which may influence the efficiency of energy consumption and information transmission of neural networks. To understand this issue deeply, we constructed a typical recurrent Hodgkin-Huxley network model and studied the general principles that governs the relationship among the E/I synaptic current ratio, the energy cost and total amount of information transmission. We observed in such a network that there exists an optimal E/I synaptic current ratio in the network by which the information transmission achieves the maximum with relatively low energy cost. The coding energy efficiency which is defined as the mutual information divided by the energy cost, achieved the maximum with the balanced synaptic current. Although background noise degrades information transmission and imposes an additional energy cost, we find an optimal noise intensity that yields the largest information transmission and energy efficiency at this optimal E/I synaptic transmission ratio. The maximization of energy efficiency also requires a certain part of energy cost associated with spontaneous spiking and synaptic activities. We further proved this finding with analytical solution based on the response function of bistable neurons, and demonstrated that optimal net synaptic currents are capable of maximizing both the mutual information and energy efficiency. These results revealed that the development of E/I synaptic current balance could lead a cortical network to operate at a highly efficient information transmission rate at a relatively low energy cost. The generality of neuronal models and the recurrent network configuration used here suggest that the existence of an optimal E/I cell ratio for highly efficient energy

  20. Corrosion inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A O

    1965-12-29

    An acid corrosion-inhibiting composition consists essentially of a sugar, and an alkali metal salt selected from the group consisting of iodides and bromides. The weight ratio of the sugar to the alkali metal salt is between 2:1 and about 20,000:1. Also, a corrosion- inhibited phosphoric acid composition comprising at least about 20 wt% of phosphoric acid and between about 0.1 wt% and about 10 wt% of molasses, and between about 0.0005 wt% and about 1 wt% of potassium iodide. The weight ratio of molasses to iodide is greater than about 2:1. (11 claims)

  1. Inhibition of MMPs by alcohols

    Science.gov (United States)

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Hoshika, Tomohiro; Uchiyama, Toshikazu; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; Thompson, Jeremy M.; McCracken, Courtney E.; Looney, Stephen W.; Tay, Franklin R.; Pashley, David H.

    2011-01-01

    Objectives While screening the activity of potential inhibitors of matrix metalloproteinases (MMPs), due to the limited water solubility of some of the compounds, they had to be solubilized in ethanol. When ethanol solvent controls were run, they were found to partially inhibit MMPs. Thus, the purpose of this study was to compare the MMP-inhibitory activity of a series of alcohols. Methods The possible inhibitory activity of a series of alcohols was measured against soluble rhMMP-9 and insoluble matrix-bound endogenous MMPs of dentin in completely demineralized dentin. Increasing concentrations (0.17, 0.86, 1.71 and 4.28 moles/L) of a homologous series of alcohols (i.e. methanol, ethanol, propanols, butanols, pentanols, hexanols, the ethanol ester of methacrylic acid, heptanols and octanol) were compared to ethanediol, and propanediol by regression analysis to calculate the molar concentration required to inhibit MMPs by 50% (i.e. the IC50). Results Using two different MMP models, alcohols were shown to inhibit rhMMP-9 and the endogenous proteases of dentin matrix in a dose-dependent manner. The degree of MMP inhibition by alcohols increased with chain length up to 4 methylene groups. Based on the molar concentration required to inhibit rhMMP-9 fifty percent, 2-hydroxyethylmethacrylate (HEMA), 3-hexanol, 3-heptanol and 1-octanol gave the strongest inhibition. Significance The results indicate that alcohols with 4 methylene groups inhibit MMPs more effectively than methanol or ethanol. MMP inhibition was inversely related to the Hoy's solubility parameter for hydrogen bonding forces of the alcohols (i.e. to their hydrophilicity). PMID:21676453

  2. Tributyltin (TBT) inhibition of oligomycin-sensitive Mg-ATPase activity in mussel mitochondria.

    Science.gov (United States)

    Pagliarani, Alessandra; Bandiera, Patrizia; Ventrella, Vittoria; Trombetti, Fabiana; Pirini, Maurizio; Nesci, Salvatore; Borgatti, Anna Rosa

    2008-06-01

    Tributyltin (TBT), one of the most toxic lipophilic aquatic pollutants, can be efficiently incorporated from sea water and sediments by filter-feeding molluscs. As far as we are aware TBT effects on the mitochondrial oligomycin-sensitive Mg-ATPase, the enzymatic core of energy production and a known target of TBT toxicity in mammals, have not been yet investigated in molluscs; thus the hydrolytic capability of the mitochondrial complex in the presence of micromolar concentrations of TBT was assayed in the mussel Mytilus galloprovincialis. Gill and mantle ATPase activities were progressively depressed by increasing TBT doses up to a maximal inhibition (82% in the gills and 74% in the mantle) at 0.62 microM TBT. Non-cooperative inhibition kinetics (n(H) approximately -1) and a non-competitive mechanism with respect to ATP substrate were pointed out. The mitochondrial Mg-ATPase susceptivity to TBT in the marine mussel was consistent with the formation of a TBT-Mg-ATPase complex, apparently more stable in the gills than in the mantle. The complex shape of the dose-response curve and the partial release of Mg-ATPase inhibition within the 0.6-34.4 microM TBT range suggest multiple interactions of TBT with the enzyme complex putatively related to its molecular mechanism of toxicity.

  3. S-carboxymethylcysteine inhibits adherence of Streptococcus pneumoniae to human alveolar epithelial cells.

    Science.gov (United States)

    Sumitomo, Tomoko; Nakata, Masanobu; Yamaguchi, Masaya; Terao, Yutaka; Kawabata, Shigetada

    2012-01-01

    Streptococcus pneumoniae is a major pathogen of respiratory infections that utilizes platelet-activating factor receptor (PAFR) for firm adherence to host cells. The mucolytic agent S-carboxymethylcysteine (S-CMC) has been shown to exert inhibitory effects against infection by several respiratory pathogens including S. pneumoniae in vitro and in vivo. Moreover, clinical studies have implicated the benefits of S-CMC in preventing exacerbation of chronic obstructive pulmonary disease, which is considered to be related to respiratory infections. In this study, to assess whether the potency of S-CMC is attributable to inhibition of pneumococcal adherence to host cells, an alveolar epithelial cell line stimulated with interleukin-1α was used as a model of inflamed epithelial cells. Despite upregulation of PAFR by inflammatory activation, treatment with S-CMC efficiently inhibited pneumococcal adherence to host epithelial cells. In order to gain insight into the inhibitory mechanism, the effects of S-CMC on PAFR expression were also investigated. Following treatment with S-CMC, PAFR expression was reduced at both mRNA and post-transcriptional levels. Interestingly, S-CMC was also effective in inhibiting pneumococcal adherence to cells transfected with PAFR small interfering RNAs. These results indicate S-CMC as a probable inhibitor targeting numerous epithelial receptors that interact with S. pneumoniae.

  4. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro

    International Nuclear Information System (INIS)

    Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A.

    2016-01-01

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24 h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. - Highlights: • Equol exposure inhibits antral follicle growth. • Equol exposure increases follicle atresia. • Equol exposure inhibits sex steroid hormone levels. • Equol exposure inhibits mRNA levels of certain steroidogenic enzymes.

  5. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Mahalingam, Sharada, E-mail: mahalin2@illinois.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Gao, Liying, E-mail: lgao@uiuc.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Gonnering, Marni, E-mail: mgonne2@illinois.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Helferich, William, E-mail: helferic@illinois.edu [Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL 61801 (United States); Flaws, Jodi A., E-mail: jflaws@illinois.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States)

    2016-03-15

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24 h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. - Highlights: • Equol exposure inhibits antral follicle growth. • Equol exposure increases follicle atresia. • Equol exposure inhibits sex steroid hormone levels. • Equol exposure inhibits mRNA levels of certain steroidogenic enzymes.

  6. Electrochemical studies of adsorption and inhibition effect of new synthesized triazinane-amide derivatives on cold rolled steel in 0.5 M HCl

    International Nuclear Information System (INIS)

    Abo-Elenien, O.M.; Zohdy, K.M.; Abdelkreem, M.

    2012-01-01

    The adsorption and inhibition effects of new synthesized triazinane-amide derivatives (TAZA) on cold rolled steel (CRS) in 0.5 M HCl at concentration 100-500 ppm and 25.65 .C were studied by mean of weight loss and potentiodynamic polarization techniques. The results showed that the TAZA was a good inhibitor in 0.5 M HCl. The inhibition efficiency (IE) increased with the increase of inhibitor T AZA c oncentration. The adsorption of TAZA on the CRS surfaces followed the Langmuir adsorption isotherm. The thermodynamic and kinetic parameters show evidence of the stability control of the film formation on the CRS surfaces. The polarization curves revealed that the TAZA can act as cathodic and anodic protectors in the same time. Such protection phenomena were evidenced by the means of the weight loss and polarization methods. Significantly, the high efficient process of the film formation in terms of the corrosion rate, efficiency control was found with 300 ppm dose of TAZA, as evidenced from the electrochemical impedance and scanning electron microscope techniques

  7. Aptamer-Conjugated Calcium Phosphate Nanoparticles for Reducing Diabetes Risk via Retinol Binding Protein 4 Inhibition.

    Science.gov (United States)

    Torabi, Raheleh; Ghourchian, Hedayatollah; Amanlou, Massoud; Pasalar, Parvin

    2017-06-01

    Inhibition of the binding of retinol to its carrier, retinol binding protein 4, is a new strategy for treating type 2 diabetes; for this purpose, we have provided an aptamer-functionalized multishell calcium phosphate nanoparticle. First, calcium phosphate nanoparticles were synthesized and conjugated to the aptamer. The cytotoxicity of nanoparticles releases the process of aptamer from nanoparticles and their inhibition function of binding retinol to retinol binding protein 4. After synthesizing and characterizing the multishell calcium phosphate nanoparticles and observing the noncytotoxicity of conjugate, the optimum time (48 hours) and the pH (7.4) for releasing the aptamer from the nanoparticles was determined. The half-maximum inhibitory concentration (IC 50 ) value for inhibition of retinol binding to retinol binding protein 4 was 210 femtomolar (fmol). The results revealed that the aptamer could prevent connection between retinol and retinol binding protein 4 at a very low IC 50 value (210 fmol) compared to other reported inhibitors. It seems that this aptamer could be used as an efficient candidate not only for decreasing the insulin resistance in type 2 diabetes, but also for inhibiting the other retinol binding protein 4-related diseases. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  8. [The role of inhibition in obsessional-compulsive disorders].

    Science.gov (United States)

    Dupuy, M; Rouillon, F; Bungener, C

    2013-02-01

    and resolving ambiguous situations. Neurocognitive studies show that cingular anterior cortex and prefrontal lateral cortex are engaged in ambiguous and conflicting situations. These two regions are considered essential for inhibition of routine actions, adjustment to change and, more generally, for an efficient and flexible behaviour. Repetitive nature of verification rituals in OCD could be explained in terms of lack of relationship between two systems, leaving in action the one that regulates automatic activities. Therefore, the rituals are considered to be under particular influence of the system which, being in charge of automatic actions, has a deficit in disengagement. Another model of attention, described by Posner, gives a further explanation of OCD. Mental inhibition has the capacity to treat information, either by applying strategies to control it (i.e. trying not to remember an unpleasant event) or leaving it to automatic control (i.e. incapacity to experience an emotion in relation to a particular event). In this way, the effort to suppress an intrusive thought is considered as controlled and deliberate cognitive treatment of emotionally charged information. In OCD, in the context of heightened anxiety, the assumed negative valence of information would influence habitual suppression of thought during controlled treatment. As a result, controlled efforts to suppress obsessions in emotionally stressful situations, would lead to the production of repetitive thoughts, as controlled treatment of information has failed in this action. On a clinical and experimental level, these studies have led to a better understanding and conceptualization of OCD. In spite of some conflicting results, there are concordant data in favour of hypotheses of the role of sub-cortical and frontal regions and their function in inhibition/desinhibition implied in the onset and maintenance of OCD. Functional neuroimagery anomalies are also in favour of the role of sub

  9. Self-regulation, ego depletion, and inhibition.

    Science.gov (United States)

    Baumeister, Roy F

    2014-12-01

    Inhibition is a major form of self-regulation. As such, it depends on self-awareness and comparing oneself to standards and is also susceptible to fluctuations in willpower resources. Ego depletion is the state of reduced willpower caused by prior exertion of self-control. Ego depletion undermines inhibition both because restraints are weaker and because urges are felt more intensely than usual. Conscious inhibition of desires is a pervasive feature of everyday life and may be a requirement of life in civilized, cultural society, and in that sense it goes to the evolved core of human nature. Intentional inhibition not only restrains antisocial impulses but can also facilitate optimal performance, such as during test taking. Self-regulation and ego depletion- may also affect less intentional forms of inhibition, even chronic tendencies to inhibit. Broadly stated, inhibition is necessary for human social life and nearly all societies encourage and enforce it. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Structure–function relationships of inhibition of mosquito cytochrome P450 enzymes by flavonoids of Andrographis paniculata.

    Science.gov (United States)

    Kotewong, Rattanawadee; Duangkaew, Panida; Srisook, Ekaruth; Sarapusit, Songklod; Rongnoparut, Pornpimol

    2014-09-01

    The cytochrome P450 monooxygenases are known to play a major role in pyrethroid resistance, by means of increased rate of insecticide detoxification as a result of their overexpression. Inhibition of detoxification enzymes may help disrupting insect detoxifying defense system. The Anopheles minimus CYP6AA3 and CYP6P7 have shown pyrethroid degradation activity and been implicated in pyrethroid resistance. In this study inhibition of the extracts and constituents of Andrographis paniculata Nees. leaves and roots was examined against benzyloxyresorufin O-debenzylation (BROD) of CYP6AA3 and CYP6P7. Four purified flavones (5,7,4′-trihydroxyflavone, 5-hydroxy-7,8-dimethoxyflavone, 5-hydroxy-7,8,2′,3′-tetramethoxyflavone, and 5,4′-dihydroxy-7,8,2′,3′-tetramethoxyflavone), one flavanone (5-hydroxy-7,8-dimethoxyflavanone) and a diterpenoid (14-deoxy-11,12-didehydroandrographolide) containing inhibitory effects toward both enzymes were isolated from A. paniculata. Structure–function relationships were observed for modes and kinetics of inhibition among flavones, while diterpenoid and flavanone were inferior to flavones. Docking of flavones onto enzyme homology models reinforced relationships on flavone structures and inhibition modes. Cell-based inhibition assays employing 3-(4,5-dimethylthiazol-2-y-l)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assays revealed that these flavonoids efficiently increased susceptibility of CYP6AA3- and CYP6P7-expressing Spodoptera frugiperda (Sf9) cells to cypermethrin toxicity, due to inhibition effects on mosquito enzymes. Thus synergistic effects on cypermethrin toxicity of A. paniculata compounds as a result of enzyme inhibition could be useful for mosquito vector control and insecticide resistance management in the future.

  11. Widespread Inhibition of Posttranscriptional Splicing Shapes the Cellular Transcriptome following Heat Shock

    Directory of Open Access Journals (Sweden)

    Reut Shalgi

    2014-06-01

    Full Text Available During heat shock and other proteotoxic stresses, cells regulate multiple steps in gene expression in order to globally repress protein synthesis and selectively upregulate stress response proteins. Splicing of several mRNAs is known to be inhibited during heat stress, often meditated by SRp38, but the extent and specificity of this effect have remained unclear. Here, we examined splicing regulation genome-wide during heat shock in mouse fibroblasts. We observed widespread retention of introns in transcripts from ∼1,700 genes, which were enriched for tRNA synthetase, nuclear pore, and spliceosome functions. Transcripts with retained introns were largely nuclear and untranslated. However, a group of 580+ genes biased for oxidation reduction and protein folding functions continued to be efficiently spliced. Interestingly, these unaffected transcripts are mostly cotranscriptionally spliced under both normal and stress conditions, whereas splicing-inhibited transcripts are mostly spliced posttranscriptionally. Altogether, our data demonstrate widespread repression of splicing in the mammalian heat stress response, disproportionately affecting posttranscriptionally spliced genes.

  12. The corrosion inhibition of aluminum and its copper alloys in 1.0 M H2SO4 solution using linear-sodium dodecyl benzene sulfonate as inhibitor

    International Nuclear Information System (INIS)

    Abd El Rehim, Sayed S.; Amin, Mohammed A.; Moussa, S.O.; Ellithy, Abdallah S.

    2008-01-01

    The corrosion inhibition of Al and its two copper alloys are the subject of tremendous technological importance due to the increased industrial applications of these materials. This paper reports the results of potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) measurements on the corrosion inhibition of Al (Al-2.5% Cu and Al-7.0% Cu) alloys in 1.0 M H 2 SO 4 solution carried out in different concentrations of linear-sodium dodecyl benzene sulfonate as an anionic surfactant (LAS) and temperature range from 10 to 60 deg. C. The data revealed that the inhibition efficiency increases with increasing surfactant concentration and time of immersion, and decreases with solution temperature. Energy dispersion X-ray (EDX) observations of the electrode surface confirmed the existence of LAS adsorbed film on the electrode surface. The surfactant acted mainly as cathodic inhibitor. Maximum inhibition efficiency of the surfactant is observed at concentration around its critical micelle concentration (CMC). The inhibition occurs through adsorption of the surfactant on the metal surface without modifying the mechanism of the corrosion process, which tested by UV-spectroscopy. The potential of zero charge (PZC) of aluminum and Al-7.0% Cu was studied by ac-impedance, and the mechanism of adsorption is discussed. The adsorption isotherm is described by Temkin adsorption isotherm. Thermodynamic functions for activation and adsorption process were determined

  13. Enhanced inhibition of parvovirus B19 replication by cidofovir in extendedly exposed erythroid progenitor cells.

    Science.gov (United States)

    Bonvicini, Francesca; Bua, Gloria; Manaresi, Elisabetta; Gallinella, Giorgio

    2016-07-15

    Human parvovirus B19 (B19V) commonly induces self-limiting infections but can also cause severe clinical manifestations in patients with underlying haematological disorders or with immune system deficits. Currently, therapeutic options for B19V entirely rely on symptomatic and supportive treatments since a specific antiviral therapy is not yet available. Recently a first step in the research for active compounds inhibiting B19V replication has allowed identifying the acyclic nucleoside phosphonate cidofovir (CDV). Herein, the effect of CDV against B19V replication was characterized in human erythroid progenitor cells (EPCs) cultured and infected following different experimental approaches to replicate in vitro the infection of an expanding erythroid cell population in the bone marrow. B19V replication was selectively inhibited both in infected EPCs extendedly exposed to CDV 500μM (viral inhibition 82%) and in serially infected EPCs cultures with passage of the virus progeny, constantly under drug exposure (viral inhibition 99%). In addition, a potent inhibitory effect against B19V (viral inhibition 92%) was assessed in a short-term infection of EPCs treated with CDV 500μM 1day before viral infection. In the evaluated experimental conditions, the enhanced effect of CDV against B19V might be ascribed both to the increased intracellular drug concentration achieved by extended exposure, and to a progressive reduction in efficiency of the replicative process within treated EPCs population. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Saponin Inhibits Hepatitis C Virus Propagation by Up-regulating Suppressor of Cytokine Signaling 2

    OpenAIRE

    Lee, Jihye; Lim, Seri; Kang, Sang-Min; Min, Saehong; Son, Kidong; Lee, Han Sol; Park, Eun Mee; Ngo, Huong T. T.; Tran, Huong T. L.; Lim, Yun-Sook; Hwang, Soon B.

    2012-01-01

    Saponins are a group of naturally occurring plant glycosides which possess a wide range of pharmacological properties, including anti-tumorigenic and antiviral activities. To investigate whether saponin has anti-hepatitis C virus (HCV) activity, we examined the effect of saponin on HCV replication. HCV replication was efficiently inhibited at a concentration of 10 µg/ml of saponin in cell culture grown HCV (HCVcc)-infected cells. Inhibitory effect of saponin on HCV replication was verified by...

  15. Corrosion inhibition studies in support of the long term storage of AGR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Standring, P [Sellafield Limited (United Kingdom)

    2012-07-01

    Thorp Receipt and Storage (at Sellafield, UK) is currently being investigated as a bridging solution for the storage of AGR fuel pending the out-come of a national review into spent fuel management. AGR spent fuel is known to be susceptible to corrosion through inter-granular attack. To avoid this, the chosen storage regime for AGR fuel is sodium hydroxide dosed pond water to pH 11.4; now 22 years of operating experience. The conversion of TR and S will require a phased transition. During this transition sodium hydroxide cannot be used due to materials compatibility issues. Alternative corrosion inhibitors have been investigated as an interim measure and sodium nitrate has been selected as a suitable candidate. The efficiency of sodium nitrate to inhibit propagating inter-granular attack of active AGR materials has yet to be established. In the longer term sodium hydroxide will be deployed along with a move to a closed loop pond water management system. Given that carbon dioxide is known to be absorbed by sodium hydroxide dosed water and can affect fuel integrity, in the case of Magnox fuel, there is a need to establish its impact on AGR fuel. The objectives are: To establish the impact of carbonate on AGR fuel corrosion; To establish the efficiency of sodium nitrate to inhibit propagating inter-granular attack of irradiated AGR materials.

  16. Inhibition Effects of a Synthesized Novel 4-Aminoantipyrine Derivative on the Corrosion of Mild Steel in Hydrochloric Acid Solution together with Quantum Chemical Studies

    Directory of Open Access Journals (Sweden)

    Abu Bakar Mohamad

    2013-06-01

    Full Text Available 1,5-Dimethyl-4-((2-methylbenzylideneamino-2-phenyl-1H-pyrazol-3(2H-one (DMPO was synthesized to be evaluated as a corrosion inhibitor. The corrosion inhibitory effects of DMPO on mild steel in 1.0 M HCl were investigated using electrochemical impedance spectroscopy (EIS, potentiodynamic polarization, open circuit potential (OCP and electrochemical frequency modulation (EFM. The results showed that DMPO inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration. Changes in the impedance parameters suggested an adsorption of DMPO onto the mild steel surface, leading to the formation of protective films. The novel synthesized corrosion inhibitor was characterized using UV-Vis, FT-IR and NMR spectral analyses. Electronic properties such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively and dipole moment (μ were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in the EHOMO values but with a decrease in the ELUMO value.

  17. Inhibition Effects of a Synthesized Novel 4-Aminoantipyrine Derivative on the Corrosion of Mild Steel in Hydrochloric Acid Solution together with Quantum Chemical Studies

    Science.gov (United States)

    Junaedi, Sutiana; Al-Amiery, Ahmed A.; Kadihum, Abdulhadi; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2013-01-01

    1,5-Dimethyl-4-((2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-one (DMPO) was synthesized to be evaluated as a corrosion inhibitor. The corrosion inhibitory effects of DMPO on mild steel in 1.0 M HCl were investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). The results showed that DMPO inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration. Changes in the impedance parameters suggested an adsorption of DMPO onto the mild steel surface, leading to the formation of protective films. The novel synthesized corrosion inhibitor was characterized using UV-Vis, FT-IR and NMR spectral analyses. Electronic properties such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively) and dipole moment (μ) were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in the EHOMO values but with a decrease in the ELUMO value. PMID:23736696

  18. Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency.

    Science.gov (United States)

    Jákli, Bálint; Tavakol, Ershad; Tränkner, Merle; Senbayram, Mehmet; Dittert, Klaus

    2017-02-01

    Potassium (K) is crucial for crop growth and is strongly related to stress tolerance and water-use efficiency (WUE). A major physiological effect of K deficiency is the inhibition of net CO 2 assimilation (A N ) during photosynthesis. Whether this reduction originates from limitations either to photochemical energy conversion or biochemical CO 2 fixation or from a limitation to CO 2 diffusion through stomata and the leaf mesophyll is debated. In this study, limitations to photosynthetic carbon gain of sunflower (Helianthus annuus L.) under K deficiency and PEG- induced water deficit were quantified and their implications on plant- and leaf-scale WUE (WUE P , WUE L ) were evaluated. Results show that neither maximum quantum use efficiency (F v /F m ) nor in-vivo RubisCo activity were directly affected by K deficiency and that the observed impairment of A N was primarily due to decreased CO 2 mesophyll conductance (g m ). K deficiency additionally impaired leaf area development which, together with reduced A N , resulted in inhibition of plant growth and a reduction of WUE P . Contrastingly, WUE L was not affected by K supply which indicated no inhibition of stomatal control. PEG-stress further impeded A N by stomatal closure and resulted in enhanced WUE L and high oxidative stress. It can be concluded from this study that reduction of g m is a major response of leaves to K deficiency, possibly due to changes in leaf anatomy, which negatively affects A N and contributes to the typical symptoms like oxidative stress, growth inhibition and reduced WUE P . Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Within-Subject Correlation Analysis to Detect Functional Areas Associated With Response Inhibition

    Directory of Open Access Journals (Sweden)

    Tomoko Yamasaki

    2018-05-01

    Full Text Available Functional areas in fMRI studies are often detected by brain-behavior correlation, calculating across-subject correlation between the behavioral index and the brain activity related to a function of interest. Within-subject correlation analysis is also employed in a single subject level, which utilizes cognitive fluctuations in a shorter time period by correlating the behavioral index with the brain activity across trials. In the present study, the within-subject analysis was applied to the stop-signal task, a standard task to probe response inhibition, where efficiency of response inhibition can be evaluated by the stop-signal reaction time (SSRT. Since the SSRT is estimated, by definition, not in a trial basis but from pooled trials, the correlation across runs was calculated between the SSRT and the brain activity related to response inhibition. The within-subject correlation revealed negative correlations in the anterior cingulate cortex and the cerebellum. Moreover, the dissociation pattern was observed in the within-subject analysis when earlier vs. later parts of the runs were analyzed: negative correlation was dominant in earlier runs, whereas positive correlation was dominant in later runs. Regions of interest analyses revealed that the negative correlation in the anterior cingulate cortex, but not in the cerebellum, was dominant in earlier runs, suggesting multiple mechanisms associated with inhibitory processes that fluctuate on a run-by-run basis. These results indicate that the within-subject analysis compliments the across-subject analysis by highlighting different aspects of cognitive/affective processes related to response inhibition.

  20. Characterization of unsaturated fatty acid sustained-release microspheres for long-term algal inhibition.

    Science.gov (United States)

    Ni, Lixiao; Jie, Xiaoting; Wang, Peifang; Li, Shiyin; Hu, Shuzhen; Li, Yiping; Li, Yong; Acharya, Kumud

    2015-02-01

    The unsaturated fatty acid (linoleic acid) sustained-release microspheres were prepared with linoleic acid (LA) using alginate-chitosan microcapsule technology. These LA sustained-release microspheres had a high encapsulation efficiency (up to 62%) tested by high performance liquid chromatography with a photo diode array. The dry microspheres were characterized by a scanning electron microscope, X-ray diffraction measurement, dynamic thermogravimetric analysis and Fourier transform infrared spectral analysis. The results of characterization showed that the microspheres had good thermal stability (decomposition temperature of 236°C), stable and temperature independent release properties (release time of more than 40 d). Compared to direct dosing of LA, LA sustained-released microspheres could inhibit Microcystis aeruginosa growth to the non-growth state. The results of this study suggested that the LA sustained-release microspheres may be a potential candidate for algal inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate).

    Science.gov (United States)

    Arellanes-Lozada, Paulina; Olivares-Xometl, Octavio; Guzmán-Lucero, Diego; Likhanova, Natalya V; Domínguez-Aguilar, Marco A; Lijanova, Irina V; Arce-Estrada, Elsa

    2014-08-07

    Compounds of poly(ionic liquid)s (PILs), derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium) (PImC 12 ), poly(1-vinyl-3-octylimidazolium) (PImC₈) and poly(1-vinyl-3-butylimidazolium) (PImC₄) hexafluorophosphate) were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1-1 M H₂SO₄) by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir's isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC 12 > PImC₈ > PImC₄) to reach 61% for PImC 12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs' partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.

  2. Kinetics of corrosion inhibition of aluminum in acidic media by water-soluble natural polymeric chondroitin-4-sulfate as anionic polyelectrolyte inhibitor.

    Science.gov (United States)

    Hassan, Refat M; Ibrahim, Samia M; Takagi, Hideo D; Sayed, Suzan A

    2018-07-15

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyelectrolyte chondroitin-4-sulfate (CS) polysaccharide has been studied using both gasometrical and weight-loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing the inhibitor concentration and decreased with increasing temperature. The inhibition action of CS on Al metal surface was found to obey both of Langmuir and Freundlich isotherms. The factors affecting the corrosion rates such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and the temperature were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the results obtained is discussed. Copyright © 2018. Published by Elsevier Ltd.

  3. Efficient siRNA delivery system using carboxilated single-wall carbon nanotubes in cancer treatment.

    Science.gov (United States)

    Neagoe, Ioana Berindan; Braicu, Cornelia; Matea, Cristian; Bele, Constantin; Florin, Graur; Gabriel, Katona; Veronica, Chedea; Irimie, Alexandru

    2012-08-01

    Several functionalized carbon nanotubes have been designed and tested for the purpose of nucleic acid delivery. In this study, the capacity of SWNTC-COOH for siRNA deliverey were investigated delivery in parallel with an efficient commercial system. Hep2G cells were reverse-transfected with 50 nM siRNA (p53 siRNA, TNF-alphasiRNA, VEGFsiRNA) using the siPORT NeoFX (Ambion) transfection agent in paralel with SWNTC-COOH, functionalised with siRNA. The highest level of gene inhibition was observed in the cases treated with p53 siRNA gene; in the case of transfection with siPort, the NeoFX value was 33.8%, while in the case of SWNTC-COOH as delivery system for p53 siRNA was 37.5%. The gene silencing capacity for VEGF was 53.7%, respectively for TNF-alpha 56.7% for siPORT NeoFX delivery systems versus 47.7% (VEGF) and 46.5% (TNF-alpha) for SWNTC-COOH delivery system. SWNTC-COOH we have been showed to have to be an efficient carrier system. The results from the inhibition of gene expresion for both transfection systems were confirmed at protein level. Overall, the lowest mRNA expression was confirmed at protein level, especially in the case of p53 siRNA and TNF-alpha siRNA transfection. Less efficient reduction protein expressions were observed in the case of VEGF siRNA, for both transfection systems at 24 h; only at 48 h, there was a statistically significant reduction of VEGF protein expression. SWCNT-COOH determined an efficient delivery of siRNA. SWNTC-COOH, combined with suitable tumor markers like p53 siRNA, TNFalpha siRNA or VEGF siRNA can be used for the efficient delivery of siRNA.

  4. Adolescent Development of Inhibition as a Function of SES & Gender: Converging Evidence from Behavior & fMRI

    Science.gov (United States)

    Spielberg, Jeffrey M.; Galarce, Ezequiel M.; Ladouceur, Cecile D.; McMakin, Dana L.; Olino, Thomas M.; Forbes, Erika E.; Silk, Jennifer S.; Ryan, Neal D.; Dahl, Ronald E.

    2015-01-01

    The ability to adaptively inhibit responses to tempting/distracting stimuli in the pursuit of goals is an essential set of skills necessary for adult competence and wellbeing. These inhibitory capacities develop throughout childhood, with growing evidence of important maturational changes occurring in adolescence. There also has been intense interest in the role of social adversity on the development of executive function, including inhibitory control. We hypothesized that the onset of adolescence could be a time of particular opportunity/vulnerability in the development of inhibition due to the large degree of maturational changes in neural systems involved in regulatory control. We investigated this hypothesis in a longitudinal study of adolescents by examining the impact of socioeconomic status (SES) on the maturation of inhibition and concurrent brain function. Furthermore, we examined gender as a potential moderator of this relationship, given evidence of gender-specificity in the developmental pathways of inhibition as well as sex differences in adolescent development. Results reveal that lower SES is associated with worse behavioral inhibition over time and a concurrent increase in anterior cingulate (ACC) activation, but only in girls. We also found that lower SES girls exhibited decreased ACC↔dorsolateral prefrontal cortex (dlPFC) coupling over time. Our findings suggest that female adolescents with lower SES appear to develop less efficient inhibitory processing in dlPFC, requiring greater and relatively unsuccessful compensatory recruitment of ACC. In summary, the present study provides a novel window into the neural mechanisms by which the influence of SES on inhibition may be transmitted during adolescence. PMID:26010995

  5. Cerium incorporated MCM-48 (Ce-MCM-48) as a catalyst to inhibit bromate formation during ozonation of bromide-containing water: Efficacy and mechanism.

    Science.gov (United States)

    Li, Weiwei; Lu, Xiaowei; Xu, Ke; Qu, Jiuhui; Qiang, Zhimin

    2015-12-01

    The composite mesoporous sieve Ce-MCM-48 (cerium incorporated MCM-48) with different Si/Ce molar ratios were synthesized hydrothermally and characterized with X-ray diffraction, X-ray photoelectron spectroscopy, BET surface area, and pHpzc. Results indicate that Ce-MCM-48, especially with a Si/Ce molar ratio of 66 (i.e., Ce66-MCM-48), could significantly inhibit bromate (BrO3(-)) formation during ozonation of Br(-)-containing water, achieving 91% of inhibition efficiency at pH 7.6 and 25 °C. An acidic or alkaline pH decreased the inhibition efficiency of Ce66-MCM-48 to some extent, but reaction temperature ranging from 15 to 30 °C had no significant impact. By comparing the bromine mass balance, aqueous O3 decomposition, and newly formed H2O2 between O3 and O3/Ce66-MCM-48 processes, the inhibition mechanism was proposed: Ce66-MCM-48 promoted aqueous O3 decomposition to generate hydroxyl radicals (OH) that could merge into H2O2, so the oxidative transformation of Br(-) and HOBr/OBr(-) by O3 and OH was primarily suppressed. The catalytic ability of Ce66-MCM-48 was continuously regenerated through the circulating reactions between Ce(III) and Ce(IV) occurring on the catalyst surface. Besides its inhibition on BrO3(-) formation, Ce66-MCM-48 could also enhance the degradation of refractory organic micropollutants. Because of these distinct merits, Ce66-MCM-48 has potential applications to water treatment by ozone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Fear inhibition in high trait anxiety.

    Directory of Open Access Journals (Sweden)

    Merel Kindt

    Full Text Available Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows for the independent evaluation of startle fear potentiation and inhibition of fear. Sixty undergraduate students participated in the study--High Trait Anxious: n = 28 and Low Trait Anxious: n = 32. We replicated earlier findings that a transfer of conditioned inhibition for startle responses requires contingency awareness. However, contrary to the fear inhibition hypothesis, our data suggest that high trait anxious individuals show a normal fear inhibition of conditioned startle responding. Only at the cognitive level the high trait anxious individuals showed evidence for impaired inhibitory learning of the threat cue. Together with other findings where impaired fear inhibition was only observed in those PTSD patients who were either high on hyperarousal symptoms or with current anxiety symptoms, we question whether impaired fear inhibition is a biomarker for the development of anxiety disorders.

  7. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wen-Zhu [Anesthesia and Operation Center, Hainan Branch of Chinese PLA General Hospital, Hainan 572013 (China); Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China); Miao, Yu-Liang [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Guo, Wen-Zhi [Department of Anesthesiology, Beijing Military General Hospital of Chinese People’s Liberation Army, Beijing 100700 (China); Wu, Wei, E-mail: wwzwgk@163.com [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); Li, Bao-Wei [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); An, Li-Na [Department of Anesthesiology, Armed Police General Hospital, Beijing 100039 (China); Fang, Wei-Wu [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Mi, Wei-Dong, E-mail: elite2005gg@163.com [Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China)

    2014-04-25

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation of hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.

  8. RAF Suppression Synergizes with MEK Inhibition in KRAS Mutant Cancer Cells

    Directory of Open Access Journals (Sweden)

    Simona Lamba

    2014-09-01

    Full Text Available KRAS is the most frequently mutated oncogene in human cancer, yet no therapies are available to treat KRAS mutant cancers. We used two independent reverse genetic approaches to identify components of the RAS-signaling pathways required for growth of KRAS mutant tumors. Small interfering RNA (siRNA screening of 37 KRAS mutant colorectal cancer cell lines showed that RAF1 suppression was synthetic lethal with MEK inhibition. An unbiased kinome short hairpin RNA (shRNA-based screen confirmed this synthetic lethal interaction in colorectal as well as in lung cancer cells bearing KRAS mutations. Compounds targeting RAF kinases can reverse resistance to the MEK inhibitor selumetinib. MEK inhibition induces RAS activation and BRAF-RAF1 dimerization and sustains MEK-ERK signaling, which is responsible for intrinsic resistance to selumetinib. Prolonged dual blockade of RAF and MEK leads to persistent ERK suppression and efficiently induces apoptosis. Our data underlie the relevance of developing combinatorial regimens of drugs targeting the RAF-MEK pathway in KRAS mutant tumors.

  9. Urea immunoliposome inhibits human vascular endothelial cell proliferation for hemangioma treatment

    Science.gov (United States)

    2013-01-01

    Background Urea injection has been used in hemangioma treatment as sclerotherapy. It shrinks vascular endothelial cells and induces degeneration, necrosis, and fibrosis. However, this treatment still has disadvantages, such as lacking targeting and difficulty in controlling the urea dosage. Thus, we designed a urea immunoliposome to improve the efficiency of treatment. Methods The urea liposome was prepared by reverse phase evaporation. Furthermore, the urea immunoliposome was generated by coupling the urea liposome with a vascular endothelial growth factor receptor (VEGFR) monoclonal antibody using the glutaraldehyde cross-linking method. The influence of the urea immunoliposome on cultured human hemangioma vascular endothelial cells was observed preliminarily. Results Urea immunoliposomes showed typical liposome morphology under a transmission electron microscope, with an encapsulation percentage of 54.4% and a coupling rate of 36.84% for anti-VEGFR. Treatment with the urea immunoliposome significantly inhibited the proliferation of hemangioma vascular endothelial cells (HVECs) in a time- and dose-dependent manner. Conclusions The urea immunoliposome that we developed distinctly and persistently inhibited the proliferation of HVECs and is expected to be used in clinical hemangioma treatment. PMID:24266957

  10. Inhibition of influenza virus replication by targeting broad host cell pathways.

    Directory of Open Access Journals (Sweden)

    Isabelle Marois

    Full Text Available Antivirals that are currently used to treat influenza virus infections target components of the virus which can mutate rapidly. Consequently, there has been an increase in the number of resistant strains to one or many antivirals in recent years. Here we compared the antiviral effects of lysosomotropic alkalinizing agents (LAAs and calcium modulators (CMs, which interfere with crucial events in the influenza virus replication cycle, against avian, swine, and human viruses of different subtypes in MDCK cells. We observed that treatment with LAAs, CMs, or a combination of both, significantly inhibited viral replication. Moreover, the drugs were effective even when they were administered 8 h after infection. Finally, analysis of the expression of viral acidic polymerase (PA revealed that both drugs classes interfered with early events in the viral replication cycle. This study demonstrates that targeting broad host cellular pathways can be an efficient strategy to inhibit influenza replication. Furthermore, it provides an interesting avenue for drug development where resistance by the virus might be reduced since the virus is not targeted directly.

  11. Structure-function dependence and allopurinol inhibition of ratiosensitizer/nitroreductase interaction: approaches to improving therapeutic rations

    International Nuclear Information System (INIS)

    Raleigh, J.A.; Shum, F.Y.; Koziol, D.R.; Saunders, W.M.

    1980-01-01

    Normal tissue toxicity of nitroaromatic radiosensitizers may originate in radiosensitizer/nitroreductase interaction. A study of two mammalian cell nitroreductases, xanthine oxidase and NADH cytochrome c reductase, shows that the efficiency of electron transfer is dependent on sensitizer electron affinity and not lipid solubility. Misonidazole and its demethylated metabolite (RO-05-9963), for example, are equally efficient as electron acceptors from xanthine oxidase. The only exception to the electron affinity correlation is m-nitrobenzamidine hydrochloride xanthine oxidase from its cofactor, xanthine. Allopurinol inhibits electron transfer and might be a useful adjuvant to the nitroreductases in vivo is deduced from the observation that allopurinol significantly alters the serum lifetimes in mice of misonidazole and RO-05-9963

  12. Convection-enhanced delivery of an anti-miR is well-tolerated, preserves anti-miR stability and causes efficient target de-repression

    DEFF Research Database (Denmark)

    Halle, Bo; Marcusson, Eric G; Aaberg-Jessen, Charlotte

    2016-01-01

    Over-expressed microRNAs (miRs) are promising new targets in glioblastoma (GBM) therapy. Inhibition of over-expressed miRs has been shown to diminish GBM proliferation, invasion and angiogenesis, indicating a significant therapeutic potential. However, the methods utilized for miR inhibition have...... had low translational potential. In clinical trials convection-enhanced delivery (CED) has been applied for local delivery of compounds in the brain. The aim of this study was to determine if safe and efficient miR inhibition was possible by CED of an anti-miR. We used a highly invasive GBM orthotopic...

  13. Saponin Inhibits Hepatitis C Virus Propagation by Up-regulating Suppressor of Cytokine Signaling 2

    Science.gov (United States)

    Kang, Sang-Min; Min, Saehong; Son, Kidong; Lee, Han Sol; Park, Eun Mee; Ngo, Huong T. T.; Tran, Huong T. L.; Lim, Yun-Sook; Hwang, Soon B.

    2012-01-01

    Saponins are a group of naturally occurring plant glycosides which possess a wide range of pharmacological properties, including anti-tumorigenic and antiviral activities. To investigate whether saponin has anti-hepatitis C virus (HCV) activity, we examined the effect of saponin on HCV replication. HCV replication was efficiently inhibited at a concentration of 10 µg/ml of saponin in cell culture grown HCV (HCVcc)-infected cells. Inhibitory effect of saponin on HCV replication was verified by quantitative real-time PCR, reporter assay, and immunoblot analysis. In addition, saponin potentiated IFN-α-induced anti-HCV activity. Moreover, saponin exerted antiviral activity even in IFN-α resistant mutant HCVcc-infected cells. To investigate how cellular genes were regulated by saponin, we performed microarray analysis using HCVcc-infected cells. We demonstrated that suppressor of cytokine signaling 2 (SOCS2) protein level was distinctively increased by saponin, which in turn resulted in inhibition of HCV replication. We further showed that silencing of SOCS2 resurrected HCV replication and overexpression of SOCS2 suppressed HCV replication. These data imply that saponin inhibits HCV replication via SOCS2 signaling pathway. These findings suggest that saponin may be a potent therapeutic agent for HCV patients. PMID:22745742

  14. Micelle System Based on Molecular Economy Principle for Overcoming Multidrug Resistance and Inhibiting Metastasis.

    Science.gov (United States)

    Qi, Yan; Qin, Xianya; Yang, Conglian; Wu, Tingting; Qiao, Qi; Song, Qingle; Zhang, Zhiping

    2018-03-05

    The high mortality of cancer is mainly attributed to multidrug resistance (MDR) and metastasis. A simple micelle system was constructed here to codeliver doxorubicin (DOX), adjudin (ADD), and nitric oxide (NO) for overcoming MDR and inhibiting metastasis. It was devised based on the "molecular economy" principle as the micelle system was easy to fabricate and exhibited high drug loading efficiency, and importantly, each component of the micelles would exert one or more active functions. DOX acted as the main cell killing agent supplemented with ADD, NO, and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). MDR was overcome by synergistic effects of mitochondria inhibition agents, TPGS and ADD. A TPGS-based NO donor can be used as a drug carrier, and it can release NO to enhance drug accumulation and penetration in tumor, resulting in a positive cycle of drug delivery. This DOX-ADD conjugate self-assembly system demonstrated controlled drug release, increased cellular uptake and cytotoxicity, enhanced accumulation at tumor site, and improved in vivo metastasis inhibition of breast cancer. The micelles can fully take advantage of the functions of each component, and they provide a potential strategy for nanomedicine design and clinical cancer treatment.

  15. Virtual imprinting as a tool to design efficient MIPs for photosynthesis-inhibiting herbicides.

    Science.gov (United States)

    Breton, Florent; Rouillon, Regis; Piletska, Elena V; Karim, Kal; Guerreiro, Antonio; Chianella, Iva; Piletsky, Sergey A

    2007-04-15

    Molecular modelling and computational screening were used to identify functional monomers capable of interacting with several different photosynthesis-inhibiting herbicides. The process involved the design of a virtual library of molecular models of functional monomers containing polymerizable residues and residues able to interact with the template through electrostatic, hydrophobic, Van der Waals forces and dipole-dipole interactions. Each of the entries in the virtual library was probed for its possible interactions with molecular models of the template molecules. It was anticipated that the monomers giving the highest binding score would represent good candidates for the preparation of affinity polymers. Strong interactions were computationally determined between acidic functional monomers like methacrylic acid (MAA) or itaconic acid (IA) with triazines, and between vinylimidazole with bentazone and bromoxynil. Nevertheless, weaker interactions were seen with phenylureas. The corresponding blank polymers were prepared using the selected monomers and tested in the solid phase extraction (SPE) of herbicides from chloroform solutions. A good correlation was found between the binding score of the monomers and the affinities of the corresponding polymers. The use of computationally designed blanks can potentially eliminate the need for molecular imprinting, (adding a template to the monomer mixture to create specific binding sites). Data also showed that some monomers have a natural selectivity for some herbicides, which can be further enhanced by imprinting. Thus, in regard to retention on the blank polymer, we can estimate if the resulting imprinted polymer will be effective or not.

  16. Effect of Nanoencapsulated Vitamin B1 Derivative on Inhibition of Both Mycelial Growth and Spore Germination of Fusarium oxysporum f. sp. raphani

    Directory of Open Access Journals (Sweden)

    Hyeon Yong Lee

    2013-02-01

    Full Text Available Nanoencapsulation of thiamine dilauryl sulfate (TDS, a vitamin B1 derivative, was proved to effectively inhibit the spore germination of Fusarium oxysporum f. sp. raphani (F. oxysporum, as well as mycelial growth. The average diameter of nanoparticles was measured as 136 nm by being encapsulated with an edible encapsulant, lecithin, whose encapsulation efficiency was about 55% in containing 200 ppm of TDS concentration: the 100 ppm TDS nanoparticle solution showed a mycelial growth inhibition rate of 59%. These results were about similar or even better than the cases of treating 100 ppm of dazomet, a positive antifungal control (64%. Moreover, kinetic analysis of inhibiting spore germination were estimated as 6.6% reduction of spore germination rates after 24 h treatment, which were 3.3% similar to the case of treating 100 ppm of a positive control (dazomet for the same treatment time. It was also found that TDS itself could work as an antifungal agent by inhibiting both mycelial growth and spore germination, even though its efficacy was lower than those of nanoparticles. Nanoparticles especially played a more efficient role in limiting the spore germination, due to their easy penetration into hard cell membranes and long resident time on the surface of the spore shell walls. In this work, it was first demonstrated that the nanoparticle of TDS not a harmful chemical can control the growth of F. oxysporum by using a lower dosage than commercial herbicides, as well as the inhibiting mechanism of the TDS. However, field trials of the TDS nanoparticles encapsulated with lecithin should be further studied to be effectively used for field applications.

  17. INHIBITION EFFECT OF FLAVONOID EXTRACT OF Euphorbia Guyoniana ON THE CORROSION OF MILD STEEL IN H2SO4 MEDIUM

    Directory of Open Access Journals (Sweden)

    S. Chihi

    2009-08-01

    Full Text Available The influence of flavonoids extracts of three parts of Euphorbia Guyoniana towards the corrosion of type API 5L X52 steel in 15% H2SO4 has been evaluated by weight loss method and polarization technique. The results showed that extracts are a good inhibitors for API 5L X52 steel in this medium. The corrosion inhibition efficiency increases on increasing plant extracts concentration. The inhibition is attributed to the adsorption of the surface of the metal. Potentiodynamic polarization results revealed that the studied inhibitors behave as a mixed type.

  18. ITE, a novel endogenous nontoxic aryl hydrocarbon receptor ligand, efficiently suppresses EAU and T-cell-mediated immunity.

    Science.gov (United States)

    Nugent, Lindsey F; Shi, Guangpu; Vistica, Barbara P; Ogbeifun, Osato; Hinshaw, Samuel J H; Gery, Igal

    2013-11-13

    Ligands for aryl hydrocarbon receptor (AHR), such as dioxins, are highly toxic. One such ligand, TCDD, was found to exert potent immunosuppressive capacities in mice developing pathogenic autoimmune processes, including EAU, but its toxicity makes it unusable for humans. A recently identified endogenous AHR ligand, ITE, is also immunosuppressive, but is nontoxic and could therefore be useful for therapy in humans. Here, we tested ITE for its capacity to inhibit EAU and related immune responses. EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP; 40 μg) in CFA. Treatment with ITE was by daily intraperitoneal injection of 0.2 mg. Disease severity was assessed by both fundoscopy and histological examination. Draining lymph node cells were tested for proliferation by thymidine uptake and for cytokine production and release by ELISA. In addition, the intracellular expression of cytokines and Foxp3 was determined by flow cytometry. Serum antibodies were measured by ELISA. Treatment with ITE efficiently inhibited the development of EAU in mice, as well as the cellular immune responses against IRBP and PPD. ITE treatment inhibited the expansion of both Th1 and Th17 subpopulations, as well as their release of the signature cytokines, IFN-gamma and IL-17. The treatment moderately increased, however, the proportion of Foxp3 expressing T-regulatory cells. Antibody production was not affected by the treatment. ITE, an endogenous AHR ligand, efficiently inhibits EAU development and related cellular immune responses. Being nontoxic, ITE may be considered for treatment of pathogenic immunity in humans.

  19. ITE, A Novel Endogenous Nontoxic Aryl Hydrocarbon Receptor Ligand, Efficiently Suppresses EAU and T-Cell–Mediated Immunity

    Science.gov (United States)

    Nugent, Lindsey F.; Shi, Guangpu; Vistica, Barbara P.; Ogbeifun, Osato; Hinshaw, Samuel J. H.; Gery, Igal

    2013-01-01

    Purpose. Ligands for aryl hydrocarbon receptor (AHR), such as dioxins, are highly toxic. One such ligand, TCDD, was found to exert potent immunosuppressive capacities in mice developing pathogenic autoimmune processes, including EAU, but its toxicity makes it unusable for humans. A recently identified endogenous AHR ligand, ITE, is also immunosuppressive, but is nontoxic and could therefore be useful for therapy in humans. Here, we tested ITE for its capacity to inhibit EAU and related immune responses. Methods. EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP; 40 μg) in CFA. Treatment with ITE was by daily intraperitoneal injection of 0.2 mg. Disease severity was assessed by both fundoscopy and histological examination. Draining lymph node cells were tested for proliferation by thymidine uptake and for cytokine production and release by ELISA. In addition, the intracellular expression of cytokines and Foxp3 was determined by flow cytometry. Serum antibodies were measured by ELISA. Results. Treatment with ITE efficiently inhibited the development of EAU in mice, as well as the cellular immune responses against IRBP and PPD. ITE treatment inhibited the expansion of both Th1 and Th17 subpopulations, as well as their release of the signature cytokines, IFN-gamma and IL-17. The treatment moderately increased, however, the proportion of Foxp3 expressing T-regulatory cells. Antibody production was not affected by the treatment. Conclusions. ITE, an endogenous AHR ligand, efficiently inhibits EAU development and related cellular immune responses. Being nontoxic, ITE may be considered for treatment of pathogenic immunity in humans. PMID:24150760

  20. Linear ubiquitin chain induces apoptosis and inhibits tumor growth.

    Science.gov (United States)

    Qin, Zhoushuai; Jiang, Wandong; Wang, Guifen; Sun, Ying; Xiao, Wei

    2018-01-01

    Ubiquitination of proliferating cell nuclear antigen (PCNA) plays an important role in DNA damage response. Ectopic expression of PCNA fused at either terminus with ubiquitin (Ub) lacking two C-terminal glycine residues induces translesion DNA synthesis which resembles synthesis mediated by PCNA monoubiquitination. PCNA fused with Ub containing the C-terminal Gly residues at the C-terminus can be further polyubiquitinated in a Gly-dependent manner, which inhibits cell proliferation and induces ATR-dependent replication checkpoint. In this study, we surprisingly found that PCNA fused to a head-to-tail linear Ub chain induces apoptosis in a Ub chain length-dependent manner. Further investigation revealed that the apoptotic effect is actually induced by the linear Ub chain independently from PCNA, as the Ub chain fused to GFP or an epitope tag still efficiently induces apoptosis. It is revealed that the artificial linear Ub chain differs from endogenously encoded linear Ub chains in that its Ubs contain a Ub-G76S substitution, making the Ub chain resistant to cleavage by deubiquitination enzymes. We demonstrated in this study that ectopic expression of the artificial Ub chain alone in cultured human cancer cells is sufficient to inhibit tumor growth in a xenograft mouse model, making the linear Ub chain a putative anti-cancer agent.

  1. Lipids Derived from Virulent Francisella tularensis Broadly Inhibit Pulmonary Inflammation via Toll-Like Receptor 2 and Peroxisome Proliferator-Activated Receptor α

    Science.gov (United States)

    Crane, Deborah D.; Ireland, Robin; Alinger, Joshua B.; Small, Pamela

    2013-01-01

    Francisella tularensis is a Gram-negative facultative intracellular pathogen that causes an acute lethal respiratory disease in humans. The heightened virulence of the pathogen is linked to its unique ability to inhibit Toll-like receptor (TLR)-mediated inflammatory responses. The bacterial component and mechanism of this inhibition are unknown. Here we show that lipids isolated from virulent but not attenuated strains of F. tularensis are not detected by host cells, inhibit production of proinflammatory cytokines by primary macrophages in response to known TLR ligands, and suppress neutrophil recruitment in vivo. We further show that lipid-mediated inhibition of inflammation is dependent on TLR2, MyD88, and the nuclear hormone and fatty acid receptor peroxisome proliferator-activated receptor α (PPARα). Pathogen lipid-mediated interference with inflammatory responses through the engagement of TLR2 and PPARα represents a novel manipulation of host signaling pathways consistent with the ability of highly virulent F. tularensis to efficiently evade host immune responses. PMID:23925884

  2. Centchroman inhibits proliferation of head and neck cancer cells through the modulation of PI3K/mTOR Pathway

    International Nuclear Information System (INIS)

    Srivastava, Vikas Kumar; Gara, Rishi Kumar; Bhatt, M.L.B.; Sahu, D.P.; Mishra, Durga Prasad

    2011-01-01

    Research highlights: → Centchroman (CC) inhibits cellular proliferation in HNSCC cells through the dual inhibition of PI3/mTOR pathway. → CC treatment also inhibits STAT3 activation and alters expression of proteins involved in cell cycle regulation and DNA repair response in HNSCC cells. → CC exhibits anti-proliferative activity in a variety of non-HNSCC cancer cell lines and is devoid of cytotoxicity to normal cell types of diverse origins. -- Abstract: Centchroman (CC; 67/20; INN: Ormeloxifene) is a non-steroidal antiestrogen extensively used as a female contraceptive in India. In the present study, we report the anti-proliferative effect of CC in head and neck squamous cell carcinoma (HNSCC) cells. CC inhibited cell proliferation in a dose dependent manner at 24 h of treatment. Further studies showed that CC treatment induced apoptosis, inhibited Akt/mTOR and signal transducers and activators of transcription protein 3 (STAT3) signaling, altered proteins associated with cell cycle regulation and DNA damage and inhibited colony forming efficiency of HNSCC cells. In addition, CC displayed anti-proliferative activity against a variety of non-HNSCC cell lines of diverse origin. The ability of CC to serve as a dual-inhibitor of Akt/mTOR and STAT3 signaling warrants further studies into its role as a therapeutic strategy against HNSCC.

  3. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis.

    Science.gov (United States)

    Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing

    2013-01-01

    Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy.

  4. Electrochemical and spectroscopic evidences of corrosion inhibition of bronze by a triazole derivative

    International Nuclear Information System (INIS)

    Dermaj, A.; Hajjaji, N.; Joiret, S.; Rahmouni, K.; Srhiri, A.; Takenouti, H.; Vivier, V.

    2007-01-01

    The electrochemical behavior of the bronze (Cu-8Sn in wt%) was investigated in 3% NaCl aqueous solution, in presence and in absence of a corrosion inhibitor, the 3-phenyl-1,2,4-triazole-5-thione (PTS). The inhibiting effect of the PTS was evidenced for concentrations higher than 1 mM for the cathodic process whereas its effect was clearly seen with a concentration as low as 0.1 mM for the anodic process. A significant positive shift of the corrosion potential was also observed, and its inhibiting effect increased with both its concentration and the immersion time of the sample. From voltammetry and electrochemical impedance spectroscopy experiments, the inhibiting efficiency of the PTS was found to be in the 94-99% range for 1 mM concentration. Scanning electron microscopy and X-ray energy dispersion analysis of the specimen surface show the presence of sulphur on the surface. Raman micro-spectrometry study confirms the protective effect of the PTS in aqueous solution through three types of interactions with the electrode, namely the adsorption of the inhibitor in a flat configuration, the formation of copper-thiol molecules, and when copper is released, the formation of a polymeric complex

  5. Allosteric Inhibition of Factor XIIIa. Non-Saccharide Glycosaminoglycan Mimetics, but Not Glycosaminoglycans, Exhibit Promising Inhibition Profile.

    Directory of Open Access Journals (Sweden)

    Rami A Al-Horani

    Full Text Available Factor XIIIa (FXIIIa is a transglutaminase that catalyzes the last step in the coagulation process. Orthostery is the only approach that has been exploited to design FXIIIa inhibitors. Yet, allosteric inhibition of FXIIIa is a paradigm that may offer a key advantage of controlled inhibition over orthosteric inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We reasoned that targeting a collection of basic amino acid residues distant from FXIIIa's active site by using sulfated glycosaminoglycans (GAGs or non-saccharide GAG mimetics (NSGMs would lead to the discovery of the first allosteric FXIIIa inhibitors. We tested a library of 22 variably sulfated GAGs and NSGMs against human FXIIIa to discover promising hits. Interestingly, although some GAGs bound to FXIIIa better than NSGMs, no GAG displayed any inhibition. An undecasulfated quercetin analog was found to inhibit FXIIIa with reasonable potency (efficacy of 98%. Michaelis-Menten kinetic studies revealed an allosteric mechanism of inhibition. Fluorescence studies confirmed close correspondence between binding affinity and inhibition potency, as expected for an allosteric process. The inhibitor was reversible and at least 9-fold- and 26-fold selective over two GAG-binding proteins factor Xa (efficacy of 71% and thrombin, respectively, and at least 27-fold selective over a cysteine protease papain. The inhibitor also inhibited the FXIIIa-mediated polymerization of fibrin in vitro. Overall, our work presents the proof-of-principle that FXIIIa can be allosterically modulated by sulfated non-saccharide agents much smaller than GAGs, which should enable the design of selective and safe anticoagulants.

  6. Selective inhibition of distracting input.

    Science.gov (United States)

    Noonan, MaryAnn P; Crittenden, Ben M; Jensen, Ole; Stokes, Mark G

    2017-10-16

    We review a series of studies exploring distractor suppression. It is often assumed that preparatory distractor suppression is controlled via top-down mechanisms of attention akin to those that prepare brain areas for target enhancement. Here, we consider two alternative mechanisms: secondary inhibition and expectation suppression within a predictive coding framework. We draw on behavioural studies, evidence from neuroimaging and some animal studies. We conclude that there is very limited evidence for selective top-down control of preparatory inhibition. By contrast, we argue that distractor suppression often relies secondary inhibition of non-target items (relatively non-selective inhibition) and on statistical regularities of the environment, learned through direct experience. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Synthesis and study of the mechanisms of action of biodegradable additives for corrosion and scale inhibition in industrial cooling water systems; Mise au point et etude des mecanismes d'action d'additifs biodegradables pour l'inhibition du pouvoir entartrant et corrosif des eaux de refroidissement industrielles

    Energy Technology Data Exchange (ETDEWEB)

    Estievenart, C

    2003-11-01

    Industrial cooling water systems undergo more and more environmental constraints. The recycling of water increases the risks of scale deposition and corrosion. The use of chemical additives to inhibit these phenomena is necessary. Poly-aspartates are proposed as green multi-functional inhibitors. Polymers of different characteristics have been synthesized by different ways. Their efficiency towards scale deposition and corrosion is determined by electrochemical techniques in different test conditions (composition of the test water, temperature, flow rate, concentration of additive...). Their biodegradability is also evaluated. These poly-aspartates inhibit both nucleation and growth of calcium carbonate crystals, but also corrosion. Their efficiency depends on the characteristics of the polymers and their way of synthesis. The morphology of scale and corrosion deposits is modified in the presence of poly-aspartate. The mechanism of action of poly-aspartates combines adsorption, dispersion, complexation with both iron and calcium ions and insertion in the crystal lattice. (author)

  8. Synergistic effect of intervention of glypican-3 gene transcription combined with antitumor drugs in inhibiting hepatoma cell proliferation

    Directory of Open Access Journals (Sweden)

    YANG Jie

    2016-12-01

    Full Text Available ObjectiveTo investigate the inhibitory effect of intervention of glypican-3 (GPC3 gene transcription combined with antitumor drugs on hepatoma cell proliferation. MethodsFour types of GPC3-shRNA plasmids were established and transfected into HepG2 hepatoma cells. Quantitative real-time PCR and Western blot were used to measure the mRNA and protein expression of GPC3 to analyze its association with hepatoma cell proliferation and apoptosis. The independent samples t-test was used for comparison of continuous data between any two groups, and a one-way analysis of variance was used for comparison between multiple groups. ResultsAmong these four plasmids, shRNA1 had a transfection efficiency of >85% in the transfection of HepG2 cells and a silence efficiency of 89.3% at the mRNA level, and the protein expression of GPC3 was significantly inhibited(P<0.01). At 72 hours, the GPC3-shRNA1 co-intervention group had an HepG2 cell inhibition rate of 71.1%, significantly different from that in the negative group (t=18.092, P<0.001, an inhibition rate of migration of 89.1%, significantly lower than that in the negative group (t=8.326, P<0.001, and inhibition rates of HepG2 cell movement and invasion of 53.6% and 60.1%, which were significantly different from those in the negative group (t=52.400 and 48.245, both P<0.001. The GPC3-shRNA1 co-intervention group had a β-catenin mRNA inhibition rate of 46.9% and a Gli1 mRNA upregulation rate of 7.4%, significantly different from those in the negative group (t=30.108 and -3.551, P<0.001 and P=0.009. At 24 hours, 10 μmol/L sorafenib combined with shRNA1 had an inhibition rate of tumor cells of 52.6% and 100 μmol/L sorafenib combined with shRNA1 had an inhibition rate of tumor cells of 79.5%, which were significantly different from that in the control group (t=23.314 and 50.352, both P<0.001. The half-maximal inhibitory concentrations of sorafenib, rapamycin, and erlotinib for HepG2 were 4.67±1

  9. Spatial frequency information modulates response inhibition and decision-making processes.

    Directory of Open Access Journals (Sweden)

    Sara Jahfari

    Full Text Available We interact with the world through the assessment of available, but sometimes imperfect, sensory information. However, little is known about how variance in the quality of sensory information affects the regulation of controlled actions. In a series of three experiments, comprising a total of seven behavioral studies, we examined how different types of spatial frequency information affect underlying processes of response inhibition and selection. Participants underwent a stop-signal task, a two choice speed/accuracy balance experiment, and a variant of both these tasks where prior information was given about the nature of stimuli. In all experiments, stimuli were either intact, or contained only high-, or low- spatial frequencies. Overall, drift diffusion model analysis showed a decreased rate of information processing when spatial frequencies were removed, whereas the criterion for information accumulation was lowered. When spatial frequency information was intact, the cost of response inhibition increased (longer SSRT, while a correct response was produced faster (shorter reaction times and with more certainty (decreased errors. When we manipulated the motivation to respond with a deadline (i.e., be fast or accurate, removal of spatial frequency information slowed response times only when instructions emphasized accuracy. However, the slowing of response times did not improve error rates, when compared to fast instruction trials. These behavioral studies suggest that the removal of spatial frequency information differentially affects the speed of response initiation, inhibition, and the efficiency to balance fast or accurate responses. More generally, the present results indicate a task-independent influence of basic sensory information on strategic adjustments in action control.

  10. Have you tried spermine? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR.

    Science.gov (United States)

    Krych, Łukasz; Kot, Witold; Bendtsen, Katja M B; Hansen, Axel K; Vogensen, Finn K; Nielsen, Dennis S

    2018-01-01

    The Dextran Sulfate Sodium (DSS) induced colitis mouse model is commonly used to investigate human inflammatory bowel disease (IBD). Nucleic acid extracts originating from these animals are often contaminated with DSS, which is a strong inhibitor of many enzymatic based molecular biology reactions including PCR and reverse-transcription (RT). Methods for removing DSS from nucleic acids extracts exist for RNA, but no effective protocol for DNA or cDNA is currently available. However, spermine has previously been shown to be an effective agent for counteracting DSS inhibition of polynucleotide kinase, which led to the hypothesis, that spermine could be used to counteract DSS inhibition of PCR and RT. We investigated the means of adding spermine in an adequate concentration to PCR based protocols (including qPCR, two-step RT-qPCR, and amplicon sequencing library preparation) to remove DSS inhibition. Within the range up to 0.01g/L, spermine can be added to PCR/qPCR or RT prophylactically without a significant reduction of reaction efficiency. Addition of spermine at the concentration of 0.08g/L can be used to recover qualitative PCR signal inhibited by DSS in concentrations up to 0.32g/L. For optimal quantitative analysis, the concentration of spermine requires fine adjustment. Hence, we present here a simple fluorometric based method for adjusting the concentration of spermine ensuring an optimal efficiency of the reaction exposed to an unknown concentration of DSS. In conclusion, we demonstrate a cost effective and easy method to counteract DSS inhibition in PCR and two-step RT-qPCR. Fixed or fine-tuned concentrations of spermine can be administered depending on the qualitative or quantitative character of the analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Electrochemical investigation of the properties of Co doped ZnO nanoparticle as a corrosion inhibitive pigment for modifying corrosion resistance of the epoxy coating

    International Nuclear Information System (INIS)

    Rostami, M.; Rasouli, S.; Ramezanzadeh, B.; Askari, A.

    2014-01-01

    Highlights: • Corrosion inhibitive pigment based on ZnOCo was synthesized through combustion method. • Doping ZnO nanoparticle with Co enhanced its inhibition properties considerably. • ZnOCo nanoparticle could enhance corrosion protective performance of epoxy coating. • Co doped ZnO nanoparticles behaved as efficient barrier and inhibitive pigment. - Abstract: Co doped ZnO nanoparticles were synthesized by combustion method. Then, the epoxy nanocomposites were prepared using various amounts of nanoparticles. Salt spray and electrochemical impedance spectroscopy (EIS) were used in order to investigate the corrosion inhibition effects of nanoparticles on the steel substrate. The morphology and composition of the films precipitated on the steel surface were investigated by scanning electron microscope (SEM) and energy dispersive spectroscopy. Results revealed that the corrosion inhibition properties of ZnO nanoparticle were significantly enhanced after doping with Co. Moreover, Co doped ZnO nanoparticles enhanced the corrosion resistance of the epoxy coating effectively

  12. Response inhibition is modulated by functional cerebral asymmetries for facial expression perception

    Directory of Open Access Journals (Sweden)

    Sebastian eOcklenburg

    2013-11-01

    Full Text Available The efficacy of executive functions is critically modulated by information processing in earlier cognitive stages. For example, initial processing of verbal stimuli in the language-dominant left-hemisphere leads to more efficient response inhibition than initial processing of verbal stimuli in the non-dominant right hemisphere. However, it is unclear whether this organizational principle is specific for the language system, or a general principle that also applies to other types of lateralized cognition. To answer this question, we investigated the neurophysiological correlates of early attentional processes, facial expression perception and response inhibition during tachistoscopic presentation of facial ‘Go’ and ‘Nogo’ stimuli in the left and the right visual field. Participants committed fewer false alarms after Nogo-stimulus presentation in the left compared to the right visual field. This right-hemispheric asymmetry on the behavioral level was also reflected in the neurophysiological correlates of face perception, specifically in a right-sided asymmetry in the N170 amplitude. Moreover, the right-hemispheric dominance for facial expression processing also affected event-related potentials typically related to response inhibition, namely the Nogo-N2 and Nogo-P3. These findings show that an effect of hemispheric asymmetries in early information processing on the efficacy of higher cognitive functions is not limited to left-hemispheric language functions, but can be generalized to predominantly right-hemispheric functions.

  13. Chronic fluoxetine inhibits sexual behavior in the male rat: reversal with oxytocin.

    Science.gov (United States)

    Cantor, J M; Binik, Y M; Pfaus, J G

    1999-06-01

    Selective serotonin reuptake inhibitors, used widely in the treatment of depression, progressively inhibit sexual orgasm in many patients and induce a transient inhibition of sexual desire. We attempted to model the effects of these drugs in sexually experienced male rats during tests of copulation in bilevel chambers. These chambers allow the study of both appetitive and consummatory sexual responses of male rats. Males were treated daily with fluoxetine hydrochloride (0, 1, 5, or 10 mg/kg) and tested for sexual behavior with receptive females at 4-day intervals. Rats were treated with oxytocin (200 ng/kg) or saline after ejaculations had decreased. Fluoxetine decreased ejaculatory responses of male rats in a dose- and time-dependent fashion, but left the copulatory efficiency of the males intact. In contrast, conditioned level changing, a measure of appetitive sexual excitement, was inhibited following acute and chronic treatment with 10 mg/kg, although tolerance may have developed to the effect of 5 mg/kg. Subsequent administration of oxytocin restored the ejaculatory response but not the measure of sexual excitement to baseline levels. The reversal by oxytocin of the fluoxetine-induced deficit in ejaculations is consistent with the hypothesis that serotonin suppresses ejaculatory mechanisms by interrupting the action of oxytocin, which normally accompanies sexual behavior. Co-administration of oxytocin may help to alleviate the predominant sexual side effect of serotonin reuptake blockers.

  14. Inhibition of EGFR nuclear shuttling decreases irradiation resistance in HeLa cells.

    Science.gov (United States)

    Wei, Hong; Zhu, Zijie; Lu, Longtao

    2017-01-01

    Cervical cancer is a leading cause of mortality in women worldwide. The resistance to irradiation at the advanced stage is the main reason for the poor prognosis and high mortality. This work aims to elucidate the molecular mechanism underlying the radio-resistance. In this study, we determined the pEGFR-T654 and pDNA-PK-T2609 expression level changes in irradiated HeLa cells treated with T654 peptide, a nuclear localization signal (NLS) inhibitor, to inhibit EGFR nuclear transport. Cell viability, cell cycle and migratory capacity were analyzed. Xenograft animal model was used to evaluate the effect of EGFR nuclear transport inhibition on the tumor growth in vivo. The enhanced translocation of nuclear EGFR in the irradiated HeLa cells correlated with the increasing level of pEGFR-T654 and pDNA-PK-T2609. Inhibition of EGFR nuclear translocation by NLS peptide inhibitor attenuated DNA damage repair in the irradiated HeLa cells, decreased cell viability and promoted cell death through arrest at G0 phase. NLS peptide inhibitor impaired the migratory capacity of irradiated HeLa cells, and negatively affected tumorigenesis in xenograft mice. This work puts forward a potential molecular mechanism of the irradiation resistance in cervical cancer cells, providing a promising direction towards an efficient therapy of cervical cancer.

  15. Efficient inhibition of murine breast cancer growth and metastasis by gene transferred mouse survivin Thr34→Ala mutant

    Directory of Open Access Journals (Sweden)

    Chen li-Juan

    2008-09-01

    Full Text Available Abstract Background Metastasis in breast cancer is a vital concern in treatment because most women with primary breast cancer have micrometastases to distant sites at diagnosis. As a member of the inhibitor of apoptosis protein (IAP family, survivin has been proposed as an attractive target for new anticancer interventions. In this study, we investigated the role of the plasmid encoding the phosphorylation-defective mouse survivin threonine 34→alanine mutant (Msurvivin T34A plasmid in suppressing both murine primary breast carcinomas and pulmonary metastases. Methods In vitro study, induction of apoptosis by Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol was examined by PI staining fluorescence microscopy and flow cytometric analysis. The anti-tumor and anti-metastases activity of Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol was evaluated in female BALB/c mice bearing 4T1 s.c. tumors. Mice were treated twice weekly with i.v. administration of Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol, PORF-9 null plasmid complexed with cationic liposome (DOTAP/Chol, 0.9% NaCl solution for 4 weeks. Tumor volume was observed. After sacrificed, tumor net weight was measured and Lung metastatic nodules of each group were counted. Assessment of apoptotic cells by TUNEL assay was conducted in tumor tissue. Microvessel density within tumor tissue was determined by CD31 immunohistochemistry. Alginate-encapsulated tumor cells test was conducted to evaluate the effect on angiogenesis. By experiment of cytotoxicity T lymphocytes, we test whether Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol can induce specific cell immune response. Results Administration of Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol resulted in significant inhibition in the growth and metastases of 4T1 tumor model. These anti-tumor and anti-metastases responses were associated with

  16. Local excitation-inhibition ratio for synfire chain propagation in feed-forward neuronal networks

    Science.gov (United States)

    Guo, Xinmeng; Yu, Haitao; Wang, Jiang; Liu, Jing; Cao, Yibin; Deng, Bin

    2017-09-01

    A leading hypothesis holds that spiking activity propagates along neuronal sub-populations which are connected in a feed-forward manner, and the propagation efficiency would be affected by the dynamics of sub-populations. In this paper, how the interaction between local excitation and inhibition effects on synfire chain propagation in feed-forward network (FFN) is investigated. The simulation results show that there is an appropriate excitation-inhibition (EI) ratio maximizing the performance of synfire chain propagation. The optimal EI ratio can significantly enhance the selectivity of FFN to synchronous signals, which thereby increases the stability to background noise. Moreover, the effect of network topology on synfire chain propagation is also investigated. It is found that synfire chain propagation can be maximized by an optimal interlayer linking probability. We also find that external noise is detrimental to synchrony propagation by inducing spiking jitter. The results presented in this paper may provide insights into the effects of network dynamics on neuronal computations.

  17. Lipoplex morphologies and their influences on transfection efficiency in gene delivery.

    Science.gov (United States)

    Ma, Baichao; Zhang, Shubiao; Jiang, Huiming; Zhao, Budiao; Lv, Hongtao

    2007-11-20

    Cationic lipid-mediated gene transfer is widely used for their advantages over viral gene transfer because it is non-immunogenic, easy to produce and not oncogenic. The main drawback of the application of cationic lipids is their low transfection efficiency. Many reports about transfection efficiency of cationic lipids have been published in recent years. In this review, the current status and prospects for transfection efficiency of different morphologies of lipoplexes are discussed. High transfection activity will be acquired for H(C)(II) structure when membrane fusion is dominant, but when serum is present L(C)(alpha) lipoplexes show great superiority for their inhibition dissociation by serum during lipoplexes transporting. Increasing DOPE often gains high activity for the H(C)(II) structure promoted by DOPE. High lipofection will be gained from large lipoplexes when endocytosis is dominant, because large particles facilitate membrane contact and fusion. We suggest morphologies of lipoplex should be characterized at two levels, lipoplex size and self-assemble structures of lipoplexes, and understanding these would be very important for scientists to prepare novel cationic lipids and design novel formulations with high transfection efficiency.

  18. Comparative analysis of adsorption and corrosion inhibitive properties of ethanol extract of Dialium Guineense leaves for mild steel in 0.5 M HCl

    OpenAIRE

    Shola Elijah Adeniji; Bamigbola Abiola Akindehinde

    2018-01-01

    Adsorption and corrosion inhibitive properties of ethanol extract of Dialium guineense leaves for mild steel in 0.5M HCl was studied using the gravimetric method. The results showed that the ethanol extract of Dialium guineense leaves is a good corrosion inhibitor for mild steel in 0.5 M HCl. The inhibition efficiency was found to increase with increase in the concentration of ethanol extract of Dialium guineense leaves up to the maximum of 92 %, but at the same time it decreased as the tempe...

  19. Inhibition by acrolein of light-induced stomatal opening through inhibition of inward-rectifying potassium channels in Arabidopsis thaliana.

    Science.gov (United States)

    Islam, Md Moshiul; Ye, Wenxiu; Matsushima, Daiki; Khokon, Md Atiqur Rahman; Munemasa, Shintaro; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Acrolein is a reactive α,β-unsaturated aldehyde derived from lipid peroxides, which are produced in plants under a variety of stress. We investigated effects of acrolein on light-induced stomatal opening using Arabidopsis thaliana. Acrolein inhibited light-induced stomatal opening in a dose-dependent manner. Acrolein at 100 μM inhibited plasma membrane inward-rectifying potassium (Kin) channels in guard cells. Acrolein at 100 μM inhibited Kin channel KAT1 expressed in a heterologous system using Xenopus leaves oocytes. These results suggest that acrolein inhibits light-induced stomatal opening through inhibition of Kin channels in guard cells.

  20. Continuous delivery of propranolol from liposomes-in-microspheres significantly inhibits infantile hemangioma growth

    Directory of Open Access Journals (Sweden)

    Guo XN

    2017-09-01

    Full Text Available Xiaonan Guo,1,* Xiaoshuang Zhu,1,* Dakan Liu,1 Yubin Gong,1 Jing Sun,2 Changxian Dong1 1Department of Hemangioma and Vascular Malformation, Henan Provincial People’s Hospital, Zhengzhou, People’s Republic of China; 2Department of Pharmacy, Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: To reduce the adverse effects and high frequency of administration of propranolol to treat infantile hemangioma, we first utilized propranolol-loaded liposomes-in-microsphere (PLIM as a novel topical release system to realize sustained release of propranolol.Methods: PLIM was developed from encapsulating propranolol-loaded liposomes (PLs in microspheres made of poly(lactic-co-glycolic acid-b-poly(ethylene glycol-b-poly(lactic-co-glycolic acid copolymers (PLGA-PEG-PLGA. The release profile of propranolol from PLIM was evaluated, and its biological activity was investigated in vitro using proliferation assays on hemangioma stem cells (HemSCs. Tumor inhibition was studied in nude mice bearing human subcutaneous infantile hemangioma.Results: The microspheres were of desired particle size (~77.8 µm and drug encapsulation efficiency (~23.9% and achieved sustained drug release for 40 days. PLIM exerted efficient inhibition of the proliferation of HemSCs and significantly reduced the expression of two angiogenesis factors (vascular endothelial growth factor-A [VEGF-A] and basic fibroblast growth factor [bFGF] in HemSCs. Notably, the therapeutic effect of PLIM in hemangioma was superior to that of propranolol and PL in vivo, as reflected by significantly reduced hemangioma volume, weight, and microvessel density. The mean hemangioma weight of the PLIM-treated group was significantly lower than that of other groups (saline =0.28 g, propranolol =0.21 g, PL =0.13 g, PLIM =0.03 g; PLIM vs saline: P<0.001, PLIM vs propranolol: P<0.001, PLIM vs PL: P<0.001. The mean microvessel density of

  1. Gliclazide directly inhibits arginine-induced glucagon release

    DEFF Research Database (Denmark)

    Cejvan, Kenan; Coy, David H; Holst, Jens Juul

    2002-01-01

    Arginine-stimulated insulin and somatostatin release is enhanced by the sulfonylurea gliclazide. In contrast, gliclazide inhibits the glucagon response. The aim of the present study was to investigate whether this inhibition of glucagon release was mediated by a direct suppressive effect of glicl......Arginine-stimulated insulin and somatostatin release is enhanced by the sulfonylurea gliclazide. In contrast, gliclazide inhibits the glucagon response. The aim of the present study was to investigate whether this inhibition of glucagon release was mediated by a direct suppressive effect....... In islet perifusions with DC-41-33, arginine-induced glucagon release was inhibited by 66%. We therefore concluded that gliclazide inhibits glucagon release by a direct action on the pancreatic A cell....

  2. Invariant NKT cells regulate experimental autoimmune uveitis through inhibition of Th17 differentiation.

    Science.gov (United States)

    Oh, Keunhee; Byoun, Ok-Jin; Ham, Don-Il; Kim, Yon Su; Lee, Dong-Sup

    2011-02-01

    Although NKT cells have been implicated in diverse immunomodulatory responses, the effector mechanisms underlying the NKT cell-mediated regulation of pathogenic T helper cells are not well understood. Here, we show that invariant NKT cells inhibited the differentiation of CD4(+) T cells into Th17 cells both in vitro and in vivo. The number of IL-17-producing CD4(+) T cells was reduced following co-culture with purified NK1.1(+) TCR(+) cells from WT, but not from CD1d(-/-) or Jα18(-/-) , mice. Co-cultured NKT cells from either cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) or WT mice efficiently inhibited Th17 differentiation. The contact-dependent mechanisms of NKT cell-mediated regulation of Th17 differentiation were confirmed using transwell co-culture experiments. On the contrary, the suppression of Th1 differentiation was dependent on IL-4 derived from the NKT cells. The in vivo regulatory capacity of NKT cells on Th17 cells was confirmed using an experimental autoimmune uveitis model induced with human IRBP(1-20) (IRBP, interphotoreceptor retinoid-binding protein) peptide. NKT cell-deficient mice (CD1d(-/-) or Jα18(-/-) ) demonstrated an increased disease severity, which was reversed by the transfer of WT or cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) NKT cells. Our results indicate that invariant NKT cells inhibited autoimmune uveitis predominantly through the cytokine-independent inhibition of Th17 differentiation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Lithium chloride increases the production of amyloid-beta peptide independently from its inhibition of glycogen synthase kinase 3.

    Science.gov (United States)

    Feyt, Christine; Kienlen-Campard, Pascal; Leroy, Karelle; N'Kuli, Francisca; Courtoy, Pierre J; Brion, Jean-Pierre; Octave, Jean-Noël

    2005-09-30

    Glycogen synthase kinase 3 (GSK3) is able to phosphorylate tau at many sites that are found to be phosphorylated in paired helical filaments in Alzheimer disease. Lithium chloride (LiCl) efficiently inhibits GSK3 and was recently reported to also decrease the production of amyloid-beta peptide (Abeta) from its precursor, the amyloid precursor protein. Therefore, lithium has been proposed as a combined therapeutic agent, inhibiting both the hyperphosphorylation of tau and the production of Abeta. Here, we demonstrate that the inhibition of GSK3 by LiCl induced the nuclear translocation of beta-catenin in Chinese hamster ovary cells and rat cultured neurons, in which a decrease in tau phosphorylation was observed. In both cellular models, a nontoxic concentration of LiCl increased the production of Abeta by increasing the beta-cleavage of amyloid precursor protein, generating more substrate for an unmodified gamma-secretase activity. SB415286, another GSK3 inhibitor, induced the nuclear translocation of beta-catenin and slightly decreased Abeta production. It is concluded that the LiCl-mediated increase in Abeta production is not related to GSK3 inhibition.

  4. Inhibition of TGF-β Signaling in SHED Enhances Endothelial Differentiation.

    Science.gov (United States)

    Xu, J G; Gong, T; Wang, Y Y; Zou, T; Heng, B C; Yang, Y Q; Zhang, C F

    2018-02-01

    Low efficiency of deriving endothelial cells (ECs) from adult stem cells hampers their utilization in tissue engineering studies. The purpose of this study was to investigate whether suppression of transforming growth factor beta (TGF-β) signaling could enhance the differentiation efficiency of dental pulp-derived stem cells into ECs. We initially used vascular endothelial growth factor A (VEGF-A) to stimulate 2 dental pulp-derived stem cells (dental pulp stem cells and stem cells from human exfoliated deciduous teeth [SHED]) and compared their differentiation capacity into ECs. We further evaluated whether the vascular endothelial growth factor receptor I (VEGF-RI)-specific ligand placental growth factor-1 (PlGF-1) could mediate endothelial differentiation. Finally, we investigated whether the TGF-β signaling inhibitor SB-431542 could enhance the inductive effect of VEGF-A on endothelial differentiation, as well as the underlying mechanisms involved. ECs differentiated from dental pulp-derived stem cells exhibited the typical phenotypes of primary ECs, with SHED possessing a higher endothelial differentiation potential than dental pulp stem cells. VEGFR1-specific ligand-PLGF exerted a negligible effect on SHED-ECs differentiation. Compared with VEGF-A alone, the combination of VEGF-A and SB-431542 significantly enhanced the endothelial differentiation of SHED. The presence of SB-431542 inhibited the phosphorylation of Suppressor of Mothers Against Decapentaplegic 2/3 (SMAD2/3), allowing for VEGF-A-dependent phosphorylation and upregulation of VEGFR2. Our results indicate that the combination of VEGF-A and SB-431542 could enhance the differentiation of dental pulp-derived stem cells into endothelial cells, and this process is mediated through enhancement of VEGF-A-VEGFR2 signaling and concomitant inhibition of TGF-β-SMAD2/3 signaling.

  5. Basal-subtype and MEK-Pl3K feedback signaling determine susceptibility of breast cancer cells to MEK inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Mirzoeva, Olga K.; Das, Debopriya; Heiser, Laura M.; Bhattacharya, Sanchita; Siwak, Doris; Gendelman, Rina; Bayani, Nora; Wang, Nicholas J.; Neve, Richard M.; Knight, Zachary; Feiler, Heidi S.; Gascard, Philippe; Parvin, Bahram; Spellman, Paul T.; Shokat, Kevan M.; Wyrobek, Andrew J.; Bissell, Mina J.; McCormick, Frank; Kuo, Wen-Lin; Mills, Gordon B.; Gray, Joe W.; Korn, W. Michael

    2009-01-23

    Specific inhibitors of MEK have been developed that efficiently inhibit the oncogenic RAF-MEK-ERK pathway. We employed a systems-based approach to identify breast cancer subtypes particularly susceptible to MEK inhibitors and to understand molecular mechanisms conferring resistance to such compounds. Basal-type breast cancer cells were found to be particularly susceptible to growth-inhibition by small-molecule MEK inhibitors. Activation of the PI3 kinase pathway in response to MEK inhibition through a negative MEK-EGFR-PI3 kinase feedback loop was found to limit efficacy. Interruption of this feedback mechanism by targeting MEK and PI3 kinase produced synergistic effects, including induction of apoptosis and, in some cell lines, cell cycle arrest and protection from apoptosis induced by proapoptotic agents. These findings enhance our understanding of the interconnectivity of oncogenic signal transduction circuits and have implications for the design of future clinical trials of MEK inhibitors in breast cancer by guiding patient selection and suggesting rational combination therapies.

  6. Inhibition of Xenograft tumor growth by gold nanoparticle-DNA oligonucleotide conjugates-assisted delivery of BAX mRNA.

    Directory of Open Access Journals (Sweden)

    Ji-Hyun Yeom

    Full Text Available Use of non-biological agents for mRNA delivery into living systems in order to induce heterologous expression of functional proteins may provide more advantages than the use of DNA and/or biological vectors for delivery. However, the low efficiency of mRNA delivery into live animals, using non-biological systems, has hampered the use of mRNA as a therapeutic molecule. Here, we show that gold nanoparticle-DNA oligonucleotide (AuNP-DNA conjugates can serve as universal vehicles for more efficient delivery of mRNA into human cells, as well as into xenograft tumors generated in mice. Injections of BAX mRNA loaded on AuNP-DNA conjugates into xenograft tumors resulted in highly efficient mRNA delivery. The delivered mRNA directed the efficient production of biologically functional BAX protein, a pro-apoptotic factor, consequently inhibiting tumor growth. These results demonstrate that mRNA delivery by AuNP-DNA conjugates can serve as a new platform for the development of safe and efficient gene therapy.

  7. Inhibitory control efficiency in a Piaget-like class-inclusion task in school-age children and adults: a developmental negative priming study.

    Science.gov (United States)

    Borst, G; Poirel, N; Pineau, A; Cassotti, M; Houdé, O

    2013-07-01

    Most children under 7 years of age presented with 10 daisies and 2 roses fail to indicate that there are more flowers than daisies. Instead of the appropriate comparison of the relative numerosities of the superordinate class (flowers) to its subordinate class (daisies), they perform a direct perceptual comparison of the extensions of the 2 subordinate classes (daisies vs. roses). In our experiment, we investigated whether increasing efficiency in solving the Piagetian class-inclusion task is related to increasing efficiency in the ability to resist (inhibit) this direct comparison of the subordinate classes' extensions. Ten-year-old and young adult participants performed a computerized priming version of a Piaget-like class-inclusion task. The experimental design was such that the misleading perceptual strategy to inhibit on the prime (in which a superordinate class had to be compared with a subordinate class) became a congruent strategy to activate on the probe (in which the two subordinate classes' extensions were directly compared). We found a negative priming effect of 291 ms in children and 129 ms in adults. These results provide evidence for the first time (a) that adults still need to inhibit the comparison of the subordinate classes' extensions in class-inclusion tasks and (b) that the ability to inhibit this heuristic increases with age (resulting in a lower executive cost). Taken together, these findings provide additional support for the neo-Piagetian approach of cognitive development that suggests that the acquisition of increasingly complex knowledge is based on the ability to resist (inhibit) heuristics and previously acquired knowledge.

  8. Mechanism of product inhibition for cellobiohydrolase Cel7A during hydrolysis of insoluble cellulose

    DEFF Research Database (Denmark)

    Olsen, Johan P.; Alasepp, Kadri; Kari, Jeppe

    2016-01-01

    The cellobiohydrolase cellulase Cel7A is extensively utilized in industrial treatment of lignocellulosic biomass under conditions of high product concentrations, and better understanding of inhibition mechanisms appears central in attempts to improve the efficiency of this process. We have...... the lines of conventional enzyme kinetic theory. We found that the product cellobiose lowered the maximal rate without affecting the Michaelis constant, and this kinetic pattern could be rationalized by two fundamentally distinct molecular mechanisms. One was simple reversibility, that is, an increasing...

  9. Inhibition of Axl improves the targeted therapy against ALK-mutated neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fei [Department of Neurology, Sichuan Medical Science Institute and Sichuan Provincial Hospital, Chengdu 610072 (China); Li, Hongling [Department of Radiotherapy, Shanghai First People’s Hospital, Shanghai Jiao Tong University, Shanghai 201620 (China); Sun, Yong, E-mail: sunfanqi2010@163.com [Department of Burn and Plastic Surgery, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an 223300 (China)

    2014-11-28

    Highlights: • First reported Axl is co-expressed with ALK in neuroblastoma tissues and cell lines. • Axl activation promotes cell growth and impairs the efficiency of ALK inhibitor. • Further found silence of Axl leads to increased sensitivity to ALK inhibitors. • Axl inhibitor promotes the efficiency of targeted therapy in vitro and in vivo. • Axl activation should be considered in the clinical application of ALK inhibitors. - Abstract: Neuroblastoma (NB) patients harboring mutated ALK can be expected to potentially benefit from targeted therapy based on ALK tyrosine kinase inhibitor (TKI), such as crizotinib and ceritinib. However, the effect of the treatment varies with different individuals, although with the same genic changes. Axl receptor tyrosine kinase is expressed in a variety of human cancers, but little data are reported in NB, particularly in which carrying mutated ALK. In this study, we focus on the roles of Axl in ALK-mutated NB for investigating rational therapeutic strategy. We found that Axl is expressed in ALK-positive NB tissues and cell lines, and could be effectively activated by its ligand GAS6. Ligand-dependent Axl activation obviously rescued crizotinib-mediated suppression of cell proliferation in ALK-mutated NB cells. Genetic inhibition of Axl with specific small interfering RNA markedly increased the sensitivity of cells to ALK-TKIs. Furthermore, a small-molecule inhibitor of Axl significantly enhanced ALK-targeted therapy, as an increased frequency of apoptosis was observed in NB cells co-expressing ALK and Axl. Taken together, our results demonstrated that activation of Axl could lead to insensitivity to ALK inhibitors, and dual inhibition of ALK and Axl might be a potential therapeutic strategy against ALK-mutated NB.

  10. Live imaging of osteoclast inhibition by bisphosphonates in a medaka osteoporosis model

    Directory of Open Access Journals (Sweden)

    Tingsheng Yu

    2016-02-01

    Full Text Available Osteoclasts are bone-resorbing cells derived from the monocyte/macrophage lineage. Excess osteoclast activity leads to reduced bone mineral density, a hallmark of diseases such as osteoporosis. Processes that regulate osteoclast activity are therefore targeted in current osteoporosis therapies. To identify and characterize drugs for treatment of bone diseases, suitable in vivo models are needed to complement cell-culture assays. We have previously reported transgenic medaka lines expressing the osteoclast-inducing factor receptor activator of nuclear factor κB ligand (Rankl under control of a heat shock-inducible promoter. Forced Rankl expression resulted in ectopic osteoclast formation, as visualized by live imaging in fluorescent reporter lines. This led to increased bone resorption and a dramatic reduction of mineralized matrix similar to the situation in humans with osteoporosis. In an attempt to establish the medaka as an in vivo model for osteoporosis drug screening, we treated Rankl-expressing larvae with etidronate and alendronate, two bisphosphonates commonly used in human osteoporosis therapy. Using live imaging, we observed an efficient, dose-dependent inhibition of osteoclast activity, which resulted in the maintenance of bone integrity despite an excess of osteoclast formation. Strikingly, we also found that bone recovery was efficiently promoted after inhibition of osteoclast activity and that osteoblast distribution was altered, suggesting effects on osteoblast-osteoclast coupling. Our data show that transgenic medaka lines are suitable in vivo models for the characterization of antiresorptive or bone-anabolic compounds by live imaging and for screening of novel osteoporosis drugs.

  11. Control of CA3 output by feedforward inhibition despite developmental changes in the excitation-inhibition balance.

    Science.gov (United States)

    Torborg, Christine L; Nakashiba, Toshiaki; Tonegawa, Susumu; McBain, Chris J

    2010-11-17

    In somatosensory cortex, the relative balance of excitation and inhibition determines how effectively feedforward inhibition enforces the temporal fidelity of action potentials. Within the CA3 region of the hippocampus, glutamatergic mossy fiber (MF) synapses onto CA3 pyramidal cells (PCs) provide strong monosynaptic excitation that exhibit prominent facilitation during repetitive activity. We demonstrate in the juvenile CA3 that MF-driven polysynaptic IPSCs facilitate to maintain a fixed EPSC-IPSC ratio during short-term plasticity. In contrast, in young adult mice this MF-driven polysynaptic inhibitory input can facilitate or depress in response to short trains of activity. Transgenic mice lacking the feedback inhibitory loop continue to exhibit both facilitating and depressing polysynaptic IPSCs, indicating that this robust inhibition is not caused by the secondary engagement of feedback inhibition. Surprisingly, eliminating MF-driven inhibition onto CA3 pyramidal cells by blockade of GABA(A) receptors did not lead to a loss of temporal precision of the first action potential observed after a stimulus but triggered in many cases a long excitatory plateau potential capable of triggering repetitive action potential firing. These observations indicate that, unlike other regions of the brain, the temporal precision of single MF-driven action potentials is dictated primarily by the kinetics of MF EPSPs, not feedforward inhibition. Instead, feedforward inhibition provides a robust regulation of CA3 PC excitability across development to prevent excessive depolarization by the monosynaptic EPSP and multiple action potential firings.

  12. A fusion-inhibiting peptide against Rift Valley fever virus inhibits multiple, diverse viruses.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    Full Text Available For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III based on the protein sequence and structure. For Rift Valley fever virus (RVFV, the glycoprotein Gc (Class II fusion protein mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus, Class II (Andes virus, or Class III (vesicular stomatitis virus fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.

  13. Irreversible inhibition of RANK expression as a possible mechanism for IL-3 inhibition of RANKL-induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Khapli, Shruti M.; Tomar, Geetanjali B.; Barhanpurkar, Amruta P.; Gupta, Navita; Yogesha, S.D.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-09-03

    Research highlights: {yields} IL-3 inhibits receptor activator of NF-{kappa}B ligand (RANKL)-induced osteoclastogenesis. {yields} IL-3 inhibits RANKL-induced JNK activation. {yields} IL-3 down-regulates expression of c-Fos and NFATc1 transcription factors. {yields} IL-3 down-regulates RANK expression posttranscriptionally and irreversibly. {yields} IL-3 inhibits in vivo RANK expression. -- Abstract: IL-3, a cytokine secreted by activated T lymphocytes, stimulates the proliferation, differentiation and survival of pluripotent hematopoietic stem cells. In this study, we investigated the mechanism of inhibitory action of IL-3 on osteoclast differentiation. We show here that IL-3 significantly inhibits receptor activator of NF-{kappa}B (RANK) ligand (RANKL)-induced activation of c-Jun N-terminal kinase (JNK). IL-3 down-regulates expression of c-Fos and nuclear factor of activated T cells (NFATc1) transcription factors. In addition, IL-3 down-regulates RANK expression posttranscriptionally in both purified osteoclast precursors and whole bone marrow cells. Furthermore, the inhibitory effect of IL-3 on RANK expression was irreversible. Interestingly, IL-3 inhibits in vivo RANK expression in mice. Thus, we provide the first evidence that IL-3 irreversibly inhibits RANK expression that results in inhibition of important signaling molecules induced by RANKL.

  14. Irreversible inhibition of RANK expression as a possible mechanism for IL-3 inhibition of RANKL-induced osteoclastogenesis

    International Nuclear Information System (INIS)

    Khapli, Shruti M.; Tomar, Geetanjali B.; Barhanpurkar, Amruta P.; Gupta, Navita; Yogesha, S.D.; Pote, Satish T.; Wani, Mohan R.

    2010-01-01

    Research highlights: → IL-3 inhibits receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. → IL-3 inhibits RANKL-induced JNK activation. → IL-3 down-regulates expression of c-Fos and NFATc1 transcription factors. → IL-3 down-regulates RANK expression posttranscriptionally and irreversibly. → IL-3 inhibits in vivo RANK expression. -- Abstract: IL-3, a cytokine secreted by activated T lymphocytes, stimulates the proliferation, differentiation and survival of pluripotent hematopoietic stem cells. In this study, we investigated the mechanism of inhibitory action of IL-3 on osteoclast differentiation. We show here that IL-3 significantly inhibits receptor activator of NF-κB (RANK) ligand (RANKL)-induced activation of c-Jun N-terminal kinase (JNK). IL-3 down-regulates expression of c-Fos and nuclear factor of activated T cells (NFATc1) transcription factors. In addition, IL-3 down-regulates RANK expression posttranscriptionally in both purified osteoclast precursors and whole bone marrow cells. Furthermore, the inhibitory effect of IL-3 on RANK expression was irreversible. Interestingly, IL-3 inhibits in vivo RANK expression in mice. Thus, we provide the first evidence that IL-3 irreversibly inhibits RANK expression that results in inhibition of important signaling molecules induced by RANKL.

  15. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency.

    Science.gov (United States)

    Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y Eugene; Zhang, Jifeng

    2016-01-28

    Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells.

  16. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency

    Science.gov (United States)

    Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y. Eugene; Zhang, Jifeng

    2016-01-01

    Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells. PMID:26817820

  17. Inhibition of Sodium Benzoate on Stainless Steel in Tropical Seawater

    International Nuclear Information System (INIS)

    Seoh, S. Y.; Senin, H. B.; Nik, W. N. Wan; Amin, M. M.

    2007-01-01

    The inhibition of sodium benzoate for stainless steel controlling corrosion was studied in seawater at room temperature. Three sets of sample have been immersed in seawater containing sodium benzoate with the concentrations of 0.3M, 0.6M and 1.0M respectively. One set of sample has been immersed in seawater without adding any sodium benzoate. It was found that the highest corrosion rate was observed for the stainless steel with no inhibitor was added to the seawater. As the concentration of sodium benzoate being increased, the corrosion rate is decreases. Results show that by the addition of 1.0M of sodium benzoate in seawater samples, it giving ≥ 90% efficiencies

  18. Human milk glycoconjugates that inhibit pathogens.

    Science.gov (United States)

    Newburg, D S

    1999-02-01

    Breast-fed infants have lower incidence of diarrhea, respiratory disease, and otitis media. The protection by human milk has long been attributed to the presence of secretory IgA. However, human milk contains large numbers and amounts of complex carbohydrates, including glycoproteins, glycolipids, glycosaminoglycans, mucins, and especially oligosaccharides. The oligosaccharides comprise the third most abundant solid constituent of human milk, and contain a myriad of structures. Complex carbohydrate moieties of glycoconjugates and oligosaccharides are synthesized by the many glycosyltransferases in the mammary gland; those with homology to cell surface glycoconjugate pathogen receptors may inhibit pathogen binding, thereby protecting the nursing infant. Several examples are reviewed: A fucosyloligosaccharide inhibits the diarrheagenic effect of stable toxin of Escherichia coli. A different fucosyloligosaccharide inhibits infection by Campylobacter jejuni. Binding of Streptococcus pneumoniae and of enteropathogenic E. coli to their respective receptors is inhibited by human milk oligosaccharides. The 46-kD glycoprotein, lactadherin, inhibits rotavirus binding and infectivity. Low levels of lactadherin in human milk are associated with a higher incidence of symptomatic rotavirus in breast-fed infants. A mannosylated glycopeptide inhibits binding by enterohemorrhagic E. coli. A glycosaminoglycan inhibits binding of gp120 to CD4, the first step in HIV infection. Human milk mucin inhibits binding by S-fimbriated E. coli. The ganglioside, GM1, reduces diarrhea production by cholera toxin and labile toxin of E. coli. The neutral glycosphingolipid, Gb3, binds to Shigatoxin. Thus, many complex carbohydrates of human milk may be novel antipathogenic agents, and the milk glycoconjugates and oligosaccharides may be a major source of protection for breastfeeding infants.

  19. Kinetic mechanism of Toxoplasma gondii adenosine kinase and the highly efficient utilization of adenosine

    Science.gov (United States)

    Naguib, Fardos N. M.; Rais, Reem H.; Al Safarjalani, Omar N.; el Kouni, Mahmoud H.

    2015-01-01

    Toxoplasma gondii has an extraordinarily ability to utilize adenosine (Ado) as the primary source of all necessary purines in this parasite which lacks de novo purine biosynthesis. The activity of T. gondii adenosine kinase (TgAK, EC 2.7.1.20) is responsible for this efficient salvage of Ado in T. gondii. To fully understand this remarkable efficiency of TgAK in the utilization of Ado, complete kinetic parameters of this enzyme are necessary. Initial velocity and product inhibition studies of TgAK demonstrated that the basic mechanism of this enzyme is a hybrid random bi-uni ping-pong uni-bi. Initial velocity studies showed an intersecting pattern, consistent with substrate-enzyme-co-substrate complex formation and a binding pattern indicating that binding of the substrate interferes with the binding of the co-substrate and vice versa. Estimated kinetic parameters were KAdo = 0.002 ± 0.0002 mM, KATP = 0.05 ± 0.008 mM, and Vmax = 920 ± 35 μmol/min/mg protein. Ado exhibited substrate inhibition suggesting the presence of more than one binding site for Ado on the enzyme. ATP relieved substrate inhibition by Ado. Thus, Ado also binds to the ATP binding site. AMP was competitive with ATP, inferring that AMP binds to the same site as ATP. AMP, ADP and ATP were non-competitive with Ado, therefore, none of these nucleotides binds to the Ado binding site. Combining ATP with ADP was additive. Therefore, the binding of either ATP or ADP does not interfere with the binding of the other. It is concluded that for every ATP consumed, TgAK generates three new AMPs. These findings along with the fact that a wide range of nucleoside 5′-mono, di, and triphosphates could substitute for ATP as phosphate donors in this reaction may explain the efficient and central role played by TgAK in the utilization of Ado as the major source from which all other purines can be synthesized in T. gondii. PMID:26112826

  20. Effect of Rice Straw Extract and Alkali Lignin on the Corrosion Inhibition of Carbon Steel

    International Nuclear Information System (INIS)

    Rabiahtul Zulkafli; Norinsan Kamil Othman; Irman Abdul Rahman; Azman Jalar

    2014-01-01

    A paddy residue based corrosion inhibitor was prepared by treating finely powdered rice straw with aqueous ethanol under acid catalyst (0.01 M H 2 SO 4 ). Commercial alkali lignin was obtained from Sigma-Aldrich. Prior to the corrosion test, the extraction yield and alkali lignin was characterized via FTIR to determine the functional group. The effect of paddy residue extract and commercial alkali lignin on the corrosion inhibition of carbon steel in 1 M HCl was investigated through the weight loss method, potentiodynamic polarization technique and scanning electron microscopy (SEM). The corrosion inhibition efficiency of the extract and alkali lignin at different immersion times (3 h, 24 h and 42 h) was evaluated. The results show that the paddy waste extract exhibited lesser weight loss of carbon steel in the acidic medium in comparison to the commercial alkali lignin, suggesting that the paddy residue extract is more effective than the commercial alkali lignin in terms of its corrosion inhibition properties. The results obtained proves that the extract from paddy residue could serve as an effective inhibitor for carbon steel in acidic mediums. (author)

  1. Sex differences in experimental measures of pain sensitivity and endogenous pain inhibition

    Directory of Open Access Journals (Sweden)

    Bulls HW

    2015-06-01

    Full Text Available Hailey W Bulls,1 Emily L Freeman,1 Austen JB Anderson,2 Meredith T Robbins,3 Timothy J Ness,3 Burel R Goodin1,3 1Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA; 2Department of Biology, Samford University, Birmingham, AL, USA; 3Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, USA Abstract: It has been suggested that increased pain sensitivity and disruption of endogenous pain inhibitory processes may account, at least in part, for the greater prevalence and severity of chronic pain in women compared to men. However, previous studies addressing this topic have produced mixed findings. This study examined sex differences in pain sensitivity and inhibition using quantitative sensory testing (QST, while also considering the influence of other important factors such as depressive symptoms and sleep quality. Healthy men (n=24 and women (n=24 each completed a QST battery. This battery included an ischemic pain task (IPT that used a submaximal effort tourniquet procedure as well as a conditioned pain modulation (CPM procedure for the assessment of endogenous pain inhibition. Prior to QST, participants completed the Center for Epidemiologic Studies Depression Scale and the Pittsburgh Sleep Quality Index. Analyses revealed significant sex differences for the ischemic pain task and the conditioned pain modulation procedure, such that women tolerated the ischemic pain for a shorter amount of time and demonstrated less pain inhibition compared with men. This remained true even when accounting for sex differences in depressive symptoms and sleep quality. The results of this study suggest that women may be more pain sensitive and possess less-efficient endogenous pain inhibitory capacity compared with men. Whether interventions that decrease pain sensitivity and enhance pain inhibition in women ultimately improve their clinical pain outcomes is an area of research that deserves additional

  2. Inhibition of Lipid Peroxidation by Enzymatic Hydrolysates from Wheat Bran

    Directory of Open Access Journals (Sweden)

    Yanping Cao

    2011-01-01

    Full Text Available Wheat bran, an important by-product of the cereal industry, is rich in potentially health-promoting phenolic compounds. The phenolics are mainly esterified to the cell wall polysaccharides. In our previous paper, wheat bran was destarched and deproteinated by α-amylase, protease and amyloglucosidase successively and further hydrolyzed using Bacillus subtilis xylanases, and the enzymatic hydrolysates from wheat bran (EHWB showed good scavenging activity in vitro. The aim of this study is to further characterize the antioxidant potential of EHWB against various systems, both ex vivo and in vivo, namely, rat liver microsomal lipid peroxidation systems induced by Fe2+/H2O2 and Fe3+-adenosine diphosphate (ADP/dihydronicotinamide adenine dinucleotide phosphate (NADPH, copper- and 2,2’-azo-bis(2-amidinopropane dihydrochloride (AAPH-induced human low-density lipoprotein (LDL oxidation systems, and alloxan-induced in vivo lipid peroxidation in mice. EHWB inhibited lipid peroxidation in rat liver microsomes induced by Fe2+/H2O2 and Fe3+-ADP/NADPH in a concentration-dependent manner with 90.3 and 87 % inhibition of lipid peroxidation at 50 mg/L, respectively, which were similar to that of butylated hydroxytoluene (BHT at 20 mg/L. The antioxidant potential of EHWB at a concentration ranging from 10 to 20 mg/L in the nonenzymatic system was more effective than in the enzymatic system. EHWB strongly inhibited in vitro copper- and AAPH-mediated oxidation of LDL in a concentration- and time-dependent manner with 52.41 and 63.03 % inhibition at 20 mg/L, respectively, which were similar to that of ascorbate at 10 mg/L. EHWB significantly decreased the level of thiobarbituric acid reactive substances (TBARS and increased the activities of glutathione peroxidase (GSH-Px, catalase (CAT and superoxide dismutase (SOD in serum and liver of alloxan-treated mice compared with the control. These results demonstrated that EHWB might be efficient in the protection of

  3. Synthesis and study of the mechanisms of action of biodegradable additives for corrosion and scale inhibition in industrial cooling water systems; Mise au point et etude des mecanismes d'action d'additifs biodegradables pour l'inhibition du pouvoir entartrant et corrosif des eaux de refroidissement industrielles

    Energy Technology Data Exchange (ETDEWEB)

    Estievenart, C.

    2003-11-01

    Industrial cooling water systems undergo more and more environmental constraints. The recycling of water increases the risks of scale deposition and corrosion. The use of chemical additives to inhibit these phenomena is necessary. Poly-aspartates are proposed as green multi-functional inhibitors. Polymers of different characteristics have been synthesized by different ways. Their efficiency towards scale deposition and corrosion is determined by electrochemical techniques in different test conditions (composition of the test water, temperature, flow rate, concentration of additive...). Their biodegradability is also evaluated. These poly-aspartates inhibit both nucleation and growth of calcium carbonate crystals, but also corrosion. Their efficiency depends on the characteristics of the polymers and their way of synthesis. The morphology of scale and corrosion deposits is modified in the presence of poly-aspartate. The mechanism of action of poly-aspartates combines adsorption, dispersion, complexation with both iron and calcium ions and insertion in the crystal lattice. (author)

  4. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate

    Directory of Open Access Journals (Sweden)

    Paulina Arellanes-Lozada

    2014-08-01

    Full Text Available Compounds of poly(ionic liquids (PILs, derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium (PImC12, poly(1-vinyl-3-octylimidazolium (PImC8 and poly(1-vinyl-3-butylimidazolium (PImC4 hexafluorophosphate were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1–1 M H2SO4 by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir’s isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC12 > PImC8 > PImC4 to reach 61% for PImC12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs’ partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.

  5. Influence of poly(aminoquinone) on corrosion inhibition of iron in acid media

    Science.gov (United States)

    Jeyaprabha, C.; Sathiyanarayanan, S.; Phani, K. L. N.; Venkatachari, G.

    2005-11-01

    The inhibitor performance of chemically synthesized water soluble poly(aminoquinone) (PAQ) on iron corrosion in 0.5 M sulphuric acid was studied in relation to inhibitor concentration using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. On comparing the inhibition performance of PAQ with that of the monomer o-phenylenediamine (OPD), the OPD gave an efficiency of 80% for 1000 ppm while it was 90% for 100 ppm of PAQ. PAQ was found to be a mixed inhibitor. Besides, PAQ was able to improve the passivation tendency of iron in 0.5 M H 2SO 4 markedly.

  6. E4 - Energy efficient elevators and escalators. Barriers to and strategies for promoting energy-efficient lift and escalator technologies

    Energy Technology Data Exchange (ETDEWEB)

    Duetschke, Elisabeth; Hirzel, Simon

    2010-02-25

    According to prior findings of the E4 project, considerable savings potential exists both for lifts and escalators that could be realized if appropriate technology is implemented. However, energy-efficient technology is slowly diffusing the market - a phenomenon that could be explained by barriers present in the market. A barrier is defined as a mechanism that inhibits a decision or behavior that appears to be both energy-efficient and economically efficient and thereby prevents investment in energy-efficient technologies. This document has two aims. First, it will identify influential barriers in the European lift and escalator market. This analysis is based on the literature as well as a study including interviews as well as group discussions with relevant stakeholders. Second, strategies and measures to overcome the barriers identified in the first step are outlined. Major barriers to the penetration of energy-efficient technologies identified in this paper include a lack of monitoring energy consumption of installations and a lack of awareness of as well as knowledge about energy-efficient technology. Thus, installations and components are usually chosen without a (comprehensive) assessment of their energy consumption and without considering life-cycle approaches. On top of this, split incentives are a regularly occurring barrier. Various stakeholders are influential in the decisionmaking process about an installation or its components. However, those who will later pay for the energy consumption often are not involved in this process. Moreover, it is important to keep in mind that the number of new lifts and escalators installed each year is relatively low compared to the existing stock. Thus, it is very important to discuss enhancement of energy efficiency also for the existing stock. Based on our analyses, several recommendations are developed in this paper that could contribute to a market transformation in the lift and escalator market. First of all, a

  7. The Spatial Mechanism and Drive Mechanism Study of Chinese Urban Efficiency - Based on the Spatial Panel Data Model

    Directory of Open Access Journals (Sweden)

    Yuan Xiaoling

    2016-08-01

    Full Text Available In this article, the urban efficiency factors of 285 Chinese prefecture-level cities in the period from 2003 to 2012 are analyzed by using the spatial econometric model. The result shows that the development of urban efficiency between the cities positively correlates with space. And we conclude that the Industrial Structure, Openness and the Infrastructure can promote the development of such urban efficiency. The Urban Agglomeration Scale, Government Control, Fixed Asset Investment and other factors can inhibit the development of urban efficiency to a certain degree. Therefore, we come to a conclusion that, in the new urbanization construction process, the cities need to achieve cross-regional coordination from the perspective of urban agglomerations and metropolitan development. The efficiency of the city together with the scientific and rational flow of the factors should also be improved.

  8. Inhibition of HeLa cell growth by doxorubicin-loaded and tuftsin-conjugated arginate-PEG microparticles

    Directory of Open Access Journals (Sweden)

    Tianmu Hu

    2018-03-01

    Full Text Available In order to improve the release pattern of chemotherapy drug and reduce the possibility of drug resistance, poly(ethylene glycol amine (PEG-modified alginate microparticles (ALG-PEG MPs were developed then two different mechanisms were employed to load doxorubicin (Dox: 1 forming Dox/ALG-PEG complex by electrostatic attractions between unsaturated functional groups in Dox and ALG-PEG; 2 forming Dox-ALG-PEG complex through EDC-reaction between the amino and carboxyl groups in Dox and ALG, respectively. Additionally, tuftsin (TFT, a natural immunomodulation peptide, was conjugated to MPs in order to enhance the efficiency of cellular uptake. It was found that the Dox-ALG-PEG-TFT MPs exhibited a significantly slower release of Dox than Dox/ALG-PEG-TFT MPs in neutral medium, suggesting the role of covalent bonding in prolonging Dox retention. Besides, the release of Dox from these MPs was pH-sensitive, and the release rate was observably increased at pH 6.5 compared to the case at pH 7.4. Compared with Dox/ALG-PEG MPs and Dox-ALG-PEG MPs, their counterparts further conjugated with TFT more efficiently inhibited the growth of HeLa cells over a period of 48 h, implying the effectiveness of TFT in enhancing cellular uptake of MPs. Over a period of 48 h, Dox-ALG-PEG-TFT MPs inhibited the growth of HeLa cells less efficiently than Dox/ALG-PEG-TFT MPs but the difference was not significant (p > 0.05. In consideration of the prolonged and sustained release of Dox, Dox-ALG-PEG-TFT MPs possess the advantages for long-term treatment.

  9. Modeling intentional inhibition of actions

    NARCIS (Netherlands)

    Thilakarathne, D.J.; Treur, J.

    2015-01-01

    Inspired by cognitive and neurological literature on action ownership and action awareness, in this paper a computational cognitive model for intentional inhibition (i.e.; the capacity to voluntarily suspend or inhibit an action) is introduced. The interplay between (positive) potential selection of

  10. Production of tyrosine through phenylalanine hydroxylation bypasses the intrinsic feedback inhibition in Escherichia coli.

    Science.gov (United States)

    Huang, Jin; Lin, Yuheng; Yuan, Qipeng; Yan, Yajun

    2015-04-01

    Tyrosine is a proteinogenic aromatic amino acid that is often used as a supplement of food and animal feed, as well as a (bio-)synthetic precursor to various pharmaceutically or industrially important molecules. Extensive metabolic engineering efforts have been made towards the efficient and cost-effective microbial production of tyrosine. Conventional strategies usually focus on eliminating intrinsic feedback inhibition and redirecting carbon flux into the shikimate pathway. In this study, we found that continuous conversion of phenylalanine into tyrosine by the action of tetrahydromonapterin (MH4)-utilizing phenylalanine 4-hydroxylase (P4H) can bypass the feedback inhibition in Escherichia coli, leading to tyrosine accumulation in the cultures. First, expression of the P4H from Xanthomonas campestris in combination with an MH4 recycling system in wild-type E. coli allowed the strain to accumulate tyrosine at 262 mg/L. On this basis, enhanced expression of the key enzymes associated with the shikimate pathway and the MH4 biosynthetic pathway resulted in the elevation of tyrosine production up to 401 mg/L in shake flasks. This work demonstrated a novel approach to tyrosine production and verified the possibility to alleviate feedback inhibition by creating a phenylalanine sink.

  11. Antioxidant Activity of Lawsonia inermis Extracts Inhibits Chromium(VI-Induced Cellular and DNA Toxicity

    Directory of Open Access Journals (Sweden)

    Gunjan Guha

    2011-01-01

    Full Text Available Hexavalent chromium Cr(VI is a very strong oxidant which consequently causes high cytotoxicity through oxidative stress. Prevention of Cr(VI-induced cellular damage has been sought in this study in aqueous and methanolic extracts of Lawsonia inermis Linn. (Lythraceae, commonly known as Henna. The extracts showed significant (P < .05 potential in scavenging free radicals (DPPH• and ABTS•+ and Fe3+, and in inhibiting lipid peroxidation. DNA damage caused by exposure of pBR322 to Cr(VI-UV is markedly inhibited by both extracts in varying degrees. A distinct decline in Cr(VI-induced cytotoxicity was noticed in MDA-MB-435S (human breast carcinoma cells with an increase in dosage of both extracts individually. Furthermore, both extracts proved to contain a high content of phenolic compounds which were found to have a strong and significant (P < .05 positive correlation to the radical scavenging potential, lipid peroxidation inhibition capacity and cyto-protective efficiency against Cr(VI-induced oxidative cellular damage. HPLC analysis identified some of the major phenolic compounds in both extracts, which might be responsible for the antioxidant potential and the properties of DNA and cyto-protection. This study contributes to the search for natural resources that might yield potent therapeutic drugs against Cr(VI-induced oxidative cell damage.

  12. Specific Inhibition of SRC Kinase Impairs Malignant Glioma Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Hanna Stedt

    2012-01-01

    Full Text Available Malignant glioma is a severe cancer with a poor prognosis. Local occurrence and rare metastases of malignant glioma make it a suitable target for gene therapy. Several studies have demonstrated the importance of Src kinase in different cancers. However, these studies have focused mainly on Src-deficient mice or pharmacological inhibitors of Src. In this study we have used Src small hairpin RNAs (shRNAs in a lentiviral backbone to mimic a long-term stable treatment and determined the role of Src in tumor tissues. Efficacy of Src shRNAs was confirmed in vitro demonstrating up to 90% target gene inhibition. In a mouse malignant glioma model, Src shRNA tumors were almost 50-fold smaller in comparison to control tumors and had significantly reduced vascularity. In a syngenic rat intracranial glioma model, Src shRNA-transduced tumors were smaller and these rats had a survival benefit over the control rats. In vivo treatment was enhanced by chemotherapy and histone deacetylase inhibition. Our results emphasise the importance of Src in tumorigenesis and demonstrate that it can be efficiently inhibited in vitro and in vivo in two independent malignant glioma models. In conclusion, Src is a potential target for RNA interference-mediated treatment of malignant glioma.

  13. Emetine inhibits replication of RNA and DNA viruses without generating drug-resistant virus variants.

    Science.gov (United States)

    Khandelwal, Nitin; Chander, Yogesh; Rawat, Krishan Dutt; Riyesh, Thachamvally; Nishanth, Chikkahonnaiah; Sharma, Shalini; Jindal, Naresh; Tripathi, Bhupendra N; Barua, Sanjay; Kumar, Naveen

    2017-08-01

    At a noncytotoxic concentration, emetine was found to inhibit replication of DNA viruses [buffalopoxvirus (BPXV) and bovine herpesvirus 1 (BHV-1)] as well as RNA viruses [peste des petits ruminants virus (PPRV) and Newcastle disease virus (NDV)]. Using the time-of-addition and virus step-specific assays, we showed that emetine treatment resulted in reduced synthesis of viral RNA (PPRV and NDV) and DNA (BPXV and BHV-1) as well as inhibiting viral entry (NDV and BHV-1). In addition, emetine treatment also resulted in decreased synthesis of viral proteins. In a cell free endogenous viral polymerase assay, emetine was found to significantly inhibit replication of NDV, but not BPXV genome, suggesting that besides directly inhibiting specific viral polymerases, emetine may also target other factors essentially required for efficient replication of the viral genome. Moreover, emetine was found to significantly inhibit BPXV-induced pock lesions on chorioallantoic membrane (CAM) along with associated mortality of embryonated chicken eggs. At a lethal dose 50 (LD 50 ) of 126.49 ng/egg and at an effective concentration 50 (EC 50 ) of 3.03 ng/egg, the therapeutic index of the emetine against BPXV was determined to be 41.74. Emetine was also found to significantly delay NDV-induced mortality in chicken embryos associated with reduced viral titers. Further, emetine-resistant mutants were not observed upon long-term (P = 25) sequential passage of BPXV and NDV in cell culture. Collectively, we have extended the effective antiviral activity of emetine against diverse groups of DNA and RNA viruses and propose that emetine could provide significant therapeutic value against some of these viruses without inducing an antiviral drug-resistant phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. mTOR Inhibition Induces EGFR Feedback Activation in Association with Its Resistance to Human Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2015-02-01

    Full Text Available The mammalian target of rapamycin (mTOR is dysregulated in diverse cancers and contributes to tumor progression and drug resistance. The first generation of mTOR inhibitors have failed to show clinical efficiency in treating pancreatic cancers due in part to the feedback relief of the insulin-like growth factor-1 receptor (IGF-1R-AKT signaling pathway. The second generation of mTOR inhibitors, such as AZD8055, could inhibit AKT activation upon mTOR complex 2 (mTORC2 inhibition. However, whether this generation of mTOR inhibitors can obtain satisfactory activities in pancreatic cancer therapy remains unclear. In this study, we found AZD8055 did not show great improvement compared with everolimus, AZD8055 induced a temporal inhibition of AKT kinase activities and AKT was then rephosphorylated. Additionally, we found that AZD8055-induced transient AKT inhibition increased the expression and activation of epidermal growth factor receptor (EGFR by releasing its transcriptional factors Fork-head box O 1/3a (FoxO1/3a, which might contribute to cell resistance to AZD8055. The in vitro and in vivo experiments further indicated the combination of AZD8055 and erlotinib synergistically inhibited the mTORC1/C2 signaling pathway, EGFR/AKT feedback activation, and cell growth, as well as suppressed the progression of pancreatic cancer in a xenograft model. This study provides a rationale and strategy for overcoming AZD8055 resistance by a combined treatment with the EGFR inhibitor erlotinib in pancreatic cancer therapy.

  15. Computer aided drug discovery of highly ligand efficient, low molecular weight imidazopyridine analogs as FLT3 inhibitors.

    Science.gov (United States)

    Frett, Brendan; McConnell, Nick; Smith, Catherine C; Wang, Yuanxiang; Shah, Neil P; Li, Hong-yu

    2015-04-13

    The FLT3 kinase represents an attractive target to effectively treat AML. Unfortunately, no FLT3 targeted therapeutic is currently approved. In line with our continued interests in treating kinase related disease for anti-FLT3 mutant activity, we utilized pioneering synthetic methodology in combination with computer aided drug discovery and identified low molecular weight, highly ligand efficient, FLT3 kinase inhibitors. Compounds were analyzed for biochemical inhibition, their ability to selectively inhibit cell proliferation, for FLT3 mutant activity, and preliminary aqueous solubility. Validated hits were discovered that can serve as starting platforms for lead candidates. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Inhibition of ethylene production by cobaltous ion

    International Nuclear Information System (INIS)

    Lau, O.L; Yang, S.F.

    1976-01-01

    The effect of Co 2+ on ethylene production by mung bean (Phaseolus aureus Roxb.) and by apple tissues was studied. Co 2+ , depending on concentrations applied, effectively inhibited ethylene production by both tissues. It also strongly inhibited the ethylene production induced by IAA, kinetin, IAA plus kinetin, Ca 2+ , kinetin plus Ca 2+ , or Cu 2+ treatments in mung bean hypocotyl segments. While Co 2+ greatly inhibited ethylene production, it had little effect on the respiration of apple tissue, indicating that Co 2+ does not exert its inhibitory effect as a general metabolic inhibitor. Ni 2+ , which belongs to the same group as Co 2+ in the periodic table, also markedly curtailed both the basal and the induced ethylene production by apple and mung bean hypocotyl tissues. In a system in which kinetin and Ca 2+ were applied together, kinetin greatly enhanced Ca 2+ uptake, thus enhancing ethylene production. Co 2+ , however, slightly inhibited the uptake of Ca 2+ but appreciably inhibited ethylene production, either in the presence or in the absence of kinetin. Tracer experiments using apple tissue indicated that Co 2+ strongly inhibited the in vivo conversion of L-[U-- 14 C]methionine to 14 C-ethylene. These data suggested that Co 2+ inhibited ethylene production by inhibiting the conversion of methionine to ethylene, a common step which is required for ethylene formation by higher plants. Co 2+ is known to promote elongation, leaf expansion, and hook opening in excised plant parts in response to applied auxins or cytokinins.Since ethylene is known to inhibit those growth phenomena, it is suggested that Co 2+ exerts its promotive effect, at least in part, by inhibiting ethylene formation

  17. Adolescent development of inhibition as a function of SES and gender: Converging evidence from behavior and fMRI.

    Science.gov (United States)

    Spielberg, Jeffrey M; Galarce, Ezequiel M; Ladouceur, Cecile D; McMakin, Dana L; Olino, Thomas M; Forbes, Erika E; Silk, Jennifer S; Ryan, Neal D; Dahl, Ronald E

    2015-08-01

    The ability to adaptively inhibit responses to tempting/distracting stimuli in the pursuit of goals is an essential set of skills necessary for adult competence and wellbeing. These inhibitory capacities develop throughout childhood, with growing evidence of important maturational changes occurring in adolescence. There also has been intense interest in the role of social adversity on the development of executive function, including inhibitory control. We hypothesized that the onset of adolescence could be a time of particular opportunity/vulnerability in the development of inhibition due to the large degree of maturational changes in neural systems involved in regulatory control. We investigated this hypothesis in a longitudinal study of adolescents by examining the impact of socioeconomic status (SES) on the maturation of inhibition and concurrent brain function. Furthermore, we examined gender as a potential moderator of this relationship, given evidence of gender-specificity in the developmental pathways of inhibition as well as sex differences in adolescent development. Results reveal that lower SES is associated with worse behavioral inhibition over time and a concurrent increase in anterior cingulate (ACC) activation, but only in girls. We also found that lower SES girls exhibited decreased ACC ↔ dorsolateral prefrontal cortex (dlPFC) coupling over time. Our findings suggest that female adolescents with lower SES appear to develop less efficient inhibitory processing in dlPFC, requiring greater and relatively unsuccessful compensatory recruitment of ACC. In summary, the present study provides a novel window into the neural mechanisms by which the influence of SES on inhibition may be transmitted during adolescence. © 2015 Wiley Periodicals, Inc.

  18. Evaluation of the role of damage to photosystem II in the inhibition of CO2 assimilation in pea leaves on exposure to UV-B radiation

    International Nuclear Information System (INIS)

    Nogues, S.; Baker, N.R.

    1995-01-01

    Mature pea (Pisum sativum L., cv. Meteor) leaves were exposed to two levels of UV-B radiation, with and without supplementary UV-C radiation, during 15 h photoperiods. Simultaneous measurements of CO 2 assimilation and modulated chlorophyll fluorescence parameters demonstrated that irradiation with UV-B resulted in decreases in CO 2 assimilation that are not accompanied by decreases in the maximum quantum efficiency of photosystem II (PSII) primary photochemistry. Increased exposure to UV-B resulted in a further loss of CO 2 assimilation and decreases in the maximum quantum efficiency of PSII primary photochemistry, which were accompanied by a loss of the capacity of thylakoids isolated from the leaves to bind atrazine, thus demonstrating that photodamage to PSII reaction centres had occurred. Addition of UV-C to the UV-B treatments increased markedly the rate of inhibition of photosynthesis, but the relationships between CO 2 assimilation and PSII characteristics remained the same, indicating that UV-B and UV-C inhibit leaf photosynthesis by a similar mechanism. It is concluded that PSII is not the primary target site involved in the onset of the inhibition of photosynthesis in pea leaves induced by irradiation with UV-B. (author)

  19. Effect of Bawang Dayak (Eleutherine palmifolia (L) Merr) crude extract towards bacteria inhibition zone and carp (Cyprinus carpio) hematology

    Science.gov (United States)

    Maftuch

    2017-05-01

    Negative impacts of antibiotics and chemical substance usage in aquaculture demand the researchers discover more efficient alternative yet environmentally friendly to overcome fish diseases. One alternative is by using Bawang Dayak (Eleutherine palmifolia (L.) Merr). This research aimed to reveal the effect of Bawang Dayak crude extract towards the inhibition zone of A. hydrophilia, V. harveyi, and P. fluorescens bacteria. Furthermore, it was also conducted to investigate the carp (C. carpio) hematology which was infected with A. hydrophila bacteria, and find the most appropriate dose of Bawang Dayak crude extract to inhibit the bacteria. This experimental research was performed by using Completely Randomized Design with 4 treatments and 3 replications. The best result of the zone of inhibition test in A. hydrophila bacteria was at the dose of 70 ppm while V. harveyi and P. Fluorescens bacteria were at the dose of 85 ppm. Then, fish hematology was found best at the dose of 80 ppm. Bawang Dayak crude extract was significant towards the inhibition zone of A. hydrophila, V. harveyi and P. Fluorescens bacteria, and carp hematology which was infected with A. hydrophila bacteria.

  20. A study of the inhibition of iron corrosion in HCl solutions by some amino acids

    International Nuclear Information System (INIS)

    Amin, Mohammed A.; Khaled, K.F.; Mohsen, Q.; Arida, H.A.

    2010-01-01

    The performance of three selected amino acids, namely alanine (Ala), cysteine (Cys) and S-methyl cysteine (S-MCys) as safe corrosion inhibitors for iron in aerated stagnant 1.0 M HCl solutions was evaluated by Tafel polarization and impedance measurements. Results indicate that Ala acts mainly as a cathodic inhibitor, while Cys and S-MCys function as mixed-type inhibitors. Cys, which contains a mercapto group in its molecular structure, was the most effective among the inhibitors tested, while Ala was less effective than S-MCys. The low inhibition efficiency recorded for S-MCys compared with that of Cys was attributed to steric effects caused by the substituent methyl on the mercapto group. Electrochemical frequency modulation (EFM) technique and inductively coupled plasma atomic emission spectrometry (ICP-AES), were also applied to make accurate determination of corrosion rates. Validation of the Tafel extrapolation method for measuring corrosion rates was tested. Rates of corrosion rates (in μm y -1 ) obtained from Tafel extrapolation method are in good agreement with those measured using EFM and ICP methods. Some theoretical studies, including molecular dynamics (MD) and density functional theory (DFT), were also employed to establish the correlation between the structure (molecular and electronic) of the three tested inhibitors and the inhibition efficiency. Adsorption via hydrogen bonding was discussed here based on some theoretical studies. Experimental and theoretical results were in good agreement.

  1. Peroxisome proliferator-activated receptor-γ agonists inhibit the replication of respiratory syncytial virus (RSV) in human lung epithelial cells

    International Nuclear Information System (INIS)

    Arnold, Ralf; Koenig, Wolfgang

    2006-01-01

    We have previously shown that peroxisome proliferator-activated receptor-γ (PPARγ) agonists inhibited the inflammatory response of RSV-infected human lung epithelial cells. In this study, we supply evidence that specific PPARγ agonists (15d-PGJ 2 , ciglitazone, troglitazone, Fmoc-Leu) efficiently blocked the RSV-induced cytotoxicity and development of syncytia in tissue culture (A549, HEp-2). All PPARγ agonists under study markedly inhibited the cell surface expression of the viral G and F protein on RSV-infected A549 cells. This was paralleled by a reduced cellular amount of N protein-encoding mRNA determined by real-time RT-PCR. Concomitantly, a reduced release of infectious progeny virus into the cell supernatants of human lung epithelial cells (A549, normal human bronchial epithelial cells (NHBE)) was observed. Similar results were obtained regardless whether PPARγ agonists were added prior to RSV infection or thereafter, suggesting that the agonists inhibited viral gene expression and not the primary adhesion or fusion process

  2. Inhibition Performance in Children with Math Disabilities

    OpenAIRE

    Winegar, Kathryn Lileth

    2013-01-01

    This study examined the inhibition deficit hypothesis in children with math disabilities (MD). Children with and without MD were compared on two inhibition tasks that included the random generation of numbers and letters. The results addressed three hypotheses. Weak support was found for the first hypothesis which stated difficulties related to inhibition are significantly related to math performance. I found partial support for this hypothesis in that inhibition was related to math problem s...

  3. Characterization of acetylcholinesterase-inhibition by itopride.

    Science.gov (United States)

    Iwanaga, Y; Kimura, T; Miyashita, N; Morikawa, K; Nagata, O; Itoh, Z; Kondo, Y

    1994-11-01

    Itopride is a gastroprokinetic benzamide derivative. This agent inhibited both electric eel acetylcholinesterase (AChE) and horse serum butyrylcholinesterase (BuChE). The IC50 of itopride with AChE (2.04 +/- 0.27 microM) was, however, 100-fold less than that with BuChE, whereas in the case of neostigmine with AChE (11.3 +/- 3.4 nM), it was 10-fold less. The recovery of AChE activity inhibited by 10(-7) M neostigmine was partial, but that inhibited by up to 3 x 10(-5) M itopride was complete when the reaction mixture was subjected to ultrafiltration. Double reciprocal plots of the experimental data showed that both Km and Vmax were affected by itopride, suggesting that the inhibition is a "mixed" type, although primarily being an uncompetitive one. The inhibitory effect of itopride on cholinesterase (ChE) activity in guinea pig gastrointestine was much weaker than that on pure AChE. However, in the presence of a low dose of diisopropyl fluorophosphate, just enough to inhibit BuChE but not AChE, the IC50s of itopride against ChE activities were found to be about 0.5 microM. In conclusion, itopride exerts reversible and a "mixed" type of inhibition preferably against AChE. The IC50 of itopride for electric eel and guinea pig gastrointestinal AChE inhibition was 200 times and 50 times as large as that of neostigmine, respectively.

  4. Adsorption and inhibitive properties of Tryptophan on low alloy steel corrosion in acidic media

    Directory of Open Access Journals (Sweden)

    Hesham T.M. Abdel-Fatah

    2017-02-01

    Corrosion inhibition was studied using electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM and weight loss measurements. The influence of inhibitor concentration, solution temperature, and immersion time on the corrosion resistance of low alloy steel (LAS has been investigated. Trp proved to be a very good inhibitor for low alloy steel acid corrosion. EFM measurements showed that Trp is a mixed type inhibitor. Trp behaved better in 0.6 M HCl than in 0.6 M HSO3NH2. Moreover, it was found that the inhibition efficiency increased with increasing inhibitor concentration, while a decrease was detected with the rise of temperature and immersion time. The associated activation energy (Ea has been determined. The values of Ea indicate that the type of adsorption of Trp on the steel surface in both acids belongs to physical adsorption. The adsorption process was tested using Temkin adsorption isotherm.

  5. Inhibition of Non-flux-Controlling Enzymes Deters Cancer Glycolysis by Accumulation of Regulatory Metabolites of Controlling Steps.

    Science.gov (United States)

    Marín-Hernández, Álvaro; Rodríguez-Zavala, José S; Del Mazo-Monsalvo, Isis; Rodríguez-Enríquez, Sara; Moreno-Sánchez, Rafael; Saavedra, Emma

    2016-01-01

    flux-controlling steps is a more potent mechanism than competitive and mixed-type inhibition to efficiently perturb cancer glycolysis.

  6. Inhibition of Rho kinase regulates specification of early differentiation events in P19 embryonal carcinoma stem cells.

    Directory of Open Access Journals (Sweden)

    Roman J Krawetz

    Full Text Available The Rho kinase pathway plays a key role in many early cell/tissue determination events that take place in embryogenesis. Rho and its downstream effector Rho kinase (ROCK play pivotal roles in cell migration, apoptosis (membrane blebbing, cell proliferation/cell cycle, cell-cell adhesion and gene regulation. We and others have previously demonstrated that inhibition of ROCK blocks endoderm differentiation in embryonal carcinoma stem cells, however, the effect of ROCK inhibition on mesoderm and ectoderm specification has not been fully examined. In this study, the role of ROCK within the specification and differentiation of all three germ layers was examined.P19 cells were treated with the specific ROCK inhibitor Y-27623, and increase in differentiation efficiency into neuro-ectodermal and mesodermal lineages was observed. However, as expected a dramatic decrease in early endodermal markers was observed when ROCK was inhibited. Interestingly, within these ROCK-inhibited RA treated cultures, increased levels of mesodermal or ectodermal markers were not observed, instead it was found that the pluripotent markers SSEA-1 and Oct-4 remained up-regulated similar to that seen in undifferentiated cultures. Using standard and widely accepted methods for reproducible P19 differentiation into all three germ layers, an enhancement of mesoderm and ectoderm differentiation with a concurrent loss of endoderm lineage specification was observed with Y-27632 treatment. Evidence would suggest that this effect is in part mediated through TGF-β and SMAD signaling as ROCK-inhibited cells displayed aberrant SMAD activation and did not return to a 'ground' state after the inhibition had been removed.Given this data and the fact that only a partial rescue of normal differentiation capacity occurred when ROCK inhibition was alleviated, the effect of ROCK inhibition on the differentiation capacity of pluripotent cell populations should be further examined to elucidate the

  7. Generation of anti-TLR2 intrabody mediating inhibition of macrophage surface TLR2 expression and TLR2-driven cell activation.

    Science.gov (United States)

    Kirschning, Carsten J; Dreher, Stefan; Maass, Björn; Fichte, Sylvia; Schade, Jutta; Köster, Mario; Noack, Andreas; Lindenmaier, Werner; Wagner, Hermann; Böldicke, Thomas

    2010-04-13

    Toll-like receptor (TLR) 2 is a component of the innate immune system and senses specific pathogen associated molecular patterns (PAMPs) of both microbial and viral origin. Cell activation via TLR2 and other pattern recognition receptors (PRRs) contributes to sepsis pathology and chronic inflammation both relying on overamplification of an immune response. Intracellular antibodies expressed and retained inside the endoplasmatic reticulum (ER-intrabodies) are applied to block translocation of secreted and cell surface molecules from the ER to the cell surface resulting in functional inhibition of the target protein. Here we describe generation and application of a functional anti-TLR2 ER intrabody (alphaT2ib) which was generated from an antagonistic monoclonal antibody (mAb) towards human and murine TLR2 (T2.5) to inhibit the function of TLR2. alphaT2ib is a scFv fragment comprising the variable domain of the heavy chain and the variable domain of the light chain of mAb T2.5 linked together by a synthetic (Gly4Ser)3 amino acid sequence. Coexpression of alphaT2ib and mouse TLR2 in HEK293 cells led to efficient retention and accumulation of TLR2 inside the ER compartment. Co-immunoprecipitation of human TLR2 with alphaT2ib indicated interaction of alphaT2ib with its cognate antigen within cells. alphaT2ib inhibited NF-kappaB driven reporter gene activation via TLR2 but not through TLR3, TLR4, or TLR9 if coexpressed in HEK293 cells. Co-transfection of human TLR2 with increasing amounts of the expression plasmid encoding alphaT2ib into HEK293 cells demonstrated high efficiency of the TLR2-alphaT2ib interaction. The alphaT2ib open reading frame was integrated into an adenoviral cosmid vector for production of recombinant adenovirus (AdV)-alphaT2ib. Transduction with AdValphaT2ib specifically inhibited TLR2 surface expression of murine RAW264.7 and primary macrophages derived from bone marrow (BMM). Furthermore, TLR2 activation dependent TNFalpha mRNA accumulation, as

  8. Kindergarteners' self-reported social inhibition and observed social reticence: moderation by adult-reported social inhibition and social anxiety disorder symptoms.

    Science.gov (United States)

    Kiel, Elizabeth J; Buss, Kristin A; Molitor, Joseph G

    2015-04-01

    Prevention of later anxiety problems would best be accomplished by identifying at-risk children early in development. For example, children who develop Social Anxiety Disorder (SAD) may show social withdrawal in the form of social inhibition (i.e., shyness with unfamiliar adults and peers) at school entry. Although the use of children's perceptions of their own social inhibition would provide insight into early risk, the utility of young children's self-reports remains unclear. The current study examined whether children deemed more extreme on social inhibition or social anxiety by adult report provided self-report of social inhibition that related to observed social reticence in the laboratory. Participants included 85 kindergarten children (36 female, 49 male), their parents, and their teachers. Moderation analyses revealed that children's self-reported social inhibition related significantly to observed social reticence under the conditions of high parent-reported social inhibition, high teacher-reported social inhibition, and high SAD symptoms. These results suggest that the most inhibited children are aware of their behavior and can report it in a meaningfully way as young as kindergarten age.

  9. Inhibition of corneal neovascularization by recombinant adenovirus-mediated sFlk-1 expression

    International Nuclear Information System (INIS)

    Yu Hui; Wu Jihong; Li Huiming; Wang Zhanli; Chen Xiafang; Tian Yuhua; Yi Miaoying; Ji Xunda; Ma Jialie; Huang Qian

    2007-01-01

    The interaction of vascular endothelial growth factor (VEGF) and its receptors (Flt-1, Flk-1/KDR) is correlated with neovascularization in the eyes. Therefore, blocking the binding of VEGF and the corresponding receptor has become critical for inhibiting corneal neovascularization. In this study, we have expressed the cDNA for sFlk-1 under the control of cytomegalovirus immediate-early promoter (CMV) from an E1/partial E3 deleted replication defective recombinant adenovirus, and Ad.sflk-1 expression was determined by Western blotting. We have shown that conditioned media from Ad.sflk-1-infected ARPE-19 cells significantly reduced VEGF-induced human umbilical vein endothelial cells (HUVEC) and murine endothelial cells (SVEC) proliferation in vitro compared with the control vector. In vivo, adenoviral vectors expressing green fluorescent protein alone (Ad.GFP) were utilized to monitor gene transfer to the cornea. Moreover, in the models of corneal neovascularization, the injection of Ad.sflk-1 (10 8 PFU) into the anterior chamber could significantly inhibit angiogenic changes compared with Ad.null-injected and vehicle-injected models. Immunohistochemical analysis showed that corneal endothelial cells and corneal stroma of cauterized rat eyes were efficiently transduced and expressed sFlk-1. These results not only support that adenoviral vectors are capable of high-level transgene expression but also demonstrate that Ad.sflk-1 gene therapy might be a feasible approach for inhibiting the development of corneal neovascularization

  10. Modeling Pharmacological Inhibition of Mast Cell Degranulation as a Therapy for Insulinoma

    Directory of Open Access Journals (Sweden)

    Laura Soucek

    2011-11-01

    Full Text Available Myc, a pleiotropic transcription factor that is deregulated and/or overexpressed in most human cancers, instructs multiple extracellular programs that are required to sustain the complex microenvironment needed for tumor maintenance, including remodeling of tumor stroma, angiogenesis, and inflammation. We previously showed in a model of pancreatic β-cell tumorigenesis that acute Myc activation in vivo triggers rapid recruitment of mast cells to the tumor site and that this is absolutely required for angiogenesis and macroscopic tumor expansion. More-over, systemic inhibition of mast cell degranulation with sodium cromoglycate induced death of tumor and endothelial cells in established tumors. Hence, mast cells are required both to establish and to maintain the tumors. Whereas this intimates that selective inhibition of mast cell function could be therapeutically efficacious, cromoglycate is not a practical drug for systemic delivery in humans, and no other systemic inhibitor of mast cell degranulation has hitherto been available. PCI-32765 is a novel inhibitor of Bruton tyrosine kinase (Btk that blocks mast cell degranulation and is currently in clinical trial as a therapy for B-cell non–Hodgkin lymphoma. Here, we show that systemic treatment of insulinoma-bearing mice with PCI-32765 efficiently inhibits Btk, blocks mast cell degranulation, and triggers collapse of tumor vasculature and tumor regression. These data reinforce the notion that mast cell function is required for maintenance of certain tumor types and indicate that the Btk inhibitor PCI-32765 may be useful in treating such diseases.

  11. Inhibition effect of tetradecylpyridinium bromide on the corrosion of cold rolled steel in 7.0 M H3PO4

    Directory of Open Access Journals (Sweden)

    Xianghong Li

    2017-05-01

    Full Text Available Inhibition effect of cationic surfactant of tetradecylpyridinium bromide (TDPB on the corrosion of cold rolled steel (CRS in phosphoric acid produced by dihydrate wet method process (7.0 M H3PO4 was investigated by weight loss and potentiodynamic polarization methods and electrochemical impedance spectroscopy (EIS and scanning electron microscopy (SEM. Quantum chemical calculation was applied to elucidate the adsorption mode of the inhibitor molecule on steel surface. The results show that TDPB acts as a good inhibitor, and its maximum inhibition efficiency is higher than 90% even at low concentration. The adsorption of TDPB obeys the Langmuir adsorption isotherm equation. Polarization curves indicate that TDPB behaves as a mixed-type inhibitor in H3PO4. EIS spectra exhibit one capacitive loop which indicates that the corrosion reaction is controlled by charge transfer process. The inhibition action of TDPB could also be evidenced by surface SEM images. Density functional theory (DFT calculations suggest that the pyridine ring is the active adsorption center. Depending on the results, the inhibitive mechanism is proposed from the viewpoint of adsorption theory.

  12. Co-emergence of multi-scale cortical activities of irregular firing, oscillations and avalanches achieves cost-efficient information capacity.

    Directory of Open Access Journals (Sweden)

    Dong-Ping Yang

    2017-02-01

    Full Text Available The brain is highly energy consuming, therefore is under strong selective pressure to achieve cost-efficiency in both cortical connectivities and activities. However, cost-efficiency as a design principle for cortical activities has been rarely studied. Especially it is not clear how cost-efficiency is related to ubiquitously observed multi-scale properties: irregular firing, oscillations and neuronal avalanches. Here we demonstrate that these prominent properties can be simultaneously observed in a generic, biologically plausible neural circuit model that captures excitation-inhibition balance and realistic dynamics of synaptic conductance. Their co-emergence achieves minimal energy cost as well as maximal energy efficiency on information capacity, when neuronal firing are coordinated and shaped by moderate synchrony to reduce otherwise redundant spikes, and the dynamical clusterings are maintained in the form of neuronal avalanches. Such cost-efficient neural dynamics can be employed as a foundation for further efficient information processing under energy constraint.

  13. Meisoindigo, but not its core chemical structure indirubin, inhibits zebrafish interstitial leukocyte chemotactic migration.

    Science.gov (United States)

    Ye, Baixin; Xiong, Xiaoxing; Deng, Xu; Gu, Lijuan; Wang, Qiongyu; Zeng, Zhi; Gao, Xiang; Gao, Qingping; Wang, Yueying

    2017-12-01

    Inflammatory disease is a big threat to human health. Leukocyte chemotactic migration is required for efficient inflammatory response. Inhibition of leukocyte chemotactic migration to the inflammatory site has been shown to provide therapeutic targets for treating inflammatory diseases. Our study was designed to discover effective and safe compounds that can inhibit leukocyte chemotactic migration, thus providing possible novel therapeutic strategy for treating inflammatory diseases. In this study, we used transgenic zebrafish model (Tg:zlyz-EGFP line) to visualize the process of leukocyte chemotactic migration. Then, we used this model to screen the hit compound and evaluate its biological activity on leukocyte chemotactic migration. Furthermore, western blot analysis was performed to evaluate the effect of the hit compound on the AKT or ERK-mediated pathway, which plays an important role in leukocyte chemotactic migration. In this study, using zebrafish-based chemical screening, we identified that the hit compound meisoindigo (25 μM, 50 μM, 75 μM) can significantly inhibit zebrafish leukocyte chemotactic migration in a dose-dependent manner (p = 0.01, p = 0.0006, p migration (p = 0.43). Furthermore, our results unexpectedly showed that indirubin, the core structure of meisoindigo, had no significant effect on zebrafish leukocyte chemotactic migration (p = 0.6001). Additionally, our results revealed that meisoindigo exerts no effect on the Akt or Erk-mediated signalling pathway. Our results suggest that meisoindigo, but not indirubin, is effective for inhibiting leukocyte chemotactic migration, thus providing a potential therapeutic agent for treating inflammatory diseases.

  14. Inhibiting prenylation augments chemotherapy efficacy in renal cell carcinoma through dual inhibition on mitochondrial respiration and glycolysis.

    Science.gov (United States)

    Huang, Jiangrong; Yang, Xiaoyu; Peng, Xiaochun; Huang, Wei

    2017-11-18

    Prenylation is a posttranslational lipid modification required for the proper functions of a number of proteins involved in cell regulation. Here, we show that prenylation inhibition is important for renal cell carcinoma (RCC) growth, survival and response to chemotherapy, and its underlying mechanism may be contributed to mitochondrial dysfunction. We first demonstrated that a HMG-CoA reductase inhibitor pitavastatin inhibited mevalonate pathway and thereby prenylation in RCC cells. In addition, pitavastatin is effective in inhibiting growth and inducing apoptosis in a panel of RCC cell lines. Combination of pitavastatin and paclitaxel is significantly more effective than pitavastatin or paclitaxel alone as shown by both in vitro cell culture system and in vivo RCC xenograft model. Importantly, pitavastatin treatment inhibits mitochondrial respiration via suppressing mitochondrial complex I and II enzyme activities. Interestingly, different from mitochondrial inhibitor phenformin that inhibits mitochondrial respiration but activates glycolytic rate in RCC cells, pitavastatin significantly decreases glycolytic rate. The dual inhibitory action of pitavastatin on mitochondrial respiration and glycolysis results in remarkable energy depletion and oxidative stress in RCC cells. In addition, inhibition of prenylation by depleting Isoprenylcysteine carboxylmethyltransferase (Icmt) also mimics the inhibitory effects of pitavastatin in RCC cells. Our work demonstrates the previously unappreciated association between prenylation inhibition and energy metabolism in RCC, which can be therapeutically exploited, likely in tumors that largely rely on energy metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Efficient visible-light photocatalytic and enhanced photocorrosion inhibition of Ag2WO4 decorated MoS2 nanosheets

    Science.gov (United States)

    Thangavel, Sakthivel; Thangavel, Srinivas; Raghavan, Nivea; Alagu, Raja; Venugopal, Gunasekaran

    2017-11-01

    The use of two-dimensional nanomaterials as co-catalysts in the photodegradation of toxic compounds using light irradiation is an attractive ecofriendly process. In this study, we prepared a novel MoS2/Ag2WO4 nanohybrid via a one-step hydrothermal approach and the photocatalytic properties were investigated by the degradation of methyl-orange under stimulated irradiation. The nanohybrid exhibits enhanced efficiency in dye degradation compared to the bare Ag2WO4 nanorods; the same has been evidently confirmed with UV-visible spectra and total organic carbon removal analysis. The pseudo-first order rate constant of the nanohybrid is nearly 1.8 fold higher than that of the bare Ag2WO4 nanorods. With the aid of classical radical quenching and photoluminescence spectral analysis, a reasonable mechanism has been derived for the addition of MoS2 to nanohybrids to enhance the photocatalytic efficiency. MoS2 prevents photocorrosion of Ag2WO4 and also diminishes the number of photogenerated electron-hole recombination. Our findings could provide new insights in understanding the mechanism of the MoS2/Ag2WO4 nanohybrid as an efficient photocatalyst suitable for waste-water treatment and remedial applications.

  16. High-Efficiency Quantum Interrogation Measurements via the Quantum Zeno Effect

    International Nuclear Information System (INIS)

    Kwiat, P. G.; White, A. G.; Mitchell, J. R.; Nairz, O.; Weihs, G.; Weinfurter, H.; Zeilinger, A.

    1999-01-01

    The phenomenon of quantum interrogation allows one to optically detect the presence of an absorbing object, without the measuring light interacting with it. In an application of the quantum Zeno effect, the object inhibits the otherwise coherent evolution of the light, such that the probability that an interrogating photon is absorbed can in principle be arbitrarily small. We have implemented this technique, achieving efficiencies of up to 73% , and consequently exceeding the 50% theoretical maximum of the original ''interaction-free'' measurement proposal. We have also predicted and experimentally verified a previously unsuspected dependence on loss. (c) 1999 The American Physical Society

  17. Inhibition of Corrosion of Carbon Steel in 3.5% NaCl Solution by Myrmecodia Pendans Extract

    Directory of Open Access Journals (Sweden)

    Atria Pradityana

    2016-01-01

    Full Text Available Inhibitor is a substance that is added to the corrosive media to inhibit corrosion rate. Organic inhibitors are preferred to inorganic ones since they are environmentally friendly. One of the organic compounds which is rarely reported as a corrosion inhibitor is Myrmecodia Pendans. The organic compounds can be adsorbed on the metal surface and block the active surface to reduce the rate of corrosion. In this study, the used pipe was carbon steel API 5L Grade B with 3.5% NaCl solution as the corrosion medium. The objective of this research was to analyze the inhibition mechanism Myrmecodia Pendans towards carbon steel in a corrosion medium. Concentration variations of extract Myrmecodia Pendans were 0–500 ppm. Fourier Transform Infrared (FTIR was used for chemical characterization of Myrmecodia Pendans. Polarization and Electrochemical Impedance Spectroscopy (EIS were used to measure the corrosion rate and behaviour. From the electrochemical measurements, it was found that the addition of 400 mg/L inhibitor gave the highest inhibition efficiency. Myrmecodia Pendans acted as a corrosion inhibitor by forming a thin layer on the metal surface.

  18. Kindergarteners’ Self-Reported Social Inhibition and Observed Social Reticence: Moderation by Adult-Reported Social Inhibition and Social Anxiety Disorder Symptoms

    Science.gov (United States)

    Kiel, Elizabeth J.; Buss, Kristin A.; Molitor, Joseph G.

    2014-01-01

    Prevention of later anxiety problems would best be accomplished by identifying at-risk children early in development. For example, children who develop Social Anxiety Disorder (SAD) may show social withdrawal in the form of social inhibition (i.e., shyness with unfamiliar adults and peers) at school entry. Although the use of children’s perceptions of their own social inhibition would provide insight into early risk, the utility of young children’s self-reports remains unclear. The current study examined whether children deemed more extreme on social inhibition or social anxiety by adult report provided self-report of social inhibition that related to observed social reticence in the laboratory. Participants included 85 kindergarten children (36 female, 49 male), their parents, and their teachers. Moderation analyses revealed that children’s self-reported social inhibition related significantly to observed social reticence under the conditions of high parent-reported social inhibition, high teacher-reported social inhibition, and high SAD symptoms. These results suggest that the most inhibited children are aware of their behavior and can report it in a meaningfully way as young as kindergarten age. PMID:25113397

  19. Energy Efficiency Financing for Low- and Moderate-Income Households: Current State of the Market, Issues, and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Leventis, G; Kramer, C; Schwartz, LC

    2017-08-09

    Ensuring that low- and moderate-income (LMI) households have access to energy efficiency is equitable, provides energy savings as a resource to meet energy needs, and can support multiple policy goals, such as affordable energy, job creation, and improved public health. Although the need is great, many LMI households may not be able to afford efficiency improvements or may be inhibited from adopting efficiency for other reasons. Decision-makers across the country are currently exploring the challenges and potential solutions to ramping up adoption of efficiency in LMI households, including the use of financing. The report’s objective is to offer state and local policymakers, state utility regulators, program administrators, financial institutions, consumer advocates and other LMI stakeholders with an understanding of: -The relationship between LMI communities and financing for energy efficiency, including important considerations for its use such as consumer protections -The larger programmatic context of grant-based assistance and other related resources supporting LMI household energy efficiency -Lessons learned from existing energy efficiency financing programs serving LMI households -Financing products used by these programs and their relative advantages and disadvantages in addressing barriers to financing or to energy efficiency uptake for LMI households

  20. Corrosion inhibition of aluminum with a series of aniline monomeric surfactants and their analog polymers in 0.5 M HCl solution

    Directory of Open Access Journals (Sweden)

    M.M. El-Deeb

    2015-07-01

    Full Text Available The inhibition effect of 3-(12-sodiumsulfonate dodecyloxy aniline monomeric surfactant (MC12 and its analog polymer Poly 3-(dodecyloxy sulfonic acid aniline (PC12 on the corrosion of aluminum in 0.5 M HCl solution was investigated using weight loss and potentiodynamic polarization techniques. The presence of these two compounds in 0.5 M HCl inhibits the corrosion of aluminum without modifying the mechanism of corrosion process. It was found that these inhibitors act as mixed-type inhibitors with anodic predominance as well as the inhibition efficiency increases with increasing inhibitor concentration, but decreases with raising temperature. Langmuir and Frumkin adsorption isotherms fit well with the experimental data. Thermodynamic functions for both dissolution and adsorption processes were determined. The obtained results from weight loss and potentiodynamic polarization techniques are in good agreement with contact angle measurements.

  1. D-Glucosamine inhibits proliferation of human cancer cells through inhibition of p70S6K

    International Nuclear Information System (INIS)

    Oh, Hyun-Ji; Lee, Jason S.; Song, Dae-Kyu; Shin, Dong-Hoon; Jang, Byeong-Churl; Suh, Seong-Il; Park, Jong-Wook; Suh, Min-Ho; Baek, Won-Ki

    2007-01-01

    Although D-glucosamine has been reported as an inhibitor of tumor growth both in vivo and in vitro, the mechanism for the anticancer effect of D-glucosamine is still unclear. Since there are several reports suggesting D-glucosamine inhibits protein synthesis, we examined whether D-glucosamine affects p70S6 K activity, an important signaling molecule involved in protein translation. In the present study, we found D-glucosamine inhibited the activity of p70S6K and the proliferation of DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. D-Glucosamine decreased phosphorylation of p70S6K, and its downstream substrates RPS6, and eIF-4B, but not mTOR and 4EBP1 in DU145 cells, suggesting that D-glucosamine induced inhibition of p70S6K is not through the inhibition of mTOR. In addition, D-glucosamine enhanced the growth inhibitory effects of rapamycin, a specific inhibitor of mTOR. These findings suggest that D-glucosamine can inhibit growth of cancer cells through dephosphorylation of p70S6K

  2. Can Arousal Modulate Response Inhibition?

    Science.gov (United States)

    Weinbach, Noam; Kalanthroff, Eyal; Avnit, Amir; Henik, Avishai

    2015-01-01

    The goal of the present study was to examine if and how arousal can modulate response inhibition. Two competing hypotheses can be drawn from previous literature. One holds that alerting cues that elevate arousal should result in an impulsive response and therefore impair response inhibition. The other suggests that alerting enhances processing of…

  3. Ketamine inhibits 45Ca influx and catecholamine secretion by inhibiting 22Na influx in cultured bovine adrenal medullary cells

    International Nuclear Information System (INIS)

    Takara, Hiroshi; Wada, Akihiko; Arita, Masahide; Izumi, Futoshi; Sumikawa, Koji

    1986-01-01

    The effects of ketamine, an intravenous anesthetic, on 22 Na influx, 45 Ca influx and catecholamine secretion were investigated in cultured bovine adrenal medullary cells. Ketamine inhibited carbachol-induced 45 Ca influx and catecholamine secretion in a concentration-dependent manner with a similar potency. Ketamine also reduced veratridine-induced 45 Ca influx and catecholamine secretion. The influx of 22 Na caused by carbachol or by veratridine was suppressed by ketamine with a concentration-inhibition curve similar to that of 45 Ca influx and catecholamine secretion. Inhibition by ketamine of the carbachol-induced influx of 22 Na, 45 Ca and secretion of catecholamines was not reversed by the increased concentrations of carbachol. These observations indicate that ketamine, at clinical concentrations, can inhibit nicotinic receptor-associated ionic channels and that the inhibition of Na influx via the receptor-associated ionic channels is responsible for the inhibition of carbachol-induced Ca influx and catecholamine secretion. (Auth.)

  4. On the inhibition of mild steel corrosion by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol

    International Nuclear Information System (INIS)

    Musa, Ahmed Y.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Takriff, Mohd Sobri; Daud, Abdul Razak; Kamarudin, Siti Kartom

    2010-01-01

    The corrosion inhibition of mild steel in a 2.5 M H 2 SO 4 solution by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT) was studied at different temperatures, utilising open circuit potential, potentiodynamic and impedance measurements. The results indicate that APTT performed as an excellent mixed-type inhibitor for mild steel corrosion in a 2.5 M H 2 SO 4 solution and that the inhibition efficiencies increased with the inhibitor concentration but decreased proportionally with temperature. The kinetic and thermodynamic parameters for adsorption of APTT on the mild steel surface were calculated. A chemisorption mechanism of APTT molecules on the mild steel surface was proposed based on the thermodynamic adsorption parameters.

  5. Terbinafine inhibits gap junctional intercellular communication

    International Nuclear Information System (INIS)

    Lee, Ju Yeun; Yoon, Sei Mee; Choi, Eun Ju; Lee, Jinu

    2016-01-01

    Terbinafine is an antifungal agent that selectively inhibits fungal sterol synthesis by blocking squalene epoxidase. We evaluated the effect of terbinafine on gap junctional intercellular communication (GJIC). Fluorescence recovery after photobleaching (FRAP) and I-YFP GJIC assays revealed that terbinafine inhibits GJIC in a reversible and dose-dependent manner in FRT-Cx43 and LN215 cells. Treatment with terbinafine did not affect Cx43 phosphorylation status or intracellular Ca 2+ concentration, well-known action mechanisms of various GJIC blockers. While a structurally related chemical, naftifine, attenuated GJIC, epigallocatechin gallate, another potent squalene epoxidase inhibitor with a different structure, did not. These results suggest that terbinafine inhibits GJIC with a so far unknown mechanism of action. - Highlights: • In vitro pharmacological studies were performed on FRT-Cx43 and LN215 cells. • Terbinafine inhibits gap junctional intercellular communication in both cell lines. • The inhibitory effect of terbinafine is reversible and dose-dependent. • Treatment of terbinafine does not alter Cx43 phosphorylation or cytosolic Ca 2+ concentration. • Inhibition of squalene epoxidase is not involved in this new effect of terbinafine.

  6. [Inhibition of Linseed Oil Autooxidation by Essential Oils and Extracts from Spice Plants].

    Science.gov (United States)

    Misharina, T A; Alinkina, E S; Terenina, M B; Krikunova, N I; Kiseleva, V I; Medvedeva, I B; Semenova, M G

    2015-01-01

    Clove bud essential oil, extracts from ginger, pimento and black pepper, or ascorbyl palmytate were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids in linseed oil. Different methods were used to estimate antioxidant efficiency. These methods are based on the following parameters: peroxide values; peroxide concentration; content of degradation products of unsaturated fatty acid peroxides, which acted with thiobarbituric acid; diene conjugate content; the content of volatile compounds that formed as products of unsaturated fatty acid peroxide degradation; and the composition of methyl esters of fatty acids in samples of oxidized linseed oil.

  7. Inhibition of herpes simplex virus infection by lactoferrin is dependent on interference with the virus binding to glycosaminoglycans

    International Nuclear Information System (INIS)

    Marchetti, Magda; Trybala, Edward; Superti, Fabiana; Johansson, Maria; Bergstroem, Tomas

    2004-01-01

    Previous reports have indicated that lactoferrin inhibits herpes simplex virus (HSV) infection during the very early phases of the viral replicative cycle. In the present work we investigated the mechanism of the antiviral activity of lactoferrin in mutant glycosaminoglycan (GAG)-deficient cells. Bovine lactoferrin (BLf) was a strong inhibitor of HSV-1 infection in cells expressing either heparan sulfate (HS) or chondroitin sulfate (CS) or both, but was ineffective or less efficient in GAG-deficient cells or in cells treated with GAG-degrading enzymes. In contrast to wild-type HSV-1, virus mutants devoid of glycoprotein C (gC) were significantly less inhibited by lactoferrin in GAG-expressing cells, indicating that lactoferrin interfered with the binding of viral gC to cell surface HS and/or CS. Finally, we demonstrated that lactoferrin bound directly to both HS and CS isolated from surfaces of the studied cells, as well as to commercial preparations of GAG chains. The results support the hypothesis that the inhibition of HSV-1 infectivity by lactoferrin is dependent on its interaction with cell surface GAG chains of HS and CS

  8. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction

    Directory of Open Access Journals (Sweden)

    Takahiro Ochiya

    Full Text Available The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy.

  9. Decontamination of soils and materials containing medium-fired PuO{sub 2} using inhibited fluorides with polymer filtration technology

    Energy Technology Data Exchange (ETDEWEB)

    Temer, D.J.; Villarreal, R.; Smith, B.F. [Los Alamos National Lab., NM (United States)

    1997-10-01

    The decontamination of soils and/or materials from medium-fired plutonium oxide (PuO{sub 2}) with an effective and efficient decontamination agent that will not significantly dissolve the matrix requires a new and innovative technology. After testing several decontamination agents and solutions for dissolution of medium-fired PuO{sub 2}, the most successful decontamination solutions were fluoride compounds, which were effective in breaking the Pu-oxide bond but would not extensively dissolve soil constituents and other materials. The fluoride compounds, tetra fluoboric acid (HBF{sub 4}) and hydrofluorosilicic acid (H{sub 2}F{sub 6}Si), were effective in dissolving medium-fired PuO{sub 2}, and did not seem to have the potential to dissolve the matrix. In both compounds, the fluoride atom is attached to a boron or silicon atom that inhibits the reactivity of the fluoride towards other compounds or materials containing atoms less attracted to the fluoride atom in an acid solution. Because of this inhibition of the reactivity of the fluoride ion, these compounds are termed inhibited fluoride compounds or agents. Both inhibited fluorides studied effectively dissolved medium-fired PuO{sub 2} but exhibited a tendency to not attack stainless steel or soil. The basis for selecting inhibited fluorides was confirmed during leaching tests of medium-fired PuO{sub 2} spiked into soil taken from the Idaho National Engineering Laboratory (INEL). When dissolved in dilute HNO{sub 3}, HCl, or HBr, both inhibited fluoride compounds were effective at solubilizing the medium-fired PuO{sub 2} from spiked INEL soil.

  10. A speculated cause of respiratory inhibition in infants.

    Science.gov (United States)

    Minowa, Hideki; Arai, Ikuyo; Yasuhara, Hajime; Ebisu, Reiko; Ohgitani, Ayako

    2018-10-01

    In our previous studies, we documented that threatened premature labor and asymmetrical intrauterine growth restriction were risk factors for respiratory inhibition. The goal of this study was to determine the cause of respiratory inhibition by considering perinatal risk factors. We examined 1497 infants with a gestational age of 36 weeks or greater. All infants were monitored using pulse oximetry and examined via cranial sonography. Respiratory inhibition was defined as severe hypoxemia caused by respiratory inhibition immediately after crying or gastroesophageal reflux or as a respiratory pause during feeding. We examined the relationships between respiratory inhibition and perinatal factors and speculated on the cause of respiratory inhibition. The median gestational age, birth weight, Apgar score at 1 min, and Apgar score at 5 min of the subjects were 38.9 weeks, 2930 g, 8.0 points, and 9.0 points, respectively. Respiratory inhibition was observed in 422 infants. Lateral ventricle enlargement and increased echogenicity in the ganglionic eminence were observed in 417 and 516 infants, respectively. Respiratory inhibition was significantly correlated with shorter gestational periods, twin pregnancies, lateral ventricle enlargement, and increased echogenicity in the ganglionic eminence. We speculate that umbilical cord compression is a major cause of respiratory inhibition.

  11. Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Koji Inui

    Full Text Available Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms prepulse. The time course of the inhibition evaluated by prepulses presented at 10-800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20-60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful.

  12. Enzyme and inhibition assay of urease by continuous monitoring of the ammonium formation based on capillary electrophoresis.

    Science.gov (United States)

    Liu, Xiaoxia; Yang, Jiqing; Sun, Shucheng; Guo, Liping; Yang, Li

    2016-10-01

    We present here an easy-to-operate and efficient method for enzyme and inhibition assays of urease, which is a widely distributed and important enzyme that catalyzes the hydrolysis of urea to ammonia and CO 2 . The assay was achieved by integrating CE technique and rapid on-line derivatization method, allowing us to continuously drive the sample to the capillary, thus to measure the amount of the product ammonia from the beginning to the end of the reaction. The method exhibits excellent repeatability with RSD as low as 2.5% for the initial reaction rate (n = 5), with the LOD of ammonia of 20 μM (S/N = 5). The enzyme activity as well as the inhibition of urease by Cu 2+ were investigated using the present method. The results show that Cu 2+ is a noncompetitive inhibitor on urease, in accordance with the result published in the literature. The enzyme activity and inhibition kinetic constants were obtained and were found to be consistent with the results of traditional off-line enzyme assays. Our study indicates that the present approach is a reliable and convenient method for analysis of the urease activity and inhibition kinetics by continuous on-line monitoring of the ammonium formation based on CE. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7

    Science.gov (United States)

    Kim, Yong-Guy; Lee, Jin-Hyung; Gwon, Giyeon; Kim, Soon-Il; Park, Jae Gyu; Lee, Jintae

    2016-01-01

    Enterohemorrhagic Escherichia coli O157:H7 (EHEC) has caused foodborne outbreaks worldwide and the bacterium forms antimicrobial-tolerant biofilms. We investigated the abilities of various plant essential oils and their components to inhibit biofilm formation by EHEC. Bay, clove, pimento berry oils and their major common constituent eugenol at 0.005% (v/v) were found to markedly inhibit EHEC biofilm formation without affecting planktonic cell growth. In addition, three other eugenol derivatives isoeugenol, 2-methoxy-4-propylphenol, and 4-ethylguaiacol had antibiofilm activity, indicating that the C-1 hydroxyl unit, the C-2 methoxy unit, and C-4 alkyl or alkane chain on the benzene ring of eugenol play important roles in antibiofilm activity. Interestingly, these essential oils and eugenol did not inhibit biofilm formation by three laboratory E. coli K-12 strains that reduced curli fimbriae production. Transcriptional analysis showed that eugenol down-regulated 17 of 28 genes analysed, including curli genes (csgABDFG), type I fimbriae genes (fimCDH) and ler-controlled toxin genes (espD, escJ, escR, and tir), which are required for biofilm formation and the attachment and effacement phenotype. In addition, biocompatible poly(lactic-co-glycolic acid) coatings containing clove oil or eugenol exhibited efficient biofilm inhibition on solid surfaces. In a Caenorhabditis elegans nematode model, clove oil and eugenol attenuated the virulence of EHEC. PMID:27808174

  14. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition.

    Science.gov (United States)

    Liu, Zhan-Guang; Zhou, Xue-Fei; Zhang, Ya-Lei; Zhu, Hong-Guang

    2012-01-01

    The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700m(3) chicken-manure continuous stirred tank reactor (CSTR). A 12.3L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35±1°C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5kg-COD/m(3)d over a hydraulic retention time of 1.5d, a maximum volumetric biogas production rate of 1.2m(3)/m(3)d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250mg/L) at an influent pH of 8.5-9. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Inhibition of proteases activity in intestine needs a sustainable acidic environment rather than a transient.

    Science.gov (United States)

    Xing, Chang; Xing, Jin-Feng; Ge, Zhi-Qiang

    2017-10-01

    α-Chymotrypsin (α-CT) and trypsin are important components of the enzymatic barrier. They could degrade the therapeutic proteins and peptides, inhibit their activity consequently, and thereby reduce their oral bioavailability. Acidic agents, as one type of indirect protease inhibitors, have shown proof of concept in clinical trials. We report here the inactivated proteases due to acid influence can be reactivated immediately by environmental pH recovery regardless of how long the inactivation last. To keep the inactivation time of proteases for 4-5 h, we designed and prepared a sustained-release tablet containing citric acid (CA) which can effectively reduce the pH below 5.0 and maintain it for 5 h in the dissolution-reaction medium. The activity of α-CT and trypsin was quantified by analyzing the residual amount of their respective substrates BTEE and TAME. More than 80% of the substrates were survived in 5.0 h of incubation, whereas the common tablet inhibited the proteases activity for only two hours in the same experimental medium. It indicates that the sustained-release tablet loaded with CA can efficiently inhibit the α-CT and trypsin activity longer than the common tablet. The results will be beneficial for designing and formulating the peroral administration of peptide and protein drugs.

  16. Energy-efficient neural information processing in individual neurons and neuronal networks.

    Science.gov (United States)

    Yu, Lianchun; Yu, Yuguo

    2017-11-01

    Brains are composed of networks of an enormous number of neurons interconnected with synapses. Neural information is carried by the electrical signals within neurons and the chemical signals among neurons. Generating these electrical and chemical signals is metabolically expensive. The fundamental issue raised here is whether brains have evolved efficient ways of developing an energy-efficient neural code from the molecular level to the circuit level. Here, we summarize the factors and biophysical mechanisms that could contribute to the energy-efficient neural code for processing input signals. The factors range from ion channel kinetics, body temperature, axonal propagation of action potentials, low-probability release of synaptic neurotransmitters, optimal input and noise, the size of neurons and neuronal clusters, excitation/inhibition balance, coding strategy, cortical wiring, and the organization of functional connectivity. Both experimental and computational evidence suggests that neural systems may use these factors to maximize the efficiency of energy consumption in processing neural signals. Studies indicate that efficient energy utilization may be universal in neuronal systems as an evolutionary consequence of the pressure of limited energy. As a result, neuronal connections may be wired in a highly economical manner to lower energy costs and space. Individual neurons within a network may encode independent stimulus components to allow a minimal number of neurons to represent whole stimulus characteristics efficiently. This basic principle may fundamentally change our view of how billions of neurons organize themselves into complex circuits to operate and generate the most powerful intelligent cognition in nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Pharmacologic inhibition of lactate production prevents myofibroblast differentiation.

    Science.gov (United States)

    Kottmann, Robert Matthew; Trawick, Emma; Judge, Jennifer L; Wahl, Lindsay A; Epa, Amali P; Owens, Kristina M; Thatcher, Thomas H; Phipps, Richard P; Sime, Patricia J

    2015-12-01

    Myofibroblasts are one of the primary cell types responsible for the accumulation of extracellular matrix in fibrosing diseases, and targeting myofibroblast differentiation is an important therapeutic strategy for the treatment of pulmonary fibrosis. Transforming growth factor-β (TGF-β) has been shown to be an important inducer of myofibroblast differentiation. We previously demonstrated that lactate dehydrogenase and its metabolic product lactic acid are important mediators of myofibroblast differentiation, via acid-induced activation of latent TGF-β. Here we explore whether pharmacologic inhibition of LDH activity can prevent TGF-β-induced myofibroblast differentiation. Primary human lung fibroblasts from healthy patients and those with pulmonary fibrosis were treated with TGF-β and or gossypol, an LDH inhibitor. Protein and RNA were analyzed for markers of myofibroblast differentiation and extracellular matrix generation. Gossypol inhibited TGF-β-induced expression of the myofibroblast marker α-smooth muscle actin (α-SMA) in a dose-dependent manner in both healthy and fibrotic human lung fibroblasts. Gossypol also inhibited expression of collagen 1, collagen 3, and fibronectin. Gossypol inhibited LDH activity, the generation of extracellular lactic acid, and the rate of extracellular acidification in a dose-dependent manner. Furthermore, gossypol inhibited TGF-β bioactivity in a dose-dependent manner. Concurrent treatment with an LDH siRNA increased the ability of gossypol to inhibit TGF-β-induced myofibroblast differentiation. Gossypol inhibits TGF-β-induced myofibroblast differentiation through inhibition of LDH, inhibition of extracellular accumulation of lactic acid, and inhibition of TGF-β bioactivity. These data support the hypothesis that pharmacologic inhibition of LDH may play an important role in the treatment of pulmonary fibrosis. Copyright © 2015 the American Physiological Society.

  18. Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation.

    Science.gov (United States)

    Quan-Jun, Yang; Yan, Huo; Yong-Long, Han; Li-Li, Wan; Jie, Li; Jin-Lu, Huang; Jin, Lu; Peng-Guo, Chen; Run, Gan; Cheng, Guo

    2017-02-01

    Cancer cachexia is a multifactorial syndrome affecting the skeletal muscle. Previous clinical trials showed that treatment with MEK inhibitor selumetinib resulted in skeletal muscle anabolism. However, it is conflicting that MAPK/ERK pathway controls the mass of the skeletal muscle. The current study investigated the therapeutic effect and mechanisms of selumetinib in amelioration of cancer cachexia. The classical cancer cachexia model was established via transplantation of CT26 colon adenocarcinoma cells into BALB/c mice. The effect of selumetinib on body weight, tumor growth, skeletal muscle, food intake, serum proinflammatory cytokines, E3 ligases, and MEK/ERK-related pathways was analyzed. Two independent experiments showed that 30 mg/kg/d selumetinib prevented the loss of body weight in murine cachexia mice. Muscle wasting was attenuated and the expression of E3 ligases, MuRF1 and Fbx32, was inhibited following selumetinib treatment of the gastrocnemius muscle. Furthermore, selumetinib efficiently reduced tumor burden without influencing the cancer cell proliferation, cumulative food intake, and serum cytokines. These results indicated that the role of selumetinib in attenuating muscle wasting was independent of cancer burden. Detailed analysis of the mechanism revealed AKT and mTOR were activated, while ERK, FoxO3a, and GSK3β were inhibited in the selumetinib -treated cachexia group. These indicated that selumetinib effectively prevented skeletal muscle wasting in cancer cachexia model through ERK inhibition and AKT activation in gastrocnemius muscle via cross-inhibition. The study not only elucidated the mechanism of MEK/ERK inhibition in skeletal muscle anabolism, but also validated selumetinib therapy as an effective intervention against cancer cachexia. Mol Cancer Ther; 16(2); 334-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Atorvastatin inhibits insulin synthesis by inhibiting the Ras/Raf/ERK/CREB pathway in INS-1 cells

    Science.gov (United States)

    Sun, Hongxi; Li, Yu; Sun, Bei; Hou, Ningning; Yang, Juhong; Zheng, Miaoyan; Xu, Jie; Wang, Jingyu; Zhang, Yi; Zeng, Xianwei; Shan, Chunyan; Chang, Bai; Chen, Liming; Chang, Baocheng

    2016-01-01

    Abstract Backround: Type 2 diabetes has become a global epidemic disease. Atorvastatin has become a cornerstone in the prevention and treatment of atherosclerosis. However, increasing evidence showed that statins can dose-dependently increase the risk of diabetes mellitus. The mechanism is not clear. Objective: The Ras complex pathway (Ras/Raf/extracellular signal-regulated kinase [ERK]/cAMP response element-binding protein [CREB]) is the major pathway that regulates the gene transcription. Except for the inhibition of cholesterol synthesis by inhibiting the 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-COA) reductase, statins can also downregulate the phosphorylation of a series of downstream substrates including the key proteins of the Ras complex pathway, therefore may inhibit the insulin syntheses in pancreatic beta cells. In our study, we investigated the inhibitory effect and the underlying mechanism of atorvastatin on insulin synthesis in rat islets. Methods: Islets were isolated from Wistar rats and cultured in Roswell Park Memorial Institute (RPMI)-1640 medium. The insulin content in the medium was measured by radioimmunoassay before and after the treatment of 50 μM atorvastatin. Effect of atorvastatin on the expression of insulin message Ribonucleic acid (mRNA) in pancreatic islet beta cells was also detected using quantitative real-time polymerase chain reaction. Western blotting was used to explore the possible role of the Ras complex pathway (Ras/Raf/ERK/CREB) in atorvastatin-inhibited insulin synthesis. The effects of atorvastatin on the binding of nuclear transcription factor p-CREB with CRE in INS-1 cells were examined via chromatin immunoprecipitation assay. Results: Compared with the control group, the insulin level decreased by 27.1% at 24 hours after atorvastatin treatment. Atorvastatin inhibited insulin synthesis by decreasing insulin mRNA expression of pancreatic islet beta cells. The activities of Ras, Raf-1, and p-CREB in the Ras complex

  20. Inhibition Effect of Phosphorus Flame Retardants on the Fire Disasters Induced by Spontaneous Combustion of Coal

    Directory of Open Access Journals (Sweden)

    Yibo Tang

    2017-01-01

    Full Text Available Coal spontaneous combustion (CSC generally induces fire disasters in underground mines, thus causing serious casualties, environmental pollution, and property loss around the world. By using six P-containing additives to process three typical coal samples, this study investigated the variations of the self-ignition characteristics of the coal samples before and after treatment. The analysis was performed by combining thermogravimetric analysis/differential scanning calorimetry (TG/DSC Fourier transform infrared spectrometer (FTIR and low temperature oxidation. Experimental results showed that P-containing inhibitors could effectively restrain the heat emitted in the combustion of coal samples and therefore the ignition temperature of the coal samples was delayed at varying degrees. The combustion rate of the coal samples was reduced as well. At the temperatures ranging from 50°C to 150°C, the activation energy of the coal samples after the treatment was found to increase, which indicated that the coal samples were more difficult to be oxidized. After being treated with phosphorus flame retardants (PFRs, the content of several active groups represented by the C-O structure in the three coal samples was proved to be obviously changed. This suggested that PFRs could significantly inhibit the content of CO generated by the low temperature oxidation of coal, and the flame-retardant efficiency grew with the increasing temperature. At 200°C, the maximal inhibition efficiency reached approximately 85%.

  1. Inhibiting cancer cell hallmark features through nuclear export inhibition.

    Science.gov (United States)

    Sun, Qingxiang; Chen, Xueqin; Zhou, Qiao; Burstein, Ezra; Yang, Shengyong; Jia, Da

    2016-01-01

    Treating cancer through inhibition of nuclear export is one of the best examples of basic research translation into clinical application. Nuclear export factor chromosomal region maintenance 1 (CRM1; Xpo1 and exportin-1) controls cellular localization and function of numerous proteins that are critical for the development of many cancer hallmarks. The diverse actions of CRM1 are likely to explain the broad ranging anti-cancer potency of CRM1 inhibitors observed in pre-clinical studies and/or clinical trials (phase I-III) on both advanced-stage solid and hematological tumors. In this review, we compare and contrast the mechanisms of action of different CRM1 inhibitors, and discuss the potential benefit of unexplored non-covalent CRM1 inhibitors. This emerging field has uncovered that nuclear export inhibition is well poised as an attractive target towards low-toxicity broad-spectrum potent anti-cancer therapy.

  2. Hypnotic suggestibility, cognitive inhibition, and dissociation.

    Science.gov (United States)

    Dienes, Zoltán; Brown, Elizabeth; Hutton, Sam; Kirsch, Irving; Mazzoni, Giuliana; Wright, Daniel B

    2009-12-01

    We examined two potential correlates of hypnotic suggestibility: dissociation and cognitive inhibition. Dissociation is the foundation of two of the major theories of hypnosis and other theories commonly postulate that hypnotic responding is a result of attentional abilities (including inhibition). Participants were administered the Waterloo-Stanford Group Scale of Hypnotic Susceptibility, Form C. Under the guise of an unrelated study, 180 of these participants also completed: a version of the Dissociative Experiences Scale that is normally distributed in non-clinical populations; a latent inhibition task, a spatial negative priming task, and a memory task designed to measure negative priming. The data ruled out even moderate correlations between hypnotic suggestibility and all the measures of dissociation and cognitive inhibition overall, though they also indicated gender differences. The results are a challenge for existing theories of hypnosis.

  3. Antibodies from the sera of HIV-infected patients efficiently hydrolyze all human histones.

    Science.gov (United States)

    Baranova, Svetlana V; Buneva, Valentina N; Nevinsky, Georgy A

    2016-08-01

    Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecular pattern molecules when they are released into the extracellular space. Administration of exogenous histones to animals leads to systemic inflammatory and toxic responses through activating Toll-like receptors and inflammasome pathways. Here, using ELISA it was shown that sera of HIV-infected patients and healthy donors contain autoantibodies against histones. Autoantibodies with enzymic activities (abzymes) are a distinctive feature of autoimmune diseases. It was interesting whether antibodies from sera of HIV-infected patients can hydrolyze human histones. Electrophoretically and immunologically homogeneous IgGs were isolated from sera of HIV-infected patients by chromatography on several affinity sorbents. We present first evidence showing that 100% of IgGs purified from the sera of 32 HIV-infected patients efficiently hydrolyze from one to five human histones. Several rigid criteria have been applied to show that the histone-hydrolyzing activity is an intrinsic property of IgGs of HIV-infected patients. The relative efficiency of hydrolysis of histones (H1, H2a, H2b, H3, and H4) significantly varied for IgGs of different patients. IgGs from the sera of 40% of healthy donors also hydrolyze histones but with an average efficiency approximately 16-fold lower than that of HIV-infected patients. Similar to proteolytic abzymes from the sera of patients with several autoimmune diseases, histone-hydrolyzing IgGs from HIV-infected patients were inhibited by specific inhibitors of serine and of metal-dependent proteases, but an unexpected significant inhibition of the activity by specific inhibitor of thiol-like proteases was also observed. Because IgGs can efficiently hydrolyze histones, a negative role of abzymes in development of acquired immune deficiency syndrome cannot be

  4. Inhibition of the corrosion of mild steel in hydrochloric acid by isatin and isatin glycine

    Directory of Open Access Journals (Sweden)

    B.I. Ita

    2006-12-01

    Full Text Available The inhibition of corrosion of mild steel in hydrochloric acid by isatin glycine (ING and isatin (IN at 30-60 oC and concentrations of 0.0001 M to 0.0005 M was studied via weight loss method. At the highest inhibitor concentration studied ING exhibited inhibition efficiency of 87% while IN exhibited 84% at 60 oC. A chemical adsorption mechanism was proposed on the basis of the temperature effect and obtained average activation energy values of 143.9 kJ/mol for ING and 118.5 kJ/mol for IN. The two inhibitors were confirmed to obey the Langmuir adsorption isotherm equation at the concentrations studied. Also a first-order type of mechanism was proposed from the kinetic treatment of the result. The difference in the inhibitory properties of the inhibitors was explained in terms of the difference in their molecular structures and solubility rather than difference in molecular weights alone.

  5. Inhibition of protein kinase C induces differentiation in Neuro-2a cells

    International Nuclear Information System (INIS)

    Minana, M.D.; Felipo, V.; Grisolia, S.

    1990-01-01

    1-(5-Isoquinolinylsulfonyl)-2-methylpiperazine (H7), a potent inhibitor of protein kinase C, induced neuritogenesis in Neuro-2a cells, whereas N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA 1004), which inhibits more efficiently cAMP- and cGMP-dependent protein kinases, did not. The effect, noticeable after 3 hr, was maximum (13-fold increase at 500 μM H7) between 1 and 3 days and was maintained over 2 months. In controls, 90% of the cells were undifferentiated, whereas after 3 hr with 500 μM H7 only 25% of the cells remained undifferentiated. DNA synthesis decreased as the number of differentiated cells increased. Differentiation is also functional since acetylcholinesterase activity increased ∼7-fold after 48 hr with 500 μM H7. Phorbol 12-myristate 13-acetate, a specific activator of protein kinase C, prevented or reversed the induction of neuritogenesis and the inhibition of DNA synthesis by H7. There is a good correlation between the level of protein kinase C and the percentage of differentiated cells. The results indicate that protein kinase C may play a key role in the control of differentiation of neural cells. Some possible clinical implications are briefly discussed

  6. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways.

    Science.gov (United States)

    Martínez, Irene; Zhu, Jiangfeng; Lin, Henry; Bennett, George N; San, Ka-Yiu

    2008-11-01

    Reactions requiring reducing equivalents, NAD(P)H, are of enormous importance for the synthesis of industrially valuable compounds such as carotenoids, polymers, antibiotics and chiral alcohols among others. The use of whole-cell biocatalysis can reduce process cost by acting as catalyst and cofactor regenerator at the same time; however, product yields might be limited by cofactor availability within the cell. Thus, our study focussed on the genetic manipulation of a whole-cell system by modifying metabolic pathways and enzymes to improve the overall production process. In the present work, we genetically engineered an Escherichia coli strain to increase NADPH availability to improve the productivity of products that require NADPH in its biosynthesis. The approach involved an alteration of the glycolysis step where glyceraldehyde-3-phosphate (GAP) is oxidized to 1,3 bisphophoglycerate (1,3-BPG). This reaction is catalyzed by NAD-dependent endogenous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) encoded by the gapA gene. We constructed a recombinant E. coli strain by replacing the native NAD-dependent gapA gene with a NADP-dependent GAPDH from Clostridium acetobutylicum, encoded by the gene gapC. The beauty of this approach is that the recombinant E. coli strain produces 2 mol of NADPH, instead of NADH, per mole of glucose consumed. Metabolic flux analysis showed that the flux through the pentose phosphate (PP) pathway, one of the main pathways that produce NADPH, was reduced significantly in the recombinant strain when compared to that of the parent strain. The effectiveness of the NADPH enhancing system was tested using the production of lycopene and epsilon-caprolactone as model systems using two different background strains. The recombinant strains, with increased NADPH availability, consistently showed significant higher productivity than the parent strains.

  7. Process stability and the recovery control associated with inhibition factors in a UASB-anammox reactor with a long-term operation.

    Science.gov (United States)

    Niu, Qigui; He, Shilong; Zhang, Yanlong; Ma, Haiyuan; Liu, Yuan; Li, Yu-You

    2016-03-01

    A UASB-anammox reactor was operated for 900 days to study its process stability. The negative effects of free ammonia (FA) and free nitrous acid (FNA) were investigated over three separate inhibitions and recoveries. The IC10, IC50 and IC90 (inhibitory concentration/a 10%, 50% and 90% activity loss) of FNA and FA responding to the NH4(+)-N, NO2(-)-N and TN removal efficiency were evaluated. In the 1st inhibition, the average FNA-IC10 observed was 0.67 μg L(-1) and the FA-IC10 for TN removal was 4.85 mg L(-1). In the 2nd inhibition, an FNA-IC10 of 0.44μ g L(-1) and an FA-IC10 of 3.56 were found. In the 3rd inhibition, however, both the FNA-IC10 and FA-IC10 were found to have increased, with values of 0.50 μg L(-1) and 4.42 mg L(-1), respectively. A clear control region was established for multiple inhibitions and the recoveries, which followed (pH 7.5-8.5, FA below 10mg/100mg NH4(+)-N and an FNA below 0.005 mg/100 mg NO2(-)-N) for the purpose of optimizing the operation conditions of the UASB-anammox reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Inhibition and reversal of nickel-induced transformation by the histone deacetylase inhibitor trichostatin A

    International Nuclear Information System (INIS)

    Zhang Qunwei; Salnikow, Konstantin; Kluz, Thomas; Chen, L.C.; Su, W.C.; Costa, Max

    2003-01-01

    The carcinogenic process initiated by nongenotoxic carcinogens involves modulation of gene expression. Nickel compounds have low mutagenic activity, but are highly carcinogenic. In vitro both mouse and human cells can be efficiently transformed by soluble and insoluble nickel compounds to anchorage-independent growth. Because previous studies have shown that carcinogenic nickel compounds silence genes by inhibiting histone acetylation and enhancing DNA methylation, we investigated the effect of enhancing histone acetylation on cell transformation. The exposure of nickel-transformed cells to the histone deacetylase inhibitor trichostatin A (TSA) resulted in the appearance of significant number of revertants measured by their inability to grow in soft agar. Using the Affymetrix GeneChip we found that the level of expression of a significant number of genes was changed (suppressed or upregulated) in nickel-transformed clones but returned to a normal level in revertants obtained following TSA treatment. Moreover, we found that treatment of cells with TSA inhibited the ability of nickel to transform mouse PW cells to anchorage-independent growth. Treatment with TSA also inhibited the ability of nickel to transform human HOS cells, although to a lesser extent. In contrast, treatment with TSA was not able to revert established cancer cell lines as readily as the nickel-transformed cells. These data indicated that modulation of gene expression is important for nickel-induced transformation

  9. A Revisit to the Corrosion Inhibition of Aluminum in Aqueous Alkaline Solutions by Water-Soluble Alginates and Pectates as Anionic Polyelectrolyte Inhibitors

    Directory of Open Access Journals (Sweden)

    Refat Hassan

    2013-01-01

    Full Text Available The corrosion behavior of aluminum (Al in alkaline media in presence of some natural polymer inhibitors has been reinvestigated. The inhibition action of the tested inhibitors was found to obey both Langmuir and Freundlich isotherms models. The inhibition efficiency was found to increase with increasing the inhibitors concentration and decrease with increasing the temperature, suggesting physical adsorption mechanism. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated, and a suitable corrosion mechanism consistent with the kinetic results obtained is suggested and discussed.

  10. Corrosion inhibition performance of 2,5-bis(4-dimethylaminophenyl)-1,3,4-oxadiazole for carbon steel in HCl solution: Gravimetric, electrochemical and XPS studies

    Energy Technology Data Exchange (ETDEWEB)

    Bouanis, M.; Tourabi, M.; Nyassi, A. [Laboratoire de Catalyse et de Corrosion des Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Zarrouk, A. [LCAE-URAC 18, Faculty of Science, First Mohammed University, PO Box 717, M-60 000 Oujda (Morocco); Jama, C. [UMET-ISP, CNRS UMR 8207, ENSCL, Université Lille Nord de France, CS 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F., E-mail: fbentiss@gmail.com [Laboratoire de Catalyse et de Corrosion des Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); UMET-ISP, CNRS UMR 8207, ENSCL, Université Lille Nord de France, CS 90108, F-59652 Villeneuve d' Ascq Cedex (France)

    2016-12-15

    Highlights: • 2,5-Bis(4-dimethylaminophenyl)-1,3,4-oxadiazole is good corrosion inhibitor for carbon steel in 1 M HCl. • XPS analysis has provided the composition of adsorbed protective layer on the steel surface. • The adsorption of the investigated 1,3,4-oxadiazole is mainly due to chemisorption. - Abstract: Corrosion inhibition of carbon steel in normal hydrochloric acid solution at 30 °C by 2,5-bis(4-dimethylaminophenyl)-1,3,4-oxadiazole (DAPO) has been studied by weight loss measurements and electrochemical techniques (polarization and AC impedance). The experimental results showed that DAPO acted as an efficient inhibitor against the carbon steel corrosion in 1 M HCl, and its inhibition efficiency increased with the inhibitor concentration reaching a value up to 93% at 1 mM. Polarization studies showed that the DAPO was a mixed-type inhibitor. The adsorption of this 1,3,4-oxadiazole derivative on the carbon steel surface in 1 M HCl solution followed the Langmuir adsorption isotherm and the corresponding value of the standard Gibbs free energy of adsorption (ΔG°{sub ads}) is associated to a chemisorption mechanism. Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS) analyses were carried out to characterize the chemical composition of the inhibitive film formed on the steel surface. The surfaces studies showed that the inhibitive layer is composed of an iron oxide/hydroxide mixture where DAPO molecules are incorporated. The cytotoxicity of DAPO was also determined using cell culture system.

  11. Necrosulfonamide Attenuates Spinal Cord Injury via Necroptosis Inhibition.

    Science.gov (United States)

    Wang, Yongxiang; Wang, Jingcheng; Wang, Hua; Feng, Xinmin; Tao, Yuping; Yang, Jiandong; Cai, Jun

    2018-03-31

    Spinal cord injury (SCI) is a serious trauma without efficient treatment currently. Necroptosis can be blocked post injury by special inhibitors. This study is to investigate the effects, mechanism, and potential benefit of necrosulfonamide (NSA) for SCI therapy. Pathologic condition was detected using hematoxylin-eosin staining on injured spinal cord and other major organs. Necroptosis-related factors-RIP1, RIP3, and MLKL-were detected using Western blot. Detections on mitochondrial functions such as adenosine triphosphate generation and activities of superoxide dismutase and caspase-3 were also performed. Finally, ethologic performance was detected using a 21-point open-field locomotion test. Reduced lesions and protected neurons were found in the injured spinal cord after treatment with NSA using hematoxylin-eosin staining for pathologic detection. No obvious toxicity on rat liver, kidney, heart, and spleen was detected. Rather than RIP1 and RIP3, MLKL was significantly inhibited by the NSA using Western blot detection. Adenosine triphosphate generation was obviously decreased post injury but slightly increased after the NSA treatment, especially 24 hours post injury. No significant changes were found on activities of superoxide dismutase and caspase-3 after the treatment of NSA. Ethologic performance was significantly improved using a 21-point, open-field locomotion test. Our research indicates NSA attenuates the spinal cord injury via necroptosis inhibition. It might be a potential and safe chemical benefit for SCI therapy. To our knowledge, this is the first study on the effects of NSA as treatment of traumatic SCI. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. The role of acid anion on the inhibition of the acidic corrosion of steel by lupine extract

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gaber, A.M. [Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)], E-mail: ashrafmoustafa@yahoo.com; Abd-El-Nabey, B.A.; Saadawy, M. [Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)

    2009-05-15

    The inhibitive effect of lupine (Lupinous albus L.) extract on the corrosion of steel in aqueous solution of 1 M sulphuric and 2 M hydrochloric acids was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization curves indicated that the lupine extract acts as a mixed-type inhibitor. EIS measurements showed that the dissolution process is under activation control. The inhibition efficiency of the extract obtained from impedance and polarization measurements was in a good agreement and was found to increase with increasing concentration of the extract. The obtained results showed that, the lupine extract could serve as an effective inhibitor for the corrosion of steel in acid media and the extract was more effective in case of hydrochloric acid. Theoretical fitting of the corrosion data to the kinetic-thermodynamic model was tested to show the nature of adsorption.

  13. Release Profile and Inhibition Test of The Nanoparticles A. Paniculata Extract as Inhibitor of α-Glucosidase in The Process of Carbohydrates Breakdown Into Glucose Diabetes Mellitus

    Science.gov (United States)

    Imansari, Farisa; Sahlan, Muhammad; Arbianti, Rita

    2017-07-01

    Andrographis paniculata (A.paniculata) contain the main active substances Andrographolide which helps lower glucose levels in diabetics by inhibiting the enzyme α-glucosidase. The ability of the extract A.paniculata in lowering glucose levels will increase with the technique encapsulation with a coating of composition Chitosan-STPP as a drug delivery to the target organ. This study aimed to get an overview of A.paniculata release profile of nanoparticles in a synthetic fluid media with various concentrations of coating and inhibition testing nasty shard extract in inhibiting the enzyme α-glucosidase. This research resulted in nanoparticles by coating efficiency and loading capacity of chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. The ability of A.paniculata extracts as α-glucosidase enzyme inhibitors has been demonstrated in this study, the percent inhibition of 33.17%.

  14. Altered cortical processing of motor inhibition in schizophrenia.

    Science.gov (United States)

    Lindberg, Påvel G; Térémetz, Maxime; Charron, Sylvain; Kebir, Oussama; Saby, Agathe; Bendjemaa, Narjes; Lion, Stéphanie; Crépon, Benoît; Gaillard, Raphaël; Oppenheim, Catherine; Krebs, Marie-Odile; Amado, Isabelle

    2016-12-01

    Inhibition is considered a key mechanism in schizophrenia. Short-latency intracortical inhibition (SICI) in the motor cortex is reduced in schizophrenia and is considered to reflect locally deficient γ-aminobutyric acid (GABA)-ergic modulation. However, it remains unclear how SICI is modulated during motor inhibition and how it relates to neural processing in other cortical areas. Here we studied motor inhibition Stop signal task (SST) in stabilized patients with schizophrenia (N = 28), healthy siblings (N = 21) and healthy controls (n = 31) matched in general cognitive status and educational level. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were used to investigate neural correlates of motor inhibition. SST performance was similar in patients and controls. SICI was modulated by the task as expected in healthy controls and siblings but was reduced in patients with schizophrenia during inhibition despite equivalent motor inhibition performance. fMRI showed greater prefrontal and premotor activation during motor inhibition in schizophrenia. Task-related modulation of SICI was higher in subjects who showed less inhibition-related activity in pre-supplementary motor area (SMA) and cingulate motor area. An exploratory genetic analysis of selected markers of inhibition (GABRB2, GAD1, GRM1, and GRM3) did not explain task-related differences in SICI or cortical activation. In conclusion, this multimodal study provides direct evidence of a task-related deficiency in SICI modulation in schizophrenia likely reflecting deficient GABA-A related processing in motor cortex. Compensatory activation of premotor areas may explain similar motor inhibition in patients despite local deficits in intracortical processing. Task-related modulation of SICI may serve as a useful non-invasive GABAergic marker in development of therapeutic strategies in schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Development of a specific affinity-matured exosite inhibitor to MT1-MMP that efficiently inhibits tumor cell invasion in vitro and metastasis in vivo

    DEFF Research Database (Denmark)

    Botkjaer, Kenneth A; Kwok, Hang Fai; Terp, Mikkel G

    2016-01-01

    therapeutic target. Here, we report the identification of antibody fragments to MT1-MMP that potently and specifically inhibit its cell surface functions. Lead antibody clones displayed inhibitory activity towards pro-MMP-2 activation, collagen-film degradation and gelatin-film degradation, and were shown......The membrane-associated matrix metalloproteinase-14, MT1-MMP, has been implicated in pericellular proteolysis with an important role in cellular invasion of collagenous tissues. It is substantially upregulated in various cancers and rheumatoid arthritis, and has been considered as a potential...... to bind to the MT1-MMP catalytic domain outside the active site cleft, inhibiting binding to triple helical collagen. Affinity maturation using CDR3 randomization created a second generation of antibody fragments with dissociation constants down to 0.11 nM, corresponding to an improved affinity of 332...

  16. A rhodanine derivative CCR-11 inhibits bacterial proliferation by inhibiting the assembly and GTPase activity of FtsZ.

    Science.gov (United States)

    Singh, Parminder; Jindal, Bhavya; Surolia, Avadhesha; Panda, Dulal

    2012-07-10

    A perturbation of FtsZ assembly dynamics has been shown to inhibit bacterial cytokinesis. In this study, the antibacterial activity of 151 rhodanine compounds was assayed using Bacillus subtilis cells. Of 151 compounds, eight strongly inhibited bacterial proliferation at 2 μM. Subsequently, we used the elongation of B. subtilis cells as a secondary screen to identify potential FtsZ-targeted antibacterial agents. We found that three compounds significantly increased bacterial cell length. One of the three compounds, namely, CCR-11 [(E)-2-thioxo-5-({[3-(trifluoromethyl)phenyl]furan-2-yl}methylene)thiazolidin-4-one], inhibited the assembly and GTPase activity of FtsZ in vitro. CCR-11 bound to FtsZ with a dissociation constant of 1.5 ± 0.3 μM. A docking analysis indicated that CCR-11 may bind to FtsZ in a cavity adjacent to the T7 loop and that short halogen-oxygen, H-bonding, and hydrophobic interactions might be important for the binding of CCR-11 with FtsZ. CCR-11 inhibited the proliferation of B. subtilis cells with a half-maximal inhibitory concentration (IC(50)) of 1.2 ± 0.2 μM and a minimal inhibitory concentration of 3 μM. It also potently inhibited proliferation of Mycobacterium smegmatis cells. Further, CCR-11 perturbed Z-ring formation in B. subtilis cells; however, it neither visibly affected nucleoid segregation nor altered the membrane integrity of the cells. CCR-11 inhibited HeLa cell proliferation with an IC(50) value of 18.1 ± 0.2 μM (∼15 × IC(50) of B. subtilis cell proliferation). The results suggested that CCR-11 inhibits bacterial cytokinesis by inhibiting FtsZ assembly, and it can be used as a lead molecule to develop FtsZ-targeted antibacterial agents.

  17. Molecular mechanisms of DNA repair inhibition by caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Selby, C.P.; Sancar, A. (Univ. of North Carolina School of Medicine, Chapel Hill (USA))

    1990-05-01

    Caffeine potentiates the mutagenic and lethal effects of genotoxic agents. It is thought that this is due, at least in some organisms, to inhibition of DNA repair. However, direct evidence for inhibition of repair enzymes has been lacking. Using purified Escherichia coli DNA photolyase and (A)BC excinuclease, we show that the drug inhibits photoreactivation and nucleotide excision repair by two different mechanisms. Caffeine inhibits photoreactivation by interfering with the specific binding of photolyase to damaged DNA, and it inhibits nucleotide excision repair by promoting nonspecific binding of the damage-recognition subunit, UvrA, of (A)BC excinuclease. A number of other intercalators, including acriflavin and ethidium bromide, appear to inhibit the excinuclease by a similar mechanism--that is, by trapping the UvrA subunit in nonproductive complexes on undamaged DNA.

  18. Inhibition of cobalt active dissolution by benzotriazole in slightly alkaline bicarbonate aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Gallant, Danick [Departement de Chimie, Universite Laval, Quebec (Canada); Departement de Biologie, Chimie et Geographie, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Quebec (Canada); E-mail: danick.gallant.1@ulaval.ca; Pezolet, Michel [Departement de Chimie, Universite Laval, Quebec (Canada)]. E-mail: michel.pezolet@chm.ulaval.ca; Simard, Stephan [Departement de Chimie, Universite Laval, Quebec (Canada); Departement de Biologie, Chimie et Geographie, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Quebec (Canada); E-mail: stephan_simard@uqar.qc.ca

    2007-04-20

    The efficiency of benzotriazole as inhibiting agent for the corrosion of cobalt was probed at pH ranging from 8.3 to 10.2 in a sodium bicarbonate solution, chosen to simulate mild natural environments. From electrochemical, Raman spectroscopy, atomic force microscopy and ellipsometry experiments, we have demonstrated that benzotriazole markedly affects the electrodissolution reactions, which become modeled by the formation of a [Co(II)(BTA){sub 2}.H{sub 2}O] {sub n} film according to two different mechanisms. Surface-enhanced Raman spectroscopy has shown that the polarization of a cobalt electrode at cathodic potentials with respect to its potential of zero charge allows a mechanism of specific adsorption of the neutral form of benzotriazole to take place through a suspected metal-to-molecule electron transfer and which follows Frumkin's adsorption isotherms. At the onset of the anodic dissolution, some experimental evidence suggests that these adsorbed neutral benzotriazole molecules deprotonate to yield a very thin [Co(II)(BTA){sub 2}.H{sub 2}O] {sub n} polymer-like and water-insoluble protective film, responsible for the inhibition of active dissolution processes occurring at slightly more anodic potentials. In the anodic dissolution region, deprotonated benzotriazole species present in the bulk solution favors the formation of a multilayered [Co(II)(BTA){sub 2}.H{sub 2}O] {sub n} film, which also contributes to the inhibition of any further cobalt dissolution usually observed at higher electrode potentials.

  19. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jing [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Liu, Gexiu [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Yan, Guoyao [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); He, Dongmei [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Zhou, Ying [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Chen, Shengting, E-mail: shengtingchen@sina.cn [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China)

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells – a murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.

  20. Terbinafine inhibits gap junctional intercellular communication

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Yeun, E-mail: whitewndus@naver.com [College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983 (Korea, Republic of); Yoon, Sei Mee, E-mail: sei_mee@naver.com [College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983 (Korea, Republic of); Department of Integrated OMICS for Biomedical Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Choi, Eun Ju, E-mail: yureas@naver.com [College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983 (Korea, Republic of); Lee, Jinu, E-mail: jinulee@yonsei.ac.kr [College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983 (Korea, Republic of)

    2016-09-15

    Terbinafine is an antifungal agent that selectively inhibits fungal sterol synthesis by blocking squalene epoxidase. We evaluated the effect of terbinafine on gap junctional intercellular communication (GJIC). Fluorescence recovery after photobleaching (FRAP) and I-YFP GJIC assays revealed that terbinafine inhibits GJIC in a reversible and dose-dependent manner in FRT-Cx43 and LN215 cells. Treatment with terbinafine did not affect Cx43 phosphorylation status or intracellular Ca{sup 2+} concentration, well-known action mechanisms of various GJIC blockers. While a structurally related chemical, naftifine, attenuated GJIC, epigallocatechin gallate, another potent squalene epoxidase inhibitor with a different structure, did not. These results suggest that terbinafine inhibits GJIC with a so far unknown mechanism of action. - Highlights: • In vitro pharmacological studies were performed on FRT-Cx43 and LN215 cells. • Terbinafine inhibits gap junctional intercellular communication in both cell lines. • The inhibitory effect of terbinafine is reversible and dose-dependent. • Treatment of terbinafine does not alter Cx43 phosphorylation or cytosolic Ca{sup 2+} concentration. • Inhibition of squalene epoxidase is not involved in this new effect of terbinafine.

  1. Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology.

    Science.gov (United States)

    Subbarao, G V; Arango, J; Masahiro, K; Hooper, A M; Yoshihashi, T; Ando, Y; Nakahara, K; Deshpande, S; Ortiz-Monasterio, I; Ishitani, M; Peters, M; Chirinda, N; Wollenberg, L; Lata, J C; Gerard, B; Tobita, S; Rao, I M; Braun, H J; Kommerell, V; Tohme, J; Iwanaga, M

    2017-09-01

    Accelerated soil-nitrifier activity and rapid nitrification are the cause of declining nitrogen-use efficiency (NUE) and enhanced nitrous oxide (N 2 O) emissions from farming. Biological nitrification inhibition (BNI) is the ability of certain plant roots to suppress soil-nitrifier activity, through production and release of nitrification inhibitors. The power of phytochemicals with BNI-function needs to be harnessed to control soil-nitrifier activity and improve nitrogen-cycling in agricultural systems. Transformative biological technologies designed for genetic mitigation are needed, so that BNI-enabled crop-livestock and cropping systems can rein in soil-nitrifier activity, to help reduce greenhouse gas (GHG) emissions and globally make farming nitrogen efficient and less harmful to environment. This will reinforce the adaptation or mitigation impact of other climate-smart agriculture technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Inhibiting effects of some oxadiazole derivatives on the corrosion of mild steel in perchloric acid solution

    International Nuclear Information System (INIS)

    Lebrini, Mounim; Bentiss, Fouad; Vezin, Herve; Lagrenee, Michel

    2005-01-01

    The efficiency of 3,5-bis(n-pyridyl)-1,3,4-oxadiazole (n-POX, n = 1, 2, 3), as corrosion inhibitors for mild steel in 1 M perchloric acid (HClO 4 ) have been determined by weight loss measurements and electrochemical studies. The results show that these inhibitors revealed a good corrosion inhibition even at very low concentrations. Comparison of results among those obtained by the studied oxadiazoles shows that 3-POX was the best inhibitor. Polarisation curves indicate that n-pyridyl substituted-1,3,4-oxadiazoles are mixed type inhibitors in 1 M HClO 4 . The adsorption of these inhibitors follows a Langmuir isotherm model. The electronic properties of n-POX, obtained using the AM1 semi-empirical quantum chemical approach, were correlated with their experimental efficiencies using the linear resistance model (LR)

  3. [Tricostantin A inhibits self-renewal of breast cancer stem cells in vitro].

    Science.gov (United States)

    Peng, Li; Li, Fu-Xi; Shao, Wen-Feng; Xiong, Jing-Bo

    2013-10-01

    To investigate the effect of tricostantin A (TSA) on self-renewal of breast cancer stem cells and explore the mechanisms. Breast cancer cell lines MDA-MB-468, MDA-MB-231, MCF-7 and SKBR3 were cultured in suspension and treated with different concentrations of TSA for 7 days, using 0.1% DMSO as the control. Secondary mammosphere formation efficiency and percentage of CD44(+)/CD24(-) sub-population in the primary mammospheres were used to evaluate the effects of TSA on self-renewal of breast cancer stem cells. The breast cancer stem cell surface marker CD44(+)/CD24(-) and the percentage of apoptosis in the primary mammospheres were assayed using flow cytometry. The mRNA expressions of Nanog, Sox2 and Oct4 in the primary mammospheres were assayed with quantitative PCR. TSA at both 100 and 500 nmol/L, but not at 10 nmol/L, partially inhibited the self-renewal of breast cancer stem cells from the 4 cell lines. TSA at 500 nmol/L induced cell apoptosis in the primary mammospheres. TSA down-regulated the mRNA expression of Nanog and Sox2 in the primary mammospheres. TSA can partially inhibit the self-renewal of breast cancer stem cells through a mechanism involving the down-regulation of Nanog and Sox2 expression, indicating the value of combined treatments with low-dose TSA and other anticancer drugs to achieve maximum inhibition of breast cancer stem cell self-renewal. The core transcriptional factor of embryonic stem cells Nanog and Sox2 can be potential targets of anticancer therapy.

  4. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Noor S. [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Environmental Engineering and Science Program, University of Cincinnati, 705 Engineering Research Center, Cincinnati, OH 45221-0012 (United States); He, Xuexiang [Environmental Engineering and Science Program, University of Cincinnati, 705 Engineering Research Center, Cincinnati, OH 45221-0012 (United States); Khan, Hasan M. [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Khan, Javed Ali [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Environmental Engineering and Science Program, University of Cincinnati, 705 Engineering Research Center, Cincinnati, OH 45221-0012 (United States); O' Shea, Kevin E. [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); Boccelli, Dominic L. [Environmental Engineering and Science Program, University of Cincinnati, 705 Engineering Research Center, Cincinnati, OH 45221-0012 (United States); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, 705 Engineering Research Center, Cincinnati, OH 45221-0012 (United States); Nireas-International Water Research Centre, University of Cyprus, 20537 Nicosia (Cyprus)

    2013-12-15

    Highlights: • Removal of endosulfan was studied by UV-C and UV-based advanced oxidation processes (AOPs). • Among UV/S{sub 2}O{sub 8}{sup 2−}, UV/HSO{sub 5}{sup −}, and UV/H{sub 2}O{sub 2}, endosulfan was removed the most efficiently by UV/S{sub 2}O{sub 8}{sup 2−}. • Hydroxyl and/or sulfate radicals were involved in the destruction of endosulfan and its by-products. • Presence of natural organic matter or alcohol inhibited the removal of endosulfan and its by-products. • Degradation pathways were proposed based on the nature of endosulfan degradation intermediates. -- Abstract: This study explored the efficiency of UV-C-based advanced oxidation processes (AOPs), i.e., UV/S{sub 2}O{sub 8}{sup 2−}, UV/HSO{sub 5}{sup −}, and UV/H{sub 2}O{sub 2} for the degradation of endosulfan, an organochlorine insecticide and an emerging water pollutant. A significant removal, 91%, 86%, and 64%, of endosulfan, at an initial concentration of 2.45 μM and UV fluence of 480 mJ/cm{sup 2}, was achieved by UV/S{sub 2}O{sub 8}{sup 2−}, UV/HSO{sub 5}{sup −}, and UV/H{sub 2}O{sub 2} processes, respectively, at a [peroxide]{sub 0}/[endosulfan]{sub 0} molar ratio of 20. The efficiency of these processes was, however, inhibited in the presence of radical scavengers, such as alcohols (e.g., tertiary butyl alcohol and isopropyl alcohol) and natural organic matter (NOM). The inhibition was also influenced by common inorganic anions in the order of nitrite > bicarbonate > chloride > nitrate ≃ sulfate. The observed pseudo-first-order rate constant decreased while the degradation rate increased with increasing initial concentration of the target contaminant. The degradation mechanism of endosulfan by the AOPs was evaluated revealing the main by-product as endosulfan ether. Results of this study suggest that UV-C-based AOPs are potential methods for the removal of pesticides, such as endosulfan and its by-products, from contaminated water.

  5. ac impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Outirite, Moha; Lagrenee, Michel; Lebrini, Mounim [Unite de Catalyse et de Chimie du Solide, UMR-CNRS 8181, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Traisnel, Michel; Jama, Charafeddine [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF UMR-CNRS 8008, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Vezin, Herve [Laboratoire de Chimie Organique et Macromoleculaire, UMR-CNRS 8009, USTL Bat C4, F-59655 Villeneuve d' Ascq Cedex (France); Bentiss, Fouad, E-mail: fbentiss@enscl.f [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco)

    2010-02-01

    The corrosion inhibition properties of a new class of oxadiazole derivatives, namely 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles (n-DPOX) for C38 carbon steel corrosion in 1 M HCl medium were analysed by electrochemical impedance spectroscopy (EIS). An adequate structural model of the interface was used and the values of the corresponding parameters were calculated and discussed. The experimental results showed that these compounds are excellent inhibitors for the C38 steel corrosion in acid solution and that the protection efficiency increased with increasing the inhibitors concentration. Electrochemical impedance data demonstrate that the addition of the n-DPOX derivatives in the corrosive solution decreases the charge capacitance and simultaneously increases the function of the charge/discharge of the interface, facilitating the formation of an adsorbed layer over the steel surface. Adsorption of these inhibitors on the steel surface obeys to the Langmuir adsorption isotherm. X-ray photoelectron spectroscopy (XPS) and the thermodynamic data of adsorption showed that inhibition of steel corrosion in normal hydrochloric solution by n-DPOX is due to the formation of a chemisorbed film on the steel surface. Quantum chemical calculations using the Density Functional Theory (DFT) and the Quantitative Structure Activity Relationship (QSAR) approach were performed on n-DPOX derivatives to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental inhibition efficiency were subjected to correlation analysis and indicate that their inhibition effect is closely related to E{sub HOMO}, E{sub LUMO}, and dipole moment (mu).

  6. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming, E-mail: wsenming@126.com

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  7. Inhibition by TNF-alpha and IL-4 of cationic lipid mediated gene transfer in cystic fibrosis tracheal gland cells.

    Science.gov (United States)

    Bastonero, Sonia; Gargouri, Myriem; Ortiou, Sandrine; Guéant, Jean-Louis; Merten, Marc D

    2005-11-01

    In vivo, tracheal gland serous cells highly express the cystic fibrosis transmembrane conductance regulator (cftr) gene. This gene is mutated in the lethal monogenic disease cystic fibrosis (CF). Clinical trials in which the human CFTR cDNA was delivered to the respiratory epithelia of CF patients have resulted in weak and transient gene expression. As CF is characterized by mucus inspissation, airway infection, and severe inflammation, we tested the hypothesis that inflammation and especially two cytokines involved in the Th1/Th2 inflammatory response, interleukin 4 (IL-4) and TNFalpha, could inhibit gene transfer efficiency using a model of human CF tracheal gland cells (CF-KM4) and Lipofectamine reagent as a transfection reagent. The specific secretory defects of CF-KM4 cells were corrected by Lipofectamine-mediated human CFTR gene transfer. However, this was altered when cells were pre-treated with IL-4 and TNFalpha. Inhibition of luciferase reporter gene expression by IL-4 and TNFalpha pre-treated CF-KM4 cells was measured by activity and real-time RT-PCR. Both cytokines induced similar and synergistic inhibition of transgene expression and activity. This cytokine-mediated inhibition could be prevented by anti-inflammatory agents such as glucocorticoids but not by non-steroidal (NSAI) agents. This data suggests that an inflammatory context generated by IL-4 and TNFalpha can inhibit human CFTR gene transfer in CF tracheal gland cells and that glucocorticoids may have a protecting action. Copyright (c) 2005 John Wiley & Sons, Ltd.

  8. Generation of anti-TLR2 intrabody mediating inhibition of macrophage surface TLR2 expression and TLR2-driven cell activation

    Directory of Open Access Journals (Sweden)

    Lindenmaier Werner

    2010-04-01

    Full Text Available Abstract Background Toll-like receptor (TLR 2 is a component of the innate immune system and senses specific pathogen associated molecular patterns (PAMPs of both microbial and viral origin. Cell activation via TLR2 and other pattern recognition receptors (PRRs contributes to sepsis pathology and chronic inflammation both relying on overamplification of an immune response. Intracellular antibodies expressed and retained inside the endoplasmatic reticulum (ER-intrabodies are applied to block translocation of secreted and cell surface molecules from the ER to the cell surface resulting in functional inhibition of the target protein. Here we describe generation and application of a functional anti-TLR2 ER intrabody (αT2ib which was generated from an antagonistic monoclonal antibody (mAb towards human and murine TLR2 (T2.5 to inhibit the function of TLR2. αT2ib is a scFv fragment comprising the variable domain of the heavy chain and the variable domain of the light chain of mAb T2.5 linked together by a synthetic (Gly4Ser3 amino acid sequence. Results Coexpression of αT2ib and mouse TLR2 in HEK293 cells led to efficient retention and accumulation of TLR2 inside the ER compartment. Co-immunoprecipitation of human TLR2 with αT2ib indicated interaction of αT2ib with its cognate antigen within cells. αT2ib inhibited NF-κB driven reporter gene activation via TLR2 but not through TLR3, TLR4, or TLR9 if coexpressed in HEK293 cells. Co-transfection of human TLR2 with increasing amounts of the expression plasmid encoding αT2ib into HEK293 cells demonstrated high efficiency of the TLR2-αT2ib interaction. The αT2ib open reading frame was integrated into an adenoviral cosmid vector for production of recombinant adenovirus (AdV-αT2ib. Transduction with AdVαT2ib specifically inhibited TLR2 surface expression of murine RAW264.7 and primary macrophages derived from bone marrow (BMM. Furthermore, TLR2 activation dependent TNFα mRNA accumulation, as well

  9. Surface coverage and corrosion inhibition effect of Rosmarinus officinalis and zinc oxide on the electrochemical performance of low carbon steel in dilute acid solutions

    Science.gov (United States)

    Loto, Roland Tolulope

    2018-03-01

    Electrochemical analysis of the corrosion inhibition and surface protection properties of the combined admixture of Rosmarinus officinalis and zinc oxide on low carbon steel in 1 M HCl and H2SO4 solution was studied by potentiodynamic polarization, open circuit potential measurement, optical microscopy and ATR-FTIR spectroscopy. Results obtained confirmed the compound to be more effective in HCl solution, with optimal inhibition efficiencies of 93.26% in HCl and 87.7% in H2SO4 acid solutions with mixed type inhibition behavior in both acids. The compound shifts the corrosion potential values of the steel cathodically in HCl and anodically in H2SO4 signifying specific corrosion inhibition behavior without applied potential. Identified functional groups of alcohols, phenols, 1°, 2° amines, amides, carbonyls (general), esters, saturated aliphatic, carboxylic acids, ethers, aliphatic amines, alkenes, aromatics, alkyl halides and alkynes within the compound completely adsorbed onto the steel forming a protective covering. Thermodynamic calculations showed physisorption molecular interaction with the steel's surface according to Langmuir and Frumkin adsorption isotherms. Optical microscopy images of the inhibited and uninhibited steels contrast each other with steel specimens from HCl solution showing a better morphology.

  10. Closing the Attainment Gap--A Realistic Proposition or an Elusive Pipe-Dream?

    Science.gov (United States)

    Mowat, Joan Gaynor

    2018-01-01

    The attainment gap associated with socio-economic status is an international problem that is highly resistant to change. This conceptual paper critiques the drive by the Scottish Government to address the attainment gap through the Scottish Attainment Challenge and the National Improvement Framework. It draws upon a range of theoretical…

  11. Bellman's GAP--a language and compiler for dynamic programming in sequence analysis.

    Science.gov (United States)

    Sauthoff, Georg; Möhl, Mathias; Janssen, Stefan; Giegerich, Robert

    2013-03-01

    Dynamic programming is ubiquitous in bioinformatics. Developing and implementing non-trivial dynamic programming algorithms is often error prone and tedious. Bellman's GAP is a new programming system, designed to ease the development of bioinformatics tools based on the dynamic programming technique. In Bellman's GAP, dynamic programming algorithms are described in a declarative style by tree grammars, evaluation algebras and products formed thereof. This bypasses the design of explicit dynamic programming recurrences and yields programs that are free of subscript errors, modular and easy to modify. The declarative modules are compiled into C++ code that is competitive to carefully hand-crafted implementations. This article introduces the Bellman's GAP system and its language, GAP-L. It then demonstrates the ease of development and the degree of re-use by creating variants of two common bioinformatics algorithms. Finally, it evaluates Bellman's GAP as an implementation platform of 'real-world' bioinformatics tools. Bellman's GAP is available under GPL license from http://bibiserv.cebitec.uni-bielefeld.de/bellmansgap. This Web site includes a repository of re-usable modules for RNA folding based on thermodynamics.

  12. Celastrol inhibits TGF-β1-induced epithelial–mesenchymal transition by inhibiting Snail and regulating E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyereen; Lee, Minjae [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Jang, Sung-Wuk, E-mail: swjang@amc.seoul.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2013-08-09

    Highlights: •We investigated the effects of celastrol on TGF-β1-induced EMT in epithelial cells. •Celastrol regulates TGF-β1-induced morphological changes and E-cadherin expression. •Celastrol inhibits TGF-β1-induced Snail expression. •Celastrol strongly suppresses TGF-β1-induced invasion in MDCK and A549 cells. -- Abstract: The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF-β1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF-β1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF-β1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF-β1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF-β1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF-β1-induced EMT.

  13. Pseudomonas aeruginosa inhibits the growth of Cryptococcus species.

    Science.gov (United States)

    Rella, Antonella; Yang, Mo Wei; Gruber, Jordon; Montagna, Maria Teresa; Luberto, Chiara; Zhang, Yong-Mei; Del Poeta, Maurizio

    2012-06-01

    Pseudomonas aeruginosa is a ubiquitous and opportunistic bacterium that inhibits the growth of different microorganisms, including Gram-positive bacteria and fungi such as Candida spp. and Aspergillus fumigatus. In this study, we investigated the interaction between P. aeruginosa and Cryptococcus spp. We found that P. aeruginosa PA14 and, to a lesser extent, PAO1 significantly inhibited the growth of Cryptococcus spp. The inhibition of growth was observed on solid medium by the visualization of a zone of inhibition of yeast growth and in liquid culture by viable cell counting. Interestingly, such inhibition was only observed when P. aeruginosa and Cryptococcus were co-cultured. Minimal inhibition was observed when cell-cell contact was prevented using a separation membrane, suggesting that cell contact is required for inhibition. Using mutant strains of Pseudomonas quinoline signaling, we showed that P. aeruginosa inhibited the growth of Cryptococcus spp. by producing antifungal molecules pyocyanin, a redox-active phenazine, and 2-heptyl-3,4-dihydroxyquinoline (PQS), an extracellular quorum-sensing signal. Because both P. aeruginosa and Cryptococcus neoformans are commonly found in lung infections of immunocompromised patients, this study may have important implication for the interaction of these microbes in both an ecological and a clinical point of view.

  14. Application of electrochemical frequency modulation for monitoring corrosion and corrosion inhibition of iron by some indole derivatives in molar hydrochloric acid

    International Nuclear Information System (INIS)

    Khaled, K.F.

    2008-01-01

    The corrosion inhibition effect of four indole derivatives, namely indole (IND), benzotriazole (BTA), benzothiazole (BSA) and benzoimidazole (BIA), have been used as possible corrosion inhibitors for pure iron in 1 M HCl. In this study, electrochemical frequency modulation, EFM was used as an effective method for corrosion rate determination in corrosion inhibition studies. By using EFM measurements, corrosion current density was determined without prior knowledge of Tafel slopes. Corrosion rates obtained using EFM, were compared to that obtained from other chemical and electrochemical techniques. The results obtained from EFM, EIS, Tafel and weight loss measurements were in good agreement. Tafel polarization measurements show that indole derivatives are cathodic-type inhibitors. Molecular simulation studies were applied to optimize the adsorption structures of indole derivatives. The inhibitor/iron/solvent interfaces were simulated and the adsorption energies of these inhibitors were calculated. Quantum chemical calculations have been performed and several quantum chemical indices were calculated and correlated with the corresponding inhibition efficiencies

  15. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Jan, Yi-Hua [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Baker, Angela A. [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Mishin, Vladimir [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Health Science, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.

  16. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    International Nuclear Information System (INIS)

    Jan, Yi-Hua; Richardson, Jason R.; Baker, Angela A.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2015-01-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.

  17. Gingival tissue-produced inhibition of platelet aggregation and the loss of inhibition in streptozotocin-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Keiichiroh; Tamai, Kazuharu; Shirakawa, Masaharu; Okamoto, Hiroshi; Dohi, Toshihiro; Tsujimoto, Akira

    1988-01-01

    Addition of medium incubated with normal rat gingival tissue to platelet-rich plasma inhibited ADP-induced platelet aggregation. The ability of rat gingiva to produce activity inhibiting platelet aggregation was enhanced by the addition of arachidonic acid. Diabetic rat gingiva failed to inhibit platelet aggregation but did produce the anti-platelet aggregating activity in the presence of arachidonic acid. Indomethacin blocked the production of anti-platelet aggregating activity. There was no difference in conversion of (1-/sup 14/C)arachidonic acid to prostaglandins by normal and diabetic rat gingiva. These results suggest that an arachidonic acid metabolite released from gingiva during incubation inhibits platelet aggregation, and the synthesis of the metabolite is impaired in diabetic rat gingiva. A decrease in availability of arachidonic acid may be a causal factor of the defect in diabetic rat gingiva.

  18. Gingival tissue-produced inhibition of platelet aggregation and the loss of inhibition in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Kawamura, Keiichiroh; Tamai, Kazuharu; Shirakawa, Masaharu; Okamoto, Hiroshi; Dohi, Toshihiro; Tsujimoto, Akira

    1988-01-01

    Addition of medium incubated with normal rat gingival tissue to platelet-rich plasma inhibited ADP-induced platelet aggregation. The ability of rat gingiva to produce activity inhibiting platelet aggregation was enhanced by the addition of arachidonic acid. Diabetic rat gingiva failed to inhibit platelet aggregation but did produce the anti-platelet aggregating activity in the presence of arachidonic acid. Indomethacin blocked the production of anti-platelet aggregating activity. There was no difference in conversion of [1- 14 C]arachidonic acid to prostaglandins by normal and diabetic rat gingiva. These results suggest that an arachidonic acid metabolite released from gingiva during incubation inhibits platelet aggregation, and the synthesis of the metabolite is impaired in diabetic rat gingiva. A decrease in availability of arachidonic acid may be a causal factor of the defect in diabetic rat gingiva. (author)

  19. Inhibition of photosynthesis in the microalga Chaetoceros curvisetus (Bacillariophyta) by macroalga Gracilaria lemaneiformis (Rhodophyta)

    Science.gov (United States)

    Ye, Changpeng; Zhang, Mengcheng; Yang, Yufeng

    2013-11-01

    We investigated the effects of dried macroalga Gracilaria lemaneiformis (Rhodophyta) on photosynthesis of the bloom-forming microalga Chaetoceros curvisetus. C. curvisetus was cultured with different amounts of dried G. lemaneiformis under controlled laboratory conditions. We measured the photosynthetic oxygen evolution rate and established the chlorophyll a fluorescence transient (OJIP) curve coupled with its specific parameters. We observed concentration-dependent and time-dependent relationships between dried G. lemaneiformis and inhibition of photosynthesis in C. curvisetus. Co-culture with dried G. lemaneiformis also resulted in a decrease in the light-saturated maximum photosynthetic oxygen evolution rate ( P max) in C. curvisetus, and a decrease in the OJIP curve along with its specific parameters; the maximum photochemical efficiency of PSII ( F v / F m), the amount of active PSII reaction centers per excited cross section at t=0 and t= t FM (RC/CS0 and RC/CSm, respectively), the absorption flux per excited cross section at t =0 (ABS/ CS0), and the efficiency with which a trapped exciton moves an electron into the electron transport chain ( ψ 0). The dark respiration rate ( R d) increased in C. curvisetus co-cultured with dried G. lemaneiformis. The JIP-test and the oxygen evolution results indicated that dried G. lemaneiformis decreased the number of active reaction centers, blocked the electron transport chain, and damaged the oxygen-evolving complex of C. curvisetus. This result indicated that dried fragments of G. lemaneiformis could effectively inhibit photosynthesis of C. curvisetus, and thus, could serve as a functional product to control and mitigate C. curvisetus blooms.

  20. Maximizing efficiency in the transition to a coal-based economy

    International Nuclear Information System (INIS)

    Brathwaite, J.; Horst, S.; Iacobucci, J.

    2010-01-01

    Energy is the lynchpin of modern society. Since the early 1970s, growing dependence on foreign energy sources, oil in particular, has constrained US independence in foreign policy, and at times, inhibited economic stability and growth. Addressing oil dependence is politically and economically complex. Proposed solutions are multifaceted with various objectives such as energy efficiency and resource substitution. One solution is the partial transition from an oil- to coal-based economy. A number of facts support this solution including vast coal reserves in the US and the relative price stability of coal. However, several roadblocks exist. These include uncertain recoverable reserves and the immaturity of 'clean' coal technologies. This paper provides a first order analysis of the most efficient use of coal assuming the transition from oil to coal is desirable. Scenario analysis indicates two possible transition pathways: (1) bring the transportation sector onto the electric grid and (2) use coal-to-liquid fuels to directly power vehicles. The feasibility of each pathway is examined based on economic and environmental factors, among which are energy availability, affordability and efficiency, and environmental sustainability. Results indicate that partial transition of the transportation sector onto the electric grid offers the more viable solution for coal-based reduction of the US oil dependence.

  1. Inhibition of apparent photosynthesis by nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A C; Bennett, J H

    1970-01-01

    The nitrogen oxides (NO/sub 2/ and NO) inhibited apparent photosynthesis of oats and alfalfa at concentrations below those required to cause visible injury. There appeared to be a threshold concentration of about 0.6 ppm for each pollutant. An additive effect in depressing apparent photosynthesis occurred when the plants were exposed to a mixture of NO and NO/sub 2/. Although NO produced a more rapid effect on the plants, lower concentrations of NO/sub 2/ were required to cause a given inhibition after 2 hour of exposure. Inhibition by nitric oxide was more closely related to its partial pressure than was inhibition by NO/sub 2/.

  2. Inhibition of Glomerular Mesangial Cell Proliferation by siPDGF-B- and siPDGFR-β-Containing Chitosan Nanoplexes.

    Science.gov (United States)

    Salva, Emine; Turan, Suna Özbaş; Akbuğa, Jülide

    2017-05-01

    Mesangioproliferative glomerulonephritis is a disease that has a high incidence in humans. In this disease, the proliferation of glomerular mesangial cells and the production of extracellular matrix are important. In recent years, the RNAi technology has been widely used in the treatment of various diseases due to its capability to inhibit the gene expression with high specificity and targeting. The objective of this study was to decrease mesangial cell proliferation by knocking down PDGF-B and its receptor, PDGFR-β. To be able to use small interfering RNAs (siRNAs) in the treatment of this disease successfully, it is necessary to develop appropriate delivery systems. Chitosan, which is a biopolymer, is used as a siRNA delivery system in kidney drug targeting. In order to deliver siRNA molecules targeted at PDGF-B and PDGFR-β, chitosan/siRNA nanoplexes were prepared. The in vitro characterization, transfection studies, and knockdown efficiencies were studied in immortalized and primary rat mesangial cells. In addition, the effects of chitosan nanoplexes on mesangial cell proliferation and migration were investigated. After in vitro transfection, the PDGF-B and PDGFR-β gene silencing efficiencies of PDGF-B and PDGFR-β targeting siRNA-containing chitosan nanoplexes were 74 and 71% in immortalized rat mesangial cells and 66 and 62% in primary rat mesangial cells, respectively. siPDGF-B- and siPDGFR-β-containing nanoplexes indicated a significant decrease in mesangial cell migration and proliferation. These results suggested that mesangial cell proliferation may be inhibited by silencing of the PDGF-B signaling pathway. Gene silencing approaches with chitosan-based gene delivery systems have promise for the efficient treatment of renal disease.

  3. Diclofenac sodium inhibits NFkappaB transcription in osteoclasts.

    Science.gov (United States)

    Karakawa, A; Fukawa, Y; Okazaki, M; Takahashi, K; Sano, T; Amano, H; Yamamoto, M; Yamada, S

    2009-11-01

    A non-steroidal anti-inflammatory drug, diclofenac, acts efficiently against inflammation; however, down-regulation of diclofenac on bone remodeling has raised concerns. The inhibitory mechanisms of diclofenac are poorly understood. We hypothesized that diclofenac down-regulates osteoclast differentiation and activation via inhibition of the translocation of phosphorylated nuclear factor kappa B (NFkappaB). When osteoclasts prepared from mouse hematopoietic stem cells were treated with diclofenac, tartrateresistant acid phosphatase-positive multinucleated cells decreased in a concentration-dependent manner. Pit formation assay revealed the abolition of osteoclastic bone resorption; levels of cathepsin K transcripts, an osteoclastic resorption marker, were down-regulated time-dependently. Diclofenac induced the accumulation of the inhibitor of kappa B in cytosol, which led to suppression of the nuclear translocation of NFkappaB and phosphorylated NFkappaB. These results suggest that the novel mechanism of diclofenac for bone remodeling is associated with phosphorylated NFkappaB reduction, which regulates osteoclast differentiation and activation.

  4. Dendrimers as Potential Therapeutic Tools in HIV Inhibition

    Directory of Open Access Journals (Sweden)

    Xiangbo Li

    2013-07-01

    Full Text Available The present treatments for HIV transfection include chemical agents and gene therapies. Although many chemical drugs, peptides and genes have been developed for HIV inhibition, a variety of non-ignorable drawbacks limited the efficiency of these materials. In this review, we discuss the application of dendrimers as both therapeutic agents and non-viral vectors of chemical agents and genes for HIV treatment. On the one hand, dendrimers with functional end groups combine with the gp120 of HIV and CD4 molecule of host cell to suppress the attachment of HIV to the host cell. Some of the dendrimers are capable of intruding into the cell and interfere with the later stages of HIV replication as well. On the other hand, dendrimers are also able to transfer chemical drugs and genes into the host cells, which conspicuously increase the anti-HIV activity of these materials. Dendrimers as therapeutic tools provide a potential treatment for HIV infection.

  5. Peptide inhibition of human cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Morris Cindy A

    2011-02-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is the most prevalent congenital viral infection in the United States and Europe causing significant morbidity and mortality to both mother and child. HCMV is also an opportunistic pathogen in immunocompromised individuals, including human immunodeficiency virus (HIV- infected patients with AIDS, and solid organ and allogeneic stem cell transplantation recipients. Current treatments for HCMV-associated diseases are insufficient due to the emergence of drug-induced resistance and cytotoxicity, necessitating novel approaches to limit HCMV infection. The aim of this study was to develop therapeutic peptides targeting glycoprotein B (gB, a major glycoprotein of HCMV that is highly conserved across the Herpesviridae family, that specifically inhibit fusion of the viral envelope with the host cell membrane preventing HCMV entry and infection. Results Using the Wimley-White Interfacial Hydrophobicity Scale (WWIHS, several regions within gB were identified that display a high potential to interact with lipid bilayers of cell membranes and hydrophobic surfaces within proteins. The ability of synthetic peptides analogous to WWIHS-positive sequences of HCMV gB to inhibit viral infectivity was evaluated. Human foreskin fibroblasts (HFF were infected with the Towne-GFP strain of HCMV (0.5 MOI, preincubated with peptides at a range of concentrations (78 nm to 100 μM, and GFP-positive cells were visualized 48 hours post-infection by fluorescence microscopy and analyzed quantitatively by flow cytometry. Peptides that inhibited HCMV infection demonstrated different inhibitory concentration curves indicating that each peptide possesses distinct biophysical properties. Peptide 174-200 showed 80% inhibition of viral infection at a concentration of 100 μM, and 51% and 62% inhibition at concentrations of 5 μM and 2.5 μM, respectively. Peptide 233-263 inhibited infection by 97% and 92% at concentrations of 100

  6. STIR: Assessing and Training Response Inhibition Abilities

    Science.gov (United States)

    2014-07-30

    Learning to stop responding to alcohol cues reduces alcohol intake via reduced affective associations rather than increased response inhibition. Addiction ...requires an abstract application of the core learning principle1,2, and viable examples are often hard to find and/or assess. If exposure to non...inhibition training that expands upon previous successful “near transfer” response inhibition training efforts—such as treating alcohol addictions by

  7. Inhibition of cortiocosteroidogenesis by delta-9-tetrahydrocannabinol.

    Science.gov (United States)

    Warner, W; Harris, L S; Carchman, R A

    1977-12-01

    ACTH, cholera toxin, cyclic AMP but not pregnenolone-induced steroidogenesis in Y-1 functional mouse adrenal tumor cells was significantly inhibited by delta-9-tetrahydrocannabinol, cannabidiol, and cannabinol. The inhibition of steroidogenesis could not be correlated with a general depression in cell function or viability. The data suggest that cannabinoids inhibit corticosteroidogenesis at a site between the synthesis of cAMP and of pregnenolone.

  8. Contour detection based on nonclassical receptive field inhibition

    NARCIS (Netherlands)

    Grigorescu, Cosmin; Petkov, Nicolai; Westenberg, Michel A.

    We propose a biologically motivated computational step, called nonclassical receptive field (non-CRF) inhibition, more generally surround inhibition or suppression, to improve contour detection in machine vision. Non-CRF inhibition is exhibited by 80% of the orientation-selective neurons in the

  9. Targeted inhibition of αvβ3 integrin with an RNA aptamer impairs endothelial cell growth and survival

    International Nuclear Information System (INIS)

    Mi Jing; Zhang Xiuwu; Giangrande, Paloma H.; McNamara, James O.; Nimjee, Shahid M.; Sarraf-Yazdi, Shiva; Sullenger, Bruce A.; Clary, Bryan M.

    2005-01-01

    αvβ3 integrin is a crucial factor involved in a variety of physiological processes, such as cell growth and migration, tumor invasion and metastasis, angiogenesis, and wound healing. αvβ3 integrin exerts its effect by regulating endothelial cell (EC) migration, proliferation, and survival. Inhibiting the function of αvβ3 integrin, therefore, represents a potential anti-cancer, anti-thrombotic, and anti-inflammatory strategy. In this study, we tested an RNA aptamer, Apt-αvβ3 that binds recombinant αvβ3 integrin, for its ability to bind endogenous αvβ3 integrin on the surface of cells in culture and to subsequently affect cellular response. Our data illustrate that Apt-αvβ3 binds αvβ3 integrin expressed on the surface of live HUVECs. This interaction significantly decreases both basal and PDGF-induced cell proliferation as well as inhibition of cell adhesion. Apt-αvβ3 can also reduce PDGF-stimulated tube formation and increase HUVEC apoptosis through inhibition of FAK phosphorylation pathway. Our results demonstrate that by binding to its target, Apt-αvβ3 can efficiently inhibit human EC proliferation and survival, resulting in reduced angiogenesis. It predicts that Apt-αvβ3 could become useful in both tumor imaging and the treatment of tumor growth, atherosclerosis, thrombosis, and inflammation

  10. Inhibition of Lassa virus glycoprotein cleavage and multicycle replication by site 1 protease-adapted alpha(1-antitrypsin variants.

    Directory of Open Access Journals (Sweden)

    Anna Maisa

    2009-06-01

    Full Text Available Proteolytic processing of the Lassa virus envelope glycoprotein precursor GP-C by the host proprotein convertase site 1 protease (S1P is a prerequisite for the incorporation of the subunits GP-1 and GP-2 into viral particles and, hence, essential for infectivity and virus spread. Therefore, we tested in this study the concept of using S1P as a target to block efficient virus replication.We demonstrate that stable cell lines inducibly expressing S1P-adapted alpha(1-antitrypsin variants inhibit the proteolytic maturation of GP-C. Introduction of the S1P recognition motifs RRIL and RRLL into the reactive center loop of alpha(1-antitrypsin resulted in abrogation of GP-C processing by endogenous S1P to a similar level observed in S1P-deficient cells. Moreover, S1P-specific alpha(1-antitrypsins significantly inhibited replication and spread of a replication-competent recombinant vesicular stomatitis virus expressing the Lassa virus glycoprotein GP as well as authentic Lassa virus. Inhibition of viral replication correlated with the ability of the different alpha(1-antitrypsin variants to inhibit the processing of the Lassa virus glycoprotein precursor.Our data suggest that glycoprotein cleavage by S1P is a promising target for the development of novel anti-arenaviral strategies.

  11. Regulation of spatial selectivity by crossover inhibition.

    Science.gov (United States)

    Cafaro, Jon; Rieke, Fred

    2013-04-10

    Signals throughout the nervous system diverge into parallel excitatory and inhibitory pathways that later converge on downstream neurons to control their spike output. Converging excitatory and inhibitory synaptic inputs can exhibit a variety of temporal relationships. A common motif is feedforward inhibition, in which an increase (decrease) in excitatory input precedes a corresponding increase (decrease) in inhibitory input. The delay of inhibitory input relative to excitatory input originates from an extra synapse in the circuit shaping inhibitory input. Another common motif is push-pull or "crossover" inhibition, in which increases (decreases) in excitatory input occur together with decreases (increases) in inhibitory input. Primate On midget ganglion cells receive primarily feedforward inhibition and On parasol cells receive primarily crossover inhibition; this difference provides an opportunity to study how each motif shapes the light responses of cell types that play a key role in visual perception. For full-field stimuli, feedforward inhibition abbreviated and attenuated responses of On midget cells, while crossover inhibition, though plentiful, had surprisingly little impact on the responses of On parasol cells. Spatially structured stimuli, however, could cause excitatory and inhibitory inputs to On parasol cells to increase together, adopting a temporal relation very much like that for feedforward inhibition. In this case, inhibitory inputs substantially abbreviated a cell's spike output. Thus inhibitory input shapes the temporal stimulus selectivity of both midget and parasol ganglion cells, but its impact on responses of parasol cells depends strongly on the spatial structure of the light inputs.

  12. Inhibition of glutathione synthesis eliminates the adaptive response of ascitic hepatoma 22 cells to nedaplatin that targets thioredoxin reductase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yijun [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Lu, Hongjuan [Productivity Center of Jiangsu Province, Nanjing 210042, Jiangsu (China); Wang, Dongxu; Li, Shengrong; Sun, Kang; Wan, Xiaochun [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Taylor, Ethan Will [Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27402 (United States); Zhang, Jinsong, E-mail: zjs@ahau.edu.cn [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China)

    2012-12-15

    Thioredoxin reductase (TrxR) is a target for cancer therapy and the anticancer mechanism of cisplatin involves TrxR inhibition. We hypothesize that the anticancer drug nedaplatin (NDP), an analogue of cisplatin and a second-generation platinum complex, also targets TrxR. Furthermore, we investigate whether the therapeutic efficacy of NDP can be enhanced by simultaneous modulation of 1) TrxR, via NDP, and 2) glutathione (GSH), via the GSH synthesis inhibitor buthionine sulfoximine (BSO). Mice bearing ascitic hepatoma 22 (H22) cells were treated with NDP alone or NDP plus BSO. TrxR activity of H22 cells was inhibited by NDP in a dose-dependent manner. A high correlation between the inhibition of TrxR activity at 6 h and the inhibition of ascitic fluid volume at 72 h was established (r = 0.978, p < 0.01). As an adaptive response, the viable ascitic cancer cells after NDP treatment displayed an enlarged cell phenotype, assembled with several-fold more antioxidant enzymes and GSH-predominant non-protein free thiols. This adaptive response was largely eliminated when BSO was co-administered with NDP, leading to the decimation of the H22 cell population without enhancing renal toxicity, since at this dose, NDP did not inhibit renal TrxR activity. In conclusion, the pharmacological effect of NDP involves TrxR inhibition, and the adaptive response of NDP-treated ascitic H22 cells can be efficiently counteracted by BSO. Simultaneous modulation of TrxR and GSH on ascitic H22 cells using NDP plus BSO greatly enhances therapeutic efficacy as compared with the single modulation of TrxR using NDP alone. -- Highlights: ► Nedaplatin at a pharmacological dose inhibits TrxR in cancer cells but not in kidney. ► The nedaplatin-treated cancer cells exhibit adaptive response. ► Buthionine sulfoximine inhibits glutathione in both cancer cells and kidney. ► Buthionine sulfoximine counteracts the adaptive response to the nedaplatin treatment. ► Buthionine sulfoximine does not

  13. Inhibition of glutathione synthesis eliminates the adaptive response of ascitic hepatoma 22 cells to nedaplatin that targets thioredoxin reductase

    International Nuclear Information System (INIS)

    Wang, Yijun; Lu, Hongjuan; Wang, Dongxu; Li, Shengrong; Sun, Kang; Wan, Xiaochun; Taylor, Ethan Will; Zhang, Jinsong

    2012-01-01

    Thioredoxin reductase (TrxR) is a target for cancer therapy and the anticancer mechanism of cisplatin involves TrxR inhibition. We hypothesize that the anticancer drug nedaplatin (NDP), an analogue of cisplatin and a second-generation platinum complex, also targets TrxR. Furthermore, we investigate whether the therapeutic efficacy of NDP can be enhanced by simultaneous modulation of 1) TrxR, via NDP, and 2) glutathione (GSH), via the GSH synthesis inhibitor buthionine sulfoximine (BSO). Mice bearing ascitic hepatoma 22 (H22) cells were treated with NDP alone or NDP plus BSO. TrxR activity of H22 cells was inhibited by NDP in a dose-dependent manner. A high correlation between the inhibition of TrxR activity at 6 h and the inhibition of ascitic fluid volume at 72 h was established (r = 0.978, p < 0.01). As an adaptive response, the viable ascitic cancer cells after NDP treatment displayed an enlarged cell phenotype, assembled with several-fold more antioxidant enzymes and GSH-predominant non-protein free thiols. This adaptive response was largely eliminated when BSO was co-administered with NDP, leading to the decimation of the H22 cell population without enhancing renal toxicity, since at this dose, NDP did not inhibit renal TrxR activity. In conclusion, the pharmacological effect of NDP involves TrxR inhibition, and the adaptive response of NDP-treated ascitic H22 cells can be efficiently counteracted by BSO. Simultaneous modulation of TrxR and GSH on ascitic H22 cells using NDP plus BSO greatly enhances therapeutic efficacy as compared with the single modulation of TrxR using NDP alone. -- Highlights: ► Nedaplatin at a pharmacological dose inhibits TrxR in cancer cells but not in kidney. ► The nedaplatin-treated cancer cells exhibit adaptive response. ► Buthionine sulfoximine inhibits glutathione in both cancer cells and kidney. ► Buthionine sulfoximine counteracts the adaptive response to the nedaplatin treatment. ► Buthionine sulfoximine does not

  14. The inhibition of prions through blocking prion conversion by permanently charged branched polyamines of low cytotoxicity.

    Science.gov (United States)

    Lim, Yong-beom; Mays, Charles E; Kim, Younghwan; Titlow, William B; Ryou, Chongsuk

    2010-03-01

    Branched polyamines are effective in inhibiting prions in a cationic surface charge density dependent manner. However, toxicity associated with branched polyamines, in general, often hampers the successful application of the compounds to treat prion diseases. Here, we report that constitutively maintained cationic properties in branched polyamines reduced the intrinsic toxicity of the compounds while retaining the anti-prion activities. In prion-infected neuroblastoma cells, quaternization of amines in polyethyleneimine (PEI) and polyamidoamine (PAMAM) dendrimers markedly increased the nontoxic concentration ranges of the compounds and still supported, albeit reduced, an appreciable level of anti-prion activity in clearing prions from the infected cells. Furthermore, quaternized PEI was able to degrade prions at acidic pH conditions and inhibit the in vitro prion propagation facilitated by conversion of the normal prion protein isoform to its misfolded counterpart, although such activities were decreased by quaternization. Quaternized PAMAM was least effective in degrading prions but efficiently inhibited prion conversion with the same efficacy as unmodified PAMAM. Our results suggest that quaternization represents an effective strategy for developing nontoxic branched polyamines with potent anti-prion activity. This study highlights the importance of polyamine structural control for developing polyamine-based anti-prion agents and understanding of an action mechanism of quaternized branched polyamines. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  15. Inhibition of amyloid oligomerization into different supramolecular architectures by small molecules: mechanistic insights and design rules.

    Science.gov (United States)

    Brahmachari, Sayanti; Paul, Ashim; Segal, Daniel; Gazit, Ehud

    2017-05-01

    Protein misfolding and aggregation have been associated with several human disorders, including Alzheimer's, Parkinson's and Huntington's diseases, as well as senile systemic amyloidosis and Type II diabetes. However, there is no current disease-modifying therapy available for the treatment of these disorders. In spite of extensive academic, pharmaceutical, medicinal and clinical research, a complete mechanistic model for this family of diseases is still lacking. In this review, we primarily discuss the different types of small molecular entities which have been used for the inhibition of the aggregation process of different amyloidogenic proteins under diseased conditions. These include small peptides, polyphenols, inositols, quinones and their derivatives, and metal chelator molecules. In recent years, these groups of molecules have been extensively studied using in vitro, in vivo and computational models to understand their mechanism of action and common structural features underlying the process of inhibition. A salient feature found to be instrumental in the process of inhibition is the balance between the aromatic unit that functions as the amyloid recognition unit and the hydrophilic amyloid breaker unit. The establishment of structure-function relationship for amyloid-modifying therapies by the various functional entities should serve as an important step toward the development of efficient therapeutics.

  16. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus.

    Science.gov (United States)

    Lee, Jin-Hyung; Kim, Yong-Guy; Yong Ryu, Shi; Lee, Jintae

    2016-01-14

    Staphylococcal biofilms are problematic and play a critical role in the persistence of chronic infections because of their abilities to tolerate antimicrobial agents. Thus, the inhibitions of biofilm formation and/or toxin production are viewed as alternative means of controlling Staphylococcus aureus infections. Here, the antibiofilm activities of 560 purified phytochemicals were examined. Alizarin at 10 μg/ml was found to efficiently inhibit biofilm formation by three S. aureus strains and a Staphylococcus epidermidis strain. In addition, two other anthraquinones purpurin and quinalizarin were found to have antibiofilm activity. Binding of Ca(2+) by alizarin decreased S. aureus biofilm formation and a calcium-specific chelating agent suppressed the effect of calcium. These three anthraquinones also markedly inhibited the hemolytic activity of S. aureus, and in-line with their antibiofilm activities, increased cell aggregation. A chemical structure-activity relationship study revealed that two hydroxyl units at the C-1 and C-2 positions of anthraquinone play important roles in antibiofilm and anti-hemolytic activities. Transcriptional analyses showed that alizarin repressed the α-hemolysin hla gene, biofilm-related genes (psmα, rbf, and spa), and modulated the expressions of cid/lrg genes (the holin/antiholin system). These findings suggest anthraquinones, especially alizarin, are potentially useful for controlling biofilm formation and the virulence of S. aureus.

  17. Application of electron beam irradiation for inhibition of Fusarium oxysporum f. sp. dianthi activity

    International Nuclear Information System (INIS)

    Gryczka, U.; Migdal, W.; Ptaszek, M.; Orlikowski, L.B.

    2010-01-01

    Electron beam irradiation was tested against Fusarium oxysporum f. sp. dianthi (Fod) a pathogen causing Fusarium wilt of carnation. Efficiency of the different radiation doses on in vitro survival and development of Fod culture on potato-dextrose agar (PDA) medium was tested. A dose of 6 kGy completely inhibited the pathogen growth. Application of radiation for microbiological decontamination of four substrates used for carnation production demonstrated that, depending on the type of substrate, doses of 10 or 25 kGy were effective in Fod elimination. All carnation plants cultivated on radiation decontaminated substrates were healthy. (authors)

  18. The development of children's inhibition: Does parenting matter?

    OpenAIRE

    Roskam, I.; Stievenart, Marie; Meunier, J.-C.; Noël, M.-P.

    2014-01-01

    Whereas a large body of research has investigated the maturation of inhibition in relation to the prefrontal cortex, far less research has been devoted to environmental factors that could contribute to inhibition improvement. The aim of the current study was to test whether and to what extent parenting matters for inhibition development from 2 to 8. years of age. Data were collected from 421 families, with 348 mother-child dyads and 342 father-child dyads participating. Children's inhibition ...

  19. Inhibition of charge recombination for enhanced dye-sensitized solar cells and self-powered UV sensors by surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Liang, E-mail: chuliang@njupt.edu.cn [Advanced Energy Technology Center, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Wuhan National Laboratory for Optoelectronics (WNLO)-School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); Qin, Zhengfei; Liu, Wei [School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Ma, Xin’guo, E-mail: maxg2013@sohu.com [Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China)

    2016-12-15

    Graphical abstract: Inhibition of charge recombination was utilized to prolong electrode lifetime in dye-sensitized solar cells (DSSCs) and self-powered UV sensors based on TiO{sub 2}-modified SnO{sub 2} photoelectrodes. The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the electron lifetime was significantly prolonged in DSSCs after TiO{sub 2} modification. And in self-powered UV sensors, the sensitivity and response time were enhanced. - Highlights: • The surface modification to inhibit charge recombination was utilized in photovoltaic devices. • Inhibition of charge recombination can prolong electrode lifetime in photovoltaic devices. • Enhanced DSSCs and self-powered UV sensors based on SnO{sub 2} photoelectrodes were obtained by TiO{sub 2} modification. - Abstract: The surface modification to inhibit charge recombination was utilized in dye-sensitized solar cells (DSSCs) and self-powered ultraviolet (UV) sensors based on SnO{sub 2} hierarchical microspheres by TiO{sub 2} modification. For DSSCs with SnO{sub 2} photoelectrodes modified by TiO{sub 2}, the power conversion efficiency (PCE) was improved from 1.40% to 4.15% under standard AM 1.5G illumination (100 mW/cm{sup 2}). The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the charge recombination was effectively inhibited, resulting in long electron lifetime. For UV sensors with SnO{sub 2} photoelectrodes modified by TiO{sub 2} layer, the self-powered property was more obvious, and the sensitivity and response time were enhanced from 91 to 6229 and 0.15 s to 0.055 s, respectively. The surface modification can engineer the interface energy to inhibit charge recombination, which is a desirable approach to improve the performance of photoelectric nanodevice.

  20. Aspartate inhibits Staphylococcus aureus biofilm formation.

    Science.gov (United States)

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Structure–inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs)

    International Nuclear Information System (INIS)

    Fang, Zhong-Ze; Cao, Yun-Feng; Hu, Cui-Min; Hong, Mo; Sun, Xiao-Yu; Ge, Guang-Bo; Liu, Yong; Zhang, Yan-Yan; Yang, Ling; Sun, Hong-Zhi

    2013-01-01

    The wide utilization of ginseng provides the high risk of herb–drug interaction (HDI) with many clinical drugs. The inhibition of ginsenosides towards drug-metabolizing enzymes (DMEs) has been regarded as an important reason for herb–drug interaction (HDI). Compared with the deep studies on the ginsenosides' inhibition towards cytochrome P450 (CYP), the inhibition of ginsenosides towards the important phase II enzymes UDP-glucuronosyltransferases (UGTs) remains to be unclear. The present study aims to evaluate the inhibition behavior of ginsenosides towards important UGT isoforms located in the liver and intestine using in vitro methods. The recombinant UGT isoform-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed as in vitro probe reaction. The results showed that structure-dependent inhibition existed for the inhibition of ginsenosides towards UGT isoforms. To clarify the possibility of in vivo herb–drug interaction induced by this kind of inhibition, the ginsenoside Rg 3 was selected as an example, and the inhibition kinetic type and parameters (K i ) were determined. Rg 3 competitively inhibited UGT1A7, 2B7 and 2B15-catalyzed 4-MU glucuronidation reaction, and exerted noncompetitive inhibition towards UGT1A8-catalyzed 4-MU glucuronidation. The inhibition parameters (K i values) were calculated to be 22.6, 7.9, 1.9, and 2.0 μM for UGT1A7, 1A8, 2B7 and 2B15. Using human maximum plasma concentration of Rg 3 (400 ng/ml (0.5 μM)) after intramuscular injection of 60 mg Rg 3 , the area under the plasma concentration-time curve (AUC) was extrapolated to increase by 2.2%, 6.3%, 26.3%, and 25% for the co-administered drugs completely undergoing the metabolism catalyzed by UGT1A7, 1A8, 2B7 and 2B15, respectively. All these results indicated that the ginsenosides' inhibition towards UGT isoforms might be an important reason for ginseng–drug interaction. - Highlights: ► Structure-dependent inhibition of ginsenoside towards UDP

  2. Structure–inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs)

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhong-Ze [The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics Chinese Academy of Sciences and The first Affiliated Hospital of Liaoning Medical University, No.457, Zhongshan Road, Dalian 116023 (China); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); Cao, Yun-Feng [Key Laboratory of Contraceptives and Devices Research(NPFPC),Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032 (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics Chinese Academy of Sciences and The first Affiliated Hospital of Liaoning Medical University, No.457, Zhongshan Road, Dalian 116023 (China); Hu, Cui-Min [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); Hong, Mo; Sun, Xiao-Yu [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics Chinese Academy of Sciences and The first Affiliated Hospital of Liaoning Medical University, No.457, Zhongshan Road, Dalian 116023 (China); Ge, Guang-Bo; Liu, Yong; Zhang, Yan-Yan; Yang, Ling [Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China); Sun, Hong-Zhi, E-mail: zzfang228@gmail.com [The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China)

    2013-03-01

    The wide utilization of ginseng provides the high risk of herb–drug interaction (HDI) with many clinical drugs. The inhibition of ginsenosides towards drug-metabolizing enzymes (DMEs) has been regarded as an important reason for herb–drug interaction (HDI). Compared with the deep studies on the ginsenosides' inhibition towards cytochrome P450 (CYP), the inhibition of ginsenosides towards the important phase II enzymes UDP-glucuronosyltransferases (UGTs) remains to be unclear. The present study aims to evaluate the inhibition behavior of ginsenosides towards important UGT isoforms located in the liver and intestine using in vitro methods. The recombinant UGT isoform-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed as in vitro probe reaction. The results showed that structure-dependent inhibition existed for the inhibition of ginsenosides towards UGT isoforms. To clarify the possibility of in vivo herb–drug interaction induced by this kind of inhibition, the ginsenoside Rg{sub 3} was selected as an example, and the inhibition kinetic type and parameters (K{sub i}) were determined. Rg{sub 3} competitively inhibited UGT1A7, 2B7 and 2B15-catalyzed 4-MU glucuronidation reaction, and exerted noncompetitive inhibition towards UGT1A8-catalyzed 4-MU glucuronidation. The inhibition parameters (K{sub i} values) were calculated to be 22.6, 7.9, 1.9, and 2.0 μM for UGT1A7, 1A8, 2B7 and 2B15. Using human maximum plasma concentration of Rg{sub 3} (400 ng/ml (0.5 μM)) after intramuscular injection of 60 mg Rg{sub 3}, the area under the plasma concentration-time curve (AUC) was extrapolated to increase by 2.2%, 6.3%, 26.3%, and 25% for the co-administered drugs completely undergoing the metabolism catalyzed by UGT1A7, 1A8, 2B7 and 2B15, respectively. All these results indicated that the ginsenosides' inhibition towards UGT isoforms might be an important reason for ginseng–drug interaction. - Highlights: ► Structure

  3. Inhibition Effect of 1-Butyl-4-Methylpyridinium Tetrafluoroborate on the Corrosion of Copper in Phosphate Solutions

    OpenAIRE

    Scendo, M.; Uznanska, J.

    2011-01-01

    The influence of the concentration of 1-Butyl-4-methylpyridinium tetrafluoroborate (4MBPBF4) as ionic liquid (IL) on the corrosion of copper in 0.5 M P O 4 3 − solutions of pH 2 and 4 was studied. The research involved electrochemical polarization method, and scanning electron microscopy (SEM) technique. The results obtained showed that the inhibition efficiency of corrosion of copper increases with an increase in the concentration of 4MBPBF4 but decreases with increasing temperature. The the...

  4. Corrosion Inhibition and Adsorption Behavior of Clove Oil on Iron in Acidic Medium

    Directory of Open Access Journals (Sweden)

    Archana Saxena

    2012-01-01

    Full Text Available Corrosion behavior of iron in hydrochloric acid solution was studied using weight loss as well Scanning electron microscopy study without and with clove oil. The percentage inhibition efficiency increases with increasing clove oil concentration. All the data revel that the oil acts as an excellent inhibitor for the corrosion of iron in HCl solution. Thermodynamic, kinetic parameters and equilibrium constant for adsorption process were calculated from the experimental data. The adsorption of clove oil on experimental metals was found to follow the Langmuir adsorption isotherm at all the concentration studies. Scanning electron microscope (SEM, investigations also indicate that clove oil greatly lowers the dissolution currents.

  5. Inhibition of autophagy initiation potentiates chemosensitivity in mesothelioma.

    Science.gov (United States)

    Follo, Carlo; Cheng, Yao; Richards, William G; Bueno, Raphael; Broaddus, Virginia Courtney

    2018-03-01

    The benefits of inhibiting autophagy in cancer are still controversial, with differences in outcome based on the type of tumor, the context and the particular stage of inhibition. Here, we investigated the impact of inhibiting autophagy at different stages on chemosensitivity using 3-dimensional (3D) models of mesothelioma, including ex vivo human tumor fragment spheroids. As shown by LC3B accumulation, we successfully inhibited autophagy using either an early stage ULK1/2 inhibitor (MRT 68921) or a late stage inhibitor (hydroxychloroquine). We found that inhibition of autophagy at the early stage, but not at late stage, potentiated chemosensitivity. This effect was seen only in those spheroids with high autophagy and active initiation at steady state. Inhibition of autophagy alone, at either early or late stage, did not cause cell death, showing that the inhibitors were non-toxic and that mesothelioma did not depend on autophagy at baseline, at least over 24 h. Using ATG13 puncta analysis, we found that autophagy initiation identified tumors that are more chemosensitive at baseline and after autophagy inhibition. Our results highlight a potential role of autophagy initiation in supporting mesothelioma cells during chemotherapy. Our work also highlights the importance of testing the inhibition of different stages in order to uncover the role of autophagy and the potential of its modulation in the treatment of cancer. © 2017 Wiley Periodicals, Inc.

  6. Astaxanthin Attenuates Homocysteine-Induced Cardiotoxicity in Vitro and in Vivo by Inhibiting Mitochondrial Dysfunction and Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Cun-dong Fan

    2017-12-01

    Full Text Available Homocysteine (Hcy as an independent risk factor contributes to the occurrence and development of human cardiovascular diseases (CVD. Induction of oxidative stress and apoptosis was commonly accepted as the major mechanism in Hcy-induced cardiotoxicity. Astaxanthin (ATX as one of the most powerful antioxidants exhibits novel cardioprotective potential against Hcy-induced endothelial dysfunction. However, the protective effect and mechanism of ATX against Hcy-induced cardiotoxicity in cardiomyocytes have not been elucidated yet. Herein, H9c2 rat cardiomyocytes and Hcy-injured animal model were employed in the present study. The MTT, flow cytometry analysis (FCM, TUNEL-DAPI and western blotting results all demonstrated that ATX significantly alleviated Hcy-induced cytotoxicity in H9c2 cells through inhibition of mitochondria-mediated apoptosis. The JC-1 and Mito-tracker staining both revealed that ATX pre-treatment blocked Hcy-induced mitochondrial dysfunction by regulating Bcl-2 family expression. Moreover, DCFH-DA and Mito-SOX staining showed that ATX effectively attenuated Hcy-induced oxidative damage via scavenging intracellular reactive oxygen species (ROS. Importantly, the ELISA and immunohistochemical results indicated that Hcy-induced cardiotoxicity in vivo was also significantly inhibited by ATX through inhibition of oxidative damage and apoptosis, and improvement of the angiogenesis. Taken together, our results demonstrated that ATX suppressed Hcy-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage. Our findings validated the strategy of using ATX may be a highly efficient way to combat Hcy-mediated human CVD.

  7. Astaxanthin Attenuates Homocysteine-Induced Cardiotoxicity in Vitro and in Vivo by Inhibiting Mitochondrial Dysfunction and Oxidative Damage.

    Science.gov (United States)

    Fan, Cun-Dong; Sun, Jing-Yi; Fu, Xiao-Ting; Hou, Ya-Jun; Li, Yuan; Yang, Ming-Feng; Fu, Xiao-Yan; Sun, Bao-Liang

    2017-01-01

    Homocysteine (Hcy) as an independent risk factor contributes to the occurrence and development of human cardiovascular diseases (CVD). Induction of oxidative stress and apoptosis was commonly accepted as the major mechanism in Hcy-induced cardiotoxicity. Astaxanthin (ATX) as one of the most powerful antioxidants exhibits novel cardioprotective potential against Hcy-induced endothelial dysfunction. However, the protective effect and mechanism of ATX against Hcy-induced cardiotoxicity in cardiomyocytes have not been elucidated yet. Herein, H9c2 rat cardiomyocytes and Hcy-injured animal model were employed in the present study. The MTT, flow cytometry analysis (FCM), TUNEL-DAPI and western blotting results all demonstrated that ATX significantly alleviated Hcy-induced cytotoxicity in H9c2 cells through inhibition of mitochondria-mediated apoptosis. The JC-1 and Mito-tracker staining both revealed that ATX pre-treatment blocked Hcy-induced mitochondrial dysfunction by regulating Bcl-2 family expression. Moreover, DCFH-DA and Mito-SOX staining showed that ATX effectively attenuated Hcy-induced oxidative damage via scavenging intracellular reactive oxygen species (ROS). Importantly, the ELISA and immunohistochemical results indicated that Hcy-induced cardiotoxicity in vivo was also significantly inhibited by ATX through inhibition of oxidative damage and apoptosis, and improvement of the angiogenesis. Taken together, our results demonstrated that ATX suppressed Hcy-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage. Our findings validated the strategy of using ATX may be a highly efficient way to combat Hcy-mediated human CVD.

  8. Methanol Extract of Myelophycus caespitosus Inhibits the ...

    African Journals Online (AJOL)

    Methanol Extract of Myelophycus caespitosus Inhibits the Inflammatory Response in Lipopolysaccharidestimulated BV2 Microglial Cells by Downregulating NF-kB via Inhibition of the Akt Signaling Pathway.

  9. Inhibiting the inevitable

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2006-01-01

    conservation is to ‘buy time’ for the object. Inhibitive conservation of plastics involves the removal or reduction of factors causing or accelerating degradation including light, oxygen, acids, relative humidity and acidic breakdown products. Specific approaches to conservation have been developed......Once plastics objects are registered in museum collections, the institution becomes responsible for their long term preservation, until the end of their useful lifetime. Plastics appear to deteriorate faster than other materials in museum collections and have a useful lifetime between 5 and 25...... years. Preventive or inhibitive conservation involves controlling the environments in which objects are placed during storage and display, with the aim of slowing the major deterioration reactions. Once in progress, degradation of plastics cannot be stopped or reversed, so the aim of preventive...

  10. Corrosion Inhibition of Q235A Steel in Acid Medium Using Isatin Derivatives: A Qsar Study

    International Nuclear Information System (INIS)

    Abdo M Al-Fakih; Madzlan Aziz; Abdo M Al-Fakih; Abdallah, H.H.; Hasmerya Maarof; Rosmahaida Jamaludin; Bishir Usman

    2016-01-01

    Quantitative Structure-Activity Relationship (QSAR) study was performed on 10 isatin derivatives which were reportedly used as corrosion inhibitors. Dragon software was used to calculate the molecular descriptors. Partial least square (PLS) method was used to run the regression analysis between the descriptors and the corrosion inhibition efficiencies (IE) of the inhibitors. A predictive QSAR model was developed with a correlation coefficient (r 2 cal ) of 0.9676. The model validity was assessed through internal and external validation. The results show that cross-validation regression coefficient (r 2 cv ) and prediction regression coefficient (r 2 pred ) are 0.8163 and 0.9189, respectively. The model was used to predict the IE for ten isatin derivatives. The results confirm a good stability and predictive ability of the model. Dragon-based descriptors provide a very good description of the corrosion inhibition properties of the inhibitors. The results of the QSAR study were found to be consistent with the experimental data. (author)

  11. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism.

    Science.gov (United States)

    Lin, Suyun; Zhang, Guowen; Liao, Yijing; Pan, Junhui

    2015-11-01

    Chrysin, a bioactive flavonoid, was investigated for its potential to inhibit the activity of xanthine oxidase (XO), a key enzyme catalyzing xanthine to uric acid and finally causing gout. The kinetic analysis showed that chrysin possessed a strong inhibition on XO ability in a reversible competitive manner with IC50 value of (1.26±0.04)×10(-6)molL(-1). The results of fluorescence titrations indicated that chrysin bound to XO with high affinity, and the interaction was predominately driven by hydrogen bonds and van der Waals forces. Analysis of circular dichroism demonstrated that chrysin induced the conformational change of XO with increases in α-helix and β-sheet and reductions in β-turn and random coil structures. Molecular simulation revealed that chrysin interacted with the amino acid residues Leu648, Phe649, Glu802, Leu873, Ser876, Glu879, Arg880, Phe1009, Thr1010, Val1011 and Phe1013 located within the active cavity of XO. The mechanism of chrysin on XO activity may be the insertion of chrysin into the active site occupying the catalytic center of XO to avoid the entrance of xanthine and causing conformational changes in XO. Furthermore, the interaction assays indicated that chrysin and its structural analog apigenin exhibited an additive effect on inhibition of XO. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Facile integration of multiple magnetite nanoparticles for theranostics combining efficient MRI and thermal therapy

    Science.gov (United States)

    Huang, Guoming; Zhu, Xianglong; Li, Hui; Wang, Lirong; Chi, Xiaoqin; Chen, Jiahe; Wang, Xiaomin; Chen, Zhong; Gao, Jinhao

    2015-01-01

    Multifunctional nanostructures with both diagnostic and therapeutic capabilities have attracted considerable attention in biomedical research because they can offer great advantages in disease management and prognosis. In this work, a facile way to transfer the hydrophobic iron oxide (IO) nanoparticles into aqueous media by employing carboxylic graphene oxide (GO-COOH) as the transferring agent has been reported. In this one-step process, IO nanoparticles adhere to GO-COOH and form water-dispersible clusters via hydrophobic interactions between the hydrophobic ligands of IO nanoparticles and the basal plane of GO-COOH. The multiple IO nanoparticles on GO-COOH sheets (IO/GO-COOH) present a significant increase in T2 contrast enhancement. Moreover, the IO/GO-COOH nanoclusters also display a high photothermal conversion efficiency and can effectively inhibit tumor growth through the photothermal effects. It is envisioned that such IO/GO-COOH nanocomposites combining efficient MRI and photothermal therapy hold great promise in theranostic applications.Multifunctional nanostructures with both diagnostic and therapeutic capabilities have attracted considerable attention in biomedical research because they can offer great advantages in disease management and prognosis. In this work, a facile way to transfer the hydrophobic iron oxide (IO) nanoparticles into aqueous media by employing carboxylic graphene oxide (GO-COOH) as the transferring agent has been reported. In this one-step process, IO nanoparticles adhere to GO-COOH and form water-dispersible clusters via hydrophobic interactions between the hydrophobic ligands of IO nanoparticles and the basal plane of GO-COOH. The multiple IO nanoparticles on GO-COOH sheets (IO/GO-COOH) present a significant increase in T2 contrast enhancement. Moreover, the IO/GO-COOH nanoclusters also display a high photothermal conversion efficiency and can effectively inhibit tumor growth through the photothermal effects. It is envisioned

  13. Identification of the Molecular Mechanisms Responsible for the Inhibition of Homing of AML Cells Triggered by CD44-Ligation

    KAUST Repository

    Al-Jifri, Ablah

    2011-08-03

    Acute Myeloid Leukemia (AML) is a cancerous disease that is defined by the inability to produce functional and mature blood cells, as well as the uncontrolled proliferation due to failure to undergo apoptosis of abnormal cells. The most common therapy for Leukemia, chemotherapy, has proven only to be partially efficient since it does not target the leukemic stem cells (LSCs) that have a high self-renewal and repopulation capacity and result in remission of the disease. Therefore targeting LSCs will provide more efficient therapy. One way to achieve this would be to inhibit their homing capability to the bone marrow. It has recently been shown that CD44, an adhesive molecule, plays a crucial role in cell trafficking and lodgement of both normal and leukemic stem cells. More importantly anti-CD44 monoclonal antibodies, along with its ability to induce differentiation of leukemic blasts, it inhibits specifically the homing capacity of LSCs to their micro-environmental niches. However, these molecular mechanisms that underlie the inhibition of homing have yet to be determined. To address these questions we conducted in vitro adhesion and blot-rolling assays to analyze the adherence and rolling capacity of these LSCs before and after treatment with anti-CD44 monoclonal antibody (mAb). Since glycosyltransferases play a crucial role in post translational carbohydrate decoration on adhesion molecules, we analyzed the expression (using quantitative PCR) of the different glycosyltransferases expressed in LSC\\'s before and after CD44 ligation (mAb treatment). Furthermore, we analyzed differentiation by flow cytometric analysis of treated and non-treated LSC\\'s. We anticipate that our results will set forth new insights into targeted therapies for AML.

  14. Inhibition of AMPK catabolic action by GSK3

    Science.gov (United States)

    Suzuki, Tsukasa; Bridges, Dave; Nakada, Daisuke; Skiniotis, Georgios; Morrison, Sean J.; Lin, Jiandie; Saltiel, Alan R.; Inoki, Ken

    2013-01-01

    SUMMARY AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis by inhibiting anabolic and activating catabolic processes. While AMPK activation has been extensively studied, mechanisms that inhibit AMPK remain elusive. Here we report that glycogen synthase kinase 3 (GSK3) inhibits AMPK function. GSK3 forms a stable complex with AMPK through interactions with the AMPK β regulatory subunit and phosphorylates the AMPK α catalytic subunit. This phosphorylation enhances the accessibility of the activation loop of the α subunit to phosphatases, thereby inhibiting AMPK kinase activity. Surprisingly, PI3K-Akt signaling, which is a major anabolic signaling and normally inhibits GSK3 activity, promotes GSK3 phosphorylation and inhibition of AMPK, thus revealing how AMPK senses anabolic environments in addition to cellular energy levels. Consistently, disrupting GSK3 function within the AMPK complex sustains higher AMPK activity and cellular catabolic processes even under anabolic conditions, indicating that GSK3 acts as a critical sensor for anabolic signaling to regulate AMPK. PMID:23623684

  15. In vitro evaluation of single- and multi-strain probiotics: Inter-species inhibition between probiotic strains, and inhibition of pathogens.

    Science.gov (United States)

    Chapman, C M C; Gibson, G R; Rowland, I

    2012-08-01

    Many studies comparing the effects of single- and multi-strain probiotics on pathogen inhibition compare treatments with different concentrations. They also do not examine the possibility of inhibition between probiotic strains with a mixture. We tested the ability of 14 single-species probiotics to inhibit each other using a cross-streak assay, and agar spot test. We then tested the ability of 15 single-species probiotics and 5 probiotic mixtures to inhibit Clostridium difficile, Escherichia coli and S. typhimurium, using the agar spot test. Testing was done with mixtures created in two ways: one group contained component species incubated together, the other group of mixtures was made using component species which had been incubated separately, equalised to equal optical density, and then mixed in equal volumes. Inhibition was observed for all combinations of probiotics, suggesting that when used as such there may be inhibition between probiotics, potentially reducing efficacy of the mixture. Significant inter-species variation was seen against each pathogen. When single species were tested against mixtures, the multi-species preparations displayed significantly (p probiotic species will inhibit each other when incubated together in vitro, in many cases a probiotic mixture was more effective at inhibiting pathogens than its component species when tested at approximately equal concentrations of biomass. This suggests that using a probiotic mixture might be more effective at reducing gastrointestinal infections, and that creating a mixture using species with different effects against different pathogens may have a broader spectrum of action that a single provided by a single strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Directory of Open Access Journals (Sweden)

    Christoph Hemetsberger

    Full Text Available The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1 as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  17. α-Synuclein aggregation, seeding and inhibition by scyllo-inositol

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Tarek [Biological Sciences, Sunnybrook Research Institute (Canada); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N 3M5, ON (Canada); McLaurin, JoAnne, E-mail: jmclaurin@sri.utoronto.ca [Biological Sciences, Sunnybrook Research Institute (Canada); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N 3M5, ON (Canada)

    2016-01-15

    Recent literature demonstrates the accelerated aggregation of α-synuclein, a protein implicated in the pathogenesis of Parkinson's disease (PD), by the presence of preformed fibrillar conformers in vitro. Furthermore, these preformed fibrillar seeds are suggested to accelerate pathological induction in vivo when injected into the brains of mice. Variation in the results of in vivo studies is proposed to be caused by α-synuclein conformational variants. To investigate the impact of amino acid sequence on seeding efficiency, human and mouse α-synuclein seeds, which vary at 7 amino acid residues, were generated and cross-seeding kinetics studied. Using transmission electron microscopy (TEM), we confirmed that mouse α-synuclein aggregated more rapidly than human α-synuclein. Subsequently, we determined that seeding of human and mouse α-synuclein was more rapid in the presence of seeds generated from the same species. In addition, an established amyloid inhibitor, scyllo-inositol, was examined for potential inhibitory effects on α-synuclein aggregation. TEM analysis of protein:inhibitor assays demonstrated that scyllo-inositol inhibits the aggregation of α-synuclein, suggesting the therapeutic potential of the small molecule in PD. - Highlights: • Mouse α-syn fibrillizes in a significantly shorter timeframe than human α-syn. • Seeding of monomers is more efficient when seeds originate from the same species. • scyllo-Inositol has anti-aggregation effects on mouse and human α-syn.

  18. Adsorption and inhibitive properties of methanol extract of Eeuphorbia Heterophylla for the corrosion of copper in 0.5 M nitric acid solutions

    Directory of Open Access Journals (Sweden)

    Fouda A. S.

    2017-03-01

    Full Text Available The adsorption and the inhibitive properties of methanol extract of Euphorbia heterophylla on copper in 0.5 M HNO3 have been studied by weight loss method at different temperatures (30-50°C, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS and electrochemical frequency modulation (EFM techniques. Also, the surface morphology was analyzed by scanning electron microscopy (SEM. It was found that the inhibition efficiency increases with increasing extract doses and decreased with increasing temperature. The polarization data revealed that this extract acts as mixed type inhibitor. The adsorption process was more favored at lower temperatures with larger negative standard free energy. The extract was adsorbed physically on the copper surface followed Frumkin isotherm.

  19. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.

    Science.gov (United States)

    Zuo, R; Ornek, D; Syrett, B C; Green, R M; Hsu, C-H; Mansfeld, F B; Wood, T K

    2004-04-01

    Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50-90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel.

  20. The P0 protein encoded by cotton leafroll dwarf virus (CLRDV) inhibits local but not systemic RNA silencing.

    Science.gov (United States)

    Delfosse, Verónica C; Agrofoglio, Yamila C; Casse, María F; Kresic, Iván Bonacic; Hopp, H Esteban; Ziegler-Graff, Véronique; Distéfano, Ana J

    2014-02-13

    Plants employ RNA silencing as a natural defense mechanism against viruses. As a counter-defense, viruses encode silencing suppressor proteins (SSPs) that suppress RNA silencing. Most, but not all, the P0 proteins encoded by poleroviruses have been identified as SSP. In this study, we demonstrated that cotton leafroll dwarf virus (CLRDV, genus Polerovirus) P0 protein suppressed local silencing that was induced by sense or inverted repeat transgenes in Agrobacterium co-infiltration assay in Nicotiana benthamiana plants. A CLRDV full-length infectious cDNA clone that is able to infect N. benthamiana through Agrobacterium-mediated inoculation also inhibited local silencing in co-infiltration assays, suggesting that the P0 protein exhibits similar RNA silencing suppression activity when expressed from the full-length viral genome. On the other hand, the P0 protein did not efficiently inhibit the spread of systemic silencing signals. Moreover, Northern blotting indicated that the P0 protein inhibits the generation of secondary but not primary small interfering RNAs. The study of CLRDV P0 suppression activity may contribute to understanding the molecular mechanisms involved in the induction of cotton blue disease by CLRDV infection. Copyright © 2013 Elsevier B.V. All rights reserved.