WorldWideScience

Sample records for gap junction mediated

  1. Gap junctions.

    Science.gov (United States)

    Goodenough, Daniel A; Paul, David L

    2009-07-01

    Gap junctions are aggregates of intercellular channels that permit direct cell-cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology.

  2. Oxaliplatin enhances gap junction-mediated coupling in cell cultures of mouse trigeminal ganglia.

    Science.gov (United States)

    Poulsen, Jeppe Nørgaard; Warwick, Rebekah; Duroux, Meg; Hanani, Menachem; Gazerani, Parisa

    2015-08-01

    Communications between satellite glial cells and neighboring neurons within sensory ganglia may contribute to neuropathic and inflammatory pain. To elucidate the role of satellite glial cells in chemotherapy-induced pain, we examined the effects of oxaliplatin on the gap junction-mediated coupling between these cells. We also examined whether the gap junction blocker, carbenoxolone, can reverse the coupling. Primary cultures of mice trigeminal ganglia, 24-48h after cell isolation, were used. Satellite glial cells were injected with Lucifer yellow in the presence or absence of oxaliplatin (60 μM). In addition, the effect of carbenoxolone (100 μM) on coupling, and the expression of connexin 43 proteins were evaluated. Dye coupling between adjacent satellite glial cells was significantly increased (2.3-fold, Peffect. Hence, it is proposed that increased gap junction-mediated coupling was seen between satellite glial cells in TG. This observation together with our previous data obtained from a behavioral study suggests that this phenomenon might contribute to chemotherapy-induced nociception following oxaliplatin treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    Brook T Chernet

    2015-01-01

    Full Text Available In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions – key mediators of cell-cell communication – in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors – significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host’s physiological parameters.

  4. Sulforaphane counteracts aggressiveness of pancreatic cancer driven by dysregulated Cx43-mediated gap junctional intercellular communication

    Science.gov (United States)

    Zhang, Yiyao; Isayev, Orkhan; Heilmann, Katharina; Schoensiegel, Frank; Liu, Li; Nessling, Michelle; Richter, Karsten; Labsch, Sabrina; Nwaeburu, Clifford C.; Mattern, Juergen; Gladkich, Jury; Giese, Nathalia; Werner, Jens; Schemmer, Peter; Gross, Wolfgang; Gebhard, Martha M.; Gerhauser, Clarissa; Schaefer, Michael; Herr, Ingrid

    2014-01-01

    The extreme aggressiveness of pancreatic ductal adenocarcinoma (PDA) has been associated with blocked gap junctional intercellular communication (GJIC) and the presence of cancer stem cells (CSCs). We examined whether disturbed GJIC is responsible for a CSC phenotype in established and primary cancer cells and patient tissue of PDA using interdisciplinary methods based in physiology, cell and molecular biology, histology and epigenetics. Flux of fluorescent dyes and gemcitabine through gap junctions (GJs) was intact in less aggressive cells but not in highly malignant cells with morphological dysfunctional GJs. Among several connexins, only Cx43 was expressed on the cell surface of less aggressive and GJIC-competent cells, whereas Cx43 surface expression was absent in highly malignant, E-cadherin-negative and GJIC-incompetent cells. The levels of total Cx43 protein and Cx43 phosphorylated at Ser368 and Ser279/282 were high in normal tissue but low to absent in malignant tissue. si-RNA-mediated inhibition of Cx43 expression in GJIC-competent cells prevented GJIC and induced colony formation and the expression of stem cell-related factors. The bioactive substance sulforaphane enhanced Cx43 and E-cadherin levels, inhibited the CSC markers c-Met and CD133, improved the functional morphology of GJs and enhanced GJIC. Sulforaphane altered the phosphorylation of several kinases and their substrates and inhibition of GSK3, JNK and PKC prevented sulforaphane-induced CX43 expression. The sulforaphane-mediated expression of Cx43 was not correlated with enhanced Cx43 RNA expression, acetylated histone binding and Cx43 promoter de-methylation, suggesting that posttranslational phosphorylation is the dominant regulatory mechanism. Together, the absence of Cx43 prevents GJIC and enhances aggressiveness, whereas sulforaphane counteracts this process, and our findings highlight dietary co-treatment as a viable treatment option for PDA. PMID:24742583

  5. Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis

    Science.gov (United States)

    Mayan, Maria D; Gago-Fuentes, Raquel; Carpintero-Fernandez, Paula; Fernandez-Puente, Patricia; Filgueira-Fernandez, Purificacion; Goyanes, Noa; Valiunas, Virginijus; Brink, Peter R; Goldberg, Gary S; Blanco, Francisco J

    2017-01-01

    Objective This study investigated whether chondrocytes within the cartilage matrix have the capacity to communicate through intercellular connections mediated by voltage-gated gap junction (GJ) channels. Methods Frozen cartilage samples were used for immunofluorescence and immunohistochemistry assays. Samples were embedded in cacodylate buffer before dehydration for scanning electron microscopy. Co-immunoprecipitation experiments and mass spectrometry (MS) were performed to identify proteins that interact with the C-terminal end of Cx43. GJ communication was studied through in situ electroporation, electrophysiology and dye injection experiments. A transwell layered culture system and MS were used to identify and quantify transferred amino acids. Results Microscopic images revealed the presence of multiple cellular projections connecting chondrocytes within the matrix. These projections were between 5 and 150 μm in length. MS data analysis indicated that the C-terminus of Cx43 interacts with several cytoskeletal proteins implicated in Cx trafficking and GJ assembly, including α-tubulin and β-tubulin, actin, and vinculin. Electrophysiology experiments demonstrated that 12-mer oligonucleotides could be transferred between chondrocytes within 12 min after injection. Glucose was homogeneously distributed within 22 and 35 min. No transfer was detected when glucose was electroporated into A549 cells, which have no GJs. Transwell layered culture systems coupled with MS analysis revealed connexins can mediate the transfer of L-lysine and L-arginine between chondrocytes. Conclusions This study reveals that intercellular connections between chondrocytes contain GJs that play a key role in cell-cell communication and a metabolic function by exchange of nutrients including glucose and essential amino acids. A three-dimensional cellular network mediated through GJs might mediate metabolic and physiological homeostasis to maintain cartilage tissue. PMID:24225059

  6. The extracellular regulated kinases (ERK) 1/2 mediate cannabinoid-induced inhibition of gap junctional communication in endothelial cells

    Science.gov (United States)

    Brandes, R P; Popp, R; Ott, G; Bredenkötter, D; Wallner, C; Busse, R; Fleming, I

    2002-01-01

    Cannabinoids are potent inhibitors of endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxations. We set out to study the mechanism underlying this effect and the possible role of cannabinoid-induced changes in intercellular gap junction communication.In cultured endothelial cells, Δ9-tetrahydrocannabinol (Δ9-THC) and the cannabinoid receptor agonist HU210, increased the phosphorylation of extracellular regulated kinases 1/2 (ERK1/2) and inhibited gap junctional communication, as determined by Lucifer Yellow dye transfer and electrical capacity measurements.Δ9-THC elicited a pronounced increase in the phosphorylation of connexin 43, which was sensitive to PD98059 and U0126, two inhibitors of ERK1/2 activation. Inhibition of ERK1/2 also prevented the Δ9-THC-induced inhibition of gap junctional communication.Δ9-THC prevented both the bradykinin-induced hyperpolarization and the nitric oxide and prostacyclin-independent relaxation of pre-contracted rings of porcine coronary artery. These effects were prevented by PD98059 as well as U0126.In the absence of Δ9-THC, neither PD98059 nor U0126 affected the NO-mediated relaxation of coronary artery rings but both substances induced a leftward shift in the concentration – relaxation curve to bradykinin when diclofenac and Nωnitro-L-arginine were present. Moreover, PD98059 and U0126 prolonged the bradykinin-induced hyperpolarization of porcine coronary arteries, without affecting the magnitude of the response.These results indicate that the cannabinoid-induced activation of ERK1/2, which leads to the phosphorylation of connexin 43 and inhibition of gap junctional communication, may partially account for the Δ9-THC-induced inhibition of EDHF-mediated relaxation. Moreover, the activation of ERK1/2 by endothelial cell agonists such as bradykinin, appears to exert a negative feedback inhibition on EDHF-mediated responses. PMID:12086980

  7. Gap junction mediated intercellular metabolite transfer in the cochlea is compromised in connexin30 null mice.

    Directory of Open Access Journals (Sweden)

    Qing Chang

    Full Text Available Connexin26 (Cx26 and connexin30 (Cx30 are two major protein subunits that co-assemble to form gap junctions (GJs in the cochlea. Mutations in either one of them are the major cause of non-syndromic prelingual deafness in humans. Because the mechanisms of cochlear pathogenesis caused by Cx mutations are unclear, we investigated effects of Cx30 null mutation on GJ-mediated ionic and metabolic coupling in the cochlea of mice. A novel flattened cochlear preparation was used to directly assess intercellular coupling in the sensory epithelium of the cochlea. Double-electrode patch clamp recordings revealed that the absence of Cx30 did not significantly change GJ conductance among the cochlear supporting cells. The preserved electrical coupling is consistent with immunolabeling data showing extensive Cx26 GJs in the cochlea of the mutant mice. In contrast, dye diffusion assays showed that the rate and extent of intercellular transfer of multiple fluorescent dyes (including a non-metabolizable D-glucose analogue, 2-NBDG among cochlear supporting cells were severely reduced in Cx30 null mice. Since the sensory epithelium in the cochlea is an avascular organ, GJ-facilitated intercellular transfer of nutrient and signaling molecules may play essential roles in cellular homeostasis. To test this possibility, NBDG was used as a tracer to study the contribution of GJs in transporting glucose into the cochlear sensory epithelium when delivered systemically. NBDG uptake in cochlear supporting cells was significantly reduced in Cx30 null mice. The decrease was also observed with GJ blockers or glucose competition, supporting the specificity of our tests. These data indicate that GJs facilitate efficient uptake of glucose in the supporting cells. This study provides the first direct experimental evidence showing that the transfer of metabolically-important molecules in cochlear supporting cells is dependent on the normal function of GJs, thereby suggesting a

  8. Low Level Pro-inflammatory Cytokines Decrease Connexin36 Gap Junction Coupling in Mouse and Human Islets through Nitric Oxide-mediated Protein Kinase Cδ*

    Science.gov (United States)

    Farnsworth, Nikki L.; Walter, Rachelle L.; Hemmati, Alireza; Westacott, Matthew J.; Benninger, Richard K. P.

    2016-01-01

    Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. PMID:26668311

  9. Role of intramolecular interaction in connexin50: mediating the Ca2+-dependent binding of calmodulin to gap junction.

    Science.gov (United States)

    Zhang, Xianrong; Qi, Yipeng

    2005-08-15

    Gap junction channels formed by connexin50 (Cx50) are critical for maintenance of eye lens transparency. Cleavage of the carboxyl terminus (CT) of Cx50 to produce truncated Cx50 (Cx50trunc) occurred naturally during maturation of lens fiber cells. The mechanism of its altered properties is under confirmation. It has been suggested that calmodulin (CaM) participates in gating some kinds of gap junction. Here, we performed confocal colocalization and co-immunoprecipitation experiments to study the relationships between Cx50 and CaM. Results exhibited that the CaM could colocalize Ca2+ dependently with CT in the linear area of cell-to-cell contact formed by Cx50trunc, while it could not localize in the linear area without expression of CT. Further study indicated that the CT could interact Ca2+ independently with the cytoplasmic loop (CL) of Cx50. These data put forward the importance of Ca2+-independent intramolecular interaction between CT and CL of Cx50, which mediate the Ca2+-dependent binding of CaM to Cx50. These intra- and intermolecular interactions may further improve our understanding of biological significance of the Cx50 in the eye lens.

  10. Regulation of gap junctions by protein phosphorylation

    Directory of Open Access Journals (Sweden)

    J.C. Sáez

    1998-05-01

    Full Text Available Gap junctions are constituted by intercellular channels and provide a pathway for transfer of ions and small molecules between adjacent cells of most tissues. The degree of intercellular coupling mediated by gap junctions depends on the number of gap junction channels and their activity may be a function of the state of phosphorylation of connexins, the structural subunit of gap junction channels. Protein phosphorylation has been proposed to control intercellular gap junctional communication at several steps from gene expression to protein degradation, including translational and post-translational modification of connexins (i.e., phosphorylation of the assembled channel acting as a gating mechanism and assembly into and removal from the plasma membrane. Several connexins contain sites for phosphorylation for more than one protein kinase. These consensus sites vary between connexins and have been preferentially identified in the C-terminus. Changes in intercellular communication mediated by protein phosphorylation are believed to control various physiological tissue and cell functions as well as to be altered under pathological conditions.

  11. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development.

    Science.gov (United States)

    Ahir, Bhavesh K; Pratten, Margaret K

    2014-01-01

    Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.

  12. Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress.

    Science.gov (United States)

    Le, Hoa T; Sin, Wun Chey; Lozinsky, Shannon; Bechberger, John; Vega, José Luis; Guo, Xu Qiu; Sáez, Juan C; Naus, Christian C

    2014-01-17

    Oxidative stress induced by reactive oxygen species (ROS) is associated with various neurological disorders including aging, neurodegenerative diseases, as well as traumatic and ischemic insults. Astrocytes have an important role in the anti-oxidative defense in the brain. The gap junction protein connexin43 (Cx43) forms intercellular channels as well as hemichannels in astrocytes. In the present study, we investigated the contribution of Cx43 to astrocytic death induced by the ROS hydrogen peroxide (H2O2) and the mechanism by which Cx43 exerts its effects. Lack of Cx43 expression or blockage of Cx43 channels resulted in increased ROS-induced astrocytic death, supporting a cell protective effect of functional Cx43 channels. H2O2 transiently increased hemichannel activity, but reduced gap junction intercellular communication (GJIC). GJIC in wild-type astrocytes recovered after 7 h, but was absent in Cx43 knock-out astrocytes. Blockage of Cx43 hemichannels incompletely inhibited H2O2-induced hemichannel activity, indicating the presence of other hemichannel proteins. Panx1, which is predicted to be a major hemichannel contributor in astrocytes, did not appear to have any cell protective effect from H2O2 insults. Our data suggest that GJIC is important for Cx43-mediated ROS resistance. In contrast to hypoxia/reoxygenation, H2O2 treatment decreased the ratio of the hypophosphorylated isoform to total Cx43 level. Cx43 has been reported to promote astrocytic death induced by hypoxia/reoxygenation. We therefore speculate the increase in Cx43 dephosphorylation may account for the facilitation of astrocytic death. Our findings suggest that the role of Cx43 in response to cellular stress is dependent on the activation of signaling pathways leading to alteration of Cx43 phosphorylation states.

  13. Gold nanoparticle-mediated (GNOME) laser perforation: a new method for a high-throughput analysis of gap junction intercellular coupling.

    Science.gov (United States)

    Begandt, Daniela; Bader, Almke; Antonopoulos, Georgios C; Schomaker, Markus; Kalies, Stefan; Meyer, Heiko; Ripken, Tammo; Ngezahayo, Anaclet

    2015-10-01

    The present report evaluates the advantages of using the gold nanoparticle-mediated laser perforation (GNOME LP) technique as a computer-controlled cell optoperforation to introduce Lucifer yellow (LY) into cells in order to analyze the gap junction coupling in cell monolayers. To permeabilize GM-7373 endothelial cells grown in a 24 multiwell plate with GNOME LP, a laser beam of 88 μm in diameter was applied in the presence of gold nanoparticles and LY. After 10 min to allow dye uptake and diffusion through gap junctions, we observed a LY-positive cell band of 179 ± 8 μm width. The presence of the gap junction channel blocker carbenoxolone during the optoperforation reduced the LY-positive band to 95 ± 6 μm. Additionally, a forskolin-related enhancement of gap junction coupling, recently found using the scrape loading technique, was also observed using GNOME LP. Further, an automatic cell imaging and a subsequent semi-automatic quantification of the images using a java-based ImageJ-plugin were performed in a high-throughput sequence. Moreover, the GNOME LP was used on cells such as RBE4 rat brain endothelial cells, which cannot be mechanically scraped as well as on three-dimensionally cultivated cells, opening the possibility to implement the GNOME LP technique for analysis of gap junction coupling in tissues. We conclude that the GNOME LP technique allows a high-throughput automated analysis of gap junction coupling in cells. Moreover this non-invasive technique could be used on monolayers that do not support mechanical scraping as well as on cells in tissue allowing an in vivo/ex vivo analysis of gap junction coupling.

  14. Gap junctions and motor behavior

    DEFF Research Database (Denmark)

    Kiehn, Ole; Tresch, Matthew C.

    2002-01-01

    The production of any motor behavior requires coordinated activity in motor neurons and premotor networks. In vertebrates, this coordination is often assumed to take place through chemical synapses. Here we review recent data suggesting that electrical gap-junction coupling plays an important role...... to the production of motor behavior in adult mammals....

  15. Gap Junctions and Chagas Disease

    Science.gov (United States)

    Adesse, Daniel; Goldenberg, Regina Coeli; Fortes, Fabio S.; Jasmin; Iacobas, Dumitru A.; Iacobas, Sanda; de Carvalho, Antonio Carlos Campos; de Narareth Meirelles, Maria; Huang, Huan; Soares, Milena B.; Tanowitz, Herbert B.; Garzoni, Luciana Ribeiro; Spray, David C.

    2013-01-01

    Gap junction channels provide intercellular communication between cells. In the heart, these channels coordinate impulse propagation along the conduction system and through the contractile musculature, thereby providing synchronous and optimal cardiac output. As in other arrhythmogenic cardiac diseases, chagasic cardiomyopathy is associated with decreased expression of the gap junction protein connexin43 (Cx43) and its gene. Our studies of cardiac myocytes infected with Trypanosoma cruzi have revealed that synchronous contraction is greatly impaired and gap junction immunoreactivity is lost in infected cells. Such changes are not seen for molecules forming tight junctions, another component of the intercalated disc in cardiac myocytes. Transcriptomic studies of hearts from mouse models of Chagas disease and from acutely infected cardiac myocytes in vitro indicate profound remodelling of gene expression patterns involving heart rhythm determinant genes, suggesting underlying mechanisms of the functional pathology. One curious feature of the altered expression of Cx43 and its gene expression is that it is limited in both extent and location, suggesting that the more global deterioration in cardiac function may result in part from spread of damage signals from more seriously compromised cells to healthier ones. PMID:21884887

  16. Lack of connexin43-mediated Bergmann glial gap junctional coupling does not affect cerebellar long-term depression, motor coordination, or eyeblink conditioning

    Directory of Open Access Journals (Sweden)

    Mika Tanaka

    2008-04-01

    Full Text Available Bergmann glial cells are specialized astrocytes in the cerebellum. In the mature cerebellar molecular layer, Bergmann glial processes are closely associated with Purkinje cells, enclosing Purkinje cell dendritic synapses with a glial sheath. There is intensive gap junctional coupling between Bergmann glial processes, but their significance in cerebellar functions is not known. Connexin43 (Cx43, a major component of astrocytic gap junction channels, is abundantly expressed in Bergmann glial cells. To examine the role of Cx43-mediated gap junctions between Bergmann glial cells in cerebellar functions, we generated Cx43 conditional knockout mice with the S100b-Cre transgenic line (Cx43fl/fl:S100b-Cre, which exhibited a significant loss of Cx43 in the Bergmann glial cells and astrocytes in the cerebellum with a postnatal onset. The Cx43fl/fl:S100b-Cre mice had normal cerebellar architecture. Although gap junctional coupling between the Bergmann glial cells measured by spreading of microinjected Lucifer yellow was virtually abolished in Cx43fl/fl:S100b-Cre mice, electrophysiologic analysis revealed that cerebellar long-term depression could be induced and maintained normally in thier cerebellar slices. In addition, at the behavioral level, Cx43fl/fl:S100b-Cre mice had normal motor coordination in the rotarod task and normal conditioned eyelid response. Our findings suggest that Cx43-mediated gap junctional coupling between Bergmann glial cells is not necessary for the neuron-glia interactions required for cerebellum-dependent motor coordination and motor learning.

  17. Visfatin Reduces Gap Junction Mediated Cell-to-Cell Communication in Proximal Tubule-Derived Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2013-11-01

    Full Text Available Background/Aims: In the current study we examined if the adipocytokine, visfatin, alters connexin-mediated intercellular communication in proximal tubule-derived epithelial cells. Methods: The effects of visfatin (10-200ng/mL on cell viability and cytotoxicity in HK2-cells were assessed by MTT, crystal violet and lactate dehydrogenase assays. Western blot analysis was used to confirm expression of Cx26, Cx40 and Cx43. The effect of visfatin (10-200ng/mL on TGF-β1 secretion was confirmed by ELISA, and the effects of both TGF-β1 (2-10ng/mL and visfatin (10-200ng/mL on connexin expression were assessed by western blot. Functional intercellular communication was determined using transfer of Lucifer Yellow and paired-whole cell patch clamp electrophysiology. Results: In low glucose (5mM, visfatin (10-200ng/mL did not affect membrane integrity, cytotoxicity or cell viability at 48hrs, but did evoke a concentration-dependent reduction in Cx26 and Cx43 expression. The expression of Cx40 was unaffected. At 48hrs, visfatin (10-200ng/mL increased the secretion of TGF-β1 and the visfatin-evoked changes in connexin expression were mimicked by exogenous application of the pro-fibrotic cytokine (2-10ng/ml. Visfatin reduced dye transfer between coupled cells and decreased functional conductance, with levels falling by 63% as compared to control. Although input resistance was increased following visfatin treatment by 166%, the change was not significant as compared to control. The effects of visfatin on Cx-expression and cell-coupling were blocked in the presence of a TGF-β1 specific neutralizing antibody. Conclusions: The adipocytokine visfatin selectively evoked a non-toxic reduction in connexin expression in HK2-cells. The loss in gap-junction associated proteins was mirrored by a loss in functional conductance between coupled cells. Visfatin increased TGF-β secretion and the pattern of change for connexins expression was mimicked by exogenous

  18. Calcium-mediated transductive systems and functionally active gap junctions in astrocyte-like GL15 cells

    Directory of Open Access Journals (Sweden)

    Steimberg Nathalie

    2001-05-01

    Full Text Available Abstract Background It has been proposed that GL15, a human cell line derived from glioblastoma multiforme, is a possible astroglial-like cell model, based on the presence of cytoplasmic glial fibrillary acidic protein. Results The aim of this work was to delineate the functional characteristics of GL15 cells using various experimental approaches, including the study of morphology, mechanism of induction of intracellular Ca2+ increase by different physiological agonists, and the presence and permeability of the gap-junction system during cell differentiation. Immunostaining experiments showed the presence and localization of specific glial markers, such as glial fibrillary acidic protein and S100B, and the lack of the neuronal marker S100A. Notably, all the Ca2+ pathways present in astrocytes were detected in GL15 cells. In particular, oscillations in intracellular Ca2+ levels were recorded either spontaneously, or in the presence of ATP or glutamate (but not KCl. Immunolabelling assays and confocal microscopy, substantiated by Western blot analyses, revealed the presence of connexin43, a subunit of astrocyte gap-junction channels. The protein is organised in characteristic spots on the plasma membrane at cell-cell contact regions, and its presence and distribution depends on the differentiative status of the cell. Finally, a microinjection/dye-transfer assay, employed to determine gap-junction functionality, clearly demonstrated that the cells were functionally coupled, albeit to varying degrees, in differentiated and undifferentiated phenotypes. Conclusions In conclusion, results from this study support the use of the GL15 cell line as a suitable in vitro astrocyte model, which provides a valuable guide for studying glial physiological features at various differentiation phases.

  19. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    Science.gov (United States)

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-07-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.

  20. HDAC inhibition amplifies gap junction communication in neural progenitors: Potential for cell-mediated enzyme prodrug therapy

    International Nuclear Information System (INIS)

    Khan, Zahidul; Akhtar, Monira; Asklund, Thomas; Juliusson, Bengt; Almqvist, Per M.; Ekstroem, Tomas J.

    2007-01-01

    Enzyme prodrug therapy using neural progenitor cells (NPCs) as delivery vehicles has been applied in animal models of gliomas and relies on gap junction communication (GJC) between delivery and target cells. This study investigated the effects of histone deacetylase (HDAC) inhibitors on GJC for the purpose of facilitating transfer of therapeutic molecules from recombinant NPCs. We studied a novel immortalized midbrain cell line, NGC-407 of embryonic human origin having neural precursor characteristics, as a potential delivery vehicle. The expression of gap junction protein connexin 43 (C x 43) was analyzed by western blot and immunocytochemistry. While C x 43 levels were decreased in untreated differentiating NGC-407 cells, the HDAC inhibitor 4-phenylbutyrate (4-PB) increased C x 43 expression along with increased membranous deposition in both proliferating and differentiating cells. Simultaneously, Ser 279/282-phosphorylated form of C x 43 was declined in both culture conditions by 4-PB. The 4-PB effect in NGC-407 cells was verified by using HNSC.100 human neural progenitors and Trichostatin A. Improved functional GJC is of imperative importance for therapeutic strategies involving intercellular transport of low molecular-weight compounds. We show here an enhancement by 4-PB, of the functional GJC among NGC-407 cells, as well as between NGC-407 and human glioma cells, as indicated by increased fluorescent dye transfer

  1. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the

  2. Recovery effect of onion peel extract against H2 O2 -induced inhibition of gap-junctional intercellular communication is mediated through quercetin.

    Science.gov (United States)

    Kim, Young-Jun; Seo, Sang Gwon; Choi, Keunhwa; Kim, Jong Eun; Kang, Heerim; Chung, Min-Yu; Lee, Ki Won; Lee, Hyong Joo

    2014-05-01

    Cellular oxidative damage mediated by reactive oxygen species has been reported to inhibit gap-junctional intercellular communication (GJIC). In turn, the inhibition of GJIC can be attenuated by functional food compounds with antioxidant properties. In this study, we compared the protective effects of onion peel extract (OPE) and onion flesh extract (OFE) on oxidative stress-mediated GJIC inhibition, and investigated the mechanisms of action responsible. OPE restored H2 O2 -induced GJIC inhibition to a higher degree than OFE in WB-F344 rat liver epithelial cells. OPE was found to inhibit H2 O2 -induced phosphorylation of ERK1/2 and Cx43. A radical scavenging assay demonstrated superiority of OPE over OFE, suggesting that the observed effects might be mediated via an antioxidant mechanism. Quercetin is the major compound that is likely to be responsible for the protective effect against H2 O2 -mediated GJIC inhibition. This study suggests that OPE, a material often discarded, may be of value for the future development of functional food products. This study demonstrates that onion peel extract (OPE) exhibits a protective effect against the inhibition of gap-junctional intercellular communication (GJIC) mediated by H2 O2 , which is likely to occur via its antioxidant activity. OPE contains significant concentrations of bioactive phenolic compounds. Reductions in oxidative stress can lead to recovery of GJIC, which has been reported to be implicated in the prevention and treatment of cancers. These findings suggest that onion peel, a common waste product, could be used as potential resources for functional food development. Onion peel could be processed into a quercetin-rich powder or a pill for the prevention of cancer and other oxidative stress-related diseases. © 2014 Institute of Food Technologists®

  3. Spinal Gap Junction Channels in Neuropathic Pain

    OpenAIRE

    Jeon, Young Hoon; Youn, Dong Ho

    2015-01-01

    Damage to peripheral nerves or the spinal cord is often accompanied by neuropathic pain, which is a complex, chronic pain state. Increasing evidence indicates that alterations in the expression and activity of gap junction channels in the spinal cord are involved in the development of neuropathic pain. Thus, this review briefly summarizes evidence that regulation of the expression, coupling, and activity of spinal gap junction channels modulates pain signals in neuropathic pain states induced...

  4. Anchored PKA as a gatekeeper for gap junctions.

    Science.gov (United States)

    Pidoux, Guillaume; Taskén, Kjetil

    2015-01-01

    Anchored protein kinase A (PKA) bound to A Kinase Anchoring Protein (AKAP) mediates effects of localized increases in cAMP in defined subcellular microdomains and retains the specificity in cAMP-PKA signaling to distinct extracellular stimuli. Gap junctions are pores between adjacent cells constituted by connexin proteins that provide means of communication and transfer of small molecules. While the PKA signaling is known to promote human trophoblast cell fusion, the gap junction communication through connexin 43 (Cx43) is a prerequisite for this process. We recently demonstrated that trophoblast fusion is regulated by ezrin, a known AKAP, which binds to Cx43 and delivers PKA in the vicinity gap junctions. We found that disruption of the ezrin-Cx43 interaction abolished PKA-dependent phosphorylation of Cx43 as well as gap junction communication and subsequently cell fusion. We propose that the PKA-ezrin-Cx43 macromolecular complex regulating gap junction communication constitutes a general mechanism to control opening of Cx43 gap junctions by phosphorylation in response to cAMP signaling in various cell types.

  5. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin

    2007-01-01

    . In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing......Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes...... the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs...

  6. Astroglial gap junctions shape neuronal network activity.

    Science.gov (United States)

    Pannasch, Ulrike; Derangeon, Mickael; Chever, Oana; Rouach, Nathalie

    2012-05-01

    Astrocytes, the third element of the tripartite synapse, are active players in neurotransmission. Up to now, their involvement in neuronal functions has primarily been investigated at the single cell level. However, a key property of astrocytes is that they communicate via extensive networks formed by gap junction channels. Recently, we have shown that this networking modulates the moment to moment basal synaptic transmission and plasticity via the regulation of extracellular potassium and glutamate levels. Here we show that astroglial gap junctional communication also regulates neuronal network activity. We discuss these findings and their implications for brain information processing.

  7. impairs gap junction function causing congenital cataract

    Indian Academy of Sciences (India)

    Navya

    2017-03-24

    Mar 24, 2017 ... Connexin 46 (Cx46) is important for gap junction channels formation which plays crucial role in the preservation of lens homeostasis and transparency. Previously, we have identified a missense mutation. (p.V44M) of Cx46 in a congenital cataract family. This study aims at dissecting the potential.

  8. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes.

    Science.gov (United States)

    Gandhi, Gautam K; Ball, Kelly K; Cruz, Nancy F; Dienel, Gerald A

    2010-03-15

    Sensory and cognitive impairments have been documented in diabetic humans and animals, but the pathophysiology of diabetes in the central nervous system is poorly understood. Because a high glucose level disrupts gap junctional communication in various cell types and astrocytes are extensively coupled by gap junctions to form large syncytia, the influence of experimental diabetes on gap junction channel-mediated dye transfer was assessed in astrocytes in tissue culture and in brain slices from diabetic rats. Astrocytes grown in 15-25 mmol/l glucose had a slow-onset, poorly reversible decrement in gap junctional communication compared with those grown in 5.5 mmol/l glucose. Astrocytes in brain slices from adult STZ (streptozotocin)-treated rats at 20-24 weeks after the onset of diabetes also exhibited reduced dye transfer. In cultured astrocytes grown in high glucose, increased oxidative stress preceded the decrement in dye transfer by several days, and gap junctional impairment was prevented, but not rescued, after its manifestation by compounds that can block or reduce oxidative stress. In sharp contrast with these findings, chaperone molecules known to facilitate protein folding could prevent and rescue gap junctional impairment, even in the presence of elevated glucose level and oxidative stress. Immunostaining of Cx (connexin) 43 and 30, but not Cx26, was altered by growth in high glucose. Disruption of astrocytic trafficking of metabolites and signalling molecules may alter interactions among astrocytes, neurons and endothelial cells and contribute to changes in brain function in diabetes. Involvement of the microvasculature may contribute to diabetic complications in the brain, the cardiovascular system and other organs.

  9. Gap junctions-guards of excitability

    DEFF Research Database (Denmark)

    Stroemlund, Line Waring; Jensen, Christa Funch; Qvortrup, Klaus

    2015-01-01

    Cardiomyocytes are connected by mechanical and electrical junctions located at the intercalated discs (IDs). Although these structures have long been known, it is becoming increasingly clear that their components interact. This review describes the involvement of the ID in electrical disturbances...... of the heart and focuses on the role of the gap junctional protein connexin 43 (Cx43). Current evidence shows that Cx43 plays a crucial role in organizing microtubules at the intercalated disc and thereby regulating the trafficking of the cardiac sodium channel NaV1.5 to the membrane....

  10. The Display of Single-Domain Antibodies on the Surfaces of Connectosomes Enables Gap Junction-Mediated Drug Delivery to Specific Cell Populations.

    Science.gov (United States)

    Gadok, Avinash K; Zhao, Chi; Meriwether, Amanda I; Ferrati, Silvia; Rowley, Tanner G; Zoldan, Janet; Smyth, Hugh D C; Stachowiak, Jeanne C

    2018-01-09

    Gap junctions, transmembrane protein channels that directly connect the cytoplasm of neighboring cells and enable the exchange of molecules between cells, are a promising new frontier for therapeutic delivery. Specifically, cell-derived lipid vesicles that contain functional gap junction channels, termed Connectosomes, have recently been demonstrated to substantially increase the effectiveness of small molecule chemotherapeutics. However, because gap junctions are present in nearly all tissues, Connectosomes have no intrinsic ability to target specific cell types, which potentially limits their therapeutic effectiveness. To address this challenge, here we display targeting ligands consisting of single-domain antibodies on the surfaces of Connectosomes. We demonstrate that these targeted Connectosomes selectively interact with cells that express a model receptor, promoting the selective delivery of the chemotherapeutic doxorubicin to this target cell population. More generally, our approach has the potential to boost cytoplasmic delivery of diverse therapeutic molecules to specific cell populations while protecting off-target cells, a critical step toward realizing the therapeutic potential of gap junctions.

  11. Antiproliferative Action of Conjugated Linoleic Acid on Human MCF-7 Breast Cancer Cells Mediated by Enhancement of Gap Junctional Intercellular Communication through Inactivation of NF-κB

    Directory of Open Access Journals (Sweden)

    Md. Abdur Rakib

    2013-01-01

    Full Text Available The major conjugated linoleic acid (CLA isomers, c9,t11-CLA and t10,c12-CLA, have anticancer effects; however, the exact mechanisms underlying these effects are unknown. Evidence suggests that reversal of reduced gap junctional intercellular communication (GJIC in cancer cells inhibits cell growth and induces cell death. Hence, we determined that CLA isomers enhance GJIC in human MCF-7 breast cancer cells and investigated the underlying molecular mechanisms. The CLA isomers significantly enhanced GJIC of MCF-7 cells at 40 μM concentration, whereas CLA inhibited cell growth and induced caspase-dependent apoptosis. CLA increased connexin43 (Cx43 expression both at the transcriptional and translational levels. CLA inhibited nuclear factor-κB (NF-κB activity and enhanced reactive oxygen species (ROS generation. No significant difference was observed in the efficacy of c9,t11-CLA and t10,c12-CLA. These results suggest that the anticancer effect of CLA is associated with upregulation of GJIC mediated by enhanced Cx43 expression through inactivation of NF-κB and generation of ROS in MCF-7 cells.

  12. Effect of different cryopreservation protocols on cytoskeleton and gap junction mediated communication integrity in feline germinal vesicle stage oocytes.

    Science.gov (United States)

    Luciano, Alberto M; Chigioni, Sara; Lodde, Valentina; Franciosi, Federica; Luvoni, Gaia C; Modina, Silvia C

    2009-08-01

    Oocyte cryopreservation in carnivores can significantly improve assisted reproductive technologies in animal breeding and preservation programs for endangered species. However, the cooling process severely affects the integrity and the survival of the oocyte after thawing and may irreversibly compromise its subsequent developmental capability. In the present study, two different methods of oocyte cryopreservation, slow freezing and vitrification, were evaluated in order to assess which of them proved more suitable for preserving the functional coupling with cumulus cells as well as nuclear and cytoplasmic competence after warming of immature feline oocytes. From a total of 422 cumulus enclosed oocytes (COCs) obtained from queens after ovariectomy, 137 were stored by vitrification in open pulled straws, 147 by slow freezing and 138 untreated oocytes were used as controls. Immediately after collection and then after warming, functional coupling was assessed by lucifer yellow injection and groups of fresh and cryopreserved oocytes were fixed to analyze tubulin and actin distribution, and chromatin organization. Finally, COCs cryopreserved with both treatments were matured in vitro after warming. In most cases, oocytes cryopreserved by slow freezing showed a cytoskeletal distribution similar to control oocytes, while the process of vitrification induced a loss of organization of cytoskeletal elements. The slow freezing protocol ensured a significantly higher percentage of COCs with functionally open and partially open communications (37.2 vs. 19.0) and higher maturational capability (32.5 vs. 14.1) compared to vitrified oocytes. We conclude that although both protocols impaired intercellular junctions, slow freezing represents a suitable method of GV stage cat oocytes banking since it more efficiently preserves the functional coupling with cumulus cells after thawing as well as nuclear and cytoplasmic competence. Further studies are needed to technically overcome the

  13. BAAV Mediated GJB2 Gene Transfer Restores Gap Junction Coupling in Cochlear Organotypic Cultures from Deaf Cx26Sox10Cre Mice

    Science.gov (United States)

    Crispino, Giulia; Di Pasquale, Giovanni; Scimemi, Pietro; Rodriguez, Laura; Galindo Ramirez, Fabian; De Siati, Romolo Daniele; Santarelli, Rosa Maria; Arslan, Edoardo; Bortolozzi, Mario; Chiorini, John A.; Mammano, Fabio

    2011-01-01

    The deafness locus DFNB1 contains GJB2, the gene encoding connexin26 and GJB6, encoding connexin30, which appear to be coordinately regulated in the inner ear. In this work, we investigated the expression and function of connexin26 and connexin30 from postnatal day 5 to adult age in double transgenic Cx26Sox10Cre mice, which we obtained by crossing connexin26 floxed mice with a deleter Sox10–Cre line. Cx26Sox10Cre mice presented with complete connexin26 ablation in the epithelial gap junction network of the cochlea, whereas connexin30 expression was developmentally delayed; immunolabeling patterns for both connexins were normal in the cochlear lateral wall. In vivo electrophysiological measurements in Cx26Sox10Cre mice revealed profound hearing loss accompanied by reduction of endocochlear potential, and functional experiments performed in postnatal cochlear organotypic cultures showed impaired gap junction coupling. Transduction of these cultures with a bovine adeno associated virus vector restored connexin26 protein expression and rescued gap junction coupling. These results suggest that restoration of normal connexin levels by gene delivery via recombinant adeno associated virus could be a way to rescue hearing function in DFNB1 mouse models and, in future, lead to the development of therapeutic interventions in humans. PMID:21876744

  14. BAAV mediated GJB2 gene transfer restores gap junction coupling in cochlear organotypic cultures from deaf Cx26Sox10Cre mice.

    Directory of Open Access Journals (Sweden)

    Giulia Crispino

    Full Text Available The deafness locus DFNB1 contains GJB2, the gene encoding connexin26 and GJB6, encoding connexin30, which appear to be coordinately regulated in the inner ear. In this work, we investigated the expression and function of connexin26 and connexin30 from postnatal day 5 to adult age in double transgenic Cx26(Sox10Cre mice, which we obtained by crossing connexin26 floxed mice with a deleter Sox10-Cre line. Cx26(Sox10Cre mice presented with complete connexin26 ablation in the epithelial gap junction network of the cochlea, whereas connexin30 expression was developmentally delayed; immunolabeling patterns for both connexins were normal in the cochlear lateral wall. In vivo electrophysiological measurements in Cx26(Sox10Cre mice revealed profound hearing loss accompanied by reduction of endocochlear potential, and functional experiments performed in postnatal cochlear organotypic cultures showed impaired gap junction coupling. Transduction of these cultures with a bovine adeno associated virus vector restored connexin26 protein expression and rescued gap junction coupling. These results suggest that restoration of normal connexin levels by gene delivery via recombinant adeno associated virus could be a way to rescue hearing function in DFNB1 mouse models and, in future, lead to the development of therapeutic interventions in humans.

  15. GAP junctional communication in brain secondary organizers.

    Science.gov (United States)

    Bosone, Camilla; Andreu, Abraham; Echevarria, Diego

    2016-06-01

    Gap junctions (GJs) are integral membrane proteins that enable the direct cytoplasmic exchange of ions and low molecular weight metabolites between adjacent cells. They are formed by the apposition of two connexons belonging to adjacent cells. Each connexon is formed by six proteins, named connexins (Cxs). Current evidence suggests that gap junctions play an important part in ensuring normal embryo development. Mutations in connexin genes have been linked to a variety of human diseases, although the precise role and the cell biological mechanisms of their action remain almost unknown. Among the big family of Cxs, several are expressed in nervous tissue but just a few are expressed in the anterior neural tube of vertebrates. Many efforts have been made to elucidate the molecular bases of Cxs cell biology and how they influence the morphogenetic signal activity produced by brain signaling centers. These centers, orchestrated by transcription factors and morphogenes determine the axial patterning of the mammalian brain during its specification and regionalization. The present review revisits the findings of GJ composed by Cx43 and Cx36 in neural tube patterning and discuss Cx43 putative enrollment in the control of Fgf8 signal activity coming from the well known secondary organizer, the isthmic organizer. © 2016 The Authors. Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.

  16. Gap Junctional Intercellular Communication and Breast Cancer Metastasis to Bone

    National Research Council Canada - National Science Library

    Donahue, Henry

    2001-01-01

    .... We found that: 1) expressing the metastasis suppressing gene BRMS1 in diverse cancer cell lines, including breast and melanoma, restores homotypic gap junctional intercellular communication (GJIC); 2...

  17. Pseudomonas aeruginosa-induced apoptosis in airway epithelial cells is mediated by gap junctional communication in a JNK-dependent manner.

    Science.gov (United States)

    Losa, Davide; Köhler, Thilo; Bellec, Jessica; Dudez, Tecla; Crespin, Sophie; Bacchetta, Marc; Boulanger, Pierre; Hong, Saw See; Morel, Sandrine; Nguyen, Tuan H; van Delden, Christian; Chanson, Marc

    2014-05-15

    Chronic infection and inflammation of the airways is a hallmark of cystic fibrosis (CF), a disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The response of the CF airway epithelium to the opportunistic pathogen Pseudomonas aeruginosa is characterized by altered inflammation and apoptosis. In this study, we examined innate immune recognition and epithelial responses at the level of the gap junction protein connexin43 (Cx43) in polarized human airway epithelial cells upon infection by PAO1. We report that PAO1 activates cell surface receptors to elicit an intracellular signaling cascade leading to enhancement of gap junctional communication. Expression of Cx43 involved an opposite regulation exerted by JNK and p38 MAPKs. PAO1-induced apoptosis was increased in the presence of a JNK inhibitor, but latter effect was prevented by lentiviral expression of a Cx43-specific short hairpin RNA. Moreover, we found that JNK activity was upregulated by pharmacological inhibition of CFTR in Calu-3 cells, whereas correction of a CF airway cell line (CF15 cells) by adenoviral expression of CFTR reduced the activation of this MAPK. Interestingly, CFTR inhibition in Calu-3 cells was associated with decreased Cx43 expression and reduced apoptosis. These results indicate that Cx43 expression is a component of the response of airway epithelial cells to innate immune activation by regulating the survival/apoptosis balance. Defective CFTR could alter this equilibrium with deleterious consequences on the CF epithelial response to P. aeruginosa.

  18. Gap Junctions and Cancer: Communicating for 50 Years’

    Science.gov (United States)

    Aasen, Trond; Mesnil, Marc; Naus, Christian C.; Lampe, Paul D.; Laird, Dale W.

    2017-01-01

    Fifty years ago, tumour cells were found to lack electrical coupling, leading to the hypothesis that loss of direct intercellular communication is commonly associated with cancer onset and progression. Subsequent studies linked this phenomenon to gap junctions composed of connexin proteins. While many studies support the notion that connexins are tumour suppressors, recent evidence suggests that, in some tumour types, they may facilitate specific stages of tumour progression through both junctional and non-junctional signalling pathways. This Timeline article highlights the milestones connecting gap junctions to cancer, and underscores important unanswered questions, controversies and therapeutic opportunities in the field. PMID:27782134

  19. Connexin 43 Expression on Peripheral Blood Eosinophils: Role of Gap Junctions in Transendothelial Migration

    Directory of Open Access Journals (Sweden)

    Harissios Vliagoftis

    2014-01-01

    Full Text Available Eosinophils circulate in the blood and are recruited in tissues during allergic inflammation. Gap junctions mediate direct communication between adjacent cells and may represent a new way of communication between immune cells distinct from communication through cytokines and chemokines. We characterized the expression of connexin (Cx43 by eosinophils isolated from atopic individuals using RT-PCR, Western blotting, and confocal microscopy and studied the biological functions of gap junctions on eosinophils. The formation of functional gap junctions was evaluated measuring dye transfer using flow cytometry. The role of gap junctions on eosinophil transendothelial migration was studied using the inhibitor 18-a-glycyrrhetinic acid. Peripheral blood eosinophils express Cx43 mRNA and protein. Cx43 is localized not only in the cytoplasm but also on the plasma membrane. The membrane impermeable dye BCECF transferred from eosinophils to epithelial or endothelial cells following coculture in a dose and time dependent fashion. The gap junction inhibitors 18-a-glycyrrhetinic acid and octanol did not have a significant effect on dye transfer but reduced dye exit from eosinophils. The gap junction inhibitor 18-a-glycyrrhetinic acid inhibited eosinophil transendothelial migration in a dose dependent manner. Thus, eosinophils from atopic individuals express Cx43 constitutively and Cx43 may play an important role in eosinophil transendothelial migration and function in sites of inflammation.

  20. Functional assessment of gap junctions in monolayer and three-dimensional cultures of human tendon cells using fluorescence recovery after photobleaching

    OpenAIRE

    Kuzma-Kuzniarska, Maria; Yapp, Clarence; Pearson-Jones, Thomas W.; Jones, Andrew K.; Hulley, Philippa A.

    2014-01-01

    Gap junction-mediated intercellular communication influences a variety of cellular activities. In tendons, gap junctions modulate collagen production, are involved in strain-induced cell death, and are involved in the response to mechanical stimulation. The aim of the present study was to investigate gap junction-mediated intercellular communication in healthy human tendon-derived cells using fluorescence recovery after photobleaching (FRAP). The FRAP is a noninvasive technique that allows qu...

  1. Methamphetamine compromises gap junctional communication in astrocytes and neurons.

    Science.gov (United States)

    Castellano, Paul; Nwagbo, Chisom; Martinez, Luis R; Eugenin, Eliseo A

    2016-05-01

    Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood-brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. Methamphetamine (meth) is an extremely addictive central nervous system stimulant. Meth reduced gap junctional (GJ) communication by inducing internalization of connexin-43 (Cx43) in astrocytes and reducing expression of Cx36 in neurons by a mechanism involving activation of dopamine receptors (see cartoon). Meth-induced changes in Cx containing channels increased extracellular levels of glutamate and resulted in higher

  2. Roles of gap junctions, connexins and pannexins in epilepsy

    Directory of Open Access Journals (Sweden)

    Shanthini eMylvaganam

    2014-05-01

    Full Text Available Enhanced gap junctional communication (GJC between neurons is considered a major factor underlying the neuronal synchrony driving seizure activity. In addition, the hippocampal sharp wave ripple complexes, associated with learning and seizures, are diminished by GJC blocking agents. Although gap junctional blocking drugs inhibit experimental seizures, they all have other nonspecific actions. Besides interneuronal GJC between dendrites, inter-axonal and inter-glial GJC is also considered important for seizure generation. Interestingly, in most studies of cerebral tissue from animal seizure models and from human patients with epilepsy, there is up-regulation of glial, but not neuronal gap junctional mRNA and protein. Significant changes in the expression and post-translational modification of the astrocytic connexin Cx43, and Panx1 were observed in an in vitro Co++ seizure model, further supporting a role for glia in seizure-genesis, although the reasons for this remain unclear. Further suggesting an involvement of astrocytic GJC in epilepsy, is the fact that the expression of astrocytic Cx mRNAs (Cxs 30 and 43 is several fold higher than that of neuronal Cx mRNAs (Cxs 36 and 45, and the number of glial cells outnumber neuronal cells in mammalian hippocampal and cortical tissue. Pannexin expression is also increased in both animal and human epileptic tissues. Specific Cx43 mimetic peptides, Gap 27 and SLS, inhibit the docking of astrocytic connexin Cx43 proteins from forming intercellular gap junctions, diminishing spontaneous seizures. Besides GJs, Cx membrane hemichannels in glia and Panx membrane channels in neurons and glia are also inhibited by gap junctional pharmacological blockers. Although there is no doubt that connexin-based gap junctions and hemichannels, and pannexin-based membrane channels are related to epilepsy, the specific details of how they are involved and how we can modulate their function for therapeutic purposes remain to

  3. Gap junction modulation by extracellular signaling molecules: the thymus model

    Directory of Open Access Journals (Sweden)

    Alves L.A.

    2000-01-01

    Full Text Available Gap junctions are intercellular channels which connect adjacent cells and allow direct exchange of molecules of low molecular weight between them. Such a communication has been described as fundamental in many systems due to its importance in coordination, proliferation and differentiation. Recently, it has been shown that gap junctional intercellular communication (GJIC can be modulated by several extracellular soluble factors such as classical hormones, neurotransmitters, interleukins, growth factors and some paracrine substances. Herein, we discuss some aspects of the general modulation of GJIC by extracellular messenger molecules and more particularly the regulation of such communication in the thymus gland. Additionally, we discuss recent data concerning the study of different neuropeptides and hormones in the modulation of GJIC in thymic epithelial cells. We also suggest that the thymus may be viewed as a model to study the modulation of gap junction communication by different extracellular messengers involved in non-classical circuits, since this organ is under bidirectional neuroimmunoendocrine control.

  4. Pallidal gap junctions-triggers of synchrony in Parkinson's disease?

    NARCIS (Netherlands)

    Schwab, B.C.; Heida, T.; Zhao, Y.; Gils, S.A. van; Wezel, R.J.A. van

    2014-01-01

    Although increased synchrony of the neural activity in the basal ganglia may underlie the motor deficiencies exhibited in Parkinson's disease (PD), how this synchrony arises, propagates through the basal ganglia, and changes under dopamine replacement remains unknown. Gap junctions could play a

  5. Pallidal gap junctions - Triggers of synchrony in Parkinson's disease?

    NARCIS (Netherlands)

    Schwab, B.C.; Heida, Tjitske; Zhao, Yan; van Gils, Stephanus A.; van Wezel, Richard Jack Anton

    2014-01-01

    Although increased synchrony of the neural activity in the basal ganglia may underlie the motor deficiencies exhibited in Parkinson's disease (PD), how this synchrony arises, propagates through the basal ganglia, and changes under dopamine replacement remains unknown. Gap junctions could play a

  6. [Gap junctions: A new therapeutic target in major depressive disorder?].

    Science.gov (United States)

    Sarrouilhe, D; Dejean, C

    2015-11-01

    Major depressive disorder is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and is associated with excess mortality, especially from cardiovascular diseases and through suicide. The treatments of this disease with tricyclic antidepressants and monoamine oxidase inhibitors are poorly tolerated and those that selectively target serotonin and norepinephrine re-uptake are not effective in all patients, showing the need to find new therapeutic targets. Post-mortem studies of brains from patients with major depressive disorders described a reduced expression of the gap junction-forming membrane proteins connexin 30 and connexin 43 in the prefrontal cortex and the locus coeruleus. The use of chronic unpredictable stress, a rodent model of depression, suggests that astrocytic gap junction dysfunction contributes to the pathophysiology of major depressive disorder. Chronic treatments of rats with fluoxetine and of rat cultured cortical astrocytes with amitriptyline support the hypothesis that the upregulation of gap junctional intercellular communication between brain astrocytes could be a novel mechanism for the therapeutic effect of antidepressants. In conclusion, astrocytic gap junctions are emerging as a new potential therapeutic target for the treatment of patients with major depressive disorder. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Gap junctions in developing thalamic and neocortical neuronal networks

    NARCIS (Netherlands)

    Niculescu, Dragos; Lohmann, C.

    2014-01-01

    The presence of direct, cytoplasmatic, communication between neurons in the brain of vertebrates has been demonstrated a long time ago. These gap junctions have been characterized in many brain areas in terms of subunit composition, biophysical properties, neuronal connectivity patterns, and

  8. The effect of gap junctional distribution on defibrillation

    Science.gov (United States)

    Keener, James P.

    1998-03-01

    We summarize a mathematical theory for direct activation and defibrillation of cardiac tissue. We show that the direct stimulus and defibrillation thresholds are likely to be strongly affected by the gap junctional distribution and density, suggesting an indirect experimental test of the theory.

  9. The psychostimulant modafinil enhances gap junctional communication in cortical astrocytes.

    Science.gov (United States)

    Liu, Xinhe; Petit, Jean-Marie; Ezan, Pascal; Gyger, Joël; Magistretti, Pierre; Giaume, Christian

    2013-12-01

    Sleep-wake cycle is characterized by changes in neuronal network activity. However, for the last decade there is increasing evidence that neuroglial interaction may play a role in the modulation of sleep homeostasis and that astrocytes have a critical impact in this process. Interestingly, astrocytes are organized into communicating networks based on their high expression of connexins, which are the molecular constituents of gap junction channels. Thus, neuroglial interactions should also be considered as the result of the interplay between neuronal and astroglial networks. Here, we investigate the effect of modafinil, a wakefulness-promoting agent, on astrocyte gap junctional communication. We report that in the cortex modafinil injection increases the expression of mRNA and protein of connexin 30 but not those of connexin 43, the other major astroglial connexin. These increases are correlated with an enhancement of intercellular dye coupling in cortical astrocytes, which is abolished when neuronal activity is silenced by tetrodotoxin. Moreover, gamma-hydroxybutyric acid, which at a millimolar concentration induces sleep, has an opposite effect on astroglial gap junctions in an activity-independent manner. These results support the proposition that astroglia may play an important role in complex physiological brain functions, such as sleep regulation, and that neuroglial networking interaction is modified during sleep-wake cycle. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'. Copyright © 2013. Published by Elsevier Ltd.

  10. Costimulation of N-methyl-d-aspartate and muscarinic neuronal receptors modulates gap junctional communication in striatal astrocytes

    OpenAIRE

    Rouach, N.; Tencé, M.; Glowinski, J.; Giaume, C.

    2002-01-01

    Cocultures of neurons and astrocytes from the rat striatum were used to determine whether the stimulation of neuronal receptors could affect the level of intercellular communication mediated by gap junctions in astrocytes. The costimulation of N-methyl-D-asparte (NMDA) and muscarinic receptors led to a prominent reduction of astrocyte gap junctional communication (GJC) in coculture. This treatment was not effective in astrocyte cultures, these cells being devoid of NMDA receptors. Both types ...

  11. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    International Nuclear Information System (INIS)

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo

    2014-01-01

    Highlights: • Astrocytes exhibit characteristic changes in [Ca 2+ ] i under OGD. • Astrocytic [Ca 2+ ] i increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca 2+ ] i ) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca 2+ ] i oscillations followed by larger and sustained [Ca 2+ ] i increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca 2+ ] i increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca 2+ ] i increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca 2+ ] i increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage during the acute phase of ischemia

  12. Silver nanoparticles increase connexin43-mediated gap junctional intercellular communication in HaCaT cells through activation of reactive oxygen species and mitogen-activated protein kinase signal pathway

    DEFF Research Database (Denmark)

    Qin, Yu; Han, Limin; Yang, Di

    2017-01-01

    Silver nanoparticles (AgNPs) are widely used in health and consumer products that routinely contact skin. However, the biological effects and possible mechanisms of AgNPs on skin remain unclear. Gap junctional intercellular communication (GJIC) plays a critical role in multicellular organisms to ...

  13. Interaction of c-Src with gap junction protein connexin-43. Role in the regulation of cell-cell communication

    NARCIS (Netherlands)

    Giepmans, B N; Hengeveld, T; Postma, Friso R.; Moolenaar, W H

    2001-01-01

    Cell-cell communication via connexin-43 (Cx43)-based gap junctions is transiently inhibited by certain mitogens, but the underlying regulatory mechanisms are incompletely understood. Our previous studies have implicated the c-Src tyrosine kinase in mediating transient closure of Cx43-based gap

  14. Inhibition of hepatocyte gap junctional intercellular communication by tumor promoters

    Energy Technology Data Exchange (ETDEWEB)

    Ruch, R.J.

    1988-01-01

    The mechanisms by which tumor promoters enhance neoplasia are poorly understood. One effect common to most tumor promoters is their ability to inhibit the cell-to-cell exchange of small molecules and ions through gap junctions, i.e., gap junctional intercellular communication (IC). IC maybe necessary for normal growth control and the loss of IC may predispose cells to enhanced growth. In the present studies, the effects of liver tumor promoters and other agents on IC between rodent hepatocytes in primary culture has been studied. IC was detected between hepatocytes: (1) autoradiographically following the passage and incorporation of (5-{sup 3}H)uridine nucleotides from pre-labeled donor hepatocytes to non-labeled, adjacent recipient hepatocytes and (2) by fluorescence microscopy after microinjection of fluorescent Lucifer Yellow CH dye into hepatocytes and visualizing dye spread into adjacent hepatocytes.

  15. Inhibition of hepatocyte gap junctional intercellular communication by tumor promoters

    International Nuclear Information System (INIS)

    Ruch, R.J.

    1988-01-01

    The mechanisms by which tumor promoters enhance neoplasia are poorly understood. One effect common to most tumor promoters is their ability to inhibit the cell-to-cell exchange of small molecules and ions through gap junctions, i.e., gap junctional intercellular communication (IC). IC maybe necessary for normal growth control and the loss of IC may predispose cells to enhanced growth. In the present studies, the effects of liver tumor promoters and other agents on IC between rodent hepatocytes in primary culture has been studied. IC was detected between hepatocytes: (1) autoradiographically following the passage and incorporation of [5- 3 H]uridine nucleotides from pre-labeled donor hepatocytes to non-labeled, adjacent recipient hepatocytes and (2) by fluorescence microscopy after microinjection of fluorescent Lucifer Yellow CH dye into hepatocytes and visualizing dye spread into adjacent hepatocytes

  16. Potential involvement of gap junctions in pathology of addiction

    OpenAIRE

    Lazzaro, Massimo

    2013-01-01

    Cocaine abuse represents a huge social problem for the widespread in the world and for the many health risks associated. Moreover, a significative percentage of cocaine users develop an addiction with loss of control on drug intake. Several molecular modifications occurs with cocaine use, some of which seem occur only in addicted individuals. Gap junctions (GJs) allow cellular communication, indeed they are fundamental to regulate cellular synchronization, cellular growth and metabolic co...

  17. Symposia for a Meeting on Ion Channels and Gap Junctions

    CERN Document Server

    Sáez, Juan

    1997-01-01

    Ion channels allow us to see nature in all its magnificence, to hear a Bach suite, to smell the aroma of grandmother's cooking, and, in this regard, they put us in contact with the external world. These ion channels are protein molecules located in the cell membrane. In complex organisms, cells need to communicate in order to know about their metabolic status and to act in a coordinate manner. The latter is also accomplished by a class of ion channels able to pierce the lipid bilayer membranes of two adjacent cells. These intercellular channels are the functional subunits of gap junctions. Accordingly, the book is divided in two parts: the first part is dedicated to ion channels that look to the external world, and the second part is dedicated to gap junctions found at cell interfaces. This book is based on a series of symposia for a meeting on ion channels and gap junctions held in Santiago, Chile, on November 28-30, 1995. The book should be useful to graduate students taking the first steps in this field as...

  18. Conduction gap in graphene strain junctions: direction dependence

    International Nuclear Information System (INIS)

    Nguyen, M Chung; Nguyen, V Hung; Dollfus, P; Nguyen, Huy-Viet

    2014-01-01

    It has been shown in a recent study (Nguyen et al 2014 Nanotechnology 25 165201) that unstrained/strained graphene junctions are promising candidates to improve the performance of graphene transistors which is usually hindered by the gapless nature of graphene. Although the energy bandgap of strained graphene still remains zero, the shift of Dirac points in the k-space due to strain-induced deformation of graphene lattice can lead to the appearance of a finite conduction gap of several hundred meV in strained junctions with a strain of only a few per cent. However, since it depends essentially on the magnitude of the Dirac point shift, this conduction gap strongly depends on the direction of applied strain and the transport direction. In this work, a systematic study of conduction-gap properties with respect to these quantities is presented and the results are carefully analyzed. Our study provides useful information for further investigations to exploit graphene-strained junctions in electronic applications and strain sensors. (paper)

  19. Cut-loading: a useful tool for examining the extent of gap junction tracer coupling between retinal neurons.

    Science.gov (United States)

    Choi, Hee Joo; Ribelayga, Christophe P; Mangel, Stuart C

    2012-01-12

    In addition to chemical synaptic transmission, neurons that are connected by gap junctions can also communicate rapidly via electrical synaptic transmission. Increasing evidence indicates that gap junctions not only permit electrical current flow and synchronous activity between interconnected or coupled cells, but that the strength or effectiveness of electrical communication between coupled cells can be modulated to a great extent(1,2). In addition, the large internal diameter (~1.2 nm) of many gap junction channels permits not only electric current flow, but also the diffusion of intracellular signaling molecules and small metabolites between interconnected cells, so that gap junctions may also mediate metabolic and chemical communication. The strength of gap junctional communication between neurons and its modulation by neurotransmitters and other factors can be studied by simultaneously electrically recording from coupled cells and by determining the extent of diffusion of tracer molecules, which are gap junction permeable, but not membrane permeable, following iontophoretic injection into single cells. However, these procedures can be extremely difficult to perform on neurons with small somata in intact neural tissue. Numerous studies on electrical synapses and the modulation of electrical communication have been conducted in the vertebrate retina, since each of the five retinal neuron types is electrically connected by gap junctions(3,4). Increasing evidence has shown that the circadian (24-hour) clock in the retina and changes in light stimulation regulate gap junction coupling(3-8). For example, recent work has demonstrated that the retinal circadian clock decreases gap junction coupling between rod and cone photoreceptor cells during the day by increasing dopamine D2 receptor activation, and dramatically increases rod-cone coupling at night by reducing D2 receptor activation(7,8). However, not only are these studies extremely difficult to perform on

  20. Fenamates block gap junction coupling and potentiate BKCa channels in guinea pig arteriolar cells

    Science.gov (United States)

    Li, Xin-Zhi; Ma, Ke-Tao; Guan, Bing-Cai; Li, Li; Zhao, Lei; Zhang, Zhong-Shuang; Si, Jun-Qiang; Jiang, Zhi-Gen

    2013-01-01

    We determined the actions of the fenamates, flufenamic acid (FFA) and niflumic acid (NFA), on gap junction-mediated intercellular coupling between vascular smooth muscle cells (VSMC) in situ of acutely isolated arteriole segments from the three vascular beds: the spiral modiolar artery (SMA), anterior inferior cerebellar artery (AICA) and mesenteric artery (MA), and on non-junctional membrane channels in dispersed VSMCs. Conventional whole-cell recording methods were used. FFA reversibly suppressed the input conductance (Ginput) or increased the input resistance (Rinput) in a concentration dependent manner, with slightly different IC50s for the SMA, AICA and MA segments (26, 33 and 56 μM respectively, P>0.05). Complete electrical isolation of the recorded VSMC was normally reached at ≥300 μM. NFA had a similar effect on gap junction among VSMCs with an IC50 of 40, 48 and 62 μM in SMA, AICA and MA segments, respectively. In dispersed VSMCs, FFA and NFA increased outward rectifier K+-current mediated by the big conductance calcium-activated potassium channel (BKCa) in a concentration-dependent manner, with a similar EC50 of ~300 μM for both FFA and NFA in the three vessels. Iberiotoxin, a selective blocker of the BKCa, suppressed the enhancement of the BKCa by FFA and NFA. The KV blocker 4-AP had no effect on the fenamates-induced K+-current enhancement. We conclude that FFA and NFA blocked the vascular gap junction mediated electrical couplings uniformly in arterioles of the three vascular beds, and complete electrical isolation of the recorded VSMC is obtained at ≧300 μM; FFA and NFA also activate BKCa channels in the arteriolar smooth muscle cells in addition to their known inhibitory effects on chloride channels. PMID:23420003

  1. Mefloquine gap junction blockade and risk of pregnancy loss.

    Science.gov (United States)

    Nevin, Remington Lee

    2012-09-01

    Obstetric use of the antimalarial drug mefloquine has historically been discouraged during the first trimester and immediately before conception owing to concerns of potential fetal harm. With the rise of resistance to the antimalarial drug sulfadoxine-pyrimethamine (SP), mefloquine is now being considered as a replacement for SP for universal antenatal administration to women from malaria-endemic regions. Recent recommendations have also suggested that mefloquine may be used cautiously among pregnant travelers who cannot otherwise avoid visiting these areas. Mefloquine has been demonstrated to cause blockade of gap junction protein alpha 1 (GJA1) gap junction intercellular communication (GJIC), and recent evidence suggests that GJA1 GJIC is critical to successful embryonic implantation and early placental development. During routine use, mefloquine accumulates in organ and peripheral tissue, crosses the blood-placental barrier, and may plausibly accumulate in developing decidua and trophoblast at concentrations sufficient to interfere with GJA1 GJIC and, thus, cause deleterious effects on fetal outcomes. This conclusion is supported by epidemiological evidence that demonstrates use of the drug during early development is associated with an increased risk of miscarriage and stillbirth. Confirmatory studies are pending, but the available experimental and epidemiological evidence support renewed adherence, where feasible, to existing mefloquine package insert guidance that women avoid the drug during the periconceptional period.

  2. Gap junction coupling confers isopotentiality on astrocyte syncytium

    Science.gov (United States)

    Ma, Baofeng; Buckalew, Richard; Du, Yixing; Kiyoshi, Conrad M.; Alford, Catherine C.; Wang, Wei; McTigue, Dana D.; Enyeart, John J.; Terman, David; Zhou, Min

    2015-01-01

    Astrocytes are extensively coupled through gap junctions into a syncytium. However, the basic role of this major brain network remains largely unknown. Using electrophysiological and computational modeling methods, we demonstrate that the membrane potential (VM) of an individual astrocyte in a hippocampal syncytium, but not in a single, freshly isolated cell preparation, can be well-maintained at quasi-physiological levels when recorded with reduced or K+ free pipette solutions that alter the K+ equilibrium potential to non-physiological voltages. We show that an astrocyte’s associated syncytium provides powerful electrical coupling, together with ionic coupling at a lesser extent, that equalizes the astrocyte’s VM to levels comparable to its neighbors. Functionally, this minimizes VM depolarization attributable to elevated levels of local extracellular K+ and thereby maintains a sustained driving force for highly efficient K+ uptake. Thus, gap junction coupling functions to achieve isopotentiality in astrocytic networks, whereby a constant extracellular environment can be powerfully maintained for crucial functions of neural circuits. PMID:26435164

  3. The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein

    NARCIS (Netherlands)

    Giepmans, B N; Moolenaar, W H

    1998-01-01

    Gap junctions mediate cell-cell communication in almost all tissues and are composed of channel-forming integral membrane proteins, termed connexins [1-3]. Connexin43 (Cx43) is the most widely expressed and the most well-studied member of this family. Cx43-based cell-cell communication is regulated

  4. ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jorgensen, N R; Geist, S T; Civitelli, R

    1997-01-01

    mechanically induced calcium waves in two rat osteosarcoma cell lines that differ in the gap junction proteins they express, in their ability to pass microinjected dye from cell to cell, and in their expression of P2Y2 (P2U) purinergic receptors. ROS 17/2.8 cells, which express the gap junction protein...... connexin43 (Cx43), are well dye coupled, and lack P2U receptors, transmitted slow gap junction-dependent calcium waves that did not require release of intracellular calcium stores. UMR 106-01 cells predominantly express the gap junction protein connexin 45 (Cx45), are poorly dye coupled, and express P2U...

  5. Xenobiotic Modulation of Human Mammary Epithelial Cell Gap Junctional Intercellular Communication and Growth

    National Research Council Canada - National Science Library

    Ruch, Randall

    1999-01-01

    .... These agents also inhibit gap junctional intercellular communication (GJIC). This inhibition may contribute to the enhancement of breast epithelial growth and breast cancer formation by xenobiotics...

  6. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks

    Science.gov (United States)

    Mäkinen, Meeri Eeva-Liisa; Ylä-Outinen, Laura; Narkilahti, Susanna

    2018-01-01

    The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling. PMID:29559893

  7. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks.

    Science.gov (United States)

    Mäkinen, Meeri Eeva-Liisa; Ylä-Outinen, Laura; Narkilahti, Susanna

    2018-01-01

    The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABA A mediated signaling.

  8. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks

    Directory of Open Access Journals (Sweden)

    Meeri Eeva-Liisa Mäkinen

    2018-03-01

    Full Text Available The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging and temporal resolution microelectrode array (MEA. We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling.

  9. Gap junction protein connexin43 exacerbates lung vascular permeability.

    Directory of Open Access Journals (Sweden)

    James J O'Donnell

    Full Text Available Increased vascular permeability causes pulmonary edema that impairs arterial oxygenation and thus contributes to morbidity and mortality associated with Acute Respiratory Distress Syndrome and sepsis. Although components of intercellular adhesive and tight junctions are critical for maintaining the endothelial barrier, there has been limited study of the roles of gap junctions and their component proteins (connexins. Since connexins can modulate inflammatory signaling in other systems, we hypothesized that connexins may also regulate pulmonary endothelial permeability. The relationships between connexins and the permeability response to inflammatory stimuli were studied in cultured human pulmonary endothelial cells. Prolonged treatment with thrombin, lipopolysaccharide, or pathological cyclic stretch increased levels of mRNA and protein for the major connexin, connexin43 (Cx43. Thrombin and lipopolysaccharide both increased intercellular communication assayed by transfer of microinjected Lucifer yellow. Although thrombin decreased transendothelial resistance in these cells, the response was attenuated by pretreatment with the connexin inhibitor carbenoxolone. Additionally, the decreases of transendothelial resistance produced by either thrombin or lipopolysaccharide were attenuated by reducing Cx43 expression by siRNA knockdown. Both carbenoxolone and Cx43 knockdown also abrogated thrombin-induced phosphorylation of myosin light chain. Taken together, these data suggest that increased lung vascular permeability induced by inflammatory conditions may be amplified via increased expression of Cx43 and intercellular communication among pulmonary endothelial cells.

  10. Ouabain Increases Gap Junctional Communication in Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Arturo Ponce

    2014-11-01

    Full Text Available Background/Aims: The finding that endogenous ouabain acts as a hormone prompted efforts to elucidate its physiological function. In previous studies, we have shown that 10 nM ouabain (i.e., a concentration within the physiological range modulates cell-cell contacts such as tight junctions and apical/basolateral polarity. In this study, we examined whether 10 nM ouabain affects another important cell-cell feature: gap junction communication (GJC. Methods: We employed two different approaches: 1 analysis of the cell-to-cell diffusion of neurobiotin injected into a particular MDCK cell (epithelial cells from dog kidneys in a confluent monolayer by counting the number of neighboring cells reached by the probe and 2 measurement of the electrical capacitance. Results: We found that 10 nM ouabain increase GJC by 475% within 1 hour. The Na+-K+-ATPase acts as a receptor of ouabain. In previous works we have shown that ouabain activates c-Src and ERK1/2 in 1 hour; in the present study we show that the inhibition of these proteins block the effect of ouabain on GJC. This increase in GJC does not require synthesis of new protein components, because the inhibitors cycloheximide and actinomycin D did not affect this phenomenon. Using silencing assays we also demonstrate that this ouabain-induced enhancement of GJC involves connexins 32 and 43. Conclusion: Ouabain 10 nM increases GJC in MDCK cells.

  11. Chlorpromazine reduces the intercellular communication via gap junctions in mammalian cells

    International Nuclear Information System (INIS)

    Orellana, Juan A.; Palacios-Prado, Nicolas; Saez, Juan C.

    2006-01-01

    In the work presented herein, we evaluated the effect of chlorpromazine (CPZ) on gap junctions expressed by two mammalian cell types; Gn-11 cells (cell line derived from mouse LHRH neurons) and rat cortical astrocytes maintained in culture. We also attempted to elucidate possible mechanisms of action of CPZ effects on gap junctions. CPZ, in concentrations comparable with doses used to treat human diseases, was found to reduce the intercellular communication via gap junctions as evaluated with measurements of dye coupling (Lucifer yellow). In both cell types, maximal inhibition of functional gap junctions was reached within about 1 h of treatment with CPZ, an recovery was almost complete at about 5 h after CPZ wash out. In both cell types, CPZ treatment increased the phosphorylation state of connexin43 (Cx43), a gap junction protein subunit. Moreover, CPZ reduced the reactivity of Cx43 (immunofluorescence) at cell interfaces and concomitantly increased its reactivity in intracellular vesicles, suggesting an increased retrieval from and/or reduced insertion into the plasma membrane. CPZ also caused cellular retraction reducing cell-cell contacts in a reversible manner. The reduction in contact area might destabilize existing gap junctions and abrogate formation of new ones. Moreover, the CPZ-induced reduction in gap junctional communication may depend on the connexins (Cxs) forming the junctions. If Cx43 were the only connexin expressed, MAPK-dependent phosphorylation of this connexin would induce closure of gap junction channels

  12. Gap-junction channels inhibit transverse propagation in cardiac muscle

    Directory of Open Access Journals (Sweden)

    Ramasamy Lakshminarayanan

    2005-01-01

    Full Text Available Abstract The effect of adding many gap-junctions (g-j channels between contiguous cells in a linear chain on transverse propagation between parallel chains was examined in a 5 × 5 model (5 parallel chains of 5 cells each for cardiac muscle. The action potential upstrokes were simulated using the PSpice program for circuit analysis. Either a single cell was stimulated (cell A1 or the entire chain was stimulated simultaneously (A-chain. Transverse velocity was calculated from the total propagation time (TPT from when the first AP crossed a Vm of -20 mV and the last AP crossed -20 mV. The number of g-j channels per junction was varied from zero to 100, 1,000 and 10,000 (Rgj of ∞, 100 MΩ, 10 MΩ, 1.0 MΩ, respectively. The longitudinal resistance of the interstitial fluid (ISF space between the parallel chains (Rol2 was varied between 200 KΩ (standard value and 1.0, 5.0, and 10 MΩ. The higher the Rol2 value, the tighter the packing of the chains. It was found that adding many g-j channels inhibited transverse propagation by blocking activation of all 5 chains, unless Rol2 was greatly increased above the standard value of 200 KΩ. This was true for either method of stimulation. This was explained by, when there is strong longitudinal coupling between all 5 cells of a chain awaiting excitation, there must be more transfer energy (i.e., more current to simultaneously excite all 5 cells of a chain.

  13. Prevention of cisplatin-induced ototoxicity by the inhibition of gap junctional intercellular communication in auditory cells.

    Science.gov (United States)

    Kim, Yeon Ju; Kim, Jangho; Tian, Chunjie; Lim, Hye Jin; Kim, Young Sun; Chung, Jong Hoon; Choung, Yun-Hoon

    2014-10-01

    Cis-diamminedichloroplatinum (cisplatin) is an effective chemotherapeutic drug for cancer therapy. However, most patients treated with cisplatin are at a high risk of ototoxicity, which causes severe hearing loss. Inspired by the "Good Samaritan effect" or "bystander effect" from gap junction coupling, we investigated the role of gap junctions in cisplatin-induced ototoxicity as a potential therapeutic method. We showed that connexin 43 (Cx43) was highly expressed in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells, mediating cell-cell communication. The viability of HEI-OC1 cells was greatly decreased by cisplatin treatment, and cisplatin-treated HEI-OC1 cells showed lower Cx43 expression compared to that of untreated HEI-OC1 cells. In particular, high accumulation of Cx43 was observed around the nucleus of cisplatin-treated cells, whereas scattered punctuate expression of Cx43 was observed in the cytoplasm and membrane in normal cells, suggesting that cisplatin may interrupt the normal gap junction communication by inhibiting the trafficking of Cx43 to cell membranes in HEI-OC1 cells. Interestingly, we found that the inhibition of gap junction activity reduced cisplatin-induced apoptosis of auditory hair cells. Cx43 siRNA- or 18α-GA-treated HEI-OC1 cells showed higher cell viability compared to control HEI-OC1 cells during cisplatin treatment; this was also supported by fluorescence recovery after photobleaching studies. Inhibition of gap junction activity reduced recovery of calcein acetoxymethyl ester fluorescence compared to control cells. Additionally, analysis of the mechanisms involved demonstrated that highly activate extracellular signal-regulated kinase and protein kinase B, combined with inhibition of gap junctions may promote cell viability during cisplatin treatment.

  14. Combinational treatment of gap junctional activator and tamoxifen in breast cancer cells.

    Science.gov (United States)

    Gakhar, Gunjan; Hua, Duy H; Nguyen, Thu Annelise

    2010-01-01

    fragmentation. Tamoxifen alone and in combination with PQ1 showed a decrease in the expression of survivin, whereas PQ1 alone was shown to be independent of the survivin-mediated pathway. This suggests that an increase in gap junction activity can potentiate the effect of tamoxifen. The combinational treatment of tamoxifen and PQ1 also showed a significant decrease in cell viability compared with tamoxifen treatment alone. The gap junction inhibitor carbenexolone was shown to increase cell proliferation by increased cyclin D1 expression, MTT assay, and Ki67 expression. It further decreased cell death. This study shows for the first time that combinational treatment of tamoxifen and PQ1 (a gap junctional activator) can be used to potentiate apoptosis of T47D human breast cancer cells. Thus, a gap junctional activator, PQ1, could potentially alter either the length or dose of tamoxifen clinically used for breast cancer patients.

  15. Nogo-66 inhibits the dye-coupling of astrocytic gap junctions in vitro.

    Science.gov (United States)

    Wang, Yazhou; Wu, Yin; Liu, Mengdong; Wang, Jian; Ju, Gong

    2011-06-01

    Communication between astrocytes via the gap junction is crucial for maintaining homeostasis of the extra-neuronal microenvironment of the central nervous system. Dysfunction of astrocytic gap junctions is involved in many brain disorders. Our previous studies demonstrated a novel co-localization of Nogo-66 receptor at glial gap junctions in rat cerebellum and posterior pituitary. The present study was aimed at exploring whether Nogo-66 can modulate glial gap junctions in vitro. We confirmed the co-localization of Nogo-66 receptor with Cx43 in cultured astrocytes, and stimulated astrocytes with myelin extracts, or Nogo-66-Fc conditioned medium. Finally, we expressed and purified a functionally effective GST-Nogo-66 peptide. Lucifer yellow transfer assay was adopted to measure the gap junction permeability. The results showed that the spreading of Lucifer yellow was inhibited significantly by all three treatments as compared with their corresponding controls. Therefore, this study shows a novel inhibitory effect of Nogo-66 on the permeability of astrocytic gap junctions, suggesting a presumable role of Nogo-66 receptor in modulating the glial gap junction.

  16. Effect of Mefloquine, a Gap Junction Blocker, on Circadian Period2 Gene Oscillation in the Mouse Suprachiasmatic Nucleus

    Directory of Open Access Journals (Sweden)

    Jinmi Koo

    2015-09-01

    Full Text Available BackgroundIn mammals, the master circadian pacemaker is localized in an area of the ventral hypothalamus known as the suprachiasmatic nucleus (SCN. Previous studies have shown that pacemaker neurons in the SCN are highly coupled to one another, and this coupling is crucial for intrinsic self-sustainability of the SCN central clock, which is distinguished from peripheral oscillators. One plausible mechanism underlying the intercellular communication may involve direct electrical connections mediated by gap junctions.MethodsWe examined the effect of mefloquine, a neuronal gap junction blocker, on circadian Period 2 (Per2 gene oscillation in SCN slice cultures prepared from Per2::luciferase (PER2::LUC knock-in mice using a real-time bioluminescence measurement system.ResultsAdministration of mefloquine causes instability in the pulse period and a slight reduction of amplitude in cyclic PER2::LUC expression. Blockade of gap junctions uncouples PER2::LUC-expressing cells, in terms of phase transition, which weakens synchrony among individual cellular rhythms.ConclusionThese findings suggest that neuronal gap junctions play an important role in synchronizing the central pacemaker neurons and contribute to the distinct self-sustainability of the SCN master clock.

  17. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Jose L Serrano-Velez

    2014-06-01

    Full Text Available Dye-coupling, whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35, and freeze-fracture replica immunogold labeling (FRIL reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish.To study gap junctions’ role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in 50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment.Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions’ role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors.

  18. Gap junction structure: unraveled, but not fully revealed [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Eric C. Beyer

    2017-04-01

    Full Text Available Gap junction channels facilitate the intercellular exchange of ions and small molecules, a process that is critical for the function of many different kinds of cells and tissues. Recent crystal structures of channels formed by one connexin isoform (connexin26 have been determined, and they have been subjected to molecular modeling. These studies have provided high-resolution models to gain insights into the mechanisms of channel conductance, molecular permeability, and gating. The models share similarities, but there are some differences in the conclusions reached by these studies. Many unanswered questions remain to allow an atomic-level understanding of intercellular communication mediated by connexin26. Because some domains of the connexin polypeptides are highly conserved (like the transmembrane regions, it is likely that some features of the connexin26 structure will apply to other members of the family of gap junction proteins. However, determination of high-resolution structures and modeling of other connexin channels will be required to account for the diverse biophysical properties and regulation conferred by the differences in their sequences.

  19. The Microvascular Gap Junction Channel: A Route to Deliver MicroRNAs for Neurological Disease Treatment

    Directory of Open Access Journals (Sweden)

    Dominique Thuringer

    2017-08-01

    Full Text Available Brain microvascular endothelial cells (BMECs separate the peripheral blood from the brain. These cells, which are surrounded by basal lamina, pericytes and glial cells, are highly interconnected through tight and gap junctions. Their permeability properties restrict the transfer of potentially useful therapeutic agents. In such a hermetic system, the gap junctional exchange of small molecules between cerebral endothelial and non-endothelial cells is crucial for maintaining tissue homeostasis. MicroRNA were shown to cross gap junction channels, thereby modulating gene expression and function of the recipient cell. It was also shown that, when altered, BMEC could be regenerated by endothelial cells derived from pluripotent stem cells. Here, we discuss the transfer of microRNA through gap junctions between BMEC, the regeneration of BMEC from induced pluripotent stem cells that could be engineered to express specific microRNA, and how such an innovative approach could benefit to the treatment of glioblastoma and other neurological diseases.

  20. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps.

    Science.gov (United States)

    Takaku, Yasuharu; Hwang, Jung Shan; Wolf, Alexander; Böttger, Angelika; Shimizu, Hiroshi; David, Charles N; Gojobori, Takashi

    2014-01-07

    Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia.

  1. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps

    KAUST Repository

    Takaku, Yasuharu

    2014-01-07

    Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia.

  2. [Inhibition of gap junctional intercellular communication protects astrocytes from hypoxia/reoxygenation injury].

    Science.gov (United States)

    Tong, Xu-Hui; Gu, Yu-Chen; Jiao, Hao; Yu, Li; Dong, Shu-Ying

    2015-01-01

    To investigate the effects of inhibiting gap junctional intercellular communication on hypoxia/reoxygenation injury in astrocytes. Primary cultured cerebral cortical astrocytes of neonate rats were divided into normal control group, hypoxia reoxygenation injury group and 18-α-glycyrrhetinic acid and oleamide (gap junctional intercellular channel inhibitors) group. The gap junction intercellular communication was determined by Parachute assay. The viability of astrocyes was detected by MTT assay. The apoptosis of astrocytes were detected with annexin V/PI and Hoechst 33258 staining. Compared with the normal control group, the gap junctional function of astrocytes was increased significantly in ischemia/reperfusion group (Pastrocytes decreased significantly (Pastrocytes in18-α-glycyrrhetinic acid and oleamide group decreased significantly (Pastrocytes increased significantly (Pastrocytes.

  3. Chaotic synchronization with gap junction of multi-neurons in external electrical stimulation

    International Nuclear Information System (INIS)

    Deng Bin; Wang Jiang; Fei Xiangyang

    2005-01-01

    The synchronization of n(n 3) neurons coupled with gap junction in external electrical stimulation is investigated. In this paper, the coupled model is established on the basis of nonlinear cable model, and then the relation between coupling strength of the gap junction and the synchronization is discussed in detail. The sufficient condition of complete synchronization is attained from rigorous mathematical derivation. The synchronizations of periodic neurons and chaotic neurons are studied respectively

  4. The unstoppable connexin43 carboxyl-terminus: new roles in gap junction organization and wound healing.

    Science.gov (United States)

    Gourdie, Robert G; Ghatnekar, Gautam S; O'Quinn, Michael; Rhett, Matthew J; Barker, Ralph J; Zhu, Ching; Jourdan, Jane; Hunter, Andrew W

    2006-10-01

    Intercellular connectivity mediated by gap junctions (GJs) composed of connexin43 (Cx43) is critical to the function of excitable tissues such as the heart and brain. Disruptions to Cx43 GJ organization are thought to be a factor in cardiac arrhythmias and are also implicated in epilepsy. This article is based on a presentation to the 4th Larry and Horti Fairberg Workshop on Interactive and Integrative Cardiology and summarizes the work of Gourdie and his lab on Cx43 GJs in the heart. Background and perspective of recently published studies on the function of Cx43-interacting protein zonula occludens-(ZO)-1 in determining the organization of GJ plaques are provided. In addition how a peptide containing a PDZ-binding sequence of Cx43, developed as part of the work on cardiac GJ organization is also described, which has led to evidence for novel and unexpected roles for Cx43 in modulating healing following tissue injury.

  5. Modelling the effect of gap junctions on tissue-level cardiac electrophysiology

    Directory of Open Access Journals (Sweden)

    Doug Bruce

    2012-08-01

    Full Text Available When modelling tissue-level cardiac electrophysiology, continuum approximations to the discrete cell-level equations are used to maintain computational tractability. One of the most commonly used models is represented by the bidomain equations, the derivation of which relies on a homogenisation technique to construct a suitable approximation to the discrete model. This derivation does not explicitly account for the presence of gap junctions connecting one cell to another. It has been seen experimentally [Rohr, Cardiovasc. Res. 2004] that these gap junctions have a marked effect on the propagation of the action potential, specifically as the upstroke of the wave passes through the gap junction. In this paper we explicitly include gap junctions in a both a 2D discrete model of cardiac electrophysiology, and the corresponding continuum model, on a simplified cell geometry. Using these models we compare the results of simulations using both continuum and discrete systems. We see that the form of the action potential as it passes through gap junctions cannot be replicated using a continuum model, and that the underlying propagation speed of the action potential ceases to match up between models when gap junctions are introduced. In addition, the results of the discrete simulations match the characteristics of those shown in Rohr 2004. From this, we suggest that a hybrid model — a discrete system following the upstroke of the action potential, and a continuum system elsewhere — may give a more accurate description of cardiac electrophysiology.

  6. Gap junction proteins in the blood-brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells.

    Science.gov (United States)

    Spéder, Pauline; Brand, Andrea H

    2014-08-11

    Neural stem cells in the adult brain exist primarily in a quiescent state but are reactivated in response to changing physiological conditions. How do stem cells sense and respond to metabolic changes? In the Drosophila CNS, quiescent neural stem cells are reactivated synchronously in response to a nutritional stimulus. Feeding triggers insulin production by blood-brain barrier glial cells, activating the insulin/insulin-like growth factor pathway in underlying neural stem cells and stimulating their growth and proliferation. Here we show that gap junctions in the blood-brain barrier glia mediate the influence of metabolic changes on stem cell behavior, enabling glia to respond to nutritional signals and reactivate quiescent stem cells. We propose that gap junctions in the blood-brain barrier are required to translate metabolic signals into synchronized calcium pulses and insulin secretion. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Hidehiro, E-mail: hd-asai@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ota, Yukihiro [CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba 277-8587 (Japan); Kawabata, Shiro [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Nori, Franco [CEMS, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2014-09-15

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate.

  8. A PC microsimulation of a gap acceptance model for turning left at a T-junction

    NARCIS (Netherlands)

    Schaap, Nina; Dijck, T.; van Arem, Bart; Morsink, Peter L.J.

    2009-01-01

    Vehicles are controlled by sub-behavioral models in a microsimulation model, this includes the gap acceptance model where the decision about how to cross a junction is made. The critical gap in these models must serve as a threshold value to accept or reject the space between two successive vehicles

  9. Microwave dependence of subharmonic gap structure in superconducting junctions

    DEFF Research Database (Denmark)

    Sørensen, O. Hoffman; Kofoed, Bent; Pedersen, Niels Falsig

    1974-01-01

    are integers: m=1,2,3,… and n=0,1,2,…. The power dependence of the satellite structure and the microwave-assisted tunneling structure is consistent for all junctions tested with the expression Jn2(m e Vrf / h ν), where Jn(x) is the ordinary Bessel function of order n, Vrf is the amplitude of the induced...

  10. Gap Junctions Contribute to Ictal/Interictal Genesis in Human Hypothalamic Hamartomas

    Directory of Open Access Journals (Sweden)

    Jie Wu

    2016-06-01

    Full Text Available Human hypothalamic hamartoma (HH is a rare subcortical lesion associated with treatment-resistant epilepsy. Cellular mechanisms responsible for epileptogenesis are unknown. We hypothesized that neuronal gap junctions contribute to epileptogenesis through synchronous activity within the neuron networks in HH tissue. We studied surgically resected HH tissue with Western-blot analysis, immunohistochemistry, electron microscopy, biocytin microinjection of recorded HH neurons, and microelectrode patch clamp recordings with and without pharmacological blockade of gap junctions. Normal human hypothalamus tissue was used as a control. Western blots showed increased expression of both connexin-36 (Cx36 and connexin-43 (Cx43 in HH tissue compared with normal human mammillary body tissue. Immunohistochemistry demonstrated that Cx36 and Cx43 are expressed in HH tissue, but Cx36 was mainly expressed within neuron clusters while Cx43 was mainly expressed outside of neuron clusters. Gap-junction profiles were observed between small HH neurons with electron microscopy. Biocytin injection into single recorded small HH neurons showed labeling of adjacent neurons, which was not observed in the presence of a neuronal gap-junction blocker, mefloquine. Microelectrode field recordings from freshly resected HH slices demonstrated spontaneous ictal/interictal-like discharges in most slices. Bath-application of gap-junction blockers significantly reduced ictal/interictal-like discharges in a concentration-dependent manner, while not affecting the action-potential firing of small gamma-aminobutyric acid (GABA neurons observed with whole-cell patch-clamp recordings from the same patient's HH tissue. These results suggest that neuronal gap junctions between small GABAergic HH neurons participate in the genesis of epileptic-like discharges. Blockade of gap junctions may be a new therapeutic strategy for controlling seizure activity in HH patients.

  11. The role of gap junctions in stretch-induced atrial fibrillation.

    Science.gov (United States)

    Ueda, Norihiro; Yamamoto, Mitsuru; Honjo, Haruo; Kodama, Itsuo; Kamiya, Kaichiro

    2014-11-01

    The aim of this study was to investigate the role of gap junctions in atrial fibrillation (AF) by analysing the effects of a gap junction enhancer and blocker on AF vulnerability and electrophysiological properties of isolated hearts. The acute atrial stretch model of AF in the isolated rabbit heart was used. Sustained AF (SAF) was induced by a burst of high-frequency stimulation of the Bachmann's bundle. The effective refractory period (ERP) was measured, and the total conduction time (TCT) and the pattern of conduction of the anterior surface of the left atrium were monitored by using an optical mapping system. The effect of enhancing gap junction function by 100-1000 nM rotigaptide (ZP123) and block by 30 μM carbenoxolone on these parameters was measured. SAF inducibility was increased with an elevation of intra-atrial pressure. Enhanced gap junction conductance induced by treatment with 100-1000 nM rotigaptide reduced SAF inducibility, and the gap junction blocker carbenoxolone increased SAF inducibility. In the absence of gap junction enhancer or blocker, normal conduction was observed at 0 cmH2O. When intra-atrial pressure was raised to 12 cmH2O, the conduction pattern was changed to a heterogeneous zig-zag pattern and TCT was prolonged. Conduction pattern was not affected by either agent. Rotigaptide shortened TCT, whereas carbenoxolone prolonged TCT. ERP was significantly shortened with an increase in intra-atrial pressure, but ERP was unaffected by either agent. Gap junction modulators changed AF inducibility through their effects on atrial conduction, not by altering ERP. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Cardiology.

  12. Meclofenamic acid blocks the gap junction communication between the retinal pigment epithelial cells.

    Science.gov (United States)

    Ning, N; Wen, Y; Li, Y; Li, J

    2013-11-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to manage the pain and inflammation. NSAIDs can cause serious side effects, including vision problems. However, the underlying mechanisms are still unclear. Therefore, we aimed to investigate the effect of meclofenamic acid (MFA) on retinal pigment epithelium (RPE). In our study, we applied image analysis and whole-cell patch clamp recording to directly measure the effect of MFA on the gap junctional coupling between RPE cells. Analysis of Lucifer yellow (LY) transfer revealed that the gap junction communication existed between RPE cells. Functional experiments using the whole-cell configuration of the patch clamp technique showed that a gap junction conductance also existed between this kind of cells. Importantly, MFA largely inhibited the gap junction conductance and induced the uncoupling of RPE cells. Other NSAIDs, like aspirin and flufenamic acid (FFA), had the same effect. The gap junction functionally existed in RPE cells, which can be blocked by MFA. These findings may explain, at least partially, the vision problems with certain clinically used NSAIDs.

  13. Gap junctions in cells of the immune system: structure, regulation and possible functional roles

    Directory of Open Access Journals (Sweden)

    J.C. Sáez

    2000-04-01

    Full Text Available Gap junction channels are sites of cytoplasmic communication between contacting cells. In vertebrates, they consist of protein subunits denoted connexins (Cxs which are encoded by a gene family. According to their Cx composition, gap junction channels show different gating and permeability properties that define which ions and small molecules permeate them. Differences in Cx primary sequences suggest that channels composed of different Cxs are regulated differentially by intracellular pathways under specific physiological conditions. Functional roles of gap junction channels could be defined by the relative importance of permeant substances, resulting in coordination of electrical and/or metabolic cellular responses. Cells of the native and specific immune systems establish transient homo- and heterocellular contacts at various steps of the immune response. Morphological and functional studies reported during the last three decades have revealed that many intercellular contacts between cells in the immune response present gap junctions or "gap junction-like" structures. Partial characterization of the molecular composition of some of these plasma membrane structures and regulatory mechanisms that control them have been published recently. Studies designed to elucidate their physiological roles suggest that they might permit coordination of cellular events which favor the effective and timely response of the immune system.

  14. Gap junctions in C. elegans: Their roles in behavior and development

    OpenAIRE

    Hall, David H.

    2016-01-01

    ABSTRACT The nematode Caenorhabditis elegans utilizes gap junctions in different fashions in virtually all of its cells. This model animal has a surprisingly large number of innexin genes within its genome, and many nematode cell types can express multiple innexins at once, leading to the formation of diverse junction types and enough redundancy to limit the effect of single gene knockdowns on animal development or behavioral phenotypes. Here, we review the general properties of these junctio...

  15. Feature of the energy gap in YBa2 Cu3 O7 from break junction measurements

    International Nuclear Information System (INIS)

    Ekino, T.; Minami, T.; Fujii, H.

    1995-01-01

    Superconducting energy gap in YBa 2 Cu 3 O 7 have been investigated using break junctions. The tunneling conductance, dI/dV, at T=4.2 K shows no leakage around zero bias, while the gap edge peaks are broadened compared to the simple BCS density of states. These features suggest the spatial distribution of the energy gap or the anisotropic s-wave pairing. The observed largest gap value, determined by the peak-to-peak (p-p) separation in dI/dV, is 140 meV, which corresponds to the 4 δ p-p of an SIS junction. The observed tunneling density of states is fairly well expressed by the probability distribution of the energy gap using the BCS density of states

  16. Modulation of Asymmetric Flux in Heterotypic Gap Junctions by Pore Shape, Particle Size and Charge.

    Science.gov (United States)

    Mondal, Abhijit; Sachse, Frank B; Moreno, Alonso P

    2017-01-01

    Gap junction channels play a vital role in intercellular communication by connecting cytoplasm of adjoined cells through arrays of channel-pores formed at the common membrane junction. Their structure and properties vary depending on the connexin isoform(s) involved in forming the full gap junction channel. Lack of information on the molecular structure of gap junction channels has limited the development of computational tools for single channel studies. Currently, we rely on cumbersome experimental techniques that have limited capabilities. We have earlier reported a simplified Brownian dynamics gap junction pore model and demonstrated that variations in pore shape at the single channel level can explain some of the differences in permeability of heterotypic channels observed in in vitro experiments. Based on this computational model, we designed simulations to study the influence of pore shape, particle size and charge in homotypic and heterotypic pores. We simulated dye diffusion under whole cell voltage clamping. Our simulation studies with pore shape variations revealed a pore shape with maximal flux asymmetry in a heterotypic pore. We identified pore shape profiles that match the in silico flux asymmetry results to the in vitro results of homotypic and heterotypic gap junction formed out of Cx43 and Cx45. Our simulation results indicate that the channel's pore-shape established flux asymmetry and that flux asymmetry is primarily regulated by the sizes of the conical and/or cylindrical mouths at each end of the pore. Within the set range of particle size and charge, flux asymmetry was found to be independent of particle size and directly proportional to charge magnitude. While particle charge was vital to creating flux asymmetry, charge magnitude only scaled the observed flux asymmetry. Our studies identified the key factors that help predict asymmetry. Finally, we suggest the role of such flux asymmetry in creating concentration imbalances of messenger

  17. Perfect switching of the spin polarization in a ferromagnetic gapless graphene/superconducting gapped graphene junction

    International Nuclear Information System (INIS)

    Soodchomshom, Bumned; Tang, I-Ming; Hoonsawat, Rassmidara

    2010-01-01

    With the fabrication of gapped graphene, interest in the tunneling spectroscopy in graphene-based FG/SG junctions in which one side consists of a gapless ferro-magnetic graphene (FG) and the other side, of a gapped superconducting graphene (SG) has arisen. The carriers in the gapless (gapped) graphene are 2D relativistic particles having an energy spectrum given by E=√(h 2 v F 2 k 2 +(mv F 2 ) 2 ) (where mv F 2 is the gap and v F is the Fermi velocity). The spin currents in this FG/SG junction are obtained within the framework of the extended Blonder-Tinkham-Klapwijk (BTK) formalism. The effects of the superconducting energy gap in SG, of the gap mv F 2 which opened in the superconducting graphene, of the exchange field in FG, of the spin-dependent specular Andreev reflection, of the effective Fermi energy (E FF ) of FG and of the bias voltage across the junction (V) are simulated. It is seen that by adjusting E FF or V, the spin polarization (defined as SP(%) = 100% x (G ↑ - G ↓ )/(G ↑ + G ↓ )) can be switched from a pure spin up (SP = +100%) state to pure spin down (SP = -100%) state.

  18. Modulation of outer hair cell electromotility by cochlear supporting cells and gap junctions.

    Directory of Open Access Journals (Sweden)

    Ning Yu

    2009-11-01

    Full Text Available Outer hair cell (OHC or prestin-based electromotility is an active cochlear amplifier in the mammalian inner ear that can increase hearing sensitivity and frequency selectivity. In situ, Deiters supporting cells are well-coupled by gap junctions and constrain OHCs standing on the basilar membrane. Here, we report that both electrical and mechanical stimulations in Deiters cells (DCs can modulate OHC electromotility. There was no direct electrical conductance between the DCs and the OHCs. However, depolarization in DCs reduced OHC electromotility associated nonlinear capacitance (NLC and distortion products. Increase in the turgor pressure of DCs also shifted OHC NLC to the negative voltage direction. Destruction of the cytoskeleton in DCs or dissociation of the mechanical-coupling between DCs and OHCs abolished these effects, indicating the modulation through the cytoskeleton activation and DC-OHC mechanical coupling rather than via electric field potentials. We also found that changes in gap junctional coupling between DCs induced large membrane potential and current changes in the DCs and shifted OHC NLC. Uncoupling of gap junctions between DCs shifted NLC to the negative direction. These data indicate that DCs not only provide a physical scaffold to support OHCs but also can directly modulate OHC electromotility through the DC-OHC mechanical coupling. Our findings reveal a new mechanism of cochlear supporting cells and gap junctional coupling to modulate OHC electromotility and eventually hearing sensitivity in the inner ear.

  19. Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Hideyuki eTakeuchi

    2014-09-01

    Full Text Available Microglia are macrophage-like resident immune cells that contribute to the maintenance of homeostasis in the central nervous system (CNS. Abnormal activation of microglia can cause damage in the CNS, and accumulation of activated microglia is a characteristic pathological observation in neurologic conditions such as trauma, stroke, inflammation, epilepsy, and neurodegenerative diseases. Activated microglia secrete high levels of glutamate, which damages CNS cells and has been implicated as a major cause of neurodegeneration in these conditions. Glutamate-receptor blockers and microglia inhibitors (e.g. minocycline have been examined as therapeutic candidates for several neurodegenerative diseases; however, these compounds exerted little therapeutic benefit because they either perturbed physiological glutamate signals or suppressed the actions of protective microglia. The ideal therapeutic approach would hamper the deleterious roles of activated microglia without diminishing their protective effects. We recently found that abnormally activated microglia secrete glutamate via gap-junction hemichannels on the cell surface. Moreover, administration of gap-junction inhibitors significantly suppressed excessive microglial glutamate release and improved disease symptoms in animal models of neurologic conditions such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer’s disease. Recent evidence also suggests that neuronal and glial communication via gap junctions amplifies neuroinflammation and neurodegeneration. Elucidation of the precise pathologic roles of gap junctions and hemichannels may lead to a novel therapeutic strategies that can slow and halt the progression of neurodegenerative diseases.

  20. Chemopreventive agents attenuate rapid inhibition of gap junctional intercellular communication induced by environmental toxicants

    Czech Academy of Sciences Publication Activity Database

    Babica, Pavel; Čtveráčková, Lucie; Lenčešová, Zuzana; Trosko, J. E.; Upham, B. L.

    2016-01-01

    Roč. 68, č. 5 (2016), s. 827-837 ISSN 0163-5581 R&D Projects: GA MŠk LH12034 Institutional support: RVO:67985939 Keywords : gap junctional intercellular communication * chemopreventive agents * environmental toxicants Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.447, year: 2016

  1. Restricted distribution of connexin40, a gap junctional protein, in mammalian heart

    NARCIS (Netherlands)

    Gros, D.; Jarry-Guichard, T.; ten Velde, I.; de Maziere, A.; van Kempen, M. J.; Davoust, J.; Briand, J. P.; Moorman, A. F.; Jongsma, H. J.

    1994-01-01

    Connexin40 (Cx40) is a member of the connexin family of gap junction proteins. Its mRNA, abundant in lung, is also present in mammalian heart, although in lower amount. Rabbit antipeptide antibodies directed to the COOH terminus (residues 335 to 356) of rat Cx40 were characterized to investigate the

  2. Interfering amino terminal peptides and functional implications for heteromeric gap junction formation

    Directory of Open Access Journals (Sweden)

    Richard David Veenstra

    2013-05-01

    Full Text Available Connexin43 (Cx43 is widely expressed in many different tissues of the human body. In cells of some organs, Cx43 is co-expressed with other connexins (Cx, including Cx46 and Cx50 in lens, Cx40 in atrium, Purkinje fibers, and the blood vessel wall, Cx45 in heart, and Cx37 in the ovary. Interactions with the co-expressed connexins may have profound functional implications. The abilities of Cx37, Cx45, Cx46, and Cx50 to function in heteromeric gap junction combinations with Cx43 are well documented. Different studies disagree regarding the ability of Cx43 and Cx40 to produce functional heteromeric gap junctions with each other. We review previous studies regarding the heteromeric interactions of Cx43. The possibility of negative functional interactions between the cytoplasmic pore-forming amino terminal (NT domains of these connexins was assessed using pentameric connexin sequence-specific NT domain (iNT peptides applied to cells expressing homomeric Cx40, Cx37, Cx45, Cx46, and Cx50 gap junctions. A Cx43 iNT peptide corresponding to amino acids 9 to 13 (Ac-KLLDK-NH2 specifically inhibited the electrical coupling of Cx40 gap junctions in a transjunctional (Vj voltage-dependent manner without affecting the function of homologous Cx37, Cx46, Cx50, and Cx45 gap junctions. A Cx40 iNT (Ac-EFLEE-OH peptide counteracted the Vj-dependent block of Cx40 gap junctions, whereas a similarly charged Cx50 iNT (Ac-EEVNE-OH peptide did not, suggesting that these NT domain interactions are not solely based on electrostatics. These data are consistent with functional Cx43 heteromeric gap junction formation with Cx37, Cx45, Cx46, and Cx50 and suggest that Cx40 uniquely experiences functional suppressive interactions with a Cx43 NT domain sequence. These findings present unique functional implications about the heteromeric interactions between Cx43 and Cx40 that may influence cardiac conduction in atrial myocardium and the specialized conduction system.

  3. Sustained inhibition of rat myometrial gap junctions and contractions by lindane

    Directory of Open Access Journals (Sweden)

    Grindatti Carmen M

    2003-10-01

    Full Text Available Abstract Background Gap junctions increase in size and abundance coincident with parturition, forming an intercellular communication network that permits the uterus to develop the forceful, coordinated contractions necessary for delivery of the fetus. Lindane, a pesticide used in the human and veterinary treatment of scabies and lice as well as in agricultural applications, inhibits uterine contractions in vitro, inhibits myometrial gap junctions, and has been associated with prolonged gestation length in rats. The aim of the present study was to investigate whether brief exposures to lindane would elicit sustained inhibition of rat uterine contractile activity and myometrial gap junction intercellular communication. Methods To examine effects on uterine contraction, longitudinal uterine strips isolated from late gestation (day 20 rats were exposed to lindane in muscle baths and monitored for changes in spontaneous phasic contractions during and after exposure to lindane. Lucifer yellow dye transfer between myometrial cells in culture was used to monitor gap junction intercellular communication. Results During a 1-h exposure, 10 micro M and 100 micro M lindane decreased peak force and frequency of uterine contraction but 1 micro M lindane did not. After removal of the exposure buffer, contraction force remained significantly depressed in uterine strips exposed to 100 micro M lindane, returning to less than 50% basal levels 5 h after cessation of lindane exposure. In cultured myometrial myocytes, significant sustained inhibition of Lucifer yellow dye transfer was observed 24 h after lindane exposures as brief as 10 min and as low as 0.1 micro M lindane. Conclusion Brief in vitro exposures to lindane have long-term effects on myometrial functions that are necessary for parturition, inhibiting spontaneous phasic contractions in late gestation rat uterus and gap junction intercellular communication in myometrial cell cultures.

  4. Sustained inhibition of rat myometrial gap junctions and contractions by lindane

    Science.gov (United States)

    Loch-Caruso, Rita K; Criswell, Kay A; Grindatti, Carmen M; Brant, Kelly A

    2003-01-01

    Background Gap junctions increase in size and abundance coincident with parturition, forming an intercellular communication network that permits the uterus to develop the forceful, coordinated contractions necessary for delivery of the fetus. Lindane, a pesticide used in the human and veterinary treatment of scabies and lice as well as in agricultural applications, inhibits uterine contractions in vitro, inhibits myometrial gap junctions, and has been associated with prolonged gestation length in rats. The aim of the present study was to investigate whether brief exposures to lindane would elicit sustained inhibition of rat uterine contractile activity and myometrial gap junction intercellular communication. Methods To examine effects on uterine contraction, longitudinal uterine strips isolated from late gestation (day 20) rats were exposed to lindane in muscle baths and monitored for changes in spontaneous phasic contractions during and after exposure to lindane. Lucifer yellow dye transfer between myometrial cells in culture was used to monitor gap junction intercellular communication. Results During a 1-h exposure, 10 micro M and 100 micro M lindane decreased peak force and frequency of uterine contraction but 1 micro M lindane did not. After removal of the exposure buffer, contraction force remained significantly depressed in uterine strips exposed to 100 micro M lindane, returning to less than 50% basal levels 5 h after cessation of lindane exposure. In cultured myometrial myocytes, significant sustained inhibition of Lucifer yellow dye transfer was observed 24 h after lindane exposures as brief as 10 min and as low as 0.1 micro M lindane. Conclusion Brief in vitro exposures to lindane have long-term effects on myometrial functions that are necessary for parturition, inhibiting spontaneous phasic contractions in late gestation rat uterus and gap junction intercellular communication in myometrial cell cultures. PMID:14567758

  5. Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks.

    Directory of Open Access Journals (Sweden)

    Mati Goldberg

    Full Text Available A new paradigm has recently emerged in brain science whereby communications between glial cells and neuron-glia interactions should be considered together with neurons and their networks to understand higher brain functions. In particular, astrocytes, the main type of glial cells in the cortex, have been shown to communicate with neurons and with each other. They are thought to form a gap-junction-coupled syncytium supporting cell-cell communication via propagating Ca(2+ waves. An identified mode of propagation is based on cytoplasm-to-cytoplasm transport of inositol trisphosphate (IP(3 through gap junctions that locally trigger Ca(2+ pulses via IP(3-dependent Ca(2+-induced Ca(2+ release. It is, however, currently unknown whether this intracellular route is able to support the propagation of long-distance regenerative Ca(2+ waves or is restricted to short-distance signaling. Furthermore, the influence of the intracellular signaling dynamics on intercellular propagation remains to be understood. In this work, we propose a model of the gap-junctional route for intercellular Ca(2+ wave propagation in astrocytes. Our model yields two major predictions. First, we show that long-distance regenerative signaling requires nonlinear coupling in the gap junctions. Second, we show that even with nonlinear gap junctions, long-distance regenerative signaling is favored when the internal Ca(2+ dynamics implements frequency modulation-encoding oscillations with pulsating dynamics, while amplitude modulation-encoding dynamics tends to restrict the propagation range. As a result, spatially heterogeneous molecular properties and/or weak couplings are shown to give rise to rich spatiotemporal dynamics that support complex propagation behaviors. These results shed new light on the mechanisms implicated in the propagation of Ca(2+ waves across astrocytes and the precise conditions under which glial cells may participate in information processing in the brain.

  6. Ginsenoside Rg1 alleviates corticosterone-induced dysfunction of gap junctions in astrocytes.

    Science.gov (United States)

    Xia, Cong-Yuan; Chu, Shi-Feng; Zhang, Shuai; Gao, Yan; Ren, Qian; Lou, Yu-Xia; Luo, Piao; Tian, Man-Tong; Wang, Zhi-Qi; Du, Guo-Hua; Tomioka, Yoshihisa; Yamakuni, Tohru; Zhang, Yi; Wang, Zhen-Zhen; Chen, Nai-Hong

    2017-08-17

    Ginsenoside Rg1 (Rg1), one of the major bioactive ingredients of Panax ginseng C. A. Mey, has neuroprotective effects in animal models of depression, but the mechanism underlying these effects is still largely unknown AIM OF THE STUDY: Gap junction intercellular communication (GJIC) dysfunction is a potentially novel pathogenic mechanism for depression. Thus, we investigated that whether antidepressant-like effects of Rg1 were related to GJIC. Primary rat prefrontal cortical and hippocampal astrocytes cultures were treated with 50μM CORT for 24h to induce gap junction damage. Rg1 (0.1, 1, or 10μM) or fluoxetine (1μM) was added 1h prior to CORT treatment. A scrape loading and dye transfer assay was performed to identify the functional capacity of gap junctions. Western blot was used to detect the expression and phosphorylation of connexin43 (Cx43), the major component of gap junctions. Treatment of primary astrocytes with CORT for 24h inhibited GJIC, decreased total Cx43 expression, and increased the phosphorylation of Cx43 at serine368 in a dose-dependent manner. Pre-treatment with 1μM and 10μM Rg1 significantly improved GJIC in CORT-treated astrocytes from the prefrontal cortex and hippocampus, respectively, and this was accompanied by upregulation of Cx43 expression and downregulation of Cx43 phosphorylation. These findings provide the first evidence indicating that Rg1 can alleviate CORT-induced gap junction dysfunction, which may have clinical significance in the treatment of depression. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  7. Altered detrusor gap junction communications induce storage symptoms in bladder inflammation: a mouse cyclophosphamide-induced model of cystitis.

    Directory of Open Access Journals (Sweden)

    Takeshi Okinami

    Full Text Available Lower urinary tract symptoms (LUTS include storage, voiding and post-micturition symptoms, featuring many urological diseases. Storage symptoms are the most frequent among these and associated with overactive bladder and non-bacterial bladder inflammation such as interstitial cystitis/bladder pain syndrome (IC/BPS. Gap junction, a key regulator of hyperactive conditions in the bladder, has been reported to be involved in pathological bladder inflammation. Here we report involvement of gap junction in the etiology of storage symptoms in bladder inflammation. In this study, cyclophosphamide-induced cystitis was adapted as a model of bladder inflammation. Cyclophosphamide-treated mice showed typical storage symptoms including increased urinary frequency and reduced bladder capacity, with concurrent up-regulation of connexin 43 (GJA1, one of the major gap junction proteins in the bladder. In isometric tension study, bladder smooth muscle strips taken from the treated mice showed more pronounced spontaneous contraction than controls, which was attenuated by carbenoxolone, a gap junction inhibitor. In voiding behavior studies, the storage symptoms in the treated mice characterized by frequent voiding were alleviated by 18α-glycyrrhetinic acid, another gap junction inhibitor. These results demonstrate that cyclophosphamide-induced mouse model of cystitis shows clinical storage symptoms related with bladder inflammation and that gap junction in the bladder may be a key molecule of these storage symptoms. Therefore, gap junction in the bladder might be an alternative therapeutic target for storage symptoms in bladder inflammation.

  8. The effects of the Histone Deacetylase (HDAC Inhibitor 4-Phenylbutyrate on gap junction conductance and permeability

    Directory of Open Access Journals (Sweden)

    Joshua eKaufman

    2013-09-01

    Full Text Available Longitudinal resistance is a key factor in determining cardiac action potential propagation. Action potential conduction velocity has been shown to be proportional to the square root of longitudinal resistance. A major determinant of longitudinal resistance in myocardium is the gap junction channel, comprised of connexin proteins. Within the ventricular myocardium connexin 43 (Cx43 is the dominantly expressed connexin. Reduced numbers of gap junction channels will result in an increase in longitudinal resistance creating the possibility of slowed conduction velocity while increased numbers of channels would potentially result in an increase in conduction velocity. We sought to determine if inhibition of histone deacetylase (HDAC by 4-phenylbutyrate (4-PB, a known inhibitor of HDAC resulted in an increase in junctional conductance and permeability, which is not the result of changes in single channel unitary conductance. These experiments were performed using HEK-293 cells and HeLa cells stably transfected with Cx43. Following treatment with increasing concentrations of 4-PB up-regulation of Cx43 was observed via Western blot analysis. Junctional (gj conductance and unitary single channel conductance were measured via whole-cell patch clamp. In addition intercellular transfer of Lucifer Yellow (LY was determined by fluorescence microscopy. The data in this study indicates that 4-PB is able to enhance functional Cx43 gap junction coupling as indicated by LY dye transfer and multichannel and single channel data along with Western blot analysis. As a corollary, pharmacological agents such as 4-PB have the potential, by increasing intercellular coupling, to reduce the effect of ischemia. It remains to be seen whether drugs like 4-PB will be effective in preventing cardiac maladies.

  9. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    Science.gov (United States)

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  10. Estimation of the effective intercellular diffusion coefficient in cell monolayers coupled by gap junctions

    DEFF Research Database (Denmark)

    Olesen, Niels Erik; Hofgaard, Johannes P; von Holstein-Rathlou, Niels-Henrik

    2012-01-01

    A recently developed dye-based assay to study gap junction permeability is analysed. The assay is based on electroporation of dye into a large number of connexin 43 expressing cells, grown to confluency on electrically conductive slides. The subsequent intercellular spread of dye to non-electropo......A recently developed dye-based assay to study gap junction permeability is analysed. The assay is based on electroporation of dye into a large number of connexin 43 expressing cells, grown to confluency on electrically conductive slides. The subsequent intercellular spread of dye to non......-electroporated parts of the monolayer enables estimation of the intercellular coupling. So far, the extent of dye spread has been analyzed in qualitative terms only and not in a manner based directly on the physics of the underlying diffusion process....

  11. Managing the complexity of communication: regulation of gap junctions by post-translational modification

    OpenAIRE

    Axelsen, Lene N.; Calloe, Kirstine; Holstein-Rathlou, Niels-Henrik; Nielsen, Morten S.

    2013-01-01

    Gap junctions are comprised of connexins that form cell-to-cell channels which couple neighboring cells to accommodate the exchange of information. The need for communication does, however, change over time and therefore must be tightly controlled. Although the regulation of connexin protein expression by transcription and translation is of great importance, the trafficking, channel activity and degradation are also under tight control. The function of connexins can be regulated by several po...

  12. Central sensitization in medullary dorsal horn involves gap junctions and hemichannels

    OpenAIRE

    Chiang, Chen Yu; Li, Zhaohui; Dostrovsky, Jonathan O.; Sessle, Barry J.

    2010-01-01

    Central sensitization is a fundamental mechanism contributing to acute and chronic pain conditions. Our previous studies have documented a glutamatergic-, purinergic- and glial-dependent central sensitization that can be induced in rat medullary dorsal horn (MDH) nociceptive neurons by mustard oil (MO) application to the tooth pulp. The present study demonstrated that carbenoxolone, a potent gap junction and hemichannel blocker, completely blocked all parameters of MO-induced central sensitiz...

  13. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations

    Directory of Open Access Journals (Sweden)

    Jan eHahne

    2015-09-01

    Full Text Available Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy...

  14. NBT-II carcinoma behaviour is not dependent on cell-cell communication through gap junctions.

    Science.gov (United States)

    Lesueur, F; Mesnil, M; Delouvée, A; Girault, J M; Yamasaki, H; Thiery, J P; Jouanneau, J

    2002-05-31

    To study the mechanism(s) underlying the proliferation of heterogeneous cell populations within a solid tumour, the NBT-II rat bladder carcinoma system was used. It has been first investigated whether the different cell populations are coupled through gap junctions (GJIC). Cells overexpressing the Cx43 were generated to test for any tumour suppressive activity in vivo. To determine whether GJIC is essential for tumour proliferation and the establishment of a cooperative community effect, NBT-II cells that are incompetent for cell coupling were generated. The data report that (i) carcinoma cells expressing or not FGF-1 are coupled through GJIC in vitro and in coculture and express the gap junction protein Cx43, (ii) overexpression of Cx43 in these cells does not affect their in vitro coupling capacities and in vivo tumourigenic growth properties, (iii) inhibition of GJIC through antisense strategy has no in vivo obvious consequence on the tumour growth properties of the carcinoma, and (iv) the community effect between two carcinoma cell populations does not critically involve cell coupling through gap junctions.

  15. Inhibition of dye-coupling in Patella (mollusca) embryos by microinjection of antiserum against Nephrops (arthropoda) gap junctions

    NARCIS (Netherlands)

    Serras, F.; Buultjens, T.E.J.; Finbow, M.E.

    1988-01-01

    Antiserum raised against Nephrops gap junctions was injected into single cells of the 2-, 4-, 8-, 16-, and 32-cell stage of the Patella vulgata embryos. The pattern of junctional communication by iontophoresis of Lucifer Yellow CH was tested at the 32-cell stage. The results show that the normal

  16. Lambda Red Mediated Gap Repair Utilizes a Novel Replicative Intermediate in Escherichia coli

    Science.gov (United States)

    Reddy, Thimma R.; Fevat, Léna M. S.; Munson, Sarah E.; Stewart, A. Francis; Cowley, Shaun M.

    2015-01-01

    The lambda phage Red recombination system can mediate efficient homologous recombination in Escherichia coli, which is the basis of the DNA engineering technique termed recombineering. Red mediated insertion of DNA requires DNA replication, involves a single-stranded DNA intermediate and is more efficient on the lagging strand of the replication fork. Lagging strand recombination has also been postulated to explain the Red mediated repair of gapped plasmids by an Okazaki fragment gap filling model. Here, we demonstrate that gap repair involves a different strand independent mechanism. Gap repair assays examining the strand asymmetry of recombination did not show a lagging strand bias. Directly testing an ssDNA plasmid showed lagging strand recombination is possible but dsDNA plasmids did not employ this mechanism. Insertional recombination combined with gap repair also did not demonstrate preferential lagging strand bias, supporting a different gap repair mechanism. The predominant recombination route involved concerted insertion and subcloning though other routes also operated at lower frequencies. Simultaneous insertion of DNA resulted in modification of both strands and was unaffected by mutations to DNA polymerase I, responsible for Okazaki fragment maturation. The lower efficiency of an alternate Red mediated ends-in recombination pathway and the apparent lack of a Holliday junction intermediate suggested that gap repair does not involve a different Red recombination pathway. Our results may be explained by a novel replicative intermediate in gap repair that does not involve a replication fork. We exploited these observations by developing a new recombineering application based on concerted insertion and gap repair, termed SPI (subcloning plus insertion). SPI selected against empty vector background and selected for correct gap repair recombinants. We used SPI to simultaneously insert up to four different gene cassettes in a single recombineering reaction

  17. Lambda red mediated gap repair utilizes a novel replicative intermediate in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Thimma R Reddy

    Full Text Available The lambda phage Red recombination system can mediate efficient homologous recombination in Escherichia coli, which is the basis of the DNA engineering technique termed recombineering. Red mediated insertion of DNA requires DNA replication, involves a single-stranded DNA intermediate and is more efficient on the lagging strand of the replication fork. Lagging strand recombination has also been postulated to explain the Red mediated repair of gapped plasmids by an Okazaki fragment gap filling model. Here, we demonstrate that gap repair involves a different strand independent mechanism. Gap repair assays examining the strand asymmetry of recombination did not show a lagging strand bias. Directly testing an ssDNA plasmid showed lagging strand recombination is possible but dsDNA plasmids did not employ this mechanism. Insertional recombination combined with gap repair also did not demonstrate preferential lagging strand bias, supporting a different gap repair mechanism. The predominant recombination route involved concerted insertion and subcloning though other routes also operated at lower frequencies. Simultaneous insertion of DNA resulted in modification of both strands and was unaffected by mutations to DNA polymerase I, responsible for Okazaki fragment maturation. The lower efficiency of an alternate Red mediated ends-in recombination pathway and the apparent lack of a Holliday junction intermediate suggested that gap repair does not involve a different Red recombination pathway. Our results may be explained by a novel replicative intermediate in gap repair that does not involve a replication fork. We exploited these observations by developing a new recombineering application based on concerted insertion and gap repair, termed SPI (subcloning plus insertion. SPI selected against empty vector background and selected for correct gap repair recombinants. We used SPI to simultaneously insert up to four different gene cassettes in a single

  18. Sphingosine-1-Phosphate reduces ischemia/reperfusion injury by phosphorylating the gap junction protein Connexin43

    DEFF Research Database (Denmark)

    Morel, Sandrine; Christoffersen, Christina; Axelsen, Lene N

    2016-01-01

    junction protein Connexin43 (Cx43) on Serine368, which was mediated by S1P2 and S1P3, but not by S1P1, receptors in cardiomyocytes. Finally, S1P-induced reduction of infarct size after ex vivo I/R was lost in hearts of mice with a truncated C-terminus of Cx43 (Cx43(K258/KO)) or in which the Serine368...

  19. Transient suppression of gap junctional intercellular communication after exposure to 100-nanosecond pulsed electric fields.

    Science.gov (United States)

    Steuer, Anna; Schmidt, Anke; Labohá, Petra; Babica, Pavel; Kolb, Juergen F

    2016-12-01

    Gap junctional intercellular communication (GJIC) is an important mechanism that is involved and affected in many diseases and injuries. So far, the effect of nanosecond pulsed electric fields (nsPEFs) on the communication between cells was not investigated. An in vitro approach is presented with rat liver epithelial WB-F344 cells grown and exposed in a monolayer. In order to observe sub-lethal effects, cells were exposed to pulsed electric fields with a duration of 100ns and amplitudes between 10 and 20kV/cm. GJIC strongly decreased within 15min after treatment but recovered within 24h. Gene expression of Cx43 was significantly decreased and associated with a reduced total amount of Cx43 protein. In addition, MAP kinases p38 and Erk1/2, involved in Cx43 phosphorylation, were activated and Cx43 became hyperphosphorylated. Immunofluorescent staining of Cx43 displayed the disassembly of gap junctions. Further, a reorganization of the actin cytoskeleton was observed whereas tight junction protein ZO-1 was not significantly affected. All effects were field- and time-dependent and most pronounced within 30 to 60min after treatment. A better understanding of a possible manipulation of GJIC by nsPEFs might eventually offer a possibility to develop and improve treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Band-gaps in long Josephson junctions with periodic phase-shifts

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Saeed, E-mail: saeedahmad@uom.edu.pk [Department of Mathematics, University of Malakand Chakdara, Dir(L), Pakhtunkhwa (Pakistan); Susanto, Hadi, E-mail: hsusanto@essex.ac.uk [Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ (United Kingdom); Wattis, Jonathan A.D. [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2017-04-04

    We investigate analytically and numerically a long Josephson junction on an infinite domain, having arbitrary periodic phase shift of κ, that is, the so-called 0–κ long Josephson junction. The system is described by a one-dimensional sine-Gordon equation and has relatively recently been proposed as artificial atom lattices. We discuss the existence of periodic solutions of the system and investigate their stability both in the absence and presence of an applied bias current. We find critical values of the phase-discontinuity and the applied bias current beyond which static periodic solutions cease to exist. Due to the periodic discontinuity in the phase, the system admits regions of allowed and forbidden bands. We perturbatively investigate the Arnold tongues that separate the region of allowed and forbidden bands, and discuss the effect of an applied bias current on the band-gap structure. We present numerical simulations to support our analytical results. - Highlights: • A long Josephson junction on an infinite domain having arbitrary periodic phase shift has been proposed as artificial atom lattices recently. • We compute the band-gaps of the system asymptotically. • We show that the phase-shift and applied bias current can be used to control the band structures.

  1. Entrainment, retention, and transport of freely swimming fish in junction gaps between commercial barges operating on the Illinois Waterway

    Science.gov (United States)

    Davis, Jeremiah J.; Jackson, P. Ryan; Engel, Frank; LeRoy, Jessica Z.; Neeley, Rebecca N.; Finney, Samuel T.; Murphy, Elizabeth A.

    2016-01-01

    Large Electric Dispersal Barriers were constructed in the Chicago Sanitary and Ship Canal (CSSC) to prevent the transfer of invasive fish species between the Mississippi River Basin and the Great Lakes Basin while simultaneously allowing the passage of commercial barge traffic. We investigated the potential for entrainment, retention, and transport of freely swimming fish within large gaps (> 50 m3) created at junction points between barges. Modified mark and capture trials were employed to assess fish entrainment, retention, and transport by barge tows. A multi-beam sonar system enabled estimation of fish abundance within barge junction gaps. Barges were also instrumented with acoustic Doppler velocity meters to map the velocity distribution in the water surrounding the barge and in the gap formed at the junction of two barges. Results indicate that the water inside the gap can move upstream with a barge tow at speeds near the barge tow travel speed. Water within 1 m to the side of the barge junction gaps was observed to move upstream with the barge tow. Observed transverse and vertical water velocities suggest pathways by which fish may potentially be entrained into barge junction gaps. Results of mark and capture trials provide direct evidence that small fish can become entrained by barges, retained within junction gaps, and transported over distances of at least 15.5 km. Fish entrained within the barge junction gap were retained in that space as the barge tow transited through locks and the Electric Dispersal Barriers, which would be expected to impede fish movement upstream.

  2. Deletion of the last five C-terminal amino acid residues of connexin43 leads to lethal ventricular arrhythmias in mice without affecting coupling via gap junction channels.

    Science.gov (United States)

    Lübkemeier, Indra; Requardt, Robert Pascal; Lin, Xianming; Sasse, Philipp; Andrié, René; Schrickel, Jan Wilko; Chkourko, Halina; Bukauskas, Feliksas F; Kim, Jung-Sun; Frank, Marina; Malan, Daniela; Zhang, Jiong; Wirth, Angela; Dobrowolski, Radoslaw; Mohler, Peter J; Offermanns, Stefan; Fleischmann, Bernd K; Delmar, Mario; Willecke, Klaus

    2013-05-01

    The cardiac intercalated disc harbors mechanical and electrical junctions as well as ion channel complexes mediating propagation of electrical impulses. Cardiac connexin43 (Cx43) co-localizes and interacts with several of the proteins located at intercalated discs in the ventricular myocardium. We have generated conditional Cx43D378stop mice lacking the last five C-terminal amino acid residues, representing a binding motif for zonula occludens protein-1 (ZO-1), and investigated the functional consequences of this mutation on cardiac physiology and morphology. Newborn and adult homozygous Cx43D378stop mice displayed markedly impaired and heterogeneous cardiac electrical activation properties and died from severe ventricular arrhythmias. Cx43 and ZO-1 were co-localized at intercalated discs in Cx43D378stop hearts, and the Cx43D378stop gap junction channels showed normal coupling properties. Patch clamp analyses of isolated adult Cx43D378stop cardiomyocytes revealed a significant decrease in sodium and potassium current densities. Furthermore, we also observed a significant loss of Nav1.5 protein from intercalated discs in Cx43D378stop hearts. The phenotypic lethality of the Cx43D378stop mutation was very similar to the one previously reported for adult Cx43 deficient (Cx43KO) mice. Yet, in contrast to Cx43KO mice, the Cx43 gap junction channel was still functional in the Cx43D378stop mutant. We conclude that the lethality of Cx43D378stop mice is independent of the loss of gap junctional intercellular communication, but most likely results from impaired cardiac sodium and potassium currents. The Cx43D378stop mice reveal for the first time that Cx43 dependent arrhythmias can develop by mechanisms other than impairment of gap junction channel function.

  3. Managing the complexity of communication: regulation of gap junctions by post-translational modification

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Callø, Kirstine; von Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are comprised of connexins that form cell-to-cell channels which couple neighboring cells to accommodate the exchange of information. The need for communication does, however, change over time and therefore must be tightly controlled. Although the regulation of connexin protein...... expression by transcription and translation is of great importance, the trafficking, channel activity and degradation are also under tight control. The function of connexins can be regulated by several post translational modifications, which affect numerous parameters; including number of channels, open...

  4. Effect and its threshold of ELF magnetic fields on gap junctional intercellular communication

    International Nuclear Information System (INIS)

    Fu Yiti; Hu Genlin; Zeng Qunli; Jiang Huai; Xu Zhengping

    2002-01-01

    Objective: To explore the relationship between extremely low frequency (ELF) magnetic fields and carcinogenesis. Methods: The fluorescence recovery after photobleaching (FRAP) technique was used to determine the effect of ELF magnetic fields and its threshold on gap junctional intercellular communication (GJIC). Results: FRAP analysis indicated that 0.4 mT ELF or more could inhibit GJIC, and 0.2 mT ELF or more could enhance the inhibition of GJIC by TPA. Conclusion: ELF magnetic fields might act as a cancer promoter or work in synergy with other cancer promoters

  5. Doping GaP core-shell nanowire pn-junctions

    DEFF Research Database (Denmark)

    Yazdi, Sadegh; Berg, Alexander; Borgström, Magnus T.

    2015-01-01

    The doping process in GaP core-shell nanowire pn-junctions using different precursors is evaluated by mapping the nanowires' electrostatic potential distribution by means of off-axis electron holography. Three precursors, triethyltin (TESn), ditertiarybutylselenide, and silane are investigated......, ditertiarybutylselenide and silane for n-type doping of the shell and that the concentration of p-type dopants is higher in the region of core grown parasitically by vapor-solid mechanism due to unintentional carbon doping from trimethylgallium precursor....

  6. Connexin 30 expression and frequency of connexin heterogeneity in astrocyte gap junction plaques increase with age in the rat retina.

    Directory of Open Access Journals (Sweden)

    Hussein Mansour

    Full Text Available We investigated age-associated changes in retinal astrocyte connexins (Cx by assaying Cx numbers, plaque sizes, protein expression levels and heterogeneity of gap junctions utilizing six-marker immunohistochemistry (IHC. We compared Wistar rat retinal wholemounts in animals aged 3 (young adult, 9 (middle-aged and 22 months (aged. We determined that retinal astrocytes have gap junctions composed of Cx26, -30, -43 and -45. Cx30 was consistently elevated at 22 months compared to younger ages both when associated with parenchymal astrocytes and vascular-associated astrocytes. Not only was the absolute number of Cx30 plaques significantly higher (P<0.05 but the size of the plaques was significantly larger at 22 months compared to younger ages (p<0.05. With age, Cx26 increased significantly initially, but returned to basal levels; whereas Cx43 expression remained low and stable with age. Evidence that astrocytes alter connexin compositions of gap junctions was demonstrated by the significant increase in the number of Cx26/Cx45 gap junctions with age. We also found gap junctions comprised of 1, 2, 3 or 4 Cx proteins suggesting that retinal astrocytes use various connexin protein combinations in their gap junctions during development and aging. These data provides new insight into the dynamic and extensive Cx network utilized by retinal astrocytes for communication within both the parenchyma and vasculature for the maintenance of normal retinal physiology with age. This characterisation of the changes in astrocytic gap junctional communication with age in the CNS is crucial to the understanding of physiological aging and age-related neurodegenerative diseases.

  7. S-diclofenac Protects against Doxorubicin-Induced Cardiomyopathy in Mice via Ameliorating Cardiac Gap Junction Remodeling

    Science.gov (United States)

    Zhang, Huili; Zhang, Alian; Guo, Changfa; Shi, Chunzhi; Zhang, Yang; Liu, Qing; Sparatore, Anna; Wang, Changqian

    2011-01-01

    Hydrogen sulfide (H2S), as a novel gaseous mediator, plays important roles in mammalian cardiovascular tissues. In the present study, we investigated the cardioprotective effect of S-diclofenac (2-[(2,6-dichlorophenyl)amino] benzeneacetic acid 4-(3H-1,2,dithiol-3-thione-5-yl)phenyl ester), a novel H2S-releasing derivative of diclofenac, in a murine model of doxorubicin-induced cardiomyopathy. After a single dose injection of doxorubicin (15 mg/kg, i.p.), male C57BL/6J mice were given daily treatment of S-diclofenac (25 and 50 µmol/kg, i.p.), diclofenac (25 and 50 µmol/kg, i.p.), NaHS (50 µmol/kg, i.p.), or same volume of vehicle. The cardioprotective effect of S-diclofenac was observed after 14 days. It showed that S-diclofenac, but not diclofenac, dose-dependently inhibited the doxorubicin-induced downregulation of cardiac gap junction proteins (connexin 43 and connexin 45) and thus reversed the remodeling of gap junctions in hearts. It also dose-dependently suppressed doxorubicin-induced activation of JNK in hearts. Furthermore, S-diclofenac produced a dose-dependent anti-inflammatory and anti-oxidative effect in this model. As a result, S-diclofenac significantly attenuated doxorubicin-related cardiac injury and cardiac dysfunction, and improved the survival rate of mice with doxorubicin-induced cardiomyopathy. These effects of S-diclofenac were mimicked in large part by NaHS. Therefore, we propose that H2S released from S-diclofenac in vivo contributes to the protective effect in doxorubicin-induced cardiomyopathy. These data also provide evidence for a critical role of H2S in the pathogenesis of doxorubicin-induced cardiomyopathy. PMID:22039489

  8. Abrogation of Gap Junctional Communication in ES Cells Results in a Disruption of Primitive Endoderm Formation in Embryoid Bodies.

    Science.gov (United States)

    Wörsdörfer, Philipp; Bosen, Felicitas; Gebhardt, Martina; Russ, Nicole; Zimmermann, Katrin; Komla Kessie, David; Sekaran, Thileepan; Egert, Angela; Ergün, Süleyman; Schorle, Hubert; Pfeifer, Alexander; Edenhofer, Frank; Willecke, Klaus

    2017-04-01

    Gap junctional intercellular communication (GJIC) has been suggested to be involved in early embryonic development but the actual functional role remained elusive. Connexin (Cx) 43 and Cx45 are co-expressed in embryonic stem (ES) cells, form gap junctions and are considered to exhibit adhesive function and/or to contribute to the establishment of defined communication compartments. Here, we describe the generation of Cx43/Cx45-double deficient mouse ES cells to achieve almost complete breakdown of GJIC. Cre-loxP induced deletion of both, Cx43 and Cx45, results in a block of differentiation in embryoid bodies (EBs) without affecting pluripotency marker expression and proliferation in ES cells. We demonstrate that GJIC-incompetent ES cells fail to form primitive endoderm in EB cultures, representing the inductive key step of further differentiation events. Lentiviral overexpression of either Cx43 or Cx45 in Cx43/45 mutants rescued the observed phenotype, confirming the specificity and indicating a partially redundant function of both connexins. Upon differentiation GJIC-incompetent ES cells exhibit a strikingly altered subcellular localization pattern of the transcription factor NFATc3. Control EBs exhibit significantly more activated NFATc3 in cellular nuclei than mutant EBs suggesting that Cx-mediated communication is needed for synchronized NFAT activation to induce orchestrated primitive endoderm formation. Moreover, pharmacological inhibition of NFATc3 activation by Cyclosporin A, a well-described inhibitor of calcineurin, phenocopies the loss of GJIC in control cells. Stem Cells 2017;35:859-871. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  9. S-diclofenac protects against doxorubicin-induced cardiomyopathy in mice via ameliorating cardiac gap junction remodeling.

    Directory of Open Access Journals (Sweden)

    Huili Zhang

    Full Text Available Hydrogen sulfide (H(2S, as a novel gaseous mediator, plays important roles in mammalian cardiovascular tissues. In the present study, we investigated the cardioprotective effect of S-diclofenac (2-[(2,6-dichlorophenylamino] benzeneacetic acid 4-(3H-1,2,dithiol-3-thione-5-ylphenyl ester, a novel H(2S-releasing derivative of diclofenac, in a murine model of doxorubicin-induced cardiomyopathy. After a single dose injection of doxorubicin (15 mg/kg, i.p., male C57BL/6J mice were given daily treatment of S-diclofenac (25 and 50 µmol/kg, i.p., diclofenac (25 and 50 µmol/kg, i.p., NaHS (50 µmol/kg, i.p., or same volume of vehicle. The cardioprotective effect of S-diclofenac was observed after 14 days. It showed that S-diclofenac, but not diclofenac, dose-dependently inhibited the doxorubicin-induced downregulation of cardiac gap junction proteins (connexin 43 and connexin 45 and thus reversed the remodeling of gap junctions in hearts. It also dose-dependently suppressed doxorubicin-induced activation of JNK in hearts. Furthermore, S-diclofenac produced a dose-dependent anti-inflammatory and anti-oxidative effect in this model. As a result, S-diclofenac significantly attenuated doxorubicin-related cardiac injury and cardiac dysfunction, and improved the survival rate of mice with doxorubicin-induced cardiomyopathy. These effects of S-diclofenac were mimicked in large part by NaHS. Therefore, we propose that H(2S released from S-diclofenac in vivo contributes to the protective effect in doxorubicin-induced cardiomyopathy. These data also provide evidence for a critical role of H(2S in the pathogenesis of doxorubicin-induced cardiomyopathy.

  10. S-diclofenac protects against doxorubicin-induced cardiomyopathy in mice via ameliorating cardiac gap junction remodeling.

    Science.gov (United States)

    Zhang, Huili; Zhang, Alian; Guo, Changfa; Shi, Chunzhi; Zhang, Yang; Liu, Qing; Sparatore, Anna; Wang, Changqian

    2011-01-01

    Hydrogen sulfide (H(2)S), as a novel gaseous mediator, plays important roles in mammalian cardiovascular tissues. In the present study, we investigated the cardioprotective effect of S-diclofenac (2-[(2,6-dichlorophenyl)amino] benzeneacetic acid 4-(3H-1,2,dithiol-3-thione-5-yl)phenyl ester), a novel H(2)S-releasing derivative of diclofenac, in a murine model of doxorubicin-induced cardiomyopathy. After a single dose injection of doxorubicin (15 mg/kg, i.p.), male C57BL/6J mice were given daily treatment of S-diclofenac (25 and 50 µmol/kg, i.p.), diclofenac (25 and 50 µmol/kg, i.p.), NaHS (50 µmol/kg, i.p.), or same volume of vehicle. The cardioprotective effect of S-diclofenac was observed after 14 days. It showed that S-diclofenac, but not diclofenac, dose-dependently inhibited the doxorubicin-induced downregulation of cardiac gap junction proteins (connexin 43 and connexin 45) and thus reversed the remodeling of gap junctions in hearts. It also dose-dependently suppressed doxorubicin-induced activation of JNK in hearts. Furthermore, S-diclofenac produced a dose-dependent anti-inflammatory and anti-oxidative effect in this model. As a result, S-diclofenac significantly attenuated doxorubicin-related cardiac injury and cardiac dysfunction, and improved the survival rate of mice with doxorubicin-induced cardiomyopathy. These effects of S-diclofenac were mimicked in large part by NaHS. Therefore, we propose that H(2)S released from S-diclofenac in vivo contributes to the protective effect in doxorubicin-induced cardiomyopathy. These data also provide evidence for a critical role of H(2)S in the pathogenesis of doxorubicin-induced cardiomyopathy.

  11. Gap junctions are essential for generating the correlated spike activity of neighboring retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Béla Völgyi

    Full Text Available Neurons throughout the brain show spike activity that is temporally correlated to that expressed by their neighbors, yet the generating mechanism(s remains unclear. In the retina, ganglion cells (GCs show robust, concerted spiking that shapes the information transmitted to central targets. Here we report the synaptic circuits responsible for generating the different types of concerted spiking of GC neighbors in the mouse retina. The most precise concerted spiking was generated by reciprocal electrical coupling of GC neighbors via gap junctions, whereas indirect electrical coupling to a common cohort of amacrine cells generated the correlated activity with medium precision. In contrast, the correlated spiking with the lowest temporal precision was produced by shared synaptic inputs carrying photoreceptor noise. Overall, our results demonstrate that different synaptic circuits generate the discrete types of GC correlated activity. Moreover, our findings expand our understanding of the roles of gap junctions in the retina, showing that they are essential for generating all forms of concerted GC activity transmitted to central brain targets.

  12. Gap junction channel. Its aqueous nature as indicated by deuterium oxide effects

    International Nuclear Information System (INIS)

    Verselis, V.; Brink, P.R.

    1986-01-01

    The effects of temperature and solvent substitution with deuterium oxide (D2O) on axoplasmic (ga) and gap junctional (gj) conductances were examined in the earthworm septate median giant axon (MGA). The temperature coefficients (Q10) for ga and gj were 1.4 and 1.5, respectively, between 5 and 15 degrees C. Substitution with D 2 O rapidly reduced both ga and gj by 20% and increased the Q10's to 1.5 and 1.8, respectively. The reduction in ga upon substitution with D 2 O and with cooling in either solvent reflects the changes that occur in solvent viscosity, which indicates that ion mobility in axoplasm, as in free solution, is primarily governed by viscous properties of the solvent. The similar initial reduction observed for gj suggests that solvent occupies the gap junction channel volume and influences transjunctional ion mobility. With time there was a further reduction in gj at 20 degrees C and a larger Q10 in D 2 O. The enhanced effects of D 2 O on gj cannot be accounted for by solvent viscosity alone and may be due to an increased hydration of the channels and/or the transport ions and by isotope effects of hydrogen-deuterium exchange on the channel protein that reduce gj

  13. Through gap junction communications, co-cultured mast cells and fibroblasts generate fibroblast activities allied with hypertrophic scarring.

    Science.gov (United States)

    Foley, Theodore T; Ehrlich, H Paul

    2013-05-01

    The prominent inflammatory cell identified in excessive scarring is the mast cell. Hypertrophic scar exhibits myofibroblasts derived from the transformation of fibroblasts, increased collagen synthesis, and stationary nonmigratory resident cells. The co-culture of fibroblasts with an established rat mast cell line (RMC-1) was used to explore the hypothesis of whether mast cells through gap junctional intercellular communications guide fibroblasts in promoting excessive scarring. Human dermal fibroblasts were cultured alone or co-cultured with RMC-1 cells as is or with either blocked gap junctional intercellular communications or devoid of cytoplasmic granules. Collagen synthesis was analyzed by dot blot analysis; immunohistology identified myofibroblasts, and a cell migration assay measured fibroblast locomotion. Fibroblasts co-cultured with RMC-1 cells transformed into myofibroblasts, had increased collagen synthesis, and showed retarded cell migration. In contrast, RMC-1 cells unable to form gap junctional intercellular communications were similar to fibroblasts alone, failing to promote these activities. Degranulated RMC-1 cells were as effective as intact RMC-1 cells. Mast cells induce fibroblast activities associated with hypertrophic scarring through gap junctional intercellular communications. Eliminating the mast cell or its gap junctional intercellular communications with fibroblasts may be a possible approach in preventing hypertrophic scarring or reducing fibrotic conditions.

  14. Tanshinone IIA increases the bystander effect of herpes simplex virus thymidine kinase/ganciclovir gene therapy via enhanced gap junctional intercellular communication.

    Directory of Open Access Journals (Sweden)

    Jianyong Xiao

    Full Text Available The bystander effect is an intriguing phenomenon by which adjacent cells become sensitized to drug treatment during gene therapy with herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV. This effect is reported to be mediated by gap junctional intercellular communication (GJIC, and therefore, we postulated that upregulation of genes that facilitate GJIC may enhance the HSV-tk/GCV bystander effect. Previous findings have shown Tanshinone IIA (Tan IIA, a chemical substance derived from a Chinese medicine herb, promotes the upregulation of the connexins Cx26 and Cx43 in B16 cells. Because gap junctions are formed by connexins, we hypothesized that Tan IIA might increase GJIC. Our results show that Tan IIA increased GJIC in B16 melanoma cells, leading to more efficient GCV-induced bystander killing in cells stably expressing HSV-tk. Additionally, in vivo experiments demonstrated that tumors in mice with 10% HSV-tk positive B16 cells and 90% wild-type B16 cells became smaller following treatment with the combination of GCV and Tan IIA as compared to GCV or Tan IIA alone. These data demonstrate that Tan IIA can augment the bystander effect of HSV-tk/GCV system through increased gap junction coupling, which adds strength to the promising strategy that develops connexins inducer to potentiate the effects of suicide gene therapy.

  15. Astrocyte calcium waves propagate proximally by gap junction and distally by extracellular diffusion of ATP released from volume-regulated anion channels.

    Science.gov (United States)

    Fujii, Yuki; Maekawa, Shohei; Morita, Mitsuhiro

    2017-10-13

    Wave-like propagation of [Ca 2+ ] i increases is a remarkable intercellular communication characteristic in astrocyte networks, intercalating neural circuits and vasculature. Mechanically-induced [Ca 2+ ] i increases and their subsequent propagation to neighboring astrocytes in culture is a classical model of astrocyte calcium wave and is known to be mediated by gap junction and extracellular ATP, but the role of each pathway remains unclear. Pharmacologic analysis of time-dependent distribution of [Ca 2+ ] i revealed three distinct [Ca 2+ ] i increases, the largest being in stimulated cells independent of extracellular Ca 2+ and inositol 1,4,5-trisphosphate-induced Ca 2+ release. In addition, persistent [Ca 2+ ] i increases were found to propagate rapidly via gap junctions in the proximal region, and transient [Ca 2+ ] i increases were found to propagate slowly via extracellular ATP in the distal region. Simultaneous imaging of astrocyte [Ca 2+ ] i and extracellular ATP, the latter of which was measured by an ATP sniffing cell, revealed that ATP was released within the proximal region by volume-regulated anion channel in a [Ca 2+ ] i independent manner. This detailed analysis of a classical model is the first to address the different contributions of two major pathways of calcium waves, gap junctions and extracellular ATP.

  16. Possible Mechanisms of Mercury Toxicity and Cancer Promotion: Involvement of Gap Junction Intercellular Communications and Inflammatory Cytokines

    Directory of Open Access Journals (Sweden)

    Roberto Zefferino

    2017-01-01

    Full Text Available A number of observations indicate that heavy metals are able to alter cellular metabolic pathways through induction of a prooxidative state. Nevertheless, the outcome of heavy metal-mediated effects in the development of human diseases is debated and needs further insights. Cancer is a well-established DNA mutation-linked disease; however, epigenetic events are perhaps more important and harmful than genetic alterations. Unfortunately, we do not have reliable screening methods to assess/validate the epigenetic (promoter effects of a physical or a chemical agent. We propose a mechanism of action whereby mercury acts as a possible promoter carcinogen. In the present contribution, we resume our previous studies on mercury tested at concentrations comparable with its occurrence as environmental pollutant. It is shown that Hg(II elicits a prooxidative state in keratinocytes linked to inhibition of gap junction-mediated intercellular communication and proinflammatory cytokine production. These combined effects may on one hand isolate cells from tissue-specific homeostasis promoting their proliferation and on the other hand tamper the immune system defense/surveillance checkmating the whole organism. Since Hg(II is not a mutagenic/genotoxic compound directly affecting gene expression, in a broader sense, mercury might be an example of an epigenetic tumor promoter or, further expanding this concept, a “metagenetic” effector.

  17. GnRH Episodic Secretion Is Altered by Pharmacological Blockade of Gap Junctions: Possible Involvement of Glial Cells.

    Science.gov (United States)

    Pinet-Charvet, Caroline; Geller, Sarah; Desroziers, Elodie; Ottogalli, Monique; Lomet, Didier; Georgelin, Christine; Tillet, Yves; Franceschini, Isabelle; Vaudin, Pascal; Duittoz, Anne

    2016-01-01

    Episodic release of GnRH is essential for reproductive function. In vitro studies have established that this episodic release is an endogenous property of GnRH neurons and that GnRH secretory pulses are associated with synchronization of GnRH neuron activity. The cellular mechanisms by which GnRH neurons synchronize remain largely unknown. There is no clear evidence of physical coupling of GnRH neurons through gap junctions to explain episodic synchronization. However, coupling of glial cells through gap junctions has been shown to regulate neuron activity in their microenvironment. The present study investigated whether glial cell communication through gap junctions plays a role in GnRH neuron activity and secretion in the mouse. Our findings show that Glial Fibrillary Acidic Protein-expressing glial cells located in the median eminence in close vicinity to GnRH fibers expressed Gja1 encoding connexin-43. To study the impact of glial-gap junction coupling on GnRH neuron activity, an in vitro model of primary cultures from mouse embryo nasal placodes was used. In this model, GnRH neurons possess a glial microenvironment and were able to release GnRH in an episodic manner. Our findings show that in vitro glial cells forming the microenvironment of GnRH neurons expressed connexin-43 and displayed functional gap junctions. Pharmacological blockade of the gap junctions with 50 μM 18-α-glycyrrhetinic acid decreased GnRH secretion by reducing pulse frequency and amplitude, suppressed neuronal synchronization and drastically reduced spontaneous electrical activity, all these effects were reversed upon 18-α-glycyrrhetinic acid washout.

  18. Neuroprotective Role of Gap Junctions in a Neuron Astrocyte Network Model.

    Science.gov (United States)

    Huguet, Gemma; Joglekar, Anoushka; Messi, Leopold Matamba; Buckalew, Richard; Wong, Sarah; Terman, David

    2016-07-26

    A detailed biophysical model for a neuron/astrocyte network is developed to explore mechanisms responsible for the initiation and propagation of cortical spreading depolarizations and the role of astrocytes in maintaining ion homeostasis, thereby preventing these pathological waves. Simulations of the model illustrate how properties of spreading depolarizations, such as wave speed and duration of depolarization, depend on several factors, including the neuron and astrocyte Na(+)-K(+) ATPase pump strengths. In particular, we consider the neuroprotective role of astrocyte gap junction coupling. The model demonstrates that a syncytium of electrically coupled astrocytes can maintain a physiological membrane potential in the presence of an elevated extracellular K(+) concentration and efficiently distribute the excess K(+) across the syncytium. This provides an effective neuroprotective mechanism for delaying or preventing the initiation of spreading depolarizations. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Managing the complexity of communication: regulation of gap junctions by post-translational modification.

    Science.gov (United States)

    Axelsen, Lene N; Calloe, Kirstine; Holstein-Rathlou, Niels-Henrik; Nielsen, Morten S

    2013-10-22

    Gap junctions are comprised of connexins that form cell-to-cell channels which couple neighboring cells to accommodate the exchange of information. The need for communication does, however, change over time and therefore must be tightly controlled. Although the regulation of connexin protein expression by transcription and translation is of great importance, the trafficking, channel activity and degradation are also under tight control. The function of connexins can be regulated by several post translational modifications, which affect numerous parameters; including number of channels, open probability, single channel conductance or selectivity. The most extensively investigated post translational modifications are phosphorylations, which have been documented in all mammalian connexins. Besides phosphorylations, some connexins are known to be ubiquitinated, SUMOylated, nitrosylated, hydroxylated, acetylated, methylated, and γ-carboxyglutamated. The aim of the present review is to summarize our current knowledge of post translational regulation of the connexin family of proteins.

  20. Managing the complexity of communication; regulation of gap junctions by post-translational modification

    Directory of Open Access Journals (Sweden)

    Lene Nygaard Axelsen

    2013-10-01

    Full Text Available Gap junctions are comprised of connexins that form cell-to-cell channels which couple neighboring cells to accommodate the exchange of information. The need for communication does, however, change over time and therefore must be tightly controlled. Although the regulation of connexin protein expression by transcription and translation is of great importance, the trafficking, channel activity and degradation are also under tight control. The function of connexins can be regulated by several post translational modifications, which affect numerous parameters; including number of channels, open probability, single channel conductance or selectivity. The most extensively investigated post translational modifications are phosphorylations, which have been documented in all mammalian connexins. Besides phosphorylations, some connexins are known to be ubiquitinated, SUMOylated, nitrosylated, hydroxylated, acetylated, methylated and γ-carboxyglutamated. The aim of the present review is to summarize our current knowledge of post translational regulation of the connexin family of proteins.

  1. Regulation of gap junction conductance by calcineurin through Cx43 phosphorylation: implications for action potential conduction.

    Science.gov (United States)

    Jabr, Rita I; Hatch, Fiona S; Salvage, Samantha C; Orlowski, Alejandro; Lampe, Paul D; Fry, Christopher H

    2016-11-01

    Cardiac arrhythmias are associated with raised intracellular [Ca 2+ ] and slowed action potential conduction caused by reduced gap junction (GJ) electrical conductance (Gj). Ventricular GJs are composed of connexin proteins (Cx43), with Gj determined by Cx43 phosphorylation status. Connexin phosphorylation is an interplay between protein kinases and phosphatases but the precise pathways are unknown. We aimed to identify key Ca 2+ -dependent phosphorylation sites on Cx43 that regulate cardiac gap junction conductance and action potential conduction velocity. We investigated the role of the Ca 2+ -dependent phosphatase, calcineurin. Intracellular [Ca 2+ ] was raised in guinea-pig myocardium by a low-Na solution or increased stimulation. Conduction velocity and Gj were measured in multicellular strips. Phosphorylation of Cx43 serine residues (S365 and S368) and of the intermediary regulator I1 at threonine35 was measured by Western blot. Measurements were made in the presence and absence of inhibitors to calcineurin, I1 or protein phosphatase-1 and phosphatase-2.Raised [Ca 2 + ] i decreased Gj, reduced Cx43 phosphorylation at S365 and increased it at S368; these changes were reversed by calcineurin inhibitors. Cx43-S368 phosphorylation was reversed by the protein kinase C inhibitor chelerythrine. Raised [Ca 2+ ] i also decreased I1 phosphorylation, also prevented by calcineurin inhibitors, to increase activity of the Ca 2+ -independent phosphatase, PPI. The PP1 inhibitor, tautomycin, prevented Cx43-365 dephosphorylation, Cx43-S368 phosphorylation and Gj reduction in raised [Ca 2+ ] i . PP2A had no role. Conduction velocity was reduced by raised [Ca 2+ ] i and reversed by calcineurin inhibitors. Reduced action potential conduction and Gj in raised [Ca 2+ ] are regulated by calcineurin-dependent Cx43-S365 phosphorylation, leading to Cx43-S368 dephosphorylation. The calcineurin action is indirect, via I1 dephosphorylation and subsequent activation of PP1.

  2. Effect of apigenin on gap junctional intercellular communication in human Tenon's capsule fibroblasts.

    Science.gov (United States)

    Liu, Shanshan; Wang, Jibing; Zou, Huihui; Huang, Xudong

    2013-06-01

    To investigate the effect of apigenin on gap junctional intercellular communication (GJIC) in human Tenon's capsule fibroblasts (HTFs) and its underlying mechanism. After a 48 h treatment of cultured HTFs with apigenin (80 micromol/L), the GJIC was detected by a scrape-loading/dye transfer technique with Lucifer yellow dye and rhodamine (Rh) dextran. The coupling index represents a quantification of GJIC where a high coupling index is associated with a greater number of cells demonstrating cell-cell communication through gap junction channels. The changes in connexin 43 (Cx43) distribution and the expression of Cx43 at the protein and mRNA levels were statistically compared between the two groups by means of immunocytochemistry, western blotting, and real-time polymerase chain reaction (PCR). The functioning of GJIC in the HTFs was significantly enhanced after 48 hours by apigenin treatment when compared with the control cells. In the apigenin group, the intercellular dye transfer grade was above 9, while this value was only grade 3-4 in the control group. The coupling index was significantly increased up to 9.205+/-0.3621 in the apigenin group, compared with 5.1775+/-0.3177 in the control group (F=279.581, P=0.000). The expression of Cx43 at the protein and mRNA levels was significantly up-regulated in the apigenin group compared with the control group. Apigenin can significantly enhance the function of GJIC in HTFs by up-regulating the expression of Cx43 at both the protein and mRNA levels, suggesting that the enhancement of GJIC in HTFs by apigenin probably acts as an important mechanism underlying the inhibitory effect of apigenin on HTF proliferation.

  3. Influence of drugs on gap junctions in glioma cell lines and primary astrocytes in vitro

    Directory of Open Access Journals (Sweden)

    Zahra eMoinfar

    2014-05-01

    Full Text Available Gap junctions (GJs are hemichannels on cell membrane. Once they are intercellulary connected to the neighboring cells, they build a functional syncytium which allows rapid transfer of ions and molecules between cells. This characteristic makes GJs a potential modulator in proliferation, migration and development of the cells. So far, several types of GJs are recognized on different brain cells as well as in glioma. Astrocytes, as one of the major cells that maintain neuronal homeostasis, express different types of GJs that let them communicate with neurons, oligodendrocytes and endothelial cells of the blood brain barrier; however, the main GJ in astrocytes is connexin 43. There are different cerebral diseases in which astrocyte GJs might play a role. Several drugs have been reported to modulate gap junctional communication in the brain which can consequently have beneficial or detrimental effects on the course of treatment in certain diseases. However, the exact cellular mechanism behind those pharmaceutical efficacies on GJs is not well-understood. Accordingly, how specific drugs would affect GJs and what some consequent specific brain diseases would be are the interests of the authors of this chapter. We would focus on pharmaceutical effects on GJs on astrocytes in specific diseases where GJs could possibly play a role including: 1 migraine and a novel therapy for migraine with aura, 2 neuroautoimmune diseases and immunomodulatory drugs in the treatment of demyelinating diseases of the central nervous system such as multiple sclerosis, 3 glioma and antineoplastic and anti-inflammatory agents that are used in treating brain tumors and 4 epilepsy and anticonvulsants that are widely used for seizures therapy. All of the above-mentioned therapeutic categories can possibly affect GJs expression of astrocytes and the role is discussed in the upcoming chapter.

  4. A novel role of dendritic gap junction and mechanisms underlying its interaction with thalamocortical conductance in fast spiking inhibitory neurons

    Directory of Open Access Journals (Sweden)

    Sun Qian-Quan

    2009-10-01

    Full Text Available Abstract Background Little is known about the roles of dendritic gap junctions (GJs of inhibitory interneurons in modulating temporal properties of sensory induced responses in sensory cortices. Electrophysiological dual patch-clamp recording and computational simulation methods were used in combination to examine a novel role of GJs in sensory mediated feed-forward inhibitory responses in barrel cortex layer IV and its underlying mechanisms. Results Under physiological conditions, excitatory post-junctional potentials (EPJPs interact with thalamocortical (TC inputs within an unprecedented few milliseconds (i.e. over 200 Hz to enhance the firing probability and synchrony of coupled fast-spiking (FS cells. Dendritic GJ coupling allows fourfold increase in synchrony and a significant enhancement in spike transmission efficacy in excitatory spiny stellate cells. The model revealed the following novel mechanisms: 1 rapid capacitive current (Icap underlies the activation of voltage-gated sodium channels; 2 there was less than 2 milliseconds in which the Icap underlying TC input and EPJP was coupled effectively; 3 cells with dendritic GJs had larger input conductance and smaller membrane response to weaker inputs; 4 synchrony in inhibitory networks by GJ coupling leads to reduced sporadic lateral inhibition and increased TC transmission efficacy. Conclusion Dendritic GJs of neocortical inhibitory networks can have very powerful effects in modulating the strength and the temporal properties of sensory induced feed-forward inhibitory and excitatory responses at a very high frequency band (>200 Hz. Rapid capacitive currents are identified as main mechanisms underlying interaction between two transient synaptic conductances.

  5. Gap-junction coupling and ATP-sensitive potassium channels in human β -cell clusters: Effects on emergent dynamics

    Science.gov (United States)

    Loppini, A.; Pedersen, M. G.; Braun, M.; Filippi, S.

    2017-09-01

    The importance of gap-junction coupling between β cells in pancreatic islets is well established in mouse. Such ultrastructural connections synchronize cellular activity, confine biological heterogeneity, and enhance insulin pulsatility. Dysfunction of coupling has been associated with diabetes and altered β -cell function. However, the role of gap junctions between human β cells is still largely unexplored. By using patch-clamp recordings of β cells from human donors, we previously estimated electrical properties of these channels by mathematical modeling of pairs of human β cells. In this work we revise our estimate by modeling triplet configurations and larger heterogeneous clusters. We find that a coupling conductance in the range 0.005 -0.020 nS/pF can reproduce experiments in almost all the simulated arrangements. We finally explore the consequence of gap-junction coupling of this magnitude between β cells with mutant variants of the ATP-sensitive potassium channels involved in some metabolic disorders and diabetic conditions, translating studies performed on rodents to the human case. Our results are finally discussed from the perspective of therapeutic strategies. In summary, modeling of more realistic clusters with more than two β cells slightly lowers our previous estimate of gap-junction conductance and gives rise to patterns that more closely resemble experimental traces.

  6. Modulation of gap-junctional intercellular communication by a series of cyanobacterial samples from nature and laboratory cultures

    Czech Academy of Sciences Publication Activity Database

    Nováková, K.; Babica, Pavel; Adamovský, O.; Bláha, Luděk

    2011-01-01

    Roč. 58, č. 1 (2011), s. 76-84 ISSN 0041-0101 R&D Projects: GA ČR GA524/08/0496 Institutional research plan: CEZ:AV0Z60050516 Keywords : cyanotoxins * gap-junctional intercellular communication * tumor promotion Subject RIV: EF - Botanics Impact factor: 2.508, year: 2011

  7. Proinflammatory cytokines downregulate connexin 43-gap junctions via the ubiquitin-proteasome system in rat spinal astrocytes.

    Science.gov (United States)

    Zhang, Fang Fang; Morioka, Norimitsu; Kitamura, Tomoya; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2015-09-04

    Astrocytic gap junctions formed by connexin 43 (Cx43) are crucial for intercellular communication between spinal cord astrocytes. Various neurological disorders are associated with dysfunctional Cx43-gap junctions. However, the mechanism modulating Cx43-gap junctions in spinal astrocytes under pathological conditions is not entirely clear. A previous study showed that treatment of spinal astrocytes in culture with pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) decreased both Cx43 expression and gap junction intercellular communication (GJIC) via a c-jun N-terminal kinase (JNK)-dependent pathway. The current study further elaborates the intracellular mechanism that decreases Cx43 under an inflammatory condition. Cycloheximide chase analysis revealed that TNF-α (10 ng/ml) alone or in combination with IFN-γ (5 ng/ml) accelerated the degradation of Cx43 protein in cultured spinal astrocytes. The reduction of both Cx43 expression and GJIC induced by a mixture of TNF-α and IFN-γ were blocked by pretreatment with proteasome inhibitors MG132 (0.5 μM) and epoxomicin (25 nM), a mixture of TNF-α and IFN-γ significantly increased proteasome activity and Cx43 ubiquitination. In addition, TNF-α and IFN-γ-induced activation of ubiquitin-proteasome systems was prevented by SP600125, a JNK inhibitor. Together, these results indicate that a JNK-dependent ubiquitin-proteasome system is induced under an inflammatory condition that disrupts astrocytic gap junction expression and function, leading to astrocytic dysfunction and the maintenance of the neuroinflammatory state. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca2+influx through cyclic nucleotide-gated channels.

    Science.gov (United States)

    Bader, Almke; Bintig, Willem; Begandt, Daniela; Klett, Anne; Siller, Ina G; Gregor, Carola; Schaarschmidt, Frank; Weksler, Babette; Romero, Ignacio; Couraud, Pierre-Olivier; Hell, Stefan W; Ngezahayo, Anaclet

    2017-04-15

    Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A 2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca 2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A 2A and A 2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca 2+ with BAPTA, or the absence of external Ca 2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of

  9. Histone deacetylase inhibition reduces cardiac Connexin43 expression and gap junction communication

    Directory of Open Access Journals (Sweden)

    Qin eXu

    2013-04-01

    Full Text Available Histone deactylase (HDAC inhibitors are being investigated as novel therapies for cancer, inflammation, neurodegeneration, and heart failure. The effects of HDAC inhibitors on the functional expression of cardiac gap junctions (GJ are essentially unknown. The purpose of this study was to determine the effects of trichostatin A (TSA and vorinostat (VOR on functional GJ expression in ventricular cardiomyocytes. The effects of HDAC inhibition on connexin43 (Cx43 expression and functional GJ assembly were examined in primary cultured neonatal mouse ventricular myocytes. TSA and VOR reduced Cx43 mRNA, protein expression, and immunolocalized Cx43 GJ plaque area within ventricular myocyte monolayer cultures in a dose-dependent manner. Chromatin-immunoprecipitation experiments revealed altered protein interactions with the Cx43 promoter. VOR also altered the phosphorylation state of several key regulatory Cx43 phospho-serine sites. Patch clamp analysis revealed reduced electrical coupling between isolated ventricular myocyte pairs, altered transjunctional voltage-dependent inactivation kinetics, and steady state junctional conductance inactivation and recovery relationships. Single GJ channel conductance was reduced to 54 pS only by maximum inhibitory doses of TSA (>= 100 nM. These two hydroxamate pan-HDAC inhibitors exert multiple levels of regulation on ventricular GJ communication by altering Cx43 expression, GJ area, post-translational modifications (e.g. phosphorylation, acetylation, gating, and channel conductance. Although a 50% downregulation of Cx43 GJ communication alone may not be sufficient to slow ventricular conduction or induce arrhythmias, the development of class-selective HDAC inhibitors may help avoid the potential negative cardiovascular effects of pan-HDACI.

  10. The antiarrhythmic peptide analog rotigaptide (ZP123) stimulates gap junction intercellular communication in human osteoblasts and prevents decrease in femoral trabecular bone strength in ovariectomized rats

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne

    2005-01-01

    Gap junctions play an important role in bone development and function, but the lack of pharmacological tools has hampered the gap junction research. The antiarrhythmic peptides stimulate gap junction communication between cardiomyocytes, but effects in noncardiac tissue are unknown. The purpose...... of this study was to examine whether antiarrhythmic peptides, which are small peptides increasing gap junctional conductivity, show specific binding to osteoblasts and investigate the effect of the stable analog rotigaptide (ZP123) on gap junctional intercellular communication in vitro and on bone mass...... weight) or by continuous ip infusion (158 nmol per kilogram body weight per day). During metabolic stress, a high affinity-binding site (KD=0.1 nM) with low density (15 fmol/mg protein) for [125I]di-I-AAP10 was demonstrated. During physiological conditions, specific binding sites for [125I]AAP10 could...

  11. Role of gap junctions and protein kinase A during the development of oocyte maturational competence in Ayu (Plecoglossus altivelis)

    Science.gov (United States)

    Yamamoto, Y.; Yoshizaki, G.; Takeuchi, T.; Soyano, K.; Patino, R.

    2008-01-01

    Meiotic resumption in teleost oocytes is induced by a maturation-inducing hormone (MIH). The sensitivity of oocytes to MIH, also known as oocyte maturational competence (OMC), is induced by LH via mechanisms that are not fully understood. A previous study of Ayu (Plecoglossus altivelis) showed the presence of functional heterologous gap junctions (GJs) between oocytes and their surrounding granulosa cells. The objectives of this study were to determine the role of ovarian GJs and of protein kinase A (PKA) during the acquisition of OMC. We examined the effects of the specific GJ inhibitor carbenoxolone (CBX) and 18??-glycyrrhetinic acid (??-GA) on the LH-(hCG)-dependent acquisition of OMC and on MIH-(17,20??-dihydroxy-4-pregnen-3-one)-dependent meiotic resumption; measured the cAMP content of ovarian follicles during the hCG-dependent acquisition of OMC; and determined the effects of PK activators and inhibitors on hCG-dependent OMC. Production of follicular cAMP increased during the hCG-dependent acquisition of OMC. Both GJ inhibitors and the PKA inhibitor H8-dihydrochloride, but not the PKC inhibitor GF109203X, suppressed the hCG-dependent acquisition of OMC in a dose-dependent manner. The PKA activator forskolin induced OMC with a similar potency to hCG. Unlike previous observations with teleosts where disruption of heterologous GJ either blocks or stimulates meiotic resumption, treatment with GJ inhibitors did not affect MIH-dependent meiotic resumption in maturationally competent follicles of Ayu. These observations suggest that ovarian GJs are essential for LH-dependent acquisition of OMC but not for MIH-dependent meiotic resumption, and that the stimulation of OMC by LH is mediated by cAMP-dependent PKA. They are also consistent with the view that a precise balance between GJ-mediated signals (positive or negative) and oocyte maturational readiness is required for hormonally regulated meiotic resumption. ?? 2007 Elsevier Inc. All rights reserved.

  12. The endothelial component of cannabinoid-induced relaxation in rabbit mesenteric artery depends on gap junctional communication

    Science.gov (United States)

    Chaytor, A T; Martin, P E M; Evans, W H; Randall, M D; Griffith, T M

    1999-01-01

    We have shown that the endocannabinoid anandamide and its stable analogue methanandamide relax rings of rabbit superior mesenteric artery through endothelium-dependent and -independent mechanisms that are unaffected by blockade of NO synthase and cyclooxygenase. The endothelium-dependent component of the responses was attenuated by the gap junction inhibitor 18α-glycyrrhetinic acid (18α-GA; 50 μm), and a synthetic connexin-mimetic peptide homologous to the extracellular Gap 27 sequence of connexin 43 (43Gap 27, SRPTEKTIFII; 300 μm). By contrast, the corresponding connexin 40 peptide (40Gap 27, SRPTEKNVFIV) was inactive. The cannabinoid CB1 receptor antagonist SR141716A (10 μm) also attenuated endothelium-dependent relaxations but this inhibition was not observed with the CB1 receptor antagonist LY320135 (10 μm). Furthermore, SR141716A mimicked the effects of 43Gap 27 peptide in blocking Lucifer Yellow dye transfer between coupled COS-7 cells (a monkey fibroblast cell line), whereas LY320135 was without effect, thus suggesting that the action of SR141716A was directly attributable to effects on gap junctions. The endothelium-dependent component of cannabinoid-induced relaxation was also attenuated by AM404 (10 μm), an inhibitor of the high-affinity anandamide transporter, which was without effect on dye transfer. Taken together, the findings suggest that cannabinoids derived from arachidonic acid gain access to the endothelial cytosol via a transporter mechanism and subsequently stimulate relaxation by promoting diffusion of an to adjacent smooth muscle cells via gap junctions. Relaxations of endothelium-denuded preparations to anandamide and methanandamide were unaffected by 43Gap 27 peptide, 18α-GA, SR141716A, AM404 and indomethacin and their genesis remains to be established. PMID:10523421

  13. Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity.

    Science.gov (United States)

    Karpuk, Nikolay; Burkovetskaya, Maria; Fritz, Teresa; Angle, Amanda; Kielian, Tammy

    2011-01-12

    Inflammation attenuates gap junction (GJ) communication in cultured astrocytes. Here we used a well-characterized model of experimental brain abscess as a tool to query effects of the CNS inflammatory milieu on astrocyte GJ communication and electrophysiological properties. Whole-cell patch-clamp recordings were performed on green fluorescent protein (GFP)-positive astrocytes in acute brain slices from glial fibrillary acidic protein-GFP mice at 3 or 7 d after Staphylococcus aureus infection in the striatum. Astrocyte GJ communication was significantly attenuated in regions immediately surrounding the abscess margins and progressively increased to levels typical of uninfected brain with increasing distance from the abscess proper. Conversely, astrocytes bordering the abscess demonstrated hemichannel activity as evident by enhanced ethidium bromide (EtBr) uptake that could be blocked by several pharmacological inhibitors, including the connexin 43 (Cx43) mimetic peptide Gap26, carbenoxolone, the pannexin1 (Panx1) mimetic peptide (10)Panx1, and probenecid. However, hemichannel opening was transient with astrocytic EtBr uptake observed near the abscess at day 3 but not day 7 after infection. The region-dependent pattern of hemichannel activity at day 3 directly correlated with increases in Cx43, Cx30, Panx1, and glutamate transporter expression (glial L-glutamate transporter and L-glutamate/L-aspartate transporter) along the abscess margins. Changes in astrocyte resting membrane potential and input conductance correlated with the observed changes in GJ communication and hemichannel activity. Collectively, these findings indicate that astrocyte coupling and electrical properties are most dramatically affected near the primary inflammatory site and reveal an opposing relationship between the open states of GJ channels versus hemichannels during acute infection. This relationship may extend to other CNS diseases typified with an inflammatory component.

  14. In Vitro Evaluation of Damage by Heavy Metals in Tight and Gap Junctions of Sertoli Cells.

    Science.gov (United States)

    Ramos-Treviño, Juan; Bassol-Mayagoitia, Susana; Ruiz-Flores, Pablo; Espino-Silva, Perla Karina; Saucedo-Cárdenas, Odila; Villa-Cedillo, Sheila Adela; Nava-Hernández, Martha P

    2017-10-01

    The Sertoli cell plays a vital role during the spermatogenesis process and has been identified as one of the main targets of the toxic action of heavy metals on the seminiferous epithelium. In the present work, the effect of lead (Pb), Arsenic (As), and Cadmium (Cd) in primary cultures of Sertoli cells was analyzed by measuring the expression of the genes Cldn11, Ocln, and Gja1 that participate in the tight and gap junctions, which are responsible for maintaining the blood-testis barrier. Sertoli cells were isolated from the testes of Wistar rats. Sertoli cell cultures were exposed separately and at the same concentrations of three heavy metals for 48 h. Subsequently, gene expression was measured by real-time polymerase chain reaction. In the morphological analysis of the cultures, after 24 h, the cultures exposed to Cd showed greatest detachment of the monolayer, followed by those exposed to As and Pb. As for gene expression patterns, As induced a decrease in the expression of the Cldn11 gene at 24 and 48 h (p metals generated different expression patterns in the three genes, we can postulate that the mechanisms of damage that they induce are different; therefore, the effect that they exert on the Sertoli cell occurs through different pathways, generating changes in structural proteins, altering Sertoli cell morphology, and compromising its function in the regulation of the spermatogenesis process.

  15. Barreloid Borders and Neuronal Activity Shape Panglial Gap Junction-Coupled Networks in the Mouse Thalamus.

    Science.gov (United States)

    Claus, Lena; Philippot, Camille; Griemsmann, Stephanie; Timmermann, Aline; Jabs, Ronald; Henneberger, Christian; Kettenmann, Helmut; Steinhäuser, Christian

    2018-01-01

    The ventral posterior nucleus of the thalamus plays an important role in somatosensory information processing. It contains elongated cellular domains called barreloids, which are the structural basis for the somatotopic organization of vibrissae representation. So far, the organization of glial networks in these barreloid structures and its modulation by neuronal activity has not been studied. We have developed a method to visualize thalamic barreloid fields in acute slices. Combining electrophysiology, immunohistochemistry, and electroporation in transgenic mice with cell type-specific fluorescence labeling, we provide the first structure-function analyses of barreloidal glial gap junction networks. We observed coupled networks, which comprised both astrocytes and oligodendrocytes. The spread of tracers or a fluorescent glucose derivative through these networks was dependent on neuronal activity and limited by the barreloid borders, which were formed by uncoupled or weakly coupled oligodendrocytes. Neuronal somata were distributed homogeneously across barreloid fields with their processes running in parallel to the barreloid borders. Many astrocytes and oligodendrocytes were not part of the panglial networks. Thus, oligodendrocytes are the cellular elements limiting the communicating panglial network to a single barreloid, which might be important to ensure proper metabolic support to active neurons located within a particular vibrissae signaling pathway. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Estimation of the effective intercellular diffusion coefficient in cell monolayers coupled by gap junctions.

    Science.gov (United States)

    Olesen, Niels Erik; Hofgaard, Johannes P; Holstein-Rathlou, Niels-Henrik; Nielsen, Morten Schak; Jacobsen, Jens Christian Brings

    2012-07-16

    A recently developed dye-based assay to study gap junction permeability is analysed. The assay is based on electroporation of dye into a large number of connexin 43 expressing cells, grown to confluency on electrically conductive slides. The subsequent intercellular spread of dye to non-electroporated parts of the monolayer enables estimation of the intercellular coupling. So far, the extent of dye spread has been analyzed in qualitative terms only and not in a manner based directly on the physics of the underlying diffusion process. We apply a continuum approximation assuming that the observed dye spread can be described by Fick's law of diffusion. Deduced from Fick's law, new measures are presented which directly relate the observed spread of dye to the diffusion coefficient. The theoretical framework enables the estimation of an effective diffusion coefficient from Fick's law independently of the specific indicator substance used in the assay. For Lucifer Yellow, diffusion stops within few minutes after the electroporation. Therefore only an order-of-magnitude estimate of the diffusion coefficient can be given for this dye. In terms of the underlying diffusion coefficient, the hitherto used measures give a relatively poor degree of quantification. In contrast, the present methods may yield direct information on the effective intercellular diffusion coefficient and hence provide additional and more precise information as to the permeability modulating effect of various substances. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Astrocytes protect glioma cells from chemotherapy and upregulate survival genes via gap junctional communication.

    Science.gov (United States)

    Lin, Qingtang; Liu, Zhao; Ling, Feng; Xu, Geng

    2016-02-01

    Gliomas are the most common type of primary brain tumor. Using current standard treatment regimens, the prognosis of patients with gliomas remains poor, which is predominantly due to the resistance of glioma cells to chemotherapy. The organ microenvironment has been implicated in the pathogenesis and survival of tumor cells. Thus, the aim of the present study was to test the hypothesis that astrocytes (the housekeeping cells of the brain microenvironment) may protect glioma cells from chemotherapy and to investigate the underlying mechanism. Immunofluorescent and scanning electron microscopy demonstrated that glioma cells were surrounded and infiltrated by activated astrocytes. In vitro co-culture of glioma cells with astrocytes significantly reduced the cytotoxic effects on glioma cells caused by various chemotherapeutic agents, as demonstrated by fluorescein isothiocyanate-propidium iodide flow cytometry. Transwell experiments indicated that this protective effect was dependent on physical contact and the gap junctional communication (GJC) between astrocytes and glioma cells. Microarray expression profiling further revealed that astrocytes upregulated the expression levels of various critical survival genes in the glioma cells via GJC. The results of the present study indicated that the organ microenvironment may affect the biological behavior of tumor cells and suggest a novel mechanism of resistance in glioma cells, which may be of therapeutic relevance clinically.

  18. 17beta-estradiol reduces the effect of metabolic inhibition on gap junction intercellular communication in rat cardiomyocytes via the estrogen receptor.

    Science.gov (United States)

    Chung, Tun-Hui; Wang, Seu-Mei; Wu, Jiahn-Chun

    2004-11-01

    The effects of 17beta-estradiol (E2) on gap junction intercellular communication (GJIC) were assessed by Lucifer yellow dye coupling in cultured neonatal rat cardiomyocytes after metabolic inhibition (MI) using potassium cyanide and sodium iodoacetate. MI significantly reduced dye coupling of cardiomyocytes to 8.5% +/- 0.6% of control levels, and pretreatment with E2, but not its inactive isomer 17alpha-estradiol, dose-dependently (EC(50) = 0.41 microM) increased the dye coupling up to 76% +/- 15% of control levels. The effect of E2 on MI-induced dye uncoupling was abolished by tamoxifen, a potent estrogen receptor (ER) antagonist. The ligand, E2-BSA-FITC, labeled the cardiomyocyte surface, whereas BSA-FITC did not, suggesting the presence of membrane-associated E2 receptors. Double immunofluorescence microscopy showed that MI-induced the accumulation of non-phosphorylated Cx43 at the gap junction and that this was prevented by E2 pretreatment. Labeling of Lucifer yellow-microinjected cardiomyocytes with antibodies specific for Ser368-phosphorylated Cx43 (Ser368Cx43) or non-phosphorylated Cx43 confirmed that E2 reduced the MI-induced inhibition of dye coupling and accumulation of non-phosphorylated Cx43 concomitant with the reappearance of Ser368Cx43 at the gap junction. MI caused a decrease in Ser368Cx43 protein levels, and pretreatment with E2 significantly increased the levels of Ser368Cx43. Inhibition of protein kinase C (PKC) with chelerythrine blocked the E2-induced increase of Ser368Cx43 levels in MI-treated cardiomyocytes. These results suggest that E2 attenuates the inhibitory effect of MI on GJIC in cardiomyocytes by affecting the phosphorylation of Cx43, possibly mediated by activation of PKC via a membrane-associated signaling mechanism.

  19. Prostaglandin-induced cervical remodelling in humans in the first trimester is associated with increased expression of specific tight junction, but not gap junction proteins

    Directory of Open Access Journals (Sweden)

    Ghulé Vidita V

    2012-03-01

    Full Text Available Abstract Background Prostaglandins (PG are widely employed to induce cervical remodelling (CR in pregnancy. However, the underlying molecular mechanisms are not fully elucidated. Tight junctions (TJ and gap junctions (GJ regulate paracellular and intercellular solute transport respectively but their role in the process of CR remains unexplored. We hypothesized that the synthetic prostaglandin E1 analogue Misoprostol (M, widely used in clinical practice to induce CR, may alter TJ and GJ expression as part of the changes in the extracellular matrix (ECM associated with remodelling. We investigated the effects of Misoprostol exposure on the expression of cervical TJ (claudins 1, 2, 4, 5, 7 and occludin and GJ (connexins 43, 30 and 26 in the 1st trimester. Methods Cervical biopsies were obtained from pregnant women and comparisons of TJ and GJ protein expression (by western blotting and immunolocalisation (laser scanning confocal microscopy made between those who were administered vaginal Misoprostol (n = 10 and those who were not (n = 5. Results We found that Misoprostol-treated tissue (M+ had higher expression of Claudins 1,2,4,7 and occludin (p Conclusion Our observations suggest, for the first time, that increased expression of tight junction proteins may be one of the mechanisms by which Misoprostol induces CR in humans. Further studies are needed to explore if TJ proteins may be therapeutic targets to alter timing of CR in clinical practice.

  20. Participation of gap junction communication in potentially lethal damage repair and DNA damage in human fibroblasts exposed to low- or high-LET radiation

    Science.gov (United States)

    Autsavapromporn, Narongchai; Suzuki, Masao; Plante, Ianik; Liu, Cuihua; Uchihori, Yukio; Hei, Tom K.; Azzam, Edouard I.; Murakami, Takeshi

    2014-01-01

    Existing research has not fully explained how different types of ionizing radiation (IR) modulate the responses of cell populations or tissues. In our previous work, we showed that gap junction intercellular communication (GJIC) mediates the propagation of stressful effects among irradiated cells exposed to high linear energy transfer (LET) radiations, in which almost every cells is traversed by an IR track. In the present study, we conducted an in-depth study of the role of GJIC in modulating the repair of potentially lethal damage (PLDR) and micronuclei formation in cells exposed to low- or high-LET IR. Confluent human fibroblasts were exposed in the presence or absence of a gap junction inhibitor to 200 kV X rays (LET ∼ 1.7 keV/µm), carbon ions (LET ∼ 76 keV/µm), silicon ions (LET ∼ 113 keV/µm) or iron ions (LET ∼ 400 keV/µm) that resulted in isosurvival levels. The fibroblasts were incubated for various times at 37 °C. As expected, high-LET IR were more effective than were low-LET X rays at killing cells and damaging DNA shortly after irradiation. However, when cells were held in a confluent state for several hours, PLDR associated with a reduction in DNA damage, occurred only in cells exposed to X rays. Interestingly, inhibition of GJIC eliminated the enhancement of toxic effects, which resulted in an increase of cell survival and reduction in the level of micronucleus formation in cells exposed to high, but not in those exposed to low-LET IR. The experiment shows that gap-junction communication plays an important role in the propagation of stressful effects among irradiated cells exposed to high-LET IR while GJIC has only a minimal effect on PLDR and DNA damage following low-LET irradiation. Together, our results show that PLDR and induction of DNA damage clearly depend on gap-junction communication and radiation quality. PMID:23867854

  1. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation

    Energy Technology Data Exchange (ETDEWEB)

    Du, Kuo; Williams, C. David; McGill, Mitchell R.; Xie, Yuchao [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Farhood, Anwar [Department of Pathology, St. David' s North Austin Medical Center, Austin, TX 78756 (United States); Vinken, Mathieu [Department of Toxicology, Center for Pharmaceutical Sciences, Vrije Universiteit Brussels, 1090 Brussels (Belgium); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2013-12-15

    Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented when animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5 h after APAP. However, the protection was completely lost when 2-APB was given 4–6 h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions. - Highlights: • 2-APB protected against APAP-induced liver injury in mice in vivo and in vitro • 2-APB protected by inhibiting APAP metabolic activation and JNK signaling pathway • DMSO inhibited APAP metabolic activation as the solvent of 2-APB

  2. Nonspecific effects of the gap junction blocker mefloquine on fast hippocampal network oscillations in the adult rat in vitro.

    Science.gov (United States)

    Behrens, C J; Ul Haq, R; Liotta, A; Anderson, M L; Heinemann, U

    2011-09-29

    It has been suggested that gap junctions are involved in the synchronization during high frequency oscillations as observed during sharp wave-ripple complexes (SPW-Rs) and during recurrent epileptiform discharges (REDs). Ripple oscillations during SPW-Rs, possibly involved in memory replay and memory consolidation, reach frequencies of up to 200 Hz while ripple oscillations during REDs display frequencies up to 500 Hz. These fast oscillations may be synchronized by intercellular interactions through gap junctions. In area CA3, connexin 36 (Cx36) proteins are present and potentially sensitive to mefloquine. Here, we used hippocampal slices of adult rats to investigate the effects of mefloquine, which blocks Cx36, Cx43 and Cx50 gap junctions on both SPW-Rs and REDs. SPW-Rs were induced by high frequency stimulation in the CA3 region while REDs were recorded in the presence of the GABA(A) receptor blocker bicuculline (5 μM). Both, SPW-Rs and REDs were blocked by the gap junction blocker carbenoxolone. Mefloquine (50 μM), which did not affect stimulus-induced responses in area CA3, neither changed SPW-Rs nor superimposed ripple oscillations. During REDs, 25 and 50 μM mefloquine exerted only minor effects on the expression of REDs but significantly reduced the amplitude of superimposed ripples by ∼17 and ∼54%, respectively. Intracellular recordings of CA3 pyramidal cells revealed that mefloquine did not change their resting membrane potential and input resistance but significantly increased the afterhyperpolarization following evoked action potentials (APs) resulting in reduced probability of AP firing during depolarizing current injection. Similarly, mefloquine caused a reduction in AP generation during REDs. Together, our data suggest that mefloquine depressed RED-related ripple oscillations by reducing high frequency discharges and not necessarily by blocking electrical coupling. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Evidence for intercellular communication in mosquito renal tubules: a putative role of gap junctions in coordinating and regulating the rapid diuretic effects of neuropeptides.

    Science.gov (United States)

    Piermarini, Peter M; Calkins, Travis L

    2014-07-01

    Adult female mosquitoes require a blood meal from a vertebrate host to successfully reproduce. During a single blood feeding, a female may ingest more than the equivalent of her own body mass, resulting in an acute stress to osmotic and ionic homeostasis. In response to this stress, the renal (Malpighian) tubules mediate a rapid diuresis that commences as soon as blood is ingested. The diuresis is regulated by neuropeptides (e.g., kinins, calcitonin-like peptide) that act on receptors in the Malpighian tubule epithelium. Interestingly, the expression of these receptors is discontinuous throughout the epithelium, which raises the question as to how Malpighian tubules mount such a rapid and synchronized response to neuropeptide stimulation. Here we propose a hypothesis that gap junctions functionally couple the epithelial cells of Malpighian tubules, resulting in a coordinated physiological response to the binding of neuropeptides. We review recent, relevant literature on the electrophysiology, physiology, and molecular biology of mosquito Malpighian tubules that indicate the presence of gap junctions in the epithelium. We also provide new physiological and immunochemical data that are consistent with the proposed hypothesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. The effect of hyaluronic acid on insulin secretion in HIT-T15 cells through the enhancement of gap-junctional intercellular communications.

    Science.gov (United States)

    Li, Yuping; Nagira, Tsutomu; Tsuchiya, Toshie

    2006-03-01

    The transplantation of bioartificial pancreas has the potential to restore endogenous insulin secretion in type I diabetes. The bioartificial pancreas is constructed in vitro from cells and a support matrix. Hyaluronic acid (HA) is an extremely ubiquitous polysaccharide of extracellular matrix in the body and plays various biological roles. It has been suggested that high molecular weight (HMW) HA increases in the function of gap-junctional intercellular communications (GJIC) and the expression of connexin-43 (Cx43). To determine whether the function of pancreatic beta-cells is affected by gap junctions after HMW HA-treatment, we exposed HIT-T15, a clonal pancreatic beta-cell line, in various concentrations of HA for 24h, and then detected the insulin secretion and content, using an insulin assay kit by ELISA technique. The cellular functions of GJIC were assayed by dye-transfer method using the dye solution of Lucifer yellow. HA-treatment resulted in the enhancement of GJIC function, the increase of insulin release and insulin content. The results obtained in this study suggest that HA-coating increases the insulin secretion of HIT-T15 cells by the enhancement of Cx43-mediated GJIC. The results give useful information on design biocompatibility of HA when is used as a biomaterial for bioartificial pancreas.

  5. In-gap bound states and tunneling conductance of multiband superconductors through a normal/superconductor/superconductor junction

    OpenAIRE

    Feng, Xiao-Yong; Ng, Tai-Kai

    2008-01-01

    The tunneling conductance between a metal and a multiband s-wave superconductor with a thin layer of single-band s-wave superconductor sandwiched in between is examined in this paper. We show that an in-gap peak in conductance curve is found as a result of the formation of in-gap bound state between the single-band and multiband superconductor junctions if the phases of the superconducting order parameters of the multiband superconductor are frustrated. The implication of this result in deter...

  6. Microfluidic application-specific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs

    Science.gov (United States)

    Lee, Philip J.; Hung, Paul J.; Shaw, Robin; Jan, Lily; Lee, Luke P.

    2005-05-01

    Direct cell-cell communication between adjacent cells is vital for the development and regulation of functional tissues. However, current biological techniques are difficult to scale up for high-throughput screening of cell-cell communication in an array format. In order to provide an effective biophysical tool for the analysis of molecular mechanisms of gap junctions that underlie intercellular communication, we have developed a microfluidic device for selective trapping of cell-pairs and simultaneous optical characterizations. Two different cell populations can be brought into membrane contact using an array of trapping channels with a 2μm by 2μm cross section. Device operation was verified by observation of dye transfer between mouse fibroblasts (NIH3T3) placed in membrane contact. Integration with lab-on-a-chip technologies offers promising applications for cell-based analytical tools such as drug screening, clinical diagnostics, and soft-state biophysical devices for the study of gap junction protein channels in cellular communications. Understanding electrical transport mechanisms via gap junctions in soft membranes will impact quantitative biomedical sciences as well as clinical applications.

  7. Infusion of gliotoxins or a gap junction blocker in the prelimbic cortex increases alcohol preference in Wistar rats.

    Science.gov (United States)

    Miguel-Hidalgo, J; Shoyama, Y; Wanzo, V

    2009-07-01

    Postmortem research has revealed that there is a lower density of glial cells in regions of the prefrontal cortex (PFC) of uncomplicated alcoholics when compared with control subjects. Impairment of astrocyte function in the PFC may contribute to malfunction in circuits involved in emotion- and reward-related subcortical centers, heavily connected with the PFC and directly involved in the pathophysiology of addictive behaviours. The hypothesis was tested that infusion of gliotoxins known to injure astrocytes or of a gap junction blocker into the prelimbic area of the rat PFC results in increased preference for ethanol in rats exposed to free choice between water and 10% ethanol. Fluorocitric acid, L-alpha-aminoadipic acid (AAD) or the gap junction blocker 18-alpha-glycyrrhetinic acid (AGA) were bilaterally infused once into the rat prelimbic cortex and alcohol preference (ratio of 10% ethanol consumed to total liquid ingested) was measured before and after infusion. Infusion of AAD or AGA dissolved in their vehicles, but not of their vehicles alone, resulted in significant transient increase of preference for 10% ethanol. The present data suggest that impaired integrity of glial cells or the gap junctional communication between them in the rat PFC may contribute to changes in ethanol preference.

  8. Role of Non-Myocyte Gap Junctions and Connexin Hemichannels in Cardiovascular Health and Disease: Novel Therapeutic Targets?

    Directory of Open Access Journals (Sweden)

    Robert D. Johnson

    2018-03-01

    Full Text Available The heart is a complex organ composed of multiple cell types, including cardiomyocytes and different non-myocyte populations, all working closely together to determine the hearts properties and maintain normal cardiac function. Connexins are abundantly expressed proteins that form plasma membrane hemichannels and gap junctions between cells. Gap junctions are intracellular channels that allow for communication between cells, and in the heart they play a crucial role in cardiac conduction by coupling adjacent cardiomyocytes. Connexins are expressed in both cardiomyocytes and non-myocytes, including cardiac fibroblasts, endothelial cells, and macrophages. Non-myocytes are the largest population of cells in the heart, and therefore it is important to consider what roles connexins, hemichannels, and gap junctions play in these cell types. The aim of this review is to provide insight into connexin-based signalling in non-myocytes during health and disease, and highlight how targeting these proteins could lead to the development of novel therapies. We conclude that connexins in non-myocytes contribute to arrhythmias and adverse ventricular remodelling following myocardial infarction, and are associated with the initiation and development of atherosclerosis. Therefore, therapeutic interventions targeting these connexins represent an exciting new research avenue with great potential.

  9. Estrogenic compounds inhibit gap junctional intercellular communication in mouse Leydig TM3 cells

    International Nuclear Information System (INIS)

    Iwase, Yumiko; Fukata, Hideki; Mori, Chisato

    2006-01-01

    Some estrogenic compounds are reported to cause testicular disorders in humans and/or experimental animals by direct action on Leydig cells. In carcinogenesis and normal development, gap junctional intercellular communication (GJIC) plays an essential role in maintaining homeostasis. In this study, we examine the effects of diethylstilbestrol (DES, a synthetic estrogen), 17β-estradiol (E 2 , a natural estrogen), and genistein (GEN, a phytoestrogen) on GJIC between mouse Leydig TM3 cells using Lucifer yellow microinjection. The three compounds tested produced GJIC inhibition in the TM3 cells after 24 h. Gradually, 10 μM DES began to inhibit GJIC for 24 h and this effect was observed until 72 h. On the other hand, both 20 μM E 2 and 25 μM GEN rapidly inhibited GJIC in 6 h and 2 h, respectively. The effects continued until 24 h, but weakened by 72 h. Furthermore, a combined effect at μM level between DES and E 2 on GJIC inhibition was observed, but not between GEN and E 2 . DES and E 2 showed GJIC inhibition at low dose levels (nearly physiological estrogen levels) after 72 h, but GEN did not. DES-induced GJIC inhibition at 10 pM and 10 μM was completely counteracted by ICI 182,780 (ICl), an estrogen receptor antagonist. On the other hand, the inhibitory effects on GJIC with E 2 (10 pM and 20 μM) and GEN (25 μM) were partially blocked by ICI or calphostin C, a protein kinase C (PKC) inhibitor, and were completely blocked by the combination of ICI and calphostin C. These results demonstrate that DES inhibits GJIC between Leydig cells via the estrogen receptor (ER), and that E 2 and GEN inhibit GJIC via ER and PKC. These estrogenic compounds may have different individual nongenotoxic mechanism including PKC pathway on testicular carcinogenesis or development

  10. Asymmetric configurations and N-terminal rearrangements in connexin26 gap junction channels.

    Science.gov (United States)

    Oshima, Atsunori; Tani, Kazutoshi; Toloue, Masoud M; Hiroaki, Yoko; Smock, Amy; Inukai, Sayaka; Cone, Angela; Nicholson, Bruce J; Sosinsky, Gina E; Fujiyoshi, Yoshinori

    2011-01-21

    Gap junction channels are unique in that they possess multiple mechanisms for channel closure, several of which involve the N terminus as a key component in gating, and possibly assembly. Here, we present electron crystallographic structures of a mutant human connexin26 (Cx26M34A) and an N-terminal deletion of this mutant (Cx26M34Adel2-7) at 6-Å and 10-Å resolutions, respectively. The three-dimensional map of Cx26M34A was improved by data from 60° tilt images and revealed a breakdown of the hexagonal symmetry in a connexin hemichannel, particularly in the cytoplasmic domain regions at the ends of the transmembrane helices. The Cx26M34A structure contained an asymmetric density in the channel vestibule ("plug") that was decreased in the Cx26M34Adel2-7 structure, indicating that the N terminus significantly contributes to form this plug feature. Functional analysis of the Cx26M34A channels revealed that these channels are predominantly closed, with the residual electrical conductance showing normal voltage gating. N-terminal deletion mutants with and without the M34A mutation showed no electrical activity in paired Xenopus oocytes and significantly decreased dye permeability in HeLa cells. Comparing this closed structure with the recently published X-ray structure of wild-type Cx26, which is proposed to be in an open state, revealed a radial outward shift in the transmembrane helices in the closed state, presumably to accommodate the N-terminal plug occluding the pore. Because both Cx26del2-7 and Cx26M34Adel2-7 channels are closed, the N terminus appears to have a prominent role in stabilizing the open configuration. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Stat3 is a positive regulator of gap junctional intercellular communication in cultured, human lung carcinoma cells

    Directory of Open Access Journals (Sweden)

    Geletu Mulu

    2012-12-01

    Full Text Available Abstract Background Neoplastic transformation of cultured cells by a number of oncogenes such as src suppresses gap junctional, intercellular communication (GJIC; however, the role of Src and its effector Signal transducer and activator of transcription-3 (Stat3 upon GJIC in non small cell lung cancer (NSCLC has not been defined. Immunohistochemical analysis revealed high Src activity in NSCLC biopsy samples compared to normal tissues. Here we explored the potential effect of Src and Stat3 upon GJIC, by assessing the levels of tyr418-phosphorylated Src and tyr705-phosphorylated Stat3, respectively, in a panel of NSCLC cell lines. Methods Gap junctional communication was examined by electroporating the fluorescent dye Lucifer yellow into cells grown on a transparent electrode, followed by observation of the migration of the dye to the adjacent, non-electroporated cells under fluorescence illumination. Results An inverse relationship between Src activity levels and GJIC was noted; in five lines with high Src activity GJIC was absent, while two lines with extensive GJIC (QU-DB and SK-LuCi6 had low Src levels, similar to a non-transformed, immortalised lung epithelial cell line. Interestingly, examination of the mechanism indicated that Stat3 inhibition in any of the NSCLC lines expressing high endogenous Src activity levels, or in cells where Src was exogenously transduced, did not restore GJIC. On the contrary, Stat3 downregulation in immortalised lung epithelial cells or in the NSCLC lines displaying extensive GJIC actually suppressed junctional permeability. Conclusions Our findings demonstrate that although Stat3 is generally growth promoting and in an activated form it can act as an oncogene, it is actually required for gap junctional communication both in nontransformed lung epithelial cells and in certain lung cancer lines that retain extensive GJIC.

  12. INHIBITION OF GAP JUNCTIONAL INTERCELLULAR COMMUNICATION BY PERFLUORINATED COMPOUNDS IN RAT LIVER AND DOLPHIN KIDNEY EPITHELIAL CELL LINES IN VITRO AND SPRAGUE-DAWLEY RATS IN VIVO

    Science.gov (United States)

    Abstract Gap Junctional Intercellular Communication (GJIC) is the major pathway of intercellular signal transduction, and is, thus, important for normal cell growth and function. Recent studies have revealed a global distribution of some perfluorinated organic compounds e...

  13. Prostaglandin-induced cervical remodelling in humans in the first trimester is associated with increased expression of specific tight junction, but not gap junction proteins

    Science.gov (United States)

    2012-01-01

    Background Prostaglandins (PG) are widely employed to induce cervical remodelling (CR) in pregnancy. However, the underlying molecular mechanisms are not fully elucidated. Tight junctions (TJ) and gap junctions (GJ) regulate paracellular and intercellular solute transport respectively but their role in the process of CR remains unexplored. We hypothesized that the synthetic prostaglandin E1 analogue Misoprostol (M), widely used in clinical practice to induce CR, may alter TJ and GJ expression as part of the changes in the extracellular matrix (ECM) associated with remodelling. We investigated the effects of Misoprostol exposure on the expression of cervical TJ (claudins 1, 2, 4, 5, 7 and occludin) and GJ (connexins 43, 30 and 26) in the 1st trimester. Methods Cervical biopsies were obtained from pregnant women and comparisons of TJ and GJ protein expression (by western blotting) and immunolocalisation (laser scanning confocal microscopy) made between those who were administered vaginal Misoprostol (n = 10) and those who were not (n = 5). Results We found that Misoprostol-treated tissue (M+) had higher expression of Claudins 1,2,4,7 and occludin (p < 0.05) than untreated (M-) tissue. Expression levels of Claudins 1, 2 and 4 were positively correlated to interval from Misoprostol treatment to biopsy, whilst occludin was negatively correlated. Misoprostol-treated cervical tissue demonstrated more endothelial claudin-5 and occludin, whilst expression of GJs were unchanged. Conclusion Our observations suggest, for the first time, that increased expression of tight junction proteins may be one of the mechanisms by which Misoprostol induces CR in humans. Further studies are needed to explore if TJ proteins may be therapeutic targets to alter timing of CR in clinical practice. PMID:22397627

  14. SNS junctions in nanowires with spin-orbit coupling: role of confinement and helicity on the sub-gap spectrum

    Science.gov (United States)

    Cayao, Jorge; Prada, Elsa; San-Jose, Pablo; Aguado, Ramón

    2015-03-01

    We study normal transport and the sub-gap spectrum of superconductor-normal-superconductor (SNS) junctions made of semiconducting nanowires with strong Rashba spin-orbit coupling. We focus, in particular, on the role of confinement effects in long ballistic junctions. In the normal regime, scattering at the two contacts gives rise to two distinct features in conductance, Fabry-Perot resonances and Fano dips. The latter arise in the presence of a strong Zeeman field B that removes a spin sector in the leads (helical leads), but not in the central region. Conversely, a helical central region between non-helical leads exhibits helical gaps of half-quantum conductance, with superimposed helical Fabry-Perot oscillations. These normal features translate into distinct subgap states when the leads become superconducting. In particular, Fabry-Perot resonances within the helical gap become parity-protected zero-energy states (parity crossings, related to Yu-Shiba-Rusinov bound states), well below the critical field Bc at which the superconducting leads become topological. As a function of Zeeman field or Fermi energy, these zero-modes oscillate around zero energy, forming characteristic loops, which evolve continuously into Majorana bound states as B exceeds Bc.

  15. Implanted neural progenitor cells regulate glial reaction to brain injury and establish gap junctions with host glial cells.

    Science.gov (United States)

    Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Macías, David; Gálvez, Victoria; Pastor, Angel M

    2014-04-01

    Transplantation of neural stem/progenitor cells (NPCs) in the lesioned brain is able to restore morphological and physiological alterations induced by different injuries. The local microenvironment created at the site of grafting and the communication between grafted and host cells are crucial in the beneficial effects attributed to the NPC implants. We have previously described that NPC transplantation in an animal model of central axotomy restores firing properties and synaptic coverage of lesioned neurons and modulates their trophic factor content. In this study, we aim to explore anatomical relationships between implanted NPCs and host glia that might account for the implant-induced neuroprotective effects. Postnatal rat subventricular zone NPCs were isolated and grafted in adult rats after transection of the medial longitudinal fascicle. Brains were removed and analyzed eight weeks later. Immunohistochemistry for different glial markers revealed that NPC-grafted animals displayed significantly greater microglial activation than animals that received only vehicle injections. Implanted NPCs were located in close apposition to activated microglia and reactive astrocytes. The gap junction protein connexin43 was present in NPCs and glial cells at the lesion site and was often found interposed within adjacent implanted and glial cells. Gap junctions were identified between implanted NPCs and host astrocytes and less frequently between NPCs and microglia. Our results show that implanted NPCs modulate the glial reaction to lesion and establish the possibility of communication through gap junctions between grafted and host glial cells which might be involved in the restorative effects of NPC implants. Copyright © 2014 Wiley Periodicals, Inc.

  16. Novel methods of automated quantification of gap junction distribution and interstitial collagen quantity from animal and human atrial tissue sections.

    Directory of Open Access Journals (Sweden)

    Jiajie Yan

    Full Text Available Gap junctions (GJs are the principal membrane structures that conduct electrical impulses between cardiac myocytes while interstitial collagen (IC can physically separate adjacent myocytes and limit cell-cell communication. Emerging evidence suggests that both GJ and interstitial structural remodeling are linked to cardiac arrhythmia development. However, automated quantitative identification of GJ distribution and IC deposition from microscopic histological images has proven to be challenging. Such quantification is required to improve the understanding of functional consequences of GJ and structural remodeling in cardiac electrophysiology studies.Separate approaches were employed for GJ and IC identification in images from histologically stained tissue sections obtained from rabbit and human atria. For GJ identification, we recognized N-Cadherin (N-Cad as part of the gap junction connexin 43 (Cx43 molecular complex. Because N-Cad anchors Cx43 on intercalated discs (ID to form functional GJ channels on cell membranes, we computationally dilated N-Cad pixels to create N-Cad units that covered all ID-associated Cx43 pixels on Cx43/N-Cad double immunostained confocal images. This approach allowed segmentation between ID-associated and non-ID-associated Cx43. Additionally, use of N-Cad as a unique internal reference with Z-stack layer-by-layer confocal images potentially limits sample processing related artifacts in Cx43 quantification. For IC quantification, color map thresholding of Masson's Trichrome blue stained sections allowed straightforward and automated segmentation of collagen from non-collagen pixels. Our results strongly demonstrate that the two novel image-processing approaches can minimize potential overestimation or underestimation of gap junction and structural remodeling in healthy and pathological hearts. The results of using the two novel methods will significantly improve our understanding of the molecular and structural

  17. Astrocytic Gap Junctional Communication is Reduced in Amyloid-β-Treated Cultured Astrocytes, but not in Alzheimer's Disease Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Nancy F Cruz

    2010-07-01

    Full Text Available Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-β on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β1-40 (1 μmol/l for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue, NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  18. Astrocytic gap junctional communication is reduced in amyloid-β-treated cultured astrocytes, but not in Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cruz, Nancy F; Ball, Kelly K; Dienel, Gerald A

    2010-08-17

    Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-beta on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β(1-40) (1 μmol/l) for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue), NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  19. Mitochondrial Uncoupling Protein 2 in human cumulus cells is associated with regulating autophagy and apoptosis, maintaining gap junction integrity and progesterone synthesis.

    Science.gov (United States)

    Ge, Hongshan; Zhang, Fan; Duan, Ping; Zhu, Nan; Zhang, Jiayan; Ye, Feijun; Shan, Dan; Chen, Hua; Lu, XiaoSheng; Zhu, ChunFang; Ge, Renshan; Lin, Zhenkun

    2017-03-05

    To explore the roles of mitochondrial Uncoupling Protein 2 (UCP2) in cumulus cells (CCs), human CCs were cultured in vitro, and the UCP2 was inhibited by treatment with Genipin, a special UCP inhibitor, or by RNA interference targeting UCP2. No significant differences in adenosine triphosphate levels and the ratio of ADP/ATP were observed after UCP2 inhibition. UCP2 inhibition caused a significant increase in cellular oxidative damage, which was reflected in alterations to several key parameters, including reactive oxygen species (ROS) and lipid peroxidation levels and the ratio of reduced GSH to GSSG. UCP2 blocking resulted in an obvious increase in active Caspase-3, accompanied by the decline of proactive Caspase-3 and a significant increase in the LC3-II/LC3-I ratio, suggesting that UCP2 inhibition triggered cellular apoptosis and autophagy. The mRNA and protein expression of connexin 43 (Cx43), a gap junction channel protein, were significantly reduced after treatment with Genipin or siRNA. The progesterone level in the culture medium was also significantly decreased after UCP2 inhibition. Our data indicated that UCP2 plays highly important roles in mediating ROS production and regulating apoptosis and autophagy, as well as maintaining gap junction integrity and progesterone synthesis, which suggests that UCP2 is involved in the regulation of follicle development and early embryo implantation and implies that it might serve as a potential biomarker for oocyte quality and competency. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. CD44 variant, but not standard CD44 isoforms, mediate disassembly of endothelial VE-cadherin junction on metastatic melanoma cells.

    Science.gov (United States)

    Zhang, Pu; Fu, Changliang; Bai, Huiyuan; Song, Erqun; Dong, Cheng; Song, Yang

    2014-12-20

    Loss of endothelial adherens junctions is involved in tumor metastasis. Here, we demonstrate that, in the metastatic Lu1205 melanoma cells, expression of the CD44 variant CD44v8-v10 induced junction disassembly and vascular endothelial (VE)-cadherin phosphorylation at Y658 and Y731. Short interfering RNA (siRNA)-mediated CD44 knockdown or sialic acid cleavage reversed these effects. Moreover, microspheres coated with recombinant CD44v8-v10 promoted endothelial junction disruption. Overexpression of CD44v8-v10 but not of standard CD44 (CD44s) promoted gap formation in the non-metastatic WM35 melanoma cells, whereas CD44 knockdown or neuraminidase treatment dramatically diminished melanoma transendothelial migration. Endothelial cells transfected with the phosphomimetic VE-cadherin mutant Y658E supported transmigration of CD44-silenced Lu1205 cells. Our findings imply that CD44 variant isoform (CD44v) but not CD44s regulates endothelial junction loss, promoting melanoma extravasation. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility.

  2. Integrating evolutionary game theory into an agent-based model of ductal carcinoma in situ: Role of gap junctions in cancer progression.

    Science.gov (United States)

    Malekian, Negin; Habibi, Jafar; Zangooei, Mohammad Hossein; Aghakhani, Hojjat

    2016-11-01

    There are many cells with various phenotypic behaviors in cancer interacting with each other. For example, an apoptotic cell may induce apoptosis in adjacent cells. A living cell can also protect cells from undergoing apoptosis and necrosis. These survival and death signals are propagated through interaction pathways between adjacent cells called gap junctions. The function of these signals depends on the cellular context of the cell receiving them. For instance, a receiver cell experiencing a low level of oxygen may interpret a received survival signal as an apoptosis signal. In this study, we examine the effect of these signals on tumor growth. We make an evolutionary game theory component in order to model the signal propagation through gap junctions. The game payoffs are defined as a function of cellular context. Then, the game theory component is integrated into an agent-based model of tumor growth. After that, the integrated model is applied to ductal carcinoma in situ, a type of early stage breast cancer. Different scenarios are explored to observe the impact of the gap junction communication and parameters of the game theory component on cancer progression. We compare these scenarios by using the Wilcoxon signed-rank test. The Wilcoxon signed-rank test succeeds in proving a significant difference between the tumor growth of the model before and after considering the gap junction communication. The Wilcoxon signed-rank test also proves that the tumor growth significantly depends on the oxygen threshold of turning survival signals into apoptosis. In this study, the gap junction communication is modeled by using evolutionary game theory to illustrate its role at early stage cancers such as ductal carcinoma in situ. This work indicates that the gap junction communication and the oxygen threshold of turning survival signals into apoptosis can notably affect cancer progression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    International Nuclear Information System (INIS)

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F.

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility

  4. Application of Stochastic Automata Networks for Creation of Continuous Time Markov Chain Models of Voltage Gating of Gap Junction Channels

    Directory of Open Access Journals (Sweden)

    Mindaugas Snipas

    2015-01-01

    Full Text Available The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC of voltage gating of gap junction (GJ channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs, which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ∼20 times.

  5. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Hui [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Zhuo, Liling [College of Life Science, Zaozhuang University, Zaozhuang, Shandong, 277160 (China); Han, Tao; Hu, Di; Yang, Xiaokang; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Xuezhong [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Liu, Zongping, E-mail: liuzongping@yzu.edu.cn [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China)

    2015-04-17

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival.

  6. Intercellular coupling mediated by potassium accumulation in peg-and-socket junctions

    DEFF Research Database (Denmark)

    Vigmond, Edward J.; Bardakjian, Berj L.; Thuneberg, Lars

    2000-01-01

    Physiology, peg-and-socket junctions, smooth muscle, boundary element method, coupling, morphology......Physiology, peg-and-socket junctions, smooth muscle, boundary element method, coupling, morphology...

  7. Theory of large tunneling magnetoresistance in a gapped graphene-based ferromagnetic superconductor F/(FS) junction

    International Nuclear Information System (INIS)

    Soodchomshom, Bumned; Tang, I-Ming; Hoonsawat, Rassmidara

    2010-01-01

    Coexistence of superconductivity and ferromagnetism in a gapped graphene-based system (FS) is theoretically investigated. The center-of-mass momentum, P, of a Cooper pair in FS is found to be P∼2E ex /(hv F √(1-(m/E FS ) 2 )), where m, E ex , E FS are the rest mass energy of the Dirac electron, exchange energy and the Fermi energy in the superconductor FS, respectively. It is unlike the nature in a conventional FFLO state where P∼2E ex /hv F . This work studies the magneto effect on the transport property of a F/(FS) junction where F is a ferromagnetic gapless graphene. In this work, FS is achieved by depositing a conventional ferromagnetic s-wave superconductor on the top of gapped graphene sheet. The Zeeman splitting in FS induces spin-dependent Andreev resonance. The conductances effected by both spin-dependent specular Andreev reflections and spin-dependent Andreev resonances are investigated. The interplay between the spin-dependent specular Andreev reflection in the F region and the spin-dependent Andreev resonance in the FS region causes a very large tunneling magnetoresistance |TMR| ∼ 3000% for m → E FS , possibly valuable in the graphene-based spintronic devices. This is because of the coexistence of the superconductivity and ferromagnetism in FS and the relativistic nature of electrons in graphene.

  8. Phosphatidylcholine Specific PLC-Induced Dysregulation of Gap Junctions, a Robust Cellular Response to Environmental Toxicants, and Prevention by Resveratrol in a Rat Liver Cell Model

    Czech Academy of Sciences Publication Activity Database

    Sovadinová, I.; Babica, Pavel; Böke, H.; Kumar, E.; Wilke, A.; Park, J.-S.; Trosko, J. E.; Upham, B. L.

    2015-01-01

    Roč. 10, 5 no.e0124454 (2015), s. 1-16 E-ISSN 1932-6203 R&D Projects: GA MŠk LH12034 Institutional support: RVO:67985939 Keywords : gap junctional intercellular communication * resveratrol * phosphatidylcholine-specific phospholipase C Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.057, year: 2015

  9. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    Energy Technology Data Exchange (ETDEWEB)

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z. [The Third Hospital of Hebei Medical University, The Provincial Key Laboratory for Orthopedic Biomechanics of Hebei, Shijiazhuang, Hebei Province (China)

    2015-02-13

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation.

  10. The effect of cilostamide on gap junction communication dynamics, chromatin remodeling, and competence acquisition in pig oocytes following parthenogenetic activation and nuclear transfer.

    Science.gov (United States)

    Dieci, Cecilia; Lodde, Valentina; Franciosi, Federica; Lagutina, Irina; Tessaro, Irene; Modina, Silvia C; Albertini, David F; Lazzari, Giovanna; Galli, Cesare; Luciano, Alberto M

    2013-09-01

    In the pig, the efficiency of in vitro embryo production and somatic cell nuclear transfer (SCNT) procedures remains limited. It has been suggested that prematuration treatments (pre-IVM) based on the prolongation of a patent, bidirectional crosstalk between the oocyte and the cumulus cells through gap junction mediate communication (GJC), with the maintenance of a proper level of cAMP, could improve the developmental capability of oocytes. The aim of this study was to assess: 1) dose-dependent effects of cilostamide on nuclear maturation kinetics, 2) the relationship between treatments on GJC functionality and large-scale chromatin configuration changes, and 3) the impact of treatments on developmental competence acquisition after parthenogenetic activation (PA) and SCNT. Accordingly, cumulus-oocyte complexes were collected from 3- to 6-mm antral follicles and cultured for 24 h in defined culture medium with or without 1 μM cilostamide. GJC functionality was assessed by Lucifer yellow microinjection, while chromatin configuration was evaluated by fluorescence microscopy after nuclear staining. Cilostamide administration sustained functional coupling for up to 24 h of culture and delayed meiotic resumption, as only 25.6% of cilostamide-treated oocytes reached the pro-metaphase I stage compared to the control (69.7%; P < 0.05). Moreover, progressive chromatin condensation was delayed before meiotic resumption based upon G2/M biomarker phosphoprotein epitope acquisition using immunolocalization. Importantly, cilostamide treatment under these conditions improved oocyte developmental competence, as reflected in higher blastocyst quality after both parthenogenetic activation and SCNT.

  11. Gap Junctions Are Involved in the Rescue of CFTR-Dependent Chloride Efflux by Amniotic Mesenchymal Stem Cells in Coculture with Cystic Fibrosis CFBE41o- Cells

    Directory of Open Access Journals (Sweden)

    Annalucia Carbone

    2018-01-01

    Full Text Available We previously found that human amniotic mesenchymal stem cells (hAMSCs in coculture with CF immortalised airway epithelial cells (CFBE41o- line, CFBE on Transwell® filters acquired an epithelial phenotype and led to the expression of a mature and functional CFTR protein. In order to explore the role of gap junction- (GJ- mediated intercellular communication (GJIC in this rescue, cocultures (hAMSC : CFBE, 1 : 5 ratio were studied for the formation of GJIC, before and after silencing connexin 43 (Cx43, a major component of GJs. Functional GJs in cocultures were inhibited when the expression of the Cx43 protein was downregulated. Transfection of cocultures with siRNA against Cx43 resulted in the absence of specific CFTR signal on the apical membrane and reduction in the mature form of CFTR (band C, and in parallel, the CFTR-dependent chloride channel activity was significantly decreased. Cx43 downregulation determined also a decrease in transepithelial resistance and an increase in paracellular permeability as compared with control cocultures, implying that GJIC may regulate CFTR expression and function that in turn modulate airway epithelium tightness. These results indicate that GJIC is involved in the correction of CFTR chloride channel activity upon the acquisition of an epithelial phenotype by hAMSCs in coculture with CF cells.

  12. 17β estradiol regulation of connexin 43-based gap junction and mechanosensitivity through classical estrogen receptor pathway in osteocyte-like MLO-Y4 cells.

    KAUST Repository

    Ren, Jian

    2013-04-01

    Connexin 43 (Cx43) plays an essential role in osteocyte mechanotransduction. Although estrogen involves in the adaptive responses of bone cells to mechanical loadings, its effects on osteocytic Cx43-based gap junction intercellular communication (GJIC) remain obscure. We found that 17β estradiol (E2) up-regulated Cx43, and enhanced GJIC in osteocyte-like MLO-Y4 cells in fluorescence recovery after photobleaching (FRAP) assay. Combination of E2 pre-treatment and oscillating fluid flow (OFF) further enhanced Cx43 expression and mitogen-activated protein kinase (MAPK) phosphorylation, comparing to E2 or OFF treatment alone. Both blocking of classical estrogen receptors (ERα/β) by fulvestrant and ERα knockdown by small interfering RNA inhibited E2-mediated Cx43 increase, while a GPR30-specific agonist G-1 failed to promote Cx43 expression. Our results suggest that the presence of E2 enhanced Cx43-based GJIC mainly via ERα/β pathway, and sensitized osteocytes to mechanical loading. © 2012 Elsevier Inc. All rights reserved.

  13. Magnetic field mediated conductance oscillation in graphene p–n junctions

    Science.gov (United States)

    Cheng, Shu-Guang

    2018-04-01

    The electronic transport of graphene p–n junctions under perpendicular magnetic field is investigated in theory. Under low magnetic field, the transport is determined by the resonant tunneling of Landau levels and conductance versus magnetic field shows a Shubnikov–de Haas oscillation. At higher magnetic field, the p–n junction subjected to the quasi-classical regime and the formation of snake states results in periodical backscattering and transmission as magnetic field varies. The conductance oscillation pattern is mediated both by magnetic field and the carrier concentration on bipolar regions. For medium magnetic field between above two regimes, the combined contributions of resonant tunneling, snake states oscillation and Aharanov–Bohm interference induce irregular oscillation of conductance. At very high magnetic field, the system is subjected to quantum Hall regime. Under disorder, the quantum tunneling at low magnetic field is slightly affected and the oscillation of snake states at higher magnetic field is suppressed. In the quantum Hall regime, the conductance is a constant as predicted by the mixture rule.

  14. On the universality of the ''smile''-gap in the density of states of a chaotic Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Reutlinger, Johannes; Belzig, Wolfgang [University of Konstanz, Department of Physics (Germany); Nazarov, Yuli [Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft (Netherlands); Glazman, Leonid [Department of Physics, Yale University, New Haven, CT (United States)

    2015-07-01

    The superconducting proximity effect strongly modifies the local density of states in chaotic Josephson junctions. Recently we found that besides the well-known minigap a secondary gap appears just below the superconducting gap edge Δ in the limit of a large Thouless energy E{sub Th} >or similar Δ. To check the universality of this novel gap phenomenon we study the effect of nonideal contacts and show that the ''smile''-gap crucially depends on the transmission eigenvalue distribution. In a next step we use the random matrix method to investigate the ''smile''-gap. This allows us to approach the statistics of Andreev levels, going beyond the quasiclassical Greens function method. It turns out that the hard gap edge softens similar to what is already known from the minigap.

  15. Analysis of trafficking, stability and function of human connexin 26 gap junction channels with deafness-causing mutations in the fourth transmembrane helix.

    Directory of Open Access Journals (Sweden)

    Cinzia Ambrosi

    Full Text Available Human Connexin26 gene mutations cause hearing loss. These hereditary mutations are the leading cause of childhood deafness worldwide. Mutations in gap junction proteins (connexins can impair intercellular communication by eliminating protein synthesis, mis-trafficking, or inducing channels that fail to dock or have aberrant function. We previously identified a new class of mutants that form non-functional gap junction channels and hemichannels (connexons by disrupting packing and inter-helix interactions. Here we analyzed fourteen point mutations in the fourth transmembrane helix of connexin26 (Cx26 that cause non-syndromic hearing loss. Eight mutations caused mis-trafficking (K188R, F191L, V198M, S199F, G200R, I203K, L205P, T208P. Of the remaining six that formed gap junctions in mammalian cells, M195T and A197S formed stable hemichannels after isolation with a baculovirus/Sf9 protein purification system, while C202F, I203T, L205V and N206S formed hemichannels with varying degrees of instability. The function of all six gap junction-forming mutants was further assessed through measurement of dye coupling in mammalian cells and junctional conductance in paired Xenopus oocytes. Dye coupling between cell pairs was reduced by varying degrees for all six mutants. In homotypic oocyte pairings, only A197S induced measurable conductance. In heterotypic pairings with wild-type Cx26, five of the six mutants formed functional gap junction channels, albeit with reduced efficiency. None of the mutants displayed significant alterations in sensitivity to transjunctional voltage or induced conductive hemichannels in single oocytes. Intra-hemichannel interactions between mutant and wild-type proteins were assessed in rescue experiments using baculovirus expression in Sf9 insect cells. Of the four unstable mutations (C202F, I203T, L205V, N206S only C202F and N206S formed stable hemichannels when co-expressed with wild-type Cx26. Stable M195T hemichannels

  16. Cytokine effects on gap junction communication and connexin expression in human bladder smooth muscle cells and suburothelial myofibroblasts.

    Directory of Open Access Journals (Sweden)

    Marco Heinrich

    Full Text Available BACKGROUND: The last decade identified cytokines as one group of major local cell signaling molecules related to bladder dysfunction like interstitial cystitis (IC and overactive bladder syndrome (OAB. Gap junctional intercellular communication (GJIC is essential for the coordination of normal bladder function and has been found to be altered in bladder dysfunction. Connexin (Cx 43 and Cx45 are the most important gap junction proteins in bladder smooth muscle cells (hBSMC and suburothelial myofibroblasts (hsMF. Modulation of connexin expression by cytokines has been demonstrated in various tissues. Therefore, we investigate the effect of interleukin (IL 4, IL6, IL10, tumor necrosis factor-alpha (TNFα and transforming growth factor-beta1 (TGFβ1 on GJIC, and Cx43 and Cx45 expression in cultured human bladder smooth muscle cells (hBSMC and human suburothelial myofibroblasts (hsMF. METHODOLOGY/PRINCIPAL FINDINGS: HBSMC and hsMF cultures were set up from bladder tissue of patients undergoing cystectomy. In cytokine stimulated cultured hBSMC and hsMF GJIC was analyzed via Fluorescence Recovery after Photo-bleaching (FRAP. Cx43 and Cx45 expression was assessed by quantitative PCR and confocal immunofluorescence. Membrane protein fraction of Cx43 and Cx45 was quantified by Dot Blot. Upregulation of cell-cell-communication was found after IL6 stimulation in both cell types. In hBSMC IL4 and TGFβ1 decreased both, GJIC and Cx43 protein expression, while TNFα did not alter communication in FRAP-experiments but increased Cx43 expression. GJ plaques size correlated with coupling efficacy measured, while Cx45 expression did not correlate with modulation of GJIC. CONCLUSIONS/SIGNIFICANCE: Our finding of specific cytokine effects on GJIC support the notion that cytokines play a pivotal role for pathophysiology of OAB and IC. Interestingly, the effects were independent from the classical definition of pro- and antiinflammatory cytokines. We conclude, that

  17. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model

    Energy Technology Data Exchange (ETDEWEB)

    Carette, Diane [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Perrard, Marie-Hélène, E-mail: marie-helene.durand@ens-lyon.fr [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Prisant, Nadia [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Gilleron, Jérome; Pointis, Georges [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); Segretain, Dominique [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Durand, Philippe [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Kallistem SAS Ecole Normale Supérieure de Lyon, Lyon (France)

    2013-04-01

    Exposure to toxic metals, specifically those belonging to the nonessential group leads to human health defects and among them reprotoxic effects. The mechanisms by which these metals produce their negative effects on spermatogenesis have not been fully elucidated. By using the Durand's validated seminiferous tubule culture model, which mimics the in vivo situation, we recently reported that concentrations of hexavalent chromium, reported in the literature to be closed to that found in the blood circulation of men, increase the number of germ cell cytogenetic abnormalities. Since this metal is also known to affect cellular junctions, we investigated, in the present study, its potential influence on the Sertoli cell barrier and on junctional proteins present at this level such as connexin 43, claudin-11 and N-cadherin. Cultured seminiferous tubules in bicameral chambers expressed the three junctional proteins and ZO-1 for at least 12 days. Exposure to low concentrations of chromium (10 μg/l) increased the trans-epithelial resistance without major changes of claudin-11 and N-cadherin expressions but strongly delocalized the gap junction protein connexin 43 from the membrane to the cytoplasm of Sertoli cells. The possibility that the hexavalent chromium-induced alteration of connexin 43 indirectly mediates the effect of the toxic metal on the blood–testis barrier dynamic is postulated. - Highlights: ► Influence of Cr(VI) on the Sertoli cell barrier and on junctional proteins ► Use of cultured seminiferous tubules in bicameral chambers ► Low concentrations of Cr(VI) (10 μg/l) altered the trans-epithelial resistance. ► Cr(VI) did not alter claudin-11 and N-cadherin. ► Cr(VI) delocalized connexin 43 from the membrane to the cytoplasm of Sertoli cells.

  18. Sample preconcentration utilizing nanofractures generated by junction gap breakdown assisted by self-assembled monolayer of gold nanoparticles.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Jen

    Full Text Available The preconcentration of proteins with low concentrations can be used to increase the sensitivity and accuracy of detection. A nonlinear electrokinetic flow is induced in a nanofluidic channel due to the overlap of electrical double layers, resulting in the fast accumulation of proteins, referred to as the exclusion-enrichment effect. The proposed chip for protein preconcentration was fabricated using simple standard soft lithography with a polydimethylsiloxane replica. This study extends our previous paper, in which gold nanoparticles were manually deposited onto the surface of a protein preconcentrator. In the present work, nanofractures were formed by utilizing the self-assembly of gold-nanoparticle-assisted electric breakdown. This reliable method for nanofracture formation, involving self-assembled monolayers of nanoparticles at the junction gap between microchannels, also decreases the required electric breakdown voltage. The experimental results reveal that a high concentration factor of 1.5×10(4 for a protein sample with an extremely low concentration of 1 nM was achieved in 30 min by using the proposed chip, which is faster than our previously proposed chip at the same conditions. Moreover, an immunoassay of bovine serum albumin (BSA and anti-BSA was carried out to demonstrate the applicability of the proposed chip.

  19. ZP123 increases gap junctional conductance and prevents reentrant ventricular tachycardia during myocardial ischemia in open chest dogs

    DEFF Research Database (Denmark)

    Xing, Dezhi; Kjølbye, Anne Louise; Nielsen, Morten S

    2003-01-01

    demonstrated that 10 nM ZP123 improved gap junctional intercellular conductance by 69% +/- 20% in pairs of guinea pig ventricular myocytes. VT was induced by programmed stimulation in alpha-chloralose anaesthetized open chest dogs 1 to 4 hours after coronary artery occlusion. Three-dimensional activation...... mapping was done using six bipolar electrograms on each of 23 multipolar needles in the risk zone. When VT was reproducibly induced, dogs were randomly assigned to receive either saline or ZP123 cumulatively at three dose levels (intravenous bolus followed by 30-min infusion per dose). Attempts to induce...... VT were repeated in each infusion period. Mass spectrometry was used to measure ZP123 plasma concentrations. Twenty-six dogs with reentrant VT were included. ZP123 significantly prevented reentrant VT at all plasma concentrations vs saline: 1.0 +/- 0.2 nM: 6/12 vs 0/12; 7.7 +/- 0.6 nM: 7/13 vs 1...

  20. Gendered Pathways? Gender, Mediating Factors, and the Gap in Boys' and Girls' Substance Use

    Science.gov (United States)

    Whaley, Rachel Bridges; Hayes-Smith, Justin; Hayes-Smith, Rebecca

    2013-01-01

    A gender gap in alcohol and drug use exists but is somewhat smaller than the gender gap in other forms of delinquency. This article extends studies that examine the gender-delinquency relationship to substance use in particular and estimate the extent to which major risk and protective factors mediate the association between gender and alcohol and…

  1. Endocannabinoids mediate muscarine-induced synaptic depression at the vertebrate neuromuscular junction

    Science.gov (United States)

    Newman, Zachary; Malik, Priya; Wu, Tse-Yu; Ochoa, Christopher; Watsa, Nayantara; Lindgren, Clark

    2007-01-01

    Endocannabinoids (eCBs) inhibit neurotransmitter release throughout the central nervous system. Using the Ceratomandibularis muscle from the lizard Anolis carolinensis we asked whether eCBs play a similar role at the vertebrate neuromuscular junction. We report here that the CB1 cannabinoid receptor is concentrated on motor terminals and that eCBs mediate the inhibition of neurotransmitter release induced by the activation of M3 muscarinic acetylcholine (ACh) receptors. N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide, a CB1 antagonist, prevents muscarine from inhibiting release and arachidonylcyclopropylamide (ACPA), a CB1 receptor agonist, mimics M3 activation and occludes the effect of muscarine. As for its mechanism of action, ACPA reduces the action-potential-evoked calcium transient in the nerve terminal and this decrease is more than sufficient to account for the observed inhibition of neurotransmitter release. Similar to muscarine, the inhibition of synaptic transmission by ACPA requires nitric oxide, acting via the synthesis of cGMP and the activation of cGMP-dependent protein kinase. 2-Arachidonoylglycerol (2-AG) is responsible for the majority of the effects of eCB as inhibitors of phospholipase C and diacylglycerol lipase, two enzymes responsible for synthesis of 2-AG, significantly limit muscarine-induced inhibition of neurotransmitter release. Lastly, the injection of (5Z,8Z,11Z,14Z)-N-(4-hydroxy-2-methylphenyl)-5,8,11,14-eicosatetraenamide (an inhibitor of eCB transport) into the muscle prevents muscarine, but not ACPA, from inhibiting ACh release. These results collectively lead to a model of the vertebrate neuromuscular junction whereby 2-AG mediates the muscarine-induced inhibition of ACh release. To demonstrate the physiological relevance of this model we show that the CB1 antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide prevents synaptic

  2. Gap junctions in the ovary of Drosophila melanogaster: localization of innexins 1, 2, 3 and 4 and evidence for intercellular communication via innexin-2 containing channels

    Directory of Open Access Journals (Sweden)

    Zimmermann Jennifer

    2008-11-01

    Full Text Available Abstract Background In the Drosophila ovary, germ-line and soma cells are interconnected via gap junctions. The main gap-junction proteins in invertebrates are members of the innexin family. In order to reveal the role that innexins play in cell-cell communication during oogenesis, we investigated the localization of innexins 1, 2, 3 and 4 using immunohistochemistry, and analyzed follicle development following channel blockade. Results We found innexin 1 predominantly localized to the baso-lateral domain of follicle cells, whereas innexin 2 is positioned apico-laterally as well as apically between follicle cells and germ-line cells. Innexin 3 was observed laterally in follicle cells and also in nurse cells, and innexin 4 was detected in the oolemma up to stage 8 and in nurse-cell membranes up to stage 12. In order to test whether innexins form channels suitable for intercellular communication, we microinjected innexin antibodies in combination with a fluorescent tracer into the oocyte of stage-10 follicles. We found that dye-coupling between oocyte and follicle cells was largely reduced by innexin-2 antibodies directed against the intracellular C-terminus as well as against the intracellular loop. Analyzing in vitro, between stages 10 and 14, the developmental capacities of follicles following microinjections of innexin-2 antibodies revealed defects in follicle-cell differentiation, nurse-cell regression, oocyte growth and choriogenesis. Conclusion Our results suggest that all analyzed innexins are involved in the formation of gap junctions in the ovary. While innexins 2 and 3 are colocalized between soma cells, innexins 2 and 4 are colocalized between soma and germ-line cells. Innexin 2 is participating in cell-cell communication via hemichannels residing in the oolemma. It is obvious that gap-junctional communication between germ-line and soma cells is essential for several processes during oogenesis.

  3. Inhibition of gap junctional intercellular communication by noncoplanar polychlorinated biphenyls: Inhibitory potencies and screening for potential mode(s) of action

    Czech Academy of Sciences Publication Activity Database

    Machala, M.; Bláha, L.; Vondráček, Jan; Trosko, J. E.; Scott, J.; Upham, B. L.

    2003-01-01

    Roč. 76, č. 1 (2003), s. 102-111 ISSN 1096-6080 R&D Projects: GA MZe QC0194; GA ČR GA525/00/D101 Grant - others:National Institute of Health(US) P42 ES04911-07 Institutional research plan: CEZ:AV0Z5004920 Keywords : WB-F344 cell line * gap junction * PCB congeners Subject RIV: BO - Biophysics Impact factor: 3.067, year: 2003

  4. HYS-32, a novel analogue of combretastatin A-4, enhances connexin43 expression and gap junction intercellular communication in rat astrocytes.

    Science.gov (United States)

    Lin, Pei-Chun; Shen, Chien-Chang; Liao, Chih-Kai; Jow, Guey-Mei; Chiu, Chi-Ting; Chung, Tun-Hui; Wu, Jiahn-Chun

    2013-05-01

    HYS-32 [4-(3,4-dimethoxyphenyl)-3-(naphthalen-2-yl)-2(5H)-furanone] is a new analogue of the anti-tumor compound combretastatin A-4 containing a cis-stilbene moiety. In this study, we investigated its effects on Cx43 gap junction intercellular communication (GJIC) and the signaling pathway involved in rat primary astrocytes. Western blot analyses showed that HYS-32 dose- and time-dependently upregulated Cx43 expression. A confocal microscopic study and scrape-loading/dye transfer analyses demonstrated that HYS-32 (5μM) induced microtubule coiling, accumulation of Cx43 in gap junction plaques, and increased GJIC in astrocytes. The HYS-32-induced microtubule coiling and Cx43 accumulation in gap junction plaques was reversed when HYS-32 was removed. Treatment of astrocytes with cycloheximide resulted in time-dependent degradation of by co-treatment with HYS-32 by increasing the half-life of Cx43. Co-treatment with HYS-32 also prevented the LPS-induced downregulation of Cx43 and inhibition of GJIC in astrocytes. HYS-32 induced activation of PKC, ERK, and JNK, and co-treatment with the PKC inhibitor Go6976 or the ERK inhibitor PD98059, but not the JNK inhibitor SP600125, prevented the HYS-32-induced increase in Cx43 expression and GJIC. Go6976 suppressed the HYS-32-induced PKC phosphorylation and increase in phospho-ERK levels, while PD98059 did not prevent the HYS-32-induced increase in phospho-PKC levels, suggesting that PKC is an upstream effector of ERK. In conclusion, our results show that HYS-32 increases the half-life of Cx43 and enhances Cx43 expression and GJIC in astrocytes via a PKC-ERK signaling cascade. These novel biological effects of HYS-32 on astrocyte gap junctions support its potential for therapeutic use as a protective agent for the central nervous system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Keratitis-Ichthyosis-Deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43

    Science.gov (United States)

    García, Isaac E.; Maripillán, Jaime; Jara, Oscar; Ceriani, Ricardo; Palacios-Muñoz, Angelina; Ramachandran, Jayalakshimi; Olivero, Pablo; Pérez-Acle, Tomás; González, Carlos; Sáez, Juan C.; Contreras, Jorge E.; Martínez, Agustín D.

    2015-01-01

    Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like Keratitis Ichthyosis Deafness syndrome (KID). Because in the human skin Cx26 is co-expressed with other connexins, like Cx43 and Cx30, and since KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channels functions remain unknown. In this study we demonstrate that syndromic mutations at the N-terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) show exacerbated hemichannel activity, but nonfunctional gap junction channels; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca2+ overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin. PMID:25625422

  6. Effects of maturation-inducing hormone on heterologous gap junctional coupling in ovarian follicles of Atlantic croaker

    Science.gov (United States)

    Yoshizaki, G.; Patino, R.; Thomas, P.; Bolamba, D.; Chang, Xiaotian

    2001-01-01

    A previous ultrastructural study of heterologous (granulosa cell-oocyte) gap junction (GJ) contacts in ovarian follicles of Atlantic croaker suggested that these contacts disappear late during the process of resumption of oocyte meiosis. This observation suggested that, unlike scenarios proposed for a number of other species, uncoupling of GJ is not necessary for the onset of meiotic resumption in croaker follicles. However, the functionality of heterologous GJ contacts and the temporal association between maturation-inducing hormone (MIH)-induced changes in heterologous coupling and resumption of oocyte meiosis have not been examined in Atlantic croaker. These questions were addressed with a cell-cell coupling assay that is based on the transfer of a GJ marker, Lucifer Yellow, from oocytes to granulosa cells. Follicle-enclosed oocytes injected with Lucifer Yellow allowed transfer of the dye into the follicle cell layer, thus confirming that there is functional heterologous coupling between the oocyte and the granulosa cells. Dye transfer was observed in vitellogenic, full-grown/maturation-incompetent, and full-grown /maturation-competent follicles. Treatment of maturation-competent follicles with MIH caused a time-dependent decline in the number of follicles transferring dye. However, although GJ uncoupling in some of the follicles was observed before germinal vesicle breakdown (GVBD, index of meiotic resumption), about 50% of the follicles maintained the ability to transfer dye even after GVBD had occurred. Further, a known GJ inhibitor (phorbol 12-myristate 13-acetate) blocked heterologous GJ within a time frame similar to that seen with MIH but without inducing any of the morphological changes (including GVBD) associated with follicular maturation. In conclusion, uncoupling of heterologous GJ seems insufficient and unnecessary for the onset of meiotic resumption in ovarian follicles of Atlantic croaker. ?? 2001 Elsevier Science.

  7. Characterization of a variant of gap junction protein α8 identified in a family with hereditary cataract.

    Directory of Open Access Journals (Sweden)

    Debbie S Kuo

    Full Text Available Congenital cataracts occur in isolation in about 70% of cases or are associated with other abnormalities such as anterior segment dysgenesis and microphthalmia. We identified a three-generation family in the University of California San Francisco glaucoma clinic comprising three individuals with congenital cataracts and aphakic glaucoma, one of whom also had microphthalmia. The purpose of this study was to identify a possible causative mutation in this family and to investigate its pathogenesis.We performed exome sequencing and identified a putative mutation in gap junction protein α8 (GJA8. We used PCR and DNA sequencing of GJA8 in affected and unaffected members of the pedigree to test segregation of the variant with the phenotype. We tested cellular distribution and function of the variant protein by immunofluorescence and intercellular transfer of Neurobiotin in transiently transfected HeLa cells.Exome sequencing revealed a variant in GJA8 (c.658A>G encoding connexin50 (Cx50 that resulted in a missense change (p.N220D in transmembrane domain 4. The variant was present in all three affected family members, but was also present in the proband's grandfather who was reported to be unaffected. The mutant protein localized to the plasma membrane and supported intercellular Neurobiotin transfer in HeLa cells.We identified a variant in transmembrane domain 4 of Cx50 in a family with autosomal dominant congenital cataracts. This variant has been previously identified in other cataract cohorts, but it is also present in unaffected individuals. Our study demonstrates that the mutant protein localized to the plasma membrane and formed functional intercellular channels. These data suggest that GJA8 c.658A>G is most likely a benign rare variant.

  8. Experimental blunt chest trauma-induced myocardial inflammation and alteration of gap-junction protein connexin 43.

    Directory of Open Access Journals (Sweden)

    Miriam Kalbitz

    Full Text Available Severe blunt chest trauma in humans is associated with high mortality rates. Whereas lung tissue damage and lung inflammation after blunt chest trauma have extensively been investigated, the traumatic and posttraumatic effects on the heart remain poorly understood. Therefore, the purpose of this study was to define cardiac injury patterns in an experimental blunt chest trauma model in rats.Experimental blunt chest trauma was induced by a blast wave in rats, with subsequent analysis of its effects on the heart. The animals were subjected either to a sham or trauma procedure. Systemic markers for cardiac injury were determined after 24 h and 5 days. Postmortem analysis of heart tissue addressed structural injury and inflammation 24 h and 5 days after trauma.Plasma levels of extracellular histones were elevated 24 h and 5 days after blunt chest trauma compared to sham-treated animals. In the heart, up-regulation of interleukin-1β 24 h after trauma and increased myeloperoxidase activity 24 h and 5 days after trauma were accompanied by reduced complement C5a receptor-1 expression 24 h after trauma. Histological analysis revealed extravasation of erythrocytes and immunohistochemical analysis alteration of the pattern of the gap-junction protein connexin 43. Furthermore, a slight reduction of α-actinin and desmin expression in cardiac tissue was found after trauma together with a minor increase in sarcoplasmatic/endoplasmatic reticlulum calcium-ATPase (SERCA expression.The clinically highly relevant rat model of blast wave-induced blunt chest trauma is associated with cardiac inflammation and structural alterations in cardiac tissue.

  9. Experimental blunt chest trauma-induced myocardial inflammation and alteration of gap-junction protein connexin 43.

    Science.gov (United States)

    Kalbitz, Miriam; Amann, Elisa Maria; Bosch, Belinda; Palmer, Annette; Schultze, Anke; Pressmar, Jochen; Weber, Birte; Wepler, Martin; Gebhard, Florian; Schrezenmeier, Hubert; Brenner, Rolf; Huber-Lang, Markus

    2017-01-01

    Severe blunt chest trauma in humans is associated with high mortality rates. Whereas lung tissue damage and lung inflammation after blunt chest trauma have extensively been investigated, the traumatic and posttraumatic effects on the heart remain poorly understood. Therefore, the purpose of this study was to define cardiac injury patterns in an experimental blunt chest trauma model in rats. Experimental blunt chest trauma was induced by a blast wave in rats, with subsequent analysis of its effects on the heart. The animals were subjected either to a sham or trauma procedure. Systemic markers for cardiac injury were determined after 24 h and 5 days. Postmortem analysis of heart tissue addressed structural injury and inflammation 24 h and 5 days after trauma. Plasma levels of extracellular histones were elevated 24 h and 5 days after blunt chest trauma compared to sham-treated animals. In the heart, up-regulation of interleukin-1β 24 h after trauma and increased myeloperoxidase activity 24 h and 5 days after trauma were accompanied by reduced complement C5a receptor-1 expression 24 h after trauma. Histological analysis revealed extravasation of erythrocytes and immunohistochemical analysis alteration of the pattern of the gap-junction protein connexin 43. Furthermore, a slight reduction of α-actinin and desmin expression in cardiac tissue was found after trauma together with a minor increase in sarcoplasmatic/endoplasmatic reticlulum calcium-ATPase (SERCA) expression. The clinically highly relevant rat model of blast wave-induced blunt chest trauma is associated with cardiac inflammation and structural alterations in cardiac tissue.

  10. Gap junctional intercellular communication and endoplasmic reticulum stress regulate chronic cadmium exposure induced apoptosis in HK-2 cells.

    Science.gov (United States)

    Ge, Zehe; Diao, Haipeng; Ji, Xiaoli; Liu, Qingping; Zhang, Xiaoyan; Wu, Qing

    2018-05-15

    Cadmium (Cd), a toxic heavy metal, is known to induce renal toxicity by primarily targeting at renal proximal tubule. Endoplasmic reticulum (ER) stress and gap junctional intercellular communication (GJIC) regulate many pathophysiological processes. Yet, how ER stress and GJIC regulate Cd-induced nephrotoxicity remain elusive. In this study, we treated human proximal tubule (HK-2) cells with 1 μM CdCl 2 every other day for 12 days and found that Cd significantly increased cell apoptosis at 10 and 12 days. This cytotoxicity correlated with activation of ER stress and apoptotic signaling evidenced by upregulation of inositol-requiring enzyme 1 (IRE1α), splice X-box binding protein-1 (XBP-1s), and apoptosis signal-regulating kinase 1 (ASK1) proteins. Interestingly, the AKT signaling was activated at 2- and 4-day and then inhibited at 10- and 12-day of Cd treatment; by contrast, Cd decreased GJIC levels at 2- and 4-day followed by a significant increase at 10- and 12-day treatment. Activation of AKT by SC79 or inhibition of GJIC by 18α-glycyrrhetinic acid (18α-GA) completely abolished Cd-induced AKT inhibition and IRE1α-ASK1 activation. Importantly, pretreatment with ER stress inhibitor or 18α-GA significantly mitigated Cd-induced apoptosis. These results suggest that GJIC collaborates with AKT signaling and ER stress in regulating prolonged Cd-treatment-induced apoptosis in HK-2 cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. High-Gap Nb-AlN-NbN SIS Junctions for Frequency Band 790-950 GHz

    NARCIS (Netherlands)

    Khudchenko, A.; Baryshev, A. M.; Rudakov, K.; Koshelets, V.; Dmitriev, Pavel; Hesper, R.; De Jong, L.

    2016-01-01

    We have designed, fabricated and tested superconductor-insulator-superconductor (SIS) mixers based on Nb/AlN/NbN twin tunnel junctions for waveguide receiver operating in frequency range of 790 - 950 GHz. The electromagnetic simulations and measurement results are presented. The junctions have high

  12. Intercellular junctions in nerve-free hydra

    DEFF Research Database (Denmark)

    McDowall, A W; Grimmelikhuijzen, C J

    1980-01-01

    Epithelial cells of nerve-free hydra contain septate and gap junctions. In thin sections the gap junctions are characterized by a gap of 3-4 nm. Freeze-fracture demonstrates the presence of septate junctions and two further types of structures: (i) the "E-type" or "inverted" gap junctions...

  13. Metabotropic GABAB receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction.

    Science.gov (United States)

    Malomouzh, Artem I; Petrov, Konstantin A; Nurullin, Leniz F; Nikolsky, Evgeny E

    2015-12-01

    Gamma-aminobutyric acid (GABA) is an amino acid which acts as a neurotransmitter in the central nervous system. Here, we studied the effects of GABA on non-quantal, spontaneous, and evoked quantal acetylcholine (ACh) release from motor nerve endings. We found that while the application of 10 μM of GABA had no effect on spontaneous quantal ACh release, as detected by the frequency of miniature endplate potentials, GABA reduced the non-quantal ACh release by 57%, as determined by the H-effect value. Finally, the evoked quantal ACh release, estimated by calculating the quantal content of full-sized endplate potentials (EPPs), was reduced by 34%. GABA's inhibitory effect remained unchanged after pre-incubation with picrotoxin, an ionotropic GABAA receptor blocker, but was attenuated following application of the GABAB receptor blocker CGP 55845, which itself had no effect on ACh release. An inhibitor of phospholipase C, U73122, completely prevented the GABA-induced decrease in ACh release. Immunofluorescence demonstrated the presence of both subunits of the GABAB receptor (GABAB R1 and GABAB R2) in the neuromuscular junction. These findings suggest that metabotropic GABAB receptors are expressed in the mammalian neuromuscular synapse and their activation results in a phospholipase C-mediated reduction in the intensity of non-quantal and evoked quantal ACh release. We investigated the effect of gamma-aminobutyric acid (GABA) on neuromuscular transmission. GABA reduced the non-quantal and evoked quantal release of acetylcholine. These effects are mediated by GABAB receptors and are implemented via phospholipase C (PLC) activation. Our findings suggest that in the mammalian neuromuscular synapse, metabotropic GABAB receptors are expressed and their activation results in a reduction in the intensity of acetylcholine release. © 2015 International Society for Neurochemistry.

  14. The tight junction protein ZO-2 and Janus kinase 1 mediate intercellular communications in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Tkachuk, Natalia; Tkachuk, Sergey; Patecki, Margret [Department of Nephrology, Hannover Medical School, Hannover D-30625 (Germany); Kusch, Angelika [Department of Nephrology and Intensive Care Medicine, Charite Campus Virchow-Klinikum, Berlin D-13353 (Germany); Korenbaum, Elena; Haller, Hermann [Department of Nephrology, Hannover Medical School, Hannover D-30625 (Germany); Dumler, Inna, E-mail: dumler.inna@mh-hannover.de [Department of Nephrology, Hannover Medical School, Hannover D-30625 (Germany)

    2011-07-08

    Highlights: {yields} The tight junction protein ZO-2 associates with Jak1 in vascular smooth muscle cells via ZO-2 N-terminal fragment. {yields} Jak1 mediates ZO-2 tyrosine phosphorylation and ZO-2 localization to the sites of homotypic intercellular contacts. {yields} The urokinase receptor uPAR regulates ZO-2/Jak1 functional association. {yields} The ZO-2/Jak1/uPAR signaling complex is required for vascular smooth muscle cells functional network formation. -- Abstract: Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC), little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in arteriogenesis.

  15. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    Science.gov (United States)

    Feng, Liefeng; Yang, Xiufang; Li, Yang; Li, Ding; Wang, Cunda; Yao, Dongsheng; Hu, Xiaodong; Li, Hongru

    2015-04-01

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by Ithl and Ithu, as shown in Fig. 2; Ithl is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; Ithu is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (Vj) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at Ithl and Ithu. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.

  16. Gingko biloba extracts protect auditory hair cells from cisplatin-induced ototoxicity by inhibiting perturbation of gap junctional intercellular communication.

    Science.gov (United States)

    Choi, S J; Kim, S W; Lee, J B; Lim, H J; Kim, Y J; Tian, C; So, H S; Park, R; Choung, Y-H

    2013-08-06

    Gap junctional intercellular communication (GJIC) may play an important role in the hearing process. Cisplatin is an anticancer drug that causes hearing loss and Gingko biloba extracts (EGb 761) have been used as an antioxidant and enhancer for GJIC. The purpose of this study was to examine the efficiency of EGb 761 in protecting against cisplatin-induced apoptosis and disturbance of GJIC. House Ear Institute-Organ of Corti 1 auditory cells were cultured and treated with cisplatin (50 μM) and EGb (300 μg/ml) for 24h, and then analyzed by immunocytochemistry (Annexin V/propidium iodide) and Western blots. GJIC was evaluated by scrape-loading dye transfer (SLDT). Basal turn organ of Corti (oC) explants from neonatal (p3) rats were exposed to cisplatin (1-10 μM) and EGb (50-400 μg/ml). The number of intact hair cells was counted by co-labeling with phalloidin and MyoVIIa. EGb prevented cisplatin-induced apoptosis in immunostaining and decreased caspase 3 and poly-ADP-ribose polymerase bands, which were increased in cisplatin-treated cells in Western blots. EGb prevented abnormal intracellular locations of connexin (Cx) 26, 30, 31, and 43 in cells treated with cisplatin and increased quantities of Cx bands. EGb also prevented cisplatin-induced disturbance of GJIC in SLDT. In oC explants, EGb significantly prevented hair cell damage induced by cisplatin. In animal studies, EGb significantly prevented cisplatin-induced hearing loss across 16 and 32 kHz. These results show that cisplatin induces ototoxicity including hearing loss as well as down-regulation of GJIC and inhibition of Cxs in auditory cells. EGb prevents hearing loss in cisplatin-treated rats by inhibiting down-regulation of Cx expression and GJIC. The disturbance of GJIC or Cx expression may be one of the important mechanisms of cisplatin-induced ototoxicity. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. On Biophysical Properties and Sensitivity to Gap Junction Blockers of Connexin 39 Hemichannels Expressed in HeLa Cells

    Science.gov (United States)

    Vargas, Anibal A.; Cisterna, Bruno A.; Saavedra-Leiva, Fujiko; Urrutia, Carolina; Cea, Luis A.; Vielma, Alex H.; Gutierrez-Maldonado, Sebastian E.; Martin, Alberto J. M.; Pareja-Barrueto, Claudia; Escalona, Yerko; Schmachtenberg, Oliver; Lagos, Carlos F.; Perez-Acle, Tomas; Sáez, Juan C.

    2017-01-01

    Although connexins (Cxs) are broadly expressed by cells of mammalian organisms, Cx39 has a very restricted pattern of expression and the biophysical properties of Cx39-based channels [hemichannels (HCs) and gap junction channels (GJCs)] remain largely unknown. Here, we used HeLa cells transfected with Cx39 (HeLa-Cx39 cells) in which intercellular electrical coupling was not detected, indicating the absence of GJCs. However, functional HCs were found on the surface of cells exposed to conditions known to increase the open probability of other Cx HCs (e.g., extracellular divalent cationic-free solution (DCFS), extracellular alkaline pH, mechanical stimulus and depolarization to positive membrane potentials). Cx39 HCs were blocked by some traditional Cx HC blockers, but not by others or a pannexin1 channel blocker. HeLa-Cx39 cells showed similar resting membrane potentials (RMPs) to those of parental cells, and exposure to DCFS reduced RMPs in Cx39 transfectants, but not in parental cells. Under these conditions, unitary events of ~75 pS were frequent in HeLa-Cx39 cells and absent in parental cells. Real-time cellular uptake experiments of dyes with different physicochemical features, as well as the application of a machine-learning approach revealed that Cx39 HCs are preferentially permeable to molecules characterized by six categories of descriptors, namely: (1) electronegativity, (2) ionization potential, (3) polarizability, (4) size and geometry, (5) topological flexibility and (6) valence. However, Cx39 HCs opened by mechanical stimulation or alkaline pH were impermeable to Ca2+. Molecular modeling of Cx39-based channels suggest that a constriction present at the intracellular portion of the para helix region co-localizes with an electronegative patch, imposing an energetic and steric barrier, which in the case of GJCs may hinder channel function. Results reported here demonstrate that Cx39 form HCs and add to our understanding of the functional roles of Cx39 HCs

  18. Secondary "smile"-gap in the density of states of a diffusive Josephson junction for a wide range of contact types

    Science.gov (United States)

    Reutlinger, J.; Glazman, L.; Nazarov, Yu. V.; Belzig, W.

    2014-07-01

    The superconducting proximity effect leads to strong modifications of the local density of states in diffusive or chaotic cavity Josephson junctions, which displays a phase-dependent energy gap around the Fermi energy. The so-called minigap of the order of the Thouless energy ETh is related to the inverse dwell time in the diffusive region in the limit ETh≪Δ, where Δ is the superconducting energy gap. In the opposite limit of a large Thouless energy ETh≫Δ, a small new feature has recently attracted attention, namely, the appearance of a further secondary gap, which is around two orders of magnitude smaller compared to the usual superconducting gap. It appears in a chaotic cavity just below the superconducting gap edge Δ and vanishes for some value of the phase difference between the superconductors. We extend previous theory restricted to a normal cavity connected to two superconductors through ballistic contacts to a wider range of contact types. We show that the existence of the secondary gap is not limited to ballistic contacts, but is a more general property of such systems. Furthermore, we derive a criterion which directly relates the existence of a secondary gap to the presence of small transmission eigenvalues of the contacts. For generic continuous distributions of transmission eigenvalues of the contacts, no secondary gap exists, although we observe a singular behavior of the density of states at Δ. Finally, we provide a simple one-dimensional scattering model which is able to explain the characteristic "smile" shape of the secondary gap.

  19. On the role of the gap junction protein Cx43 (GJA1 in human cardiac malformations with Fallot-pathology. a study on paediatric cardiac specimen.

    Directory of Open Access Journals (Sweden)

    Aida Salameh

    Full Text Available INTRODUCTION: Gap junction channels are involved in growth and differentiation. Therefore, we wanted to elucidate if the main cardiac gap junction protein connexin43 (GJA1 is altered in patients with Tetralogy of Fallot or double-outlet right ventricle of Fallot-type (62 patients referred to as Fallot compared to other cardiac anomalies (21 patients referred to as non-Fallot. Patients were divided into three age groups: 0-2years, 2-12years and >12years. Myocardial tissue samples were collected during corrective surgery and analysis of cell morphology, GJA1- and N-cadherin (CDH2-distribution, as well as GJA1 protein- and mRNA-expression was carried out. Moreover, GJA1-gene analysis of 16 patients and 20 healthy subjects was performed. RESULTS: Myocardial cell length and width were significantly increased in the oldest age group compared to the younger ones. GJA1 distribution changed significantly during maturation with the ratio of polar/lateral GJA1 increasing from 2.93±0.68 to 8.52±1.41. While in 0-2years old patients ∼6% of the lateral GJA1 was co-localised with CDH2 this decreased with age. Furthermore, the changes in cell morphology and GJA1-distribution were not due to the heart defect itself but were significantly dependent on age. Total GJA1 protein expression decreased during growing-up, whereas GJA1-mRNA remained unchanged. Sequencing of the GJA1-gene revealed only few heterozygous single nucleotide polymorphisms within the Fallot and the healthy control group. CONCLUSION: During maturation significant changes in gap junction remodelling occur which might be necessary for the growing and developing heart. In our study point mutations within the Cx43-gene could not be identified as a cause of the development of TOF.

  20. Star junctions and watermelons of pure or random quantum Ising chains: finite-size properties of the energy gap at criticality

    Science.gov (United States)

    Monthus, Cécile

    2015-06-01

    We consider M  ⩾  2 pure or random quantum Ising chains of N spins when they are coupled via a single star junction at their origins or when they are coupled via two star junctions at the their two ends leading to the watermelon geometry. The energy gap is studied via a sequential self-dual real-space renormalization procedure that can be explicitly solved in terms of Kesten variables containing the initial couplings and and the initial transverse fields. In the pure case at criticality, the gap is found to decay as a power-law {ΔM}\\propto {{N}-z(M)} with the dynamical exponent z(M)=\\frac{M}{2} for the single star junction (the case M   =   2 corresponds to z   =   1 for a single chain with free boundary conditions) and z(M)   =   M  -  1 for the watermelon (the case M   =   2 corresponds to z   =   1 for a single chain with periodic boundary conditions). In the random case at criticality, the gap follows the Infinite Disorder Fixed Point scaling \\ln {ΔM}=-{{N}\\psi}g with the same activated exponent \\psi =\\frac{1}{2} as the single chain corresponding to M   =   2, and where g is an O(1) random positive variable, whose distribution depends upon the number M of chains and upon the geometry (star or watermelon).

  1. Amitriptyline up-regulates connexin43-gap junction in rat cultured cortical astrocytes via activation of the p38 and c-Fos/AP-1 signalling pathway.

    Science.gov (United States)

    Morioka, N; Suekama, K; Zhang, F F; Kajitani, N; Hisaoka-Nakashima, K; Takebayashi, M; Nakata, Y

    2014-06-01

    Intercellular communication via gap junctions, comprised of connexin (Cx) proteins, allow for communication between astrocytes, which in turn is crucial for maintaining CNS homeostasis. The expression of Cx43 is decreased in post-mortem brains from patients with major depression. A potentially novel mechanism of tricyclic antidepressants is to increase the expression and functioning of gap junctions in astrocytes. The effect of amitriptyline on the expression of Cx43 and gap junction intercellular communication (GJIC) in rat primary cultured cortical astrocytes was investigated. We also investigated the role of p38 MAPK intracellular signalling pathway in the amitriptyline-induced expression of Cx43 and GJIC. Treatment with amitriptyline for 48 h significantly up-regulated Cx43 mRNA, protein and GJIC. The up-regulation of Cx43 was not monoamine-related since noradrenaline, 5-HT and dopamine did not induce Cx43 expression and pretreatment with α- and β-adrenoceptor antagonists had no effect. Intracellular signalling involved p38 MAPK, as amitriptyline significantly increased p38 MAPK phosphorylation and Cx43 expression and GJIC were significantly blocked by the p38 inhibitor SB 202190. Furthermore, amitriptyline-induced Cx43 expression and GJIC were markedly reduced by transcription factor AP-1 inhibitors (curcumin and tanshinone IIA). The translocation of c-Fos from the cytosol and the nucleus of cortical astrocytes was increased by amitriptyline, and this response was dependent on p38 activity. These findings indicate a novel mechanism of action of amitriptyline through cortical astrocytes, and further suggest that targeting this mechanism could lead to the development of a new class of antidepressants. © 2014 The British Pharmacological Society.

  2. Bridging the Rural-Urban Literacy Gap in China: A Mediation Analysis of Family Effects

    Science.gov (United States)

    Wang, Jingying; Li, Hui; Wang, Dan

    2018-01-01

    This study examines the effects of family involvement on the literacy gap between rural and urban Chinese primary students via mediation analysis. Altogether, 1080 students in Grades 1, 3, and 5 were randomly sampled from three urban and three rural primary schools from Shandong and Guizhou Provinces, representing eastern and western China,…

  3. Keratitis-ichthyosis-deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43.

    Science.gov (United States)

    García, Isaac E; Maripillán, Jaime; Jara, Oscar; Ceriani, Ricardo; Palacios-Muñoz, Angelina; Ramachandran, Jayalakshmi; Olivero, Pablo; Perez-Acle, Tomas; González, Carlos; Sáez, Juan C; Contreras, Jorge E; Martínez, Agustín D

    2015-05-01

    Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like the Keratitis-Ichthyosis-Deafness syndrome (KID). Because in the human skin connexin 26 (Cx26) is co-expressed with other connexins, like Cx43 and Cx30, and as the KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild-type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channel (GJC) functions remain unknown. In this study, we demonstrate that syndromic mutations, at the N terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) shows exacerbated hemichannel activity but nonfunctional GJCs; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca(2+) overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin.

  4. Evolution of Microbial Quorum Sensing to Human Global Quorum Sensing: An Insight into How Gap Junctional Intercellular Communication Might Be Linked to the Global Metabolic Disease Crisis.

    Science.gov (United States)

    Trosko, James E

    2016-06-15

    The first anaerobic organism extracted energy for survival and reproduction from its source of nutrients, with the genetic means to ensure protection of its individual genome but also its species survival. While it had a means to communicate with its community via simple secreted molecules ("quorum sensing"), the eventual shift to an aerobic environment led to multi-cellular metazoan organisms, with evolutionary-selected genes to form extracellular matrices, stem cells, stem cell niches, and a family of gap junction or "connexin" genes. These germinal and somatic stem cells responded to extracellular signals that triggered intra-cellular signaling to regulate specific genes out of the total genome. These extra-cellular induced intra-cellular signals also modulated gap junctional intercellular communication (GJIC) in order to regulate the new cellular functions of symmetrical and asymmetrical cell division, cell differentiation, modes of cell death, and senescence. Within the hierarchical and cybernetic concepts, differentiated by neurons organized in the brain of the Homo sapiens, the conscious mind led to language, abstract ideas, technology, myth-making, scientific reasoning, and moral decision-making, i.e., the creation of culture. Over thousands of years, this has created the current collision between biological and cultural evolution, leading to the global "metabolic disease" crisis.

  5. Mono-Heteromeric Configurations of Gap Junction Channels Formed by Connexin43 and Connexin45 Reduce Unitary Conductance and Determine both Voltage Gating and Metabolic Flux Asymmetry

    Science.gov (United States)

    Zhong, Guoqiang; Akoum, Nazem; Appadurai, Daniel A.; Hayrapetyan, Volodya; Ahmed, Osman; Martinez, Agustin D.; Beyer, Eric C.; Moreno, Alonso P.

    2017-01-01

    In cardiac tissues, the expression of multiple connexins (Cx40, Cx43, Cx45, and Cx30.2) is a requirement for proper development and function. Gap junctions formed by these connexins have distinct permeability and gating mechanisms. Since a single cell can express more than one connexin isoform, the formation of hetero-multimeric gap junction channels provides a tissue with an enormous repertoire of combinations to modulate intercellular communication. To study further the perm-selectivity and gating properties of channels containing Cx43 and Cx45, we studied two monoheteromeric combinations in which a HeLa cell co-transfected with Cx43 and Cx45 was paired with a cell expressing only one of these connexins. Macroscopic measurements of total conductance between cell pairs indicated a drastic reduction in total conductance for mono-heteromeric channels. In terms of Vj dependent gating, Cx43 homomeric connexons facing heteromeric connexons only responded weakly to voltage negativity. Cx45 homomeric connexons exhibited no change in Vj gating when facing heteromeric connexons. The distributions of unitary conductances (γj) for both mono-heteromeric channels were smaller than predicted, and both showed low permeability to the fluorescent dyes Lucifer yellow and Rhodamine123. For both mono-heteromeric channels, we observed flux asymmetry regardless of dye charge: flux was higher in the direction of the heteromeric connexon for MhetCx45 and in the direction of the homomeric Cx43 connexon for MhetCx43. Thus, our data suggest that co-expression of Cx45 and Cx43 induces the formation of heteromeric connexons with greatly reduced permeability and unitary conductance. Furthermore, it increases the asymmetry for voltage gating for opposing connexons, and it favors asymmetric flux of molecules across the junction that depends primarily on the size (not the charge) of the crossing molecules. PMID:28611680

  6. Gap junctions and hydrogen peroxide are involved in endothelium-derived hyperpolarising responses to bradykinin in omental arteries and veins isolated from pregnant women.

    Science.gov (United States)

    Hammond, Stephanie; Mathewson, Alastair M; Baker, Philip N; Mayhew, Terry M; Dunn, William R

    2011-10-01

    Altered endothelial function may underlie human cardiovascular diseases, including hypertension, diabetes and pre-eclampsia. While much is known about endothelial function in small arteries, very little is known about endothelial responses in small veins isolated from humans. Therefore, we assessed endothelium-dependent responses in omental arteries and veins isolated from healthy pregnant women, focussing on endothelium-dependent hyperpolarising (EDH) mechanisms. Human omental arteries and veins were obtained from women undergoing elective caesarean sections and examined using pressure myography. In pressurised vessels, the effects of proposed inhibitors of EDH production/function were examined on responses to bradykinin. The expression of connexins Cx37, 40 and 43 was assessed using immunohistochemistry. Bradykinin caused vasodilatation in human pressurised omental arteries and veins. In both vessels, responses to bradykinin were partially blocked in the presence of the gap junction uncoupler, carbenoxolone, and reduced further with the addition of catalase, which acts to degrade H(2)O(2). The effect of catalase alone was more pronounced in venous preparations. All three connexins were expressed in both arteries and veins, with a similar distribution pattern, where Cx37 and Cx40 were located mainly in the endothelium and Cx43 located mostly in the media. These data show that, in human omental vessels, an EDH mechanism is produced in response to bradykinin that involves gap junction communication and the production of H(2)O(2). These mechanisms may be involved in the haemodynamic alterations that take place during pregnancy, and any aberration in their function could contribute to raised blood pressure in hypertensive disorders of pregnancy, such as pre-eclampsia. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Abnormal Conduction in the Diseased Heart - Enhanced fibrosis due to reduced gap junction and sodium channel expression

    NARCIS (Netherlands)

    Jansen, J.A.

    2011-01-01

    The velocity with which the impulse is conducted is dependent on three different factors: excitability, cell-to-cell coupling and tissue characteristics. Excitability is mainly determined by Nav1.5 channels, determining the upstroke-velocity of the action potential, but also by Kir2.1 channels. Gap

  8. A stretch of polybasic residues mediates Cdc42 GTPase-activating protein (CdGAP) binding to phosphatidylinositol 3,4,5-trisphosphate and regulates its GAP activity.

    Science.gov (United States)

    Karimzadeh, Fereshteh; Primeau, Martin; Mountassif, Driss; Rouiller, Isabelle; Lamarche-Vane, Nathalie

    2012-06-01

    The Rho family of small GTPases are membrane-associated molecular switches involved in the control of a wide range of cellular activities, including cell migration, adhesion, and proliferation. Cdc42 GTPase-activating protein (CdGAP) is a phosphoprotein showing GAP activity toward Rac1 and Cdc42. CdGAP activity is regulated in an adhesion-dependent manner and more recently, we have identified CdGAP as a novel molecular target in signaling and an essential component in the synergistic interaction between TGFβ and Neu/ErbB-2 signaling pathways in breast cancer cells. In this study, we identified a small polybasic region (PBR) preceding the RhoGAP domain that mediates specific binding to negatively charged phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). In vitro reconstitution of membrane vesicles loaded with prenylated Rac1 demonstrates that the PBR is required for full activation of CdGAP in the presence of PI(3,4,5)P3. In fibroblast cells, the expression of CdGAP protein mutants lacking an intact PBR shows a significant reduced ability of the protein mutants to induce cell rounding or to mediate negative effects on cell spreading. Furthermore, an intact PBR is required for CdGAP to inactivate Rac1 signaling into cells, whereas it is not essential in an in vitro context. Altogether, these studies reveal that specific interaction between negatively charged phospholipid PI(3,4,5)P3 and the stretch of polybasic residues preceding the RhoGAP domain regulates CdGAP activity in vivo and is required for its cellular functions.

  9. S-diclofenac Protects against Doxorubicin-Induced Cardiomyopathy in Mice via Ameliorating Cardiac Gap Junction Remodeling

    OpenAIRE

    Zhang, Huili; Zhang, Alian; Guo, Changfa; Shi, Chunzhi; Zhang, Yang; Liu, Qing; Sparatore, Anna; Wang, Changqian

    2011-01-01

    Hydrogen sulfide (H(2)S), as a novel gaseous mediator, plays important roles in mammalian cardiovascular tissues. In the present study, we investigated the cardioprotective effect of S-diclofenac (2-[(2,6-dichlorophenyl)amino] benzeneacetic acid 4-(3H-1,2,dithiol-3-thione-5-yl)phenyl ester), a novel H(2)S-releasing derivative of diclofenac, in a murine model of doxorubicin-induced cardiomyopathy. After a single dose injection of doxorubicin (15 mg/kg, i.p.), male C57BL/6J mice were given dail...

  10. Metabotropic and ionotropic glutamate receptors mediate the modulation of acetylcholine release at the frog neuromuscular junction.

    Science.gov (United States)

    Tsentsevitsky, Andrei; Nurullin, Leniz; Nikolsky, Evgeny; Malomouzh, Artem

    2017-07-01

    There is some evidence that glutamate (Glu) acts as a signaling molecule at vertebrate neuromuscular junctions where acetylcholine (ACh) serves as a neurotransmitter. In this study, performed on the cutaneous pectoris muscle of the frog Rana ridibunda, Glu receptor mechanisms that modulate ACh release processes were analyzed. Electrophysiological experiments showed that Glu reduces both spontaneous and evoked quantal secretion of ACh and synchronizes its release in response to electrical stimulation. Quisqualate, an agonist of ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptors and metabotropic Group I mGlu receptors, also exerted Glu-like inhibitory effects on the secretion of ACh but had no effect on the kinetics of quantal release. Quisqualate's inhibitory effect did not occur when a blocker of Group I mGlu receptors (LY 367385) or an inhibitor of phospholipase C (U73122) was present. An increase in the degree of synchrony of ACh quantal release, such as that produced by Glu, was obtained after application of N-methyl-D-aspartic acid (NMDA). The presence of Group I mGlu and NMDA receptors in the neuromuscular synapse was confirmed by immunocytochemistry. Thus, the data suggest that both metabotropic Group I mGlu receptors and ionotropic NMDA receptors are present at the neuromuscular synapse of amphibians, and that the activation of these receptors initiates different mechanisms for the regulation of ACh release from motor nerve terminals. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Haploinsufficiency for Core Exon Junction Complex Components Disrupts Embryonic Neurogenesis and Causes p53-Mediated Microcephaly.

    Directory of Open Access Journals (Sweden)

    Hanqian Mao

    2016-09-01

    Full Text Available The exon junction complex (EJC is an RNA binding complex comprised of the core components Magoh, Rbm8a, and Eif4a3. Human mutations in EJC components cause neurodevelopmental pathologies. Further, mice heterozygous for either Magoh or Rbm8a exhibit aberrant neurogenesis and microcephaly. Yet despite the requirement of these genes for neurodevelopment, the pathogenic mechanisms linking EJC dysfunction to microcephaly remain poorly understood. Here we employ mouse genetics, transcriptomic and proteomic analyses to demonstrate that haploinsufficiency for each of the 3 core EJC components causes microcephaly via converging regulation of p53 signaling. Using a new conditional allele, we first show that Eif4a3 haploinsufficiency phenocopies aberrant neurogenesis and microcephaly of Magoh and Rbm8a mutant mice. Transcriptomic and proteomic analyses of embryonic brains at the onset of neurogenesis identifies common pathways altered in each of the 3 EJC mutants, including ribosome, proteasome, and p53 signaling components. We further demonstrate all 3 mutants exhibit defective splicing of RNA regulatory proteins, implying an EJC dependent RNA regulatory network that fine-tunes gene expression. Finally, we show that genetic ablation of one downstream pathway, p53, significantly rescues microcephaly of all 3 EJC mutants. This implicates p53 activation as a major node of neurodevelopmental pathogenesis following EJC impairment. Altogether our study reveals new mechanisms to help explain how EJC mutations influence neurogenesis and underlie neurodevelopmental disease.

  12. Phosphatidylcholine Specific PLC-Induced Dysregulation of Gap Junctions, a Robust Cellular Response to Environmental Toxicants, and Prevention by Resveratrol in a Rat Liver Cell Model.

    Science.gov (United States)

    Sovadinova, Iva; Babica, Pavel; Böke, Hatice; Kumar, Esha; Wilke, Andrew; Park, Joon-Suk; Trosko, James E; Upham, Brad L

    2015-01-01

    Dysregulation of gap junctional intercellular communication (GJIC) has been associated with different pathologies, including cancer; however, molecular mechanisms regulating GJIC are not fully understood. Mitogen Activated Protein Kinase (MAPK)-dependent mechanisms of GJIC-dysregulation have been well-established, however recent discoveries have implicated phosphatidylcholine-specific phospholipase C (PC-PLC) in the regulation of GJIC. What is not known is how prevalent these two signaling mechanisms are in toxicant/toxin-induced dysregulation of GJIC, and do toxicants/toxins work through either signaling mechanisms or both, or through alternative signaling mechanisms. Different chemical toxicants were used to assess whether they dysregulate GJIC via MEK or PC-PLC, or both Mek and PC-PLC, or through other signaling pathways, using a pluripotent rat liver epithelial oval-cell line, WB-F344. Epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate, thrombin receptor activating peptide-6 and lindane regulated GJIC through a MEK1/2-dependent mechanism that was independent of PC-PLC; whereas PAHs, DDT, PCB 153, dicumylperoxide and perfluorodecanoic acid inhibited GJIC through PC-PLC independent of Mek. Dysregulation of GJIC by perfluorooctanoic acid and R59022 required both MEK1/2 and PC-PLC; while benzoylperoxide, arachidonic acid, 18β-glycyrrhetinic acid, perfluorooctane sulfonic acid, 1-monolaurin, pentachlorophenol and alachlor required neither MEK1/2 nor PC-PLC. Resveratrol prevented dysregulation of GJIC by toxicants that acted either through MEK1/2 or PC-PLC. Except for alachlor, resveratrol did not prevent dysregulation of GJIC by toxicants that worked through PC-PLC-independent and MEK1/2-independent pathways, which indicated at least two other, yet unidentified, pathways that are involved in the regulation of GJIC. the dysregulation of GJIC is a contributing factor to the cancer process; however the underlying mechanisms by which gap junction channels

  13. Phosphatidylcholine Specific PLC-Induced Dysregulation of Gap Junctions, a Robust Cellular Response to Environmental Toxicants, and Prevention by Resveratrol in a Rat Liver Cell Model.

    Directory of Open Access Journals (Sweden)

    Iva Sovadinova

    Full Text Available Dysregulation of gap junctional intercellular communication (GJIC has been associated with different pathologies, including cancer; however, molecular mechanisms regulating GJIC are not fully understood. Mitogen Activated Protein Kinase (MAPK-dependent mechanisms of GJIC-dysregulation have been well-established, however recent discoveries have implicated phosphatidylcholine-specific phospholipase C (PC-PLC in the regulation of GJIC. What is not known is how prevalent these two signaling mechanisms are in toxicant/toxin-induced dysregulation of GJIC, and do toxicants/toxins work through either signaling mechanisms or both, or through alternative signaling mechanisms. Different chemical toxicants were used to assess whether they dysregulate GJIC via MEK or PC-PLC, or both Mek and PC-PLC, or through other signaling pathways, using a pluripotent rat liver epithelial oval-cell line, WB-F344. Epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate, thrombin receptor activating peptide-6 and lindane regulated GJIC through a MEK1/2-dependent mechanism that was independent of PC-PLC; whereas PAHs, DDT, PCB 153, dicumylperoxide and perfluorodecanoic acid inhibited GJIC through PC-PLC independent of Mek. Dysregulation of GJIC by perfluorooctanoic acid and R59022 required both MEK1/2 and PC-PLC; while benzoylperoxide, arachidonic acid, 18β-glycyrrhetinic acid, perfluorooctane sulfonic acid, 1-monolaurin, pentachlorophenol and alachlor required neither MEK1/2 nor PC-PLC. Resveratrol prevented dysregulation of GJIC by toxicants that acted either through MEK1/2 or PC-PLC. Except for alachlor, resveratrol did not prevent dysregulation of GJIC by toxicants that worked through PC-PLC-independent and MEK1/2-independent pathways, which indicated at least two other, yet unidentified, pathways that are involved in the regulation of GJIC.the dysregulation of GJIC is a contributing factor to the cancer process; however the underlying mechanisms by which gap

  14. The Cellular Distribution of RanGAP1 Is Regulated by CRM1-Mediated Nuclear Export in Mammalian Cells.

    Directory of Open Access Journals (Sweden)

    Keith Cha

    Full Text Available The Ran GTPase activating protein RanGAP1 plays an essential role in nuclear transport by stimulating RanGTP hydrolysis in the cytoplasmic compartment. In mammalian cells, unmodified RanGAP1 is predominantly cytoplasmic, whereas modification by small ubiquitin-related modifier protein (SUMO targets RanGAP1 to the cytoplasmic filaments of nuclear pore complex (NPC. Although RanGAP1 contains nine putative nuclear export signals and a nuclear localization signal, little is known if RanGAP1 shuttles between the nuclear and cytoplasmic compartments and how its primary localization in the cytoplasm and at the NPC is regulated. Here we show that inhibition of CRM1-mediated nuclear export using RNAi-knockdown of CRM1 and inactivation of CRM1 by leptomycin B (LMB results in nuclear accumulation of RanGAP1. LMB treatment induced a more robust redistribution of RanGAP1 from the cytoplasm to the nucleoplasm compared to CRM1 RNAi and also uniquely triggered a decrease or loss of RanGAP1 localization at the NPC, suggesting that LMB treatment is more effective in inhibiting CRM1-mediated nuclear export of RanGAP1. Our time-course analysis of LMB treatment reveals that the NPC-associated RanGAP1 is much more slowly redistributed to the nucleoplasm than the cytoplasmic RanGAP1. Furthermore, LMB-induced nuclear accumulation of RanGAP1 is positively correlated with an increase in levels of SUMO-modified RanGAP1, suggesting that SUMOylation of RanGAP1 may mainly take place in the nucleoplasm. Lastly, we demonstrate that the nuclear localization signal at the C-terminus of RanGAP1 is required for its nuclear accumulation in cells treated with LMB. Taken together, our results elucidate that RanGAP1 is actively transported between the nuclear and cytoplasmic compartments, and that the cytoplasmic and NPC localization of RanGAP1 is dependent on CRM1-mediated nuclear export.

  15. Relating proton pumps with gap junctions: colocalization of ductin, the channel-forming subunit c of V-ATPase, with subunit a and with innexins 2 and 3 during Drosophila oogenesis.

    Science.gov (United States)

    Lautemann, Julia; Bohrmann, Johannes

    2016-07-13

    Ion-transport mechanisms and gap junctions are known to cooperate in creating bioelectric phenomena, like pH gradients, voltage gradients and ion fluxes within single cells, tissues, organs, and whole organisms. Such phenomena have been shown to play regulatory roles in a variety of developmental and regenerative processes. Using Drosophila oogenesis as a model system, we aim at characterizing in detail the mechanisms underlying bioelectric phenomena in order to reveal their regulatory functions. We, therefore, investigated the stage-specific distribution patterns of V-ATPase components in relation to gap-junction proteins. We analysed the localization of the V-ATPase components ductin (subunit c) and subunit a, and the gap-junction components innexins 2 and 3, especially in polar cells, border cells, stalk cells and centripetally migrating cells. These types of follicle cells had previously been shown to exhibit characteristic patterns of membrane channels as well as membrane potential and intracellular pH. Stage-specifically, ductin and subunit a were found either colocalized or separately enriched in different regions of soma and germ-line cells. While ductin was often more prominent in plasma membranes, subunit a was more prominent in cytoplasmic and nuclear vesicles. Particularly, ductin was enriched in polar cells, stalk cells, and nurse-cell membranes, whereas subunit a was enriched in the cytoplasm of border cells, columnar follicle cells and germ-line cells. Comparably, ductin and both innexins 2 and 3 were either colocalized or separately enriched in different cellular regions. While ductin often showed a continuous membrane distribution, the distribution of both innexins was mostly punctate. Particularly, ductin was enriched in polar cells and stalk cells, whereas innexin 2 was enriched in the oolemma, and innexin 3 in centripetally migrating follicle cells. In lateral follicle-cell membranes, the three proteins were found colocalized as well as

  16. All-trans retinoic acid restores gap junctional intercellular communication between oral cancer cells with upregulation of Cx32 and Cx43 expressions in vitro.

    Science.gov (United States)

    Wang, Juan; Dai, Yaohui; Huang, Yulei; Chen, Xiaohua; Wang, Hong; Hong, Yun; Xia, Juan; Cheng, Bin

    2013-07-01

    All-trans retinoic acid (ATRA) has been demonstrated to inhibit tumor growth by restoration of gap junctional intercellular communication (GJIC) via upregulation of connexin (Cx) expression in some solid tumors. However, the relationship between ATRA and GJIC remains unclear in oral squamous cell carcinoma (OSCC). The aim of this study was to investigate the effect of ATRA on the GJIC function of OSCC. We measured the effects of ATRA on the viability and cell cycle distribution of SCC9 and Tca8113 OSCC cells. The GJIC function was observed using the scrape-loading dye transfer technique, and the mRNA and protein levels of Cx32 and Cx43 were detected by qRT-PCR, Western blot, and immunofluorescence assays. ATRA inhibited the growth of OSCC cells in a dose- and time-dependent manner (P <0.05) and caused cell cycle arrest. ATRA-treated cells showed a 2.69-fold and 2.06-fold enhancement of GJIC in SCC9 and Tca8113 cells, respectively (P <0.05). Moreover, ATRA induced upregulation of Cx32 and Cx43 at both the mRNA and protein levels in OSCC cells. Our results indicated that restoration of GJIC via enhanced Cx32 and Cx43 expression might serve as a novel mechanism for the anti-tumor effect of ATRA in OSCC.

  17. Point correlation dimension can reveal functional changes caused by gap junction blockers in the 4-aminopyridine in vivo rat epilepsy model

    Energy Technology Data Exchange (ETDEWEB)

    Jardanhazy, Anett [Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725 (Hungary); Molnar, Mark [Department of Psychophysiology, Institute for Psychology of the Hungarian Academy of Sciences, P.O. Box 398, Budapest H-1394 (Hungary)], E-mail: molnar@cogpsyphy.hu; Jardanhazy, Tamas [Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725 (Hungary)], E-mail: jt@nepsy.szote.u-szeged.hu

    2009-04-15

    The contribution of gap junction (GJ) blockers to seizure initiation was reexamined by means of an analysis on nonlinear dynamics with point correlation dimension (PD2i) at as well as around the primary focus, and mirror focus in an already active 4-aminopyridine-induced in vivo epilepsy model. From the data base of the ECoGs of anesthetized adult rats treated with quinine, a selective blocker of Cx36, and in combination with an additional broad-spectrum GJ blocker, carbenoxolone, 14 cases of each condition were reexamined with a stationarity insensitive nonlinear PD2i method. The blockade of the Cx36 channels decreased the usual drop of the point correlation dimension at the beginning of the seizures, and this was enhanced by the additional use of the global blocker carbenoxolone. The so-called characteristic DC shift just prior to seizure onset denotes a low dimensional seizure event and the recognizable seizures display very variable, rapidly changing dynamics, as revealed by the PD2i analysis. This nonlinear PD2i analysis demonstrated that the different GJ blockers in the already active epileptic model helped seizure initiation, but exerted inhibitory effects on the seizure onset itself, acting differently on the local components of the network organization generating seizure discharges, possibly changing the coupling strengths and time delays in the GJ-s.

  18. Mechanistic Modeling Reveals the Critical Knowledge Gaps in Bile Acid-Mediated DILI.

    Science.gov (United States)

    Woodhead, J L; Yang, K; Brouwer, K L R; Siler, S Q; Stahl, S H; Ambroso, J L; Baker, D; Watkins, P B; Howell, B A

    2014-07-09

    Bile salt export pump (BSEP) inhibition has been proposed to be an important mechanism for drug-induced liver injury (DILI). Modeling can prioritize knowledge gaps concerning bile acid (BA) homeostasis and thus help guide experimentation. A submodel of BA homeostasis in rats and humans was constructed within DILIsym, a mechanistic model of DILI. In vivo experiments in rats with glibenclamide were conducted, and data from these experiments were used to validate the model. The behavior of DILIsym was analyzed in the presence of a simulated theoretical BSEP inhibitor. BSEP inhibition in humans is predicted to increase liver concentrations of conjugated chenodeoxycholic acid (CDCA) and sulfate-conjugated lithocholic acid (LCA) while the concentration of other liver BAs remains constant or decreases. On the basis of a sensitivity analysis, the most important unknowns are the level of BSEP expression, the amount of intestinal synthesis of LCA, and the magnitude of farnesoid-X nuclear receptor (FXR)-mediated regulation.

  19. Impact of 7,12-dimethylbenz[a]anthracene exposure on connexin gap junction proteins in cultured rat ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2014-01-15

    7,12-Dimethylbenz[a]anthracene (DMBA) destroys ovarian follicles in a concentration-dependent manner. The impact of DMBA on connexin (CX) proteins that mediate communication between follicular cell types along with pro-apoptotic factors p53 and Bax were investigated. Postnatal day (PND) 4 Fisher 344 rat ovaries were cultured for 4 days in vehicle medium (1% DMSO) followed by a single exposure to vehicle control (1% DMSO) or DMBA (12.5 nM or 75 nM) and cultured for 4 or 8 days. RT-PCR was performed to quantify Cx37, Cx43, p53 and Bax mRNA level. Western blotting and immunofluorescence staining were performed to determine CX37 or CX43 level and/or localization. Cx37 mRNA and protein increased (P < 0.05) at 4 days of 12.5 nM DMBA exposure. Relative to vehicle control-treated ovaries, mRNA encoding Cx43 decreased (P < 0.05) but CX43 protein increased (P < 0.05) at 4 days by both DMBA exposures. mRNA expression of pro-apoptotic p53 was decreased (P < 0.05) but no changes in Bax expression were observed after 4 days of DMBA exposures. In contrast, after 8 days, DMBA decreased Cx37 and Cx43 mRNA and protein but increased both p53 and Bax mRNA levels. CX43 protein was located between granulosa cells, while CX37 was located at the oocyte cell surface of all follicle stages. These findings support that DMBA exposure impacts ovarian Cx37 and Cx43 mRNA and protein prior to both observed changes in pro-apoptotic p53 and Bax and follicle loss. It is possible that such interference in follicular cell communication is detrimental to follicle viability, and may play a role in DMBA-induced follicular atresia. - Highlights: • DMBA increases Cx37 and Cx43 expression prior to follicle loss. • During follicle loss both Cx37 and Cx43 expressions are reduced. • CX43 protein is absent in follicle remnants lacking an oocyte.

  20. RNAi-Mediated Reverse Genetic Screen IdentifiedDrosophilaChaperones Regulating Eye and Neuromuscular Junction Morphology.

    Science.gov (United States)

    Raut, Sandeep; Mallik, Bhagaban; Parichha, Arpan; Amrutha, Valsakumar; Sahi, Chandan; Kumar, Vimlesh

    2017-07-05

    Accumulation of toxic proteins in neurons has been linked with the onset of neurodegenerative diseases, which in many cases are characterized by altered neuronal function and synapse loss. Molecular chaperones help protein folding and the resolubilization of unfolded proteins, thereby reducing the protein aggregation stress. While most of the chaperones are expressed in neurons, their functional relevance remains largely unknown. Here, using bioinformatics analysis, we identified 95 Drosophila chaperones and classified them into seven different classes. Ubiquitous actin5C -Gal4-mediated RNAi knockdown revealed that ∼50% of the chaperones are essential in Drosophila Knocking down these genes in eyes revealed that ∼30% of the essential chaperones are crucial for eye development. Using neuron-specific knockdown, immunocytochemistry, and robust behavioral assays, we identified a new set of chaperones that play critical roles in the regulation of Drosophila NMJ structural organization. Together, our data present the first classification and comprehensive analysis of Drosophila chaperones. Our screen identified a new set of chaperones that regulate eye and NMJ morphogenesis. The outcome of the screen reported here provides a useful resource for further elucidating the role of individual chaperones in Drosophila eye morphogenesis and synaptic development. Copyright © 2017 Raut et al.

  1. RNAi-Mediated Reverse Genetic Screen Identified Drosophila Chaperones Regulating Eye and Neuromuscular Junction Morphology

    Directory of Open Access Journals (Sweden)

    Sandeep Raut

    2017-07-01

    Full Text Available Accumulation of toxic proteins in neurons has been linked with the onset of neurodegenerative diseases, which in many cases are characterized by altered neuronal function and synapse loss. Molecular chaperones help protein folding and the resolubilization of unfolded proteins, thereby reducing the protein aggregation stress. While most of the chaperones are expressed in neurons, their functional relevance remains largely unknown. Here, using bioinformatics analysis, we identified 95 Drosophila chaperones and classified them into seven different classes. Ubiquitous actin5C-Gal4-mediated RNAi knockdown revealed that ∼50% of the chaperones are essential in Drosophila. Knocking down these genes in eyes revealed that ∼30% of the essential chaperones are crucial for eye development. Using neuron-specific knockdown, immunocytochemistry, and robust behavioral assays, we identified a new set of chaperones that play critical roles in the regulation of Drosophila NMJ structural organization. Together, our data present the first classification and comprehensive analysis of Drosophila chaperones. Our screen identified a new set of chaperones that regulate eye and NMJ morphogenesis. The outcome of the screen reported here provides a useful resource for further elucidating the role of individual chaperones in Drosophila eye morphogenesis and synaptic development.

  2. CMTM3 (CKLF-Like Marvel Transmembrane Domain 3) Mediates Angiogenesis by Regulating Cell Surface Availability of VE-Cadherin in Endothelial Adherens Junctions.

    Science.gov (United States)

    Chrifi, Ihsan; Louzao-Martinez, Laura; Brandt, Maarten; van Dijk, Christian G M; Burgisser, Petra; Zhu, Changbin; Kros, Johan M; Duncker, Dirk J; Cheng, Caroline

    2017-06-01

    Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1 + endothelial progenitor cells during embryonic development. Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin + vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin + , EEA1 + , Rab11 + , Rab5 + , and Rab7 + vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore, CMTM

  3. Fast calcium wave propagation mediated by electrically conducted excitation and boosted by CICR.

    NARCIS (Netherlands)

    Kusters, J.M.A.M.; Meerwijk, W.P. van; Ypey, D.L.; Theuvenet, A.P.R.; Gielen, C.C.A.M.

    2008-01-01

    We have investigated synchronization and propagation of calcium oscillations, mediated by gap junctional excitation transmission. For that purpose we used an experimentally based model of normal rat kidney (NRK) cells, electrically coupled in a one-dimensional configuration (linear strand).

  4. Transient, recurrent, white matter lesions in x-linked Charcot-Marie-tooth disease with novel mutation of gap junction protein beta 1 gene in China: a case report.

    Science.gov (United States)

    Zhao, Yuan; Xie, Yanchen; Zhu, Xiaoquan; Wang, Huigang; Li, Yao; Li, Jimei

    2014-08-03

    Transient white matter lesions have been rarely reported in X-linked Charcot-Marie-Tooth disease type 1. We describe a 15-year-old boy who presented transient and recurrent weakness of the limbs for 5 days. His mother, his mother's mother and his mother's sister presented pes cavus. MRI and electrophysiology were performed in the proband. Gap junction protein beta l gene was analyzed by PCR-sequencing in the proband and his parents. The electrophysiological studies showed a mixed demyelinating and axonal sensorimotor neuropathy. MRI showed white matter lesions in the internal capsule, corpus callosum and periventricular areas, which showed almost complete resolution after two months. T278G mutation in Gap junction protein beta l gene was detected in the proband and his mother. This case report highlights that the novel T278G mutation of Gap junction protein beta l maybe could result in X-linked Charcot-Marie-Tooth disease type 1 with predominant leucoencephalopathy. The white matter changes in MRI of X-linked Charcot-Marie-Tooth disease type 1 patient are reversible.

  5. Conserved glycine at position 45 of major cochlear connexins constitutes a vital component of the Ca²⁺ sensor for gating of gap junction hemichannels.

    Science.gov (United States)

    Zhang, Yanping; Hao, Hongxia

    2013-07-05

    Mutations in gap junction (GJ) family of proteins, especially in the connexin (Cx) 26, are responsible for causing severe congenital hearing loss in a significant portion of patients (30-50% in various ethnic groups). Substitution of glycine at the position 45 of Cx26 to glutamic acid (p.G45E mutation) causes the Keratitis-ichthyosis-deafness (KID) syndrome. Previous studies have suggested that this point mutation caused a gain-of-function defect. However, the molecular mechanism of KID syndrome remains unclear. Since glycine at this position is conserved in many Cxs expressed in the cochlea, we tested the hypothesis that glycine at position 45 is an important component of the sensor regulating the Ca(2+) gating of GJ hemichannels. Using reconstituted Cx30, 32 and 43 expressed in the HEK 293 cells, we compared the functions of wild type and p.G45E mutant Cxs. We found that G45E in Cx30 resulted in similar deleterious cellular effects as Cx26 did. Cell death occurred within 24h of transfection, which was rescued by increasing extracellular Ca(2+) concentration ([Ca(2+)]o). Dye loading assay showed that Cx30 G45E, similar to Cx26 G45E, had leaky hemichannels at physiological [Ca(2+)]o (1.2 mM). Higher [Ca(2+)]o reduced the dye loading in a dose-dependent manner. Whole cell membrane current recordings also indicated that G45E caused increased hemichannel activities. p.G45E mutations of Cx32 and 43 also resulted in leaky hemichannels compared to their respective wild types in lower [Ca(2+)]o. Our data in this study provided further support for the hypothesis that glycine at position 45 is a conserved Ca(2+) sensor for the gating of GJ hemichannels among multiple Cx subtypes expressed in the cochlea. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Three novel mutations and genetic epidemiology analysis of the Gap Junction Beta 1 (GJB1) gene among Hungarian Charcot-Marie-Tooth disease patients.

    Science.gov (United States)

    Milley, Gyorgy Mate; Varga, Edina Timea; Grosz, Zoltan; Bereznai, Benjamin; Aranyi, Zsuzsanna; Boczan, Judit; Dioszeghy, Peter; Kálmán, Bernadette; Gal, Aniko; Molnar, Maria Judit

    2016-10-01

    Pathogenic variants of the gap junction beta 1 (GJB1) gene are responsible for the Charcot-Marie-Tooth neuropathy X type 1 (CMTX1). In this study, we report the mutation frequency of GJB1 in 210 Hungarian CMT patients and the phenotype comparison between male and female CMTX1 patients. Altogether, 13 missense substitutions were found in the GJB1 gene. Among them, 10 have been previously described as pathogenic variants (p.Arg15Trp, p.Val63Ile, p.Leu89Val, p.Ala96Gly, p.Arg107Trp, p.Arg142Gln, p.Arg164Trp, p.Arg164Gln, p.Pro172Ala and p.Asn205Ser), while 3 were novel, likely pathogenic alterations (p.Val13Glu, p.Glu186Gly, p.Met194Ile). These variants were not present in controls and were predicted as disease causing by in silico analysis. The frequency of the variants was 6.7% in our cohort which refers to a common cause of hereditary neuropathy among Hungarian patients. In addition to the classical phenotype, CNS involvement was proved in 26.1% of the CMTX1 patients. GJB1 pathogenic alterations were found mainly in males but we also detected them in female probands. The statistical analysis of CMTX1 patients revealed a significant difference between the two genders regarding the age of onset, Charcot-Marie-Tooth neuropathy and examination scores. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Explaining Gender Gaps in English Composition and College Algebra in College: The Mediating Role of Psychosocial Factors

    Science.gov (United States)

    Ndum, Edwin; Allen, Jeff; Way, Jason; Casillas, Alex

    2018-01-01

    We examined the role of six psychosocial factors (PSFs) in explaining gender gaps in English Composition (n = 8,633) and College Algebra (n = 2,261) using data of first-year female (55%) and male students from 42 colleges. Using a multilevel model and controlling for prior achievement, we found that PSFs mediated between 3% and 41% of the gender…

  8. Presynaptic inhibition of spontaneous acetylcholine release mediated by P2Y receptors at the mouse neuromuscular junction.

    Science.gov (United States)

    De Lorenzo, S; Veggetti, M; Muchnik, S; Losavio, A

    2006-09-29

    At the neuromuscular junction, ATP is co-released with the neurotransmitter acetylcholine (ACh) and once in the synaptic space, it is degraded to the presynaptically active metabolite adenosine. Intracellular recordings were performed on diaphragm fibers of CF1 mice to determine the action of extracellular ATP (100 muM) and the slowly hydrolysable ATP analog 5'-adenylylimidodiphosphate lithium (betagamma-imido ATP) (30 muM) on miniature end-plate potential (MEPP) frequency. We found that application of ATP and betagamma-imido ATP decreased spontaneous secretion by 45.3% and 55.9% respectively. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective A(1) adenosine receptor antagonist and alpha,beta-methylene ADP sodium salt (alphabeta-MeADP), which is an inhibitor of ecto-5'-nucleotidase, did not prevent the inhibitory effect of ATP, demonstrating that the nucleotide is able to modulate spontaneous ACh release through a mechanism independent of the action of adenosine. Blockade of Ca(2+) channels by both, Cd(2+) or the combined application of nitrendipine and omega-conotoxin GVIA (omega-CgTx) (L-type and N-type Ca(2+) channel antagonists, respectively) prevented the effect of betagamma-imido ATP, indicating that the nucleotide modulates Ca(2+) influx through the voltage-dependent Ca(2+) channels related to spontaneous secretion. betagamma-Imido ATP-induced modulation was antagonized by the non-specific P2 receptor antagonist suramin and the P2Y receptor antagonist 1-amino-4-[[4-[[4-chloro-6-[[3(or4)-sulfophenyl] amino]-1,3,5-triazin-2-yl]amino]-3-sulfophenyl] amino]-9,10-dihydro-9,10-dioxo-2-anthracenesulfonic acid (reactive blue-2), but not by pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt (PPADS), which has a preferential antagonist effect on P2X receptors. Pertussis toxin and N-ethylmaleimide (NEM), which are blockers of G(i/o) proteins, prevented the action of the nucleotide, suggesting that the effect is mediated by P2Y receptors

  9. Petri Net-Based Model of Helicobacter pylori Mediated Disruption of Tight Junction Proteins in Stomach Lining during Gastric Carcinoma

    Directory of Open Access Journals (Sweden)

    Anam Naz

    2017-09-01

    Full Text Available Tight junctions help prevent the passage of digestive enzymes and microorganisms through the space between adjacent epithelial cells lining. However, Helicobacter pylori encoded virulence factors negatively regulate these tight junctions and contribute to dysfunction of gastric mucosa. Here, we have predicted the regulation of important tight junction proteins, such as Zonula occludens-1, Claudin-2 and Connexin32 in the presence of pathogenic proteins. Molecular events such as post translational modifications and crosstalk between phosphorylation, O-glycosylation, palmitoylation and methylation are explored which may compromise the integrity of these tight junction proteins. Furthermore, the signaling pathways disrupted by dysregulated kinases, proteins and post-translational modifications are reviewed to design an abstracted computational model showing the situation-dependent dynamic behaviors of these biological processes and entities. A qualitative hybrid Petri Net model is therefore constructed showing the altered host pathways in the presence of virulence factor cytotoxin-associated gene A, leading to the disruption of tight junction proteins. The model is qualitative logic-based, which does not depend on any kinetic parameter and quantitative data and depends on knowledge derived from experiments. The designed model provides insights into the tight junction disruption and disease progression. Model is then verified by the available experimental data, nevertheless formal in vitro experimentation is a promising way to ensure its validation. The major findings propose that H. pylori activated kinases are responsible to trigger specific post translational modifications within tight junction proteins, at specific sites. These modifications may favor alterations in gastric barrier and provide a route to bacterial invasion into host cells.

  10. Ouabain stimulates a Na+/K+-ATPase-mediated SFK-activated signalling pathway that regulates tight junction function in the mouse blastocyst.

    Directory of Open Access Journals (Sweden)

    Holly Giannatselis

    Full Text Available The Na(+/K(+-ATPase plays a pivotal role during preimplantation development; it establishes a trans-epithelial ionic gradient that facilitates the formation of the fluid-filled blastocyst cavity, crucial for implantation and successful pregnancy. The Na(+/K(+-ATPase is also implicated in regulating tight junctions and cardiotonic steroid (CTS-induced signal transduction via SRC. We investigated the expression of SRC family kinase (SFK members, Src and Yes, during preimplantation development and determined whether SFK activity is required for blastocyst formation. Embryos were collected following super-ovulation of CD1 or MF1 female mice. RT-PCR was used to detect SFK mRNAs encoding Src and Yes throughout preimplantation development. SRC and YES protein were localized throughout preimplantation development. Treatment of mouse morulae with the SFK inhibitors PP2 and SU6656 for 18 hours resulted in a reversible blockade of progression to the blastocyst stage. Blastocysts treated with 10(-3 M ouabain for 2 or 10 minutes and immediately immunostained for phosphorylation at SRC tyr418 displayed reduced phosphorylation while in contrast blastocysts treated with 10(-4 M displayed increased tyr418 fluorescence. SFK inhibition increased and SFK activation reduced trophectoderm tight junction permeability in blastocysts. The results demonstrate that SFKs are expressed during preimplantation development and that SFK activity is required for blastocyst formation and is an important mediator of trophectoderm tight junction permeability.

  11. Mechanotransductive Regulation of Gap-Junction Activity Between MLO-Y4 Osteocyte-Like and MC3T3-E1 Osteoblast-Like Cells in Three-Dimensional Co-Culture.

    Science.gov (United States)

    Juran, C. M.; Blaber, E. A.; Almeida, E. A. C.

    2016-01-01

    Cell and animal studies conducted onboard the International Space Station and formerly on Shuttle flights have provided groundbreaking data illuminating the deleterious biological response of bone to mechanical unloading. However the intercellular communicative mechanisms associated with the regulation of bone synthesis and bone resorption cells are still largely unknown. Connexin-43 (CX43), a gap junction protein, is hypothesized to play a significant role in osteoblast and osteocyte signaling. The purpose of this investigation was to evaluate within a novel three-dimensional microenvironment how the osteocyte-osteoblast gap-junction expression changes when cultures are exposed to exaggerated mechanical load. MLO-Y4 osteocyte-like cells were cultured on a 3D-Biotek polystyrene insert and placed in direct contact with an MC3T3-E1 pre-osteoblast co-cultured monolayer and exposed to 48 h of mechanical stimulation (pulsatile fluid flow (PFF) or monolayer cyclic stretch (MCS)) then evaluated for viability, proliferation, metabolism, and CX43 expression. Mono-cultured MLO-Y4 and MC3T3-E1 control experiments were conducted under PFF and MCS stimulation to observe how strain application stimuli (PFF cell membrane shear or MCS cell focal adhesion/attachment loading) initiates different signaling pathways or downstream regulatory controls. TotalLive cell count, viability and metabolic reduction (Trypan Blue, LIVEDead and Alamar Blue analysis respectively) indicate that mechanical activation of MC3T3-E1 cells inhibits proliferation while maintaining an average 1.04E4 reductioncell metabolic rate, *p0.05 n4. MLO-Y4s in monolayer culture increase in number when exposed to MCS loading but the percent of live cells within the population is low (46.3 total count, *p0.05 n4), these results may indicate an apoptotic signaling cascade. PFF stimulation of the three-dimensional co-cultures elicits a universal increase in CX43 in MLO-Y4 and MC3T3-E1 cells, illustrated by

  12. Nanotube junctions

    Science.gov (United States)

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  13. TNF-α Modulation of Intestinal Tight Junction Permeability Is Mediated by NIK/IKK-α Axis Activation of the Canonical NF-κB Pathway

    Science.gov (United States)

    Al-Sadi, Rana; Guo, Shuhong; Ye, Dongmei; Rawat, Manmeet; Ma, Thomas Y.

    2017-01-01

    Tumor necrosis factor (TNF)-α, a key mediator of intestinal inflammation, causes an increase in intestinal epithelial tight junction (TJ) permeability by activating myosin light chain kinase (MLCK; official name MYLK3) gene. However, the precise signaling cascades that mediate the TNF-α–induced activation of MLCK gene and increase in TJ permeability remain unclear. Our aims were to delineate the upstream signaling mechanisms that regulate the TNF-α modulation of intestinal TJ barrier function with the use of in vitro and in vivo intestinal epithelial model systems. TNF-α caused a rapid activation of both canonical and noncanonical NF-κB pathway. NF-κB–inducing kinase (NIK) and mitogen-activated protein kinase kinase-1 (MEKK-1) were activated in response to TNF-α. NIK mediated the TNF-α activation of inhibitory κB kinase (IKK)-α, and MEKK1 mediated the activation of IKK complex, including IKK-β. NIK/IKK-α axis regulated the activation of both NF-κB p50/p65 and RelB/p52 pathways. Surprisingly, the siRNA induced knockdown of NIK, but not MEKK-1, prevented the TNF-α activation of both NF-κB p50/p65 and RelB/p52 and the increase in intestinal TJ permeability. Moreover, NIK/IKK-α/NF-κB p50/p65 axis mediated the TNF-α–induced MLCK gene activation and the subsequent MLCK increase in intestinal TJ permeability. In conclusion, our data show that NIK/IKK-α/regulates the activation of NF-κB p50/p65 and plays an integral role in the TNF-α–induced activation of MLCK gene and increase in intestinal TJ permeability. PMID:26948423

  14. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability.

    Science.gov (United States)

    Chen, Wei-Yang; Wang, Min; Zhang, Jingwen; Barve, Shirish S; McClain, Craig J; Joshi-Barve, Swati

    2017-12-01

    Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions

    International Nuclear Information System (INIS)

    Xiao-Lan, Kong; Yong-Jian, Xiong

    2010-01-01

    We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction

  16. Motor neuron apoptosis and neuromuscular junction perturbation are prominent features in a Drosophila model of Fus-mediated ALS

    Directory of Open Access Journals (Sweden)

    Xia Ruohan

    2012-03-01

    Full Text Available Abstract Backgound Amyotrophic lateral sclerosis (ALS is progressive neurodegenerative disease characterized by the loss of motor function. Several ALS genes have been identified as their mutations can lead to familial ALS, including the recently reported RNA-binding protein fused in sarcoma (Fus. However, it is not clear how mutations of Fus lead to motor neuron degeneration in ALS. In this study, we present a Drosophila model to examine the toxicity of Fus, its Drosophila orthologue Cabeza (Caz, and the ALS-related Fus mutants. Results Our results show that the expression of wild-type Fus/Caz or FusR521G induced progressive toxicity in multiple tissues of the transgenic flies in a dose- and age-dependent manner. The expression of Fus, Caz, or FusR521G in motor neurons significantly impaired the locomotive ability of fly larvae and adults. The presynaptic structures in neuromuscular junctions were disrupted and motor neurons in the ventral nerve cord (VNC were disorganized and underwent apoptosis. Surprisingly, the interruption of Fus nuclear localization by either deleting its nuclear localization sequence (NLS or adding a nuclear export signal (NES blocked Fus toxicity. Moreover, we discovered that the loss of caz in Drosophila led to severe growth defects in the eyes and VNCs, caused locomotive disability and NMJ disruption, but did not induce apoptotic cell death. Conclusions These data demonstrate that the overexpression of Fus/Caz causes in vivo toxicity by disrupting neuromuscular junctions (NMJs and inducing apoptosis in motor neurons. In addition, the nuclear localization of Fus is essential for Fus to induce toxicity. Our findings also suggest that Fus overexpression and gene deletion can cause similar degenerative phenotypes but the underlying mechanisms are likely different.

  17. Flexible 2D layered material junctions

    Science.gov (United States)

    Balabai, R.; Solomenko, A.

    2018-03-01

    Within the framework of the methods of the electron density functional and the ab initio pseudopotential, we have obtained the valence electron density spatial distribution, the densities of electron states, the widths of band gaps, the charges on combined regions, and the Coulomb potentials for graphene-based flexible 2D layered junctions, using author program complex. It is determined that the bending of the 2D layered junctions on the angle α leads to changes in the electronic properties of these junctions. In the graphene/graphane junction, there is clear charge redistribution with different signs in the regions of junctions. The presence in the heterojunctions of charge regions with different signs leads to the formation of potential barriers. The greatest potential jump is in the graphene/fluorographene junction. The greatest value of the band gap width is in the graphene/graphane junction.

  18. Vascular permeability in the RG2 glioma model can be mediated by macropinocytosis and be independent of the opening of the tight junction.

    Science.gov (United States)

    Pernet-Gallay, Karin; Jouneau, Pierre-Henri; Bertrand, Anne; Delaroche, Julie; Farion, Régine; Rémy, Chantal; Barbier, Emmanuel L

    2017-04-01

    This study evaluates the extravasation pathways of circulating macromolecules in a rat glioma model (RG2) which was observed by both magnetic resonance imaging using ultrasmall superparamagnetic iron oxide and electron microscopy. Although magnetic resonance imaging signal enhancement was observed as soon as 10 min after injection (9.4% 2 h after injection), electron microscopy showed that endothelial cells were still tightly sealed. However, circulating immunoglobulin G and ultrasmall superparamagnetic iron oxide were found in large membrane compartments of endothelial cells, in the basal lamina (7.4 ± 1.2 gold particles/µm 2 in the tumor versus 0.38 ± 0.17 in healthy tissue, p = 1.4.10 -5 ) and between tumoral cells. Altogether, this strongly suggests an active transport mediated by macropinocytosis. To challenge this transport mechanism, additional rats were treated with amiloride, an inhibitor of macropinocytosis, leading to a reduction of membrane protrusions (66%) and of macropinosomes. Amiloride however also opened tumoral tight junctions allowing a larger extravasation of ultrasmall superparamagnetic iron oxide (magnetic resonance imaging signal enhancement of 35.7% 2 h after injection). Altogether, these results suggest that ultrasmall superparamagnetic iron oxide and immunoglobulin G in the RG2 glioma model follow an active extravasation pathway mediated by a macropinocytosis process. Amiloride also appears as a potential strategy to facilitate the extravasation of chemotherapeutic drugs in glioma.

  19. Attentional processes, not implicit mentalizing, mediate performance in a perspective-taking task: Evidence from stimulation of the temporoparietal junction.

    Science.gov (United States)

    Santiesteban, Idalmis; Kaur, Simran; Bird, Geoffrey; Catmur, Caroline

    2017-07-15

    Mentalizing is a fundamental process underpinning human social interaction. Claims of the existence of 'implicit mentalizing' represent a fundamental shift in our understanding of this important skill, suggesting that preverbal infants and even animals may be capable of mentalizing. One of the most influential tasks supporting such claims in adults is the dot perspective-taking task, but demonstrations of similar performance on this task for mentalistic and non-mentalistic stimuli have led to the suggestion that this task in fact measures domain-general processes, rather than implicit mentalizing. A mentalizing explanation was supported by fMRI data claiming to show greater activation of brain areas involved in mentalizing, including right temporoparietal junction (rTPJ), when participants made self-perspective judgements in a mentalistic, but not in a non-mentalistic condition, an interpretation subsequently challenged. Here we provide the first causal test of the mentalizing claim using disruptive transcranial magnetic stimulation of rTPJ during self-perspective judgements. We found no evidence for a distinction between mentalistic and non-mentalistic stimuli: stimulation of rTPJ impaired performance on all self-perspective trials, regardless of the mentalistic/non-mentalistic nature of the stimulus. Our data support a domain-general attentional interpretation of performance on the dot perspective-taking task, a role which is subserved by the rTPJ. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  20. Gap-flow Mediated Transport of Pollution to a Remote Coastal Site: Effects upon Aerosol Composition

    Science.gov (United States)

    Cornwell, G.; Martin, A.; Petters, M.; Prather, K. A.; Taylor, H.; Rothfuss, N.; DeMott, P. J.; Kreidenweis, S. M.

    2015-12-01

    During the CalWater 2015 field campaign, observations of aerosol size, concentration, chemical composition, and cloud activity were made at Bodega Bay, CA on the remote California coast. Strong anthropogenic influence on air quality, aerosol physicochemical properties and cloud activity was observed at Bodega Bay during periods of special meteorological conditions, known as Petaluma Gap Flow, in which air from California's interior is transported to the coast. This study utilizes single particle mass spectrometry, along with aerosol physical and chemical measurements and meteorological measurements to show that the dramatic change in aerosol properties is strongly related to regional meteorology and anthropogenically-influenced chemical processes in California's Central Valley. The change in airmass properties from those typical of a remote marine environment to properties of a continental regime has impacts on atmospheric radiative balance and cloud formation that must be accounted for in regional climate simulation.

  1. CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis

    Science.gov (United States)

    Caron, Christine; DeGeer, Jonathan; Fournier, Patrick; Duquette, Philippe M.; Luangrath, Vilayphone; Ishii, Hidetaka; Karimzadeh, Fereshteh; Lamarche-Vane, Nathalie; Royal, Isabelle

    2016-01-01

    Mutations in the CdGAP/ARHGAP31 gene, which encodes a GTPase-activating protein for Rac1 and Cdc42, have been reported causative in the Adams-Oliver developmental syndrome often associated with vascular defects. However, despite its abundant expression in endothelial cells, CdGAP function in the vasculature remains unknown. Here, we show that vascular development is impaired in CdGAP-deficient mouse embryos at E15.5. This is associated with superficial vessel defects and subcutaneous edema, resulting in 44% embryonic/perinatal lethality. VEGF-driven angiogenesis is defective in CdGAP−/− mice, showing reduced capillary sprouting from aortic ring explants. Similarly, VEGF-dependent endothelial cell migration and capillary formation are inhibited upon CdGAP knockdown. Mechanistically, CdGAP associates with VEGF receptor-2 and controls VEGF-dependent signaling. Consequently, CdGAP depletion results in impaired VEGF-mediated Rac1 activation and reduced phosphorylation of critical intracellular mediators including Gab1, Akt, PLCγ and SHP2. These findings are the first to demonstrate the importance of CdGAP in embryonic vascular development and VEGF-induced signaling, and highlight CdGAP as a potential therapeutic target to treat pathological angiogenesis and vascular dysfunction. PMID:27270835

  2. Toxicity of hydroxylated and quinoid PCB metabolites: Inhibition of gap junctional intercellular communication and activation of aryl hydrocarbon and estrogen receptors in hepatic and mammary cells

    Czech Academy of Sciences Publication Activity Database

    Machala, M.; Bláha, L.; Lehmler, H.-J.; Plíšková, M.; Májková, Z.; Kapplová, P.; Sovadinová, I.; Vondráček, Jan; Malmberg, T.; Robertson, L. W.

    2004-01-01

    Roč. 17, č. 3 (2004), s. 340-347 ISSN 0893-228X R&D Projects: GA MZe QC0194; GA AV ČR IPP1050128 Institutional research plan: CEZ:AV0Z5004920 Keywords : hydroxylated polychlorinated biphenyls * AhR-mediated activity * inhibition of GJIC Subject RIV: BO - Biophysics Impact factor: 2.797, year: 2004

  3. Calcium-mediated oxidative stress: a common mechanism in tight junction disruption by different types of cellular stress.

    Science.gov (United States)

    Gangwar, Ruchika; Meena, Avtar S; Shukla, Pradeep K; Nagaraja, Archana S; Dorniak, Piotr L; Pallikuth, Sandeep; Waters, Christopher M; Sood, Anil; Rao, RadhaKrishna

    2017-02-20

    The role of reactive oxygen species (ROS) in osmotic stress, dextran sulfate sodium (DSS) and cyclic stretch-induced tight junction (TJ) disruption was investigated in Caco-2 cell monolayers in vitro and restraint stress-induced barrier dysfunction in mouse colon in vivo Live cell imaging showed that osmotic stress, cyclic stretch and DSS triggered rapid production of ROS in Caco-2 cell monolayers, which was blocked by depletion of intracellular Ca 2+ by 1,2-bis-( o -aminophenoxy)ethane- N , N , N ', N '-tetraacetic acid. Knockdown of Ca V 1.3 or TRPV6 channels blocked osmotic stress and DSS-induced ROS production and attenuated TJ disruption and barrier dysfunction. N -Acetyl l-cysteine (NAC) and l- N G -Nitroarginine methyl ester (l-NAME) blocked stress-induced TJ disruption and barrier dysfunction. NAC and l-NAME also blocked stress-induced activation of c-Jun N -terminal kinase (JNK) and c-Src. ROS was colocalized with the mitochondrial marker in stressed cells. Cyclosporin A blocked osmotic stress and DSS-induced ROS production, barrier dysfunction, TJ disruption and JNK activation. Mitochondria-targeted Mito-TEMPO blocked osmotic stress and DSS-induced barrier dysfunction and TJ disruption. Chronic restraint stress in mice resulted in the elevation of intracellular Ca 2+ , activation of JNK and c-Src, and disruption of TJ in the colonic epithelium. Furthermore, corticosterone administration induced JNK and c-Src activation, TJ disruption and protein thiol oxidation in colonic mucosa. The present study demonstrates that oxidative stress is a common signal in the mechanism of TJ disruption in the intestinal epithelium by different types of cellular stress in vitro and bio behavioral stress in vivo . © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  4. Zinc ions regulate opening of tight junction favouring efflux of macromolecules via the GSK3β/snail-mediated pathway.

    Science.gov (United States)

    Xiao, Ruyue; Yuan, Lan; He, Weijiang; Yang, Xiaoda

    2018-01-24

    Zinc is an essential trace element presenting in particularly high concentration in the brain. In some regions, e.g. lateral amygdala, subiculum and hippocampus, rapidly-exchangeable zinc may transiently reach even up to 600 μM. To explore the possible roles of high-concentration Zn 2+ in regulating the blood-brain barrier (BBB), we investigated the effects of Zn 2+ on the functions and structures of the tight junction (TJ) with an in vitro model of a Madin-Darby canine kidney (MDCK) cell monolayer. The experimental results indicated that high concentrations (>200 μM) of Zn 2+ can affect the TJ integrity in a polarized manner. Basolateral addition of Zn 2+ led to reversible TJ opening with pore paths of r ∼ 2 nm or more depending on Zn 2+ concentration. The efflux/influx ratios of different sized probes were found to be ∼4.6 for FD4 (M W 4000) and ∼1.8 for Eu-DTPA (M W 560), suggesting that the Zn 2+ -induced paracelluar channels favour efflux especially for macromolecules. Further mechanistic studies revealed that the elevated intracellular Zn 2+ taken from the basolateral side can increase phosphorylation of glycogen synthase kinase (GSK) 3β, primarily due to the inhibition of calcineurin (CaN), thus resulting in the elevation of the snail transcriptional repressors. Subsequently, Zn 2+ can cause the down-regulation of claudin-1, breakage of occludin and ZO-1 rings, and collapse of basolateral F-actin structures. These overall factors result in the formation of a trumpet-like paracellular channel, which allows asymmetric solute permeation. The ERK1/2 and JNK1/2 pathways may also be involved in the Zn 2+ -induced TJ opening process, while the activation of matrix metalloproteinase was not observed. Our results may suggest a potential role of zinc in regulation of BBB permeability associated with brain clearance of metabolites through the glymphatic system.

  5. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase

    LENUS (Irish Health Repository)

    McSherry, Elaine A

    2011-03-23

    Abstract Introduction The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells. Methods MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and β1-integrin, we examined activation of the β1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and β1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation. Results JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the β1-integrin substrate fibronectin. This was accompanied by reduced protein expression of β1-integrin and its binding partners αV- and α5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and β1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between JAM-A, AF-6

  6. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase.

    LENUS (Irish Health Repository)

    McSherry, Elaine A

    2012-02-01

    INTRODUCTION: The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells. METHODS: MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and beta1-integrin, we examined activation of the beta1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and beta1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation. RESULTS: JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the beta1-integrin substrate fibronectin. This was accompanied by reduced protein expression of beta1-integrin and its binding partners alphaV- and alpha5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and beta1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between

  7. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase.

    LENUS (Irish Health Repository)

    McSherry, Elaine A

    2011-03-23

    ABSTRACT: INTRODUCTION: The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells. METHODS: MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and β1-integrin, we examined activation of the β1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and β1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation. RESULTS: JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the β1-integrin substrate fibronectin. This was accompanied by reduced protein expression of β1-integrin and its binding partners αV- and α5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and β1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between JAM-A, AF

  8. Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes.

    Directory of Open Access Journals (Sweden)

    Ou Liu

    Full Text Available The small GTPase RAB-5/Rab5 is a master regulator of the early endosome, required for a myriad of coordinated activities, including the degradation and recycling of internalized cargo. Here we focused on the recycling function of the early endosome and the regulation of RAB-5 by GAP protein TBC-2 in the basolateral C. elegans intestine. We demonstrate that downstream basolateral recycling regulators, GTPase RAB-10/Rab10 and BAR domain protein AMPH-1/Amphiphysin, bind to TBC-2 and help to recruit it to endosomes. In the absence of RAB-10 or AMPH-1 binding to TBC-2, RAB-5 membrane association is abnormally high and recycling cargo is trapped in early endosomes. Furthermore, the loss of TBC-2 or AMPH-1 leads to abnormally high spatial overlap of RAB-5 and RAB-10. Taken together our results indicate that RAB-10 and AMPH-1 mediated down-regulation of RAB-5 is an important step in recycling, required for cargo exit from early endosomes and regulation of early endosome-recycling endosome interactions.

  9. Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes

    Science.gov (United States)

    Liu, Ou; Grant, Barth D.

    2015-01-01

    The small GTPase RAB-5/Rab5 is a master regulator of the early endosome, required for a myriad of coordinated activities, including the degradation and recycling of internalized cargo. Here we focused on the recycling function of the early endosome and the regulation of RAB-5 by GAP protein TBC-2 in the basolateral C. elegans intestine. We demonstrate that downstream basolateral recycling regulators, GTPase RAB-10/Rab10 and BAR domain protein AMPH-1/Amphiphysin, bind to TBC-2 and help to recruit it to endosomes. In the absence of RAB-10 or AMPH-1 binding to TBC-2, RAB-5 membrane association is abnormally high and recycling cargo is trapped in early endosomes. Furthermore, the loss of TBC-2 or AMPH-1 leads to abnormally high spatial overlap of RAB-5 and RAB-10. Taken together our results indicate that RAB-10 and AMPH-1 mediated down-regulation of RAB-5 is an important step in recycling, required for cargo exit from early endosomes and regulation of early endosome–recycling endosome interactions. PMID:26393361

  10. Astrocytic CX43 hemichannels and gap junctions play a crucial role in development of chronic neuropathic pain following spinal cord injury.

    Science.gov (United States)

    Chen, Michael J; Kress, Benjamin; Han, Xiaoning; Moll, Katherine; Peng, Weiguo; Ji, Ru-Rong; Nedergaard, Maiken

    2012-11-01

    Chronic neuropathic pain is a frequent consequence of spinal cord injury (SCI). Yet despite recent advances, upstream releasing mechanisms and effective therapeutic options remain elusive. Previous studies have demonstrated that SCI results in excessive ATP release to the peritraumatic regions and that purinergic signaling, among glial cells, likely plays an essential role in facilitating inflammatory responses and nociceptive sensitization. We sought to assess the role of connexin 43 (Cx43) as a mediator of CNS inflammation and chronic pain. To determine the extent of Cx43 involvement in chronic pain, a weight-drop SCI was performed on transgenic mice with Cx43/Cx30 deletions. SCI induced robust and persistent neuropathic pain including heat hyperalgesia and mechanical allodynia in wild-type control mice, which developed after 4 weeks and was maintained after 8 weeks. Notably, SCI-induced heat hyperalgesia and mechanical allodynia were prevented in transgenic mice with Cx43/Cx30 deletions, but fully developed in transgenic mice with only Cx30 deletion. SCI-induced gliosis, detected as upregulation of glial fibrillary acidic protein in the spinal cord astrocytes at different stages of the injury, was also reduced in the knockout mice with Cx43/Cx30 deletions, when compared with littermate controls. In comparison, a standard regimen of post-SCI treatment of minocycline attenuated neuropathic pain to a significantly lesser degree than Cx43 deletion. These findings suggest Cx43 is critically linked to the development of central neuropathic pain following acute SCI. Since Cx43/Cx30 is expressed by astrocytes, these findings also support an important role of astrocytes in the development of chronic pain. Copyright © 2012 Wiley Periodicals, Inc.

  11. Disruption of endothelial adherens junction by invasive breast cancer cells is mediated by reactive oxygen species and is attenuated by AHCC.

    Science.gov (United States)

    Haidari, Mehran; Zhang, Wei; Wakame, Koji

    2013-12-18

    The effect of antioxidants on treatment of cancer is still controversial. Previously, we demonstrated that interaction of breast cancer cells with endothelial cells leads to tyrosine phosphorylation of VE-cadherin and disruption of endothelial adherens junction (EAJ). The molecular mechanism underlying the anti-metastatic effects of mushroom-derived active hexode correlated compound (AHCC) remains elusive. Several cellular and biochemical techniques were used to determine the contribution of oxidative stress in the disruption of EAJ and to test this hypothesis that AHCC inhibits the breast cancer cell-induced disruption of EAJ. Interaction of breast cancer cells (MDA-MB-231 cells) with human umbilical vein endothelial cells (HUVECs) leads to an increase in generation of reactive oxygen species (ROS). Treatment of HUVECs with H2O2 or phorbol myristate acetate (PMA) led to tyrosine phosphorylation of VE-cadherin, dissociation of β-catenin from VE-cadherin complex and increased transendothelial migration (TEM) of MDA-MB-231 cells. Induction of VE-cadherin tyrosine phosphorylation by PMA or by interaction of MDA-MB-231 cells with HUVECs was mediated by HRas and protein kinase C-α signaling pathways. Disruption of EAJ and phosphorylation of VE-cadherin induced by interaction of MDA-MB-231 cells with HUVECs were attenuated when HUVECs were pretreated with an antioxidant, N-acetylcysteine (NAC) or AHCC. AHCC inhibited TEM of MDA-MB-231 cells and generation of ROS induced by interaction of MDA-MB-231 cells with HUVECs. Our studies suggest that ROS contributes to disruption of EAJ induced by interaction of MDA-MB-231 cells with HUVECs and AHCC attenuates this alteration. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. impairs gap junction function causing congenital cataract

    Indian Academy of Sciences (India)

    LIJUAN CHEN

    2017-12-20

    insoluble fractions. Cell lysates were loaded on a 10% SDS acrylamide gel and analysed by western blotting. The intensities of bands were analysed using den- sitometry by NIH Image J software. Scrape loading dye transfer assay.

  13. Gap junctions in development and disease

    National Research Council Canada - National Science Library

    Winterhager, Elke

    2005-01-01

    ...,sequencingofseveralvertebrategenomes,generationofmice carrying mutations of the different connexin genes, and targeting of inherited human diseases to mutated connexin genes have given completely...

  14. Intercellular junctions in rabbit eye ora serrata.

    Science.gov (United States)

    Nobeschi, L; Freymuller, E; Smith, R L

    2006-10-01

    Summary The aim of this study was to describe and localize the intercellular junctions in the ora serrata region of albino and pigmented rabbit eyes. Eyes of albino and pigmented rabbits were fixed and processed for transmission electron microscopy. Light and electron microscope examination was carried out on semithin and ultrathin sections. The ora serrata region showed adherens, gap and tight junctions in the retinal and ciliary margins of albino and pigmented rabbit eyes. In the retinal margin, zonulae adherens between Müller cells and photoreceptors are associated with tight junctions. In the ciliary margin, epithelial cells are joined by adherens, gap and tight junctions localized between apical and apicolateral cell membranes. Tight junctions appear as zonulae occludens in the non-pigmented apicolateral cell membranes and as tight focal junctions between pigmented and non-pigmented apical cell membranes. Between the ciliary and retinal margins there are adherens and tight focal junctions which attach pigmented apical cell membranes to adjacent cells. There were no differences in the distribution of intercellular junctions between albino and pigmented rabbits.

  15. The identification of protein domains that mediate functional interactions between Rab-GTPases and RabGAPs using 3D protein modeling

    Directory of Open Access Journals (Sweden)

    Davie JJ

    2017-04-01

    Full Text Available Jeremiah J Davie, Silviu L Faitar Department of Biology and Mathematics, School of Arts, Sciences, and Education, D’Youville College, Buffalo, NY, USA Abstract: Currently, time-consuming serial in vitro experimentation involving immunocytochemistry or radiolabeled materials is required to identify which of the numerous Rab-GTPases (Rab and Rab-GTPase activating proteins (RabGAP are capable of functional interactions. These interactions are essential for numerous cellular functions, and in silico methods of reducing in vitro trial and error would accelerate the pace of research in cell biology. We have utilized a combination of three-dimensional protein modeling and protein bioinformatics to identify domains present in Rab proteins that are predictive of their functional interaction with a specific RabGAP. The RabF2 and RabSF1 domains appear to play functional roles in mediating the interaction between Rabs and RabGAPs. Moreover, the RabSF1 domain can be used to make in silico predictions of functional Rab/RabGAP pairs. This method is expected to be a broadly applicable tool for predicting protein–protein interactions where existing crystal structures for homologs of the proteins of interest are available. Keywords: GTP hydrolysis, Rab proteins, RabGAPs, protein–protein interactions, structural informatics, computational biology, Evi5, Evi5L

  16. Aryl hydrocarbon receptor-mediated disruption of contact inhibition is associated with connexin43 downregulation and inhibition of gap junctional intercellular communication

    Czech Academy of Sciences Publication Activity Database

    Andrysík, Zdeněk (ed.); Procházková, Jiřina; Kabátková, Markéta; Umannová, Lenka; Šimečková, P.; Kohoutek, J.; Machala, M.; Vondráček, Jan

    2013-01-01

    Roč. 87, č. 3 (2013), s. 491-503 ISSN 0340-5761 R&D Projects: GA ČR(CZ) GA524/09/1337 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : POLYCYCLIC AROMATIC-HYDROCARBONS * LIVER EPITHELIAL-CELLS * RAT-LIVER * GENE-EXPRESSION Subject RIV: BO - Biophysics Impact factor: 5.078, year: 2013

  17. The reversible increase in tight junction permeability induced by capsaicin is mediated via cofilin-actin cytoskeletal dynamics and decreased level of occludin.

    Directory of Open Access Journals (Sweden)

    Tomoko Shiobara

    Full Text Available Previous results demonstrated that capsaicin induces the reversible tight junctions (TJ opening via cofilin activation. The present study investigated the mechanisms underlying the reversible TJ opening and compared the effect to the irreversible opening induced by actin inhibitors. Capsaicin treatment induced the F-actin alteration unique to capsaicin compared to actin-interacting agents such as latrunculin A, which opens TJ irreversibly. Along with TJ opening, capsaicin decreased the level of F-actin at bicellular junctions but increased it at tricellular junctions accompanied with its concentration on the apical side of the lateral membrane. No change in TJ protein localization was observed upon exposure to capsaicin, but the amount of occludin was decreased significantly. In addition, cosedimentation analyses suggested a decrease in the interactions forming TJ, thereby weakening TJ tightness. Introduction of cofilin, LIMK and occludin into the cell monolayers confirmed their contribution to the transepithelial electrical resistance decrease. Finally, exposure of monolayers to capsaicin augmented the paracellular passage of both charged and uncharged compounds, as well as of insulin, indicating that capsaicin can be employed to modulate epithelial permeability. Our results demonstrate that capsaicin induces TJ opening through a unique mechanism, and suggest that it is a new type of paracellular permeability enhancer.

  18. Evaluation of the Electronic Structure of Single-Molecule Junctions Based on Current-Voltage and Thermopower Measurements: Application to C60 Single-Molecule Junction.

    Science.gov (United States)

    Komoto, Yuki; Isshiki, Yuji; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2017-02-16

    The electronic structure of molecular junctions has a significant impact on their transport properties. Despite the decisive role of the electronic structure, a complete characterization of the electronic structure remains a challenge. This is because there is no straightforward way of measuring electron spectroscopy for an individual molecule trapped in a nanoscale gap between two metal electrodes. Herein, a comprehensive approach to obtain a detailed description of the electronic structure in single-molecule junctions based on the analysis of current-voltage (I-V) and thermoelectric characteristics is described. It is shown that the electronic structure of the prototypical C 60 single-molecule junction can be resolved by analyzing complementary results of the I-V and thermoelectric measurement. This combined approach confirmed that the C 60 single-molecule junction was highly conductive with molecular electronic conductances of 0.033 and 0.003 G 0 and a molecular Seebeck coefficient of -12 μV K -1 . In addition, we revealed that charge transport was mediated by a LUMO whose energy level was located 0.5≈0.6 eV above the Fermi level of the Au electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Lactic Acid Bacteria Improves Peyer's Patch Cell-Mediated Immunoglobulin A and Tight-Junction Expression in a Destructed Gut Microbial Environment.

    Science.gov (United States)

    Kim, Sung Hwan; Jeung, Woonhee; Choi, Il-Dong; Jeong, Ji-Woong; Lee, Dong Eun; Huh, Chul-Sung; Kim, Geun-Bae; Hong, Seong Soo; Shim, Jae-Jung; Lee, Jung Lyoul; Sim, Jae-Hun; Ahn, Young-Tae

    2016-06-28

    To evaluate the effects of lactic acid bacteria (LAB) on Peyer's patch cells, mice were treated with a high dose of kanamycin to disturb the gut microbial environment. The overarching goal was to explore the potential of LAB for use as a dietary probiotic that buffers the negative consequences of antibiotic treatment. In vitro, LAB stimulated the production of immunoglobulin A (IgA) from isolated Peyer's patch cells. Inflammation-related genes (TNF-α, IL-1β, and IL-8) were up-regulated in Caco-2 cells stimulated with lipopolysaccharide (LPS), while tight-junction-related genes (ZO-1 and occludin) were down-regulated; the effects of LPS on inflammatory gene and tight-junction gene expression were reversed by treatment with LAB. Mice treated with a high dose of kanamycin showed increased serum IgE levels and decreases in serum IgA and fecal IgA levels; the number of Peyer's patch cells decreased with kanamycin treatment. However, subsequent LAB treatment was effective in reducing the serum IgE level and recovering the serum IgA and fecal IgA levels, as well as the number of Peyer's patch cells. In addition, ZO-1 and occludin mRNA levels were up-regulated in the ileum tissues of mice receiving LAB treatment. Lactic acid bacteria can enhance the intestinal immune system by improving the integrity of the intestinal barrier and increasing the production of IgA in Peyer's patches. Lactic acid bacteria should be considered a potential probiotic candidate for improving intestinal immunity, particularly in mitigating the negative consequences of antibiotic use.

  20. Junctional transfer in cultured vascular endothelium: II. Dye and nucleotide transfer

    International Nuclear Information System (INIS)

    Larson, D.M.; Sheridan, J.D.

    1985-01-01

    Vascular endothelial cultures, derived from large vessels, retain many of the characteristics of their in vivo counterparts. However, the observed reduction in size and complexity of intercellular gap and tight junctions in these cultured cells suggests that important functions, thought to be mediated by these structures, may be altered in vitro. In continuing studies on intercellular communication in vessel wall cells, the authors have quantitated the extent of junctional transfer of small molecular tracers (the fluorescent dye Lucifer Yellow CH and tritiated uridine nucleotides) in confluent cultures of calf aortic (BAEC) and umbilical vein (BVEC) endothelium. Both BAEC and BVEC show extensive (and quantitatively equivalent) dye and nucleotide transfer. As an analogue of intimal endothelium, the authors have also tested dye transfer in freshly isolated sheets of endothelium. Transfer in BAEC and BVEC sheets was more rapid, extensive and homogeneous than in the cultured cells, implying a reduction in molecular coupling as endothelium adapts to culture conditions. In addition, they have documented heterocellular nucleotide transfer between cultured endothelium and vascular smooth muscle cells, of particular interest considering the prevalence of ''myo-endothelial'' junctions in vivo. These data yield further information on junctional transfer in cultured vascular endothelium and have broad implications for the functional integration of the vessel wall in the physiology and pathophysiology of the vasculature

  1. The gender gap in depressive symptoms among Japanese elders: evaluating social support and health as mediating factors.

    Science.gov (United States)

    Tiedt, Andrew D

    2010-09-01

    Depression has been described as the world's most prevalent illness and a leading cause of disability across age groups. The global literature on aging and depression reports greater prevalence of depressive symptoms among women than men. This research applies data from the Nihon University Japanese Longitudinal Study of Aging to the gender gap in depressive symptoms reported by Japanese elders. This study takes the position that cultural norms centered on obligations to care determine both the prevalence of social support and its application by family members. Since gender is the lens through which social and cultural expectations are filtered, the experiences of men and women are distinguished from one another. This study hypothesized that coresidency and filial obligations should protect elders from depression. At the same time, combative relationships within households were posited to aggravate depressive symptoms among mothers-in-law and daughters-in-law. Weak social support networks, as captured through not being married, living alone and lack of community contact were also hypothesized to exacerbate isolation and heighten depressive symptoms. The analyses found that receipt of support both protected elders as well as worsened depressive symptoms. While women reported greater frequency of depressive symptoms overall, results indicated that men experienced a larger effect of decreased mobility and transitions to poor physical health on depressive symptoms than women.

  2. Microscopic theory of multiple-phonon-mediated dephasing and relaxation of quantum dots near a photonic band gap

    Science.gov (United States)

    Roy, Chiranjeeb; John, Sajeev

    2010-02-01

    We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored” electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.

  3. Photon-assisted Andreev transport and sub-gap structures

    DEFF Research Database (Denmark)

    Wildt, M; Kutchinsky, Jonatan; Taboryski, Rafael Jozef

    2000-01-01

    by multiple Andreev reflection processes we observe microwave induced satellites, shifted in voltage by multiples of hf/en, where hf is the photon energy and n is the number of quasi-particle traversals as determined by the Andreev processes. The observed behavior is the analogue of the so-called photon......We report new measurements of microwave-induced perturbations of the sub-harmonic energy gap structures in the current-voltage characteristics of superconductor-semiconductor-superconductor junctions. Around the sub-gap bias voltages associated with the enhanced quasi-particle transfer mediated......-assisted tunneling but here associated with the multiple Andreev reflections. (C) 2000 Elsevier Science B.V. All rights reserved....

  4. Mediatization

    DEFF Research Database (Denmark)

    Hjarvard, Stig

    2017-01-01

    Mediatization research shares media effects studies' ambition of answering the difficult questions with regard to whether and how media matter and influence contemporary culture and society. The two approaches nevertheless differ fundamentally in that mediatization research seeks answers...... research is concerned with long-term structural changes involving media, culture, and society, i.e. the influences of the media are understood in relation to how media are implicated in social and cultural changes and how these processes come to create new conditions for human communication and interaction....... From the perspective of mediatization research, the most important effect of the media stems from their embeddedness in culture and society....

  5. Molecular electronic junction transport

    DEFF Research Database (Denmark)

    Solomon, Gemma C.; Herrmann, Carmen; Ratner, Mark

    2012-01-01

    Whenasinglemolecule,oracollectionofmolecules,isplacedbetween two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative......, and focuses on mechanism, structure/function relations, regimes and mechanisms of transport, some molecular regularities, and some substantial challenges facing the field. Because there are many regimes and mechanisms in transport junctions, we will discuss time scales, geometries, and inelastic scattering...

  6. Intercellular junctions in the uterine epithelium of Salamandra salamandra (L.) (Amphibia, Urodela). A freeze-fracture study.

    Science.gov (United States)

    Greven, H; Robenek, H

    1980-01-01

    Intercellular junctions in the uterine epithelium of the ovoviviparous urodele Salamandra salamandra were studied in pregnant and non-pregnant females by freeze-fracture technique. Junctional complexes consist of zonulae occludentes (tight junctions) and numerous maculae adhaerentes (desmosomes); z. adhaerentes and nexuses (gap junctions) could not be identified. Tight junctions are of the "flexible" type exhibiting loosely interconnected fibrils. The fibrillary network appears stretched more often in pregnant females possibly due to the mechanical stress of pregnancy. The structure and occurrence of the junctions identified, especially that of the tight junctions, is discussed with regard to the functions of the uterus during pregnancy.

  7. Interactive effects of inflammatory cytokine and abundant low-molecular-weight PAHs on inhibition of gap junctional intercellular communication, disruption of cell proliferation control, and the AhR-dependent transcription

    Czech Academy of Sciences Publication Activity Database

    Kabátková, Markéta; Svobodová, Jana; Pěnčíková, K.; Mohatad, D.S.; Šmerdová, Lenka; Kozubík, Alois; Machala, M.; Vondráček, Jan

    2015-01-01

    Roč. 232, č. 1 (2015), s. 113-121 ISSN 0378-4274 R&D Projects: GA ČR(CZ) GAP503/11/1227; GA ČR(CZ) GA13-07711S Institutional support: RVO:68081707 Keywords : PAHs * Inflammation * Cell proliferation Subject RIV: BO - Biophysics Impact factor: 3.522, year: 2015

  8. Adenoviral vector-mediated expression of B-50/GAP-43 induces alterations in the membrane organization of olfactory axon terminals in vivo

    NARCIS (Netherlands)

    Holtmaat, Anthony J D G; Hermens, W.T.J.M.C.; Sonnemans, M.A.F.; Giger, Roman J; Van Leeuwen, F W; Kaplitt, M G; Oestreicher, A B; Gispen, Willem Hendrik; Verhaagen, J

    1997-01-01

    B-50/GAP-43 is an intraneuronal membrane-associated growth cone protein with an important role in axonal growth and regeneration. By using adenoviral vector-directed expression of B-50/GAP-43 we studied the morphogenic action of B-50/GAP-43 in mature primary olfactory neurons that have established

  9. No junctional communication between epithelial cells in hydra

    DEFF Research Database (Denmark)

    de Laat, S W; Tertoolen, L G; Grimmelikhuijzen, C J

    1980-01-01

    Diffusion gradients of morphogens have been inferred as a basis for the control of morphogenesis in hydra, and morphogenetic substances have been found which, on the basis of their molecular weight (MW), should be able to pass gap junctions. There have been several reports of the presence of gap...... junctions between epithelial cells of hydra. However, until now, there has been no report published on whether these junctions enable the epithelial cells to exchange molecules of small molecular weight, as has been described in other organisms. Therefore we decided to investigate the communicative...... properties of the junctional membranes by electrophysiological methods and by intracellular-dye iontophoresis. We report here that no electrotonic coupling is detectable between epithelial cells of Hydra attenuata in: (1) intact animals, (2) head-regenerating animals, (3) cell re-aggregates, and (4) hydra...

  10. Functional Molecular Junctions Derived from Double Self-Assembled Monolayers.

    Science.gov (United States)

    Seo, Sohyeon; Hwang, Eunhee; Cho, Yunhee; Lee, Junghyun; Lee, Hyoyoung

    2017-09-25

    Information processing using molecular junctions is becoming more important as devices are miniaturized to the nanoscale. Herein, we report functional molecular junctions derived from double self-assembled monolayers (SAMs) intercalated between soft graphene electrodes. Newly assembled molecular junctions are fabricated by placing a molecular SAM/(top) electrode on another molecular SAM/(bottom) electrode by using a contact-assembly technique. Double SAMs can provide tunneling conjugation across the van der Waals gap between the terminals of each monolayer and exhibit new electrical functions. Robust contact-assembled molecular junctions can act as platforms for the development of equivalent contact molecular junctions between top and bottom electrodes, which can be applied independently to different kinds of molecules to enhance either the structural complexity or the assembly properties of molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nanomembrane-based mesoscopic superconducting hybrid junctions.

    Science.gov (United States)

    Thurmer, Dominic J; Bof Bufon, Carlos Cesar; Deneke, Christoph; Schmidt, Oliver G

    2010-09-08

    A new method for combining top-down and bottom-up approaches to create superconductor-normal metal-superconductor niobium-based Josephson junctions is presented. Using a rolled-up semiconductor nanomembrane as scaffolding, we are able to create mesoscopic gold filament proximity junctions. These are created by electromigration of gold filaments after inducing an electric field mediated breakdown in the semiconductor nanomembrane, which can generate nanometer sized structures merely using conventional optical lithography techniques. We find that the created point contact junctions exhibit large critical currents of a few milliamps at 4.2 K and an I(c)R(n) product placing their characteristic frequency in the terahertz region. These nanometer-sized filament devices can be further optimized and integrated on a chip for their use in superconductor hybrid electronics circuits.

  12. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  13. Junction-FET dosimeter

    International Nuclear Information System (INIS)

    Tomimasu, T.; Yamazaki, T.

    1976-01-01

    The performance of a new junction-FET dosimeter and its application to the beam profile measurement are presented. One of the two junction FET's making up an astable multivibrator is used as a small-size (approx.0.4x0.4 mm) high-level dose detector. The irradiated dose can be estimated by the amount of the decrease of the oscillator period of the multivibrator. The distinct advantages in its small size and superior resistive property to radiation effect enable us to measure the cross-sectional profile of the electron beam from a linac with high spatial resolution of about 0.4 mm

  14. Tunable Nitride Josephson Junctions.

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lewis, Rupert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfley, Steven L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolak, Matthaeus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.

  15. Potentiation of electrical and chemical synaptic transmission mediated by endocannabinoids

    Science.gov (United States)

    Cachope, Roger; Mackie, Ken; Triller, Antoine; O’Brien, John; Pereda, Alberto E.

    2009-01-01

    SUMMARY Endocannabinoids are well established as inhibitors of chemical synaptic transmission via presynaptic activation of the cannabinoid type 1 receptor (CB1R). Contrasting this notion, we show that dendritic release of endocannabinoids mediates potentiation of synaptic transmission at mixed (electrical and chemical) synaptic contacts on the goldfish Mauthner cell. Remarkably, the observed enhancement was not restricted to the glutamatergic component of the synaptic response but also included a parallel increase in electrical transmission. This novel effect involved the activation of CB1 receptors and was indirectly mediated via the release of dopamine from nearby varicosities, which in turn led to potentiation of the synaptic response via a cAMP-dependent protein kinase-mediated postsynaptic mechanism. Thus, endocannabinoid release can potentiate synaptic transmission and its functional roles include the regulation of gap junction-mediated electrical synapses. Similar interactions between endocannabinoid and dopaminergic systems may be widespread and potentially relevant for the motor and rewarding effects of cannabis derivatives. PMID:18093525

  16. Short Ballistic Josephson Coupling in Planar Graphene Junctions with Inhomogeneous Carrier Doping

    Science.gov (United States)

    Park, Jinho; Lee, Jae Hyeong; Lee, Gil-Ho; Takane, Yositake; Imura, Ken-Ichiro; Taniguchi, Takashi; Watanabe, Kenji; Lee, Hu-Jong

    2018-02-01

    We report on short ballistic (SB) Josephson coupling in junctions embedded in a planar heterostructure of graphene. Ballistic Josephson coupling is confirmed by the Fabry-Perot-type interference of the junction critical current Ic . The product of Ic and the normal-state junction resistance RN , normalized by the zero-temperature gap energy Δ0 of the superconducting electrodes, turns out to be exceptionally large close to 2, an indication of strong Josephson coupling in the SB junction limit. However, Ic shows a temperature dependence that is inconsistent with the conventional short-junction-like behavior based on the standard Kulik-Omel'yanchuk prediction. We argue that this feature stems from the effects of inhomogeneous carrier doping in graphene near the superconducting contacts, although the junction is in fact in the short-junction limit.

  17. Knowledge Gaps

    DEFF Research Database (Denmark)

    Lyles, Marjorie; Pedersen, Torben; Petersen, Bent

    2003-01-01

    , assimilating, and utilizing knowledge - are crucial determinants ofknowledge gap elimination. In contrast, the two factors deemed essential in traditionalinternationalization process theory - elapsed time of operations and experientiallearning - are found to have no or limited effect.Key words......: Internationalization, knowledge gap, absorptive capacity, learning box....

  18. Gap Resolution

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-25

    Gap Resolution is a software package that was developed to improve Newbler genome assemblies by automating the closure of sequence gaps caused by repetitive regions in the DNA. This is done by performing the follow steps:1) Identify and distribute the data for each gap in sub-projects. 2) Assemble the data associated with each sub-project using a secondary assembler, such as Newbler or PGA. 3) Determine if any gaps are closed after reassembly, and either design fakes (consensus of closed gap) for those that closed or lab experiments for those that require additional data. The software requires as input a genome assembly produce by the Newbler assembler provided by Roche and 454 data containing paired-end reads.

  19. Fabrication of shuttle-junctions for nanomechanical transfer of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, A V; Gordeev, S N [Department of Physics, University of Bath, Claverton Down Road, Bath BA2 7AS (United Kingdom); Koentjoro, O F; Raithby, P R; French, R W; Marken, F [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AS (United Kingdom); Savel' ev, S, E-mail: A.Moskalenko@bath.ac.u [Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2009-12-02

    We report on the fabrication of nanomechanical devices for shuttling of electrons from one electrode to another. Each device consists of a 20 nm diameter gold nanoparticle embedded within the gap between two gold electrodes. In two different kinds of shuttle-junctions the nanoparticle is attached to the electrodes through either (i) a single layer of 1,8-octanedithiol or (ii) a multilayer of 1-octanethiol molecules. The thiol layers play the role of 'damped springs', such that when a sufficient voltage bias is applied to the junction, the nanoparticle is expected to start oscillating and thereby transferring electrons from one electrode to the other. For both kinds of shuttle-junctions we observed an abrupt increase in the transmitted current above a threshold voltage, which can be attributed to a transition from the stationary to the oscillating regime. The threshold voltage was found to be lower for single-layer shuttle-junctions.

  20. Doped semiconductor nanocrystal junctions

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Ł.; Mélin, T., E-mail: thierry.melin@isen.iemn.univ-lille1.fr [Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS-UMR8520, Avenue Poincaré, F-59652 Villeneuve d’Ascq (France); Nguyen-Tran, T.; Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces, CNRS-UMR7647, Ecole Polytechnique, F-91128 Palaiseau (France)

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  1. SUMO modification through rapamycin-mediated heterodimerization reveals a dual role for Ubc9 in targeting RanGAP1 to nuclear pore complexes

    International Nuclear Information System (INIS)

    Zhu Shanshan; Zhang Hong; Matunis, Michael J.

    2006-01-01

    SUMOs (small ubiquitin-related modifiers) are eukaryotic proteins that are covalently conjugated to other proteins and thereby regulate a wide range of important cellular processes. The molecular mechanisms by which SUMO modification influences the functions of most target proteins and cellular processes, however, remain poorly defined. A major obstacle to investigating the effects of SUMO modification is the availability of a system for selectively inducing the modification or demodification of an individual protein. To address this problem, we have developed a procedure using the rapamycin heterodimerizer system. This procedure involves co-expression of rapamycin-binding domain fusion proteins of SUMO and candidate SUMO substrates in living cells. Treating cells with rapamycin induces a tight association between SUMO and a single SUMO substrate, thereby allowing specific downstream effects to be analyzed. Using RanGAP1 as a model SUMO substrate, the heterodimerizer system was used to investigate the molecular mechanism by which SUMO modification targets RanGAP1 from the cytoplasm to nuclear pore complexes (NPCs). Our results revealed a dual role for Ubc9 in targeting RanGAP1 to NPCs: In addition to conjugating SUMO-1 to RanGAP1, Ubc9 is also required to form a stable ternary complex with SUMO-1 modified RanGAP1 and Nup358. As illustrated by our studies, the rapamycin heterodimerizer system represents a novel tool for studying the molecular effects of SUMO modification

  2. Rasputin, the Drosophila homologue of the RasGAP SH3 binding protein, functions in ras- and Rho-mediated signaling.

    Science.gov (United States)

    Pazman, C; Mayes, C A; Fanto, M; Haynes, S R; Mlodzik, M

    2000-04-01

    The small GTPase Ras plays an important role in many cellular signaling processes. Ras activity is negatively regulated by GTPase activating proteins (GAPs). It has been proposed that RasGAP may also function as an effector of Ras activity. We have identified and characterized the Drosophila homologue of the RasGAP-binding protein G3BP encoded by rasputin (rin). rin mutants are viable and display defects in photoreceptor recruitment and ommatidial polarity in the eye. Mutations in rin/G3BP genetically interact with components of the Ras signaling pathway that function at the level of Ras and above, but not with Raf/MAPK pathway components. These interactions suggest that Rin is required as an effector in Ras signaling during eye development, supporting an effector role for RasGAP. The ommatidial polarity phenotypes of rin are similar to those of RhoA and the polarity genes, e.g. fz and dsh. Although rin/G3BP interacts genetically with RhoA, affecting both photoreceptor differentiation and polarity, it does not interact with the gain-of-function genotypes of fz and dsh. These data suggest that Rin is not a general component of polarity generation, but serves a function specific to Ras and RhoA signaling pathways.

  3. The role of remote closure in the perception of occlusion at junctions and illusory contours.

    Science.gov (United States)

    Gillam, Barbara J; Grove, Philip M; Layden, Jessica

    2010-01-01

    Abstract. Perceived occlusion at T-junctions or illusory contours at implicit T-junctions are often modelled by using edge information without surface context. We explored the effect of closure on perceived occlusion at T-junctions. Two vertical lines separated by a gap each had six abutting horizontal lines on opposite sides forming T-junctions. These lines were either closed or not closed into pairs at the stem ends of the Ts. In experiment 1, closed T-junction stems gave a much stronger sense of occlusion at the vertical lines than unclosed ones, even though closure information was remote from the putative occlusion and local T-junction information remained constant. When the outer two T-junctions were converted to L-junctions, perceived occlusion considerably diminished. The effect of closure on illusory-contour strength for stimuli like those of experiment 1 but with the vertical lines omitted was explored in experiment 2. The two sets of horizontal lines, separated by a gap, were either closed or not closed into pairs at their outer ends. Illusory-contour strength along the vertical alignments was much greater for closed pairs. Line terminations on both sides of the gap enhanced illusory-contour strength, but whether they were collinear or not had little effect.

  4. Fractional order junctions

    Science.gov (United States)

    Machado, J. Tenreiro

    2015-01-01

    Gottfried Leibniz generalized the derivation and integration, extending the operators from integer up to real, or even complex, orders. It is presently recognized that the resulting models capture long term memory effects difficult to describe by classical tools. Leon Chua generalized the set of lumped electrical elements that provide the building blocks in mathematical models. His proposal of the memristor and of higher order elements broadened the scope of variables and relationships embedded in the development of models. This paper follows the two directions and proposes a new logical step, by generalizing the concept of junction. Classical junctions interconnect system elements using simple algebraic restrictions. Nevertheless, this simplistic approach may be misleading in the presence of unexpected dynamical phenomena and requires including additional "parasitic" elements. The novel γ -junction includes, as special cases, the standard series and parallel connections and allows a new degree of freedom when building models. The proposal motivates the search for experimental and real world manifestations of the abstract conjectures.

  5. Do gap junctions regulate synchrony in the parkinsonian basal ganglia?

    NARCIS (Netherlands)

    Schwab, B.C.

    2016-01-01

    Patients with Parkinson’s disease (PD) typically suffer severely from different types of symptoms. Motor symptoms, restricting the patients’ ability to perform controlled movements in daily life, are of special clinical interest and have been related to neural activity in the basal ganglia.

  6. Structure modeling and mutational analysis of gap junction beta 2 ...

    African Journals Online (AJOL)

    Therefore, a 3D structure of GJB2 was developed using comparative modeling approach. For modeling, a template was selected by blastp at NCBI and the best template selected was 2ZW3. By comparing the template-target sequence, a model was created using MODELLER, a program for homology modeling.

  7. Possible roles of neural gap junctions in Parkinson's disease pathology

    NARCIS (Netherlands)

    Schwab, B.C.; van Wezel, Richard Jack Anton; Heida, Tjitske; van Gils, Stephanus A.

    2013-01-01

    The pathology of Parkinson's disease (PD) is characterized by modified behavior of neuronal networks in the basal ganglia after depletion of dopamine. PD states show bursting neural activity and high synchronization among neurons as well as altered oscillations in local field potentials. These

  8. Conduction slowing by the gap junctional uncoupler carbenoxolone

    NARCIS (Netherlands)

    de Groot, [No Value; Veenstra, T; Verkerk, AO; Wilders, R; Smits, JPP; Wilms-Schopman, FJG; Wiegerinck, RF; Bourier, J; Belterman, CNW; Coronel, R; Verheijck, EE

    2003-01-01

    Background: Cellular electrical coupling is essential for normal propagation of the cardiac action potential, whereas reduced electrical coupling is associated with arrhythrmas. Known cellular uncoupling agents have severe side effects on membrane ionic currents. We investigated the effect of

  9. (V44M) impairs gap junction function causing congenital cataract

    Indian Academy of Sciences (India)

    LIJUAN CHEN

    2017-12-20

    Dec 20, 2017 ... Hela cells transfected with wt-Cx46 and Cx46 V44M were plated on 35 mm dishes to reach over 95% confluency. The medium was changed to HBSS plus the fluorescent dye Alexa Fluor 350 (Thermo Fisher Scientific, Waltham,. USA), and a scalpel blade was used to make many paral- lel lines on the dish.

  10. Illegitimate V(D)J recombination-mediated deletions in Notch1 and Bcl11b are not sufficient for extensive clonal expansion and show minimal age or sex bias in frequency or junctional processing

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, Devin P., E-mail: devin.champagne@uvm.edu; Shockett, Penny E., E-mail: pshockett@selu.edu

    2014-03-15

    Highlights: • Examines illegitimate V(D)J deletion junctions in Notch1 and Bcl11b. • Suggests little influence of deletions alone on clonal outgrowth in wild-type mice. • No age or sex biases in frequency, clonality, or junctional processing observed. • Contrasts with previous results at TCRβ and HPRT1 loci. • Deletions in Bcl11b may be tolerated more easily than those in Notch1. - Abstract: Illegitimate V(D)J recombination at oncogenes and tumor suppressor genes is implicated in formation of several T cell malignancies. Notch1 and Bcl11b, genes involved in developing T cell specification, selection, proliferation, and survival, were previously shown to contain hotspots for deletional illegitimate V(D)J recombination associated with radiation-induced thymic lymphoma. Interestingly, these deletions were also observed in wild-type animals. In this study, we conducted frequency, clonality, and junctional processing analyses of Notch1 and Bcl11b deletions during mouse development and compared results to published analyses of authentic V(D)J rearrangements at the T cell receptor beta (TCRβ) locus and illegitimate V(D)J deletions observed at the human, nonimmune HPRT1 locus not involved in T cell malignancies. We detect deletions in Notch1 and Bcl11b in thymic and splenic T cell populations, consistent with cells bearing deletions in the circulating lymphocyte pool. Deletions in thymus can occur in utero, increase in frequency between fetal and postnatal stages, are detected at all ages examined between fetal and 7 months, exhibit only limited clonality (contrasting with previous results in radiation-sensitive mouse strains), and consistent with previous reports are more frequent in Bcl11b, partially explained by relatively high Recombination Signal Information Content (RIC) scores. Deletion junctions in Bcl11b exhibit greater germline nucleotide loss, while in Notch1 palindromic (P) nucleotides are more abundant, although average P nucleotide length is

  11. Many-junction photovoltaic device performance under non-uniform high-concentration illumination

    Science.gov (United States)

    Valdivia, Christopher E.; Wilkins, Matthew M.; Chahal, Sanmeet S.; Proulx, Francine; Provost, Philippe-Olivier; Masson, Denis P.; Fafard, Simon; Hinzer, Karin

    2017-09-01

    A parameterized 3D distributed circuit model was developed to calculate the performance of III-V solar cells and photonic power converters (PPC) with a variable number of epitaxial vertically-stacked pn junctions. PPC devices are designed with many pn junctions to realize higher voltages and to operate under non-uniform illumination profiles from a laser or LED. Performance impacts of non-uniform illumination were greatly reduced with increasing number of junctions, with simulations comparing PPC devices with 3 to 20 junctions. Experimental results using Azastra Opto's 12- and 20-junction PPC illuminated by an 845 nm diode laser show high performance even with a small gap between the PPC and optical fiber output, until the local tunnel junction limit is reached.

  12. Dynamics of fractional vortices in long Josephson junctions

    International Nuclear Information System (INIS)

    Gaber, Tobias

    2007-01-01

    In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-κ junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-κ junctions and fractional vortices are generalizations of the well-known 0-π junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-κ junctions that are based on standard Nb-AlO x -Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)

  13. Josephson junction analog and quasiparticle-pair current

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Pedersen, Niels Falsig

    1973-01-01

    A close analogy exists between a Josephson junction and a phase-locked loop. A new type of electrical analog based on this principle is presented. It is shown that the inclusion in this analog of a low-pass filter gives rise to a current of the same form as the Josephson quasiparticle-pair curren....... A simple picture of the quasiparticle-pair current, which gives the right dependences, is obtained by assuming a junction cutoff frequency to be at the energy gap. ©1973 American Institute of Physics...

  14. Nonlinearity in superconductivity and Josephson junctions

    International Nuclear Information System (INIS)

    Lazarides, N.

    1995-01-01

    Within the framework of the Bardeen, Cooper and Schrieffers (BCS) theory, the influence of anisotropy on superconducting states are investigated. Crystal anisotropy exists in un-conventional low temperature superconductors as e.g. U 1-x Th x Be 13 and in high temperature superconductors. Starting from a phenomenological pairing interaction of the electrons or holes, the BCS approach is used to derive a set of coupled nonlinear algebraic equations for the momentum dependent gap parameter. The emphasis is put on bifurcation phenomena between s-, d-wave and mixed s- and d-wave symmetry and the influence on measurable quantities as the electron specific heat, spin susceptibility and Josephson tunnelling. Pitch-fork and perturbed pitch-fork bifurcations have been found separating s- and d-wave superconducting states from mixed s- and d-wave states. The additional superconducting states give rise to jumps in the electron specific heat below the transition temperature. These jumps are rounded in the case of perturbed pitch-fork bifurcations. An experiment to measure the sign of the interlayer interaction using dc SQUIDS is suggested. The Ambegaokar-Baratoff formalism has been used for calculating the quasiparticle current and the two phase coherent tunnelling currents in a Josephson junction made of anisotropic superconductors. It is shown that anisotropy can lead to a reduction in the product of the normal resistance and the critical current. For low voltages across the junction the usual resistively shunted Josephson model can be used. Finally, bunching in long circular Josephson junctions and suppression of chaos in point junctions have been investigated. (au) 113 refs

  15. Cementoenamel junction: An insight

    Directory of Open Access Journals (Sweden)

    Kharidi Laxman Vandana

    2014-01-01

    Full Text Available The location and nature of cemento-enamel junction (CEJ are more than descriptive terms used simply to describe some aspects of tooth morphology; however, CEJ gains a lot of clinical significance due to various measurements dependent on it. It may be necessary to determine the location and pathological changes occurring at CEJ to make a diagnosis and treat diseases pertaining to epithelial attachment and gingival margin. However, the information related to CEJ is not discussed commonly. Hence, the present review paper provides an insight on CEJ in both primary and permanent dentition.

  16. The human myotendinous junction

    DEFF Research Database (Denmark)

    Knudsen, A B; Larsen, M; Mackey, Abigail

    2015-01-01

    The myotendinous junction (MTJ) is a specialized structure in the musculotendinous system, where force is transmitted from muscle to tendon. Animal models have shown that the MTJ takes form of tendon finger-like processes merging with muscle tissue. The human MTJ is largely unknown and has never...... been described in three dimensions (3D). The aim of this study was to describe the ultrastructure of the human MTJ and render 3D reconstructions. Fourteen subjects (age 25 ± 3 years) with isolated injury of the anterior cruciate ligament (ACL), scheduled for reconstruction with a semitendinosus...

  17. Fluorocitrate-mediated astroglial dysfunction causes seizures.

    Science.gov (United States)

    Willoughby, John O; Mackenzie, Lorraine; Broberg, Marita; Thoren, Anna E; Medvedev, Andrei; Sims, Neil R; Nilsson, Michael

    2003-10-01

    A role for astroglia in epileptogenesis has been hypothesised but is not established. Low doses of fluorocitrate specifically and reversibly disrupt astroglial metabolism by blocking aconitase, an enzyme integral to the tricarboxylic acid cycle. We used cerebral cortex injections of fluorocitrate, at a dose that we demonstrated to inhibit astroglial metabolism selectively, to determine whether astroglial disturbances lead to seizures. Rats were halothane-anesthetized, and 0.8 nmol of sodium fluorocitrate was injected into the cerebral cortex. Extradural electroencephalogram (EEG) electrodes were implanted, after which the anesthesia was ceased and the animals were observed. In all experiments, 14 of 15 fluorocitrate-treated animals exhibited epileptiform EEG discharges, with some animals exhibiting convulsive seizures. Discharges commenced as early as 30 min postfluorocitrate injection. Intraperitoneal octanol, but not halothane by inhalation, given to test the possible participation of gap junctions in EEG discharge generation, blocked or delayed the occurrence of discharges after fluorocitrate. These results indicate that focal cerebrocortical astroglial dysfunction leads to focal epileptiform discharges and sometimes to convulsive seizures and that the process possibly depends on effects mediated by gap junctions. Copyright 2003 Wiley-Liss, Inc.

  18. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption

    NARCIS (Netherlands)

    Simon, DB; Lu, Y; Choate, KA; Velazquez, H; Al-Sabban, E; Praga, M; Casari, C; Bettinelli, A; Colussi, C; Rodriguez-Soriano, J; McCredie, D; Milford, D; Sanjad, S; Lifton, RP

    1999-01-01

    Epithelia permit selective and regulated flux from apical to basolateral surfaces by transcellular passage through cells or paracellular flux between cells. Tight junctions constitute the barrier to paracellular conductance; however, Little is known about the specific molecules that mediate

  19. Neuromuscular junction disorders.

    Science.gov (United States)

    Verschuuren, Jan; Strijbos, Ellen; Vincent, Angela

    2016-01-01

    Diseases of the neuromuscular junction comprise a wide range of disorders. Antibodies, genetic mutations, specific drugs or toxins interfere with the number or function of one of the essential proteins that control signaling between the presynaptic nerve ending and the postsynaptic muscle membrane. Acquired autoimmune disorders of the neuromuscular junction are the most common and are described here. In myasthenia gravis, antibodies to acetylcholine receptors or to proteins involved in receptor clustering, particularly muscle-specific kinase, cause direct loss of acetylcholine receptors or interfere with the agrin-induced acetylcholine receptor clustering necessary for efficient neurotransmission. In the Lambert-Eaton myasthenic syndrome (LEMS), loss of the presynaptic voltage-gated calcium channels results in reduced release of the acetylcholine transmitter. The conditions are generally recognizable clinically and the diagnosis confirmed by serologic testing and electromyography. Screening for thymomas in myasthenia or small cell cancer in LEMS is important. Fortunately, a wide range of symptomatic treatments, immunosuppressive drugs, or other immunomodulating therapies is available. Future research is directed to understanding the pathogenesis, discovering new antigens, and trying to develop disease-specific treatments. © 2016 Elsevier B.V. All rights reserved.

  20. A15 Nb-Sn tunnel junction fabrication and properties

    International Nuclear Information System (INIS)

    Rudman, D.A.; Hellman, F.; Hammond, R.H.; Beasley, M.R.

    1984-01-01

    We have investigated the deposition conditions necessary to produce optimized films of A15 Nb-Sn (19--26 at. % Sn) by electron-beam codeposition. Reliable high-quality superconducting tunnel junctions can be made on this material by using an oxidized-amorphous silicon overlayer as the tunneling barrier and lead as the counter-electrode. These junctions have been used both as a tool for materials diagnosis and as a probe of the superconducting properties (critical temperature and gap) of the films. Careful control of the substrate temperature during the growth of the films has proved critical to obtain homogeneous samples. When the substrate temperature is properly stabilized, stoichiometric Nb 3 Sn is found to be relatively insensitive to the deposition temperature and conditions. In contrast, the properties of the off-stoichiometry (Sn-poor) material depend strongly on the deposition temperature. For this Sn-poor material the ratio 2Δ/kT/sub c/ at a given composition increases with increasing deposition temperature. This change appears to be due to an increase in the gap at the surface of the material (as measured by tunneling) relative to the critical temperature of the bulk. All the tunnel junctions exhibit some persistent nonidealities in their current-voltage characteristics that are qualitatively insensitive to composition or deposition conditions. In particular, the junctions show excess conduction below the sum of the energy gaps (with onset at the counter-electrode gap) and a broadened current rise at the sum gap. The detailed origins of these problems are not yet understood

  1. Nanotube junctions and the genus of multi-tori.

    Science.gov (United States)

    Diudea, Mircea V; Szefler, Beata

    2012-06-14

    Carbon nanotube junctions can be modeled by fullerene spanning or by using some operations on map. They can self-assemble into more complex structures, such as finite or infinite high genera multi-tori. Four junctions of tetrahedral and octahedral symmetry, covered by patches consisting only of hexagons, were designed. Their stability is discussed in terms of total energy, evaluated at Hartree-Fock (HF) level of theory, HOMO-LUMO gap, strain energy, HOMA index of aromaticity and the Kekulé structure count. Vibrational spectra of these junctions are given as well. A new multi-toroidal structure, of octahedral symmetry, is presented for the first time. The study on topology of the multi-tori herein designed revealed the relation of these structures with the genus of their embedding surface.

  2. Mixing in T-junctions

    NARCIS (Netherlands)

    Kok, Jacobus B.W.; van der Wal, S.

    1996-01-01

    The transport processes that are involved in the mixing of two gases in a T-junction mixer are investigated. The turbulent flow field is calculated for the T-junction with the k- turbulence model by FLOW3D. In the mathematical model the transport of species is described with a mixture fraction

  3. Fluid Flow at Branching Junctions

    OpenAIRE

    Sochi, Taha

    2013-01-01

    The flow of fluids at branching junctions plays important kinematic and dynamic roles in most biological and industrial flow systems. The present paper highlights some key issues related to the flow of fluids at these junctions with special emphasis on the biological flow networks particularly blood transportation vasculature.

  4. Terahertz pulse driven Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Camerlingo, Carlo, E-mail: c.camerlingo@cib.na.cnr.it [CNR - Consiglio Nazionale delle Ricerche, Istituto di Cibernetica ' E. Caianiello' , Via Campi Flegrei 34, I-80078 Pozzuoli (Italy)

    2011-09-15

    Theoretical model of the ac Josephson effect in pulsed current driven junctions. Evaluation of the voltage response of a THz pulsed radiation driven Josephson junction. The pulsed current bias induces steps in the junction I/V characteristics for voltages depending on the pulse rate. Working principles of a fast response detector for THz pulsed radiation. The voltage response of a Josephson junction to a pulsed terahertz current is evaluated in the limit of a negligible junction capacitance (overdamped limit). The time-dependent superconductor phase difference across the junction is calculated in the framework of the standard resistive shunted junction model by using a perturbative method. The pulsed current bias affects the time average value of the voltage across the junction and current steps are induced in the current-voltage characteristics for voltage values depending on the pulse repetition rate. The current step height is proportional to the square of the pulse time width ({tau}) to the period (T) ratio. A fast response detector for pulsed Terahertz radiation is proposed, with an expected responsivity of the order of 0.1 V/W and an equivalent noise power of about 3 x 10{sup -10} W/Hz{sup 1/2}.

  5. Electron transport in molecular junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun

    This thesis addresses the electron transport in molecular junctions, focusing on the energy level alignment and correlation effects. Various levels of theory have been applied to study the structural and electronic effects in different molecular junctions, starting from the single particle density...

  6. Topological Properties of Superconducting Junctions

    NARCIS (Netherlands)

    Pikulin, D.I.; Nazarov, Y.V.

    Motivated by recent developments in the field of one-dimensional topological superconductors, we investigate the topological properties of s-matrix of generic superconducting junctions where dimension should not play any role. We argue that for a finite junction the s-matrix is always topologically

  7. dc properties of series-parallel arrays of Josephson junctions in an external magnetic field

    International Nuclear Information System (INIS)

    Lewandowski, S.J.

    1991-01-01

    A detailed dc theory of superconducting multijunction interferometers has previously been developed by several authors for the case of parallel junction arrays. The theory is now extended to cover the case of a loop containing several junctions connected in series. The problem is closely associated with high-T c superconductors and their clusters of intrinsic Josephson junctions. These materials exhibit spontaneous interferometric effects, and there is no reason to assume that the intrinsic junctions form only parallel arrays. A simple formalism of phase states is developed in order to express the superconducting phase differences across the junctions forming a series array as functions of the phase difference across the weakest junction of the system, and to relate the differences in critical currents of the junctions to gaps in the allowed ranges of their phase functions. This formalism is used to investigate the energy states of the array, which in the case of different junctions are split and separated by energy barriers of height depending on the phase gaps. Modifications of the washboard model of a single junction are shown. Next a superconducting inductive loop containing a series array of two junctions is considered, and this model is used to demonstrate the transitions between phase states and the associated instabilities. Finally, the critical current of a parallel connection of two series arrays is analyzed and shown to be a multivalued function of the externally applied magnetic flux. The instabilities caused by the presence of intrinsic serial junctions in granular high-T c materials are pointed out as a potential source of additional noise

  8. Ion bipolar junction transistors.

    Science.gov (United States)

    Tybrandt, Klas; Larsson, Karin C; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-06-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated.

  9. Graphene based superconducting junctions as spin sources for spintronics

    Science.gov (United States)

    Emamipour, Hamidreza

    2018-02-01

    We investigate spin-polarized transport in graphene-based ferromagnet-superconductor junctions within the Blonder-Tinkham-Klapwijk formalism by using spin-polarized Dirac-Bogoliubov-de-Gennes equations. We consider superconductor in spin-singlet s-wave pairing state and ferromagnet is modeled by an exchange field with energy of Ex. We have found that graphene-based junctions can be used to produce highly spin-polarized current in different situations. For example, if we design a junction with high Ex and EF compared to order parameter of superconductor, then one can have a large spin-polarized current which is tunable in magnitude and sign by bias voltage and Ex. Therefore graphene-based superconducting junction can be used in spintronic devices in alternative to conventional junctions or half-metallic ferromagnets. Also, we have found that the calculated spin polarization can be used as a tool to distinguish specular Andreev reflection (SAR) from the conventional Andreev reflection (CAR) such that in the case of CAR, spin polarization in sub-gap region is completely negative which means that spin-down current is greater than spin-up current. When the SAR is dominated, the spin polarization is positive at all bias-voltages, which itself shows that spin-up current is greater than spin-down current.

  10. Mechanical tuning of conductance and thermopower in helicene molecular junctions

    Czech Academy of Sciences Publication Activity Database

    Vacek, Jaroslav; Vacek Chocholoušová, Jana; Stará, Irena G.; Starý, Ivo; Dubi, Y.

    2015-01-01

    Roč. 7, č. 19 (2015), s. 8793-8802 ISSN 2040-3364 R&D Projects: GA ČR(CZ) GAP207/10/2207 Institutional support: RVO:61388963 Keywords : helicene molecular junctions * quantum interference * stereoselective syntheses * nonlinear optical properties Subject RIV: CC - Organic Chemistry Impact factor: 7.760, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/nr/c5nr01297j

  11. Morphology of the cemento-enamel junction in premolar teeth.

    Science.gov (United States)

    Arambawatta, Kapila; Peiris, Roshan; Nanayakkara, Deepthi

    2009-12-01

    The present study attempted to describe the distribution of the mineralized tissues that compose the cemento-enamel junction, with respect to both the different types of permanent premolars of males and females and the various surfaces of individual teeth. The cervical region of ground sections of 67 premolars that had been extracted for orthodontic reasons were analyzed using transmitted light microscopy to identify which of the following tissue interrelationships was present at the cemento-enamel junction: cementum overlapping enamel; enamel overlapping cementum; edge-to-edge relationship between cementum and enamel; or the presence of gaps between the enamel and cementum with exposed dentin. An edge-to-edge interrelation between root cementum and enamel was predominant (55.1%). In approximately one-third of the sample, gaps between cementum and enamel with exposed dentin were observed. Cementum overlapping enamel was less prevalent than previously reported, and enamel overlapping cementum was seen in a very small proportion of the sample. In any one tooth, the distribution of mineralized tissues at the cemento-enamel junction was irregular and unpredictable. The frequency of gaps between enamel and cementum with exposure of dentin was higher than previously reported, which suggests that this region is fragile and strongly predisposed to pathological changes. Hence, this region should be protected and carefully managed during routine clinical procedures such as dental bleaching, orthodontic treatment, and placement of restorative materials.

  12. Molecular Diffusion through Cyanobacterial Septal Junctions

    Directory of Open Access Journals (Sweden)

    Mercedes Nieves-Morión

    2017-01-01

    Full Text Available Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N2-fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the “septal junctions” (formerly known as “microplasmodesmata” linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans.

  13. Electron Conduction Mechanism And Inelastic Electron Tunneling Spectroscopy Of Porphyrin In A Nanoscale Molecular Junction

    Science.gov (United States)

    Esposito, Teresa; Dinolfo, Peter H.; Meunier, Vincent; Lewis, Kim Michelle

    In order to determine the mechanism for electron conduction through a porphyrin molecular junction, temperature dependent current-voltage (I/V) studies have been performed and compared to existing models of electron transport. Porphyrin molecular junctions are being studied for their potential application as an interconnect in molecular electronics due to their low attenuation factor (β electron tunneling spectrum (IETS) of the molecular junction, which is used to verify the presence of a molecule in the gap. Peaks in the spectra indicate the excitation of a vibrational mode which are compared to Fourier transform infrared spectroscopy and theoretical density functional theory calculations.

  14. Thermoelectric transport properties in graphene connected molecular junctions

    Science.gov (United States)

    Rodriguez, S. T.; Grosu, I.; Crisan, M.; Ţifrea, I.

    2018-02-01

    We study the electronic contribution to the main thermoelectric properties of a molecular junction consisting of a single quantum dot coupled to graphene external leads. The system electrical conductivity (G), Seebeck coefficient (S), and the thermal conductivity (κ), are numerically calculated based on a Green's function formalism that includes contributions up to the Hartree-Fock level. We consider the system leads to be made either of pure or gapped-graphene. To describe the free electrons in the gapped-graphene electrodes we used two possible scenarios, the massive gap scenario, and the massless gap scenario, respectively. In all cases, the Fano effect is responsible for a strong violation of the Wiedemann-Franz law and we found a substantial increase of the system figure of merit ZT due to a drastic reduction of the system thermal coefficient. In the case of gapped-graphene electrodes, the system figure of merit presents a maximum at an optimal value of the energy gap of the order of Δ / D ∼ 0.002 (massive gap scenario) and Δ / D ∼ 0.0026 (massless gap scenario). Additionally, for all cases, the system figure of merit is temperature dependent.

  15. Imaging of cervicothoracic junction trauma

    Directory of Open Access Journals (Sweden)

    Wongwaisayawan S

    2013-01-01

    Full Text Available Sirote Wongwaisayawan,1 Ruedeekorn Suwannanon,2 Rathachai Kaewlai11Department of Radiology, Ramathibodi Hospital and Mahidol University, Bangkok, Thailand; 2Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, ThailandAbstract: Cervicothoracic junction trauma is an important cause of morbidity and mortality in trauma patients. Imaging has played an important role in identifying injuries and guiding appropriate, timely therapy. Computed tomography is currently a method of choice for diagnosing cervicothoracic junction trauma, in which the pattern of injuries often suggests possible mechanisms and potential injuries. In this article, the authors describe and illustrate common and uncommon injuries that can occur in the cervicothoracic junction.Keywords: cervicothoracic junction, cervical spine, trauma, imaging, radiology

  16. The Control of Junction Flows

    National Research Council Canada - National Science Library

    Smith, Charles

    1997-01-01

    An experimental study of the effects of spatially-limited (i.e. localized) surface suction on unsteady laminar and turbulent junction flows was performed using hydrogen bubble flow visualization and Particle Image Velocimetry (PIV...

  17. Josephson junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  18. Peltier cooling in molecular junctions

    Science.gov (United States)

    Cui, Longji; Miao, Ruijiao; Wang, Kun; Thompson, Dakotah; Zotti, Linda Angela; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2018-02-01

    The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion1-4. Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions5-9 has enabled studies of the relationship between thermoelectricity and molecular structure10,11. However, observations of Peltier cooling in molecular junctions—a critical step for establishing molecular-based refrigeration—have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy12,13 with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted2-4,14.

  19. Electronic thermometry in tunable tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  20. The Gap Within the Gap

    Directory of Open Access Journals (Sweden)

    Katherine Michelmore

    2017-02-01

    Full Text Available Gaps in educational achievement between high- and low-income children are growing. Administrative data sets maintained by states and districts lack information about income but do indicate whether a student is eligible for subsidized school meals. We leverage the longitudinal structure of these data sets to develop a new measure of economic disadvantage. Half of eighth graders in Michigan are eligible for a subsidized meal, but just 14% have been eligible for subsidized meals in every grade since kindergarten. These children score 0.94 standard deviations below those who are never eligible for meal subsidies and 0.23 below those who are occasionally eligible. There is a negative, linear relationship between grades spent in economic disadvantage and eighth-grade test scores. This is not an exposure effect; the relationship is almost identical in third-grade, before children have been exposed to varying years of economic disadvantage. Survey data show that the number of years that a child will spend eligible for subsidized lunch is negatively correlated with her or his current household income. Years eligible for subsidized meals can therefore be used as a reasonable proxy for income. Our proposed measure can be used to estimate heterogeneous effects in program evaluations, to improve value-added calculations, and to better target resources.

  1. Characterization of the Tetraspan Junctional Complex (4JC) superfamily.

    Science.gov (United States)

    Chou, Amy; Lee, Andre; Hendargo, Kevin J; Reddy, Vamsee S; Shlykov, Maksim A; Kuppusamykrishnan, Harikrishnan; Medrano-Soto, Arturo; Saier, Milton H

    2017-03-01

    Connexins or innexins form gap junctions, while claudins and occludins form tight junctions. In this study, statistical data, derived using novel software, indicate that these four junctional protein families and eleven other families of channel and channel auxiliary proteins are related by common descent and comprise the Tetraspan (4 TMS) Junctional Complex (4JC) Superfamily. These proteins all share similar 4 transmembrane α-helical (TMS) topologies. Evidence is presented that they arose via an intragenic duplication event, whereby a 2 TMS-encoding genetic element duplicated tandemly to give 4 TMS proteins. In cases where high resolution structural data were available, the conclusion of homology was supported by conducting structural comparisons. Phylogenetic trees reveal the probable relationships of these 15 families to each other. Long homologues containing fusions to other recognizable domains as well as internally duplicated or fused domains are reported. Large "fusion" proteins containing 4JC domains proved to fall predominantly into family-specific patterns as follows: (1) the 4JC domain was N-terminal; (2) the 4JC domain was C-terminal; (3) the 4JC domain was duplicated or occasionally triplicated and (4) mixed fusion types were present. Our observations provide insight into the evolutionary origins and subfunctions of these proteins as well as guides concerning their structural and functional relationships. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Improving the efficiency of GaP LED's which emit green light

    Science.gov (United States)

    Ladany, I.; Kressel, H.

    1972-01-01

    A study of techniques for preparing n-type material and junctions which yield the most consistent high diode efficiency values high lighted the role that Ga vacancies and/or associated defects play in reducing the green luminescent efficiency of n-type GaP. A useful method for obtaining good quality material was developed. It is shown that junction formation at high temperatures in a process where the n to p transition occurs without removing the substrate from the furnace yields devices superior to those obtained by diffusion or double epitaxy in the conventional manner previously used for GaP junction formation.

  3. Morphology of the cementoenamel junction of primary teeth.

    Science.gov (United States)

    Francischone, Leda Aparecida; Consolaro, Alberto

    2008-01-01

    The purpose of this study was to investigate anatomically the cementoenamel junctions (CEJs) of primary teeth by observation of the morphological relationship among enamel, cementum, and dentin. One hundred five human extracted primary teeth were analyzed by scanning electron microscopy. The teeth were divided into 7 groups, each with 15 primary teeth, as follows: maxillary central incisors (group 1); maxillary lateral incisors (group 2); maxillary canines (group 3); maxillary molars (group 4); mandibular incisors (group 5); mandibular canines (group 6); and mandibular molars (group 7). The entire cervical region was analyzed, especially concerning regularity of the CEJ, for establishment of the type of enamel-cementum relationship (cementum over enamel, the edge-to-edge relationship between cementum and enamel, and presence of gaps with exposure of dentinal tubuli). All circumferences represented by CEJs exhibit an interchange and combination of 3 types of relationships: (1) cementum over enamel; (2) enamel and cementum in the edge-to-edge relationship; and (3) the presence of a gap between the enamel and cementum with dentin exposure. There was no predominance as to the dental groups. All primary teeth exhibited the 3 morphological tissue interrelation types along the circumference of the cementoenamel junction. The irregularity and fragility of cementoenamel junction structures indicate that this region is weak and should be handled with care and protected during application of chemicals and utilization of clamps, dental instruments, and restorative materials.

  4. TNF-alpha induced junctional modulation enhances response to radiation in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Yeonjoo; Ahn, Hyein; Park, Jina; Lee, Byungryong; Chung, Eunkyung [Hallym University, Seoul (Korea, Republic of); Yi, Jaeoun [KIRAMS, Seoul (Korea, Republic of)

    2007-10-15

    The Adhesion molecules mediated cell-cell and cell matrix interactions are essential for variety of physiological and pathological processes including maintenance of normal tissues integrity as well as tumor development and progression. Cell-cell interaction is initiated by interactions of tight junctional proteins with neighboring cells. Tight junctions govern the paracellular permeability of endothelial and epithelial cells. Aberrations of tight junction formation are an early and key event during vascular spread cancer and inflammation. TNF-alpha plays an important role in the intestinal inflammation by increase of intestinal epithelial tight junction permeability. It has been reported that TNF alpha- modulated intestinal epithelial tight junction barrier is mediated by myosin light-chain kinase protein expression through NFk-B activation. However, the alterations of tight junctional proteins involved in the TNF-alpha-induced increase of intestinal TJ permeability remain unclear. Claudin is essential to the formation and maintenance of tight junction (TJ) and has been identified 24 members so far. Claudin-1, 3, 4, 6, 10 and 16 have been shown altered in various cancers and they may have important roles in cell survival, motility, and invasion of cancer cells. However, the functions of these proteins in tumorigenesis and inflammation are still being elucidated.

  5. Design of thin InGaAsN(Sb) n-i-p junctions for use in four-junction concentrating photovoltaic devices

    Science.gov (United States)

    Wilkins, Matthew M.; Gupta, James; Jaouad, Abdelatif; Bouzazi, Boussairi; Fafard, Simon; Boucherif, Abderraouf; Valdivia, Christopher E.; Arès, Richard; Aimez, Vincent; Schriemer, Henry P.; Hinzer, Karin

    2017-04-01

    Four-junction solar cells for space and terrestrial applications require a junction with a band gap of ˜1 eV for optimal performance. InGaAsN or InGaAsN(Sb) dilute nitride junctions have been demonstrated for this purpose, but in achieving the 14 mA/cm2 short-circuit current needed to match typical GaInP and GaAs junctions, the open-circuit voltage (VOC) and fill factor of these junctions are compromised. In multijunction devices incorporating materials with short diffusion lengths, we study the use of thin junctions to minimize sensitivity to varying material quality and ensure adequate transmission into lower junctions. An n-i-p device with 0.65-μm absorber thickness has sufficient short-circuit current, however, it relies less heavily on field-aided collection than a device with a 1-μm absorber. Our standard cell fabrication process, which includes a rapid thermal anneal of the contacts, yields a significant improvement in diffusion length and device performance. By optimizing a four-junction cell around a smaller 1-sun short-circuit current of 12.5 mA/cm2, we produced an InGaAsN(Sb) junction with open-circuit voltage of 0.44 V at 1000 suns (1 sun=100 mW/cm2), diode ideality factor of 1.4, and sufficient light transmission to allow >12.5 mA/cm2 in all four subcells.

  6. Gap acceptance and Driver behavior at intersections in Minna, North Central Nigeria

    Directory of Open Access Journals (Sweden)

    P. N. Ndoke

    2010-06-01

    Full Text Available The headways, spacing distributions and gap acceptance were measured from two main intersections in Minna, Central Nigeria/The average critical gap and spacing for stadium junction are 2.39 seconds and 11.08m respectively, and that of Mustapha hospital junction are 2.28 seconds and 9.56m respectively. The gap size at the intersections ranges between 1 and 57 seconds. Drivers accept gaps ranging from 2.89 to 3.72 seconds with an average of 3.2 seconds at Mustapha hospital junction and the average time of movement is 2.06 seconds. Similarly, drivers accept gaps ranging from 3.60 seconds and 4.5 seconds with an average of 4.05 seconds at Stadium Junction, and the average time of movement is 2.69 seconds. Comparing these values with the respective critical gaps from the Highway Capacity Manual shows that only values from stadium junction get close. This shows that the delays at the intersections are due mostly to driver impatience and intolerance which at times lead to accidents at the intersections. Hence, it can be concluded that traffic accidents at the intersections are due mostly to driver judgment rather than gap availability.

  7. Gravitation at the Josephson Junction

    Directory of Open Access Journals (Sweden)

    Victor Atanasov

    2018-01-01

    Full Text Available A geometric potential from the kinetic term of a constrained to a curved hyperplane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility of transforming electric energy into geometric field energy, that is, curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.

  8. Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila.

    Science.gov (United States)

    Chaturvedi, Ratna; Reddig, Keith; Li, Hong-Sheng

    2014-02-18

    Neurons rely on glia to recycle neurotransmitters such as glutamate and histamine for sustained signaling. Both mammalian and insect glia form intercellular gap-junction networks, but their functional significance underlying neurotransmitter recycling is unknown. Using the Drosophila visual system as a genetic model, here we show that a multicellular glial network transports neurotransmitter metabolites between perisynaptic glia and neuronal cell bodies to mediate long-distance recycling of neurotransmitter. In the first visual neuropil (lamina), which contains a multilayer glial network, photoreceptor axons release histamine to hyperpolarize secondary sensory neurons. Subsequently, the released histamine is taken up by perisynaptic epithelial glia and converted into inactive carcinine through conjugation with β-alanine for transport. In contrast to a previous assumption that epithelial glia deliver carcinine directly back to photoreceptor axons for histamine regeneration within the lamina, we detected both carcinine and β-alanine in the fly retina, where they are found in photoreceptor cell bodies and surrounding pigment glial cells. Downregulating Inx2 gap junctions within the laminar glial network causes β-alanine accumulation in retinal pigment cells and impairs carcinine synthesis, leading to reduced histamine levels and photoreceptor synaptic vesicles. Consequently, visual transmission is impaired and the fly is less responsive in a visual alert analysis compared with wild type. Our results suggest that a gap junction-dependent laminar and retinal glial network transports histamine metabolites between perisynaptic glia and photoreceptor cell bodies to mediate a novel, long-distance mechanism of neurotransmitter recycling, highlighting the importance of glial networks in the regulation of neuronal functions.

  9. IJS: An Intelligent Junction Selection Based Routing Protocol for VANET to Support ITS Services.

    Science.gov (United States)

    Bhoi, Sourav Kumar; Khilar, Pabitra Mohan

    2014-01-01

    Selecting junctions intelligently for data transmission provides better intelligent transportation system (ITS) services. The main problem in vehicular communication is high disturbances of link connectivity due to mobility and less density of vehicles. If link conditions are predicted earlier, then there is a less chance of performance degradation. In this paper, an intelligent junction selection based routing protocol (IJS) is proposed to transmit the data in a quickest path, in which the vehicles are mostly connected and have less link connectivity problem. In this protocol, a helping vehicle is set at every junction to control the communication by predicting link failures or network gaps in a route. Helping vehicle at the junction produces a score for every neighboring junction to forward the data to the destination by considering the current traffic information and selects that junction which has minimum score. IJS protocol is implemented and compared with GyTAR, A-STAR, and GSR routing protocols. Simulation results show that IJS performs better in terms of average end-to-end delay, network gap encounter, and number of hops.

  10. O tabagismo está associado com a remodelação de junções comunicantes no coração de ratos: explicação do paradoxo dos fumantes? Smoking is associated with remodeling of gap junction in the rat heart: smoker's paradox explanation?

    Directory of Open Access Journals (Sweden)

    Rosangela Novo

    2013-03-01

    reperfusion. OBJECTIVE: Thus, this study aimed to analyze the effects of exposure to tobacco smoke on intensity, distribution or phosphorylation of connexin 43 in the rat heart. METHODS: Wistar rats weighing 100 g were randomly allocated into 2 groups: 1 Control (n = 25; 2 Exposed to tobacco smoke (ETS, n = 23. After 5 weeks, left ventricular morphometric analysis, immunohisthochemistry and western blotting for connexin 43 (Cx43 were performed. RESULTS: Collagen volume fraction, cross-sectional areas, and ventricular weight were not statistically different between control and ETS. ETS showed lower stain intensity of Cx43 at intercalated disks (Control: 2.32 ± 0.19; ETS: 1.73 ± 0.18; p = 0.04. The distribution of CX43 at intercalated disks did not differ between the groups (Control: 3.73 ± 0.12; ETS: 3.20 ± 0.17; p = 0.18. ETS rats showed higher levels of dephosphorylated form of Cx43 (Control: 0.45 ± 0.11; ETS: 0.90 ± 0.11; p = 0.03. On the other hand, total Cx43 did not differ between control and ETS groups (Control: 0.75 ± 0.19; ETS: 0.93 ± 0.27; p = 0.58. CONCLUSION: Exposure to tobacco smoke resulted in cardiac gap junction remodeling, characterized by alterations in the quantity and phosphorylation of the Cx43, in rats hearts. This finding could explain the smoker's paradox observed in some studies.

  11. Electronic noise of superconducting tunnel junction detectors

    International Nuclear Information System (INIS)

    Jochum, J.; Kraus, H.; Gutsche, M.; Kemmather, B.; Feilitzsch, F. v.; Moessbauer, R.L.

    1994-01-01

    The optimal signal to noise ratio for detectors based on superconducting tunnel junctions is calculated and compared for the cases of a detector consisting of one single tunnel junction, as well as of series and of parallel connections of such tunnel junctions. The influence of 1 / f noise and its dependence on the dynamical resistance of tunnel junctions is discussed quantitatively. A single tunnel junction yields the minimum equivalent noise charge. Such a tunnel junction exhibits the best signal to noise ratio if the signal charge is independent of detector size. In case, signal charge increases with detector size, a parallel or a series connection of tunnel junctions would provide the optimum signal to noise ratio. The equivalent noise charge and the respective signal to noise ratio are deduced as functions of tunnel junction parameters such as tunneling time, quasiparticle lifetime, etc. (orig.)

  12. Extended Majorana zero modes in a topological superconducting-normal T-junction

    Science.gov (United States)

    Spånslätt, Christian; Ardonne, Eddy

    2017-03-01

    We investigate the sub gap properties of a three terminal Josephson T-junction composed of topologically superconducting wires connected by a normal metal region. This system naturally hosts zero energy Andreev bound states which are of self-conjugate Majorana nature and we show that they are, in contrast to ordinary Majorana zero modes, spatially extended in the normal metal region. If the T-junction respects time-reversal symmetry, we show that a zero mode is distributed only in two out of three arms in the junction and tuning the superconducting phases allows for transfer of the mode between the junction arms. We further provide tunneling conductance calculations showing that these features can be detected in experiments. Our findings suggest an experimental platform for studying the nature of spatially extended Majorana zero modes.

  13. Dynamics of pi-junction interferometer circuits

    DEFF Research Database (Denmark)

    Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.

    2002-01-01

    The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current...... dependence on magnetic field are discussed. Experimental results for dc interferometers with 0 and pi high-T-c bi-crystal Josephson junctions are reported and discussed in comparison with numerical simulation....

  14. Robustness of Majorana bound states in the short-junction limit

    NARCIS (Netherlands)

    Sticlet, D.C.; Nijholt, B.; Akhmerov, A.R.

    2017-01-01

    We study the effects of strong coupling between a superconductor and a semiconductor nanowire on the creation of the Majorana bound states, when the quasiparticle dwell time in the normal part of the nanowire is much shorter than the inverse superconducting gap. This "short-junction" limit is

  15. Proximity effect Nb/Al,AlOxide, Al/Nb Josephson tunnel junctions

    NARCIS (Netherlands)

    Houwman, Evert Pieter; Gijsbertsen, J.G.; Gijsbertsen, Hans; Flokstra, Jakob; Rogalla, Horst; Le grand, J.B.; de Korte, P.A.J.; Golubov, Alexandre Avraamovitch

    1993-01-01

    Regions with reduced energy gap induced by the proximity effect give rise to quasi-particle loss in Josephson-junction X-ray detectors, but may also be used advantageously for quasi-particle collection. The influence of the thickness of the Al proximity layers in Nb/Al1 , AlOx, Al2/Nb Josephson

  16. Tunneling properties of Bi2 Sr2 Ca Cu2 Ox/Ag junction

    International Nuclear Information System (INIS)

    Chiang, Yu.N.; Shevchenko, O.B.; Nalbat, Yu.S.

    1993-01-01

    The tunnel-type junction which is naturally formed during firing of Ag paste on the surface of Bi-Sr-Ca-Cu-O crystal has been investigated. It was found that the contact exhibit less than the bulk one in the HTSC. We connect the low gap parameter value with the surface superconductivity in Ag induced by the proximity effect

  17. Modelling and Analysis of Long Josephson Junctions

    NARCIS (Netherlands)

    Visser, T.P.P.

    2002-01-01

    For various reasons people have been interested in Josephson junctions. Ranging from "understanding nature" to building quantum computers. In this thesis we focus on a special type of junction (the long junction) and to a special type of problem fluxon dynamics.

  18. Soliton bunching in annular Josephson junctions

    DEFF Research Database (Denmark)

    Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter

    1996-01-01

    By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used...

  19. Contact-mediated and humoral communication between vascular endothelial and smooth muscle cells in vitro

    International Nuclear Information System (INIS)

    Davies, P.F.

    1986-01-01

    Vascular endothelial cells (EC) and smooth muscle cells (SMC) co-exist in close apposition to each other in all blood vessels except capillaries. Investigations of the metabolic interactions that may occur between these cells are essential to an understanding of vascular homeostasis and the pathogenesis of atherosclerosis. The authors have developed two in vitro models of co-temporal vascular cell communication. The first facilitates reversible microcarrier-mediated gap junctional communication between EC and SMC monolayers. When either EC or SMC were prelabelled with 3 H-uridine, intracellular nucleotide rapidly transferred across the region of heterocellular attachment to the complementary cell population. Cytoplasmic continuity between EC and SMC allowed metabolic cooperation via ions and small molecules (<1.5 KD). Thus, vascular reactivity, particularly in the microcirculation where myoendothelial gap junctions have been observed, may involve cytoplasmic second messengers transported from EC to SMC. In the second model, humoral communication was established between separated cultures of EC and SMC which shared the same culture medium. Endothelial-specific stimulation of SMC growth and lipoprotein metabolism via soluble factors was demonstrated. Two mechanisms of stimulation of SMC lipoprotein metabolism were identified; one endothelial derived mitogen-dependent, the other mitogen-independent which was mediated via low molecular weight endothelial cell products

  20. MgB2 energy gap determination by scanning tunnelling spectroscopy

    International Nuclear Information System (INIS)

    Heitmann, T W; Bu, S D; Kim, D M; Choi, J H; Giencke, J; Eom, C B; Regan, K A; Rogado, N; Hayward, M A; He, T; Slusky, J S; Khalifah, P; Haas, M; Cava, R J; Larbalestier, D C; Rzchowski, M S

    2004-01-01

    We report scanning tunnelling spectroscopy (STS) measurements of the gap properties of both ceramic MgB 2 and c-axis oriented epitaxial MgB 2 thin films. Both show a temperature dependent zero bias conductance peak and evidence for two superconducting gaps. We report tunnelling spectroscopy of superconductor-insulator-superconductor (S-I-S) junctions formed in two ways in addition to normal metal-insulator-superconductor (N-I-S) junctions. We find a gap δ = 2.2-2.8 meV, with spectral features and temperature dependence that are consistent between S-I-S junction types. In addition, we observe evidence of a second, larger gap, δ 7.2 meV, consistent with a proposed two-band model

  1. Josephson junctions and dark energy

    Science.gov (United States)

    Jetzer, Philippe; Straumann, Norbert

    2006-08-01

    In a recent paper Beck and Mackey [C. Beck, M.C. Mackey, astro-ph/0603397] argue that the argument we gave in our paper [Ph. Jetzer, N. Straumann, Phys. Lett. B 606 (2005) 77, astro-ph/0411034] to disprove their claim that dark energy can be discovered in the Lab through noise measurements of Josephson junctions is incorrect. In particular, they emphasize that the measured noise spectrum in Josephson junctions is a consequence of the fluctuation dissipation theorem, while our argument was based on equilibrium statistical mechanics. In this note we show that the fluctuation dissipation relation does not depend upon any shift of vacuum (zero-point) energies, and therefore, as already concluded in our previous paper, dark energy has nothing to do with the proposed measurements.

  2. Josephson junctions and dark energy

    International Nuclear Information System (INIS)

    Jetzer, Philippe; Straumann, Norbert

    2006-01-01

    In a recent paper Beck and Mackey [C. Beck, M.C. Mackey, astro-ph/0603397] argue that the argument we gave in our paper [Ph. Jetzer, N. Straumann, Phys. Lett. B 606 (2005) 77, astro-ph/0411034] to disprove their claim that dark energy can be discovered in the Lab through noise measurements of Josephson junctions is incorrect. In particular, they emphasize that the measured noise spectrum in Josephson junctions is a consequence of the fluctuation dissipation theorem, while our argument was based on equilibrium statistical mechanics. In this note we show that the fluctuation dissipation relation does not depend upon any shift of vacuum (zero-point) energies, and therefore, as already concluded in our previous paper, dark energy has nothing to do with the proposed measurements

  3. Josephson junctions and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Jetzer, Philippe [Institute for Theoretical Physics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)]. E-mail: jetzer@physik.unizh.ch; Straumann, Norbert [Institute for Theoretical Physics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)

    2006-08-03

    In a recent paper Beck and Mackey [C. Beck, M.C. Mackey, astro-ph/0603397] argue that the argument we gave in our paper [Ph. Jetzer, N. Straumann, Phys. Lett. B 606 (2005) 77, astro-ph/0411034] to disprove their claim that dark energy can be discovered in the Lab through noise measurements of Josephson junctions is incorrect. In particular, they emphasize that the measured noise spectrum in Josephson junctions is a consequence of the fluctuation dissipation theorem, while our argument was based on equilibrium statistical mechanics. In this note we show that the fluctuation dissipation relation does not depend upon any shift of vacuum (zero-point) energies, and therefore, as already concluded in our previous paper, dark energy hathing to do with the proposed measurements.

  4. PCBS AND TIGHT JUNCTION EXPRESSION

    OpenAIRE

    Eum, Sung Yong; András, Ibolya E.; Couraud, Pierre-Olivier; Hennig, Bernhard; Toborek, Michal

    2008-01-01

    Polychlorinated biphenyl (PCB) congeners exhibit a broad range of adverse biological effects including neurotoxicity. The mechanisms by which PCBs cause neurotoxic effects are still not completely understood. The blood-brain barrier (BBB) is a physical and metabolic barrier separating brain microenvironment from the peripheral circulation and is mainly composed of endothelial cells connected by tight junctions. We examined the effects of several highly-chlorinated PCB congeners on expression ...

  5. Superconducting tunnel-junction refrigerator

    International Nuclear Information System (INIS)

    Melton, R.G.; Paterson, J.L.; Kaplan, S.B.

    1980-01-01

    The dc current through an S 1 -S 2 tunnel junction, with Δ 2 greater than Δ 1 , when biased with eV 1 +Δ 2 , will lower the energy in S 1 . This energy reduction will be shared by the phonons and electrons. This device is shown to be analogous to a thermoelectric refrigerator with an effective Peltier coefficient π* approx. Δ 1 /e. Tunneling calculations yield the cooling power P/sub c/, the electrical power P/sub e/ supplied by the bias supply, and the cooling efficiency eta=P/sub c//P/sub e/. The maximum cooling power is obtained for eV= +- (Δ 2 -Δ 1 ) and t 1 =T 1 /T/sub c/1 approx. 0.9. Estimates are made of the temperature difference T 2 -T 1 achievable in Al-Pb and Sn-Pb junctions with an Al 2 O 3 tunneling barrier. The performance of this device is shown to yield a maximum cooling efficiency eta approx. = Δ 1 /(Δ 2 -Δ 1 ) which can be compared with that available in an ideal Carnot refrigerator of eta=T 1 /(T 2 -T 1 ). The development of a useful tunnel-junction refrigerator requires a tunneling barrier with an effective thermal conductance per unit area several orders of magnitude less than that provided by the A1 2 O 3 barrier in the Al-Pb and Sn-Pb systems

  6. Squeezed States in Josephson Junctions.

    Science.gov (United States)

    Hu, X.; Nori, F.

    1996-03-01

    We have studied quantum fluctuation properties of Josephson junctions in the limit of large Josephson coupling energy and small charging energy, when the eigenstates of the system can be treated as being nearly localized. We have considered(X. Hu and F. Nori, preprints.) a Josephson junction in a variety of situations, e.g., coupled to one or several of the following elements: a capacitor, an inductor (in a superconducting ring), and an applied current source. By solving an effective Shrödinger equation, we have obtained squeezed vacuum (coherent) states as the ground states of a ``free-oscillating'' (linearly-driven) Josephson junction, and calculated the uncertainties of its canonical momentum, charge, and coordinate, phase. We have also shown that the excited states of the various systems we consider are similar to the number states of a simple harmonic oscillator but with different fluctuation properties. Furthermore, we have obtained the time-evolution operators for these systems. These operators can make it easier to calculate the time-dependence of the expectation values and fluctuations of various quantities starting from an arbitrary initial state.

  7. Influence of thermalization on thermal conduction through molecular junctions: Computational study of PEG oligomers

    Science.gov (United States)

    Pandey, Hari Datt; Leitner, David M.

    2017-08-01

    Thermalization in molecular junctions and the extent to which it mediates thermal transport through the junction are explored and illustrated with computational modeling of polyethylene glycol (PEG) oligomer junctions. We calculate rates of thermalization in the PEG oligomers from 100 K to 600 K and thermal conduction through PEG oligomer interfaces between gold and other materials, including water, motivated in part by photothermal applications of gold nanoparticles capped by PEG oligomers in aqueous and cellular environments. Variation of thermalization rates over a range of oligomer lengths and temperatures reveals striking effects of thermalization on thermal conduction through the junction. The calculated thermalization rates help clarify the scope of applicability of approaches that can be used to predict thermal conduction, e.g., where Fourier's law breaks down and where a Landauer approach is suitable. The rates and nature of vibrational energy transport computed for PEG oligomers are compared with available experimental results.

  8. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics.

    Science.gov (United States)

    Wu, Xiaosong; Sprinkle, Mike; Li, Xuebin; Ming, Fan; Berger, Claire; de Heer, Walt A

    2008-07-11

    Graphene-oxide (GO) flakes have been deposited to bridge the gap between two epitaxial-graphene electrodes to produce all-graphene devices. Electrical measurements indicate the presence of Schottky barriers at the graphene/graphene-oxide junctions, as a consequence of the band gap in GO. The barrier height is found to be about 0.7 eV, and is reduced after annealing at 180 degrees C, implying that the gap can be tuned by changing the degree of oxidation. A lower limit of the GO mobility was found to be 850 cm2/V s, rivaling silicon. In situ local oxidation of patterned epitaxial graphene has been achieved.

  9. Valley and spin resonant tunneling current in ferromagnetic/nonmagnetic/ferromagnetic silicene junction

    Directory of Open Access Journals (Sweden)

    Yaser Hajati

    2016-02-01

    Full Text Available We study the transport properties in a ferromagnetic/nonmagnetic/ferromagnetic (FNF silicene junction in which an electrostatic gate potential, U, is attached to the nonmagnetic region. We show that the electrostatic gate potential U is a useful probe to control the band structure, quasi-bound states in the nonmagnetic barrier as well as the transport properties of the FNF silicene junction. In particular, by introducing the electrostatic gate potential, both the spin and valley conductances of the junction show an oscillatory behavior. The amplitude and frequency of such oscillations can be controlled by U. As an important result, we found that by increasing U, the second characteristic of the Klein tunneling is satisfied as a result of the quasiparticles chirality which can penetrate through a potential barrier. Moreover, it is found that for special values of U, the junction shows a gap in the spin and valley-resolve conductance and the amplitude of this gap is only controlled by the on-site potential difference, Δz. Our findings of high controllability of the spin and valley transport in such a FNF silicene junction may improve the performance of nano-electronics and spintronics devices.

  10. Charting service quality gaps

    OpenAIRE

    Cândido, Carlos; Morris, D. S.

    2000-01-01

    Some of the most influential models in the service management literature (Parasuraman et al., 1985; Grönroos, 1990) focus on the concept of service quality gap (SQG). Parasuraman et al. (1985) define a pioneering model with five SQGs, the concepts of which are amplified in Brogowicz et al.’s (1990) model. The latter has five types of encompassing gaps: information and feedback-related gaps; design-related gaps; implementation-related gaps; communication-related gaps; and customers’ perception...

  11. Dynamics of fractional vortices in long Josephson junctions; Dynamik fraktionaler Flusswirbel in langen Josephsonkontakten

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, Tobias

    2007-07-01

    In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-{kappa} junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-{kappa} junctions and fractional vortices are generalizations of the well-known 0-{pi} junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-{kappa} junctions that are based on standard Nb-AlO{sub x}-Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)

  12. Tunneling junctions of the heavy-fermion superconductor UPd 2Al 3

    Science.gov (United States)

    Jourdan, M.; Huth, M.; Mouloud, S.; Adrian, H.

    1998-01-01

    Tunneling spectroscopy on planar Giaever-type junctions is a powerful tool for the investigation of the superconducting state of metals. Since it is possible to prepare high-quality epitaxial thin films of the heavy-fermion compound UPd 2Al 3, this method can be used to examine the energy gap of this presumably unconventional superconductor. We prepared cross-junctions consisting of a UPd 2Al 3 base electrode and a metal counter electrode (Au, Al or Ag). These small area contacts without artificial barriers have only low junction resistances and suffer from irreproducibility. On the other hand, on some of those junctions we observed BCS-like tunneling conductivity. In order to increase the junction resistances AlO x or UO x were used as a artificial barrier with Al as a counter-electrode. As an alternative to quasi-particle tunneling, the preparation of Josephson-junctions could be an easier approach. A supercurrent between a small In-dot and an UPd 2Al 3 film was observed.

  13. Efficient density matrix renormalization group algorithm to study Y junctions with integer and half-integer spin

    KAUST Repository

    Kumar, Manoranjan

    2016-02-03

    An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions, systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to N=3n+1≈500 sites are studied with antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with NA≠NB. The ground state (GS) and spin densities ρr=⟨Szr⟩ at site r are quite different for junctions with S=1/2, 1, 3/2, and 2. The GS has finite total spin SG=2S(S) for even (odd) N and for MG=SG in the SG spin manifold, ρr>0(<0) at sites of the larger (smaller) sublattice. S=1/2 junctions have delocalized states and decreasing spin densities with increasing N. S=1 junctions have four localized Sz=1/2 states at the end of each arm and centered on the junction, consistent with localized states in S=1 chains with finite Haldane gap. The GS of S=3/2 or 2 junctions of up to 500 spins is a spin density wave with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in S=1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in S=3/2 or 2 junctions.

  14. Behind the Pay Gap

    Science.gov (United States)

    Dey, Judy Goldberg; Hill, Catherine

    2007-01-01

    Women have made remarkable gains in education during the past three decades, yet these achievements have resulted in only modest improvements in pay equity. The gender pay gap has become a fixture of the U.S. workplace and is so ubiquitous that many simply view it as normal. "Behind the Pay Gap" examines the gender pay gap for college graduates.…

  15. [Occipitocervical junction: Aanatomy, craniometry and pathology].

    Science.gov (United States)

    Furtner, J; Woitek, R; Asenbaum, U; Prayer, D; Schueller-Weidekamm, C

    2016-04-01

    The occipitocervical junction comprises of the occiput condyles, the atlas, and the axis. The radiological evaluation of this region is supported by craniometric measurement methods which are based on predefined anatomical landmarks. The main pathologies of the occipitocervical junction are traumatic injuries, congenital anomalies or normal variants, infections, arthropathies, and tumors. In this article, the anatomy of the occipitocervical junction as well as the most important craniometric measurement methods are explained. Moreover various pathologies and similar appearing normal variants are presented.

  16. Method for shallow junction formation

    Science.gov (United States)

    Weiner, Kurt H.

    1996-01-01

    A doping sequence that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated.

  17. Josephson junctions as heterodyne detectors

    International Nuclear Information System (INIS)

    Taur, Y.; Claassen, J.H.; Richards, P.L.

    Heterodyne detection with a point-contact Josephson junction has been investigated both experimentally and theoretically. The measured performance of the device at 36 GHz is in good agreement with the theory. By operating vanadium point contacts at 1.4 K, the authors have achieved a single-sideband (SSB) mixer noise temperature of 54 K with a conversion gain of 1.35 and a signal bandwidth on the order of 1 GHz. A potentially impressive performance for these devices at submillimeter wavelengths can be extrapolated from the results

  18. Josephson junctions as heterodyne detectors

    International Nuclear Information System (INIS)

    Taur, Y.; Claassen, J.H.; Richards, P.L.

    1974-01-01

    Heterodyne detection with a point-contact Josephson junction has been investigated both experimentally and theoretically. The measured performance of the device at 36 GHz is in good agreement with the theory. By operating vanadium point contacts at 1.4 K, a single-sideband (SSB) mixer noise temperature of 54 K with a conversion gain of 1.35 and a signal bandwidth on the order of 1 GHz has been achieved. From the results one can extrapolate a potentially impressive performance for these devices at submillimeter wavelengths

  19. Electron transfer dynamics of bistable single-molecule junctions

    DEFF Research Database (Denmark)

    Danilov, A.V; Kubatkin, S.; Kafanov, S. G.

    2006-01-01

    We present transport measurements of single-molecule junctions bridged by a molecule with three benzene rings connected by two double bonds and with thiol end-groups that allow chemical binding to gold electrodes. The I-V curves show switching behavior between two distinct states. By statistical ...... analysis of the switching events, we show that a 300 meV mode mediates the transition between the two states. We propose that breaking and reformation of a S-H bond in the contact zone between molecule and electrode explains the observed bistability....

  20. Graphene Josephson Junction Microwave Detector

    Science.gov (United States)

    Fong, Kin Chung; Walsh, Evan; Lee, Gil-Ho; Efetov, Dmitri; Crossno, Jesse; Ranzani, Leonardo; Ohki, Thomas; Kim, Philip; Englund, Dirk

    Modern readout schemes for superconducting qubits have predominately relied on weak microwave signal detection and discrimination. Most schemes are based on heterodyne or homodyne receiver systems and only a few have demonstrated direct detection of microwave photons. The challenges of direct detection stem from the low energy of microwave photons and existing detector efficiency. We have designed, fabricated, and measured a graphene-based Josephson junction (gJJ) microwave detector. Exploiting its low electronic thermal conductivity and specific heat, an electron temperature rise on the order of 0.1 K due to a time average of about 10 photons in the graphene thermal photodetector is readout via a Josephson junction embedded in an 8 GHz microwave cavity. We will estimate the quantum efficiency and dark count probability of the gJJ microwave single photon detectors. This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

  1. [The eyelid-cheek junction].

    Science.gov (United States)

    Volpei, Ch; Fernandez, J; Chignon-Sicard, B

    2017-10-01

    The eyelid-cheek junction is a key area which generates many comments: from looking tired to looking good or rested, without forgetting charm, beauty, and a youthful appearance. In spite of many interesting medical and surgical procedures, treating this area is sometimes difficult and results are not always up to our expectations. Standardized blepharoplasty, which has often been improperly used, has shown its limits. Since the latest refinements, lipostructure has revolutionised blepharoplasty and serving as a reference, it has become an established technique. Subperiostal mediofacial lift allows outstanding results at the cost of a certain technical aggressiveness. Aesthetic medicine proposes worthy alternative and/or appropriate complementary solutions. Different procedures we dispose of have been reviewed together with their assets and their limits. A codification of therapeutic indications is proposed. The positioning of the eyelid-cheek clinical junction in relation with the low orbital bone rim influences our strategy in choosing the appropriate technique. Copyright © 2017. Published by Elsevier Masson SAS.

  2. Traction force dynamics predict gap formation in activated endothelium

    International Nuclear Information System (INIS)

    Valent, Erik T.; Nieuw Amerongen, Geerten P. van; Hinsbergh, Victor W.M. van; Hordijk, Peter L.

    2016-01-01

    In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneous distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. - Highlights: • Endothelial monolayers exert dynamic- and heterogeneous traction forces. • High traction forces correlate with junctional areas and the F-actin cytoskeleton. • Newly formed inter-endothelial gaps are characterized by opposing traction forces. • Force stability is a key feature controlling endothelial permeability.

  3. Traction force dynamics predict gap formation in activated endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Valent, Erik T.; Nieuw Amerongen, Geerten P. van; Hinsbergh, Victor W.M. van; Hordijk, Peter L., E-mail: p.hordijk@vumc.nl

    2016-09-10

    In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneous distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. - Highlights: • Endothelial monolayers exert dynamic- and heterogeneous traction forces. • High traction forces correlate with junctional areas and the F-actin cytoskeleton. • Newly formed inter-endothelial gaps are characterized by opposing traction forces. • Force stability is a key feature controlling endothelial permeability.

  4. Interplay of Chiral and Helical States in a Quantum Spin Hall Insulator Lateral Junction

    Science.gov (United States)

    Calvo, M. R.; de Juan, F.; Ilan, R.; Fox, E. J.; Bestwick, A. J.; Mühlbauer, M.; Wang, J.; Ames, C.; Leubner, P.; Brüne, C.; Zhang, S. C.; Buhmann, H.; Molenkamp, L. W.; Goldhaber-Gordon, D.

    2017-12-01

    We study the electronic transport across an electrostatically gated lateral junction in a HgTe quantum well, a canonical 2D topological insulator, with and without an applied magnetic field. We control the carrier density inside and outside a junction region independently and hence tune the number and nature of 1D edge modes propagating in each of those regions. Outside the bulk gap, the magnetic field drives the system to the quantum Hall regime, and chiral states propagate at the edge. In this regime, we observe fractional plateaus that reflect the equilibration between 1D chiral modes across the junction. As the carrier density approaches zero in the central region and at moderate fields, we observe oscillations in the resistance that we attribute to Fabry-Perot interference in the helical states, enabled by the broken time reversal symmetry. At higher fields, those oscillations disappear, in agreement with the expected absence of helical states when band inversion is lifted.

  5. Multiplication in Silicon p-n Junctions

    DEFF Research Database (Denmark)

    Moll, John L.

    1965-01-01

    Multiplication values were measured in the collector junctions of silicon p-n-p and n-p-n transistors before and after bombardment by 1016 neutrons/cm2. Within experimental error there was no change either in junction fields, as deduced from capacitance measurements, or in multiplication values...

  6. The inner CSF–brain barrier: developmentally controlled access to the brain via intercellular junctions

    Science.gov (United States)

    Whish, Sophie; Dziegielewska, Katarzyna M.; Møllgård, Kjeld; Noor, Natassya M.; Liddelow, Shane A.; Habgood, Mark D.; Richardson, Samantha J.; Saunders, Norman R.

    2015-01-01

    In the adult the interface between the cerebrospinal fluid and the brain is lined by the ependymal cells, which are joined by gap junctions. These intercellular connections do not provide a diffusional restrain between the two compartments. However, during development this interface, initially consisting of neuroepithelial cells and later radial glial cells, is characterized by “strap” junctions, which limit the exchange of different sized molecules between cerebrospinal fluid and the brain parenchyma. Here we provide a systematic study of permeability properties of this inner cerebrospinal fluid-brain barrier during mouse development from embryonic day, E17 until adult. Results show that at fetal stages exchange across this barrier is restricted to the smallest molecules (286Da) and the diffusional restraint is progressively removed as the brain develops. By postnatal day P20, molecules the size of plasma proteins (70 kDa) diffuse freely. Transcriptomic analysis of junctional proteins present in the cerebrospinal fluid-brain interface showed expression of adherens junctional proteins, actins, cadherins and catenins changing in a development manner consistent with the observed changes in the permeability studies. Gap junction proteins were only identified in the adult as was claudin-11. Immunohistochemistry was used to localize at the cellular level some of the adherens junctional proteins of genes identified from transcriptomic analysis. N-cadherin, β - and α-catenin immunoreactivity was detected outlining the inner CSF-brain interface from E16; most of these markers were not present in the adult ependyma. Claudin-5 was present in the apical-most part of radial glial cells and in endothelial cells in embryos, but only in endothelial cells including plexus endothelial cells in adults. Claudin-11 was only immunopositive in the adult, consistent with results obtained from transcriptomic analysis. These results provide information about physiological, molecular

  7. The inner CSF–brain barrier: developmentally controlled access to the brain via intercellular junctions.

    Directory of Open Access Journals (Sweden)

    Norman Ruthven Saunders

    2015-02-01

    Full Text Available In the adult the interface between the cerebrospinal fluid (CSF and the brain is lined by the ependymal cells, which are joined by gap junctions. These intercellular connections do not provide a diffusional restrain between the two compartments. However during development this interface, initially consisting of neuroepithelial cells and later radial glial cells, is characterized by strap junctions, which limit the exchange of different sized molecules between CSF and the brain parenchyma. Here we provide a systematic study of permeability properties of this inner CSF-brain barrier during mouse development from embryonic day, E17 until adult. Results show that at fetal stages exchange across this barrier is restricted to the smallest molecules (286Da and the diffusional restraint is progressively removed as the brain develops. By postnatal day P20, molecules the size of plasma proteins (70kDa diffuse freely. Transcriptomic analysis of junctional proteins present in the CSF-brain interface showed expression of adherens junctional proteins, actins, cadherins and catenins changing in a development manner consistent with the observed changes in the permeability studies. Gap junction proteins were only identified in the adult as was claudin-11. Immunocytochemistry was used to localize at the cellular level some of the adherens junctional proteins of genes identified from transcriptomic analysis. N-cadherin, β– and α-catenin immunoreactivity was detected outlining the inner CSF-brain interface from E16; most of these markers were not present in the adult ependyma. Claudin-5 was present in the apical-most part of radial glial cells and in endothelial cells in embryos, but only in endothelial cells including plexus endothelial cells in adults. Claudin-11 was only immunopositive in the adult, consistent with results obtained from transcriptomic analysis. These results provide information about physiological, molecular and morphological

  8. Quantum synchronization effects in intrinsic Josephson junctions

    International Nuclear Information System (INIS)

    Machida, M.; Kano, T.; Yamada, S.; Okumura, M.; Imamura, T.; Koyama, T.

    2008-01-01

    We investigate quantum dynamics of the superconducting phase in intrinsic Josephson junctions of layered high-T c superconductors motivated by a recent experimental observation for the switching rate enhancement in the low temperature quantum regime. We pay attention to only the capacitive coupling between neighboring junctions and perform large-scale simulations for the Schroedinger equation derived from the Hamiltonian considering the capacitive coupling alone. The simulation focuses on an issue whether the switching of a junction induces those of the other junctions or not. The results reveal that the superconducting phase dynamics show synchronous behavior with increasing the quantum character, e.g., decreasing the junction plane area and effectively the temperature. This is qualitatively consistent with the experimental result

  9. Overlap junctions for high coherence superconducting qubits

    Science.gov (United States)

    Wu, X.; Long, J. L.; Ku, H. S.; Lake, R. E.; Bal, M.; Pappas, D. P.

    2017-07-01

    Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ by Ar plasma before junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.

  10. Cranio-vertebral junction tuberculosis

    Directory of Open Access Journals (Sweden)

    Rajkumar

    2012-01-01

    Full Text Available There are variety of diseases which affect the region of craniovertebral junction, including congenital, malignant lesions, traumatic and infective/inflammatory lesions. CVJ tuberculosis is an extremely rare condition, accounting for 0.3 to 1% of all cases of spinal TB. Few case series have been reported in the literature about this rare condition, but there appears to be lack of consensus even on basic issues like whether to undertake surgical intervention or prefer a conservative approach in cases of CVJ TB. These cases can present with a myriad of symptoms and one needs to have a high index of suspicion for early diagnosis. Early diagnosis and treatment is very important for a favorable outcome. In this article, we have tried to review the available literature and also share our experience about this condition so as to have a better understanding of the disease process and have a more rational treatment protocol.

  11. Josephson tunnel junction microwave attenuator

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.

    1993-01-01

    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc biased...... at different points in the current-voltage characteristic. Both numerical calculations based on the Tien-Gordon theory and 70-GHz microwave experiments have confirmed the wide dynamic range (more than 15-dB attenuation for one stage) and the low insertion loss in the ''open'' state. The performance of a fully...... integrated submillimeter receiver circuit which comprises a flux-flow oscillator (FFO) as local oscillator, a superconducting variable attenuator, and a microwave SIS detector with tuned-out capacitance is also reported....

  12. Bridging the Gap

    DEFF Research Database (Denmark)

    Kramer Overgaard, Majken; Broeng, Jes; Jensen, Monika Luniewska

    Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures.......Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures....

  13. Tunnelling anisotropic magnetoresistance of Fe/GaAs/Ag(001) junctions from first principles: effect of hybridized interface resonances

    Czech Academy of Sciences Publication Activity Database

    Sýkora, R.; Turek, Ilja

    2012-01-01

    Roč. 24, č. 36 (2012), 365801/1-365801/10 ISSN 0953-8984 R&D Projects: GA ČR(CZ) GAP204/11/1228 Institutional support: RVO:68081723 Keywords : tunnel junctions * magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.355, year: 2012

  14. Solar energy converters based on multi-junction photoemission solar cells.

    Science.gov (United States)

    Tereshchenko, O E; Golyashov, V A; Rodionov, A A; Chistokhin, I B; Kislykh, N V; Mironov, A V; Aksenov, V V

    2017-11-23

    Multi-junction solar cells with multiple p-n junctions made of different semiconductor materials have multiple bandgaps that allow reducing the relaxation energy loss and substantially increase the power-conversion efficiency. The choice of materials for each sub-cell is very limited due to the difficulties in extracting the current between the layers caused by the requirements for lattice- and current-matching. We propose a new vacuum multi-junction solar cell with multiple p-n junctions separated by vacuum gaps that allow using different semiconductor materials as cathode and anode, both activated to the state of effective negative electron affinity (NEA). In this work, the compact proximity focused vacuum tube with the GaAs(Cs,O) photocathode and AlGaAs/GaAs-(Cs,O) anode with GaAs quantum wells (QWs) is used as a prototype of a vacuum single-junction solar cell. The photodiode with the p-AlGaAs/GaAs anode showed the spectral power-conversion efficiency of about 1% at V bias  = 0 in transmission and reflection modes, while, at V bias  = 0.5 V, the efficiency increased up to 10%. In terms of energy conservation, we found the condition at which the energy cathode-to-anode transition was close to 1. Considering only the energy conservation part, the NEA-cell power-conversion efficiency can rich a quantum yield value which is measured up to more than 50%.

  15. An optimized efficient dual junction InGaN/CIGS solar cell: A numerical simulation

    Science.gov (United States)

    Farhadi, Bita; Naseri, Mosayeb

    2016-08-01

    The photovoltaic performance of an efficient double junction InGaN/CIGS solar cell including a CdS antireflector top cover layer is studied using Silvaco ATLAS software. In this study, to gain a desired structure, the different design parameters, including the CIGS various band gaps, the doping concentration and the thickness of CdS layer are optimized. The simulation indicates that under current matching condition, an optimum efficiency of 40.42% is achieved.

  16. Valley dependent transport in graphene L junction

    Science.gov (United States)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  17. Bridging a Cultural Gap

    Science.gov (United States)

    Leviatan, Talma

    2008-01-01

    There has been a broad wave of change in tertiary calculus courses in the past decade. However, the much-needed change in tertiary pre-calculus programmes--aimed at bridging the gap between high-school mathematics and tertiary mathematics--is happening at a far slower pace. Following a discussion on the nature of the gap and the objectives of a…

  18. Palladium electrodes for molecular tunnel junctions

    International Nuclear Information System (INIS)

    Chang Shuai; Sen Suman; Zhang Peiming; Gyarfas, Brett; Ashcroft, Brian; Lindsay, Stuart; Lefkowitz, Steven; Peng Hongbo

    2012-01-01

    Gold has been the metal of choice for research on molecular tunneling junctions, but it is incompatible with complementary metal–oxide–semiconductor fabrication because it forms deep level traps in silicon. Palladium electrodes do not contaminate silicon, and also give higher tunnel current signals in the molecular tunnel junctions that we have studied. The result is cleaner signals in a recognition-tunneling junction that recognizes the four natural DNA bases as well as 5-methyl cytosine, with no spurious background signals. More than 75% of all the recorded signal peaks indicate the base correctly. (paper)

  19. Shot noise in YBCO bicrystal Josephson junctions

    DEFF Research Database (Denmark)

    Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.

    2003-01-01

    We measured spectral noise density in YBCO symmetric bicrystal Josephson junctions on sapphire substrates at bias voltages up to 100 mV and T 4.2 K. Normal state resistance of the Josephson junctions, R-N = 20-90 Omega and ICRN up to 2.2 mV have been observed in the experimental samples. Noise...... may explain the experimentally measured linewidth broadening of Josephson oscillations at mm and submm wave frequencies in high-Tc superconducting junctions. Experimental results are discussed in terms of bound states existing at surfaces of d-wave superconducting electrodes....

  20. Soliton excitations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth

    1982-01-01

    A detailed numerical study of a sine-Gordon model of the Josephson tunnel junction is compared with experimental measurements on junctions with different L / λJ ratios. The soliton picture is found to apply well on both relatively long (L / λJ=6) and intermediate (L / λJ=2) junctions. We find good...... agreement for the current-voltage characteristics, power output, and for the shape and height of the zero-field steps (ZFS). Two distinct modes of soliton oscillations are observed: (i) a bunched or congealed mode giving rise to the fundamental frequency f1 on all ZFS's and (ii) a "symmetric" mode which...

  1. Parametric frequency conversion in long Josephson junctions

    International Nuclear Information System (INIS)

    Irie, F.; Ashihara, S.; Yoshida, K.

    1976-01-01

    Current steps at voltages corresponding to the parametric coupling between an applied r.f. field and junction resonant modes have been observed in long Josephson tunnel junctions in the flux-flow state. The observed periodic variations of the step height due to the applied magnetic field are explained quantitatively by a perturbational analysis using Josephson phase equations. The present study demonstrates that the moving vortex array can serve as a coherent pump wave for signal waves propagating in the barrier region, which indicates, as a result, the possibility of traveling-wave parametric devices with long Josephson tunnel junctions. (author)

  2. Microscopic tunneling theory of long Josephson junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm

    1992-01-01

    We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the detai......We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...... that the detailed behavior of a solitonic mode (fluxon dynamics) in the junction is different from the results of the conventional perturbed sine-Gordon model....

  3. delta-biased Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Koshelet, V.

    2010-01-01

    Abstract: The behavior of a long Josephson tunnel junction drastically depends on the distribution of the dc bias current. We investigate the case in which the bias current is fed in the central point of a one-dimensional junction. Such junction configuration has been recently used to detect...... the persistent currents circulating in a superconducting loop. Analytical and numerical results indicate that the presence of fractional vortices leads to remarkable differences from the conventional case of uniformly distributed dc bias current. The theoretical findings are supported by detailed measurements...

  4. Robustness of Majorana bound states in the short-junction limit

    Science.gov (United States)

    Sticlet, Doru; Nijholt, Bas; Akhmerov, Anton

    2017-03-01

    We study the effects of strong coupling between a superconductor and a semiconductor nanowire on the creation of the Majorana bound states, when the quasiparticle dwell time in the normal part of the nanowire is much shorter than the inverse superconducting gap. This "short-junction" limit is relevant for the recent experiments using the epitaxially grown aluminum characterized by a transparent interface with the semiconductor and a small superconducting gap. We find that the small superconducting gap does not have a strong detrimental effect on the Majorana properties. Specifically, both the critical magnetic field required for creating a topological phase and the size of the Majorana bound states are independent of the superconducting gap. The critical magnetic field scales with the wire cross section, while the relative importance of the orbital and Zeeman effects of the magnetic field is controlled by the material parameters only: g factor, effective electron mass, and the semiconductor-superconductor interface transparency.

  5. Crystal structure of a claudin provides insight into the architecture of tight junctions.

    Science.gov (United States)

    Suzuki, Hiroshi; Nishizawa, Tomohiro; Tani, Kazutoshi; Yamazaki, Yuji; Tamura, Atsushi; Ishitani, Ryuichiro; Dohmae, Naoshi; Tsukita, Sachiko; Nureki, Osamu; Fujiyoshi, Yoshinori

    2014-04-18

    Tight junctions are cell-cell adhesion structures in epithelial cell sheets that surround organ compartments in multicellular organisms and regulate the permeation of ions through the intercellular space. Claudins are the major constituents of tight junctions and form strands that mediate cell adhesion and function as paracellular barriers. We report the structure of mammalian claudin-15 at a resolution of 2.4 angstroms. The structure reveals a characteristic β-sheet fold comprising two extracellular segments, which is anchored to a transmembrane four-helix bundle by a consensus motif. Our analyses suggest potential paracellular pathways with distinctive charges on the extracellular surface, providing insight into the molecular basis of ion homeostasis across tight junctions.

  6. Transparency of atom-sized superconducting junctions

    International Nuclear Information System (INIS)

    Van-der-Post, N.; Peters, E.T.; Van Ruitenbeek, J.M.; Yanson, I.K.

    1995-01-01

    We discuss the transparency of atom-size superconducting tunnel junctions by comparing experimental values of the normal resistance and Subgap Structure with the theoretical predictions for these phenomena by Landauer's formula and Multiple Andreev Reflection, respectively

  7. Josephson tunnel junctions in niobium films

    International Nuclear Information System (INIS)

    Wiik, Tapio.

    1976-12-01

    A method of fabricating stable Josephson tunnel junctions with reproducible characteristics is described. The junctions have a sandwich structure consisting of a vacuum evaporated niobium film, a niobium oxide layer produced by the glow discharge method and a lead film deposited by vacuum evaporation. Difficulties in producing thin-film Josephson junctions are discussed. Experimental results suggest that the lower critical field of the niobium film is the most essential parameter when evaluating the quality of these junctions. The dependence of the lower critical field on the film thickness and on the Ginzburg-Landau parameter of the film is studied analytically. Comparison with the properties of the evaporated films and with the previous calculations for bulk specimens shows that the presented model is applicable for most of the prepared samples. (author)

  8. Chirality effect in disordered graphene ribbon junctions

    International Nuclear Information System (INIS)

    Long Wen

    2012-01-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  9. Persistent junctional reciprocating tachycardia in the fetus

    NARCIS (Netherlands)

    Oudijk, M. A.; Stoutenbeek, P.; Sreeram, N.; Visser, G. H. A.; Meijboom, E. J.

    2003-01-01

    Persistent junctional reciprocating tachycardia (PJRT) tends to be a persistent arrhythmia and requires aggressive therapeutic management. Diagnosis and management of this infrequently occurring tachycardia in the fetus at an early stage is of importance for the prevention of congestive heart

  10. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  11. TAT-Gap19 and Carbenoxolone Alleviate Liver Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Sara Crespo Yanguas

    2018-03-01

    Full Text Available Although a plethora of signaling pathways are known to drive the activation of hepatic stellate cells in liver fibrosis, the involvement of connexin-based communication in this process remains elusive. Connexin43 expression is enhanced in activated hepatic stellate cells and constitutes the molecular building stone of hemichannels and gap junctions. While gap junctions support intercellular communication, and hence the maintenance of liver homeostasis, hemichannels provide a circuit for extracellular communication and are typically opened by pathological stimuli, such as oxidative stress and inflammation. The present study was set up to investigate the effects of inhibition of connexin43-based hemichannels and gap junctions on liver fibrosis in mice. Liver fibrosis was induced by administration of thioacetamide to Balb/c mice for eight weeks. Thereafter, mice were treated for two weeks with TAT-Gap19, a specific connexin43 hemichannel inhibitor, or carbenoxolone, a general hemichannel and gap junction inhibitor. Subsequently, histopathological analysis was performed and markers of hepatic damage and functionality, oxidative stress, hepatic stellate cell activation and inflammation were evaluated. Connexin43 hemichannel specificity of TAT-Gap19 was confirmed in vitro by fluorescence recovery after photobleaching analysis and the measurement of extracellular release of adenosine-5′-triphosphate. Upon administration to animals, both TAT-Gap19 and carbenoxolone lowered the degree of liver fibrosis accompanied by superoxide dismutase overactivation and reduced production of inflammatory proteins, respectively. These results support a role of connexin-based signaling in the resolution of liver fibrosis, and simultaneously demonstrate the therapeutic potential of TAT-Gap19 and carbenoxolone in the treatment of this type of chronic liver disease.

  12. Construction of tunable peptide nucleic acid junctions.

    Science.gov (United States)

    Duan, Tanghui; He, Liu; Tokura, Yu; Liu, Xin; Wu, Yuzhou; Shi, Zhengshuang

    2018-03-15

    We report here the construction of 3-way and 4-way peptide nucleic acid (PNA) junctions as basic structural units for PNA nanostructuring. The incorporation of amino acid residues into PNA chains makes PNA nanostructures with more structural complexity and architectural flexibility possible, as exemplified by building 3-way PNA junctions with tunable nanopores. Given that PNA nanostructures have good thermal and enzymatic stabilities, they are expected to have broad potential applications in biosensing, drug delivery and bioengineering.

  13. ROCK2 primes the endothelium for vascular hyperpermeability responses by raising baseline junctional tension

    Science.gov (United States)

    Beckers, Cora M.L.; Knezevic, Nebojsa; Valent, Erik T.; Tauseef, Mohammad; Krishnan, Ramaswamy; Rajendran, Kavitha; Hardin, C. Corey; Aman, Jurjan; van Bezu, Jan; Sweetnam, Paul; van Hinsbergh, Victor W.M.; Mehta, Dolly; van Nieuw Amerongen, Geerten P.

    2015-01-01

    Rho kinase mediates the effects of inflammatory permeability factors by increasing actomyosin-generated traction forces on endothelial adherens junctions, resulting in disassembly of intercellular junctions and increased vascular leakage. In vitro, this is accompanied by the Rho kinase-driven formation of prominent radial F-actin fibers, but the in vivo relevance of those F-actin fibers has been debated, suggesting other Rho kinase-mediated events to occur in vascular leak. Here, we delineated the contributions of the highly homologous isoforms of Rho kinase (ROCK1 and ROCK2) to vascular hyperpermeability responses. We show that ROCK2, rather than ROCK1 is the critical Rho kinase for regulation of thrombin receptor-mediated vascular permeability. Novel traction force mapping in endothelial monolayers, however, shows that ROCK2 is not required for the thrombin-induced force enhancements. Rather, ROCK2 is pivotal to baseline junctional tension as a novel mechanism by which Rho kinase primes the endothelium for hyperpermeability responses, independent from subsequent ROCK1-mediated contractile stress-fiber formation during the late phase of the permeability response. PMID:25869521

  14. Tunnelling determined superconducting energy gap of bulk single crystal aluminum

    International Nuclear Information System (INIS)

    Civiak, R.L.

    1974-01-01

    A procedure has been developed for fabricating Giaver tunnel junctions on bulk aluminum. Al-I-Ag junctions were prepared, where I is the naturally formed oxide on the polished, chemically treated aluminum surface. The aluminum energy gap was determined from tunneling conductance curves obtained from samples oriented in three different crystal directions, and as a function of magnetic field in each of these orientations. In contrast to the results of microwave absorption measurements on superconducting aluminum, no magnetic field dependence could be measured for either the average gap or the spread in gap values of the tunneling electrons. This is consistent with commonly accepted tunneling selection rules, and Garfunkel's interpretation of the microwave behavior which depended upon adjusting the energy spectrum of only the electrons traveling parallel to the surface in the presence of a magnetic field. The energy gaps measured for samples oriented in the 100, 110 and 111 directions are 3.52, 3.50 and 3.39 kT/sub c/, respectively. The trend in the anisotropy is the same as in the calculation of Leavens and Carbotte, however, the magnitude of the anisotropy is smaller than in their calculation and that which previous measurements have indicated

  15. E-cadherin junction formation involves an active kinetic nucleation process

    Science.gov (United States)

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng-han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan-Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.

    2015-01-01

    Epithelial (E)-cadherin-mediated cell−cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role. PMID:26290581

  16. Junction depth measurement using carrier illumination

    International Nuclear Information System (INIS)

    Borden, Peter

    2001-01-01

    Carrier Illumination [trade mark] (CI) is a new method recently developed to meet the need for a non-destructive, high throughput junction depth measurement on patterned wafers. A laser beam creates a quasi-static excess carrier profile in the semiconductor underlying the activated junction. The excess carrier profile is fairly constant below the junction, and drops rapidly in the junction, creating a steep index of refraction gradient at the junction edge. Interference with light reflected from this index gradient provides a signal that is analyzed to determine the junction depth. The paper summarizes evaluation of performance in full NMOS and PMOS process flows, on both bare and patterned wafers. The aims have been to validate (1) performance in the presence of underlying layers typically found at the source/drain (S/D) process steps and (2) measurement on patterned wafers. Correlation of CI measurements to SIMS and transistor drive current are shown. The data were obtained from NMOS structures using As S/D and LDD implants. Correlations to SRP, SIMS and sheet resistance are shown for PMOS structures using B 11 LDD implants. Gage capability measurements are also presented

  17. Ballistic Josephson junctions based on CVD graphene

    Science.gov (United States)

    Li, Tianyi; Gallop, John; Hao, Ling; Romans, Edward

    2018-04-01

    Josephson junctions with graphene as the weak link between superconductors have been intensely studied in recent years, with respect to both fundamental physics and potential applications. However, most of the previous work was based on mechanically exfoliated graphene, which is not compatible with wafer-scale production. To overcome this limitation, we have used graphene grown by chemical vapour deposition (CVD) as the weak link of Josephson junctions. We demonstrate that very short, wide CVD-graphene-based Josephson junctions with Nb electrodes can work without any undesirable hysteresis in their electrical characteristics from 1.5 K down to a base temperature of 320 mK, and their gate-tuneable critical current shows an ideal Fraunhofer-like interference pattern in a perpendicular magnetic field. Furthermore, for our shortest junctions (50 nm in length), we find that the normal state resistance oscillates with the gate voltage, consistent with the junctions being in the ballistic regime, a feature not previously observed in CVD-graphene-based Josephson junctions.

  18. Wide-Gap Chalcopyrites

    CERN Document Server

    Siebentritt, Susanne

    2006-01-01

    Chalcopyrites, in particular those with a wide band gap, are fascinating materials in terms of their technological potential in the next generation of thin-film solar cells and in terms of their basic material properties. They exhibit uniquely low defect formation energies, leading to unusual doping and phase behavior and to extremely benign grain boundaries. This book collects articles on a number of those basic material properties of wide-gap chalcopyrites, comparing them to their low-gap cousins. They explore the doping of the materials, the electronic structure and the transport through interfaces and grain boundaries, the formation of the electric field in a solar cell, the mechanisms and suppression of recombination, the role of inhomogeneities, and the technological role of wide-gap chalcopyrites.

  19. Pinhole density and contact resistivity of carrier selective junctions with polycrystalline silicon on oxide

    Science.gov (United States)

    Wietler, T. F.; Tetzlaff, D.; Krügener, J.; Rienäcker, M.; Haase, F.; Larionova, Y.; Brendel, R.; Peibst, R.

    2017-06-01

    In the pursuit of ever higher conversion efficiencies for silicon photovoltaic cells, polycrystalline silicon (poly-Si) layers on thin silicon oxide films were shown to form excellent carrier-selective junctions on crystalline silicon substrates. Investigating the pinhole formation that is induced in the thermal processing of the poly-Si on oxide (POLO) junctions is essential for optimizing their electronic performance. We observe the pinholes in the oxide layer by selective etching of the underlying crystalline silicon. The originally nm-sized pinholes are thus readily detected using simple optical and scanning electron microscopy. The resulting pinhole densities are in the range of 6.6 × 106 cm-2 to 1.6 × 108 cm-2 for POLO junctions with selectivities close to S10 = 16, i.e., saturation current density J0c below 10 fA/cm2 and contact resistivity ρc below 10 mΩcm2. The measured pinhole densities agree with values deduced by a pinhole-mediated current transport model. Thus, we conclude pinhole-mediated current transport to be the dominating transport mechanism in the POLO junctions investigated here.

  20. Gap length distributions by PEPR

    International Nuclear Information System (INIS)

    Warszawer, T.N.

    1980-01-01

    Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)

  1. Synaptic Homeostasis and Its Immunological Disturbance in Neuromuscular Junction Disorders

    Directory of Open Access Journals (Sweden)

    Masaharu Takamori

    2017-04-01

    Full Text Available In the neuromuscular junction, postsynaptic nicotinic acetylcholine receptor (nAChR clustering, trans-synaptic communication and synaptic stabilization are modulated by the molecular mechanisms underlying synaptic plasticity. The synaptic functions are based presynaptically on the active zone architecture, synaptic vesicle proteins, Ca2+ channels and synaptic vesicle recycling. Postsynaptically, they are based on rapsyn-anchored nAChR clusters, localized sensitivity to ACh, and synaptic stabilization via linkage to the extracellular matrix so as to be precisely opposed to the nerve terminal. Focusing on neural agrin, Wnts, muscle-specific tyrosine kinase (a mediator of agrin and Wnts signalings and regulator of trans-synaptic communication, low-density lipoprotein receptor-related protein 4 (the receptor of agrin and Wnts and participant in retrograde signaling, laminin-network (including muscle-derived agrin, extracellular matrix proteins (participating in the synaptic stabilization and presynaptic receptors (including muscarinic and adenosine receptors, we review the functional structures of the synapse by making reference to immunological pathogenecities in postsynaptic disease, myasthenia gravis. The synapse-related proteins including cortactin, coronin-6, caveolin-3, doublecortin, R-spondin 2, amyloid precursor family proteins, glia cell-derived neurotrophic factor and neurexins are also discussed in terms of their possible contribution to efficient synaptic transmission at the neuromuscular junction.

  2. Identity gaps and level of depression among Korean immigrants.

    Science.gov (United States)

    Jung, Eura; Hecht, Michael L

    2008-07-01

    Identity gaps are a new theoretical construct that provide a framework for integrating communication into the study of identity and understanding the relationship between identity and health outcomes, such as depression. Derived from the communication theory of identity, identity gaps emerge when elements of identity are inconsistent with each other. This article focuses on 2 types of identity gaps, personal-enacted and personal-relational, examining their relationships with situational variables and depression. A questionnaire was administered to a community sample of 377 Korean immigrants to test a hypothesized path model predicting that 3 situational variables (intercultural communication competence, middleperson status, and perception of racial hierarchy) would influence the identity gaps that, in turn, influence Korean immigrants' levels of depression. Results showed that all 3 situational variables predicted Korean immigrants' personal-relational identity gaps, whereas only intercultural communication competence predicted their personal-enacted identity gaps. Both types of identity gaps predicted the level of depression. The personal-relational identity gap significantly mediated the effects of all 3 situational variables on levels of depression. However, the personal-enacted identity gap mediated only the effects of intercultural communication competence on the levels of depression.

  3. Spin-filtering effect and proximity effect in normal metal/ferromagnetic insulator/normal metal/superconductor junctions

    International Nuclear Information System (INIS)

    Li Hong; Yang Wei; Yang Xinjian; Qin Minghui; Xu Yihong

    2007-01-01

    Taking into account the thickness of the ferromagnetic insulator (FI), the spin-filtering effect and proximity effect in normal metal/ferromagnetic insulator/normal metal/superconductor (NM/FI/NM/SC) junctions are studied based on an extended Blonder-Tinkham-Klapwijk (BTK) theory. It is shown that a spin-dependent energy shift during the tunneling process induces splitting of the sub-energy gap conductance peaks and the spin polarization in the ferromagnetic insulator causes an imbalance of the peak heights. Different from the ferromagnet the spin-filtering effect of the FI cannot cause the reversion of the normalized conductance in NM/FI/NM/SC junctions

  4. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  5. Model Building to Facilitate Understanding of Holliday Junction and Heteroduplex Formation, and Holliday Junction Resolution

    Science.gov (United States)

    Selvarajah, Geeta; Selvarajah, Susila

    2016-01-01

    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and…

  6. Pronounced Photovoltaic Response from Multilayered Transition-Metal Dichalcogenides PN-Junctions.

    Science.gov (United States)

    Memaran, Shahriar; Pradhan, Nihar R; Lu, Zhengguang; Rhodes, Daniel; Ludwig, Jonathan; Zhou, Qiong; Ogunsolu, Omotola; Ajayan, Pulickel M; Smirnov, Dmitry; Fernández-Domínguez, Antonio I; García-Vidal, Francisco J; Balicas, Luis

    2015-11-11

    Transition metal dichalcogenides (TMDs) are layered semiconductors with indirect band gaps comparable to Si. These compounds can be grown in large area, while their gap(s) can be tuned by changing their chemical composition or by applying a gate voltage. The experimental evidence collected so far points toward a strong interaction with light, which contrasts with the small photovoltaic efficiencies η ≤ 1% extracted from bulk crystals or exfoliated monolayers. Here, we evaluate the potential of these compounds by studying the photovoltaic response of electrostatically generated PN-junctions composed of approximately 10 atomic layers of MoSe2 stacked onto the dielectric h-BN. In addition to ideal diode-like response, we find that these junctions can yield, under AM-1.5 illumination, photovoltaic efficiencies η exceeding 14%, with fill factors of ~70%. Given the available strategies for increasing η such as gap tuning, improving the quality of the electrical contacts, or the fabrication of tandem cells, our study suggests a remarkable potential for photovoltaic applications based on TMDs.

  7. Microtubules CLASP to Adherens Junctions in epidermal progenitor cells

    DEFF Research Database (Denmark)

    Shahbazi, Marta N; Perez-Moreno, Mirna

    2014-01-01

    Cadherin-mediated cell adhesion at Adherens Junctions (AJs) and its dynamic connections with the microtubule (MT) cytoskeleton are important regulators of cellular architecture. However, the functional relevance of these interactions and the molecular players involved in different cellular contexts...... and cellular compartments are still not completely understood. Here, we comment on our recent findings showing that the MT plus-end binding protein CLASP2 interacts with the AJ component p120-catenin (p120) specifically in progenitor epidermal cells. Absence of either protein leads to alterations in MT...... dynamics and AJ functionality. These findings represent a novel mechanism of MT targeting to AJs that may be relevant for the maintenance of proper epidermal progenitor cell homeostasis. We also discuss the potential implication of other MT binding proteins previously associated to AJs in the wider context...

  8. The endothelial adaptor molecule TSAd is required for VEGF-induced angiogenic sprouting through junctional c-Src activation

    NARCIS (Netherlands)

    Gordon, Emma J; Fukuhara, Daisuke; Weström, Simone; Padhan, Narendra; Sjöström, Elisabet O; van Meeteren, Laurens; He, Liqun; Orsenigo, Fabrizio; Dejana, Elisabetta; Bentley, Katie; Spurkland, Anne; Claesson-Welsh, Lena

    2016-01-01

    Activation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) by VEGF binding is critical for vascular morphogenesis. In addition, VEGF disrupts the endothelial barrier by triggering the phosphorylation and turnover of the junctional molecule VE-cadherin, a process mediated by the

  9. Semantic Gaps Are Dangerous

    DEFF Research Database (Denmark)

    Ejstrup, Michael; le Fevre Jakobsen, Bjarne

    Semantic gaps are dangerous Language adapts to the environment where it serves as a tool to communication. Language is a social agreement, and we all have to stick to both grammaticalized and non-grammaticalized rules in order to pass information about the world around us. As such language develops...... unpolite language and tend to create dangerous relations where specialy language creates problems and trouble that could be avoided if we had better language tools at hand. But we have not these tools of communication, and we are in a situation today where media and specially digital and social media......, supported by new possibilities of migration, create dangerous situations. How can we avoid these accidental gaps in language and specially the gaps in semantic and metaphoric tools. Do we have to keep silent and stop discusing certain isues, or do we have other ways to get acces to sufficient language tools...

  10. Where are the Gaps?

    Science.gov (United States)

    Stoneham, Marshall

    Reading a Handbook like this gives a vivid picture of the enormous vigour and power of materials modelling. One is tempted to believe that we can answer all the questions materials technology might pose. Even if that were partly true, we should be identifying just what we do not know how to do. Some gaps will be depend on new hardware and software, especially when modelling quantum systems. Some gaps will be recognised only after some social or technological change has brought them into focus. Among the developments likely to stimulate innovation could be novel nanoelectronics, or the fields where physics meets biology. Still further gaps exist because we have been slaves to fashion, and have been drawn away from unpopular (roughly translating as "too difficult") fields; examples might include excited state spectroscopy, or electrical breakdown.

  11. Radial junctions formed by conformal chemical doping for innovative hole-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Garozzo, C.; Giannazzo, F.; Italia, M.; La Magna, A.; Privitera, V. [Consiglio Nazionale delle Ricerche – Istituto per la Microelettronica e Microsistemi, Ottava Strada 5, Zona Industriale, 95121 Catania (Italy); Puglisi, R.A., E-mail: rosaria.puglisi@imm.cnr.it [Consiglio Nazionale delle Ricerche – Istituto per la Microelettronica e Microsistemi, Ottava Strada 5, Zona Industriale, 95121 Catania (Italy)

    2013-05-15

    In this paper an innovative approach for Si solar cells based on radial junctions is presented. It consists of fabricating the junction in quasi one-dimensional structures like holes. The hole-based architecture, while maintaining the decoupling between the light absorption and the electrical collection typical of the more common wires and rods, ensures more robustness, numerous waveguide coupling modes and possibility to form non-conformal top contact. Nanosizes also provide the possibility to tune the band gap by quantum effects. Doping of the nanoholes, like in the case of nanowires, presents critical issues like conformality and control of the dopant dose and junction depth at nanometric level. We propose to dope the nanoholes by using a chemical method based on the use of a dopant containing molecules dispersed in solution. We apply the procedure on an array of holes of micrometric sizes fabricated to test and study the method and to properly scale it down and implement it on the nanostructures. Results show that the method provides junction depths in the nm scale with dopant peak concentrations as high as 10{sup 19} cm{sup −3} and that the doping is conformal on the vertical surfaces of the hole.

  12. Coherent quantum transport in hybrid Nb-InGaAs-Nb Josephson junctions

    Science.gov (United States)

    Delfanazari, Kaveh; Puddy, R.; Ma, P.; Cao, M.; Yi, T.; Gul, Y.; Farrer, I.; Ritchie, D.; Joyce, H.; Kelly, M.; Smith, C.

    Because of the recently reported detection of Majorana fermions states at the superconductor-semiconductor (S-Sm) interface in InAs nanowire devices, the study of hybrid structures has received renewed interest. In this paper we present experimental results on proximity induced superconductivity in a high-mobility two-dimensional electron gas in InGaAs heterostructures. Eight symmetric S-Sm-S Josephson junctions were fabricated on a single InGaAs chip and each junction was measured individually using a lock-in measurement technique. The superconducting electrodes were made of Niobium (Nb). The measurements were carried out in a dilution fridge with a base temperature of 40 mK, and the quantum transport of junctions were measured below 800 mK. Owing to Andreev reflections at the S-Sm interfaces, the differential resistance (dV/dI) versus V curve shows the well-known subharmonic energy gap structure (SGS) at V = 2ΔNb/ne. The SGS features suppressed significantly with increasing temperature and magnetic field, leading to a shift of the SGSs toward zero bias. Our result paves the way for development of highly transparent hybrid S-Sm-S junctions and coherent circuits for quantum devices capable of performing quantum logic and processing functions.

  13. The longevity gender gap

    DEFF Research Database (Denmark)

    Aviv, Abraham; Shay, Jerry; Christensen, Kaare

    2005-01-01

    In this Perspective, we focus on the greater longevity of women as compared with men. We propose that, like aging itself, the longevity gender gap is exceedingly complex and argue that it may arise from sex-related hormonal differences and from somatic cell selection that favors cells more...... resistant to the ravages of time. We discuss the interplay of these factors with telomere biology and oxidative stress and suggest that an explanation for the longevity gender gap may arise from a better understanding of the differences in telomere dynamics between men and women....

  14. Bridge the Gap

    DEFF Research Database (Denmark)

    Marselis, Randi

    2017-01-01

    This article focuses on photo projects organised for teenage refugees by the Society for Humanistic Photography (Berlin, Germany). These projects, named Bridge the Gap I (2015), and Bridge the Gap II (2016), were carried out in Berlin and brought together teenagers with refugee and German-majorit...... was produced – and sometimes not produced - within the projects. The importance of memory work in the context of refugee resettlement is often overlooked, but is particularly relevant when cultural encounters are organised in museums and exhibition galleries....

  15. Missing the gap

    DEFF Research Database (Denmark)

    Tanggaard, Lene; Glaveanu, Vlad Petre

    by the premise that difference and gaps are places where creative learning is intensified (Glaveanu & Gillespie, 2015). The public discourse around education is often concerned with minding or avoiding the gap by making education more relevant for or similar to the labour market, but what if facilitating...... creative learning at the borders need not minimize differences, but handle and learn from them? If not, schools and educational institutions risk becoming bad copies of the labour marked instead of enabling students to enter the market with something new, something radically dissimilar from what...

  16. Electronic transport through EuO spin-filter tunnel junctions

    KAUST Repository

    Jutong, Nuttachai

    2012-11-12

    Epitaxial spin-filter tunnel junctions based on the ferromagnetic semiconductor europium monoxide (EuO) are investigated by means of density functional theory. In particular, we focus on the spin transport properties of Cu(100)/EuO(100)/Cu(100) junctions. The dependence of the transmission coefficient and the current-voltage curves on the interface spacing and EuO thickness is explained in terms of the EuO density of states and the complex band structure. Furthermore, we also discuss the relation between the spin transport properties and the Cu-EuO interface geometry. The level alignment of the junction is sensitively affected by the interface spacing, since this determines the charge transfer between EuO and the Cu electrodes. Our calculations indicate that EuO epitaxially grown on Cu can act as a perfect spin filter, with a spin polarization of the current close to 100%, and with both the Eu-5d conduction-band and the Eu-4f valence-band states contributing to the coherent transport. For epitaxial EuO on Cu, a symmetry filtering is observed, with the Δ1 states dominating the transmission. This leads to a transport gap larger than the fundamental EuO band gap. Importantly, the high spin polarization of the current is preserved up to large bias voltages.

  17. Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers12

    Science.gov (United States)

    Peng, Luying; Li, Zhong-Rong; Green, Robert S.; Holzman, Ian R.; Lin, Jing

    2009-01-01

    Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier. PMID:19625695

  18. Tunnel magnetoresistance in double spin filter junctions

    International Nuclear Information System (INIS)

    Saffarzadeh, Alireza

    2003-01-01

    We consider a new type of magnetic tunnel junction, which consists of two ferromagnetic tunnel barriers acting as spin filters (SFs), separated by a nonmagnetic metal (NM) layer. Using the transfer matrix method and the free-electron approximation, the dependence of the tunnel magnetoresistance (TMR) on the thickness of the central NM layer, bias voltage and temperature in the double SF junction are studied theoretically. It is shown that the TMR and electron-spin polarization in this structure can reach very large values under suitable conditions. The highest value of the TMR can reach 99%. By an appropriate choice of the thickness of the central NM layer, the degree of spin polarization in this structure will be higher than that of the single SF junctions. These results may be useful in designing future spin-polarized tunnelling devices

  19. Josephson junctions with ferromagnetic alloy interlayer

    International Nuclear Information System (INIS)

    Himmel, Nico

    2015-01-01

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO x vertical stroke Nb vertical stroke Ni 60 Cu 40 vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially a variation of

  20. Phase-dependent noise in Josephson junctions

    Science.gov (United States)

    Sheldon, Forrest; Peotta, Sebastiano; Di Ventra, Massimiliano

    2018-03-01

    In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristive) character that should also affect the current noise. By means of the microscopic theory of tunnel junctions we compute the complete current autocorrelation function of a Josephson tunnel junction and show that this memristive component gives rise to both a previously noted phase-dependent thermal noise, and an undescribed non-stationary, phase-dependent dynamic noise. As experiments are approaching ranges in which these effects may be observed, we examine the form and magnitude of these processes. Their phase dependence can be realized experimentally as a hysteresis effect and may be used to probe defects present in JJ based qubits and in other superconducting electronics applications.

  1. Silicon fiber with p-n junction

    Energy Technology Data Exchange (ETDEWEB)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B. [Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 312 Holden Hall, Blacksburg, Virginia 24060 (United States)

    2014-09-22

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900 μm and core diameters of 20–800 μm. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  2. Silicon fiber with p-n junction

    International Nuclear Information System (INIS)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B.

    2014-01-01

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900 μm and core diameters of 20–800 μm. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  3. Ferromagnetic resonance with long Josephson junction

    Science.gov (United States)

    Golovchanskiy, I. A.; Abramov, N. N.; Stolyarov, V. S.; Emelyanova, O. V.; Golubov, A. A.; Ustinov, A. V.; Ryazanov, V. V.

    2017-05-01

    In this work we propose a hybrid device based on a long Josephson junction (JJ) coupled inductively to an external ferromagnetic (FM) layer. The long JJ in a zero-field operation mode induces a localized AC magnetic field in the FM layer and enables a synchronized magnetostatic standing wave. The magnetostatic wave induces additional dissipation for soliton propagation in the junction and also enables a phase locking (resonant soliton synchronization) at a frequency of natural ferromagnetic resonance. The later manifests itself as an additional constant voltage step on the current-voltage characteristics at the corresponding voltage. The proposed device allows to study magnetization dynamics of individual micro-scaled FM samples using just DC technique, and also it provides additional phase locking frequency in the junction, determined exclusively by characteristics of the ferromagnet.

  4. Josephson junctions with ferromagnetic alloy interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, Nico

    2015-07-23

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO{sub x} vertical stroke Nb vertical stroke Ni{sub 60}Cu{sub 40} vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially

  5. Strong Josephson Coupling in Planar Graphene Junctions

    Science.gov (United States)

    Park, Jinho; Lee, Gil-Ho; Lee, Jae Hyeong; Takane, Yositake; Imura, Ken-Ichiro; Taniguchi, Takashi; Watanabe, Kenji; Lee, Hu-Jong

    A recent breakthrough of processing graphene, employing encapsulation by hexagonal boron nitride layers (BGB structure), allows realizing the ballistic carrier transport in graphene. Thereafter, ballistic Josephson coupling has been studied by closely edge-contacted BGB structure with two superconducting electrodes. Here, we report on the strong Josephson coupling with planar graphene junction in truly short and ballistic regime. Our device showed high transmission probability and the junction critical current (IC) oscillating for sweeping the gate voltage along with the normal conductance oscillation (Fabry-Perot oscillations), providing a direct evidence for the ballistic nature of the junction pair current. We also observed the convex-upward shape of decreasing critical currents with increasing temperature, canonical properties of the short Josephson coupling. By fitting these curves into theoretical models, we demonstrate the strong Josephson coupling in our devices, which is also supported by the exceptionally large value of ICRN ( 2 Δ / e RNis the normal resistance).

  6. A congenital form of junctional ectopic tachycardia.

    Science.gov (United States)

    Tulino, Domenico; Dattilo, Giuseppe; Tulino, Viviana; Marte, Filippo; Patanè, Salvatore

    2010-11-19

    Accessory pathways have been described as well as their Ecg identification criteria also in pediatric population. Radiofrequency ablation is a curative treatment but its application has been more limited in the paediatric population. The congenital form of junctional ectopic tachycardia was firstly described by Coumel et al. in 1976. It usually occurs in the first six months of life presenting as a persistent sustained form, lasting up to 90% of the time and it is hampered by high mortality. Its clinical presentation may be dramatic, being associated in up to 60% of cases with cardiomegaly and/or heart failure. Secondary dilated cardiomyopathy, ventricular fibrillation and sudden cardiac death have also been reported. We present a case of congenital form of junctional ectopic tachycardia in a 12-day-old newborn infant. Also this case is illustrative of the congenital form of junctional ectopic tachycardia. Copyright © 2008 Elsevier Ireland Ltd. All rights reserved.

  7. Terahertz Responses of Intrinsic Josephson Junctions in High TC Superconductors

    International Nuclear Information System (INIS)

    Wang, H. B.; Wu, P. H.; Yamashita, T.

    2001-01-01

    High frequency responses of intrinsic Josephson junctions up to 2.5THz, including the observation of Shapiro steps under various conditions, are reported and discussed in this Letter. The sample was an array of intrinsic Josephson junctions singled out from inside a high T C superconducting Bi 2 Sr 2 CaCu 2 O 8+x single crystal, with a bow-tie antenna integrated to it. The number of junctions in the array was controllable, the junctions were homogeneous, the distribution of applied irradiation among the junctions was even, and the junctions could synchronously respond to high frequency irradiation

  8. Systematic study of shallow junction formation on germanium substrates

    DEFF Research Database (Denmark)

    Hellings, Geert; Rosseel, Erik; Clarysse, Trudo

    2011-01-01

    Published results on Ge junctions are benchmarked systematically using RS–XJ plots. The electrical activation level required to meet the ITRS targets is calculated. Additionally, new results are presented on shallow furnace-annealed B junctions and shallow laser-annealed As junctions. Co-implanti......Published results on Ge junctions are benchmarked systematically using RS–XJ plots. The electrical activation level required to meet the ITRS targets is calculated. Additionally, new results are presented on shallow furnace-annealed B junctions and shallow laser-annealed As junctions. Co...

  9. Electronic Properties of Carbon Nanotubes and Junctions

    Science.gov (United States)

    Anantram, M. P.; Han, Jie; Yang, Liu; Govindan, T. R.; Jaffe, R.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Metallic and semiconducting Single Wall Carbon Nanotubes (CNT) have recently been characterized using scanning tunneling microscopy (STM) and the manipulation of individual CNT has been demonstrated. These developments make the prospect of using CNT as molecular wires and possibly as electronic devices an even more interesting one. We have been modeling various electronic properties such as the density of states and the transmission coefficient of CNT wires and junctions. These studies involve first calculating the stability of junctions using molecular dynamics simulations and then calculating the electronic properties using a pi-electron tight binding Hamiltonian. We have developed the expertise to calculate the electronic properties of both finite-sized CNT and CNT systems with semi-infinite boundary conditions. In this poster, we will present an overview of some of our results. The electronic application of CNT that is most promising at this time is their use as molecular wires. The conductance can however be greatly reduced because of reflection due to defects and contacts. We have modeled the transmission through CNT in the presence of two types of defects: weak uniform disorder and strong isolated scatterers. We find that the conductance is affected in significantly different manners due to these defects Junctions of CNT have also been imaged using STM. This makes it essential to derive rules for the formation of junctions between tubes of different chirality, study their relative energies and electronic properties. We have generalized the rules for connecting two different CNT and have calculated the transmission and density of states through CNT junctions. Metallic and semiconducting CNT can be joined to form a stable junction and their current versus voltage characteristics are asymmetric. CNT are deformed by the application of external forces including interactions with a substrate or other CNT. In many experiments, these deformation are expected to

  10. Characterization of cytoskeletal and junctional proteins expressed by cells cultured from human arachnoid granulation tissue

    Directory of Open Access Journals (Sweden)

    Mehta Bhavya C

    2005-10-01

    the in vitro culture of arachnoidal cells grown from human AG tissue. We demonstrated that these cells in vitro continue to express some of the cytoskeletal and junctional proteins characterized previously in human AG tissue, such as proteins involved in the formation of gap junctions, desmosomes, epithelial specific adherens junctions, as well as tight junctions. These junctional proteins in particular may be important in allowing these arachnoidal cells to regulate CSF outflow.

  11. Estimating Gender Wage Gaps

    Science.gov (United States)

    McDonald, Judith A.; Thornton, Robert J.

    2011-01-01

    Course research projects that use easy-to-access real-world data and that generate findings with which undergraduate students can readily identify are hard to find. The authors describe a project that requires students to estimate the current female-male earnings gap for new college graduates. The project also enables students to see to what…

  12. 'Mind the Gap!'

    DEFF Research Database (Denmark)

    Persson, Karl Gunnar

    This paper challenges the widely held view that sharply falling real transport costs closed the transatlantic gap in grain prices in the second half of the 19th century. Several new results emerge from an analysis of a new data set of weekly wheat prices and freight costs from New York to UK mark...

  13. Fast thermometry with a proximity Josephson junction

    Science.gov (United States)

    Wang, L. B.; Saira, O.-P.; Pekola, J. P.

    2018-01-01

    We couple a proximity Josephson junction to a Joule-heated normal metal film and measure its electron temperature under steady state and nonequilibrium conditions. With a timed sequence of heating and temperature probing pulses, we are able to monitor its electron temperature in nonequilibrium with effectively zero back-action from the temperature measurement in the form of additional dissipation or thermal conductance. The experiments demonstrate the possibility of using a fast proximity Josephson junction thermometer for studying thermal transport in mesoscopic systems and for calorimetry.

  14. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread.

    Directory of Open Access Journals (Sweden)

    Irna Sufiawati

    Full Text Available Herpes simplex virus (HSV types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD. Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals.

  15. Relationship between Critical Current Fluctuation of Superconducting Bicrystal Junction and Junction Parameters

    Science.gov (United States)

    Enpuku, Keiji; Minotani, Tadashi; Shiraishi, Fumio; Kandori, Atushi

    1999-04-01

    Critical current fluctuation of bicrystal junctions is estimated from the 1/f flux noise of the superconducting quantum interference device (SQUID) at T=77 K. The relationships between the current fluctuation and junction parameters, such as critical current Io and resistance R, are obtained. The obtained parameter dependence can be well explained by using the parameter dependence of the resistance fluctuation reported by Marx and Gross [Appl. Phys. Lett. 70, 120 (1997)] and the relationship between Io and R obtained for the present junctions. The agreement indicates that the critical current fluctuation is correlated with the resistance fluctuation through the relationship between Io and R.

  16. Novel hysteresis effects in Nb/AlOx/Al/AlOx/Nb tunnel junctions

    International Nuclear Information System (INIS)

    Blamire, M.G.; Kirk, E.C.G.; Somekh, R.E.; Evetts, J.E.

    1991-01-01

    Measurements on current-biased Nb/AlO x /Al/AlO x /Nb double tunnel junction devices with very thin central Al layers show a novel double hysteretic structure in the subgap region. Similar junction structures have previously exhibited very large nonequilibrium effects; the effects reported here appear close to and above the equilibrium critical temperature of Al. A model is presented in which the hysteresis is shown to arise from a transition from finite to zero voltage across one barrier on increasing current, due to the nucleation of an inhomogeneous state in the ultrathin central Al layer in which normal and superconducting states coexist. This reverse switching effect is shown to arise from the self-shunting effect of low-gap regions. Predictions of this model are shown to agree with the experimental data

  17. Resonance modes in one-dimensional parallel arrays of Josephson junctions

    International Nuclear Information System (INIS)

    Van der Zant, H.S.J.; Delin, K.A.; Bock, R.D.; Berman, D.; Phillips, J.R.; Orlando, T.P.

    1994-01-01

    We investigate both experimentally and numerically the dynamics of discrete one-dimensional parallel arrays of underdamped Josephson junctions. In a magnetic field, measurements show steps in the current-voltage characteristics which are the discrete analogs of Fiske steps in a long Josephson junction. From the position of the steps, one can construct a plot of the dispersion relation ω(k). We observe a sine--dependence in the dispersion relation due to the discrete nature of our arrays. We also observe an additional, smaller gap at a k-value determined by the periodicity of the vortex lattice. Our measurements are supported by numerical simulations of the full dynamics. The Fiske steps provide an experimental method to measure the self-inductance of 1D parallel arrays. (orig.)

  18. Conductance oscillations and zero-bias anomaly in a single superconducting junction to a three-dimensional Bi2Te3 topological insulator

    Science.gov (United States)

    Shvetsov, O. O.; Kostarev, V. A.; Kononov, A.; Golyashov, V. A.; Kokh, K. A.; Tereshchenko, O. E.; Deviatov, E. V.

    2017-09-01

    We experimentally investigate Andreev transport through a single junction between an s-wave indium superconductor and a thick film of a three-dimensional Bi2Te3 topological insulator. We study Bi2Te3 samples with different bulk and surface characteristics, where the presence of a topological surface state is confirmed by direct ARPES measurements. All the junctions demonstrate Andreev transport within the superconducting gap. For junctions with transparent In-Bi2Te3 interfaces we find a number of nearly periodic conductance oscillations, which are accompanied by zero-bias conductance anomaly. Both effects disappear above the superconducting transition or for resistive junctions. We propose a consistent interpretation of both effects as originating from proximity-induced superconducting correlations within the Bi2Te3 topological surface state.

  19. The limiting efficiency of band gap graded solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rafat, Nadia H. [Faculty of Engineering, Cairo University, Giza (Egypt); Habib, S.E.D. [Faculty of electronics and communication, Cairo University, Giza (Egypt)

    1998-09-04

    Two fundamental mechanisms limit the maximum attainable efficiency of solar cells, namely the radiative recombination and Auger recombination. We show in this paper that proper band gap grading of the solar cell localizes the Auger recombination around the metallurgical junction. Two beneficial effects result from this Auger recombination localization; first the cell is less sensitive to the surface conditions, and second, the previous estimates for the limiting efficiency of solar cells by Shockley, Tiedje, and Green are revised upwardly. We calculate the optimum bandgap grading profile for several real material systems, including GaInAsP lattice matched to InP, and a-SiGe on a-Si substrate

  20. Improving transition voltage spectroscopy of molecular junctions

    DEFF Research Database (Denmark)

    Markussen, Troels; Chen, Jingzhe; Thygesen, Kristian Sommer

    2011-01-01

    Transition voltage spectroscopy (TVS) is a promising spectroscopic tool for molecular junctions. The principles in TVS is to find the minimum on a Fowler-Nordheim plot where ln(I/V2) is plotted against 1/V and relate the voltage at the minimum Vmin to the closest molecular level. Importantly, Vmin...

  1. Intrinsically shunted Josephson junctions for electronics applications

    Science.gov (United States)

    Belogolovskii, M.; Zhitlukhina, E.; Lacquaniti, V.; De Leo, N.; Fretto, M.; Sosso, A.

    2017-07-01

    Conventional Josephson metal-insulator-metal devices are inherently underdamped and exhibit hysteretic current-voltage response due to a very high subgap resistance compared to that in the normal state. At the same time, overdamped junctions with single-valued characteristics are needed for most superconducting digital applications. The usual way to overcome the hysteretic behavior is to place an external low-resistance normal-metal shunt in parallel with each junction. Unfortunately, such solution results in a considerable complication of the circuitry design and introduces parasitic inductance through the junction. This paper provides a concise overview of some generic approaches that have been proposed in order to realize internal shunting in Josephson heterostructures with a barrier that itself contains the desired resistive component. The main attention is paid to self-shunted devices with local weak-link transmission probabilities that are so strongly disordered in the interface plane that transmission probabilities are tiny for the main part of the transition region between two super-conducting electrodes, while a small part of the interface is well transparent. We discuss the possibility of realizing a universal bimodal distribution function and emphasize advantages of such junctions that can be considered as a new class of self-shunted Josephson devices promising for practical applications in superconducting electronics operating at 4.2 K.

  2. Generalized Eck peak in inhomogeneous Josephson junctions

    Science.gov (United States)

    Fistul, Mikhail V.; Giuliani, Gabriele F.

    1997-02-01

    In inhomogeneous Josephson junctions the Eck peak characterizing the current-voltage characteristics is predicted to be replaced by a rather different yet prominent feature whose location and shape strongly depend on the strength of the applied magnetic field and the spatial correlations of the associated distorted Abrikosov flux lattice.

  3. Polyphosphonium-based ion bipolar junction transistors.

    Science.gov (United States)

    Gabrielsson, Erik O; Tybrandt, Klas; Berggren, Magnus

    2014-11-01

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices.

  4. Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer

    NARCIS (Netherlands)

    van Hagen, P.; Hulshof, M. C. C. M.; van Lanschot, J. J. B.; Steyerberg, E. W.; van Berge Henegouwen, M. I.; Wijnhoven, B. P. L.; Richel, D. J.; Nieuwenhuijzen, G. A. P.; Hospers, G. A. P.; Bonenkamp, J. J.; Cuesta, M. A.; Blaisse, R. J. B.; Busch, O. R. C.; ten Kate, F. J. W.; Creemers, G.-J.; Punt, C. J. A.; Plukker, J. T. M.; Verheul, H. M. W.; Spillenaar Bilgen, E. J.; van Dekken, H.; van der Sangen, M. J. C.; Rozema, T.; Biermann, K.; Beukema, J. C.; Piet, A. H. M.; van Rij, C. M.; Reinders, J. G.; Tilanus, H. W.; van der Gaast, A.; Bergman, J. J. G. H. M.; Bartelsman, J. F.; Bissumbar, A.; Blom, R. L.; Geijsen, E. D.; van Heijl, M.; Obertop, H.; Koning, C. C. E.; Offerhaus, G. J.; Omloo, J. M.; Wilmink, H.; Aparicio Pages, M. N.; van den Nieuwenhof-Biesheuvel, L.; Eijkenboom, W. M. H.; Koppert, L. B.; Meijer, D. A.; Siersema, P. D.; Spaander, M. C. V.; Verheij, C.; Vollebregt, C.; van Krieken, J. H. J. M.; van Mansum, W.; van Dam, G.; van Dullemen, H. M.; Eerens, A.; van der Jagt, E.; Karnebeld, A.; Kluin, Ph; Mul, V. E. M.; Pruim, J.; Siemerink, E.; Weersma, R. K.; Fraikin, T.; Peters, C. W. A. H.

    2012-01-01

    BACKGROUND The role of neoadjuvant chemoradiotherapy in the treatment of patients with esophageal or esophagogastric-junction cancer is not well established. We compared chemoradiotherapy followed by surgery with surgery alone in this patient population. METHODS We randomly assigned patients with

  5. Maskless Arbitrary Writing of Molecular Tunnel Junctions.

    Science.gov (United States)

    Byeon, Seo Eun; Kim, Miso; Yoon, Hyo Jae

    2017-11-22

    Since fabricating geometrically well-defined, noninvasive, and compliant electrical contacts over molecular monolayers is difficult, creating molecular-scale electronic devices that function in high yield with good reproducibility is challenging. Moreover, none of the previously reported methods to form organic-electrode contacts at the nanometer and micrometer scales have resulted in directly addressable contacts in an untethered form under ambient conditions without the use of cumbersome equipment and nanolithography. Here we show that in situ encapsulation of a liquid metal (eutectic Ga-In alloy) microelectrode, which is used for junction formation, with a convenient photocurable polymeric scaffold enables untethering of the electrode and direct writing of arbitrary arrays of high-yielding molecular junctions under ambient conditions in a maskless fashion. The formed junctions function in quantitative yields and can afford tunneling currents with high reproducibility; they also function at low temperatures and under bent. The results reported here promise a massively parallel printing technology to construct integrated circuits based on molecular junctions with soft top contacts.

  6. Macroscopic Refrigeration Using Superconducting Tunnel Junctions

    Science.gov (United States)

    Lowell, Peter; O'Neil, Galen; Underwood, Jason; Zhang, Xiaohang; Ullom, Joel

    2014-03-01

    Sub-kelvin temperatures are often a prerequisite for modern scientific experiments, such as quantum information processing, astrophysical missions looking for dark energy signatures and tabletop time resolved x-ray spectroscopy. Existing methods of reaching these temperatures, such as dilution refrigerators, are bulky and costly. In order to increase the accessibility of sub-Kelvin temperatures, we have developed a new method of refrigeration using normal-metal/insulator/superconductor (NIS) tunnel junctions. NIS junctions cool the electrons in the normal metal since the hottest electrons selectively tunnel from the normal metal into the superconductor. By extending the normal metal onto a thermally isolated membrane, the cold electrons can cool the phonons through the electron-phonon coupling. When these junctions are combined with a pumped 3He system, they provide a potentially inexpensive method of reaching these temperatures. Using only three devices, each with a junction area of approximately 3,500 μm2, we have cooled a 2 cm3 Cu plate from 290 mK to 256 mK. We will present these experimental results along with recent modeling predictions that strongly suggest that further refinements will allow cooling from 300 mK to 120 mK. This work is supported by the NASA APRA program.

  7. Anatomy of the human atrioventricular junctions revisited

    NARCIS (Netherlands)

    Anderson, R. H.; Ho, S. Y.; Becker, A. E.

    2000-01-01

    There have been suggestions made recently that our understanding of the atrioventricular junctions of the heart is less than adequate, with claims for several new findings concerning the arrangement of the ordinary working myocardium and the specialised pathways for atrioventricular conduction. In

  8. Two-dimensional bipolar junction transistors

    Science.gov (United States)

    Gharekhanlou, Behnaz; Khorasani, Sina; Sarvari, Reza

    2014-03-01

    Recent development in fabrication technology of planar two-dimensional (2D) materials has introduced the possibility of numerous novel applications. Our recent analysis has revealed that by definition of p-n junctions through appropriate patterned doping of 2D semiconductors, ideal exponential I-V characteristics may be expected. However, the theory of 2D junctions turns out to be very different to that of standard bulk junctions. Based on this theory of 2D diodes, we construct for the first time a model to describe 2D bipolar junction transistors (2D-BJTs). We derive the small-signal equivalent model, and estimate the performance of a 2D-BJT device based on graphone as the example material. A current gain of about 138 and maximum threshold frequency of 77 GHz, together with a power-delay product of only 4 fJ per 1 μm lateral width is expected at an operating voltage of 5 V. In addition, we derive the necessary formulae and a new approximate solution for the continuity equation in the 2D configuration, which have been verified against numerical solutions.

  9. Craniocervical junction abnormalities with atlantoaxial subluxation ...

    African Journals Online (AJOL)

    Craniocervical junction abnormalities with atlantoaxial subluxation caused by ventral subluxation of C2 were diagnosed in a 6-month-old female Pomeranian with tetraplegia as a clinical sign. Lateral survey radiography of the neck with flexion revealed atlantoaxial subluxation with ventral subluxation of C2. Computed ...

  10. Large gaps between primes

    OpenAIRE

    Maynard, James

    2014-01-01

    We show that there exists pairs of consecutive primes less than $x$ whose difference is larger than $t(1+o(1))(\\log{x})(\\log\\log{x})(\\log\\log\\log\\log{x})(\\log\\log\\log{x})^{-2}$ for any fixed $t$. Our proof works by incorporating recent progress in sieve methods related to small gaps between primes into the Erdos-Rankin construction. This answers a well-known question of Erdos.

  11. Minding the Gap

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, Millicent Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    Neutron & X-ray scattering provides nano- to meso-scale details of complex fluid structure; 1D electronic density maps dervied from SAXS yield molecular level insights; Neutron reflectivity provides substructure details of substrate supported complex fluids; Complex fluids composition can be optimized to support a wide variety of both soluble and membrane proteins; The water gap dimensions can be finely tuned through polymer component.

  12. Mind the Gap

    Science.gov (United States)

    Fairbanks, Terry; Savage, Erica; Adams, Katie; Wittie, Michael; Boone, Edna; Hayden, Andrew; Barnes, Janey; Hettinger, Zach; Gettinger, Andrew

    2016-01-01

    Summary Objective Decisions made during electronic health record (EHR) implementations profoundly affect usability and safety. This study aims to identify gaps between the current literature and key stakeholders’ perceptions of usability and safety practices and the challenges encountered during the implementation of EHRs. Materials and Methods Two approaches were used: a literature review and interviews with key stakeholders. We performed a systematic review of the literature to identify usability and safety challenges and best practices during implementation. A total of 55 articles were reviewed through searches of PubMed, Web of Science and Scopus. We used a qualitative approach to identify key stakeholders’ perceptions; semi-structured interviews were conducted with a diverse set of health IT stakeholders to understand their current practices and challenges related to usability during implementation. We used a grounded theory approach: data were coded, sorted, and emerging themes were identified. Conclusions from both sources of data were compared to identify areas of misalignment. Results We identified six emerging themes from the literature and stakeholder interviews: cost and resources, risk assessment, governance and consensus building, customization, clinical work-flow and usability testing, and training. Across these themes, there were misalignments between the literature and stakeholder perspectives, indicating major gaps. Discussion Major gaps identified from each of six emerging themes are discussed as critical areas for future research, opportunities for new stakeholder initiatives, and opportunities to better disseminate resources to improve the implementation of EHRs. Conclusion Our analysis identified practices and challenges across six different emerging themes, illustrated important gaps, and results suggest critical areas for future research and dissemination to improve EHR implementation. PMID:27847961

  13. Stem cells can form gap junctions with cardiac myocytes and exert pro-arrhythmic effects

    Directory of Open Access Journals (Sweden)

    Nicoline Willemijn Smit

    2014-10-01

    Full Text Available Stem cell therapy has been suggested to be a promising option for regeneration of injured myocardium, for example following a myocardial infarction. For clinical use cell-based therapies have to be safe and applicable and are aimed to renovate the architecture of the heart. Yet for functional and coordinated activity synchronized with the host myocardium stem cells have to be capable of forming electrical connections with resident cardiomyocytes. In this paper we discuss whether stem cells are capable of establishing functional electrotonic connections with cardiomyocytes and whether these may generate a risk for arrhythmias. Application of stem cells in the clinical setting with outcomes concerning arrhythmogenic safety and future perspectives will also briefly be touched upon.

  14. Role of gap junction protein connexin43 in astrogliosis induced by brain injury.

    Directory of Open Access Journals (Sweden)

    Nicolas Theodoric

    Full Text Available Astrogliosis is a process that involves morphological and biochemical changes associated with astrocyte activation in response to cell damage in the brain. The upregulation of intermediate filament proteins including glial fibrillary acidic protein (GFAP, nestin and vimentin are often used as indicators for astrogliosis. Although connexin43 (Cx43, a channel protein widely expressed in adult astrocytes, exhibits enhanced immunoreactivity in the peri-lesion region, its role in astrogliosis is still unclear. Here, we correlated the temporal and spatial expression of Cx43 to the activation of astrocytes and microglia in response to an acute needle stab wound in vivo. We found large numbers of microglia devoid of Cx43 in the needle wound at 3 days post injury (dpi while reactive astrocytes expressing Cx43 were present in the peripheral zone surrounding the injury site. A redistribution of Cx43 to the needle site, corresponding to the increased presence of GFAP-positive reactive astrocytes in the region, was only apparent from 6 dpi and sustained until at least 15 dpi. Interestingly, the extent of microglial activation and subsequent astrogliosis in the brain of Cx43 knockout mice was significantly larger than those of wild type, suggesting that Cx43 expression limits the degree of microgliosis. Although Cx43 is not essential for astrogliosis and microglial activation induced by a needle injury, our results demonstrate that Cx43 is a useful marker for injury induced astrogliosis due to its enhanced expression specifically within a small region of the lesion for an extended period. As a channel protein, Cx43 is a potential in vivo diagnostic tool of asymptomatic brain injury.

  15. Xenobiotic Modulation of Human Mammary Epithelial Cell Gap junctional Intercellular Communication and Growth

    National Research Council Canada - National Science Library

    Ruch, Randall

    1998-01-01

    ...), phthalate esters, and dioxin have been implicated in this increase. Many xenobiotics such as DDT and PCBs have weak estrogenic activity and may enhance breast cancer formation by an estrogenic effect on breast epithelial cell growth...

  16. Xenobiotic Modulation of Human Mammary Epithelial Cell Gap Junctional Intercellular Communication and Growth

    National Research Council Canada - National Science Library

    Ruch, Randall

    1997-01-01

    ...), phthalate esters, and dioxin have been implicated in this increase. Many xenobiotics such as DDT and PCBs have weak estrogenic activity and may enhance breast cancer formation by an estrogenic effect on breast epithelial cell growth...

  17. Excitable fibroblasts! : ion channels, gap junctions, action potentials and calcium oscillations in normal rat kidney fibroblasts

    NARCIS (Netherlands)

    Harks, Erik Godefridus Antonius

    2003-01-01

    During development and also in the adult organism cellular growth is strictly regulated by various control mechanisms that ensure cells to start and stop dividing at the proper time and place. Dysfunction of these intricate regulatory mechanisms may result in uncontrolled proliferation of cells and

  18. The connexin 46 mutant (V44M) impairs gap junction function ...

    Indian Academy of Sciences (India)

    Plasmids carrying wild-type (wt) and mutant (V44M) of Cx46 were constructed and expressed in Hela cells respectively.Western blotting and fluorescence microscopy were applied to analyse the expression and subcellular localization of recombinant proteins, respectively. Scrape loading dye transferexperiment was ...

  19. Quantification of gap junctional intercellular communication based on digital image analysis

    DEFF Research Database (Denmark)

    Hofgaard, Johannes P; Mollerup, Sarah; Holstein-Rathlou, Niels-Henrik

    2009-01-01

    for the analysis is presented together with a detailed protocol in the online supplemental material (http://bmi.ku.dk/matlab_program/). Fluorescent dye was introduced in connexin 43-expressing C6 glioma cells by in situ electroporation, and fluorescence intensity was measured in the electroporated cells...

  20. MV controlled spark gap

    International Nuclear Information System (INIS)

    Evdokimovich, V.M.; Evlampiev, S.B.; Korshunov, G.S.; Nikolaev, V.A.; Sviridov, Yu.F.; Khmyrov, V.V.

    1980-01-01

    A megavolt gas-filled trigatron gap with a sectional gas-discharge chamber having a more than three-fold range of operating voltages is described. The discharge chamber consists of ten sections, each 70 mm thick, made of organic glass. The sections are separated one from another by aluminium gradient rings to which ohmic voltage divider is connected. Insulational sections and gradient rings are braced between themselves by means of metal flanges through gaskets made of oil-resistant rubber with the help of fiberglass-laminate pins. The gap has two electrodes 110 mm in diameter. The trigatron ignition assembly uses a dielectric bushing projecting over the main electrode plane. Use has been made of a gas mixture containing 10% of SF 6 and 90% of air making possible to ensure stable gap operation without readjusting in the voltage range from 0.4 to 1.35 MV. The operation time lag in this range is equal to 10 μs at a spread of [ru

  1. Post-Junctional Modulatory Effects of Hemicholinium on Isolated ...

    African Journals Online (AJOL)

    Conclusion: HC-3 has antimuscarinic actions on Ach- and carbacholinduced responses; a post-junctional action at the neuromuscular junction and differing anticholinesterase activities with DFP and physostigmine but not edrophonium. KEY WORDS: Post-Junctional, Anti-Muscarinic, Anti-Cholinesterase Jnl of Medical ...

  2. Phenomenological approach to bistable behavior of Josephson junctions

    International Nuclear Information System (INIS)

    Nishi, K.; Nara, S.; Hamanaka, K.

    1985-01-01

    The interaction of unbiased Josephson junction with external electromagnetic field in the presence of externally applied uniform magnetic field is theoretically examined by means of phenomenological treatment. It is proposed that an irradiated junction with suitably chosen parameters shows a bistable behavior of voltage across the junction as a function of the radiation intensity

  3. SUBORDINATE GAPS IN MANDARIN CHINESE

    Directory of Open Access Journals (Sweden)

    Ting-Chi Wei

    2011-06-01

    Full Text Available The existence of subordinate gaps in Mandarin Chinese casts doubt on analyses built on canonical coordinate gapping. We observe that the minimality of contrastive focus and the type of subordinate clause determine the acceptability of a missing gap in subordinate structure. Along this vein, we propose that a semantic-based deletion account can be used to interpret gapping in Mandarin. Such account relies on two violable constraints, AvoidF and Focus condition on gapping (Schwarzchild 1999, Merchant 2001 to compute the acceptability of a gap.

  4. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    Science.gov (United States)

    de Sá, Pablo H C G; Miranda, Fábio; Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer.

  5. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    Directory of Open Access Journals (Sweden)

    Pablo H C G de Sá

    Full Text Available The advent of NGS (Next Generation Sequencing technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer.

  6. Parametric amplification on rf-induced steps in a Josephson tunnel junction

    DEFF Research Database (Denmark)

    Sørensen, O.H.; Pedersen, Niels Falsig; Mygind, Jesper

    1979-01-01

    Parametric effects including amplification in a singly degenerate mode have been observed in Josephson tunnel junctions at dc bias points on rf-induced steps. Net gain at 9 GHz was achieved with a bias on the fundamental 18-GHz step and subharmonic self-oscillations were seen on 18 and 70-GHz rf-......-induced steps even at voltages approaching the energy gap. A qualitative explanation of the results is presented. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  7. Electronic properties of single-molecule junction: Effect of the molecular distortion

    International Nuclear Information System (INIS)

    Gao, W.; Zhao, M.; Jiang, Q.

    2009-01-01

    For a model system consisting of a benzenedithio (BDT) molecule sandwiched between two Au plates, the electronic properties as a function of different BDT geometry are investigated using density functional theory. The distorted BDT structures are got through stretching the electrode distance. The corresponding electronic properties, including the spatial distribution of the frontier orbits, the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital levels and density of states at the Fermi energy are determined. It reveals that the molecular distortion essentially determines electronic structures. The result should be beneficial to understand the stress-dependent or structure-dependent transport mechanism of electrons of the BDT junction.

  8. The anatomical locus of T-junction processing.

    Science.gov (United States)

    Schirillo, James A

    2009-07-01

    Inhomogeneous surrounds can produce either asymmetrical or symmetrical increment/decrement induction by orienting T-junctions to selectively group a test patch with surrounding regions [Melfi, T., & Schirillo, J. (2000). T-junctions in inhomogeneous surrounds. Vision Research, 40, 3735-3741]. The current experiments aimed to determine where T-junctions are processed by presenting each eye with a different image so that T-junctions exist only in the fused percept. Only minor differences were found between retinal and cortical versus cortical-only conditions, indicating that T-junctions are processed cortically.

  9. Planar Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monacoa, R.; Aarøe, Morten; Mygind, Jesper

    2007-01-01

    Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...... demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse...... magnetic field rather than an in-plane field. The conditions under which this occurs are discussed....

  10. Closing the stop gap

    International Nuclear Information System (INIS)

    Czakon, Michal; Mitov, Alexander; Papucci, Michele; California Univ., Berkeley, CA; Ruderman, Joshua T.; California Univ., Berkeley, CA; New York Univ., NY; Weiler, Andreas; CERN - European Organization for Nuclear Research, Geneva

    2014-07-01

    Light stops are a hallmark of the most natural realizations of weak-scale supersymmetry. While stops have been extensively searched for, there remain open gaps around and below the top mass, due to similarities of stop and top signals with current statistics. We propose a new fast-track avenue to improve light stop searches for R-parity conserving supersymmetry, by comparing top cross section measurements to the theoretical prediction. Stop masses below ∝180 GeV can now be ruled out for a light neutralino. The possibility of a stop signal contaminating the top mass measurement is also briefly addressed.

  11. Photonic band gap materials

    Science.gov (United States)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  12. gap: Genetic Analysis Package

    Directory of Open Access Journals (Sweden)

    Jing Hua Zhao

    2007-06-01

    Full Text Available A preliminary attempt at collecting tools and utilities for genetic data as an R package called gap is described. Genomewide association is then described as a specific example, linking the work of Risch and Merikangas (1996, Long and Langley (1997 for family-based and population-based studies, and the counterpart for case-cohort design established by Cai and Zeng (2004. Analysis of staged design as outlined by Skol et al. (2006 and associate methods are discussed. The package is flexible, customizable, and should prove useful to researchers especially in its application to genomewide association studies.

  13. Gaps in nonsymmetric numerical semigroups

    International Nuclear Information System (INIS)

    Fel, Leonid G.; Aicardi, Francesca

    2006-12-01

    There exist two different types of gaps in the nonsymmetric numerical semigroups S(d 1 , . . . , d m ) finitely generated by a minimal set of positive integers {d 1 , . . . , d m }. We give the generating functions for the corresponding sets of gaps. Detailed description of both gap types is given for the 1st nontrivial case m = 3. (author)

  14. Non-Lagrangian theories from brane junctions

    International Nuclear Information System (INIS)

    Bao, Ling; Mitev, Vladimir

    2013-10-01

    In this article we use 5-brane junctions to study the 5D T N SCFTs corresponding to the 5D N=1 uplift of the 4D N=2 strongly coupled gauge theories, which are obtained by compactifying N M5 branes on a sphere with three full punctures. Even though these theories have no Lagrangian description, by using the 5-brane junctions proposed by Benini, Benvenuti and Tachikawa, we are able to derive their Seiberg-Witten curves and Nekrasov partition functions. We cross-check our results with the 5D superconformal index proposed by Kim, Kim and Lee. Through the AGTW correspondence, we discuss the relations between 5D superconformal indices and n-point functions of the q-deformed W N Toda theories.

  15. Relaxation oscillation logic in Josephson junction circuits

    International Nuclear Information System (INIS)

    Fulton, T.A.

    1981-01-01

    A dc powered, self-resetting Josephson junction logic circuit relying on relaxation oscillations is described. A pair of Josephson junction gates are connected in series, a first shunt is connected in parallel with one of the gates, and a second shunt is connected in parallel with the series combination of gates. The resistance of the shunts and the dc bias current bias the gates so that they are capable of undergoing relaxation oscillations. The first shunt forms an output line whereas the second shunt forms a control loop. The bias current is applied to the gates so that, in the quiescent state, the gate in parallel with the second shunt is at V O, and the other gate is undergoing relaxation oscillations. By controlling the state of the first gate with the current in the output loop of another identical circuit, the invert function is performed

  16. Non-Lagrangian theories from brane junctions

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ling [Chalmers Univ. of Technology, Goeteborg (Sweden); Mitev, Vladimir [Humboldt Univ., Berlin (Germany). Inst. fuer Mathematik und Inst. fuer Physik; Pomoni, Elli [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Taki, Masato [RIKEN Nishina Center, Saitama (Japan). Mathematical Physics Lab.; Yagi, Futoshi [International School of Advanced Studies (SISSA), Trieste (Italy); INFN, Trieste (Italy); Korea Institute for Advanced Study (KIAS), Seoul (Korea, Republic of)

    2013-10-15

    In this article we use 5-brane junctions to study the 5D T{sub N} SCFTs corresponding to the 5D N=1 uplift of the 4D N=2 strongly coupled gauge theories, which are obtained by compactifying N M5 branes on a sphere with three full punctures. Even though these theories have no Lagrangian description, by using the 5-brane junctions proposed by Benini, Benvenuti and Tachikawa, we are able to derive their Seiberg-Witten curves and Nekrasov partition functions. We cross-check our results with the 5D superconformal index proposed by Kim, Kim and Lee. Through the AGTW correspondence, we discuss the relations between 5D superconformal indices and n-point functions of the q-deformed W{sub N} Toda theories.

  17. Electron transport in doped fullerene molecular junctions

    Science.gov (United States)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    The effect of doping on the electron transport of molecular junctions is analyzed in this paper. The doped fullerene molecules are stringed to two semi-infinite gold electrodes and analyzed at equilibrium and nonequilibrium conditions of these device configurations. The contemplation is done using nonequilibrium Green’s function (NEGF)-density functional theory (DFT) to evaluate its density of states (DOS), transmission coefficient, molecular orbitals, electron density, charge transfer, current, and conductance. We conclude from the elucidated results that Au-C16Li4-Au and Au-C16Ne4-Au devices behave as an ordinary p-n junction diode and a Zener diode, respectively. Moreover, these doped fullerene molecules do not lose their metallic nature when sandwiched between the pair of gold electrodes.

  18. Junction conditions in extended Teleparallel gravities

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz-Dombriz, Álvaro [Departamento de Física Teórica I, Ciudad Universitaria, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Dunsby, Peter K.S.; Sáez-Gómez, Diego, E-mail: dombriz@fis.ucm.es, E-mail: peter.dunsby@uct.ac.za, E-mail: diego.saezgomez@uct.ac.za [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa)

    2014-12-01

    In the context of extended Teleparallel gravity theories, we address the issue of junction conditions required to guarantee the correct matching of different regions of spacetime. In the absence of shells/branes, these conditions turn out to be more restrictive than their counterparts in General Relativity as in other extended theories of gravity. In fact, the general junction conditions on the matching hypersurfaces depend on the underlying theory and a new condition on the induced tetrads in order to avoid delta-like distributions in the field equations. This result imposes strict consequences on the viability of standard solutions such as the Einstein-Straus-like construction. We find that the continuity of the scalar torsion is required in order to recover the usual General Relativity results.

  19. Magnetoamplification in a bipolar magnetic junction transistor.

    Science.gov (United States)

    Rangaraju, N; Peters, J A; Wessels, B W

    2010-09-10

    We have demonstrated the first bipolar magnetic junction transistor using a dilute magnetic semiconductor. For an InMnAs p-n-p transistor magnetoamplification is observed at room temperature. The observed magnetoamplification is attributed to the magnetoresistance of the magnetic semiconductor InMnAs heterojunction. The magnetic field dependence of the transistor characteristics confirm that the magnetoamplification results from the junction magnetoresistance. To describe the experimentally observed transistor characteristics, we propose a modified Ebers-Moll model that includes a series magnetoresistance attributed to spin-selective conduction. The capability of magnetic field control of the amplification in an all-semiconductor transistor at room temperature potentially enables the creation of new computer logic architecture where the spin of the carriers is utilized.

  20. Excess junction current of silicon solar cells

    Science.gov (United States)

    Wang, E. Y.; Legge, R. N.; Christidis, N.

    1973-01-01

    The current-voltage characteristics of n(plus)-p silicon solar cells with 0.1, 1.0, 2.0, and 10 ohm-cm p-type base materials have been examined in detail. In addition to the usual I-V measurements, we have studied the temperature dependence of the slope of the I-V curve at the origin by the lock-in technique. The excess junction current coefficient (Iq) deduced from the slope at the origin depends on the square root of the intrinsic carrier concentration. The Iq obtained from the I-V curve fitting over the entire forward bias region at various temperatures shows the same temperature dependence. This result, in addition to the presence of an aging effect, suggest that the surface channel effect is the dominant cause of the excess junction current.