WorldWideScience

Sample records for gamma-ray spectrometry measurements

  1. Aircraft gamma-ray spectrometry in snow-water equivalent measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kuittinen, R; Vironmaeki, J

    1979-01-01

    During the winter periods of 1976 to 1977 and 1977 to 1978, the Hydrological Office at the National Boards of Waters and the Geological Survey of Finland carried out a joint study to evaluate usefulness of gamma-ray spectrometry in snowwater equivalent measurement. A multichannel gamma-ray spectrometry was fitted out in a DC-3 aircraft. Fourteen snow courses were operated using gravimetric method and gamma-ray method. The snow courses were located in southern Finland in forest, swamp and agricultural land. The results show that the gamma ray method can be considered suitable for use in Finnish conditions and the accuracy of the gamma-ray method is almost of the same magnitude of the accuracy of the gravimetric method.

  2. Measurements of uranium enrichment by four techniques of gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Tojo, Takao

    1983-12-01

    Measurements of uranium enrichment with the uses of the LMRI (France) UO 2 standards have been made by four techniques of gamma-ray spectrometry, in order to examine measurement characteristics of each technique. The following results were obtained by the three techniques based on the direct determination of the peak area of the 186-keV gamma-rays from 235 U, when the standard sample of 6.297 a/o was used for measuring enrichments ranging from 1.4 a/o to 9.6 a/o ; (i) In a LEPS HP Ge gamma-ray spectrometry, standard deviation of the measured enrichments from the certified ones was 1.4 %, (ii) in a Ge(Li) gamma-ray spectrometry, the standard deviation was 2.0 %, (iii) in a NaI(Tl) gamma-ray spectrometry, the standard deviation was 1.2 %. In the fourth technique, the method of multiple single-channel analyzers, enrichments of 1.4 - 9.6 a/o were measured in the standard deviation of 0.51 %, when the most suitable pairs of standard samples were used for each sample. A part of sources of systematic errors which were caused by each technique adopted was revealed throughout the measurements. And also, it was recognized that the LMRI's values of enrichment were certified precisely, and the UO 2 standards were very useful for enrichment measurements in the four techniques of gamma-ray spectrometry used here. (author)

  3. Aircraft gamma-ray spectrometry in snow-water equivalent measurement

    International Nuclear Information System (INIS)

    Kuittinen, R.; Vironmaeki, J.

    1979-01-01

    During the winter periods 1976-1977 and 1977-1978 the Hydrological Office at the National Board of Waters and the Geological Survey of Finland carried out a joint study to evaluate usefuluess of gamma-ray spectrometry in snow-water equivalent measurement. A multichannel gamma-ray spectrometer was fitted in a DC-3 aircraft. Fourteen snow courses were operated using both the gravimetric method and the gamma-ray method. The snow courses were located in southern Finland in forest, swamp and agricultural land. The results shows that the gamma ray method can be considered suitable for use in Finnish conditions and the accuracy of the gamma-ray method is almost of the same magnitude as the accuracy of the gravimetric method. (Auth.)

  4. Aircraft gamma-ray spectrometry in snow-water equivalent measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kuittinen, R [National Board of Waters (Finland); Vironmaeki, J [Geological Survey of Finland

    1979-01-01

    During the winter periods 1976-1977 and 1977-1978 the Hydrological Office at the National Board of Waters and the Geological Survey of Finland carried out a joint study to evaluate usefuluess of gamma-ray spectrometry in snow-water equivalent measurement. A multichannel gamma-ray spectrometer was fitted in a DC-3 aircraft. Fourteen snow courses were operated using both the gravimetric method and the gamma-ray method. The snow courses were located in southern Finland in forest, swamp and agricultural land. The results shows that the gamma ray method can be considered suitable for use in Finnish conditions and the accuracy of the gamma-ray method is almost of the same magnitude as the accuracy of the gravimetric method.

  5. Gamma-ray spectrometry applied to down-hole logging

    International Nuclear Information System (INIS)

    Dumesnil, P.; Umiastowsky, K.

    1983-11-01

    Gamma-ray spectrometry permits to improve the accuracy of natural gamma, gamma-gamma and neutron-gamma geophysical measurements. The probe developed at Centre d'Etudes Nucleaires de Saclay allows down-hole gamma-ray spectrometry. Among others, this probe can be applied to the uranium content determination by selective natural gamma method, down-hole determination of the ash content in the coal by gamma-gamma selective method and elemental analysis by neutron-gamma method. For the calibration and an exact interpretation of the measurements it is important to know the gamma-ray and neutron characteristics of the different kinds of rocks considered as probabilistic variables

  6. Coincidence gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Markovic, Nikola; Roos, Per; Nielsen, Sven Poul

    2017-01-01

    Gamma-ray spectrometry with high-purity germanium (HPGe) detectors is often the technique of choice in an environmental radioactivity laboratory. When measuring environmental samples associated activities are usually low so an important parameter that describes the performance of the spectrometer...... for a nuclide of interest is the minimum detectable activity (MDA). There are many ways for lowering the MDAs in gamma spectrometry. Recently, developments of fast and compact digital acquisition systems have led to growing number of multiple HPGe detector spectrometers. In these applications all detected...

  7. Applied gamma-ray spectrometry

    CERN Document Server

    Dams, R; Crouthamel, Carl E

    1970-01-01

    Applied Gamma-Ray Spectrometry covers real life application of the gamma-ray and the devices used in their experimental studies. This book is organized into 9 chapters, and starts with discussions of the various decay processes, the possible interaction mechanisms of gamma radiation with matter, and the intrinsic and extrinsic variables, which affect the observed gamma-ray and X-ray spectra. The subsequent chapters deal with the properties and fabrication of scintillation detectors, semiconductor detectors, and proportional gas counters. These chapters present some of the most widely utilized

  8. Handbook on Mobile Gamma-ray Spectrometry

    DEFF Research Database (Denmark)

    Aage, Helle Karina; Korsbech, Uffe C C

    2003-01-01

    Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing......Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing...

  9. Assessment of measurement result uncertainty in determination of 210Pb with the focus on matrix composition effect in gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Iurian, A.R.; Pitois, A.; Kis-Benedek, G.; Migliori, A.; Padilla-Alvarez, R.; Ceccatelli, A.

    2016-01-01

    Reference materials were used to assess measurement result uncertainty in determination of 210 Pb by gamma-ray spectrometry, liquid scintillation counting, or indirectly by alpha-particle spectrometry, using its daughter 210 Po in radioactive equilibrium. Combined standard uncertainties of 210 Pb massic activities obtained by liquid scintillation counting are in the range 2–12%, depending on matrices and massic activity values. They are in the range 1–3% for the measurement of its daughter 210 Po using alpha-particle spectrometry. Three approaches (direct computation of counting efficiency and efficiency transfer approaches based on the computation and, respectively, experimental determination of the efficiency transfer factors) were applied for the evaluation of 210 Pb using gamma-ray spectrometry. Combined standard uncertainties of gamma-ray spectrometry results were found in the range 2–17%. The effect of matrix composition on self-attenuation was investigated and a detailed assessment of uncertainty components was performed. - Highlights: • Confirmed 210 Pb certified values by LSC and alpha-particle spectrometry ( 210 Po). • Assessed 210 Po measurement result uncertainty by alpha-particle spectrometry. • Matrix composition effect on gamma-ray spectrometry measurement result uncertainty. • Assessment of 210 Pb measurement result uncertainty by gamma-ray spectrometry. • Comparison of techniques and approaches: ‘fit-for-purpose’ considerations.

  10. Guidelines for radioelement mapping using gamma ray spectrometry data

    International Nuclear Information System (INIS)

    2003-07-01

    The purpose of the report is to provide an up-to-date review on the use of gamma ray spectrometry for radioelement mapping and, where appropriate, provide guidelines on the correct application of the method. It is a useful training guide for those new to the method. It gives a broad coverage of all aspects of the gamma ray method and provides a comprehensive list of references. The report gives an overview of the theoretical background to radioactivity and the gamma ray spectrometric method followed by a review of the application of the method to mapping the radiation environment. A brief outline is presented of the principles of radioactivity, the interaction of gamma rays with matter, instrumentation applied to the measurement of gamma rays, and the quantities and units in contemporary use in gamma ray spectrometry. This is followed by a review of the fundamentals of gamma ray spectrometry, and its application to ground and airborne mapping. Covered are also all aspects of the calibration and data processing procedures required for estimating the ground concentrations of the radioelements. The procedures required for the recovery of older survey data are also presented as well as an overview of data presentation and integration for mapping applications

  11. On response operator in semiconductor gamma ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Krnac, S [Slovak Technical Univ., Bratislava (Slovakia); Povinec, P [International Atomic Energy Agency, Monaco (Monaco). MEL; Ragan, R [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    Some results of the scaling confirmation factor analysis (SCFA) application in semiconductor gamma-ray spectrometry presented in this contribution points out to a new ground for evaluation the gamma-ray spectra. This whole-spectrum processing approach considerably increases detection sensitivity, especially, if significant interferences being present in the measured spectrum. Precision of the SCFA method is determined by choice of a sufficient number of suitable calibration gamma-ray sources in the energy region of interest, by setting up an acceptable latent hypothesis and by chosen experimental quantification of spectra. The SCFA method is very advantageous to use, for instance, in ultra low-level gamma-spectrometry where counting rates in full energy peaks are extremely low as compared with background interferences. It enables to increase of the sensitivity by the 5-10 times in comparison with the traditional full energy peak net area method (J.K.). 1 fig., 2 tabs., 6 refs.

  12. On response operator in semiconductor gamma ray spectrometry

    International Nuclear Information System (INIS)

    Krnac, S.; Povinec, P.

    1995-01-01

    Some results of the scaling confirmation factor analysis (SCFA) application in semiconductor gamma-ray spectrometry presented in this contribution points out to a new ground for evaluation the gamma-ray spectra. This whole-spectrum processing approach considerably increases detection sensitivity, especially, if significant interferences being present in the measured spectrum. Precision of the SCFA method is determined by choice of a sufficient number of suitable calibration gamma-ray sources in the energy region of interest, by setting up an acceptable latent hypothesis and by chosen experimental quantification of spectra. The SCFA method is very advantageous to use, for instance, in ultra low-level gamma-spectrometry where counting rates in full energy peaks are extremely low as compared with background interferences. It enables to increase of the sensitivity by the 5-10 times in comparison with the traditional full energy peak net area method (J.K.). 1 fig., 2 tabs., 6 refs

  13. Detector calibration for in-situ gamma ray spectrometry

    CERN Document Server

    Balea, G

    2002-01-01

    The power in the technique of in-situ spectrometry lies in the fact that a detector placed on ground measures gamma radiation from sources situated over an area of several hundred square meters. The 'field of view' for the detector would be larger for high energy radiation sources and for sources closer to the soil surface. In contrast, a soil sample would represent an area of a few tens of hundreds of square centimeters. In practice, an effective characterization of a site would involve in-situ gamma ray spectrometry in conjunction with soil sampling. As part of an overall program, in-situ gamma ray spectrometry provides a means to assess the degree of contamination in areas during the course of operations in the field, thus guiding the investigator on where to collect samples. It can also substantially reduce the number of samples need to be collected and subsequently analyzed. (author)

  14. Advances in continuous gamma-ray spectrometry and applications

    International Nuclear Information System (INIS)

    Gold, R.; McNeece, J.P.; Kaiser, B.J.

    1984-07-01

    Recent advances and applications in continuous Compton recoil gamma-ray spectrometry are described. Applications of continuous gamma-ray spectrometry are presented for: (1) Characterization of light water reactor (LWR) pressures vessel (PV) environments. (2) Assessment of fuel distributions for Three Mile Island Unit 2 (TMI-2) reactor recovery. (3) Measurement of LWR-PV-neutron exposure. The latest improvements attained with the Janus probe, a special in-situ configuration of Si(Li) detectors, are presented. The status of current efforts to extend the domain of applicability of this method beyond 3 MeV is discussed with emphasis on recent work carried out with Si(Li) detectors of much larger volume

  15. Standard guide for high-resolution gamma-ray spectrometry of soil samples

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This guide covers the identification and quantitative determination of gamma-ray emitting radionuclides in soil samples by means of gamma-ray spectrometry. It is applicable to nuclides emitting gamma rays with an approximate energy range of 20 to 2000 keV. For typical gamma-ray spectrometry systems and sample types, activity levels of about 5 Bq (135 pCi) are measured easily for most nuclides, and activity levels as low as 0.1 Bq (2.7 pCi) can be measured for many nuclides. It is not applicable to radionuclides that emit no gamma rays such as the pure beta-emitting radionuclides hydrogen-3, carbon-14, strontium-90, and becquerel quantities of most transuranics. This guide does not address the in situ measurement techniques, where soil is analyzed in place without sampling. Guidance for in situ techniques can be found in Ref (1) and (2). This guide also does not discuss methods for determining lower limits of detection. Such discussions can be found in Refs (3), (4), (5), and (6). 1.2 This guide can be us...

  16. Janus probe, a detection system for high energy reactor gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Gold, R.; Kaiser, B.J.

    1980-03-01

    In reactor environments, gamma-ray spectra are continuous and the absolute magnitude as well as the general shape of the gamma continuum are of paramount importance. Consequently, conventional methods of gamma-ray detection are not suitable for in-core gamma-ray spectrometry. To meet these specific needs, a method of continuous gamma-ray spectrometry, namely Compton Recoil Gamma-Ray Spectrometry, was developed for in-situ observations of reactor environments. A new gamma-ray detection system has been developed which extends the applicability of Compton Recoil Gamma-Ray Spectrometry up to roughly 7 MeV. This detection system is comprised of two separate Si(Li) detectors placed face-to-face. Hence this new detection system is called the Janus probe. Also shown is the block diagram of pulse processing instrumentation for the Janus probe. This new gamma probe not only extends the upper energy limit of in-core gamma-ray spectrometry, but in addition possesses other fundamental advantages

  17. Decreasing of the detection limit for gamma-ray Spectrometry with the influence of sample treatment

    International Nuclear Information System (INIS)

    Karami, M.; Sadighzadeh, A.; Asgharizadeh, F.; Sardari, D.; Tavassoli, A.; Arbabi, A.; Hochaghani, O.

    2009-01-01

    Full text: In this study the ash method has been applied for environmental sample treatment in order to decrease of the detection limit in gamma-ray spectrometry for low level radioactivity measurements. Detection limit in gamma ray spectrometry is the smallest expectation value of the net counting rate that can be detected on given probabilities. The environmental test samples have been changed into ash using a suitable oven. The heating were made under controlled temperature to avoid the escape of some radionuclides such as radiocaesium. The ash samples were measured by high resolution gamma-ray spectrometry system. (author)

  18. Demonstration of a collimated in situ method for determining depth distributions using gamma-ray spectrometry

    CERN Document Server

    Benke, R R

    2002-01-01

    In situ gamma-ray spectrometry uses a portable detector to quantify radionuclides in materials. The main shortcoming of in situ gamma-ray spectrometry has been its inability to determine radionuclide depth distributions. Novel collimator designs were paired with a commercial in situ gamma-ray spectrometry system to overcome this limitation for large area sources. Positioned with their axes normal to the material surface, the cylindrically symmetric collimators limited the detection of un attenuated gamma-rays from a selected range of polar angles (measured off the detector axis). Although this approach does not alleviate the need for some knowledge of the gamma-ray attenuation characteristics of the materials being measured, the collimation method presented in this paper represents an absolute method that determines the depth distribution as a histogram, while other in situ methods require a priori knowledge of the depth distribution shape. Other advantages over previous in situ methods are that this method d...

  19. Fast-ion energy resolution by one-step reaction gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nocente, M.; Gorini, G.

    2016-01-01

    The spectral broadening of γ-rays from fusion plasmas can be measured in high-resolution gamma-ray spectrometry (GRS). We derive weight functions that determine the observable velocity space and quantify the velocity-space sensitivity of one-step reaction high-resolution GRS measurements in magne...

  20. Reactor gamma spectrometry: status

    International Nuclear Information System (INIS)

    Gold, R.; Kaiser, B.J.

    1979-01-01

    Current work is described for Compton Recoil Gamma-Ray Spectrometry including developments in experimental technique as well as recent reactor spectrometry measurements. The current status of the method is described concerning gamma spectromoetry probe design and response characteristics. Emphasis is given to gamma spectrometry work in US LWR and BR programs. Gamma spectrometry in BR environments are outlined by focussing on start-up plans for the Fast Test Reactor (FTR). Gamma spectrometry results are presented for a LWR pressure vessel mockup in the Poolside Critical Assembly (PCA) at Oak Ridge National Laboratory

  1. Further development of IDGS: Isotope dilution gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Li, T.K.; Parker, J.L.; Kuno, Y.; Sato, S.; Kamata, M.; Akiyama, T.

    1991-01-01

    The isotope dilution gamma-ray spectrometry (IDGS) technique for determining the plutonium concentration and isotopic composition of highly radioactive spent-fuel dissolver solutions has been further developed. Both the sample preparation and the analysis have been improved. The plutonium isotopic analysis is based on high-resolution, low-energy gamma-ray spectrometry. The plutonium concentration in the dissolver solutions then is calculated from the measured isotopic differences among the spike, the dissolver solution, and the spiked dissolver solution. Plutonium concentrations and isotopic compositions of dissolver solutions analyzed from this study agree well with those obtained by traditional isotope dilution mass spectrometry (IDMS) and are consistent with the first IDGS experimental result. With the current detector efficiency, sample size, and a 100-min count time, the estimated precision is ∼0.5% for 239 Pu and 240 Pu isotopic analyses and ∼1% for the plutonium concentration analysis. 5 refs., 2 figs., 7 tabs

  2. Improvements on Low Level Activity Gamma Measurements and X-ray Spectrometry at the CEA-MADERE Measurement Platform

    OpenAIRE

    Sergeyeva Victoria; Domergue Christophe; Destouches Christophe; Girard Jean Michel; Philibert Hervé; Bonora Jonathan; Thiollay Nicolas; Lyoussi Abdallah

    2016-01-01

    The CEA MADERE platform (Measurement Applied to DosimEtry in REactors) is a part of the Instrumentation Sensors and Dosimetry Laboratory (LDCI). This facility is dedicated to the specific activity measurements of solid and radioactive samples using Gamma and X-ray spectrometry. MADERE is a high-performance facility devoted to neutron dosimetry for experimental programs performed in CEA and for the irradiation surveillance programmes of PWR vessels. The MADERE platform is engaged in a continuo...

  3. Comparison of in-situ gamma ray spectrometry measurements with conventional methods in determination natural and artificial nuclides in soil

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Doubal, A. W.

    2010-12-01

    Two nuclear analytical techniques (In-Situ Gamma ray spectrometry and laboratory gamma ray spectrometry) for determination of natural and artificial radionuclides in soil have been validated. The first technique depends on determination of radioactivity content of representative samples of the studied soil after laboratory preparation, while the second technique is based on direct determination of radioactivity content of soil using in-situ gamma-ray spectrometer. Analytical validation parameter such as detection limits, repeatability, reproducibility in addition to measurement uncertainties were estimated and compared for both techniques. Comparison results have shown that the determination of radioactivity in soil should apply the two techniques together where each of techniques is characterized by its low detection limit and uncertainty suitable for defined application of measurement. Radioactive isotopes in various locations were determined using the two methods by measuring 40 k, 238 U,and 137 Cs. The results showed that there are differences in attenuation factors due to soil moisture content differences; wet weight corrections should be applied when the two techniques are compared. (author)

  4. Airborne gamma-ray spectrometry and computer data processing

    International Nuclear Information System (INIS)

    Raghuwanshi, S.S.; Bhishma Kumar; Tewari, S.G.

    1993-01-01

    The physical basis for the measurement of radioelemental concentrations of U, Th, and K on the surface of the earth by airborne gamma-ray spectrometry (AGRS) are described in this paper. The yield of an infinite radioactive plane source for a particular gamma energy helps to know the sampled volume in AGRS, the ground coverage, the ground resolution, the effective planning of the survey, flight line spacing, and sampling time. The infinite source-yield enables the determination of the attenuation coefficients in actual surveys and lays down the criteria for a standard test strip. Scattering of gamma-rays in matter is discussed in order to study its influence in the measurements from air. The theoretical gamma-ray spectrum from terrestrial U, Th, and K are discussed in contrast to its realistic picture which poses problems for their direct use for measurements. The criterion of FWHM (full width at half maximum) and inter-energy distance with their yields is described which finally helps to select the energy windows for (window and MCA) AGRS system. Factors which affect the measurements of radioelemental concentration in AGRS surveys include both correctable and non-correctable ones. Correctable factors are : (a) non-terrestrial sources of gamma-rays aircraft, cosmic, and airborne background (H) (B); (b) interference due to gamma-scattering inter channel effects (l); (c) height variations (H) due to navigation and topography; (d) temperature (T) of ambient air; and (e) pressure (P) of air at flying altitude. For removal of background effects, measurements over test strip and calibration pads are necessary for making the corrections in the order - BIH. These methods are described in the paper. The non-correctable factors include effects, due to terrain moisture, vegetation, and others. The possible ways to eliminate these effects are also briefly described. (author). 17 refs., 13 figs

  5. Low-resolution gamma-ray measurements of uranium enrichment

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.; Christiansen, A.; Cole, R.; Collins, M.L.

    1996-01-01

    Facilities that process special nuclear material perform periodic inventories. In bulk facilities that process low-enriched uranium, these inventories and their audits are based primarily on weight and enrichment measurements. Enrichment measurements determine the 211 U weight fraction of the uranium compound from the passive gamma-ray emissions of the sample. Both international inspectors and facility operators rely on the capability to make in-field gamma-ray measurements of uranium enrichment. These users require rapid, portable measurement capability. Some in-field measurements have been biased, forcing the inspectors to resort to high-resolution measurements or mass spectrometry to accomplish their goals

  6. Evaluation of an automated assay system to measure soil radionuclides by L x-ray and gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Drennon, B.J.; Crowell, J.M.

    1982-08-01

    An automated radionuclide assay system for conducting soil radioassays using L x-ray and gamma-ray spectrometry was evaluated. Wet chemistry assay procedures were shown to be considerably more time consuming than similar analyses of soil on this radionuclide assay system. The detection limits of 241 Am and plutonium were determined, as well as the reproducibility of radionuclide assay results. The L x-ray spectrometric measurements were compared with radiochemical analyses on several tuff samples. The assay system's intrinsic germanium detector was found to respond linearly to varying low concentrations of 241 Am and plutonium, both of which were easily detected in the presence of elevated concentrations of 137 Cs

  7. Development of isotope dilution gamma-ray spectrometry for plutonium analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, T.K.; Parker, J.L. (Los Alamos National Lab., NM (United States)); Kuno, Y.; Sato, S.; Kurosawa, A.; Akiyama, T. (Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan))

    1991-01-01

    We are studying the feasibility of determining the plutonium concentration and isotopic distribution of highly radioactive, spent-fuel dissolver solutions by employing high-resolution gamma-ray spectrometry. The study involves gamma-ray plutonium isotopic analysis for both dissolver and spiked dissolver solution samples, after plutonium is eluted through an ion-exchange column and absorbed in a small resin bead bag. The spike is well characterized, dry plutonium containing {approximately}98% of {sup 239}Pu. By using measured isotopic information, the concentration of elemental plutonium in the dissolver solution can be determined. Both the plutonium concentration and the isotopic composition of the dissolver solution obtained from this study agree well with values obtained by traditional isotope dilution mass spectrometry (IDMS). Because it is rapid, easy to operate and maintain, and costs less, this new technique could be an alternative method to IDMS for input accountability and verification measurements in reprocessing plants. 7 refs., 4 figs., 4 tabs.

  8. X-ray fluorescence and gamma-ray spectrometry combined with multivariate analysis for topographic studies in agricultural soil

    International Nuclear Information System (INIS)

    Castilhos, Natara D.B. de; Melquiades, Fábio L.; Thomaz, Edivaldo L.; Bastos, Rodrigo Oliveira

    2015-01-01

    Physical and chemical properties of soils play a major role in the evaluation of different geochemical signature, soil quality, discrimination of land use type, soil provenance and soil degradation. The objectives of the present study are the soil elemental characterization and soil differentiation in topographic sequence and depth, using Energy Dispersive X-Ray Fluorescence (EDXRF) as well as gamma-ray spectrometry data combined with Principal Component Analysis (PCA). The study area is an agricultural region of Boa Vista catchment which is located at Guamiranga municipality, Brazil. PCA analysis was performed with four different data sets: spectral data from EDXRF, spectral data from gamma-ray spectrometry, concentration values from EDXRF measurements and concentration values from gamma-ray spectrometry. All PCAs showed similar results, confirmed by hierarchical cluster analysis, allowing the data grouping into top, bottom and riparian zone samples, i.e. the samples were separated due to its landscape position. The two hillslopes present the same behavior independent of the land use history. There are distinctive and characteristic patterns in the analyzed soil. The methodologies presented are promising and could be used to infer significant information about the region to be studied. - Highlights: • Characterization of topographic sequence of two hillslopes from agricultural soil. • Employment of EDXRF and gamma-ray spectrometry data combined with PCA. • The combination of green analytical methodologies with chemometric studies allowed soil differentiation. • The innovative methodology is promising for direct characterization of agricultural catchments

  9. Portable gamma-ray spectrometers and spectrometry systems

    International Nuclear Information System (INIS)

    Shebell, P.

    1999-01-01

    The current state-of-the-art in portable gamma-ray spectrometers and portable spectrometry systems is discussed. A comparison of detector performance and features of commercially available systems are summarised. Finally, several applications of portable systems are described. (author)

  10. Research on 3-D terrain correction methods of airborne gamma-ray spectrometry survey

    International Nuclear Information System (INIS)

    Liu Yanyang; Liu Qingcheng; Zhang Zhiyong

    2008-01-01

    The general method of height correction is not effectual in complex terrain during the process of explaining airborne gamma-ray spectrometry data, and the 2-D terrain correction method researched in recent years is just available for correction of section measured. A new method of 3-D sector terrain correction is studied. The ground radiator is divided into many small sector radiators by the method, then the irradiation rate is calculated in certain survey distance, and the total value of all small radiate sources is regarded as the irradiation rate of the ground radiator at certain point of aero- survey, and the correction coefficients of every point are calculated which then applied to correct to airborne gamma-ray spectrometry data. The method can achieve the forward calculation, inversion calculation and terrain correction for airborne gamma-ray spectrometry survey in complex topography by dividing the ground radiator into many small sectors. Other factors are considered such as the un- saturated degree of measure scope, uneven-radiator content on ground, and so on. The results of for- ward model and an example analysis show that the 3-D terrain correction method is proper and effectual. (authors)

  11. Carborne gamma-ray spectrometry. Calibration and applications

    International Nuclear Information System (INIS)

    Aage, H.K.; Korsbech, U.; Bargholz, K.; Hovgaard, J.

    2006-01-01

    Calibration of carborne gamma-ray spectrometry systems for 137 Cs is carried out with a source successively placed at 791 positions within an area of 34 mx62 m. A computer model supplements the measurements. Hereby a sensitivity map for a surface contamination is generated as well as line and area sensitivities. Another model converts surface sensitivity to sensitivity for a deep contamination. Use of the sensitivity map for a non-homogeneous distribution of 137 Cs is demonstrated. Applications of line sensitivities for special tasks are discussed

  12. Computer programs for data reduction and interpretation in plutonium and uranium analysis by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Singh, R.K.; Moorthy, A.D.; Babbar, R.K.; Udagatti, S.V.

    1989-01-01

    Non destructive gamma ray have been developed for analysis of isotopic abundances and concentrations of plutonium and uranium in the respective product solutions of a reprocessing plant. The method involves analysis of gamma rays emitted from the sample and uses a multichannel analyser system. Data reduction and interpretation of these techniques are tedious and time consuming. In order to make it possible to use them in routine analysis, computer programs have been developed in HP-BASIC language which can be used in HP-9845B desktop computer. A set of programs, for plutonium estimation by high resolution gamma ray spectrometry and for on-line measurement of uranium by gamma ray spectrometry are described in this report. (author) 4 refs., 3 tabs., 6 figs

  13. Correcting the effects of the matrix using capture gamma-ray spectrometry: Application to measurement by Active Neutron Interrogation

    International Nuclear Information System (INIS)

    Baudry, G.

    2003-11-01

    In the field of the measurement of low masses of fissile material ( 235 U, 239 Pu, 241 Pu) in radioactive waste drums, the Active Neutron Interrogation is a non-destructive method achieving good results. It does however remain reliant upon uncertainties related to the matrix effects on interrogation and fission neutrons. The aim of this thesis is to develop a correction method able to take into account these matrix effects by quantifying the amount of absorbent materials (chlorine and hydrogen) in a 118- liter homogeneous matrix. The main idea is to use the gamma-ray spectrometry of gamma emitted by neutron captures to identify and quantify the composition of the matrix. An indicator from its chlorine content is then deduced in order to choose the calibration coefficient which best represents the real composition of the matrix. This document firstly presents the needs of control and characterization of radioactive objects, and the means used in the field of nuclear measurement. Emphases is put in particular on the Active Neutron Interrogation method. The matrices of interest are those made of light technological waste (density ≤ 0,4 g/cm 3 ) containing hydrogenated and chlorinated materials. The advantages of gamma-rays emitted by neutron captures for the determination of a chlorine content indicator of the matrices and the principles of the correction method are then explained. Measurements have been firstly realized with an existing Neutron Interrogation device (PROMETHEE 6). Such measurements have proven its inadequacy: no signal from the matrix hydrogen was detected, due to an intense signal from the polyethylene contained in some cell elements. Moreover, the matrix chlorine content appeared difficult to be measured. A new and specific device, named REGAIN and dedicated to active gamma-rays spectrometry, was defined with the Monte-Carlo N-Particle (MCNP) code. The experiments conducted with this new device made it possible to detect the hydrogen from the

  14. Determination of plutonium isotopic ratios and total concentration by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Despres, Michele.

    1980-11-01

    A non-destructive method of analysis is being investigated for the control in situ of plutonium isotopic composition and total concentration in different matrix without preliminary calibration. The plutonium isotopic composition is determined by gamma-ray spectrometry using germanium detector systems. The same apparatus is used for direct measuring of the total plutonium concentration in solutions or solids by a differential attenuation technique based on two transmitted gamma rays with energies on both sides of the k shell absorption edge of plutonium [fr

  15. Pulser injection with subsequent removal for gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Hartwell, J.K.; Goodwin, S.G.; Johnson, L.O.; Killian, E.W.

    1990-01-01

    This patent describes a module for use with a gamma-ray spectroscopy system. The system includes a gamma-ray detector for detecting gamma-ray events and producing a signal representing the gamma-ray events, a converter responsive to the detector and capable of converting the signal to a spectrum, a storage memory responsive to the converter and capable of storing the spectrum at address locations in memory, and a pulser capable of injecting pulses into the signal produced by the detector. The module comprises: means for generating a logic pulse for controlling the pulser, the controlling means adapted for coupling to the pulser; means for generating separation of events logic to isolate the components of a combined gamma-ray---pulse spectrum, the separation of events logic means adapted for coupling to the converter and the storage memory with the capability of storing pulses at address locations in the storage memory separate from the gamma-ray events; means for receiving an imitating signal from the converter to generate a plurality of operations by the module; means for tracking variations in a gamma-ray---pulse spectrum brought on by external parameter changes; and means for interfacing with commercially developed gamma-ray spectrometry equipment

  16. Some deficiencies and solutions in gamma ray spectrometry

    International Nuclear Information System (INIS)

    Westmeier, W.

    1998-01-01

    A number of problems in high-resolution gamma ray spectrometry as well as some deficiencies of existing computer programs for the quantitative evaluation of spectra are discussed and some practical solutions are proposed. (author)

  17. Prompt gamma-ray spectrometry for measurement of B-10 concentration in brain tissue and blood

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Kitamura, Katsuji; Kobayashi, Toru; Matsumoto, Keizo; Hatanaka, Hiroshi.

    1993-01-01

    Boron-10 (B-10) concentration in the brain tissue and blood was measured continuously for 24 hours after injection of the B-10 compound in live rabbits using prompt gamma-ray spectrometry. Following injection of B-10 compound (Na 2 B 12 H 11 SH, 50mg/kg) dissolved in physiological saline, B-10 concentration was continuously measured in the brain tissue. Intermittently the concentration of B-10 in blood and cerebro-spinal fluid (CSF) was also measured. In 10 minutes after the injection of B-10 compound, the level of B-10 concentration reached the peak of 400-500 ppm in blood and 20-30 ppm in the normal brain tissue. In 60 minutes the level of B-10 concentration rapidly decreased and then a gradual decline was observed. The value was 15-30 ppm at 3 hours after injection, 5-10 ppm at 6 hours and 2-5 ppm at 24 hours in the blood. The concentration in the brain tissue was 3-8 ppm at 3 hours, 2-5 ppm at 6 hours and below 1.5 ppm at 24 hours. B-10 concentration in cerebro-spinal fluid was below 1 ppm. B-10 concentration was also measured in the brain tumor and blood in the human cases at boron neutron capture therapy (BNCT). These data studied by prompt gamma-ray spectrometry are very important and useful to decide the irradiation time. (author)

  18. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components....... By knowing the spectral components and their amplitudes in each of the measured spectra one is able to extract more information from the data than possible with the methods used otherwise....

  19. Determination of radon concentration in soil gas by gamma-ray spectrometry of olive oil

    International Nuclear Information System (INIS)

    Al-Azmi, Darwish; Karunakara, N.

    2007-01-01

    Measurements of radon concentration in soil gas have been carried out using a bubbling system in which the soil gas is drawn through an active pumping to bubble a liquid absorber (olive oil) for the deposition of the soil gas in it. After the bubbling process, the absorber is then taken for gamma-ray measurements. Gamma-ray photopeaks from the 214 Pb and the 214 Bi radon progeny are considered for the detection of the 222 Rn gas to study the concentration levels for radon soil gas. Results for some field measurements were obtained and compared with results obtained using AlphaGuard radon gas monitor. The technique provides a possible approach for the measurements of radon soil gas with gamma-ray spectrometry

  20. A new approach for the high-precision determination of the elemental uranium concentration in uranium ore by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Nagel, W.; Quik, F.

    1993-01-01

    A new approach for the determination of elemental uranium in uranium bearing ore, using high resolution gamma-ray spectrometry, was applied. Using a variant of the enrichment meter technique an agreement of better than 1% has been obtained between gamma-ray measurement results and the certified value obtained by other analytical methods. For the calibration of the gamma-ray spectrometer uranium reference samples have been used which are made available jointly in Europe and the USA as Certified Reference Materials for Gamma-ray Spectrometry (EC NRM 171 and NBS SRM 969, respectively). The measured ore has been put in a special designed container which ensured in all directions seen from the radiation window a uniform degree of infinite thickness of about 95%. The measurement results can be taken as an example for the applicability of gamma-ray spectrometry when high accuracy is required and under conditions where homogeneous distributed elemental uranium is embedded in a larger amount of matrix material. (author). 8 refs., 10 figs., 2 tabs., 2 appendices

  1. Efficiency curves of NIRR-1 gamma-ray spectrometry system at near ...

    African Journals Online (AJOL)

    The full-energy peak efficiency curves of the gamma-ray spectrometry for use with the Nigeria Research Reactor-1 (NIRR-1) have been determined by both theoretical and experimental at two source-detector positions for routine neutron activation analysis. Standard gamma ray sources were used to determine the efficiency ...

  2. Measurement of natural gamma radiation in building materials from Thellar of Tiruvannamalai Dist, Tamilnadu, India by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Raghu, Y.; Ravisankar, R.; Chandrasekararn, A.; Vijayagopal, P.; Venkatraman, B.

    2016-01-01

    The knowledge of natural radioactivity in building materials is an important aspect of or determining the amount of public exposure because people spend most of their time (about 80%) indoors. Further, the knowledge of this radioactivity is useful in setting the standards and national guidelines in regard to the international recommendations and in assessing the associated radiation hazard. In the present work, the concentrations of natural radionuclides were measured in four types of building materials from Thellar of Tiruvannamalai district, Tamilnadu, India using gamma-ray spectrometry and associated radiological hazards are calculated

  3. Porosity measurement of amorphous materials by gamma ray transmission

    International Nuclear Information System (INIS)

    Poettker, Walmir Eno

    2000-01-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a 241 Am source (59,53 keV), a NaI (Tl) scintillation detector, collimators, a XYZ, micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  4. Simple circuit for precise measurement of live dead or clock time in gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Hammer, W.; Sterlinski, S.

    1976-01-01

    The basic design features and characteristics of circuit are described in the paper. The circuit coupled to a multichannel analyser (MCA) enables one of times: live(Tsub(iota)), dead (Tsub(d)) or clock(Tsub(c)) to be measured precisely. Second one is measured by a built-in timer of MCA. Having the Tsub(c)/Tsub(iota) ratio and utilizing suitable mathematical formulas one can make the corrections for both main effects (dead-time and pile-up) which yield counting losses in gamma-ray spectrometry at high and/or variable activities. Two examples of the dead-time and pile-up corrections by using the new circuit are presented in this paper. (author)

  5. Significance of radioelement concentration measurements made by airborne gamma-ray spectrometry over the Canadian Shield

    International Nuclear Information System (INIS)

    Charbonneau, B.W.; Killeen, P.G.; Carson, J.M.; Cameron, G.W.; Richardson, K.A.

    1976-01-01

    Results of airborne gamma-ray spectrometer surveys conducted by the Geological Survey of Canada are presented as maps contoured in units of radioelement and concentration ratios. These contoured values represent the average surface concentrations of the radioelements over areas of the order of several square kilometres. The relationship between this ''average surface concentration'' and the radioelement concentration in bedrock underlying the area depends on: (1) the percentage of outcrop; (2) the relation between overburden and bedrock radioelement concentration; (3) percentage of marshland or surface water in the area; (4) soil moisture; and (5) density of vegetation. More than 2500 portable gamma-ray spectrometer analyses of outcrop and overburden have been made in the Bancroft, Elliot Lake and Fort Smith areas of the Canadian Precambrian Shield. In the areas examined, the radioelement concentrations in glacial drift reflect the concentrations in the underlying bedrock. Rocks with near-crustal average contents of thorium, uranium and potassium are overlain by glacial drift having approximately the same concentrations. As the concentration in bedrock increases, the concentration in the local overburden also increases, but not to the same extent. In addition, in-situ gamma-ray spectrometry measurements were made at almost 1000 stations within the area of airborne surveys near Mont Laurier and Elliot Lake. These ground measurements were compared with the airborne measurements by averaging the values for all those ground stations located in the areas between each contour level on airborne maps. Radioelement concentrations in bedrock are considerably higher than corresponding airborne measurements, and this difference between bedrock and airborne values increases at higher radioelement concentrations. Radioelement concentrations in glacial drift are only slightly higher than airborne contour values for the same area. Airborne contour maps of the radioelement ratios

  6. Uranium measurement by airborne gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Grasty, R.L.

    1975-01-01

    In the airborne measurement of uranium, window type gamma-ray spectrometers are used and it is necessary to correct for scattered high energy radiation from thallium 208 in the thorium decay series. This radiation can be scattered in the crystal, in the ground, and in the air. A theory, analogous to the theory of radioactive decay, is developed; it can adequately explain the spectrum buildup in the uranium window for a point source of thorium oxide immersed to different depths in water and for a detector above the water. The theory is extended to predict the buildup as a function of altitude for detectors of different sizes and shows that errors in the airborne measurement of uranium can be significant if no allowance is made for radiation scattered in the ground and in the air

  7. Measurement control for plutonium isotopic measurements using gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Fleissner, J.G.

    1985-01-01

    A measurement control (MC) program should be an integral part of every nondestructive assay measurement system used for the assay of special nuclear materials. This report describes an MC program for plutonium isotopic composition measurements using high-resolution gamma-ray spectroscopy. This MC program emphasizes the standardization of data collection procedures along with the implementation of internal and external measurement control checks to provide the requisite measurement quality assurance. This report also describes the implementation of the MC program in the isotopic analysis code GRPAUT. Recommendations are given concerning the importance and frequency of the various MC checks in order to ensure a successful implementation of the MC procedures for the user's application

  8. Spatially-Dependent Measurements of Surface and Near-Surface Radioactive Material Using In situ Gamma Ray Spectrometry (ISGRS) For Final Status Surveys

    International Nuclear Information System (INIS)

    J. A. Chapman, A. J. Boerner, E. W. Abelquist

    2006-01-01

    In-situ, high-resolution gamma-ray spectrometry (ISGRS) measurements were conducted at the Oak Ridge Institute for Science and Education ORISE field laboratory in Oak Ridge, Tennessee. The purpose of these tests was to provide analytical data for assessing how 'fit for use' this technology is for detecting discrete particles in soil

  9. Spatially-Dependent Measurements of Surface and Near-Surface Radioactive Material Using In situ Gamma Ray Spectrometry (ISGRS) For Final Status Surveys

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Chapman, A. J. Boerner, E. W. Abelquist

    2006-11-15

    In-situ, high-resolution gamma-ray spectrometry (ISGRS) measurements were conducted at the Oak Ridge Institute for Science and Education (ORISE) field laboratory in Oak Ridge, Tennessee. The purpose of these tests was to provide analytical data for assessing how “fit for use” this technology is for detecting discrete particles in soil.

  10. Airborne gamma-ray spectrometry data processing using 1.5D inversion.

    Science.gov (United States)

    Druker, Eugene

    2017-10-01

    Standard processing of Airborne Gamma-Ray Spectrometry data generally gives good results when the measurement conditions are almost constant within several footprint area sizes, with the possible exception of flight height variations in a small range. In practice, deviations, such as large or abrupt changes of flight height and/or rugged terrain are not so rare and lead to certain problems. This article proposes a different approach where the solutions of inverse problems are used for data processing. The approach is quite natural in the processing of field data measured along the flight lines: it explicitly takes into account 1.5D survey models and flight parameters - from topography to sources distribution on the surface. Also, it clearly demonstrates that the inverse problem of the Airborne Gamma-Ray Spectrometry does not have a unique solution. This feature can be used in accordance with the underlying geological problem since various formulations of inverse problems can lead to various geological solutions. The use of the approach is illustrated by several examples given for flight lines and survey areas. This approach can be particularly useful in situations where geological, geophysical and/or geographic survey conditions are far from the standard assumptions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Remarks on the gamma-ray spectrometry for the determination of natural radioisotopes

    International Nuclear Information System (INIS)

    Kalita, S.; Niewodniczanski, J.

    1987-01-01

    Semiconductor low-energy gamma ray spectrometry is compared with the routinely used scintillation method (within higher energy range). Measurements of low-energy natural gamma radiation using a semiconductor detector permit the determination of radioactive equilibrium of the uranium series. In this method 238 U ( 234 Th) content is determined by 63 keV, 226 Ra by 186 keV and 214 Pb by 295 keV gamma rays. Using the same results one can calculate a radioactive equilibrium coefficient R, defined as concentration ratio 226 Ra/ 238 U and a 222 Rn emanation ratio E, defined as 1 - 214 Pb/ 226 Ra (concentrations in uranium equivalent units). The relative standard errors for the method are: 10 - 15% in case of radioisotope content and about 18% for R and E determination. 7 refs., 2 figs., 2 tabs. (author)

  12. Natural gamma-ray spectrometry as a tool for radiation dose and radon hazard modelling

    International Nuclear Information System (INIS)

    Verdoya, M.; Chiozzi, P.; De Felice, P.; Pasquale, V.; Bochiolo, M.; Genovesi, I.

    2009-01-01

    We reviewed the calibration procedures of gamma-ray spectrometry with particular emphasis to factors that affect accuracy, detection limits and background radiation in field measurements for dosimetric and radon potential mapping. Gamma-ray spectra were acquired in western Liguria (Italy). The energy windows investigated are centred on the photopeaks of 214 Bi (1.76 MeV), 208 Tl (2.62 MeV) and 40 K (1.46 MeV). The inferred absorbed dose rate and the radon flux are estimated to be lower than 60 nGy h -1 and 22 Bq m -2 h -1 , respectively.

  13. A simple method for the deconvolution of 134 Cs/137 Cs peaks in gamma-ray scintillation spectrometry

    International Nuclear Information System (INIS)

    Darko, E.O.; Osae, E.K.; Schandorf, C.

    1998-01-01

    A simple method for the deconvolution of 134 Cs / 137 Cs peaks in a given mixture of 134 Cs and 137 Cs using Nal(TI) gamma-ray scintillation spectrometry is described. In this method the 795 keV energy of 134 Cs is used as a reference peak to calculate the activity of the 137 Cs directly from the measured peaks. Certified reference materials were measured using the method and compared with a high resolution gamma-ray spectrometry measurements. The results showed good agreement with the certified values. The method is very simple and does not need any complicated mathematics and computer programme to de- convolute the overlapping 604.7 keV and 661.6 keV peaks of 134 Cs and 137 Cs respectively. (author). 14 refs.; 1 tab., 2 figs

  14. Low-energy X-ray and gamma spectrometry using silicon photodiodes

    International Nuclear Information System (INIS)

    Silva, Iran Jose Oliveira da

    2000-08-01

    The use of semiconductor detectors for radiation detection has increased in recent years due to advantages they present in comparison to other types of detectors. As the working principle of commercially available photodiodes is similar to the semiconductor detector, this study was carried out to evaluate the use of Si photodiodes for low energy x-ray and gamma spectrometry. The photodiodes investigated were SFH-205, SFH-206, BPW-34 and XRA-50 which have the following characteristics: active area of 0,07 cm 2 and 0,25 cm 2 , thickness of the depletion ranging from 100 to 200 μm and junction capacitance of 72 pF. The photodiode was polarized with a reverse bias and connected to a charge sensitive pre-amplifier, followed by a amplifier and multichannel pulse analyzer. Standard radiation source used in this experiment were 241 Am, 109 Cd, 57 Co and 133 Ba. The X-ray fluorescence of lead and silver were also measured through K- and L-lines. All the measurements were made with the photodiodes at room temperature.The results show that the responses of the photodiodes very linear by the x-ray energy and that the energy resolution in FWHM varied between 1.9 keV and 4.4 keV for peaks corresponding to 11.9 keV to 59 keV. The BPW-34 showed the best energy resolution and the lower dark current. The full-energy peak efficiency was also determined and it was observed that the peak efficiency decreases rapidly above 50 keV. The resolution and efficiency are similar to the values obtained with other semiconductor detectors, evidencing that the photodiodes used in that study can be used as a good performance detector for low energy X-ray and gamma spectrometry. (author)

  15. Porosity measurement of solid pharmaceutical dosage forms by gamma-ray transmission

    International Nuclear Information System (INIS)

    Martins de Oliveira, Jose; Andreo Filho, Newton; Vinicius Chaud, Marco; Angiolucci, Tatiana; Aranha, Norberto; Germano Martins, Antonio Cesar

    2010-01-01

    The aim of the present work is the determination of porosity in tablets by using the gamma-ray transmission technique. Tablet dissolution depends on some inherent characteristics of the manufacturing process, such as compression force, tablet volume, density and porosity, nature of excipients, preparation methods and its physical-chemical properties. Porosity is a measure of empty spaces in a material and can be determined by various techniques. In this paper, we propose the use of a gamma-ray transmission technique to obtain the porosity of experimental formulation of tablets. The results of porosity were compared with those obtained by using conventional methodology (density and mercury intrusion). The experimental setup for gamma-ray transmission consists of a gamma-ray source of 241 Am (photons of 59.6 keV and an activity of 3.7x10 9 Bq), an NaI(Tl) scintillation detector, collimators and a standard gamma-ray spectrometry electronics. Our results suggest that the gamma-ray transmission technique is a powerful tool for non-destructive porosity quantification of solid pharmaceutical forms and presents smaller errors than those obtained with conventional methodologies.

  16. Gamma-ray measurements for uranium enrichment standards

    International Nuclear Information System (INIS)

    Reilly, T.D.

    1979-01-01

    The gamma-ray spectroscopic measurement of uranium enrichment is one of the most widely used nondestructive analysis techniques. A study has been started of the precision and accuracy achievable with this technique and the physical parameters which affect it. The study was prompted by questions raised during the ongoing ESARDA-NBS experiment to produce uranium oxide reference counting materials for the technique. Results reported using a high-quality Ge(Li) spectrometer system show reproducibility comparable to that attainable with mass spectrometry

  17. Basics of Gamma Ray Detection

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venkataraman, Ram [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-13

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  18. Optimization of measure parameters for an X- and gamma-ray spectrometry portable system

    International Nuclear Information System (INIS)

    Fernandes, Jaquiel S.; Appoloni, Carlos R.

    2008-01-01

    In order to optimize the use of a system for in situ gamma (γ)- and X-ray spectrometry composed of a 3x3x1 mm 3 Cadmium Telluride (CdTe) detector with respect to the detection of low-activity radioactive sources, a two level factorial planning was accomplished, involving three factors that could modify the system response. This planning was made with a 137 Cs punctual source, analyzing the X-ray energy line of 32 keV from 137m Ba. It was concluded that, for the system optimization, the best configuration for the involved parameters was to work with the detector at temperature of -22 o C, shaping time of 3 μs and rise time discrimination (RTD) with value 3

  19. Gamma-ray spectrometry laboratory and in situ: developments and environmental applications

    International Nuclear Information System (INIS)

    Gasser, Estelle

    2014-01-01

    Gamma-ray spectrometry enables determining all γ-ray emitters in a sample with a single measurement. Self-absorption of γ-rays in samples is manifest by a loss or a gain of pulses that results in a poor estimation of the counting efficiency. To characterize a new counting geometry improvements of the existing set-up were made with MCNPX simulations. With the new geometry we could specify absorbed and annual effective doses as well as dose conversion factors for the natural radioisotopes of several building materials and soil samples. Simulations show the influence of detection limits of γ-radiation on dose conversion factors and the need for updating these factors. γ-ray measurements of soil in situ require different counting efficiencies simulated by MCNPX for a semi-infinite source. Two in-situ soil analyses were made, one around a nuclear power and the other for a private company. (author)

  20. Improvements on Low Level Activity Gamma Measurements and X-ray Spectrometry at the CEA-MADERE Measurement Platform

    Directory of Open Access Journals (Sweden)

    Sergeyeva Victoria

    2016-01-01

    Full Text Available The CEA MADERE platform (Measurement Applied to DosimEtry in REactors is a part of the Instrumentation Sensors and Dosimetry Laboratory (LDCI. This facility is dedicated to the specific activity measurements of solid and radioactive samples using Gamma and X-ray spectrometry. MADERE is a high-performance facility devoted to neutron dosimetry for experimental programs performed in CEA and for the irradiation surveillance programmes of PWR vessels. The MADERE platform is engaged in a continuous improvement process. Recently, two High Efficiency diodes have been integrated to the MADERE platform in order to manage the accurate low level activity measurements (few Bq per sample. This new equipment provides a good level of efficiency over the energy range from 60 keV to 2 MeV. The background continuum is reduced due to the use of a Ultra Low Background (ULB lead shielding. Relative and absolute X-ray measurement techniques have been improved in order to facilitate absolute rhodium activity measurement (Rh103m on solid samples. Additional efforts have been made to increase the accuracy of the relative niobium (Nb93m activity measurement technique. The way of setting up an absolute measurement method for niobium is under investigation. After a presentation of the MADERE's measurement devices, this paper focuses on the technological options taken into account for the design of high efficiency measurement devices. Then, studies performed on X-ray measurement techniques are presented. Some details about the calculation of uncertainties and correction factors are also mentioned. Finally, future research and development axes are exposed.

  1. Comparative and Absolute Measurements of 11 Inorganic Constituents of 38 Human Tooth Samples with Gamma-ray Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K [AB Atomenergi, Stockholm (Sweden); Soeremark, R [The Clinical Laboratory and the Dept. of Prosthetics of the Royal School of Dentistry, Stockholm (Sweden)

    1961-12-15

    The mean concentrations of the following elements have been simultaneously determined in normal human dentine, enamel and dental calculus with gamma-ray spectrometry; Na, P, Cl, Ca, Mn, Cu, Zn, Br, Sr, W and Au. In a typical run one sample each of dentine, enamel and dental calculus were irradiated together with standards of the elements to be determined in a thermal neutron flux of 2 x 10{sup 12} n/cm/sec for 20 hours. The chemical elements were separated into nine groups with ion exchange technique before the subsequent gamma spectrometric measurements. One man can manage the chemical separations and take the necessary gamma spectra from a run in one day. In a few samples of dentine, enamel and dental calculus which had been irradiated in a thermal neutron flux of 7 x 10{sup 13} n/cm/sec for one week the additional long lived trace elements were qualitatively determined Cr, Fe, Co, Rb, Ag, Sb, Cs and Ba.

  2. Comparative and Absolute Measurements of 11 Inorganic Constituents of 38 Human Tooth Samples with Gamma-ray Spectrometry

    International Nuclear Information System (INIS)

    Samsahl, K.; Soeremark, R.

    1961-12-01

    The mean concentrations of the following elements have been simultaneously determined in normal human dentine, enamel and dental calculus with gamma-ray spectrometry; Na, P, Cl, Ca, Mn, Cu, Zn, Br, Sr, W and Au. In a typical run one sample each of dentine, enamel and dental calculus were irradiated together with standards of the elements to be determined in a thermal neutron flux of 2 x 10 12 n/cm/sec for 20 hours. The chemical elements were separated into nine groups with ion exchange technique before the subsequent gamma spectrometric measurements. One man can manage the chemical separations and take the necessary gamma spectra from a run in one day. In a few samples of dentine, enamel and dental calculus which had been irradiated in a thermal neutron flux of 7 x 10 13 n/cm/sec for one week the additional long lived trace elements were qualitatively determined Cr, Fe, Co, Rb, Ag, Sb, Cs and Ba

  3. New portability for in situ gamma-ray spectrometry from commercially available equipment

    International Nuclear Information System (INIS)

    Stanford, N.; Laurenzo, E.L.; McCurdy, D.E.

    1984-01-01

    In situ gamma-ray spectrometry has been employed by the staff of the Yankee Atomic Environmental Laboratory on a routine basis for more than five years. The original in situ gamma-ray spectrometry methodology was adopted from the techniques developed at the DOE Environmental Measurements Laboratory (Beck, DeCampo, and Gogolak 1972). The system consisted of a 110 cm 3 Ge(Li) detector in the vertical configuration in conjunction with typical laboratory nuclear instrumentation, as well as a medium-sized desktop computer, printer and disk drive. The equipment was transported in a small van having a shock-mounted cabinet and gasoline generator as an electrical power source. Recent availability of miniaturized spectrometry systems and powerful portable computers has enabled the upgrading of the 1977 vintage equipment to a system which is truly portable, light weight, compact and more reliable. The system to be described utilizes a portable intrinsic germanium detector, a small, 4096 channel pulse height analyzer (MCA) with anscillary components and a 24K, Hewlett Packard HP-75 computer with a small tape drive. When the equipment is used in the field, the system has enough capability to acquire and store a full 4096 channel gamma-ray spectrum and calculate the soil concentrations (pCi/g) and/or external radiation exposure rates for the commonly found naturally occurring, long-lived atmospheric nuclear weapons testing and nuclear power plant radionuclides. Subsequent data transfer to a larger desktop computer via available interfacing at the laboratory enables a full peak search and a more extensive evaluation of the data in order to calculate the soil concentrations and/or external radiation exposure rates for a selected 25 radionuclides. Experiences from the first season of operation are discussed

  4. Evaluation of TASTEX task H: measurement of plutonium isotopic abundances by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Gunnink, R.; Prindle, A.L.; Asakura, Y.; Masui, J.; Ishiguro, N.; Kawasaki, A.; Kataoka, S.

    1981-10-01

    This report describes a computer-based gamma spectrometer system that was developed for measuring isotopic and total plutonium concentrations in nitric acid solutions. The system was installed at the Tokai reprocessing plant where it is undergoing testing and evaluation as part of the Tokai Advanced Safeguards Exercise (TASTEX). Objectives of TASTEX Task H, High-Resolution Gamma Spectrometer for Plutonium Isotopic Analysis, the methods and equipment used, the installation and calibration of the system, and the measurements obtained from several reprocessing campaigns are discussed and described. In general, we find that measurements for gamma spectroscopy agree well with those of mass spectrometry and of other chemical analysis. The system measures both freshly processed plutonium from the product accountability tank and aged plutonium solutions from storage tanks. 14 figures, 15 tables

  5. 40 K, 137 Cs and 232 Th activities in Brazilian milk samples measured by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Melquiades, Fabio L.; Appoloni, Carlos R.

    2000-01-01

    This work deals with the measurement of radioactive activities in powdered milk, with high resolution gamma-ray spectrometry, using a HPGe detector coupled to a standard electronic nuclear chain and a multichannel card of 8192 channels. Preliminary measurements were accomplished to define the kind of the system shield, the geometry of the sample recipient, the size of the sampling and the self absorption correction. It was possible to measure the radionuclides 40 K, 137 Cs and 208 Tl, whose activities were calculated according to the International Atomic Energy Agency norms. The detector efficiency was measured employing calibrated samples, prepared with IAEA certificate standards mixed with powdered milk. Tukey's average comparison test was used to check the repeatability of the measurements and the absence of significant systematic deviation. (author)

  6. Developments in gamma-ray spectrometry: systems, software, and methods-II. 3. Low-Energy Gamma-Ray Spectrometry Using a Compton-Suppressed Telescope Detector

    International Nuclear Information System (INIS)

    Sigg, R.A.; DiPrete, D.P.

    2001-01-01

    The Savannah River Technology Center (SRTC) utilizes gamma-ray spectrometry in studying numerous areas of applied interest to the Savannah River Site (SRS). For example, analyses of long-lived gamma-ray-emitting fission products and actinides are required to meet waste characterization, process holdup, environmental restoration, and decontamination and decommissioning efforts. A significant portion of the overall effort centers on measurements of gamma rays having energies below several hundred kilo-electron-volts. To assist these efforts, the SRTC recently acquired a spectrometer system that provides lower natural and Compton scattered background levels while achieving relatively high counting efficiencies for low-energy gamma rays. The combination of high efficiency and low background provides factor-of- 2-to-4 improvements in minimum detectable activities and allows meeting programmatic objectives with shorter measurement times. Numerous Compton-suppression spectrometers have been reported since the concept was first advanced. The spectrometer consists of two high-purity germanium detectors in a telescope configuration surrounded by a background /Compton-suppression sodium iodide detector. The front germanium detector is a 20-mm-thick x 60-mm-diam broad energy spectrometer, and the rear detector is a 40% efficient 61- mm-diam x 60-cm-thick closed-end coaxial spectrometer. The cryostat housing the germanium detectors (a) includes a carbon composite window for transmitting low-energy gamma rays, (b) is in a J-type configuration to mask the germanium detectors from natural activities in the cryo-pumping media, and (c) is fabricated from materials selected for low background. The telescope detector is in the 8.6-cm-inside-diameter annulus of a 22.9- x 22.9-cm sodium iodide detector encased in a 10-cm-thick lead shield. The counting system is located in a basement counting room having ∼60-cm-thick concrete walls. Initial tests show that the low-energy segment of

  7. Gamma spectrometry of infinite 4Π geometry

    International Nuclear Information System (INIS)

    Nordemann, D.J.R.

    1987-07-01

    Owing to the weak absorption og gamma radiation by matter, gamma-ray spectrometry may be applied to samples of great volume. A very interesting case is that of the gamma-ray spectrometry applied with 4Π geometry around the detector on a sample assumed to be of infinite extension. The determination of suitable efficiencies allows this method to be quantitative. (author) [pt

  8. Measurement of the porosity of amorphous materials by gamma ray transmission methodology

    International Nuclear Information System (INIS)

    Pottker, Walmir Eno; Appoloni, Carlos Roberto

    2000-01-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a 241 Am source (59,53 keV ), a NaI(Tl) scintillation detector, collimators, a XYZ micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  9. The application of gamma-spectrometry to nuclear power plant (NPP) and environment

    International Nuclear Information System (INIS)

    Asgharizadeh, Farid.

    1995-01-01

    One of measuring systems is nuclear spectrometry, particularly Gamma-Ray Spectrometry, to measure and determine the radionuclide concentration within plant materials and environmental samples. There are four major applied techniques related to Nuclear Power Plant operation and environmental monitoring aspects. Some details about gamma ray spectrometry technique is discussed in chapter 2. The main emphasis is on the calculation of gamma-ray detector efficiency for different geometries, the minimum detectable activity concepts and dead-time correction. Also,some formula and relations are introduced. In chapter 3, the major applications of gamma-ray spectrometry for analysis of nuclear power plant and environmental samples are discussed. These applications are divided into four topics: Nuclear Fuel survey; based on the activity of fission products concentration in reactor coolant, two other applications are introduced: Fuel Burnup calculation and the calculation of rated activity of natural radionuclides in construction of materials which is the last and most important application: Measurement and determination of radionuclides activity concentr[[[[n in environmental samples is described through section 3.3 Sampling and measuring methods for research and monitoring aspects is evaluated. Some data about sample preparation methods such as pretreatment and solubilization procedures are presented. Quantitative chemical separations of trace constituents from complex sample materials invariably require meticulous work by an analytical chemist. The radiochemical separation deals with this subject. Instrumental aspects, relate to gamma-ray spectrometry, quality assurance, presentation and reporting of results are described. In the experimental part, determination of radionuclides concentration in sediment sample is presented

  10. Estimation of natural potassium concentration in Romanian males by in vivo gamma-ray spectrometry measurements

    International Nuclear Information System (INIS)

    Mirela Angela Saizu

    2012-01-01

    At the Whole Body Monitoring Laboratory, from IFIN-HH, Bucharest, Romania, there were performed in vivo gamma-ray spectrometry measurements on 108 Romanian males in order to evaluate the mineral natural potassium content in human body, as total value and concentration. The measurements were performed with a shadow shield whole body counter, tilted chair geometry, based on a shielded NaI(Tl) scintillation detector of 12.5 cm (diameter) x 10 cm (height) crystal size. The results revealed a calculated value of the mean total body potassium (TBK) of 135.03 ± 2.94 g and a value of 1.9 ± 0.022 g of potassium/kg of body weight for the mean body potassium concentration, for the measured males. These values are similar with the values declared for the Reference Man, in ICRP23. Correlations between total body potassium, potassium concentration and age, weight and Body Build Index were investigated and peculiar conclusions were resulted. (author)

  11. Correcting the effects of the matrix using capture gamma-ray spectrometry: Application to measurement by Active Neutron Interrogation; Correction des effets de matrice par spectrometrie des rayonnements gamma de capture: Application a la mesure par Interrogation Neutronique Active (I.N.A.)

    Energy Technology Data Exchange (ETDEWEB)

    Baudry, G.

    2003-11-15

    In the field of the measurement of low masses of fissile material ({sup 235}U, {sup 239}Pu, {sup 241}Pu) in radioactive waste drums, the Active Neutron Interrogation is a non-destructive method achieving good results. It does however remain reliant upon uncertainties related to the matrix effects on interrogation and fission neutrons. The aim of this thesis is to develop a correction method able to take into account these matrix effects by quantifying the amount of absorbent materials (chlorine and hydrogen) in a 118- liter homogeneous matrix. The main idea is to use the gamma-ray spectrometry of gamma emitted by neutron captures to identify and quantify the composition of the matrix. An indicator from its chlorine content is then deduced in order to choose the calibration coefficient which best represents the real composition of the matrix. This document firstly presents the needs of control and characterization of radioactive objects, and the means used in the field of nuclear measurement. Emphases is put in particular on the Active Neutron Interrogation method. The matrices of interest are those made of light technological waste (density {<=} 0,4 g/cm{sup 3}) containing hydrogenated and chlorinated materials. The advantages of gamma-rays emitted by neutron captures for the determination of a chlorine content indicator of the matrices and the principles of the correction method are then explained. Measurements have been firstly realized with an existing Neutron Interrogation device (PROMETHEE 6). Such measurements have proven its inadequacy: no signal from the matrix hydrogen was detected, due to an intense signal from the polyethylene contained in some cell elements. Moreover, the matrix chlorine content appeared difficult to be measured. A new and specific device, named REGAIN and dedicated to active gamma-rays spectrometry, was defined with the Monte-Carlo N-Particle (MCNP) code. The experiments conducted with this new device made it possible to detect the

  12. Several experimental applications of gamma ray spectrometry on the analysis of uranium compounds

    International Nuclear Information System (INIS)

    Korob, Ricardo O.; Blasiyh Nuno, Guillermo A.

    2002-01-01

    Several experimental applications of gamma ray spectrometry on the analysis of uranium compounds and materials containing it are studied. Special attention is devoted to the correlation between experimental spectra and the decay chains of 235 U and 238 U contained in the analyzed samples. The following applications are discussed: enrichment determination without using calibration standards, determination of uranium concentration, intensities of the gamma rays emitted by the nuclides present in the decay chains of study and the activity of such nuclides. Because of its importance, detailed discussion about the former one is shown. In addition, preliminary results regarding the emission probabilities of the most important gamma rays of 234m Pa are also informed. (author)

  13. Lunar occultations for gamma-ray source measurements

    Science.gov (United States)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  14. Radiochemical separation of {sup 231}Pa from siliceous cake prior to its determination by gamma ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dalvi, Aditi A. [Bhabha Atomic Research Centre, Mumbai (India). Analytical Chemistry Div.; Homi Bhabha National Institute, Mumbai (India); Verma, Rakesh

    2017-07-01

    A simple and fast radiochemical method for the separation of protactinium ({sup 231}Pa) from siliceous cake for its determination by gamma ray spectrometry is described. The method involves (a) a novel approach, the fusion of the siliceous cake with sodium peroxide, (b) the dissolution of the fused mass in nitric acid and (c) the co-precipitation of {sup 231}Pa with manganese dioxide formed in-situ by the addition of solid manganous sulfate and potassium permanganate to the solution. The fusion, effected in a single step, is simpler and highly effective in comparison to methods reported hitherto in literature. The radiochemical yield of {sup 231}Pa, determined using 311.9 keV gamma ray of {sup 233}Pa radiotracer is quantitative (∝90%). The decontamination factors calculated using gamma ray spectrometry and energy dispersive X-ray fluorescence measurements show that the separation from the interfering radionuclides is high whereas separation from major and minor elements is good. Separation by ion-exchange method in hydrochloric acid, hydrofluoric acid and oxalic acid media have comparatively much lower yields. The concentration of {sup 231}Pa in the siliceous cake measured using interference-free 283.6 keV gamma ray was found to be (6.4 ± 0.33) μg kg{sup -1}. The measured concentration of {sup 231}Pa was well above the limit of quantitation whereas the coefficient of variation was ∝5%. The improvement in the limit of detection was due to the reduction in spectral background. Systematic evaluation of various uncertainty parameters showed that the major contributors to the combined uncertainty were efficiency of the high purity germanium detector and the counting statistics. The present sample decomposition and separation methods are robust, simple to perform and can be effectively used for the determination and hence source prospecting of protactinium.

  15. Proceedings of the International Symposium Advances in alpha, Beta- and Gamma-Ray spectrometry

    International Nuclear Information System (INIS)

    1997-01-01

    The International Committee for Radionuclide Metrology (ICRM) is an association of radionuclide metrology laboratories whose membership is composed of delegates of these laboratories together with other scientists actively engaged in the study and applications of radioactivity. The scientific activities are carried out in the frame of six Working Groups. Two of them, the Alpha-Particle Spectrometry and the Gamma-and Beta-ray Spectrometry Working Groups held a common workshop in Pushkin, St. Petersburg, 18 to 20 September 1996, under the title Advances in Alpha-Beta-and Gamma-Ray Sepectrometry, at the kind invitation of the D.I. Mendeleyev Institute for Metrology. More than 30 people from 14 laboratories attended the meeting, and nineteen oral communications were presented, from which twelve were retained for publication an are included in these proceedings. (Author)

  16. An intercomparison of Monte Carlo codes used for in-situ gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Hurtado, S.; Villa, M.

    2010-01-01

    In-situ gamma-ray spectrometry is widely used for monitoring of natural as well as man-made radionuclides and corresponding gamma fields in the environment or working places. It finds effective application in the operational and accidental monitoring of nuclear facilities and their vicinity, waste depositories, radioactive contamination measurements and environmental mapping or geological prospecting. In order to determine accurate radionuclide concentrations in these research fields, Monte Carlo codes have recently been used to obtain the efficiency calibration of in-situ gamma-ray detectors. This work presents an inter-comparison between two Monte Carlo codes applied to in-situ gamma-ray spectrometry. On the commercial market, Canberra has its LABSOCS/ISOCS software which is relatively inexpensive. The ISOCS mathematical efficiency calibration software uses a combination of Monte Carlo calculations and discrete ordinate attenuation computations. Efficiencies can be generated in a few minutes in the field and can be modified easily if needed. However, it has been reported in the literature that ISOCS computation method is accurate on average only within 5%, and additionally in order to use LABSOCS/ISOCS it is necessary a previous characterization of the detector by Canberra, which is an expensive process. On the other hand, the multipurpose and open source GEANT4 takes significant computer time and presents a non-friendly but powerful toolkit, independent of the manufacturer of the detector. Different experimental measurements of calibrated sources were performed with a Canberra portable HPGe detector and compared to the results obtained using both Monte Carlo codes. Furthermore, a variety of efficiency calibrations for different radioactive source distributions were calculated and tested, like plane shapes or containers filled with different materials such as soil, water, etc. LabSOCS simulated efficiencies for medium and high energies were given within an

  17. Processing of gamma-ray spectrometric logs

    International Nuclear Information System (INIS)

    Umiastowski, K.; Dumesnil, P.

    1984-10-01

    CEA (Commissariat a l'Energie Atomique) has developped a gamma-ray spectrometric tool, containing an analog-to-digital converter. This new tool permits to perform very precise uranium logs (natural gamma-ray spectrometry), neutron activation logs and litho-density logs (gamma-gamma spectrometric logs). Specific processing methods were developped to treate the particular problems of down-hole gamma-ray spectrometry. Extraction of the characteristic gamma-ray peak, even if they are superposed on the background radiation of very high intensity, is possible. This processing methode enables also to obtain geological informations contained in the continuous background of the spectrum. Computer programs are written in high level language for SIRIUS (VICTOR) and APOLLO computers. Exemples of uranium and neutron activation logs treatment are presented [fr

  18. A comparative study for the correction of random gamma ray summing effect in HPGe - detector based gamma ray spectrometry

    International Nuclear Information System (INIS)

    Rajput, M.U.

    2007-01-01

    Random coincidence summing of gamma rays is a potential source of errors in gamma ray spectrometry. The effect has a little significance at low counting rates but becomes increasingly important at high counting rates. Careful corrections are required to avoid the introduction of errors in quantitative based measurements. Several correction methods have been proposed. The most common is the pulser method that requires a precision Pulse Generator in the electronic circuitry to provide reference peak. In this work, a comparative study has been carried out both by using pulser method and utilizing radioactive source based method. This study makes the use of 137 Cs radionuclide as a fixed source and the 241 Am as a varied source. The dead time of the system has been varied and the acquisition of the spectra at each position yielded the resulted peak areas with pulsed pile up losses. The linear regression of the data has been carried out. The study has resulted in establishing a consistent factor that can be used as the characteristic of the detector and thereby removes the need of the calibrated or precise Pulse Generator. (author)

  19. Burn up determination of IEAR-1 fuel elements by non destructive gamma ray spectrometry method

    International Nuclear Information System (INIS)

    Soares, A.J.

    1977-01-01

    Measurement of nuclear fuel burn up by non destructive gamma ray spectrometry is discussed, and results of such measurements, made at the Instituto de Energia Atomica (IEA), are given. Specifically, the burn up of an MTR (Material Testing Reactor) fuel element removed from the IEAR-1 swimming pool reactor in 1958 is evaluated from the measured Cs-137 activity, which gives a single 661,6 keV gamma ray. Due to the long decay time of the test element, no other fission decay product activity could be detected. Analysis of measurements, made with a 3'' x 3'' NaI(Tl) detector at 330 distinct points of the element, showed the total burn up to 3.3 +- -+ 0.8 mg. This is in agreement with a calculated value. As the maximum temperature of IEAR-1 fuel elements is of the order of 40 0 C, migration effects of Cs-137 was not considered, this being significant only at fuel temperature in excess of 1000 0 C [pt

  20. Characteristics of prepared gamma-ray calibration sources for radioactivity measurement of environmental and radiation control samples

    International Nuclear Information System (INIS)

    Samat, S.B.; Oi, Yoshihiro; Taki, Mitsumasa; Manabe, Iwao; Yoshida, Makoto; Minami, Kentaro

    1995-03-01

    Several types of calibration source having different density were prepared using one or combinations of those materials, namely foam cement, liquid, glass beads, polystyrene foam bead and hard plastic bead for gamma-ray spectrometry of the samples with different densities and shapes(variable height with constant base area). For each type of the source, a few sources were prepared to examine characteristics in such cases as (a) different heights but constant density, and (b) constant height and constant density. For the foam cement source, several sources with different densities and a constant height were prepared. All the sources were measured with a gamma-ray spectrometry system and the results were discussed. This report also presents the results obtained from the experiments for the evaluation of (1) the variation of detector efficiency-energy with gamma-ray energy, and (2) the variation of detector efficiency with density of the sources. (author)

  1. Application of gamma ray spectrometry for evaluation of transfer factors in environmental matrices

    International Nuclear Information System (INIS)

    Rao, D.D.

    2008-01-01

    Gamma Ray Spectrometry (GRS) is performed using a variety of radiation detectors, to identify and determine radioactivity concentration of gamma emitting radionuclides qualitatively, in a wide range of samples. The samples can be of a high inventory power plant origin, NORM category or low level environmental samples, around a power plant. The method is usually applied to non-destructive analysis of environmental samples. However, it can also be applied to destructive analysis i.e. following extraction/separation of the analyte from the sample, if there is a need to pre-concentrate the analyte. The accuracy and precision of the method, depends on the quality of calibration, correction methods employed, stability of the system components, computational algorithms used, analysis of sources of uncertainties etc. The transfer factors among the environmental matrices are simple ratios, but the methodologies used in generating the respective concentrations have to be appropriately documented, including the validity of measurements. Validation mechanisms can include the results of international inter-comparison exercises, the certificates of standards issued by quality-accredited international laboratories. A few parameters involved in the qualitative analysis of gamma spectrometry are discussed here

  2. Survey of natural radioactivity levels in Ilex paraguariensis (St. Hil.) by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Scheibel, Viviane; Appoloni, Carlos Roberto

    2007-01-01

    The mate tea (Ilex paraguariensis - St. Hil.) is a beverage broadly cultivated and consumed in Brazil. The radioactive traces present in three trademarks of toasted mate tea produced at the south of Brazil were analyzed. Measurements were carried out by gamma-ray spectrometry. The average value for the 40 K activity measured for marks A, B and C was 1216 ± 8, 1047 ± 14 and 666 ± 13 Bq.kg -1 , respectively. The 137 Cs activity was lower than the limit of detection. (author)

  3. New possibilities in prompt gamma ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Borderie, B; Barrandon, J N [Centre National de la Recherche Scientifique, 45 - Orleans-la-Source (France). Lab. du cyclotron; Pinault, J L [Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France)

    1977-01-01

    Prompt gamma ray spectrometry has been used as an analytical tool for many years. The high level of background noise does, however, remain a major problem with this technique. From simple theoretical consideration, conditions (particle, energy) were determined to reduce significantly the background noise under irradiation. Alpha particles of 3.5 MeV were chosen. Some fifty elements were studied, of which 24 gave interesting results. The detection limits obtained for a sample of niobium were as follows: approximately 1 ppm (10/sup -6/g/g) for the light elements Li, B, F and Na, and between 50 ppm and 1% for the others. Numerous applications may be envisaged in the geo- and cosmo-sciences.

  4. In-situ-gamma ray spectrometry for measurements of environmental radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, I

    1994-12-31

    A detailed description of the method is presented. The range of application is shown. The calibration of the in-situ gamma ray spectrometer with a HPGe semiconductor detector and the evaluation of the spectra are described. A measuring time of about 15-30 min is sufficient to determine the specific natural and man-made radioactivity of the soil of some ten Bq/m{sup 2}. The results of soil contamination measurements in Germany after the Chernobyl accident are reported. A total of 22 nuclides are detected. The measured contamination for the first days after the accident was as follows: {sup 132}Te/{sup 132}I - 100 kBq/m{sup 2}, and {sup 131}I - 70 kBq/m{sup 2}. 6 figs., 4 tabs. (orig.).

  5. Portable gamma-ray holdup and attributes measurements of high- and variable-burnup plutonium

    International Nuclear Information System (INIS)

    Wenz, T.R.; Russo, P.A.; Miller, M.C.; Menlove, H.O.; Takahashi, S.; Yamamoto, Y.; Aoki, I.

    1991-01-01

    High burnup-plutonium holdup has been assayed quantitatively by low resolution gamma-ray spectrometry. The assay was calibrated with four plutonium standards representing a range of fuel burnup and 241 Am content. Selection of a calibration standard based on its qualitative spectral similarity to gamma-ray spectra of the process material is partially responsible for the success of these holdup measurements. The spectral analysis method is based on the determination of net counts in a single spectral region of interest (ROI). However, the low-resolution gamma-ray assay signal for the high-burnup plutonium includes unknown amounts of contamination from 241 Am. For most needs, the range of calibration standards required for this selection procedure is not available. A new low-resolution gamma-ray spectral analysis procedure for assay of 239 Pu has been developed. The procedure uses the calculated isotope activity ratios and the measured net counts in three spectral ROIs to evaluate and remove the 241 Am contamination from the 239 Pu assay signal on a spectrum-by-spectrum basis. The calibration for the new procedure requires only a single plutonium standard. The procedure also provides a measure of the burnup and age attributes of holdup deposits. The new procedure has been demonstrated using portable gamma-ray spectroscopy equipment for a wide range of plutonium standards and has also been applied to the assay of 239 Pu holdup in a mixed oxide fuel fabrication facility. 10 refs., 5 figs., 3 tabs

  6. Self-absorption corrections of various sample-detector geometries in gamma-ray spectrometry using sample Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Ahmad Saat; Appleby, P.G.; Nolan, P.J.

    1997-01-01

    Corrections for self-absorption in gamma-ray spectrometry have been developed using a simple Monte Carlo simulation technique. The simulation enables the calculation of gamma-ray path lengths in the sample which, using available data, can be used to calculate self-absorption correction factors. The simulation was carried out on three sample geometries: disk, Marinelli beaker, and cylinder (for well-type detectors). Mathematical models and experimental measurements are used to evaluate the simulations. A good agreement of within a few percents was observed. The simulation results are also in good agreement with those reported in the literature. The simulation code was carried out in FORTRAN 90,

  7. Classification of soil samples according to their geographic origin using gamma-ray spectrometry and principal component analysis

    International Nuclear Information System (INIS)

    Dragovic, Snezana; Onjia, Antonije

    2006-01-01

    A principal component analysis (PCA) was used for classification of soil samples from different locations in Serbia and Montenegro. Based on activities of radionuclides ( 226 Ra, 238 U, 235 U, 4 K, 134 Cs, 137 Cs, 232 Th and 7 Be) detected by gamma-ray spectrometry, the classification of soils according to their geographical origin was performed. Application of PCA to our experimental data resulted in satisfactory classification rate (86.0% correctly classified samples). The obtained results indicate that gamma-ray spectrometry in conjunction with PCA is a viable tool for soil classification

  8. Applicability study of using in-situ gamma-ray spectrometry technique for 137Cs and 210Pbex inventories measurement in grassland environments

    International Nuclear Information System (INIS)

    Li Junjie; Li Yong; Wang Yanglin; Wu Jiansheng

    2010-01-01

    In-situ measurement of fallout radionuclides 137 Cs and 210 Pb ex has the potential to assess soil erosion and sedimentation rapidly. In this study, inventories of 137 Cs and 210 Pb ex in the soil of Inner Mongolia grassland were measured using an In-situ Object Counting System (ISOCS). The results from the field study indicate that in-situ gamma-ray spectrometry has the following advantages over traditional laboratory measurements: no extra time is required for sample collection, no reference inventories are required, more economic, prompt availability of the results, the ability to average radionuclide inventory over a large area, and high precision.

  9. Radon gamma-ray spectrometry with YAP:Ce scintillator

    CERN Document Server

    Plastino, W; De Notaristefani, F

    2002-01-01

    The detection properties of a YAP:Ce scintillator (YAlO sub 3 :Ce crystal) optically coupled to a Hamamatsu H5784 photomultiplier with standard bialkali photocathode have been analyzed. In particular, the application to radon and radon-daughters gamma-ray spectrometry was investigated. The crystal response has been studied under severe extreme conditions to simulate environments of geophysical interest, particularly those found in geothermal and volcanic areas. Tests in water up to a temperature of 100 deg.C and in acids solutions such as HCl (37%), H sub 2 SO sub 4 (48%) and HNO sub 3 (65%) have been performed. The measurements with standard radon sources provided by the National Institute for Metrology of Ionizing Radiations (ENEA) have emphasized the non-hygroscopic properties of the scintillator and a small dependence of the light yield on temperature and HNO sub 3. The data collected in this first step of our research have pointed out that the YAP:Ce scintillator can allow high response stability for rad...

  10. Plutonium isotopic measurements by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Gunnink, R.

    1973-11-01

    A method is reported for analysis of isotopic and total plutonium by detecting and analyzing gamma rays emitted by the sample. A computerized prototype-system was developed and is now being routinely used at the Savannah River Plant for the nondestructive assay of solution samples. The analyses for 238 Pu, 239 Pu, 240 Pu, 241 Pu, and for 241 Am, when it is present, can be made in counting times as short as 10 to 15 minutes under optimum conditions. Comparison of isotopic ratio values with mass spectrometry generally shows agreement within 0.1 percent for 239 Pu and about 1 percent for 240 Pu and 241 Pu. Some preliminary isotopic measurements on solids are also discussed. (U.S.)

  11. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.

    Science.gov (United States)

    Šálek, Ondřej; Matolín, Milan; Gryc, Lubomír

    2018-02-01

    Localization of size-limited gamma-ray anomalies plays a fundamental role in uranium prospecting and environmental studies. Possibilities of a newly developed mini-airborne gamma-ray spectrometric equipment were tested on a uranium anomaly near the village of Třebsko, Czech Republic. The measurement equipment was based on a scintillation gamma-ray spectrometer specially developed for unmanned aerial vehicles (UAV) mounted on powerful hexacopter. The gamma-ray spectrometer has two 103 cm 3 BGO scintillation detectors of relatively high sensitivity. The tested anomaly, which is 80 m by 40 m in size, was investigated by ground gamma-ray spectrometric measurement in a detail rectangular measurement grid. Average uranium concentration is 25 mg/kg eU attaining 700 mg/kg eU locally. The mini-airborne measurement across the anomaly was carried out on three 100 m long parallel profiles at eight flight altitudes from 5 to 40 m above the ground. The resulting 1 s 1024 channel gamma-ray spectra, recorded in counts per second (cps), were processed to concentration units of K, U and Th, while total count (TC) was reported in cps. Increased gamma ray intensity of the anomaly was indicated by mini-airborne measurement at all profiles and altitudes, including the highest altitude of 40 m, at which the recorded intensity is close to the natural radiation background. The reported instrument is able to record data with comparable quality as standard airborne survey, due to relative sensitive detector, lower flight altitude and relatively low flight speed of 1 m/s. The presented experiment brings new experience with using unmanned semi-autonomous aerial vehicles and the latest mini-airborne radiometric instrument. The experiment has demonstrated the instrument's ability to localize size-limited uranium anomalies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Performance of gamma spectrometry counting system

    International Nuclear Information System (INIS)

    Yii Mei Wo; Maziah Mahmud

    2007-01-01

    Gamma spectrometry counting system widely used as tool to measure qualitative and quantitative gamma-ray emitters in a sample. Container size, sample to detector distance, sample volume are well known factors that affecting the quality of measurement. However, factor such as the age of the system was not been reported. Therefore, the objective of this study is to find out how the age factor affecting the quality of the measurement. From this study, it is found that when the age of the system increased, the system tends to have higher lower limit of detection and poorer linearity showing that age factor do affecting the quality of measurement. (Author)

  13. Measurement of ²²⁶Ra in soil from oil field: advantages of γ-ray spectrometry and application to the IAEA-448 CRM.

    Science.gov (United States)

    Ceccatelli, A; Katona, R; Kis-Benedek, G; Pitois, A

    2014-05-01

    The analytical performance of gamma-ray spectrometry for the measurement of (226)Ra in TENORM (Technically Enhanced Naturally Occurring Radioactive Material) soil was investigated by the IAEA. Fast results were obtained for characterization and certification of a new TENORM Certified Reference Material (CRM), identified as IAEA-448 (soil from oil field). The combined standard uncertainty of the gamma-ray spectrometry results is of the order of 2-3% for massic activity measurement values ranging from 16500 Bq kg(-1) to 21500 Bq kg(-1). Methodologies used for the production and certification of the IAEA-448 CRM are presented. Analytical results were confirmed by alpha spectrometry. The "t" test showed agreement between alpha and gamma results at 95% confidence level. © 2013 Published by Elsevier Ltd.

  14. Smoothing technology of gamma-ray spectrometry data based on matched filtering

    International Nuclear Information System (INIS)

    Gu Min; Ge Liangquan

    2009-01-01

    Traditional method of smoothness of gamma-ray spectrometry data gives rise to aberration of spectra curves easily. The article improve convolution sliding transformation using idea of matched filtering. Gauss adding the exponential function instead of Gauss function is used as converting function. The improved method not only suppresses statistical fluctuation mostly but also keeps feature of spectra curves. Instance verified superiority of this new method. (authors)

  15. Specialized software utilities for gamma ray spectrometry. Final report of a co-ordinated research project 1996-2000

    International Nuclear Information System (INIS)

    2002-03-01

    A Co-ordinated Research Project (CRP) on Software Utilities for Gamma Ray Spectrometry was initiated by the International Atomic Energy Agency in 1996 for a three year period. In the CRP several basic applications of nuclear data handling were assayed which also dealt with the development of PC computer codes for various spectrometric purposes. The CRP produced several software packages: for the analysis of low level NaI spectra; user controlled analysis of gamma ray spectra from HPGe detectors; a set of routines for the definition of the detector resolution function and for the unfolding of experimental annihilation spectra; a program for the generation of gamma ray libraries for specific applications; a program to calculate true coincidence corrections; a program to calculate full-energy peak efficiency calibration curve for homogenous cylindrical sample geometries including self-attenuation correction; and a program for the library driven analysis of gamma ray spectra and for the quantification of radionuclide content in samples. In addition, the CRP addressed problems of the analysis of naturally occurring radioactive soil material gamma ray spectra, questions of quality assurance and quality control in gamma ray spectrometry, and verification of the expert system SHAMAN for the analysis of air filter spectra obtained within the framework of the Comprehensive Nuclear Test Ban Treaty. This TECDOC contains 10 presentations delivered at the meeting with the description of the software developed. Each of the papers has been indexed separately

  16. Use of airborne gamma-ray spectrometry for kaolin exploration

    Science.gov (United States)

    Tourlière, B.; Perrin, J.; Le Berre, P.; Pasquet, J. F.

    2003-08-01

    Airborne gamma-ray spectrometry was used to define targets with kaolin potential in the Armorican Massif of Brittany, France. This exploration method is based on the principle that kaolinite, an aluminosilicate clay mineral constituting kaolin, is formed by the hydrolysis of potash feldspar with the elimination of potassium. Therefore, potassium contrast between favourable host-rock such as a leucogranite and kaolin occurrence is likely a significant pathfinder. As the relationship between the potassium-40 recorded by an airborne gamma-ray spectrometer and total potassium is constant, such data provide us a direct measurement of the potassium content of the ground flown over. Our study tested this by calculating, for each geological unit, the difference between the measured and average potassium content calculated for a given geological formation. The study was based on (i) a recent (1998) high-definition airborne geophysical survey over the Armorican Massif undertaken on behalf of the French Government, and (ii) new geological compilation maps covering the same region. Depleted zones, where the measured potassium is less than the average potassium content calculated target areas with high potential of containing kaolin, provided that the unit was originally rich in potash feldspar. By applying this method to the entire Armorican Massif, it was possible to identify 150 potassium-depleted zones, including 115 that were subjected to rapid field checks and 36 that contained kaolin (21 new discoveries). This method, which is both safe for the environment and easy to use, is therefore a good tool for rapidly defining targets with kaolin potential at a regional scale. The method may also have possibilities in exploring for other types of deposit characterised by an enrichment or depletion in U, K and/or Th.

  17. A low-energy set-up for gamma-ray spectrometry of NORM tailored to the needs of a secondary smelting facility.

    Science.gov (United States)

    Lutter, G; Schreurs, I Vandael; Croymans, T; Schroeyers, W; Schreurs, S; Hult, M; Marissens, G; Stroh, H; Tzika, F

    2017-08-01

    A measurement station dedicated for quantitative radiological characterisation of naturally occurring radionuclides in a metallurgical company and based on gamma-ray spectrometry was developed. The station is intended for performing quality control of final non-ferrous metal products and for radiological checks of incoming materials. A low-background point-contact HPGe-detector was used and the signal was split in two branches to enable collecting simultaneously spectra with high amplification (for gamma-ray energies below 250keV) and low amplification. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Specialised software utilities for gamma-ray spectrometry. Computer codes to IAEA-TECDOC-1275

    International Nuclear Information System (INIS)

    2002-03-01

    A Co-ordinated Research Project (CRP) on 'Software Utilities for Gamma-Ray Spectrometry' was initiated by the International Atomic Energy Agency in 1996. In the CRP several basic applications of nuclear data handling were assayed which also dealt with the development of PC computer codes for various spectrometric purposes. This CD-ROM contains the following computer codes, produced under the CRP: ANGES, a program for the user controlled analysis of gamma-ray spectra from HPGe detectors; NUCL M AN, a program for the generation of gamma-ray libraries (using new, evaluated data) for specific applications; TRUE C OINC, a program to calculate true coincidence corrections; VOLUME, a program to calculate the full-energy peak efficiency calibration curve for homogeneous cylindrical sample geometries including self-attenuation correction; WINDIMEN, a program for the library driven analysis of gamma-ray spectra and for the quantification of radionuclide contents in the sample. RESFIT and DPPUNFOL, a set of programs for the definition of the detector resolution function and for unfolding of experimental annihilation spectra; MLMTEST, a program for the analysis of low-level NaI-spectra together with an extensive library of example reference spectra as well as a spectrum synthesizer

  19. In situ measurements in an immerged environment of ambient gamma radiation activity and associated spectrometry

    International Nuclear Information System (INIS)

    Metivier, J.

    1993-01-01

    A set of site measurement devices composed of an ictometer, an air ionization chamber and a gamma ray spectrometry chain was modified so that the type of measurements could be carried out in an immerged environment with the equipment lying on the sediments of the prospected area. The different detectors can be controlled-and the data stored in a portable and autonomous 'PC' microcomputer from a light craft

  20. Gamma-ray spectrometry data collection and reduction by simple computing systems

    International Nuclear Information System (INIS)

    Op de Beeck, J.

    1975-01-01

    The review summarizes the present state of the involvement of relatively small computing devices in the collection and processing of gamma-ray spectrum data. An economic and utilitarian point of view has been chosen with regard to data collection in order to arrive at practically valuable conclusions in terms of feasibility of possible configurations with respect to their eventual application. A unified point of view has been adopted with regard to data processing by developing an information theoretical approach on a more or less intuitive level in an attempt to remove the largest part of the virtual disparity between the several processing methods described in the literature. A synoptical introduction to the most important mathematical methods has been incorporated, together with a detailed theoretical description of the concept gamma-ray spectrum. In accordance with modern requirements, the discussions are mainly oriented towards high-resolution semiconductor detector-type spectra. The critical evaluation of the processing methods reviewed is done with respect to a set of predefined criteria. Smoothing, peak detection, peak intensity determination, overlapping peak resolving and detection and upper limits are discussed in great detail. A preferred spectrum analysis method combining powerful data reduction properties with extreme simplicity and speed of operation is suggested. The general discussion is heavily oriented towards activation analysis application, but other disciplines making use of gamma-ray spectrometry will find the material presented equally useful. Final conclusions are given pointing to future developments and shifting their centre of gravity towards improving the quality of the measurements rather than expanding the use of tedious and sophisticated mathematical techniques requiring the limits of available computational power. (author)

  1. The participation of ATOMKI in the G-2 international intercomparison of high precision gamma-ray spectrometry measurements

    International Nuclear Information System (INIS)

    Gaspar, A.; Lakatos, T.; Sulik, B.; Toeroek, I.

    1981-01-01

    International intercomparison had been organized by the IAEA in high precision gamma spectrometry. Five mixed-spectrum sources were prepared and sent to the participants by the IAEA for relative gamma emission rate measurements. This source type enables the whole measuring method and procedure to be tested. Measurements were carried out using two independent methods: a.) simple normalization to an additional radioactive source; b.) using a time variant pulse processor and random pulse generator for correction of dead-time and pile-up losses. The results agreed in most cases within +-1% with the IAEA results. (R.J.)

  2. Application of simulated standard spectra in natural radioactivity measurements using gamma spectrometry

    International Nuclear Information System (INIS)

    Narayani, K.; Pant, A.D.; Bhosle, Nitin; Anilkumar, S.; Singh, Rajvir; Pradeepkumar, K.S.

    2014-01-01

    Gamma ray spectrometry is one of the well known analytical techniques for environmental radioactivity measurements. Gamma spectrometer based on NaI(Tl) scintillation detectors is very popular since it offers high efficiency, low cost and case in handling. The poor energy resolution of the NaI(TI) detector is the major disadvantage making tile analysis of complex gamma ray spectra difficult. Least square method or the full spectrum analysis method is widely used for the analysis of complex spectra from scintillation detectors. The main requirement of this method is that the individual standard spectra of all nuclides expected in the complex spectrum in the same measurement geometry must be available. It is not always possible and feasible to have all the standards of nuclides in the desired geometry. A methodology based on the use of simulated standard spectra generated by Monte Carlo technique was proposed for analysis of complex spectra of nuclides. In the present work, for the analysis of 238 U, 233 Th and 40 K in soil samples, the same methodology was applied by using the simulated standard spectra in soil matrix. The details of the simulation method and results analysis of 238 U, 232 Th and 40 K in environmental samples are discussed in this paper

  3. Near-optimum procedure for half-life measurement by high-resolution gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Parker, J.L.

    1989-01-01

    A near-optimum procedure for using high-resolution γ-ray spectrometry to measure the half-lives of appropriate γ-ray- emitting-nuclides is presented. Among the important points of the procedure are the employment of the reference source method for implicit correction of pileup and deadtime losses; the use of full-energy peak-area ratios as the fundamental measured quantities; and continuous, high-rate data acquisition to obtain good results in a fraction of a half-life if desired. Equations are given for estimating the precision of the computed half-lives in terms of total measurement time, number of spectral acquisitions, and the precision of peak-area ratios. Results of 169 Yb half-life measurements are given as an example of the procedure's application. 3 refs., 2 tabs

  4. An improved in situ method for determining depth distributions of gamma-ray emitting radionuclides

    International Nuclear Information System (INIS)

    Benke, R.R.; Kearfott, K.J.

    2001-01-01

    In situ gamma-ray spectrometry determines the quantities of radionuclides in some medium with a portable detector. The main limitation of in situ gamma-ray spectrometry lies in determining the depth distribution of radionuclides. This limitation is addressed by developing an improved in situ method for determining the depth distributions of gamma-ray emitting radionuclides in large area sources. This paper implements a unique collimator design with conventional radiation detection equipment. Cylindrically symmetric collimators were fabricated to allow only those gamma-rays emitted from a selected range of polar angles (measured off the detector axis) to be detected. Positioned with its axis normal to surface of the media, each collimator enables the detection of gamma-rays emitted from a different range of polar angles and preferential depths. Previous in situ methods require a priori knowledge of the depth distribution shape. However, the absolute method presented in this paper determines the depth distribution as a histogram and does not rely on such assumptions. Other advantages over previous in situ methods are that this method only requires a single gamma-ray emission, provides more detailed depth information, and offers a superior ability for characterizing complex depth distributions. Collimated spectrometer measurements of buried area sources demonstrated the ability of the method to yield accurate depth information. Based on the results of actual measurements, this method increases the potential of in situ gamma-ray spectrometry as an independent characterization tool in situations with unknown radionuclide depth distributions

  5. Assessing sample attenuation parameters for use in low-energy efficiency transfer in gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Bruggeman, M.; Verheyen, L.; Vidmar, T.; Liu, B.

    2016-01-01

    We present a numerical fitting method for transmission data that outputs an equivalent sample composition. This output is used as input to a generalised efficiency transfer model based on the EFFTRAN software integrated in a LIMS. The procedural concept allows choosing between efficiency transfer with a predefined sample composition or with an experimentally determined composition based on a transmission measurement. The method can be used for simultaneous quantification of low-energy gamma emitters like "2"1"0Pb, "2"4"1Am, "2"3"4Th in typical environmental samples. - Highlights: • New fitting method for experimentally determined attenuation coefficients. • Generalised efficiency transfer with EFFTRAN based on transmission measurements. • Method of generalized efficiency transfer integrated in LIMS. • Method applicable to gamma-ray spectrometry of environmental samples.

  6. Shaly sand evaluation using gamma ray spectrometry, applied to the North Sea Jurassic

    International Nuclear Information System (INIS)

    Marett, G.; Chevalier, P.; Souhaite, P.; Suau, J.

    1976-01-01

    In formations where radioactive minerals other than clay are present, their effects on log responses result in a reduction of the accuracy of determination of the shale fraction. The gamma ray log, which is one of the primary indicators for shaliness determination, is the most affected; other logs used in shaliness indicators are also influenced, particularly when heavy minerals are present, such as those encountered in the micaceous sandstones of the North Sea Jurassic. For comparison purposes, possible ways to correct for heavy radioactive minerals using a conventional logging suite are described. Computer processed examples illustrate the results obtained. A different approach is through an analysis of the natural gamma ray spectrum of the formation, as determined with the gamma ray spectrometry tool. Natural gamma rays originate from the radioactive isotope of potassium and the radioactive elements of the uranium and thorium series. Each of these three elements contributes its distinctive spectrum to that of the formation in proportion to its abundance. Thus, by analysis of the formation spectrum, the presence of each can be detected and its amount estimated. This makes possible quantitative corrections to the shaliness indicators. A computer program which performs the necessary computations is described, and several log examples using this technique are presented

  7. Drill-Core Scanning for Radioelements by Gamma-Ray Spectrometry

    DEFF Research Database (Denmark)

    Løvborg, Leif; Wollenberg, H.; Rose-Hansen, J.

    1972-01-01

    A system has been developed for the continuous and stepwise scanning of rock drill cores for gamma-ray spectrometric determinations of uranium, thorium, and potassium. The apparatus accomodates 3- to 4-cm-diameter core as it passes two opposing 2-inch diameter by 3-inch- thick NaI(Tl) detectors, ......, disclosing detailed variations of U and Th. Contents of U and Th determined by scanning of drill core were consistent with the gross gamma-ray counting rates measured in the boreholes. ©1972 Society of Exploration Geophysicists......A system has been developed for the continuous and stepwise scanning of rock drill cores for gamma-ray spectrometric determinations of uranium, thorium, and potassium. The apparatus accomodates 3- to 4-cm-diameter core as it passes two opposing 2-inch diameter by 3-inch- thick NaI(Tl) detectors...

  8. Plutonium isotopic measurements by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Haas, F.X.; Lemming, J.F.

    1976-01-01

    A nondestructive technique is described for calculating plutonium-238, plutonium-240, plutonium-241 and americium-241 relative to plutonium-239 from measured peak areas in the high resolution gamma-ray spectra of solid plutonium samples. Gamma-ray attenuation effects were minimized by selecting sets of neighboring peaks in the spectrum whose components are due to the different isotopes. Since the detector efficiencies are approximately the same for adjacent peaks, the accuracy of the isotopic ratios is dependent on the half-lives, branching intensities, and measured peak areas. The data presented describe the results obtained by analyzing gamma-ray spectra in the energy region from 120 to 700 keV. Most of the data analyzed were obtained from plutonium material containing 6 percent plutonium-240. Sample weights varied from 0.25 g to approximately 1.2 kg. The methods were also applied to plutonium samples containing up to 23 percent plutonium-240 with weights of 0.25 to 200 g. Results obtained by gamma-ray spectroscopy are compared to chemical analyses of aliquots taken from the bulk samples

  9. Using airborne GAMMA-ray spectrometry (uranium, thorium, potassium) to quantify weathering and erosion processes

    International Nuclear Information System (INIS)

    Carrier, F.

    2005-01-01

    The airborne gamma-ray spectrometry survey carried out on the Armorican Massif provided soil contents in U, Th and K in ppm. Chemical and mechanical erosion processes within a homogeneous geological unit have been estimated using their variations and those of the 137 Cs. Our new approach, based on a multivariate analysis (hierarchic ascending classification), integrates the airborne gamma-ray spectrometry data, with their broad spatial distribution, together with precisely located station data (major elements, traces and isotopic geochemistry) resulting from a soil and river water erosion products survey. The total export of potassium was estimated in any point of an area catchment (50-m resolution) until 17+2 t/km 2 /a for a 50-m thick weathering profile. Erosion study by river sampling provide important biases, for the perennial river does not integrate the whole range of erosion products: the geochemical signature of the valleys is currently more represented than plateau areas. (author)

  10. Simultaneous determination of RA-226, natural uranium and natural thorioum by gamma-ray spectrometry INa(Tl) in solid samples

    International Nuclear Information System (INIS)

    Salvador, S.; Navarro, T.; Alvarez, A.

    1990-01-01

    A method has been described to determine activities of Ra-226, natural uranium, and natural thorium, by gamma-ray spectrometry. The system was calibrated for efficiency by using synthetic calibrated standards. It is necessary, in the samples, to assume secular equilibrium between Ra-226 and Th-232 and its daughters nuclides, and U-238 and its immediate daughter Th-234, because the photopeaks measured are from these dsaugthers. Our results indicate that a non destructive gamma spectrometric method can ofter replace the radiochemical techniques used in measuring radiactivities in this type of samples. (Author). 9 refs

  11. Final results of the PIDIE intercomparison exercise for the plutonium isotopic determination by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Morel, J.; Chauvenet, B.; Etcheverry, M.

    1991-01-01

    Final results from the PIDIE intercomparison exercise organised by the ESARDA Working Group on techniques and standards for non-destructive analysis are presented. The aim of this exercise carried out in 1988 was to test the gamma-ray spectroscopy methods used to determine the plutonium isotopic ratios in a large range of isotopic composition, in order to analyse the parameters and the error sources influencing the results. Sets of seven sealed samples of different plutonium isotopic composition were sent to nine participating laboratories. The final results with uncertainty indicators are reported; they are compared with complementary mass-spectrometry determinations. No important bias has been observed from this exercise. Significant improvements in plutonium isotopic determination by gamma-ray spectrometry come from both more elaborate spectrum analysis methods and better equipment

  12. Measurement of the vertical infiltration parameters and water redistribution in LRd and LEa soils by gamma-ray transmission technique

    International Nuclear Information System (INIS)

    Souza, A.D.B. de; Saito, H.; Appoloni, C.R.; Coimbra, M.M.; Parreira, P.S.

    1991-01-01

    The properties of soil water diffusivity and soil hydraulic conductivity of two horizons (0-20 cm and 20-40 cm) from Latossolo Roxo distrofico (LRd) and Latossolo Vermelho escuro (LEa) soil samples, have been measured in laboratory through the vertical infiltration and redistribution of water in soil columns. The moisture profile as a function of time for each position in the soil column were obtained with the gamma-ray transmission technique, using a sup(241)Am gamma-ray source, a Na (I) T1 scintillation detector and gamma spectrometry standard electronic. (author)

  13. Airborne Gamma-Ray Survey in Latvia 1995/96

    DEFF Research Database (Denmark)

    Bargholz, Kim

    1998-01-01

    Based on Airborne Gamma-Ray Spectrometry measurements performed with the Danish AGS equipment in 1995 and 1996 maps of the natural radioactivity have been produdced for selected areas in Latvia. The calibration of the quipment have been improved by comparisons with soil sample measurements....

  14. Use of on-ground gamma-ray spectrometry to measure plant-available potassium and other topsoil attributes

    International Nuclear Information System (INIS)

    Wong, M.T.F.; Harper, R.J.

    1999-01-01

    The incidence of potassium (K) deficiency is increasing in crops, pastures, and forestry in south-western Australia. Although soil K can be measured using soil sampling and analysis, γ-ray spectrometry offers a potentially cheaper and spatially more precise alternative. This could be particularly useful in precision agriculture, where inputs are applied according to need rather than by general prescription. In a study of topsoils near Jerramungup, Western Australia, strong relationships (r 2 = 0.9) were found between on-ground counts of γ-rays derived from 40 K (γ-K) and both total K and plant-available K. The success of γ-ray spectrometry in predicting available K relied on a strong relationship (r 2 0.9) between total K and available K which may not hold in all areas. Although the relationship between γ-K and available K held over the range of 36-1012 mg/kg, crop response to K fertilisers is only expected when the available K content is 2 = 0.9) were also found between γ-K and a range of other soil attributes, including clay, silt, and organic carbon content. These relationships depended on the locally strong relationship between total K and these soil attributes. Since such relationships do not hold everywhere, the utility of γ-ray spectrometry will likewise be limited. Site-specific calibrations are required if γ-ray spectrometry is to be used for soil property mapping. Copyright (1999) CSIRO Publishing

  15. High-z semiconductor nuclear radiation detectors for room-temperature gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Bornand, Bernard; Friant, Alain.

    1978-09-01

    A bibliographical review (182 articles of periodicals, conferences, reports, thesis and french patents) is presented, as addendum of the report CEA-BIB-210 (1974) on high-Z semiconductor compounds used as materials for the gamma and X-ray detection and spectrometry. This publication reviews issues from 1974 to 1977. References and summaries (in french) are incorporated into 182 bibliograhical notices. Index for authors, corporate authors, documents and periodicals, and subjects is included [fr

  16. The theoretical study of full spectrum analysis method for airborne gamma-ray spectrometric data

    International Nuclear Information System (INIS)

    Ni Weichong

    2011-01-01

    Spectra of airborne gamma-ray spectrometry was found to be the synthesis of spectral components of radioelement sources by analyzing the constitution of radioactive sources for airborne gamma-ray spectrometric survey and establishing the models of gamma-ray measurement. The mathematical equation for analysising airborne gamma-ray full spectrometric data can be expressed into matrix and related expansions were developed for the mineral resources exploration, environmental radiation measurement, nuclear emergency monitoring, and so on. Theoretical study showed that the atmospheric radon could be directly computed by airborne gamma-ray spectrometric data with full spectrum analysis without the use of the accessional upward-looking detectors. (authors)

  17. A self-sufficient and general method for self-absorption correction in gamma-ray spectrometry using GEANT4

    International Nuclear Information System (INIS)

    Hurtado, S.; Villa, M.; Manjon, G.; Garcia-Tenorio, R.

    2007-01-01

    This paper presents a self-sufficient and general method for measurement of the activity of low-level gamma-emitters in voluminous samples by gamma-ray spectrometry with a coaxial germanium detector. Due to self-absorption within the sample, the full-energy peak efficiency of low-energy emitters in semiconductor gamma-spectrometers depends strongly on a number of factors including sample composition, density, sample size and gamma-ray energy. As long as those commented factors are well characterized, the influence of self-absorption in the full-energy peak efficiency of low-energy emitters can be calculated using Monte Carlo method based on GEANT4 code for each individual sample. However this task is quite tedious and time consuming. In this paper, we propose an alternative method to determine this influence for voluminous samples of unknown composition. Our method combines both transmission measurements and Monte Carlo simulations, avoiding the application of Monte Carlo full-energy peak efficiency determinations for each individual sample. To test the accuracy and precision of the proposed method, we have calculated 210 Pb activity in sediments samples from an estuary located in the vicinity of several phosphates factories with the proposed method, comparing the obtained results with the ones determined in the same samples using two alternative radiometric techniques

  18. Detection limits should be a thing of the past in gamma-ray spectrometry in general as well as in neutron activation analysis

    NARCIS (Netherlands)

    Blaauw, Menno

    2016-01-01

    In gamma-ray spectrometry with high-resolution detectors, full-energy peaks are often to be detected by a peak-search algorithm, with a threshold for detection. Detection limits can be derived from this. Detection limits are often computed along with measured activities or concentrations. When an

  19. Improvements in Applied Gamma-Ray Spectrometry with Germanium Semiconductor Detector

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Hellstroem, S [AB Atomenergi, Nykoeping (Sweden); Dubois, J [Chalmers University of Technology, Goeteborg (Sweden)

    1965-01-15

    A germanium semi-conductor detector has in the present investigation been used in four cases of applied gamma-ray spectrometry. In one case the weak-activity contribution of Cs{sup 134} in Cs{sup 137} standard sources has been determined. The second case concerns the determination of K{sup 42} in samples of biological origin containing strong Na{sup 24} activities. In the third case the Nb{sup 94} and Nb{sup 95} activities from neutron-irradiated niobium foils used in the dosimetry of high neutron fluxes with long exposure times have been completely resolved and it has been possible to determine the ratio of the two activities with a high degree of accuracy. Finally, a Zr{sup 95} - Nb{sup 95} source has been analysed in a similar way with respect to its radiochemical composition. The resolution obtained also made possible a determination of the branching ratio of the two gamma-transitions in Zr{sup 95} and of the energies of the gamma-transitions of both nuclides.

  20. About cosmic gamma ray lines

    Science.gov (United States)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  1. ICIT contribution to JET gamma-ray diagnostics enhancement

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Zoita, V.

    2010-01-01

    Full text: Gamma-ray emission of tokamak plasmas is the result of the interaction of fast ions (fusion reaction products, including alpha particles, NBI ions, ICRH-accelerated ions) with main plasma impurities (e.g., carbon, beryllium). Gamma-ray diagnostics involve both gamma-ray imaging (cameras) and gamma-ray spectrometry (spectrometers). For the JET tokamak, gamma-ray diagnostics have been used to provide information on the characteristics of the fast ion population in plasmas. Two gamma-ray diagnostics enhancements project have been launched by JET and the MEdC/EURATOM Association has agreed to lead both of them with ICIT as projects leader. (authors)

  2. Gamma ray doses proceeding from natural occurring radionuclides in closed environments

    International Nuclear Information System (INIS)

    Aguiar, Vitor Angelo P. de; Medina, Nilberto H.; Silveira, Marcilei A. Guazzelli da; Moreira, Ramon H.

    2009-01-01

    In this work we report on the application of gamma-ray spectrometry in the study of the effective dose coming from terrestrial natural elements present in building materials such as sand, cement, lime (CaO) and milled granitic stones. The major contribution to annual gamma-ray radiation effective dose is due to the natural occurring radionuclides 40 K, 232 Th and 238 U. Two spectrometry systems were employed to measure the gamma radiation: one with a 60% efficient GeHP detector and the second one with a 2''x2'' NaI(Tl) scintillator. The estimated effective dose coming from the three reference rooms assumed is 0.63 mSv/yr, proceeding from terrestrial natural elements. The principal gamma radiation sources are cement, sand and bricks. (author)

  3. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    International Nuclear Information System (INIS)

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n') gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC 2 -2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations

  4. Measurement of planetary surface composition by gamma-ray and neutron spectrometry - Preparatory studies for Mars and for the Moon by numerical simulations

    International Nuclear Information System (INIS)

    Gasnault, O.

    1999-01-01

    Gamma-ray and neutron spectrometry sets up a powerful tool of geological and geochemical characterization of planetary surfaces. This method allows to tackle some critical planet science questions: crustal and mantle compositions; ices; volcanism; alteration processes... Most of the neutrons and gamma photons result from the interactions of galactic cosmic rays with matter. The first chapter introduces the physics of these nuclear interactions in planetary soils and in detectors. Our work aims at optimizing the observations by specifying instrumental performances, and by highlighting relations between soil composition and neutron fluxes. Numerical simulations using the GEANT code from CERN support our analysis. The second chapter estimates the performances of the Germanium gamma-ray spectrometer for MARS SURVEYOR 2001. The result of simulations is compared to calibration measurements; then performances are calculated in flight configuration. The background at Mars is estimated to about 160 c/s. The instrument offers a fine sensitivity to: Fe, Mg, K, Si, Th, Cl and O. It will also be possible to measure U, Ti, H, C, S, Ca and Al. The emission lobes at the surface are calculated too. These measurements shall permit a better understanding of the Martian surface. The last chapter deals with fast neutrons [500 keV; 10 MeV] emitted by the Moon. The strong influence of oxygen is underlined. As observed by LUNAR PROSPECTOR, the integrated flux shows a pronounced dependence with regolith content in iron and titanium, allowing the mapping. The influence of the other chemical elements is quantified. A simple mathematical formula is suggested to estimate the integrated neutron flux according to soil composition. At last, a study of hydrogen effects on fast neutron flux is carried out; we examine the possibilities to quantify its abundance in the soil by this method. (author)

  5. Neutron activation analysis of lipsticks using gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Mirsa, G.; Mittal, V.K.

    2004-01-01

    Neutron activation analysis with gamma-ray spectrometry was used to measure the concentrations of various elements in lipsticks of popular Indian and foreign brands. The aim of the present work was to study the possibility of existence of trace elements in samples of lipsticks (the ingredients of which are mostly organic in nature) and to see whether trace elements could distinguish lipsticks of different Indian and foreign brands from the forensic point of view apart from their inter-se differentiation. In the different samples of lipsticks that were analysed the following elements were detected: Au, Ba, Br, Ca, Cs, Fe, Na, Ru, Sb, Sc, Ta, Yb, Zn, Rb and Se. It was found that inter-se differentiation of lipsticks was possible on the basis of concentrations of trace elements and their profile. Concentration of bromine in samples of lipsticks identified lipsticks of different Indian brands. Samples of lipsticks of Indian and foreign brands could be differentiated on the basis of concentrations of cesium, antimony and scandium which were found to be higher in foreign brands as compared to those in Indian brands. (authors)

  6. On-line interrogation of pebble bed reactor fuel using passive gamma-ray spectrometry

    Science.gov (United States)

    Chen, Jianwei

    The Pebble Bed Reactor (PBR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor. In addition to its inherently safe design, a unique feature of this reactor is its multipass fuel cycle in which graphite fuel pebbles (of varying enrichment) are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burnup limit (˜80,000--100,000 MWD/MTU). Unlike the situation with conventional light water reactors (LWRs), depending solely on computational methods to perform in-core fuel management will be highly inaccurate. As a result, an on-line measurement approach becomes the only accurate method to assess whether a particular pebble has reached its end-of-life burnup limit. In this work, an investigation was performed to assess the feasibility of passive gamma-ray spectrometry assay as an approach for on-line interrogation of PBR fuel for the simultaneous determination of burnup and enrichment on a pebble-by-pebble basis. Due to the unavailability of irradiated or fresh pebbles, Monte Carlo simulations were used to study the gamma-ray spectra of the PBR fuel at various levels of burnup. A pebble depletion calculation was performed using the ORIGEN code, which yielded the gamma-ray source term that was introduced into the input of an MCNP simulation. The MCNP simulation assumed the use of a high-purity coaxial germanium detector. Due to the lack of one-group high temperature reactor cross sections for ORIGEN, a heterogeneous MCNP model was developed to describe a typical PBR core. Subsequently, the code MONTEBURNS was used to couple the MCNP model and ORIGEN. This approach allowed the development of the burnup-dependent, one-group spectral-averaged PBR cross sections to be used in the ORIGEN pebble depletion calculation. Based on the above studies, a relative approach for performing the measurements was established. The approach is based on using the relative activities of Np-239/I-132 in combination

  7. Validation of 226Ra, 228Ra and 210Pb measurements in soil and sediment samples through high resolution gamma ray spectrometry

    International Nuclear Information System (INIS)

    Dias, Danila Carrijo da Silva; Silva, Nivaldo Carlos da; Bonifacio, Rodrigo Leandro; Guerrero, Eder Tadeu Zenun

    2013-01-01

    Radionuclides found in ore extraction waste materials are a great source of concern regarding public health and environmental safety. One technique to determine the concentration of substances is high resolution gamma ray spectrometry using HPGe. Validating a measurement technique is essential to warrant high levels of quality to any scientific work. The Laboratory of Pocos de Caldas of the Brazilian Commission for Nuclear Energy partakes into a Quality Management System project, seeking Accreditation under ISO/IEC 17025 through the validation of techniques of chemical and radiometric analysis of environmental samples from water, soil and sediment. The focus of the Radon Laboratory at LAPOC is validation of Ra-226, Ra-228 and Pb-210 concentration determinations in soil and sediment through a gamma spectrometer system. The stages of this validation process included sample reception and preparation, detector calibration and sample analyses. Dried samples were sealed in metallic containers and analyzed after radioactive equilibrium between Ra-226 and daughters Pb-214 and Bi-214. Gamma spectrometry was performed using CANBERRA HPGe detector and gamma spectrum software Genie 2000. The photo peaks used for Ra-226 determination were 609 keV and 1020 keV of Bi-214 and 351 keV of Pb-214. For the Ra-228 determination a photopeak of 911 keV was used from its short half-life daughter Ac-228 (T1/2 = 6.12 h). For Pb-210, the photopeak of 46.5 keV was used, which, due to the low energy, self-absorption correction was needed. Parameters such as precision, bias/accuracy, linearity, detection limit and uncertainty were evaluated for that purpose. The results have pointed to satisfying results. (author)

  8. Applications of gamma-ray spectrometry in real-time environmental monitoring

    International Nuclear Information System (INIS)

    Heath, R.L.; Dyer, N.C.

    1974-01-01

    The operation of large nuclear installations involves significant inventories of radioactive materials. Effective monitoring of effluent streams to permit evaluation of potential hazards which might result from discharge of radioisotopes is a requirement for safe operation of such facilities. The purpose of this paper is to present a summary of a program being conducted at the Idaho National Engineering Laboratory (INEL) to apply gamma-ray spectrometry to real-time isotopic monitoring of nuclear installations. The application of the lithium-drifted Ge spectrometer in the laboratory for isotopic assay is well established. To apply these techniques to routine on-line isotopic measurements requires the solution of a number of significant problems. These may be summarized as follows: the development of a remote pulse-height analyzer system; the development of adequate methods for analysis of pulse-amplitude spectra to permit isotopic assay and interpretation of results; and determination of basic nuclear decay data requirements for nuclides of interest to insure acceptance of isotopic assay results

  9. Research on digital airborne gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Ge Liangquan; Lai Wanchang; Zeng Guoqiang; Fan Zhenguo; Xiong Shengqing; Ni Weizhong

    2010-01-01

    Airborne Gamma-ray Spectrometry (AGS) is a main supporting technique for looking for uranium deposits and other non-radioactive mineral deposit, as well as for investigating environmental radiation pollution and monitoring nuclear equipment. This paper describes the newest achievements about the AGS instrument developed by Chengdu university of Technology. Those are: 1) the probe of AGS is composed of 5 NaI(Tl) + PMT scintillation counters with 10 x 10 x 40 mm size, and a special temperature sensor, preamplifier with circuit negative feedback and high voltage with lower electronic noise have been designed. 2)A Y/U double channel digital controlled gain amplifier for adjusting the spectrum drift finely and high speed ADC and CPLD are designed to perform digitalized spectroscopy and to improve the energy resolution and pulse through output rate (more than 100k/s). 3) Two self-stabilization spectrum loops have been designed for spectrum stability: The first loop is roughly adjusted by temperature and the second loop is finely by Kalman filter. 4) The significant characters of new AGS system are: the detective gamma energy range is 0.02∼10.0 MeV, the spectrum drift is ±1 channel, the collecting period is 0.5-1 s, and 20 NaI(Tl)+PMT scintillation counters can be operated at the same time. (authors)

  10. In-situ gamma spectrometry method for determination of environmental gamma dose

    International Nuclear Information System (INIS)

    Conti, Claudio de Carvalho

    1995-07-01

    This work tries to establish a methodology for germanium detectors calibration, normally used for in situ gamma ray spectrometry, for determining the environmental exposure rate in function of the energy of the incident photons. For this purpose a computer code has been developed, based on the stripping method, for the computational spectra analysis to calculate the contribution of the partial absorption of the gamma rays (Compton effect) in the active and nonactive parts of the detector. The resulting total absorption spectrum is then converted to fluence distribution in function of the energy for the photons reaching the detector, which is then used to calculate the exposure rate or kerma in air. The unfolding and fluency convention parameters are determined by detector calibration using point gamma sources. The method is validated by comparison of the results against the calculated exposure rate at a point of interest for the standards. This method is used for the direct measurement of the exposure rate distribution in function of the energy at the site, in situ measurement technic, leading to rapid results during an emergency situation and also used for indoor measurements. (author)

  11. Gamma-ray measurements at the WNR white neutron source

    International Nuclear Information System (INIS)

    Nelson, R.O.; Wender, S.A.; Mayo, D.R.

    1994-01-01

    Photon production data have been acquired in the incident neutron energy range, 1 n γ 56 Fe, and 207,208 Pb. These data are useful both for testing nuclear reaction models at intermediate energies and for numerous applied purposes. BGO detectors do not have the good energy resolution of Ge detectors, but have much greater detection efficiency for gamma rays with energies greater than a few MeV. We have used an array of 5 BGO detectors to measure cross sections and angular distributions for photon production from C and N. A large, well-shielded BGO detector has been used to measure fast neutron capture in the giant resonance region with a maximum gamma-ray energy of 52 MeV. We present results of our study of the isovector giant quadrupole resonance in 41 Ca via these capture measurements. Recent measurements of inclusive photon spectra from our neutron proton Bremsstrahlung experiment have been made using a gamma-ray telescope to detect gamma-rays in the energy range, 40 γ < 300 MeV. This detector is briefly described. The advantages and disadvantages of these detector systems are discussed using examples from our measurements. The status of current measurements is presented

  12. Levelling Airborne and Ground Gamma-Ray Spectrometric Data to Assist Uranium Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Matolin, M., E-mail: matolin@natur.cuni.cz [Charles University, Prague (Czech Republic); Minty, B. [Geoscience Australia, Canberra (Australia)

    2014-05-15

    Geophysical methods can be used for mapping in both 2 and 3 dimensions, as well as the direct detection of ore bodies. The gamma-ray spectrometric method is an efficient method for the regional assessment of uranium potential and the detection of surface mineralization. However, the full potential of the method can only be realized when the data are adequately standardized. Examples of this standardization at both regional and local scales are dealt in this paper. At a regional scale, it is shown how the levelling of airborne gamma-ray spectrometry data over Australia increases the value of the resulting data, and on a local scale a geometrical correction for ground gamma-ray spectrometry in shallow holes that improves the accuracy of measurements is introduced. (author)

  13. Determination of U, Th and K in bricks by gamma -ray spectrometry, X-ray fluorescence analysis and neutron activation analysis

    Czech Academy of Sciences Publication Activity Database

    Bártová, H.; Kučera, Jan; Musílek, L.; Trojek, T.; Gregorová, E.

    2017-01-01

    Roč. 140, NOV (2017), s. 161-166 ISSN 0969-806X R&D Projects: GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : Gamma-ray spectrometry * neutron activation analysis * environmental dosimetry Subject RIV: CB - Analytical Chemistry , Separation OBOR OECD: Analytical chemistry Impact factor: 1.315, year: 2016

  14. Conceptual design of the Radial Gamma Ray Spectrometers system for α particle and runaway electron measurements at ITER

    DEFF Research Database (Denmark)

    Nocente, Massimo; Tardocchi, Marco; Barnsley, Robin

    2017-01-01

    We here present the principles and main physics capabilities behind the design of the radial gamma ray spectrometers (RGRS) system for alpha particle and runaway electron measurements at ITER. The diagnostic benefits from recent advances in gamma-ray spectrometry for tokamak plasmas and combines...... the measurements sensitive to α particles at characteristic resonant energies and to possible anisotropies of their slowing down distribution function. An independent assessment of the neutron rate by gamma-ray emission is also feasible. In case of runaway electrons born in disruptions with a typical duration...... of 100ms, a time resolution of at least 10ms for runaway electron studies can be achieved depending on the scenario and down to a current of 40 kA by use of external gas injection. We find that the bremsstrahlung spectrum in the MeV range from confined runaways is sensitive to the electron velocity space...

  15. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  16. Measurement of structured purple soil porosity by using gamma ray transmission technique

    International Nuclear Information System (INIS)

    Costa, Elizabeth Cristina S. da; Rocha, Wilson Roberto Dejato da; Oliveira, Ricardo M. de; Silva, Luzeli Moreira da; Moreira, Anderson Camargo; Portezan, Otaio Portezan; Appoloni, Carlos Roberto; Coimbra, Melayne Martins

    2002-01-01

    The soil structure defines the particle arrangement which in turn largely determines the pore size distribution. In this work, we present the measurements of total, macro and microporosity for TRe soil with clayey texture. Soil samples were collected from a trench located at University of Londrina. The deformed and undeformed soil samples were collected from soil surface down to the depth of 0,50 m in 0,10 m intervals and separated into six aggregate size classes: 0.053; 0.125; 0.30; 0.71; 2 e 4 mm. We also prepared samples mixing different size classes, like as: (4+0.125), (2+0.125), (4+2+0.71), (4+2+0.30) e (4+0.30+0.125)mm. Measurements of particle density and aggregate bulk density using conventional method were performed to all depths. The linear soil attenuation coefficients and aggregate soil attenuation coefficients were measured with gamma-ray transmission system using an 241 Am (59,53 keV and 100 mCi) radiation source, a (2 x 2) in NaI scintillation detector, cylindric collimators (2 mm diameter to the source and 5 mm diameter to the detector) and gamma spectrometry standard electronics, connected to a multichannel. The obtained results for total, macro and microporosity are in a good agreement with the ones using the convention method, showing the applicability of the gamma-ray transmission method. (author)

  17. Laboratory calibrations of airborne gamma-ray spectrometers. Measurements and discussions of important parameters

    International Nuclear Information System (INIS)

    Korsbech, U.

    1994-02-01

    This report is the fourth of reports from The Department of Electrophysics covering measurement and interpretation of airborne gamma-spectrometry measurements. It describes different topics concerning the construction of a suitable calibration setup in the laboratory. The goal is to build a simple and cheap laboratory setup that can produce most of the gamma-ray data needed for an interpretation of spectra measured 50 to 120 m above ground level. A simple calibration setup has been build and tested. It may produce gamma-ray spectra similar to those measured in the air - from surface contamination with artificial nuclides and from 'bulk' natural radioactivity. It is possible to investigate the influence of the air above an aircraft carrying the detector (skyshine: scattering of gamma photons in the air above the detector). In order to reduce the influence of non-detected pile-up the count rates are kept low without reaching levels where the background spectra (to be subtracted) would cause unacceptable counting statistical fluctuations. Sources selected for the calibrations are heavy minerals sand (with thorium and uranium), potassium nitrate (with 40 K). These sources are 'bulk sources' of natural radioactivity. Cesium-137 has been selected as the basic artifical surface contamination nuclide. The report also discusses methods for comparing two spectra a priori assumed equal. Finally the properties of some materials that could be used as 'air-substitutes' in the calibration setup have been tested with respect to stability against moisture sorption. (au)

  18. Standard test method for quantitative determination of americium 241 in plutonium by Gamma-Ray spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This test method covers the quantitative determination of americium 241 by gamma-ray spectrometry in plutonium nitrate solution samples that do not contain significant amounts of radioactive fission products or other high specific activity gamma-ray emitters. 1.2 This test method can be used to determine the americium 241 in samples of plutonium metal, oxide and other solid forms, when the solid is appropriately sampled and dissolved. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. Methods for the analysis of the overlapped peaks in analytical gamma-spectrometry

    International Nuclear Information System (INIS)

    Sterlinski, S.; Wasek, M.

    1989-01-01

    A new simple method for the quantitative analysis of the doublet peaks in Ge(Li) or HPGe gamma-spectrometry is presented. No assumptions on the shape of the peaks in gamma-ray spectra being measured are required. Special feature of the method proposed is its usefulness for the analysis of closed doublets. 7 refs., 6 figs. (author)

  20. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O N; Marcus, F B; Sadler, G; Van Belle, P [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Howarth, P J.A. [Birmingham Univ. (United Kingdom); Adams, J M; Bond, D S [UKAEA Harwell Lab. (United Kingdom). Energy Technology Div.

    1994-07-01

    Gamma-ray emission from plasma-impurity reactions caused by minority ICRH accelerating fuel ions to MeV energies has been measured using the JET neutron profile monitor. A successful data analysis technique has been used to isolate the RF-induced gamma-ray emission that was detected, enabling profiles of gamma-ray emission to be obtained. The 2-d gamma-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. 6 refs., 4 figs.

  1. GammaLog Playback 1.0 - mobile gamma ray spectrometry software

    International Nuclear Information System (INIS)

    Watson, R.J.; Smethurst, M.A.

    2011-01-01

    The Geological Survey of Norway (NGU) operates a mobile gamma ray spectrometer system which can be used in nuclear emergency situations to determine the location and type of orphan sources, or the extent and type of fallout contamination. The system consists of a 20 litre (16 litre downward and 4 litre upward looking) RSX-5 NaI detector and spectrometer, and can be mounted in fixed wing aircraft, helicopters, or vans/cars as appropriate. NGU has developed its own data acquisition and analysis software for this system. GammaLog (Smethurst 2005) controls the acquisition, display, and storage of data from the spectrometer, and performs real-time data analysis including estimation of dose rates and fallout concentrations, and separation of geological and anthropogenic components of the signal. The latter is particularly important where the geological radioisotope signal varies strongly from one place to another, and makes it easier to locate and identify anthropogenic sources which might otherwise be difficult to separate from the geological background signal. A modified version of GammaLog has been developed, GammaLog Playback, which allows the replay of previously acquired GammaLog datasets, while performing similar processing and display as the GammaLog acquisition software. This allows datasets to be reviewed and compared in the field or during post-survey analysis to help plan subsequent measurement strategies.(Au)

  2. Measurement of radon concentration in water by means of {alpha}, {gamma} spectrometry. Radon concentration in ground and spring water in Hiroshima Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Shizuma, Kiyoshi [Hiroshima Univ. (Japan)

    1997-02-01

    Radon ({sup 222}Rn, T{sub 1/2}=3.8235{+-}0.0003d) is {alpha}-ray releasing nuclide, so that it can not be detected by {gamma}-ray measurement. But, the daughter nuclides {sup 214}Pb (T{sub 1/2}=26.8 min) and {sup 214}Bi (T{sub 1/2}=19.9 min) release {gamma}-ray, accordingly they are measured by Ge detector. Their radioactive equilibrium is kept in the closed vessel, because their half-lives are shorter than that of radon. We developed a measurement method of radon concentration by means of {gamma}-spectrometry. We applied this method to catch radon in the atmosphere by active carbon. The same principle can be applied to radon in water. Radon concentrations in the ground water were measured in 22 points in the Higashi-Hiroshima city and 82 points in the Hiroshima prefecture. The efficiencies of {gamma}-ray were determined. The radon concentration showed between 11 and 459 Bq/l and the average was 123 Bq/l. The high concentration of radon was distributed in the spring of granitic layer and higher concentration of radon were observed in the ground water of fault. (S.Y.)

  3. Preliminary Determination of Natural Radioactivity Levels of the State of Qatar using High-Resolution Gamma-ray Spectrometry

    International Nuclear Information System (INIS)

    Al-Sulaiti, H.A.; Regan, P.H.; Bradley, D.A.; Matthews, M.; Santawamaitre, T.; Malain, D.

    2009-01-01

    The State of Qatar is a peninsula with a total area of 11,437 km 2 which lies over a geological formation comprising a sequence of limestone, chalk, clay and gypsum. Establishing a baseline for the radioactivity concentration in Qatar's soil is the main purpose behind the present study. The project is focused on obtaining measurements of representative soil samples from various areas in Qatar to establish concentrations of the 235 U, 238 U and 232 Th natural decay chains and also the long-lived naturally occurring radionuclide 40 K. The 235 U, 238 U, 232 Th and 40 K concentrations have been measured via high-resolution gamma-ray spectrometry using a hyper-pure germanium detector situated in a low-background environment with a copper inner-plated passive lead shield. A wide range of different gamma-ray energy transitions lines arising from the multiple decay products from the 235 U, 238 U and 232 Th decay chains have been analyzed separately to obtain more statistically significant overall results

  4. Organization of a multichannel analyzer for gamma ray spectrometry

    International Nuclear Information System (INIS)

    Robinet, Genevieve

    1988-06-01

    This report describes the software organization of a medium scale multichannel analyzer for qualitative and quantitative measurements of the gamma rays emitted by radioactive samples. The first part reminds basis of radioactivity, principle of gamma ray detection, and data processing used for interpretation of a nuclear spectrum. The second part describes first the general organization of the software and then gives some details on interactivity, multidetector capabilites, and integration of complex algorithms for peak search and nuclide identification;problems encountered during the design phase are mentioned and solutions are given. Basic ideas are presented for further developments, such as expert system which should improve interpretation of the results. This present software has been integrated in a manufactured multichannel analyzer named 'POLYGAM NU416'. [fr

  5. Gamma-ray response of NE-213 measured between 2 and 11.5 MeV

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Wehring, B.W.; Starr, R.D.

    1976-01-01

    Because of the capability to discriminate between neutrons and gamma rays, NE-213 scintillators are useful as both fast-neutron and gamma-ray spectrometers. However, measured NE-213 Compton-recoil spectra require unfolding to yield gamma-ray energy spectra which entails a detailed knowledge of the gamma-ray response of the NE-213 detector system. Absolute measurements of the gamma-ray response of an NE-213 scintillator in the energy range of 2 to 11.5 MeV were made. The measurements were made using the University of Illinois superconducting electron microtron equipped with a gamma-ray monochromator. The response measurements will be used to construct a gamma-ray response matrix for NE-213 to be used with the FORIST unfolding code

  6. In situ measurements of dose rates from terrestrial gamma rays

    International Nuclear Information System (INIS)

    Horng, M.C.; Jiang, S.H.

    2002-01-01

    A portable, high purity germanium (HPGe) detector was employed for the performance of in situ measurements of radionuclide activity concentrations in the ground in Taiwan, at altitudes ranging from sea level to 3900 m. The absolute peak efficiency of the HPGe detector for a gamma-ray source uniformly distributed in the semi-infinite ground was determined using a semi-empirical method. The gamma-ray dose rates from terrestrial radionuclides were calculated from the measured activity levels using recently published dose rate conversion factors. The absorbed dose rate in air due to cosmic rays was derived by subtracting the terrestrial gamma-ray dose rate from the overall absorbed dose rate in air measured using a high-pressure ionization chamber. The cosmic-ray dose rate calculated as a function of altitude, was found to be in good agreement with the data reported by UNSCEAR. (orig.)

  7. Cosmic-ray contribution in measurement of environmental gamma-ray dose

    International Nuclear Information System (INIS)

    Nagaoka, Kazunori; Honda, Kouichirou; Miyano, Keiji

    1996-01-01

    Nowadays several kinds of dosimeters are being used for environmental gamma-ray monitoring. However the results measured by those instruments are not always in good agreement. It may be caused from the different characteristics of dosimeters. In particular the different responses of the instruments to cosmic-rays give significant influence on the results. Environmental radiation measurements at various altitudes on Mt. Fuji were carried out using a scintillation spectrometer with 3''φ spherical NaI(Tl), a pressurized ionization chamber (PIC), an air-equivalent ionization chamber (IC), thermoluminescence dosimeters (TLD), radiophotoluminescence glass dosimeters (RPLD) and NaI(Tl) scintillation survey meters so that the response characteristics of these instruments to cosmic-rays could be clarified. Cosmic-ray contributions for all instruments were correlated with counting rate over 3 MeV by the spectrometer. Each contribution can be estimated by measurement of the counting rate. Conversion factors (nGy/h/cpm) for IC, PIC, TLD, RPLD and NaI survey meters (TCS166 and TCS121C) were 0.33, 0.32, 0.25, 0.24, 0.06 and -0.01, respectively. Self-doses of these instruments were estimated by measurements at Nokogiriyama facilities of the Institute for Cosmic Ray Research, University of Tokyo. Self-doses for TLD and RPLD were approximately 6 nGy/h. The self dose effect should be taken into consideration in environmental dose measurements. These data are expected to be useful in estimating the cosmic-ray contribution and self-dose in the measurement of environmental gamma-ray dose. (author)

  8. A low-energy set-up for gamma-ray spectrometry of NORM tailored to the needs of a secondary smelting facility

    OpenAIRE

    Lutter, Guilome; Vandael Schreurs, Indy; Croymans, Tom; Schroeyers, Wouter; Schreurs, Sonja; Hult, Mikael; Marissens, Gert; Stroh, Heiko; Tzikaa, Faidra

    2017-01-01

    A measurement station dedicated for quantitative radiological characterisation of naturally occurring radio-nuclides in a metallurgical company and based on gamma-ray spectrometry was developed. The station is intended for performing quality control of final non-ferrous metal products and for radiological checks of incoming materials. A low-background point-contact HPGe-detector was used and the signal was split in two branches to enable collecting simultaneously spectra with high amplificati...

  9. Determination of natural radioactivity in building materials used in Tunisian dwellings by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Hizem, N.; Fredj, A. B.; Ghedira, L.

    2005-01-01

    The radioisotopic content of 17 samples of natural and manufactured building materials collected in Tunisia have been analysed by using gamma spectrometry. From the measured gamma ray spectra, activity concentrations are determined for 232 Th, 226 Ra, 235 U and 40 K. The total effective dose and the activity concentration index are calculated applying the dose criteria recommended by the European Union for building materials. The results of 226 Ra, 232 Th and 40 K found in Tunisian building materials indicate that radium and thorium concentrations do not exceed 40 Bq kg -1 , but potassium concentration varies between 50 and 1215 Bq kg -1 . The total effective dose rates per person indoors are determined to be between 0.07 and 0.86 mSv y -1 . Only two materials exceed the reference level of 0.3 mSv y -1 . The activity concentration index is <1. (authors)

  10. Estimation of the terrestrial gamma-ray levels from car-borne measurements

    International Nuclear Information System (INIS)

    Badran, H.M.

    1998-01-01

    A place to place variation of the gamma-radiation has been measured. The terrestrial gamma-ray levels were obtained with a portable Nal(Tl) detector. Gamma-ray levels were measured inside a car for a distance of about 220 km, from Norman up to Tulsa, Oklahoma, USA. Simultaneous measurements have also been carried out outside the vehicle and at distances 1 m and 5 m from the car. A series of data was collected every 1 mile (∼ 1.6 km). The measurements were also repeated different time under different conditions. The measured car-borne levels were correlated with the outdoor equivalent levels at 1 m above flat ground. The result permits a good estimation of the outdoor gamma-ray levels from the car measurements after the correction due to the vehicle shielding

  11. Feasibility study of plutonium isotopic analysis of resin beads by nondestructive gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Li, T.K.

    1985-01-01

    We have initiated a feasibility study on the use of nondestructive low-energy gamma-ray spectroscopy for plutonium isotopic analysis on resin beads. Seven resin bead samples were measured, with each sample containing an average of 9 μg of plutonium; the isotopic compositions of the samples varied over a wide range. The gamma-ray spectroscopy results, obtained from 4-h counting-time measurements, were compared with mass spectrometry results. The average ratios of gamma-ray spectroscopy to mass spectrometry were 1.014 +- 0.025 for 238 Pu/ 239 Pu, 0.996 +- 0.018 for 240 Pu/ 239 Pu, and 0.980 +- 0.038 for 241 Pu/ 239 Pu. The rapid, automated, and accurate nondestructive isotopic analysis of resin beads may be very useful to process technicians and International Atomic Energy Agency inspectors. 3 refs., 1 fig., 3 tabs

  12. FFTF reactor-characterization program: gamma-ray measurements and shield characterization

    International Nuclear Information System (INIS)

    Bunch, W.L.; Moore, F.S. Jr.

    1983-02-01

    A series of experiments is to be made during the acceptance test program of the Fast Flux Test Facility (FFTF) to measure the gamma ray characteristics of the Fast Test Reactor (FTR) and to establish the performance characteristics of the reactor shield. These measurements are a part of the FFTF Reactor Characterization Program (RCP). Detailed plans have been developed for these experiments. During the initial phase of the Characteristics Program, which will be carried out in the In-Reactor Thimble (IRT), both active and passive measurement methods will be employed to obtain as much information concerning the gamma ray environment as is practical. More limited active gamma ray measurements also will be made in the Vibration Open Test Assembly (VOTA)

  13. Developments in gamma-ray spectrometry: systems, software, and methods-II. 4. High-Performance Digital Gamma-Ray Spectrometry

    International Nuclear Information System (INIS)

    Michael Momayezi

    2001-01-01

    This paper reviews recent advances in the field of digital spectrometry made by researchers at X-Ray Instrumentation Associates. All XIA spectrometers are based on a core architecture, which employs digitizing the input signal without shaping and applying all basic data processing in real time to the digital data stream coming out of the wave form digitizer. The real-time digital data processing includes filtering, triggering, pileup rejection, and even pulse shape analysis. In this paper we will describe some of those methods that go beyond emulating a conventional analog system in a digital environment. Rather we will concentrate mainly on methods that have no real equivalent in the analog world. In conventional spectrometers pulse pileup recognition is hardwired and serves a single purpose, namely to reject signals that occur too close to each other to allow for a precise measurement of their amplitude. For a digital device, which can also record wave forms, that would be an unfortunate limitation. The study of very short-lived radioactive isotopes is a case in point. If such an isotope is implanted into a detector in which it then decays by charged particle emission, the signature for the sought-after isotope is that of an implant pulse followed by one or more decay pulses from the isotope and its daughters. If the decay products can be absorbed in the same detector channel, as is the case for proton and alpha emitters in a Si-strip detector, then the isotope decay will show up as a pulse train coming from that detector channel. The difficulty usually is to find the few isotopes of interest amongst a huge background of long-lived or stable isotopes. With programmable pileup recognition logic it is possible to trigger specifically on pulse trains, rather than single pulses, thereby picking out very selectively the isotopes of interest. Analyzing the pulse shape of the incoming preamplifier signal proves to be very useful in many applications. The most obvious

  14. Porosity measurement of amorphous materials by gamma ray transmission; Medida de porosidade de materiais amorfos por transmissao de raios gama

    Energy Technology Data Exchange (ETDEWEB)

    Poettker, Walmir Eno

    2000-07-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a {sup 241} Am source (59,53 keV), a NaI (Tl) scintillation detector, collimators, a XYZ, micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  15. Analysis of spectra from portable handheld gamma-ray spectrometry for terrain comparative assessment

    International Nuclear Information System (INIS)

    Dias, Flávio; Lima, Marco; Sanjurjo-Sánchez, Jorge; Alves, Carlos

    2016-01-01

    Geological characteristics can have impacts on societal development by, e.g., geotechnical issues and radiological hazard levels. Due to urban sprawl, there is an increasing need for detailed geological assessment. In this work are analysed data from portable handheld gamma-ray spectra (K, eU and eTh) obtained in granitic and Silurian metaclastic outcrops as well as in an profile, roughly N–S, on soil covered terrains transecting a mapped contact between these rock types (the profile's northern extremity is at locations mapped as granite). Estimations from gamma-ray spectra were studied by univariate and multivariate analyses. K, eU and eTh values were higher on granite in relation to Silurian metaclastic rocks. The northern extremity of the profile showed clearly higher contents of eTh and this contrast was supported by univariate statistical tools (normality plot and Wilk–Shapiro test; boxplots). A ternary plot with the contribution of the elements to gamma-ray absorbed dose showed the separation of granite from Silurian metaclastic rocks with the former being nearer the eTh vertex. The points in the northern extremity of the profile are nearer the eTh vertex than the other points on the profile. These visual suggestions were supported by hierarchical cluster analysis, which was able to differentiate between granite and metaclastic outcrops and separate portions of the profile located on different terrains. Portable gamma-ray spectrometry showed, hence, the potential to distinguish granite and metaclastic terrains at a scale useful for engineering works. These results can also be useful for a first comparative zoning of radiological hazards (which are higher for granite). - Highlights: • Contents of K, eU and eTh were estimated by portable gamma-ray spectra. • Spectra were acquired on a profile across a soil covered granite/metaclastic contact. • Spectra were also collected on granite and Silurian metaclastic outcrops. • Obtained estimations were

  16. Experimental determination of nuclear reaction rates (n,γ) by the gamma-rays capture spectrometry technique

    International Nuclear Information System (INIS)

    Lucatero, M.A.

    1976-01-01

    The technique of the gamma-rays capture spectrometry was used in the experimental determination of nuclear reaction rates of the type (n,γ). This technique consists in the incidence of a thermal neutrons collimated beam upon a sample, detecting the capture spectrum of gamma rays emitted at a solid fixed angle. In the determination of the efficiency curve intrinsic to the detection electronic system the reactions 199 Hg(n,γ) 200 Hg, 56 Fe(n,γ) 57 Fe and 63 Cu(n,γ) 64 Cu were used with the energy of the gamma rays capture of 5.976, 7.635 and 7.915 Mev respectively, through the irradiation of standard samples of Hg(175.3g), Fe(110.4g) and Cu(108.5g) of cylindrical geometry the two former and parallelepiped the latter. The problem concerning the corrections due to the thermal neutrons flux depression, the gammas auto-attenuation, and the geometric factor due to the cylindrical and parallelepiped geometry are involved in the data process. The experimental determination of the reaction 35 Cl(n,γ) 36 Cl rate was made through the observation of the gamma caputre of 6.111 Mev when a sample of CaCl 2 of cylindrical geometry was irradiated. This rate can be favorably compared with the reaction rate determined theoretically. (author)

  17. Development of criticality accident detector measuring neutrons and gamma-rays

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Ishii, Masato

    2005-01-01

    The authors developed a new criticality accident detector measuring neutrons and gamma-rays. The detector is a cylindrical plastic scintillator coupled to a current-mode operated photomultiplier, and is covered by an inner cadmium shell, acting as a neutron to gamma-ray converter, and a 5cm thick outer polyethylene moderator in order to respond to the same threshold triggering dose regardless of whether it was exposed to neutrons, gamma-rays or a mixture of the two radiations. (author)

  18. Airborne Gamma-ray Measurements in the Chernobyl Plume

    DEFF Research Database (Denmark)

    Grasty, R. L.; Hovgaard, Jens; Multala, J.

    1997-01-01

    On 29 April 1986, the Geological Survey of Finland (GSF) survey aircraft with a gamma ray spectrometer flew through a radioactive plume from the Chernobyl nuclear accident. The aircraft became contaminated and the gamma spectrometer measured radioactivity in the plume as well as radioactivity...

  19. Use of Airborne Gamma-Ray Spectrometry in case of emergency. Example of HELGA exercise - collaboration between France and Germany

    International Nuclear Information System (INIS)

    Guillot, L.

    2004-01-01

    Since Chernobyl accident, airborne gamma-ray spectrometry has been recognised as a useful tool to evaluate consequences of an accident over large areas. Nine European countries have capabilities to perform such measurements. Between 1996 and 2003, a collaboration between these teams was supported by European community. In 2002, an exercise involving airborne and ground-based measurements was organised in Scotland. This exercise demonstrated the ability of European countries to provide assistance to one of them in case of emergency. Since this project has been completed, the French and German team decided to continue a collaboration. The CEA team (France) went in Germany in 2003 to participate to a survey with the German team. In September 2004, an exercise including mapping of contaminated areas and orphan sources search is planned in France. Such actions are good opportunities to exchange technical information about the acquisition systems and operating procedures. It is also essential to improve the availability of teams to obtain comparable and compatible results. The AGRS (airborne gamma ray spectrometry) systems involved in this exercise will be described and compared in this paper. The capacity of teams to work in collaboration in various situation (orphan source search, contamination mapping) will be then evaluated. In particular, a European Radiometric and Spectrometry format defined during Eccomags project will be used to create a database of raw and processed data. The aim is to produce quickly composite maps with data recorded by different teams. A choice of results will be presented and an assessment of capability of teams to work in collaboration will be done. (author)

  20. A Comparison Of GADRAS Simulated And Measured Gamma Ray Spectra

    International Nuclear Information System (INIS)

    Jeffcoat, R.; Salaymeh, S.

    2010-01-01

    Gamma-ray radiation detection systems are continuously being developed and improved for detecting the presence of radioactive material and for identifying isotopes present. Gamma-ray spectra, from many different isotopes and in different types and thicknesses of attenuation material and matrixes, are needed to evaluate the performance of these devices. Recently, a test and evaluation exercise was performed by the Savannah River National Laboratory that required a large number of gamma-ray spectra. Simulated spectra were used for a major portion of the testing in order to provide a pool of data large enough for the results to be statistically significant. The test data set was comprised of two types of data, measured and simulated. The measured data were acquired with a hand-held Radioisotope Identification Device (RIID) and simulated spectra were created using Gamma Detector Response and Analysis Software (GADRAS, Mitchell and Mattingly, Sandia National Laboratory). GADRAS uses a one-dimensional discrete ordinate calculation to simulate gamma-ray spectra. The measured and simulated spectra have been analyzed and compared. This paper will discuss the results of the comparison and offer explanations for spectral differences.

  1. The first results of measurements in military hospital laboratory for gamma spectrometry analysis

    International Nuclear Information System (INIS)

    Jankovic, Lj.; Pantelic, G.; Misovic, M.

    1997-01-01

    In this paper we present the basic features of the equipment for gamma spectrometry analysis and the first measurements results of the 134 Cs and 137 Cs activities. Gamma spectrum is measured using HP GE Detector. The obtained results show low level activities of the 134 Cs and 137 Cs in the environment. (author)

  2. Spectrometry techniques for radioactivity measurements

    International Nuclear Information System (INIS)

    Anilkumar, S.

    2016-01-01

    The energy of the radiation emission following the nuclear decay is unique and the characteristic of the radio nuclide which undergoes decay. Thus measurement of the energy of the radiation offers a method of identifying the radio nuclides. The prime requirement of the energy measurement is a suitable detector which shows response proportional to the energy of the radiation rather than the presence of the radiation. The response from such detectors are suitably processed and distributed with respect to the signal strength which is proportional to incident energy. This distribution is normally referred as energy spectrum and is recorded in the multichannel analyser. The measurement of energy and intensity of radiation from the spectrum is called radiation spectrometry. Thus the radiation spectrometry allows the identification and quantification of radioactive isotopes in variety of matrices. The radiation spectrometry has now become a popular radioanalytical technique in wide area of nuclear fuel cycle programs. The popular spectrometry techniques commonly used for the radioactivity measurement and analysis are Alpha spectrometry, Gamma ray spectrometry and Beta spectrometry

  3. gamma-ray spectra measurements for long cooled MOX spent fuels

    International Nuclear Information System (INIS)

    Murakami, Kiyonobu; Kobayashi, Iwao

    1993-09-01

    Gamma-ray spectra of spent fuels have important informations in the estimation of burnup rate, concentration of fission products, cooling time and etc. which are required in the fuel loading control of reactors and special nuclear materials accountancy from the view point of safe guard. Although, some available data are given about uranium dioxide fuels, few data are given about uranium and plutonium dioxide mixtures (MOX fuels). Especially, there is few data about MOX fuels which are irradiated in thermal reactors and cooled more than ten years. Gamma-ray spectra are measured for PuO 2 -UO 2 fuel rods (IFA-159, IFA-160) which are irradiated at HBWR in Norway up to 9,420 and 5,340MWd/t respectively. Gamma-ray spectra had been measured about the two fuels ten years ago at the spent fuel pond of Japan Demonstration Reactor (JPDR). The objectives of this measurement is to know how decayed the gamma-ray spectra in these ten years and some fission products are there which are effective to estimate burnup rate of spent MOX fuels. (author)

  4. Radon emanation and soil moisture effects on airborne gamma-ray measurements

    International Nuclear Information System (INIS)

    Grasty, R.L.

    1997-01-01

    A theoretical model is developed to explain variations in airborne gamma-ray measurements over a calibration range near Ottawa, Ontario. The gamma-ray flux from potassium and the thorium decay series showed an expected decrease with increasing soil moisture. However, the gamma-ray flux from the uranium decay series was highest in the spring when the ground was water-saturated and even covered with snow. These results are explained through the build-up of radon and its associated gamma-ray-emitting decay products in the clay soil of the calibration range with increasing soil moisture. Similar results were found from airborne measurements over other clay soils. However, measurements over sandy soils showed that the count rates from all three radio elements increased with decreasing soil moisture. This difference between soil types was attributed to the lower radon emanation of the more coarse-grained sandy soils compared to finer-grained clay soils. The theoretical and experimental results demonstrate that any estimate of the natural gamma-ray field caused by radium in the ground must take into consideration the radon emanation coefficient of the soil. The radon diffusion coefficient of the soil must also be considered since it depends strongly on soil moisture. This has significant implications for the assessment of outdoor radiation doses using laboratory analyses of soil samples and the use of ground and airborne gamma-ray measurements for radon potential mapping

  5. Application of full spectrum analysis technique for NaI(TI) based gamma ray spectral monitoring system

    International Nuclear Information System (INIS)

    Pant, Amar D.; Verma, Amit K.; Narayani, K.; Anilkumar, S.; Singh, Rajvir

    2016-01-01

    NaI(Tl) is commonly used for the gamma spectrometry analysis in laboratories. It continues to be the first choice for gamma spectrometry in many applications even today. Many gamma spectrometric methods are developed to experimentally determine activity of radionuclides in samples. Detectors used worldwide for gamma radiation monitoring are either GM based or scintillator based detector based on count rate. For radiation early warning systems radionuclide specific radiation monitoring methodology is required i.e. gamma ray spectrometry based environmental monitoring system. A computer program has been developed for gamma spectral monitoring by the use of full spectrum analysis (FSA). In this measured spectra are fitted using individual spectral components by least square fitting (LSF). The method is found very useful in situations, where radionuclide specific environmental radiation monitoring is required. The paper describes the details of the FSA procedure for the on line acquisition and analysis of gamma ray spectra from Nal(Tl) detectors

  6. Summary of existing information on gamma-ray and X-ray attenuation coefficients of solutions

    DEFF Research Database (Denmark)

    Singh, K.; Gerward, Leif

    2002-01-01

    Accurate values of X-ray and gamma-ray attenuation coefficients of different chemicals are required in spectrometry as well as in many other scientific, engineering and medical disciplines involving photon radiation. The current state of knowledge of experimental and theoretical gamma-ray and X-r......-ray attenuation coefficients in aqueous solutions of salts is presented and exemplified by recent work. The results presented provide a basis for studying X-ray and gamma-ray photon interactions with ions in solution (hydrated ions) rather than ion compounds in solid form....

  7. Gamma ray spectrometry: applications in uranium prospecting and environment

    International Nuclear Information System (INIS)

    Lopez, Luis E.

    1999-01-01

    The experience in the use of gamma spectrometry for uranium prospecting and for the determination of natural radiation background is described. The basic principles of the techniques are also given. (author)

  8. Gamma-ray spectrometry of granitic suites of the Paranaguá Terrane, Southern Brazil

    Science.gov (United States)

    Weihermann, Jessica Derkacz; Ferreira, Francisco José Fonseca; Cury, Leonardo Fadel; da Silveira, Claudinei Taborda

    2016-09-01

    The Paranaguá Terrane, located in the coastal portion of the states of Santa Catarina, Paraná and São Paulo in Southern Brazil is a crustal segment constituted mainly by an igneous complex, with a variety of granitic rocks inserted into the Serra do Mar ridge. The average altitude is approximately 1200 m above sea level, with peaks of up to 1800 m. Due to the difficulty of accessing the area, a shortage of outcrops and the thick weathering mantle, this terrane is understudied. This research aims to evaluate the gamma-ray spectrometry data of the granitic suites of the Paranaguá Terrane, in correspondence with the geological, petrographical, lithogeochemical, relief and mass movement information available in the literature. Aerogeophysical data were acquired along north-south lines spaced at 500 m, with a mean terrain clearance of 100 m. These data cover potassium (K, %), equivalent in thorium (eTh, ppm) and equivalent in uranium (eU, ppm). After performing a critical analysis of the data, basic (K, eU, eTh) and ternary (R-K/G-eTh/B-eU) maps were generated and then superimposed on the digital elevation model (DEM). The investigation of the radionuclide mobility across the relief and weathering mantle consisted of an analysis of the schematic profiles of elevation related with each radionuclide; a comparison of the K, eU and eTh maps with their 3D correspondents; and the study of mass movements registered in the region. A statistical comparison of lithogeochemical (K, U, Th) and geophysical (K, eU, eTh) data showed consistency in all the granitic suites studied (Morro Inglês, Rio do Poço and Canavieiras-Estrela). Through gamma-ray spectrometry, it was possible to establish relationships between scars (from mass movements) and the gamma-ray responses as well as the radionuclide mobility and the relief and to map the granitic bodies.

  9. Burn-up measurements coupling gamma spectrometry and neutron measurement

    Energy Technology Data Exchange (ETDEWEB)

    Toubon, H.; Pin, P. [AREVA/CANBERRA, 1 rue des Herons, 78182 St Quentin-en-Yvelines Cedex (France); Lebrun, A. [IAEA, Wagramer Strasse 5, PO Box 100, Vienna (Austria); Oriol, L.; Saurel, N. [CEA Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Gain, T. [AREVA/COGEMA Reprocessing Business Unit, La Hague, 50444 Beaumont Hague Cedex (France)

    2006-07-01

    The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)

  10. Burn-up measurements coupling gamma spectrometry and neutron measurement

    International Nuclear Information System (INIS)

    Toubon, H.; Pin, P.; Lebrun, A.; Oriol, L.; Saurel, N.; Gain, T.

    2006-01-01

    The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)

  11. Computers in activation analysis and gamma-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B. S.; D' Agostino, M. D.; Yule, H. P. [eds.

    1979-01-01

    Seventy-three papers are included under the following session headings: analytical and mathematical methods for data analysis; software systems for ..gamma..-ray and x-ray spectrometry; ..gamma..-ray spectra treatment, peak evaluation; least squares; IAEA intercomparison of methods for processing spectra; computer and calculator utilization in spectrometer systems; and applications in safeguards, fuel scanning, and environmental monitoring. Separate abstracts were prepared for 72 of those papers. (DLC)

  12. Natural radioactivity in extreme south of Bahia, Brazil, using gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Vasconcelos, Danilo C.; Oliveira, Arno H.; Silva, Mario R.S.; Penna, Rodrigo; Santos, Talita O.; Pereira, Claubia; Rocha, Zildete; Menezes, Maria Angela B.C.

    2009-01-01

    The concentrations activity of natural radionuclides in beach sand in extreme south of Bahia-Brazil was measured using gamma-ray spectrometry. The activity concentrations of 226 Ra, 232 Th and 40 K in beach sand ranged from 14.5 to 8,318.4, 20.5 to 18,450.0, 15.4 to 3,109.0 Bq/kg, with a mean value of 1,078.2, 2,429.6, and 417.0 Bq/kg respectively. The values of radiation hazard indexes in sands of Alcobaca, Caraiva and Cumuruxatiba are higher than the limits preconized by Beretka and Mathew. The use of these sands may be not safe in building constructions. The results show that the absorbed dose rates range from 20.4-15,116.6 nGy/h with mean value of 1762.7. The highest value of gamma dose rates among the studied beaches was found in Cumuruxatiba (15,116.6 nGy/h). The annual effective dose varied between 0.028 and 18.539 mSv/year, with a mean of 2.162 mSv/year. Values of Alcobaca, Trancoso, Caraiva and Cumuruxatiba are higher than the worldwide average for outdoor annual effective dose, 0.07 mSv/year. (author)

  13. Analytical applications of neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Lindstrom, R.M.; Paul, R.L.; Anderson, D.L.; Paul, R.L.

    1997-01-01

    Field and industrial applications of neutron capture gamma-ray spectrometry with isotopic sources or neutron generators are economically important. Geochemical exploration in boreholes is done routinely with neutron probes. Coal and ores are assayed with analyzers adjacent to a conveyor belt in dozens of industrial facilities. The use of capture gamma rays for explosives detection has been described in the literature, both for scanning airline baggage and for characterizing obsolete munitions; a packaged system for the latter is available commercially. Generalizations are drawn from the history of the field, and predictions are made about the future usefulness of capture gamma rays. (author)

  14. Performance characteristics of high resolution semiconductor gamma ray spectrometry system

    Energy Technology Data Exchange (ETDEWEB)

    Naing, Ko Ko

    1994-05-01

    A high purity germanium (HPGe) gamma-ray detector has been used in Nuclear Research Laboratory, Department of Physics, Yangon University for over fourteen years. Now it is still being used and it is coupled to new peripheral devices, such as spectroscopy amplifier, analog to digital converter and computer fit-in S-100 multichannel analyser. Therefore, it is necessary to determine the important parameters: energy resolution, detecting efficiency and relative efficiency of the system. In the present work, these parameters were obtained by using mixed calibrated source. The results were compared to the data given by the manufacturer. Moreover, the parameters of another {gamma}-ray detecting system NaI(T1) were also determined. In conclusion the results obtained from the above two measurements were compared and discussed

  15. Cosmic and solar gamma-ray x-ray and particle measurements from high altitude balloons in Antarctica

    International Nuclear Information System (INIS)

    Lin, R.P.

    1990-01-01

    For measurements of cosmic and solar gamma-rays, hard X-rays, and particles, Antarctica offers the potential for very long, 10--20 day, continuous, twenty-four-hour-a-day observations, with balloon flights circling the South Pole during austral summer. For X-ray/gamma-ray sources at high south latitude the overlying atmosphere is minimized, and for cosmic ray measurements the low geomagnetic cutoff permits entry of low rigidity particles. The first Antarctic flight of a heavy (∼2400 lb.) payload on a large (11.6x10 6 cu. ft.) balloon took place in January, 1988, to search for the gamma-ray lines of 56 Co produced in the new supernova SN 1987A in the Large Magellanic Cloud. The long duration balloon flights presently planned from Antarctica include those for further gamma-ray/hard X-ray studies of SN 1987A and for the NASA Max '91 program for solar flare studies

  16. Some considerations on the use of gamma spectrometry for Kr-85 determination at gaseous effluents in the nuclear industry and environmental samples

    International Nuclear Information System (INIS)

    Heras Iniquez, M.C.; Perez Garcia, M.M.; Travesi, A.

    1983-01-01

    The possibilities of using high resolution gamma ray spectrometry with GeLi semiconductor detector for measured the 0.514 KeV gamma radiation of Kr-B5 la explored, The detection limit of Kr-85 for a measuring time is 4.10 - 4 μCi with a counting time of 1000 minutes in a GeLi detector with a 20% efficiency relative to the INa (Tl). It is concluded that the use of gamma ray spectrometry for measuring the Kr-85 is not useful for environmental samples, but it can be used for the Kr-85 effluents control in Nuclear Stations. (Author) 26 refs

  17. Validation of {sup 226}Ra, {sup 228}Ra and {sup 210}Pb measurements in soil and sediment samples through high resolution gamma ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Danila Carrijo da Silva; Silva, Nivaldo Carlos da; Bonifacio, Rodrigo Leandro; Guerrero, Eder Tadeu Zenun [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas

    2013-07-01

    Radionuclides found in ore extraction waste materials are a great source of concern regarding public health and environmental safety. One technique to determine the concentration of substances is high resolution gamma ray spectrometry using HPGe. Validating a measurement technique is essential to warrant high levels of quality to any scientific work. The Laboratory of Pocos de Caldas of the Brazilian Commission for Nuclear Energy partakes into a Quality Management System project, seeking Accreditation under ISO/IEC 17025 through the validation of techniques of chemical and radiometric analysis of environmental samples from water, soil and sediment. The focus of the Radon Laboratory at LAPOC is validation of Ra-226, Ra-228 and Pb-210 concentration determinations in soil and sediment through a gamma spectrometer system. The stages of this validation process included sample reception and preparation, detector calibration and sample analyses. Dried samples were sealed in metallic containers and analyzed after radioactive equilibrium between Ra-226 and daughters Pb-214 and Bi-214. Gamma spectrometry was performed using CANBERRA HPGe detector and gamma spectrum software Genie 2000. The photo peaks used for Ra-226 determination were 609 keV and 1020 keV of Bi-214 and 351 keV of Pb-214. For the Ra-228 determination a photopeak of 911 keV was used from its short half-life daughter Ac-228 (T1/2 = 6.12 h). For Pb-210, the photopeak of 46.5 keV was used, which, due to the low energy, self-absorption correction was needed. Parameters such as precision, bias/accuracy, linearity, detection limit and uncertainty were evaluated for that purpose. The results have pointed to satisfying results. (author)

  18. Application of the alanine detector to gamma-ray, X-ray and fast neutron dosimetry

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.; Hansen, J.W.; Byrski, E.

    1987-01-01

    A dosimeter based on alanine has been developed at the INP in Krakow and at Risoe National Laboratory. Due to its near tissue-equivalence and stability of signal, measured using ESR spectrometry at room temperature, this free-radical amino-acid dosimetric system is particularly suitable for measuring X-ray, gamma-ray and fast neutron doses in the range 10-10 5 Gy. The relative effectiveness (with respect to 60 Co γ-rays) of the alanine dosimeter to 250 kVp X-rays and to cyclotron-produced fast neutrons (mean neutron energy 5.6 MeV) is measured to be 0.76± 0.06 and 0.60±0.05, respectively. The suitability of the alanine dosimeter for intercomparison gamma-ray dosimetry is also shown. The estimated absolute difference between 60 Co dosimetry at Risoe National Laboratory and at the Centre of Oncology in Krakow is about 5%, somewhat more than the experimental uncertainty. These results are based on ESR measurements performed in Krakow on about 25% of the exposed detectors. 28 refs., 2 figs., 3 tabs. (author)

  19. Urban gamma spectrometry. Report 2

    Energy Technology Data Exchange (ETDEWEB)

    Aage, H.K. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Kuukankorpi, S.; Moring, M.; Smolander, P.; Toivonen, H. (Radiation and Nuclear Safety Authority, Helsinki (Finland))

    2009-06-15

    Urban gamma spectrometry has been given only minor attention with the focus being on rural gamma spectrometry. However, in recent years the Nordic emergency management authorities have turned focus towards border control and lost or stolen sources. Gamma spectra measured in urban areas are characterized by a wide variety of spectrum shapes and very fast changes in environmental background. In 2004 a Danish CGS (Carborne Gamma Spectrometry) survey took place in Copenhagen. It was found that gamma spectrometry in urban areas is far more complicated to interpret than had previously been thought and a new method 'Fitting with Spectral Components', FSC, based on NASVD, was tested with some success. In Finland, a database 'LINSSI' has been developed for spectral data management. In CGS search mode a 'peak hypothesis test' is applied to the measured spectra. This system was tested during the Helsinki 2005 Athletics World Championship and it provides fast and reliable automated alarms for intermediate and high level signals. In Sweden mobile detector systems are used for border controls and problems are encountered when making measurement in harbour, container areas. The methods for handling data and for interpretation of urban gamma spectrometry measurements were compared and tested on the same data sets from Copenhagen and Helsinki. Software tools were developed for converting data between the Finnish LINSSI database and the binary file formats used in Denmark and Sweden. The Processing methods used at DTU and STUK have different goals. The ASSS and FSC methods are designed to optimize the overall detection capability of the system, while sacrificing speed, usability and to a certain level robustness. These methods cannot always be used for real time analysis. The Peak Significance method is designed to give robust alarms in real time, while sacrificing some of the detection capability. Thus these methods are not interchangeable, but rather

  20. Urban gamma spectrometry. Report 2

    International Nuclear Information System (INIS)

    Aage, H.K.; Kuukankorpi, S.; Moring, M.; Smolander, P.; Toivonen, H.

    2009-06-01

    Urban gamma spectrometry has been given only minor attention with the focus being on rural gamma spectrometry. However, in recent years the Nordic emergency management authorities have turned focus towards border control and lost or stolen sources. Gamma spectra measured in urban areas are characterized by a wide variety of spectrum shapes and very fast changes in environmental background. In 2004 a Danish CGS (Carborne Gamma Spectrometry) survey took place in Copenhagen. It was found that gamma spectrometry in urban areas is far more complicated to interpret than had previously been thought and a new method 'Fitting with Spectral Components', FSC, based on NASVD, was tested with some success. In Finland, a database 'LINSSI' has been developed for spectral data management. In CGS search mode a 'peak hypothesis test' is applied to the measured spectra. This system was tested during the Helsinki 2005 Athletics World Championship and it provides fast and reliable automated alarms for intermediate and high level signals. In Sweden mobile detector systems are used for border controls and problems are encountered when making measurement in harbour, container areas. The methods for handling data and for interpretation of urban gamma spectrometry measurements were compared and tested on the same data sets from Copenhagen and Helsinki. Software tools were developed for converting data between the Finnish LINSSI database and the binary file formats used in Denmark and Sweden. The Processing methods used at DTU and STUK have different goals. The ASSS and FSC methods are designed to optimize the overall detection capability of the system, while sacrificing speed, usability and to a certain level robustness. These methods cannot always be used for real time analysis. The Peak Significance method is designed to give robust alarms in real time, while sacrificing some of the detection capability. Thus these methods are not interchangeable, but rather complementary. An ideal system

  1. Gamma-ray spectrometry combined with acceptable knowledge (GSAK). A technique for characterization of certain remote-handled transuranic (RH-TRU) wastes. Part 1. Methodology and techniques

    International Nuclear Information System (INIS)

    Hartwell, J.K.; McIlwain, M.E.

    2005-01-01

    Gamma-ray spectrometry combined with acceptable knowledge (GSAK) is a technique for the characterization of certain remote-handled transuranic (RH-TRU) wastes. GSAK uses gamma-ray spectrometry to quantify a portion of the fission product inventory of RH-TRU wastes. These fission product results are then coupled with calculated inventories derived from acceptable process knowledge to characterize the radionuclide content of the assayed wastes. GSAK has been evaluated and tested through several test exercises. GSAK approach is described, while test results are presented in Part II. (author)

  2. Assessment of the suitability of different random number generators for Monte Carlo simulations in gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Cornejo Diaz, N.; Vergara Gil, A.; Jurado Vargas, M.

    2010-01-01

    The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations.

  3. Assessment of the suitability of different random number generators for Monte Carlo simulations in gamma-ray spectrometry.

    Science.gov (United States)

    Díaz, N Cornejo; Gil, A Vergara; Vargas, M Jurado

    2010-03-01

    The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Measurement of prompt fission gamma-ray spectra in fast neutron-induced fission

    International Nuclear Information System (INIS)

    Laborie, J.M.; Belier, G.; Taieb, J.

    2012-01-01

    Knowledge of prompt fission gamma-ray emission has been of major interest in reactor physics for a few years. Since very few experimental spectra were ever published until now, new measurements would be also valuable to improve our understanding of the fission process. An experimental method is currently being developed to measure the prompt fission gamma-ray spectrum from some tens keV up to 10 MeV at least. The mean multiplicity and total energy could be deduced. In this method, the gamma-rays are measured with a bismuth germanate (BGO) detector which has the advantage to present a high P/T ratio and a high efficiency compared to other gamma-ray detectors. The prompt fission neutrons are rejected by the time of flight technique between the BGO detector and a fission trigger given by a fission chamber or a scintillating active target. Energy and efficiency calibration of the BGO detector were carried out up to 10.76 MeV by means of the Al-27(p, gamma) reaction. First prompt fission gamma-ray spectrum measurements performed for the spontaneous fission of Cf-252 and for 1.7 and 15.6 MeV neutron-induced fission of U-238 at the CEA, DAM, DIF Van de Graaff accelerator, will be presented. (authors)

  5. An optimum analysis sequence for environmental gamma-ray spectrometry

    International Nuclear Information System (INIS)

    De la Torre, F.; Rios M, C.; Ruvalcaba A, M. G.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J. L.

    2010-10-01

    This work aims to obtain an optimum analysis sequence for environmental gamma-ray spectroscopy by means of Genie 2000 (Canberra). Twenty different analysis sequences were customized using different peak area percentages and different algorithms for: 1) peak finding, and 2) peak area determination, and with or without the use of a library -based on evaluated nuclear data- of common gamma-ray emitters in environmental samples. The use of an optimum analysis sequence with certified nuclear information avoids the problems originated by the significant variations in out-of-date nuclear parameters of commercial software libraries. Interference-free gamma ray energies with absolute emission probabilities greater than 3.75% were included in the customized library. The gamma-ray spectroscopy system (based on a Ge Re-3522 Canberra detector) was calibrated both in energy and shape by means of the IAEA-2002 reference spectra for software intercomparison. To test the performance of the analysis sequences, the IAEA-2002 reference spectrum was used. The z-score and the reduced χ 2 criteria were used to determine the optimum analysis sequence. The results show an appreciable variation in the peak area determinations and their corresponding uncertainties. Particularly, the combination of second derivative peak locate with simple peak area integration algorithms provides the greater accuracy. Lower accuracy comes from the combination of library directed peak locate algorithm and Genie's Gamma-M peak area determination. (Author)

  6. Burnup determination of power reactor fuel elements by gamma spectrometry; Determination par spectrometrie {gamma} du taux d'irradiation des elements combustibles des reacteurs de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Robin, M; Jastrzeb, M; Boisliveau, S; Boyer, R; Vidal, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    This report describes a method for determining by {gamma} spectrometry the burn up and the specific power of fuel elements irradiated in power reactors. The energy spectrum of {gamma} rays emitted by fission products is measured by means of a simple equipment using a sodium iodide detector and a multichannel analyzer. In order to extract from the spectrum a quantity proportional to the burn up, it is necessary to: - isolate an activity specific of one emitter,- give the same importance to fissions in uranium and plutonium - take into account the radioactive decay during and after irradiation. One hundred fuel elements were studied and burn up values obtained by {gamma} spectrometry are compared to results given by chemical analyses. Preliminary measurements show that the accuracy of the results is greatly increased by the use of a germanium detector, due to its good resolution. (authors) [French] Ce rapport expose une methode de determination par spectrometrie {gamma} du taux d'irradiation et de la puissance specifique des elements combustibles irradies dans les reacteurs de puissance. Une installation simple utilisant un detecteur d'iodure de sodium et un selecteur multicanaux mesure le spectre en energie du rayonnement {gamma} emis par les produits de fission. Afin d'extraire du spectre une quantite proportionnelle au taux de combustion, il faut: - isoler une activite specifique a un emetteur, - donner la meme importance aux fissions survenues dans l'uranium et le plutonium, - prendre en compte la decroissance radioactive pendant et apres l'irradiation. Les mesures ont porte sur une centaine d'elements combustibles et les taux de combustion obtenus par spectrometrie {gamma} sont compares aux resultats des analyses chimiques. Des mesures preliminaires montrent que l'utilisation d'un detecteur de germanium augmente considerablement la precision des resultats, en raison de son excellente resolution. (auteurs)

  7. Investigation by gamma-ray spectrometry and INAA of radioactivity impact on phosphate fertilizer plant environment

    International Nuclear Information System (INIS)

    Pantelica, A.; Companis, I.; Georgescu, I. I.; Pincovshi, E.

    2006-01-01

    The radioactive polluting effect of a phosphate fertilizer plant on the environment was investigated by gamma-ray spectrometry and neutron activation analysis (INAA). The hazards could arise from industrial plants using raw phosphate materials to prepare fertilizers for agricultural purposes due to the phosphate rock which, depending on the type and geographical zone of provenance may contain rather large amounts of uranium. The fertilizer plant under study is situated about 4 km from the town of Turnu Magurele, on the left bank of the Danube River in Romania. The main by-products of the factory are: nitro phosphate type fertilizers (NP, NPK), Ammonia, Nitric acid, Ammonium nitrate, Urea, Sulfuric acid, Phosphoric acid, Sodium fluorosilicate and Aluminum sulfate. Gamma-ray spectrometry was used to determine activity concentrations of naturally occurring radionuclides ( 2 26Ra, 2 35U, 2 38U, 2 32Th, and 4 0K), as well as 1 37Cs man-made radionuclide in surface soils collected from semicircular areas within radii of 0.5 and 15 km of the plant; in addition, different NPK type fertilizers and phosphate rocks were investigated. The samples (mass of about 100-g each) were kept tightly closed for one month to permit 2 26Ra to establish radioactive equilibrium with its decay products. This method makes it possible to assess U, Th, and K contents in samples by measuring 2 38U and 2 32Th (in equilibrium with their radioactive daughters) and 4 0K radioactivity, taken into account that 1 g of U, Th and K yield 1 2358 Bq 2 38U, 569 Bq 2 35U, 4057.2 Bq 2 32Th and 33.11 Bq 4 0K, respectively. The spectrometrical chain was based on a HPGe (EG and G Ortec) detector of 30 % relative efficiency and 2.1 keV resolution at 1332 keV of 6 0Co. INAA technique (neutron irradiation at TRIGA reactor of SCN Pitesti) was used to determine macro, micro and trace elements in samples collected from both technological shops of the factory (air dust and drinking tap water) and its surroundings

  8. A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Yoo, Byung Ju; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seung Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 500-712 (Korea, Republic of); Rhee, Yong Joo [Nuclear Data Center, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Shin, Jung Hun; Jo, Sung Ha [Advanced Photonics Research Institute, GIST, Gwangju 500-712 (Korea, Republic of); Hojbota, Calin; Cho, Byeoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 500-712 (Korea, Republic of)

    2015-12-15

    We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime.

  9. Gamma-ray spectrometry combined with acceptable knowledge (GSAK). A technique for characterization of certain remote-handled transuranic (RH-TRU) wastes. Part 2. Testing and results

    International Nuclear Information System (INIS)

    Hartwell, J.K.; McIlwain, M.E.

    2005-01-01

    Gamma-ray spectrometry combined with acceptable knowledge (GSAK) is a technique for the characterization of certain remote-handled transuranic (RH-TRU) wastes. GSAK uses gamma-ray spectrometry to quantify a portion of the fission product inventory of RH-TRU wastes. These fission product results are then coupled with calculated inventories derived from acceptable process knowledge to characterize the radionuclide content of the assayed wastes. GSAK has been evaluated and tested through several test exercises. These tests and their results are described; while the former paper in this issue presents the methodology, equipment and techniques. (author)

  10. Comparative study of the gamma spectrometry method performance in different measurement geometries

    International Nuclear Information System (INIS)

    Diaconescu, C.; Ichim, C.; Bujoreanu, L.; Florea, I.

    2013-01-01

    This paper presents the results obtained by gamma spectrometry on aqueous liquid waste sample using different measurement geometries. A liquid waste sample with known gamma emitters content was measured in three different geometries in order to assess the influence of the geometry on the final results. To obtain low measurement errors, gamma spectrometer was calibrated using a calibration standard with the same physical and chemical characteristics as the sample to be measured. Since the calibration was performed with the source at contact with HPGe detector, the waste sample was also measured, for all the three geometries, at the detector contact. The influence of the measurement geometry on the results was evaluated by computing the relative errors. The measurements performed using three different geometries (250 ml plastic vial, Sarpagan box and 24 ml Tricarb vial) showed that all these geometries may be used to quantify the activity of gamma emitters in different type of radioactive waste. (authors)

  11. ICF burn-history measurments using 17-MeV fusion gamma rays

    International Nuclear Information System (INIS)

    Lerche, R.A.; Cable, M.D.; Dendooven, P.G.

    1995-01-01

    Fusion reaction rate for inertial-confinement fusion (ICF) experiments at the Nova Laser Facility is measured with 30-ps resolution using a high-speed neutron detector. We are investigating a measurement technique based on the 16.7-MeV gamma rays that are released in deuterium-tritium fusion. Our concept is to convert gamma-ray energy into a fast burst of Cerenkov light that can be recorded with a high-speed optical detector. We have detected fusion gamma rays in preliminary experiments conducted at Nova where we used a tungsten/aerogel converter to generate Cerenkov light and an optical streak camera to record the signal

  12. Application of gamma spectrometry survey and discussion on data processing

    International Nuclear Information System (INIS)

    Li Ji'an; He Jianguo

    2008-01-01

    This paper analyzed and discussed the different opinions about the measured parameters of gamma spectrometry data, introduced the effect of gamma spectrometry survey to the search for sandstone type uranium deposit. The author believes that it is very necessary to perform some ground gamma spectrometry survey and enforce the development and application of airborne radiometric data so as to carry out the role of gamma spectrometry in the exploration of sandstone type uranium deposit. (authors)

  13. Natural Radioactivity in Geological Samples from Algeria by SSNTD and γ-Ray Spectrometry

    International Nuclear Information System (INIS)

    Belafrites, A.

    2009-01-01

    Results of Solid State Nuclear Track Detector (SSNTD) measurements of natural radioactivity using contact autoradiography for the determination of uranium and non-contact autoradiography for radon emanation are presented. The study is complemented by gamma -ray spectrometric results. The SSNTD method applied to geological samples has given uranium concentrations consistent with those found by gamma -ray spectrometry. The results for uranium concentration and radon emanation show excellent agreement with the few values available in other works

  14. Advances in gamma ray resonant scattering and absorption long-lived isomeric nuclear states

    CERN Document Server

    Davydov, Andrey V

    2015-01-01

    This book presents the basics and advanced topics of research of gamma ray physics. It describes measuring of  Fermi surfaces with gamma resonance spectroscopy and the theory of angular distributions of resonantly scattered gamma rays. The dependence of excited-nuclei average lifetime on the shape of the exciting-radiation spectrum and electron binding energies in the spectra of scattered gamma rays is described. Resonant excitation by gamma rays of nuclear isomeric states with long lifetime leads to the emission and absorption lines. In the book, a new gamma spectroscopic method, gravitational gamma spectrometry, is developed. It has a resolution hundred million times higher than the usual Mössbauer spectrometer. Another important topic of this book is resonant scattering of annihilation quanta by nuclei with excited states in connection with positron annihilation. The application of the methods described is to explain the phenomenon of Coulomb fragmentation of gamma-source molecules and resonant scatt...

  15. Multivariate statistical approximation of the in situ gamma-ray spectrometry of the State of Zacatecas, Mexico

    International Nuclear Information System (INIS)

    Lopez I, J. F.; Rios M, C.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J.L.

    2017-09-01

    The environmental radioactivity evaluation is a key point in the assessment of the environmental quality. Through this, it can be found possible radioactive contamination, locate possible Uranium and Thorium deposits and evaluate the primordial isotopes concentration due to human activities. A radioactive map of the Zacatecas State, Mexico is under construction based on in situ gamma-ray spectrometry. The present work reports the results of the multivariate statistical approximation of the measured activity data. Based on Pearson correlation, the 228 Ac and 208 Tl activities are statistically significant, while the 214 Bi and 214 Pb activities are not statistically significant. These can be due to the existence or not of secular equilibrium in the Thorium and Uranium series. (Author)

  16. Low-resolution gamma-ray spectrometry for an information barrier based on a multi-criteria template-matching approach

    Energy Technology Data Exchange (ETDEWEB)

    Göttsche, Malte; Schirm, Janet; Glaser, Alexander

    2016-12-21

    Gamma-ray spectrometry has been successfully employed to identify unique items containing special nuclear materials. Template information barriers have been developed in the past to confirm items as warheads by comparing their gamma signature to the signature of true warheads. Their development has, however, not been fully transparent, and they may not be sensitive to some relevant evasion scenarios. We develop a fully open template information barrier concept, based on low-resolution measurements, which, by design, reduces the extent of revealed sensitive information. The concept is based on three signatures of an item to be compared to a recorded template. The similarity of the spectrum is assessed by a modification of the Kolmogorov–Smirnov test to confirm the isotopic composition. The total gamma count rate must agree with the template as a measure of the projected surface of the object. In order to detect the diversion of fissile material from the interior of an item, a polyethylene mask is placed in front of the detector. Neutrons from spontaneous and induced fission events in the item produce 2.223 MeV gamma rays from neutron capture by hydrogen-1 in the mask. This peak is detected and its intensity scales with the item's fissile mass. The analysis based on MCNP Monte Carlo simulations of various plutonium configurations suggests that this concept can distinguish a valid item from a variety of invalid ones. The concept intentionally avoids any assumptions about specific spectral features, such as looking for specific gamma peaks of specific isotopes, thereby facilitating a fully unclassified discussion. By making all aspects public and allowing interested participants to contribute to the development and benchmarking, we enable a more open and inclusive discourse on this matter.

  17. European coordination of environmental airborne gamma ray spectrometry. Final report 1999

    International Nuclear Information System (INIS)

    Sanderson, D.C.; McLeod, J.J.

    1999-04-01

    This Concerted Action was funded under the EURATOM Nuclear Fission Safety Programme of the Fourth Framework Programme, and was initiated to address transnational issues relating to environmental airborne gamma ray spectrometry (AGS). Significant development of AGS systems and teams has taken place within Europe during the period following the Chernobyl accident. The technique is increasingly recognised as particularly relevant to emergency response. It is also uniquely capable of acquiring data on anthropogenic and natural radionuclides on regional, national and international scales, for reference purposes, ecological studies and epidemiological research. Prior to this EU programme the methodologies and systems used by European AGS teams had undergone rapid and largely uncoordinated development. This raised questions about comparability of systems, applications, and data between teams, duplication of research, the scope for transnational cooperation and standardisation, and future research and development needs in the field. This project, which brought together ten AGS teams from across Europe, was formed to address these issues. The work was conducted in three stages and has largely succeeded in its objectives. An active communication network was developed for collaboration and exchange of information, and to start the process of harmonisation of the different methodologies used by individual AGS teams. Two formal partners' meetings were organised, the first aimed at defining the EU capability in AGS, the second, in the form of an international symposium (RADMAGS), was aimed at reviewing developments on future research needs and the scope for standardisation. This report gives full details of the project and its deliverables together with discussion of the further needs in support of transnational harmonisation of this topic. The European Capability for AGS was defined at an early stage of the project, and monitored throughout. An EU Bibliography on AGS

  18. Artificial neural networks application for analysis of gamma ray spectrum obtained from the scintillation detectors

    International Nuclear Information System (INIS)

    Stegowski, Z.

    2002-01-01

    Scintillation detectors are commonly used for the gamma ray detection. Actually the small peak resolution and the significant Compton effect fraction limit their utilization in the gamma ray spectrometry analysis. This article presents the artificial neural networks (ANN) application to the analysis of the gamma ray spectra acquired from scintillation detectors. The obtained results validate the effectiveness of the ANN method to spectrometry analysis. (author)

  19. An optimum analysis sequence for environmental gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    De la Torre, F.; Rios M, C.; Ruvalcaba A, M. G.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J. L., E-mail: fta777@hotmail.co [Universidad Autonoma de Zacatecas, Centro Regional de Estudis Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-10-15

    This work aims to obtain an optimum analysis sequence for environmental gamma-ray spectroscopy by means of Genie 2000 (Canberra). Twenty different analysis sequences were customized using different peak area percentages and different algorithms for: 1) peak finding, and 2) peak area determination, and with or without the use of a library -based on evaluated nuclear data- of common gamma-ray emitters in environmental samples. The use of an optimum analysis sequence with certified nuclear information avoids the problems originated by the significant variations in out-of-date nuclear parameters of commercial software libraries. Interference-free gamma ray energies with absolute emission probabilities greater than 3.75% were included in the customized library. The gamma-ray spectroscopy system (based on a Ge Re-3522 Canberra detector) was calibrated both in energy and shape by means of the IAEA-2002 reference spectra for software intercomparison. To test the performance of the analysis sequences, the IAEA-2002 reference spectrum was used. The z-score and the reduced {chi}{sup 2} criteria were used to determine the optimum analysis sequence. The results show an appreciable variation in the peak area determinations and their corresponding uncertainties. Particularly, the combination of second derivative peak locate with simple peak area integration algorithms provides the greater accuracy. Lower accuracy comes from the combination of library directed peak locate algorithm and Genie's Gamma-M peak area determination. (Author)

  20. Assessment of coal and ash environmental impact with the use of gamma- and X-ray spectrometry

    International Nuclear Information System (INIS)

    Kierzek, J.; Malozewska-Bucko, B.; Bukowski, P.; Parus, J.L.; Ciurapisnki, A.; Zaras, S.; Kunach, B.; Wiland, K.

    1999-01-01

    Gamma-ray spectrometry (GS), energy dispersive X-ray fluorescence (EDXRF) analysis methods and wavelength dispersive X-ray fluorescence (WDXRF) were applied for the studies of some coal components, e.g., sulphur, light and heavy metal element concentrations and naturally occurring radioactive isotope contents. Hundred fifty coal samples originating mostly from eight different coal mines from Upper Silesian Coal Basin and 150 samples of ash obtained from these coal samples in laboratory by total combustion at final temperature of 820 deg C, were analyzed. Such comparative analyses can be helpful in selection of most suitable kind of coal for burning in electrical power and heat plants to minimize the environmental pollution. (author)

  1. Determination of U, Th and K in bricks by gamma-ray spectrometry, X-ray fluorescence analysis and neutron activation analysis

    Science.gov (United States)

    Bártová, H.; Kučera, J.; Musílek, L.; Trojek, T.; Gregorová, E.

    2017-11-01

    Knowledge of the content of natural radionuclides in bricks can be important in some cases in dosimetry and application of ionizing radiation. Dosimetry of naturally occurring radionuclides in matter (NORM) in general is one of them, the other one, related to radiation protection, is radon exposure evaluation, and finally, it is needed for the thermoluminescence (TL) dating method. The internal dose rate inside bricks is caused mostly by contributions of the natural radionuclides 238U, 232Th, radionuclides of their decay chains, and 40K. The decay chain of 235U is usually much less important. The concentrations of 238U, 232Th and 40K were measured by various methods, namely by gamma-ray spectrometry, X-ray fluorescence analysis (XRF), and neutron activation analysis (NAA) which was used as a reference method. These methods were compared from the point of view of accuracy, limit of detection (LOD), amount of sample needed and sample handling, time demands, and instrument availability.

  2. Measuring the radium quartet (228Ra, 226Ra, 224Ra, 223Ra) in seawater samples using gamma spectrometry

    International Nuclear Information System (INIS)

    Beek, P. van; Souhaut, M.; Reyss, J.-L.

    2010-01-01

    Radium isotopes are widely used in marine studies (eg. to trace water masses, to quantify mixing processes or to study submarine groundwater discharge). While 228 Ra and 226 Ra are usually measured using gamma spectrometry, short-lived Ra isotopes ( 224 Ra and 223 Ra) are usually measured using a Radium Delayed Coincidence Counter (RaDeCC). Here we show that the four radium isotopes can be analyzed using gamma spectrometry. We report 226 Ra, 228 Ra, 224 Ra, 223 Ra activities measured using low-background gamma spectrometry in standard samples, in water samples collected in the vicinity of our laboratory (La Palme and Vaccares lagoons, France) but also in seawater samples collected in the plume of the Amazon river, off French Guyana (AMANDES project). The 223 Ra and 224 Ra activities determined in these samples using gamma spectrometry were compared to the activities determined using RaDeCC. Activities determined using the two techniques are in good agreement. Uncertainties associated with the 224 Ra activities are similar for the two techniques. RaDeCC is more sensitive for the detection of low 223 Ra activities. Gamma spectrometry thus constitutes an alternate method for the determination of short-lived Ra isotopes.

  3. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Fichtel, C.E.

    1975-01-01

    The first certain detection of celestial high energy gamma rays came from a satellite experiment flown on the third Orbiting Solar Observatory (OSO-111). A Gamma ray spark chamber telescope with substantively greater sensitivity and angular resolution (a few degrees) flown on the second Small Astronomy Satellite (SAS-II) has now provided a better picture of the gamma ray sky, and particularly the galactic plane and pulsars. This paper will summarize the present picture of gamma ray astronomy as it has developed at this conference from measurements made with experiments carried out on balloons, those remaining on the ground, and ones flown on satellites. (orig.) [de

  4. Correlation analysis of measurement result between accelerator mass spectrometry and gamma counter

    International Nuclear Information System (INIS)

    Minamimoto, Ryogo; Cheng, C.; Oka, Takashi; Inoue, Tomio; Hamabe, Yoshimi; Shimoda, Marika

    2010-01-01

    The guidelines for microdosing in clinical trials were published in Japan in 2008 following the guidelines of the European Medicines Agency and the Food and Drug Administration. They recommend utilizing accelerator mass spectrometry (AMS) and positron emission tomography as candidates for monitoring drug metabolites in preclinical studies. We correlate the two methods by measuring appropriately labeled tissue samples from various mouse organs using both AMS and gamma counter. First, we measured the 14 C background levels in mouse organs using the AMS system. We then clarified the relationship between AMS and gamma counter by simultaneously administering 14 C-2-fluoro-2-deoxyglucose ( 14 C-FDG) and 18 F-2-fluoro-2-deoxyglucose ( 18 F-FDG). Tissue distribution was examined after 30 min, 1 h, 2 h and 4 h using the AMS system for 14 C-FDG and gamma counter for 18 F-FDG. Background 14 C levels were subtracted from the data obtained with radiotracer administration. The background 14 C concentration differed with tissue type measured. Background 14 C concentration in mouse liver was higher than in other organs, and was approximately 1.5-fold that in blood. The correlation coefficient (r) of the measurements between AMS ( 14 C-FDG) and gamma counter ( 18 F-FDG) was high in both normal (0.99 in blood, 0.91 in brain, 0.61 in liver and 0.78 in kidney) and tumor-bearing mice (0.95 in blood and 0.99 in tumor). The clearance profile of 18 F-FDG was nearly identical to that of 14 C-FDG measured with AMS. Accelerator mass spectrometry analysis has an excellent correlation with biodistribution measurements using gamma counter. Our results suggest that the combination of AMS and positron emission tomography (PET) can act as a complementary approach to accelerate drug development. (author)

  5. Simultaneous determination of Ra-226, natural uranium and natural thorium by gamma-ray spectrometry INa(Ti), in solid samples

    International Nuclear Information System (INIS)

    Salvador, S.; Navarro, T.; Alvarez, A.

    1991-01-01

    A method has been developed to determine activities of Ra-226, natural uranium and natural thorium by gamma-ray spectrometry. The measurement system has been calibrated using standards specially prepared at the laboratory. It is necessary to assume secular equilibrium in the samples, between Ra-226 and Th-232 and its daughters nuclides, and between U-238 and its immediate daughter Th-234, as the photo peaks measured are those of the daughters. The results obtained indicate that this method can of ter replace the radiochemical techniques used to measure activities in this type of sample. The method has been successfully used to determine these natural isotopes in samples from uranium mills. (Author) 9 refs

  6. International comparison of methods to test the validity of dead-time and pile-up corrections for high-precision. gamma. -ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Houtermans, H.; Schaerf, K.; Reichel, F. (International Atomic Energy Agency, Vienna (Austria)); Debertin, K. (Physikalisch-Technische Bundesanstalt, Braunschweig (Germany, F.R.))

    1983-02-01

    The International Atomic Energy Agency organized an international comparison of methods applied in high-precision ..gamma..-ray spectrometry for the correction of dead-time and pile-up losses. Results of this comparison are reported and discussed.

  7. Multidimensional Gamma-Ray Spectrometry and its Use in Biology; La Spectrometry Gamma Multidimensionnelle et son Application en Biologie; Mnogomernaya spektrometriya gamma-luchej i ee ispol'zovanie v biologii; La Espectrometria Gamma Multidimensional y su Empleo en Biologia

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, J. M.; Kornberg, H. A. [Battelle Memorial Institute, Pacific Northwest Laboratory, Richland, WA (United States)

    1965-10-15

    Multidimensional gamma-ray spectrometry is a new technique for the measurement of radionuclides which has special application in biology. This instrumental technique allows direct identification and measurement of individual gamma-ray emitters in complex mixtures of radionuclides in diverse sample matrices without prior chemical treatment. The detector system is designed to provide: high sensitivity through use of two large (6-in diam., 4-in thick) Nal(Tl) detectors; high selectivity by using coincidence counting techniques which separate gamma ray spectra by taking advantage of the gamma-ray decay characteristics of each radionuclide ; and ultra-low background and reduced Compton interference through a surrounding anticoincidence annulus detector (a NaI(Tl) crystal 11 Vulgar-Fraction-One-Half -in thick with a 6 Vulgar-Fraction-One-Half - in - diam. hole). A 4096-channel multidimensional analyser analyses the two gamma-rays in coincidence according to their energies and stores them in the plane of the 64 X 64-channel memory while non-coincident events are stored only on the axes of the memory. This effectively decreases the background and Compton interference by orders of magnitude while greatly improving the selectivity. Direct gamma-ray spectrometric measurement of trace levels of radionuclides in biological samples has been inhibited by the presence of relatively large amounts of natural 4 Degree-Sign K whose 1.47 MeV gamma-radiation has interfered with their measurement. Since most radionuclides decay through emission of two or more gamma-rays in cascade the new technique does provide a direct selective measurement and permits wider application. For example, {sup 22}Na (a naturally occurring cosmic-ray produced radionuclide), {sup 134}Cs and {sup 137}Cs (fission products) can be readily measured at existing levels (in some cases at less than 1 dpmAg) in meat, fish, foodstuffs, as well as in urine, so that uptake-excretion studies are possible. This technique

  8. Radioactivity measurements in soils surrounding four coal-fired power plants in Serbia by gamma-ray spectrometry and estimated dose

    Directory of Open Access Journals (Sweden)

    Vukašinović Ivana Ž.

    2014-01-01

    Full Text Available The study of spatial distribution of activity concentration of 238U, 226Ra, 210Pb, 232Th, 40K, and 137Cs radionuclides in the surface soil samples (n = 42 collected in the vicinity of four coal-fired power plants in Serbia is presented. Radioactivity measurements in soils performed by gamma-ray spectrometry showed values [Bqkg-1] in the range: 15-117 for 238U, 21-115 for 226Ra, 33-65 for 210Pb, 20-69 for 232Th, 324-736 for 40K, and 2-59 for 137Cs. Surface soil radio-activity that could have resulted from deposition of radionuclides from airborne discharges or resuspension of ash from disposal sites showed no enhanced levels. It was found that variation of soil textural properties, pH values, and carbonate content influenced activity levels of natural radionuclides while radiocesium activities were associated with soil organic matter content. Modification of some soil properties was observed in the immediate vicinity (<1 km of power plants where the soil was more alkaline with coarser particles (0.2-0.05 mm and carbonates accumulated. Calculated average values of the absorbed gamma dose rate and annual external effective dose originating from the terrestrial radionuclides were 69.4 nGy/h and 0.085 mSv, respectively. [Projekat Ministarstva nauke Republike Srbije, br. 4007: Studying climate change and its influence on the environment: impacts, adaptation and mitigation

  9. Measurements of atmospheric and gamma rays-balloon experiments at subantartic region

    International Nuclear Information System (INIS)

    Jayanthi, U.B.; Correa, R.V.; Blanco, F.G.

    1986-01-01

    The results of two stratospheric balloon experiments conducted to measure the atmospheric X and gamma rays are presented. These experiments, conducted at Comandante Ferraz base in subantarctic region, have provided the spectrum of ground radioactivity in gamma rays (0.2 to 2.9 MeV) and atmospheric X-ray spectra at different altitudes. We specifically chose to discuss the observed ceiling spectrum of X-rays in the 28 to 180KeV region observed at 7.0 g. cm -2 . We have utilized the data of other experiments with different telescope geometries, to evaluate the builup effects due to cosmic ray secondaries in atmosphere. This behaviour, previoulsy studied for atmospheric gamma rays, permitted to compare the up/down flux rations to explain the observed atmospheric X-ray spectrum. (Author) [pt

  10. Peak-by-peak correction of Ge(Li) gamma-ray spectra for photopeaks from background

    Energy Technology Data Exchange (ETDEWEB)

    Cutshall, N H; Larsen, I L [Oak Ridge National Lab., TN (USA)

    1980-12-01

    Background photopeaks can interfere with accurate measurement of low levels of radionuclides by gamma-ray spectrometry. A flowchart for peak-by-peak correction of sample spectra to produce accurate results is presented.

  11. Optimization of a neural network model for signal-to-background prediction in gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Dragovic, S.; Onjia, A. . E-mail address of corresponding author: sdragovic@inep.co.yu; Dragovic, S.)

    2005-01-01

    The artificial neural network (ANN) model was optimized for the prediction of signal-to-background (SBR) ratio as a function of the measurement time in gamma-ray spectrometry. The network parameters: learning rate (α), momentum (μ), number of epochs (E) and number of nodes in hidden layer (N) were optimized simultaneously employing variable-size simplex method. The most accurate model with the root mean square (RMS) error of 0.073 was obtained using ANN with online backpropagation randomized (OBPR) algorithm with α = 0.27, μ 0.36, E = 14800 and N = 9. Most of the predicted and experimental SBR values for the eight radionuclides ( 226 Ra, 214 Bi, 235 U, 40 K, 232 Th, 134 Cs, 137 Cs and 7 Be), studied in this work, reasonably agreed to within 15 %, which was satisfactory accuracy. (author)

  12. System for Gamma an X rays fluorescence spectrometric

    International Nuclear Information System (INIS)

    Alonso Abad, D.; Arista Romeu, E.; Bolanos Perez, L. and others

    1997-01-01

    A system for spectrometry of gamma or fluorescence X rays is presented. It sis composed by a Si(Li) semiconductors detector, a charge sensitive preamplifier, a high voltage power supply, a spectrometric amplifier and a monolithic 1024 channels multichannel analyzers or an IBM compatible 4096 channels add - on- card multichannel analyzer. The system can be configured as a 1024 or 4096 channels gamma or fluorescent X rays spectrometer

  13. Computer-controlled gamma-ray scanner for irradiated reactor fuel

    International Nuclear Information System (INIS)

    Mandler, J.W.; Coates, R.A.; Killian, E.W.

    1979-01-01

    Gamma-ray scanning of irradiated fuel is an important nondestructive technique used in the thermal fuels behavior program currently under way at the Idaho National Engineering Laboratory. This paper is concerned with the computer-controlled isotopic gamma-ray-scanning system developed for postirradiation examination of fuel and includes a brief discussion of some scan results obtained from fuel rods irradiated in the Power-Burst Facility to illustrate gamma-ray spectrometry for this application. Both burnup profiles and information concerning fission-product migration in irradiated fuel are routinely obtained with the computer-controlled system

  14. Determining the solar-flare photospheric scale height from SMM gamma-ray measurements

    Science.gov (United States)

    Lingenfelter, Richard E.

    1991-01-01

    A connected series of Monte Carlo programs was developed to make systematic calculations of the energy, temporal and angular dependences of the gamma-ray line and neutron emission resulting from such accelerated ion interactions. Comparing the results of these calculations with the Solar Maximum Mission/Gamma Ray Spectrometer (SMM/GRS) measurements of gamma-ray line and neutron fluxes, the total number and energy spectrum of the flare-accelerated ions trapped on magnetic loops at the Sun were determined and the angular distribution, pitch angle scattering, and mirroring of the ions on loop fields were constrained. Comparing the calculations with measurements of the time dependence of the neutron capture line emission, a determination of the He-3/H ratio in the photosphere was also made. The diagnostic capabilities of the SMM/GRS measurements were extended by developing a new technique to directly determine the effective photospheric scale height in solar flares from the neutron capture gamma-ray line measurements, and critically test current atmospheric models in the flare region.

  15. In situ gamma-ray spectrometry: A tutorial for environmental radiation scientists

    International Nuclear Information System (INIS)

    Miller, K.M.; Shebell, P.

    1993-10-01

    This tutorial is intended for those in the environmental field who perform assessments in areas where there is radioactive contamination in the surface soil. Techniques will be introduced for performing on-site quantitative measurements of gamma radiation in the environment using high resolution germanium detectors. A basic understanding of ionizing radiation principles is assumed; however, a detailed knowledge of gamma spectrometry systems is not required. Emphasized is the practical end of operations in the field and the conversion of measured full absorption peak count rates in a collected spectrum to meaningful radiological quantities, such as the concentration of a radionuclide in the soil, activity per unit area, and dose rate in the air. The theory of operation and calibration procedures will be covered in detail to provide the necessary knowledge to adapt the technique to site-specific problems. Example calculations for detector calibration are also provided

  16. Peak-by-peak correction of Ge(Li) gamma-ray spectra for photopeaks from background

    International Nuclear Information System (INIS)

    Cutshall, N.H.; Larsen, I.L.

    1980-01-01

    Background photopeaks can interfere with accurate measurement of low levels of radionuclides by gamma-ray spectrometry. A flowchart for peak-by-peak correction of sample spectra to produce accurate results is presented. (orig.)

  17. Multivariate statistical approximation of the in situ gamma-ray spectrometry of the State of Zacatecas, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez I, J. F.; Rios M, C.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J.L., E-mail: fernandolf498@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico)

    2017-09-15

    The environmental radioactivity evaluation is a key point in the assessment of the environmental quality. Through this, it can be found possible radioactive contamination, locate possible Uranium and Thorium deposits and evaluate the primordial isotopes concentration due to human activities. A radioactive map of the Zacatecas State, Mexico is under construction based on in situ gamma-ray spectrometry. The present work reports the results of the multivariate statistical approximation of the measured activity data. Based on Pearson correlation, the {sup 228}Ac and {sup 208}Tl activities are statistically significant, while the {sup 214}Bi and {sup 214}Pb activities are not statistically significant. These can be due to the existence or not of secular equilibrium in the Thorium and Uranium series. (Author)

  18. Levels of 2-dodecylcyclobutanone in ground beef patties irradiated by low-energy X-ray and gamma rays.

    Science.gov (United States)

    Hijaz, Faraj M; Smith, J Scott

    2010-01-01

    Food irradiation improves food safety and maintains food quality by controlling microorganisms and extending shelf life. However, acceptance and commercial adoption of food irradiation is still low. Consumer groups such as Public Citizen and the Food and Water Watch have opposed irradiation because of the formation of 2-alkylcyclobutanones (2-ACBs) in irradiated, lipid-containing foods. The objectives of this study were to measure and to compare the level of 2-dodecylcyclobutanone (2-DCB) in ground beef irradiated by low-energy X-rays and gamma rays. Beef patties were irradiated by low-energy X-rays and gamma rays (Cs-137) at 3 targeted absorbed doses of 1.5, 3.0, and 5.0 kGy. The samples were extracted with n-hexane using a Soxhlet apparatus, and the 2-DCB concentration was determined with gas chromatography-mass spectrometry. The 2-DCB concentration increased linearly (P irradiation dose for gamma-ray and low-energy X-ray irradiated patties. There was no significant difference in 2-DCB concentration between gamma-ray and low-energy X-ray irradiated patties (P > 0.05) at all targeted doses. © 2010 Institute of Food Technologists®

  19. Direct dating of Tantavel man by non-destructive gamma-ray spectrometry of fossil human skull Arago XXI

    International Nuclear Information System (INIS)

    Yokoyama, Yuji; Nguyen, Huu-Van

    1981-01-01

    A new method to date prehistoric samples is proposed. Non-destructive gamma-ray spectrometry with semi-conductor detector was used in the direct determination of the activities of 238 U, 234 U, 231 Pa, 230 Th and 228 Th. An age of (400sub(-96)sup(+infinite))x10 3 years was obtained from the 230 Th/ 238 U ratio of 0.975+-0.030 [fr

  20. Gamma-ray spectroscopy measurements and simulations for uranium mining

    Science.gov (United States)

    Marchais, T.; Pérot, B.; Carasco, C.; Allinei, P.-G.; Chaussonnet, P.; Ma, J.-L.; Toubon, H.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration evaluation by means of gamma measurements. This paper reports gamma-ray spectra, recorded with a high-purity coaxial germanium detector, on standard cement blocks with increasing uranium content, and the corresponding MCNP simulations. The detailed MCNP model of the detector and experimental setup has been validated by calculation vs. experiment comparisons. An optimization of the detector MCNP model is presented in this paper, as well as a comparison of different nuclear data libraries to explain missing or exceeding peaks in the simulation. Energy shifts observed between the fluorescence X-rays produced by MCNP and atomic data are also investigated. The qualified numerical model will be used in further studies to develop new gamma spectroscopy approaches aiming at reducing acquisition times, especially for ore samples with low uranium content.

  1. Iterative inversion of gamma or alpha spectrometry data

    International Nuclear Information System (INIS)

    Nordemann, D.J.R.

    1985-12-01

    Gamma - and alpha ray spectrometry data are processed by an iterative regression method (Wolberg, 1967) to obtain the activities or yields of radionuclides. This method, applied to Nuclear Geophysics Research, permits the use of either selected energy bands or of all the channels one by one. It may be easily programmed in popular microcomputers and offers many advantages such as the use of mixtures of radionuclides for the calibrations and the treatment of the uncertainties on the measurements and results. Several conclusions about the method and options of nuclear data processing are presented. (Author) [pt

  2. Measurements of keV-neutron capture {gamma} rays of fission products. 3

    Energy Technology Data Exchange (ETDEWEB)

    Igashira, Masayuki [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    1997-03-01

    {gamma} rays from the keV-neutron capture reactions by {sup 143,145}Nd and {sup 153}Eu have been measured in a neutron energy region of 10 to 80 keV, using a large anti-Compton NaI(Tl) {gamma}-ray spectrometer and the {sup 7}Li(p,n){sup 7}Be pulsed neutron source with a 3-MV Pelletron accelerator. The preliminary results for the capture cross sections and {gamma}-ray spectra of those nuclei are presented and discussed. (author)

  3. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    International Nuclear Information System (INIS)

    Kheymits, M D; Leonov, A A; Zverev, V G; Galper, A M; Arkhangelskaya, I V; Arkhangelskiy, A I; Yurkin, Yu T; Bakaldin, A V; Suchkov, S I; Topchiev, N P; Dalkarov, O D

    2016-01-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work. (paper)

  4. Gamma-ray sources

    International Nuclear Information System (INIS)

    Hermsen, W.

    1980-01-01

    Results are presented from an analysis of the celestial gamma-ray fine-scale structure based on over half of the data which may ultimately be available from the COS-B satellite. A catalogue consisting of 25 gamma-ray sources measured at energies above 100 MeV is presented. (Auth.)

  5. Natural background gamma-ray spectrum. List of gamma-rays ordered in energy from natural radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Ichimiya, Tsutomu [Japan Radioisotope Association, Tokyo (Japan); Narita, Tsutomu; Kitao, Kensuke

    1998-03-01

    A quick index to {gamma}-rays and X-rays from natural radionuclides is presented. In the list, {gamma}-rays are arranged in order of increasing energy. The list also contains {gamma}-rays from radioactive nuclides produced in a germanium detector and its surrounding materials by interaction with cosmic neutrons, as well as direct {gamma}-rays from interaction with the neutrons. Artificial radioactive nuclides emitting {gamma}-rays with same or near energy value as that of the natural {gamma}-rays and X-rays are also listed. In appendix, {gamma}-ray spectra from a rock, uranium ore, thorium, monazite and uraninite and also background spectra obtained with germanium detectors placed in iron or lead shield have been given. The list is designed for use in {gamma}-ray spectroscopy under the conditions of highly natural background, such as in-situ environmental radiation monitoring or low-level activity measurements, with a germanium detector. (author)

  6. Microwave-gamma ray water in crude monitor

    International Nuclear Information System (INIS)

    Paap, H.J.

    1984-01-01

    A microwave-gamma ray water-in-crude monitoring system measures the percent quantity of fresh water or salt water in crude oil flowing in a pipe line. The system includes a measuring cell arranged with the pipe line so that the crude oil flows through the measuring cell. A microwave transmitter subsystem and a gamma ray source are arranged with the measuring cell so that microwave energy and gamma rays are transmitted through the measuring cell. A microwave receiving subsystem and a gamma ray detector provide signals corresponding to received microwave energy and to the received gamma rays, respectively. Apparatus connected to the microwave receiver and to the gamma ray detector provides an indication of the percentage of water in the crude oil

  7. Study on the Effects of Sample Density on Gamma Spectrometry System Measurement Efficiency at Radiochemistry and Environment Laboratory

    International Nuclear Information System (INIS)

    Wo, Y.M.; Dainee Nor Fardzila Ahmad Tugi; Khairul Nizam Razali

    2015-01-01

    The effects of sample density on the measurement efficiency of the gamma spectrometry system were studied by using four sets multi nuclide standard sources of various densities between 0.3 - 1.4 g/ ml. The study was conducted on seven unit 25 % coaxial HPGe detector gamma spectrometry systems in Radiochemistry and Environment Laboratory (RAS). Difference on efficiency against gamma emitting radionuclides energy and measurement systems were compared and discussed. Correction factor for self absorption caused by difference in sample matrix density of the gamma systems were estimated. The correction factors are to be used in quantification of radionuclides concentration in various densities of service and research samples in RAS. (author)

  8. Development of source-less efficiency calibration procedure for CeBr3 based gamma spectrometry system

    International Nuclear Information System (INIS)

    Verma, Amit K.; Narayani, K.; Pant, Amar D.; Bhosale, Nitin; Anilkumar, S.; Palani Selvam, T.

    2018-01-01

    Scintillation spectrometers are widely used in detection and spectrometry of gamma photons. Sodium Iodide (NaI(Tl)) is the most commonly used scintillation detector for gamma ray spectrometry. However for portable application that require higher efficiency and better resolution Cerium Bromide (CeBr 3 ) crystals are more suitable than NaI(Tl) crystals. CeBr 3 detectors have high light output (∼ 68,000 photons/MeV), good proportionality, fast response and better energy resolution (<4% for 662 keV of 137 Cs), which makes it very promising detector for gamma ray spectrometry. In the present work, experimental and Monte Carlo based efficiencies for CeBr 3 detector for 137 Cs and 60 Co were evaluated

  9. Uranium enrichment measurements without calibration using gamma rays above 100 keV

    International Nuclear Information System (INIS)

    Ruhter, Wayne D.; Lanier, Robert G.; Hayden, Catherine F.

    2001-01-01

    Full text: The verification of UF6 shipping cylinders is an important activity in routine safeguards inspections. Current measurement methods using either sodium-iodide or high-purity germanium detectors requires calibrations that are not always appropriate for field measurements, because of changes in geometry or container wall thickness. The introduction of the MGAU code demonstrated the usefulness of intrinsically calibrated measurements for inspections. MGAU uses the 100-keV region of the uranium gamma-ray spectrum. The thick walls of UF6 shipping cylinders preclude the routine use of MGAU for these measurements. We have developed a uranium enrichment measurement method for measurements using high- purity germanium detectors, which do not require calibration and uses uranium gamma rays above 100 keV. The method uses seven gamma rays from U-235 and U-238 to determine their relative detection efficiency intrinsically and with an additional gamma ray from U-234 the relative abundance of these three uranium isotopes. The method uses a function that describes the basic physical processes that predominately determine the relative detection efficiency curve, These are the detector efficiency, the absorption by the cylinder wall, and the self-absorption by the UF6 contents. We will describe this model and its performance on various uranium materials and detector types. (author)

  10. Self-absorption corrections for gamma ray spectral measurements of 210Pb in environmental samples

    International Nuclear Information System (INIS)

    Miller, K.M.

    1987-01-01

    Theoretical considerations and experimental data are used to demonstrate the basic behaviour of the self-absorption effect of a sample matrix in gamma ray spectrometry, particularly as it relates to the analysis of 210 Pb in environmental media. The results indicate that it may not be appropriate to apply the commonly used self-absorption function in all cases. (orig.)

  11. Measurements of gamma-ray dose from a moderated 252Cf source

    International Nuclear Information System (INIS)

    McDonald, J.C.; Griffith, R.V.; Plato, P.; Miklos, J.

    1983-06-01

    The gamma-ray dose fraction from a moderated 252 Cf source was determined by using three types of dosimetry systems. Measurements were carried out in air at a distance of 35 cm from the surface of the moderating sphere (50 cm from the source which is at the center of the sphere) to the geometrical center of each detector. The moderating sphere is 0.8-mm-thick stainless steel shell filled with D 2 O and covered with 0.5 mm of cadmium. Measurements were also carried out with instruments and dosimeters positioned at the surface of a 40 cm x 40 cm x 15 cm plexiglass irradiation phantom whose front surface was also 35 cm from the surface of the moderating sphere. A-150 tissue-equivalent (TE) plastic ionization chambers and a TE proportional counter (TEPC) were used to measure tissue dose, from which the neutron dose equivalent was computed. The ratio of gamma-ray dose to the neutron dose equivalent was determined by using a relatively neutron-insensitive Geiger-Mueller (GM) counter and thermoluminescent dosimeters (TLD). In addition, the event-size spectrum measured by the TEPC was also used to compute the gamma-ray dose fraction. The average value for the ratio of gamma-ray dose to neutron dose equivalent was found to be 0.18 with an uncertainty of about +-18%

  12. Factors influencing in situ gamma-ray measurements

    Science.gov (United States)

    Loonstra, E. H.; van Egmond, F. M.

    2009-04-01

    Introduction In situ passive gamma-ray sensors are very well suitable for mapping physical soil properties. In order to make a qualitative sound soil map, high quality input parameters for calibration are required. This paper will focus on the factors that affect the output of in situ passive gamma-ray sensors, the primary source, soil, not taken into account. Factors The gamma-ray spectrum contains information of naturally occurring nuclides 40K, 238U and 232Th and man-made nuclides like 137Cs, as well as the total count rate. Factors that influence the concentration of these nuclides and the count rate can be classified in 3 categories. These are sensor design, environmental conditions and operational circumstances. Sensor design The main elements of an in situ gamma-ray sensor that influence the outcome and quality of the output are the crystal and the spectrum analysis method. Material and size of the crystal determine the energy resolution. Though widely used, NaI crystals are not the most efficient capturer of gamma radiation. Alternatives are BGO and CsI. BGO has a low peak resolution, which prohibits use in cases where man-made nuclides are subject of interest. The material is expensive and prone to temperature instability. CsI is robust compared to NaI and BGO. The density of CsI is higher than NaI, yielding better efficiency, especially for smaller crystal sizes. More volume results in higher energy efficiency. The reduction of the measured spectral information into concentration of radionuclides is mostly done using the Windows analysis method. In Windows, the activities of the nuclides are found by summing the intensities of the spectrum found in a certain interval surrounding a peak. A major flaw of the Windows method is the limited amount of spectral information that is incorporated into the analysis. Another weakness is the inherent use of ‘stripping factors' to account for contributions of radiation from nuclide A into the peak of nuclide B. This

  13. Determination of vanadium in titanate-based ferroelectrics by INAA with discriminating gamma-ray spectrometry

    Czech Academy of Sciences Publication Activity Database

    Kameník, Jan; Dragounová, K.; Kučera, Jan; Bryknar, Z.; Trepakov, Vladimír; Strunga, Vladimír

    2017-01-01

    Roč. 311, č. 2 (2017), s. 1333-1338 ISSN 0236-5731. [1st International Conference on Radioanalytical and Nuclear chemistry (RANC). Budapest, 10.04.2016-15.04.2016] R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : Titanate-based ferroelectrics * Vanadium * INAA * discriminating gamma-ray spectrometry Subject RIV: CB - Analytical Chemistry, Separation; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Analytical chemistry; Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 1.282, year: 2016

  14. Low level GAMMA0 spectrometry by beta-gamma coincidence

    International Nuclear Information System (INIS)

    Grigorescu, E.L.; Luca, A.; Razdolescu, A.C.; Ivan, C.

    1999-01-01

    Low level gamma spectrometry has a wide application, especially in environmental monitoring. Two variants, based on a beta-gamma coincidence technique, were studied. The equipment was composed of a beta detector and a Ge(Li) gamma detector (6% - relative efficiency), with the associated electronics. The gamma rays are recorded by the multichannel analyzer (4096 channels) only if the associated beta particles, which precede the gamma transitions, are registered in coincidence. Two types of beta detectors were used: plastic and liquid scintillators. In both cases, an external lead shield of 5 cm thick was used. The integral gamma background (50-1700 KeV) was reduced about 85 and 50 times, respectively. The corresponding MDA (Minimum Detectable Activity) values decreased about 1.5 and (3-7) times, respectively. The 2π sr plastic beta detector was placed on top the Ge(Li). The sample was inserted between the two detectors. The measurement time was 10 4 s. A 4π sr detector, built of the same material, was also studied, but it proved to be less advantageous because the background was reduced only 16 times; for a MDA reduction similar with that of the 2π sr variant, a longer measurement was needed (3.10 4 s). The other type of beta detector used, was a liquid scintillator. The dissolving of the samples in scintillator ensures a 4π sr measurement geometry. The vials with scintillator (10 ml volume) were placed on top the Ge(Li) and visualised by the photocathode of a phototube. This setup was surrounded by an enclosure which prevent the light penetration. The measurement time was 10 4 s. The only difficulty encountered in this low level measurement method is the accurate determination of the beta efficiency. A limitation is the possibility to measure only small mass samples. These variants are more simple and cheaper than others, previously studied. The advantage of the method is obvious when, instead of low MDA values, shorter measurement times are preferred. The

  15. Determination of 210Pb by direct gamma-ray spectrometry, beta counting via 210Bi and alpha-particle spectrometry via 210Po in coal, slag and ash samples from thermal power plant

    International Nuclear Information System (INIS)

    Seslak, Bojan; Vukanac, Ivana; Kandic, Aleksandar; Durasevic, Mirjana; Eric, Milic; Jevremovic, Aleksandar

    2017-01-01

    In order to compare three different techniques and estimate radiological impact, activity concentration of 210 Pb in coal, slag and ash samples from thermal power plant 'Nikola Tesla', Serbia, were measured, and results are presented in this study. Determination of 210 Pb was carried out in three ways: using HPGe gamma spectrometer and via in-growth of 210 Po and 210 Bi by alpha-particle spectrometry and proportional counting, respectively. The results obtained for three different techniques were compared. Statistical analysis and comparison of methods were carried out by combination of Z score and χ 2 statistical tests. Tests results, as well as values of measured activities concentrations obtained by alpha and gamma spectrometry, showed that gamma spectrometry is a valid alternative to time-consuming alpha spectrometry for low level activity measurements of 210 Pb. This remark is also valid even for gamma spectrometers with poor efficiency in low energy region. (author)

  16. Programs for the automatic gamma-ray measurement with CANBERRA 8100/QUANTA system

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Sakai, Eiji; Kubo, Katsumi.

    1982-07-01

    Some programs have been prepared for the automatic operation of the CANBERRA 8100/QUANTA System for the gamma-ray spectrum measurement. The main parts of these programs are: (1) to collect and record on magnetic disks the data of gamma-ray spectra automatically, while the recorded data are analyzed to estimate the nuclides which generate photopeaks of spectra and to calculate those concentrations; (2) to draw plotted diagrams of pulse height distributions of gamma-ray spectra data and other data by the additional digital plotter; and etc. (author)

  17. A New Method for Processing Airborne Gamma Ray Spectrometry Data for Mapping Low Level Contaminations

    DEFF Research Database (Denmark)

    Aage, Helle Karina; Korsbech, Uffe C C; Bargholz, Kim

    1999-01-01

    A new technique for processing airborne gamma ray spectrometry data has been developed. It is based on the noise adjusted singular value decomposition method introduced by Hovgaard in 1997. The new technique opens for mapping of very low contamination levels. It is tested with data from Latvia...... where the remaining contamination from the 1986 Chernobyl accident together with fallout from the atmospheric nuclear weapon tests includes Cs-137 at levels often well below 1 kBq/m(2) equivalent surface contamination. The limiting factors for obtaining reliable results are radon in the air, spectrum...

  18. Radon potential mapping of the Tralee-Castleisland and Cavan areas (Ireland) based on airborne gamma-ray spectrometry and geology.

    Science.gov (United States)

    Appleton, J D; Doyle, E; Fenton, D; Organo, C

    2011-06-01

    The probability of homes in Ireland having high indoor radon concentrations is estimated on the basis of known in-house radon measurements averaged over 10 km × 10 km grid squares. The scope for using airborne gamma-ray spectrometer data for the Tralee-Castleisland area of county Kerry and county Cavan to predict the radon potential (RP) in two distinct areas of Ireland is evaluated in this study. Airborne data are compared statistically with in-house radon measurements in conjunction with geological and ground permeability data to establish linear regression models and produce radon potential maps. The best agreement between the percentage of dwellings exceeding the reference level (RL) for radon concentrations in Ireland (% > RL), estimated from indoor radon data, and modelled RP in the Tralee-Castleisland area is produced using models based on airborne gamma-ray spectrometry equivalent uranium (eU) and ground permeability data. Good agreement was obtained between the % > RL from indoor radon data and RP estimated from eU data in the Cavan area using terrain specific models. In both areas, RP maps derived from eU data are spatially more detailed than the published 10 km grid map. The results show the potential for using airborne radiometric data for producing RP maps.

  19. Development of Real-Time Thickness Measuring System for Insulated Pipeline Using Gamma-ray

    International Nuclear Information System (INIS)

    Jang, Ji Hoon; Kim, Byung Joo; Cho, Kyung Shik; Kim, Gi Dong

    2002-01-01

    By this study, on-line real-time radiometric system was developed using a 64 channels linear array of solid state detectors to measure wall thickness of insulated piping system. This system uses an Ir-192 as a gamma ray source and detector is composed of BGO scintillator and photodiode. Ir-192 gamma ray source and linear detector array mounted on a computer controlled robotic crawler. The Ir-192 gamma ray source is located on one side of the piping components and the detector array on the other side. The individual detectors of the detector array measure the intensity of the gamma rays after passing through the walls and the insulation of the piping component under measurement. The output of the detector array is amplified by amplifier and transmitted to the computer through cable. This system collects and analyses the data from the detector array in real-time as the crawler travels over the piping system. The maximum measurable length of pipe is 120cm/min. in the case of 1mm scanning interval

  20. Application of airborne gamma-ray spectrometry in soil/regolith mapping and applied geomorphology

    International Nuclear Information System (INIS)

    Wilford, J.R.; Bierwirth, P.N.; Craig, M.A.

    1997-01-01

    Gamma-ray spectrometric surveys are an important source of information for soil, regolith and geomorphological studies, as demonstrated by the interpretation of airborne surveys in Western Australia, central New South Wales and north Queensland. Gamma-rays emitted from the ground surface relate to the primary mineralogy and geochemistry of the bedrock, and the secondary weathered materials. Weathering modifies the distribution and concentration of radioelements from the original bedrock source. Once the radioelement response of bedrock and weathered materials is understood, the gamma-ray data can provide information on geomorphic processes and soil/regolith properties, including their mineralogy, texture, chemistry and style of weathering. This information can contribute significantly to an understanding of the weathering and geomorphic history of a region and, therefore, has the potential to be used in developing more effective land-management strategies and refining geochemical models in support of mineral exploration. Gamma-ray imagery is enhanced when combined with Landsat TM bands and digital elevation models (DEM). This synergy enables geochemical information derived from the gamma-ray data to be interpreted within a geomorphic framework. Draping gamma-ray images over DEMs as 3D landscape perspective views aids interpretation and allows the interpreter to visualise complex relationships between the gamma-ray response and landform features. 44 refs.,1 tab., 11 figs

  1. Radon fixation for determination of 224Ra, 226Ra and 228Ra via gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Herranz, M.; Idoeta, R.; Abelairas, A.; Legarda, F.

    2006-01-01

    The aim of this work is the improvement of the procedure for the determination of radium isotopes activities in water, which is done through radiochemical separation and subsequent gamma-ray spectrometry. In addition, radon gas retention is studied using different activated carbon materials. The results of the IAEA Proficiency test: 'Determination of radium and uranium radionuclides in water' of December 2002 [IAEA, 2003. Analytical quality control services: determination of radium and uranium radionuclides in water. Preliminary Report, Seibersdorf] are considered for this work

  2. Implementation and application of the gaussian decomposition software for NaI gamma-ray spectrometry data

    International Nuclear Information System (INIS)

    Zeng Lihui; Wang Nanping Tian Gui

    2011-01-01

    In order to extract the information of peaks in different energy from the data of overlapping peaks in environmental gamma spectrometer, a spectrum data Gaussian decomposition soft is designed based on least- square Gaussian fitting method. The interface of this software is friendly, it can complete the decomposition of overlapping peaks in gamma spectrometer quickly by the way of man-machines interactive. The result that applied gamma spectrometry to data analysis in the field measurement indicates that the Gaussian decomposition soft can efficiently extract 137 Cs from overlapping peaks which has significance to assess the human nuclide contamination of environment. (authors)

  3. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, P.J.A. [Birmingham Univ. (United Kingdom); Adams, J.M.; Bond, D.S.; Watkins, N. [AEA Technology, Harwell (United Kingdom); Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-12-31

    Ion Cyclotron Resonant Heating (ICRH) that is tuned to minority fuel ions can induce an energy diffusion of the heated species and create high energy tail temperatures of {approx} 1 MeV. The most energetic of these accelerated minority ions can undergo nuclear reactions with impurity Be and C that produces {gamma}-ray emission from the decay of the excited product nuclei. This RF-induced {gamma}-ray emission has been recorded using the JET neutron emission profile diagnostic which is capable of distinguishing neutrons and {gamma}-rays. Appropriate data processing has enabled the RF-induced {gamma}-ray emission signals to be isolated from the {gamma}-ray emission signals associated with neutron interactions in the material surrounding the profile monitor. The 2-d {gamma}-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. (author) 6 refs., 4 figs.

  4. Nondestructive and quantitative characterization of TRU and LLW mixed-waste using active and passive gamma-ray spectrometry and computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.C.; Martz, H.E.

    1991-11-12

    The technology being proposed by LLNL is an Active and Passive Computed Tomography (A P CT) Drum Scanner for contact-handled (CH) wastes. It combines the advantages offered by two well-developed nondestructive assay technologies: gamma-ray spectrometry and computed tomography (CT). Coupled together, these two technologies offer to nondestructively and quantitatively characterize mixed- wastes forms. Gamma-ray spectroscopy uses one or more external radiation detectors to passively and nondestructively measure the energy spectrum emitted from a closed container. From the resulting spectrum one can identify most radioactivities detected, be they transuranic isotopes, mixed-fission products, activation products or environmental radioactivities. Spectral libraries exist at LLNL for all four. Active (A) or transmission CT is a well-developed, nondestructive medical and industrial technique that uses an external-radiation beam to map regions of varying attenuation within a container. Passive (P) or emission CT is a technique mainly developed for medical application, e.g., single-photon emission CT. Nondestructive industrial uses of PCT are under development and just coming into use. This report discuses work on the A P CT Drum Scanner at LLNL.

  5. Simultaneous Determination of 30 Trace Elements in Cancerous and Noncancerous Human Tissue Samples with Gamma-ray Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K; Brune, D; Wester, P O

    1963-10-15

    The following trace elements were quantitatively determined by gamma-ray spectrometry in T samples of non-cancerous and 5 samples of cancerous human tissue: P, Ca, Cr, Fe, Co, Cu, Zn, As, Se, Br, Rb, Mo, Ag, Cd, Sb, Cs, La, Au, and Hg. In some of the samples the following elements were qualitatively determined: Ti+Sc, Ga, Sr, In, Ba, Ce, Hf, Os, Pt, and U. Most of the trace elements were found to be present in much higher concentrations in the non-cancerous than in the corresponding cancerous liver samples. In a typical run one sample each of cancerous and non-cancerous tissue was irradiated together with standards of the elements to be determined in a thermal flux of 2.10{sup 13} n/cm{sup 2}/sec. for 24 hours. The radioactive trace elements were separated into 16, and in some cases 18, groups by means of a chemical group separation method. Subsequently, the gamma spectrometric measurements were performed. Two persons can manage the chemical separations and measure the different activities from a run in 1,5 days. A new method of comparing unknown samples with standards was developed.

  6. Open-source implementation of an algorithm for photopeaks search and analysis in gamma-ray spectrometry with semiconductor detectors

    International Nuclear Information System (INIS)

    Maduar, Marcelo F.; Pecequilo, Brigitte R.S.

    2009-01-01

    Radioactivity quantification of gamma-ray emitter radionuclides in samples measured by HPGe gamma spectrometers relies on the analysis of the photopeaks present in the spectra, especially on the accurate determination of their net areas. This paper presents a methodology and an algorithm description for the peak search and analysis in order to obtain the relevant peaks parameters and their uncertainties. The procedure is performed on a three step approach: a preliminary search is done by using the second-difference method; experimental peaks widths are assessed in order to obtain a width vs. channel relationship and to define regions with single or overlapping peaks; a non-linear fit is applied to each region of the spectrum with candidate peaks. The final target function is in the form G(x) = B(x) + F(x), where B(x) is the baseline composed by a sum of a weighed left-side B L (x) and right-side B R (x) base-line quadratic functions and the photopeaks term F(x) is a sum of Gaussian functions. The computational implementation is released entirely in open-source license. The code was developed in C++ language and the interface was developed with Qt GUI software toolkit. GNU scientific library, GSL, was employed to perform linear and non-linear fitting procedures as needed. Spectra previously generated at our laboratories were analyzed with the presented methodology and with the commercial software package WinnerGamma. Results obtained are consistent with those obtained with the aforementioned package, suggesting that it could be safely used in general-purpose gamma-ray spectrometry. (author)

  7. Measurements of neutron and gamma ray streaming through a duct, (2), (3)

    International Nuclear Information System (INIS)

    Hashikura, Hiroyuki; Fukumoto, Hideshi; Akiyama, Masatsugu; Oka, Yoshiaki; An, Shigehiro

    1982-03-01

    Measurements of neutron and gamma ray streaming through a duct measurements of and a cavity in concrete shields were measured in the fast neutron source reactor YAYOI of the University of Tokyo. The neutron spectra measured by a NE213 scintillator and proton recoil counters were compared with the calculations using Monte Carlo code, MORSE-CG. The agreements between the experiments and the calculations were generally satisfactory. The attenuations of neutron and gamma ray in the cavity and the duct were studied in the three experimental configurations. (author)

  8. Correction for sample self-absorption in activity determination by gamma spectrometry

    International Nuclear Information System (INIS)

    Galloway, R.B.

    1991-01-01

    Gamma ray spectrometry is a convenient method of determining the activity of the radioactive components in environmental samples. Commonly samples vary in gamma absorption or differ in absorption from the calibration standards available, so that accurate correction for self-absorption in the sample is essential. A versatile correction procedure is described. (orig.)

  9. Optimization of measurement geometries used by the C.I.R. 'Gamma Spectrometry' working group

    International Nuclear Information System (INIS)

    Escarieux, M.

    1979-01-01

    The choice of measurement geometry is closely tied to the objective sought in gamma quantitative analysis which consists in identifying the radionuclides present in a sample and in determining the voluminal quantities. The too low efficiency of the detector and the levels of activity sought make it necessary to place the sample in contact with the casing of the detector and select a sample geometry suited to the measurement. In point of fact this choice is often determined by other criteria, availability of the container for example, and this leads the laboratories taking part in the 'Gamma Spectrometry' Working Group of the Comite d'Instrumentation de Radioprotection to adopt joint gamma measurement geometries [fr

  10. Very high-energy gamma rays from gamma-ray bursts.

    Science.gov (United States)

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  11. Area specific stripping of lower energy windows for AGS and CGS NaI systems[Airborne Gamma Spectrometry; Carbone Gamma Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Korsbech, U.; Aage, H.K. [Technical Univ. of Denmark (Denmark); Bystroem, S.; Wedmark, M. [Geological Survey of Sweden (Sweden); Thorshaug, S. [Norwegian Radiation Protection Agency (Norway); Bargholz, K. [Danish Emergency Management Agency (Denmark)

    2005-05-01

    The report describes the results from a NKS (Nordic Nuclear Safety Research) project aiming at examining the possibilities for extracting stripping factors for Airborne Gamma-ray Spectrometry (AGS) data and Carborne Gamma-ray Spectrometry (CGS) data directly from the recorded set of data, i.e. without having to calibrate the detector systems on beforehand. The project 'NKS project ASSb' has been carried out between 1 August 2004 and 31 March 2005 by a research group composed of persons from Technical University of Denmark (DTU), Danish Emergency Management Agency (DEMA), Geological Survey of Sweden (SGU), and Norwegian Radiation Protection Authority (NRPA). The AGS and CGS data sets used for the project were recorded by SGU, DEMA, NGU (Geological Survey of Norway), and SSI (Swedish Radiation Protection Institute). Most of the project effort has been directed towards analysing AGS and CGS data with point source signals recorded at the Barents Rescue 2001 LIVEX exercise at Boden in Sweden. Possibilities and limitations for the method have been identified. (au)

  12. High resolution gamma-ray spectrometry of culverts containing transuranic waste at the Savannah River Site

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Sigg, R.

    1990-01-01

    A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in each of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements

  13. Investigation of environmental samples by low-level gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, M [Nuclear Engineering and Analytics Rossendorf, Inc., Dresden (Germany); Niese, S [Nuclear Engineering and Analytics Rossendorf, Inc., Dresden (Germany)

    1997-03-01

    The average sample number in our laboratory is about 200 per month (12% technical solid state, 30% geological solid state, 6% geological solid state with low mass, 12% biological, 11% water directly, 25% water after chemical separation, 4% others). In 54% of the measurements the background continuum, and though the detection limit, is determined only by the detector himself and not by the compton continuum from high energy lines in the sample. Some examples in the presented work aim to prove the advantages of gamma ray spectrometry in the underground laboratory Felsenkeller. (orig./DG)

  14. In-situ gamma spectrometry method for determination of environmental gamma dose; Metodo de espectrometria gamma in situ para determinacao de dose gama ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Claudio de Carvalho

    1995-07-15

    This work tries to establish a methodology for germanium detectors calibration, normally used for in situ gamma ray spectrometry, for determining the environmental exposure rate in function of the energy of the incident photons. For this purpose a computer code has been developed, based on the stripping method, for the computational spectra analysis to calculate the contribution of the partial absorption of the gamma rays (Compton effect) in the active and nonactive parts of the detector. The resulting total absorption spectrum is then converted to fluence distribution in function of the energy for the photons reaching the detector, which is then used to calculate the exposure rate or kerma in air. The unfolding and fluency convention parameters are determined by detector calibration using point gamma sources. The method is validated by comparison of the results against the calculated exposure rate at a point of interest for the standards. This method is used for the direct measurement of the exposure rate distribution in function of the energy at the site, in situ measurement technic, leading to rapid results during an emergency situation and also used for indoor measurements. (author)

  15. Conceptual design of the radial gamma ray spectrometers system for α particle and runaway electron measurements at ITER

    Science.gov (United States)

    Nocente, M.; Tardocchi, M.; Barnsley, R.; Bertalot, L.; Brichard, B.; Croci, G.; Brolatti, G.; Di Pace, L.; Fernandes, A.; Giacomelli, L.; Lengar, I.; Moszynski, M.; Krasilnikov, V.; Muraro, A.; Pereira, R. C.; Perelli Cippo, E.; Rigamonti, D.; Rebai, M.; Rzadkiewicz, J.; Salewski, M.; Santosh, P.; Sousa, J.; Zychor, I.; Gorini, G.

    2017-07-01

    We here present the principles and main physics capabilities behind the design of the radial gamma ray spectrometers (RGRS) system for alpha particle and runaway electron measurements at ITER. The diagnostic benefits from recent advances in gamma-ray spectrometry for tokamak plasmas and combines space and high energy resolution in a single device. The RGRS system as designed can provide information on α ~ particles on a time scale of 1/10 of the slowing down time for the ITER 500 MW full power DT scenario. Spectral observations of the 3.21 and 4.44 MeV peaks from the 9\\text{Be}≤ft(α,nγ \\right){{}12}\\text{C} reaction make the measurements sensitive to α ~ particles at characteristic resonant energies and to possible anisotropies of their slowing down distribution function. An independent assessment of the neutron rate by gamma-ray emission is also feasible. In case of runaway electrons born in disruptions with a typical duration of 100 ms, a time resolution of at least 10 ms for runaway electron studies can be achieved depending on the scenario and down to a current of 40 kA by use of external gas injection. We find that the bremsstrahlung spectrum in the MeV range from confined runaways is sensitive to the electron velocity space up to E≈ 30 -40 MeV, which allows for measurements of the energy distribution of the runaway electrons at ITER.

  16. Rapid non-destructive quantitative estimation of urania/ thoria in mixed thorium uranium di-oxide pellets by high-resolution gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shriwastwa, B.B.; Kumar, Anil; Raghunath, B.; Nair, M.R.; Abani, M.C.; Ramachandran, R.; Majumdar, S.; Ghosh, J.K

    2001-06-01

    A non-destructive technique using high-resolution gamma-ray spectrometry has been standardised for quantitative estimation of uranium/thorium in mixed (ThO{sub 2}-UO{sub 2}) fuel pellets of varying composition. Four gamma energies were selected; two each from the uranium and thorium series and the time of counting has been optimised. This technique can be used for rapid estimation of U/Th percentage in a large number of mixed fuel pellets from a production campaign.

  17. Rapid non-destructive quantitative estimation of urania/ thoria in mixed thorium uranium di-oxide pellets by high-resolution gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Shriwastwa, B.B.; Kumar, Anil; Raghunath, B.; Nair, M.R.; Abani, M.C.; Ramachandran, R.; Majumdar, S.; Ghosh, J.K.

    2001-01-01

    A non-destructive technique using high-resolution gamma-ray spectrometry has been standardised for quantitative estimation of uranium/thorium in mixed (ThO 2 -UO 2 ) fuel pellets of varying composition. Four gamma energies were selected; two each from the uranium and thorium series and the time of counting has been optimised. This technique can be used for rapid estimation of U/Th percentage in a large number of mixed fuel pellets from a production campaign

  18. Characterisation of imperial college reactor centre legacy waste using gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Shuhaimi, Alif Imran Mohd

    2016-01-01

    Waste characterisation is a principal component in waste management strategy. The characterisation includes identification of chemical, physical and radiochemical parameters of radioactive waste. Failure to determine specific waste properties may result in sentencing waste packages which are not compliant with the regulation of long term storage or disposal. This project involved measurement of intensity and energy of gamma photons which may be emitted by radioactive waste generated during decommissioning of Imperial College Reactor Centre (ICRC). The measurement will use High Purity Germanium (HPGe) as Gamma-ray detector and ISOTOPIC-32 V4.1 as analyser. In order to ensure the measurements provide reliable results, two quality control (QC) measurements using difference matrices have been conducted. The results from QC measurements were used to determine the accuracy of the ISOTOPIC software

  19. Characterisation of imperial college reactor centre legacy waste using gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shuhaimi, Alif Imran Mohd [Nuclear Energy Department, Regulatory Economics & Planning Division, Tenaga Nasional Berhad (Malaysia)

    2016-01-22

    Waste characterisation is a principal component in waste management strategy. The characterisation includes identification of chemical, physical and radiochemical parameters of radioactive waste. Failure to determine specific waste properties may result in sentencing waste packages which are not compliant with the regulation of long term storage or disposal. This project involved measurement of intensity and energy of gamma photons which may be emitted by radioactive waste generated during decommissioning of Imperial College Reactor Centre (ICRC). The measurement will use High Purity Germanium (HPGe) as Gamma-ray detector and ISOTOPIC-32 V4.1 as analyser. In order to ensure the measurements provide reliable results, two quality control (QC) measurements using difference matrices have been conducted. The results from QC measurements were used to determine the accuracy of the ISOTOPIC software.

  20. Gamma-ray Output Spectra from 239 Pu Fission

    International Nuclear Information System (INIS)

    Ullmann, John

    2015-01-01

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239 Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution

  1. Development of an open source software of quantitative analysis for radionuclide determination by gamma-ray spectrometry using semiconductor detectors

    International Nuclear Information System (INIS)

    Maduar, Marcelo Francis

    2010-01-01

    Radioactivity quantification of gamma-ray emitter radionuclides in samples measured by HPGe gamma-ray spectrometry relies on the analysis of the photopeaks present in the spectra, especially on the accurate determination of their net areas. Such a task is usually performed with the aid of proprietary software tools. This work presents a methodology, algorithm descriptions and an open source application, called OpenGamma, for the peak search and analysis in order to obtain the relevant peaks parameters and radionuclides activities. The computational implementation is released entirely in open-source license for the main code and with the use of open software packages for interface design and mathematical libraries. The procedure for the peak search is performed on a three step approach. Firstly a preliminary search is done by using the second-difference method, consisting in the generation of a derived spectrum in order to find candidate peaks. In the second step, the experimental peaks widths are assessed and well formed and isolated ones are chosen to obtain a FWHM vs. channel relationship, by application of the Levenberg-Marquardt minimization method for non-linear fitting. Lastly, regions of the spectrum with grouped peaks are marked and a non-linear fit is again applied to each region to obtain baseline and photopeaks terms; from these terms, peaks net areas are then assessed. (author)

  2. Measurements of the low-energy gamma-ray continuum emission from the Galactic Center direction

    International Nuclear Information System (INIS)

    Jardim, M.V.A.; Martin, I.M.; Jardim, J.O.D.

    1982-07-01

    The measurement of the gamma-ray continuum emission from the Galactic Center (GC) can provide us information about the physical processes taking place there at the site of emission. Using the data obtained with a balloon-borne gamma-ray telescope to measure gamma-rays in the energy interval between 0,3 and 3 MeV, which was launched on March 28, 1980 from Cachoeira Paulista (SP), we calculeted two points for the continuum spectrum in the range between 0,34 and 0,67 MeV. The points are related to the GC emission radiated in the longitude interval - 31 0 0 . The measurements are compatible with the observations in 1969 and 1972 by Haymes et alii and Johnson, respectively. The power law spectrum suggests that the main component for the gamma-ray continuum emission below 10 MeV is dominated by the bremsstrahlung due to relativistic electrons. (Author) [pt

  3. Borehole Logging for Uranium by Gamma-Ray Spectrometry

    DEFF Research Database (Denmark)

    Løvborg, Leif; Nyegaard, P.; Christiansen, E. M.

    1980-01-01

    The resources in a large syngenetic deposit of low-grade uranium (U) ore with thorium at Kvanefjeld, South Greenland, were evaluated by spectrometric gamma-ray logging of 23 boreholes, 46 mm in diameter and 200 m deep. The borehole probe's detector contained 22 cm3 of sodium-iodide, and the photo......The resources in a large syngenetic deposit of low-grade uranium (U) ore with thorium at Kvanefjeld, South Greenland, were evaluated by spectrometric gamma-ray logging of 23 boreholes, 46 mm in diameter and 200 m deep. The borehole probe's detector contained 22 cm3 of sodium...... of the spectrometer system were determined by calculating the average number of U and thorium (Th) counts per meter of borehole and comparing these with the U-Th concentrations in 1-m sections of analyzed drill core. The sensitivity and the background count rate in the uranium window varied appreciably from one hole...

  4. Microstructural characterization of industrial foams by gamma ray transmission and X-ray microtomography

    International Nuclear Information System (INIS)

    Rodrigues, Luiz Eduardo

    2004-01-01

    This work presents the total porosity measurements of the aluminum and silicon carbide (SiC) foams samples. For porosity determination the gamma ray transmission and X-ray microtomography with conic beam techniques were used. These methods have more advantage than conventional ones, because they are non destructive and provide more details of the analyzed material porous structure. The aluminum foam samples with 10, 20, 30, 40 and 45 ppi (pores per inch) and SiC ceramic foam samples with 20, 30, 45, 60, 75, 80 and 90 ppi were analysed by gamma transmission. The SiC 60, 75 and 90 ppi samples were also analyzed by X-ray microtomography. For the gamma ray transmission measurements it was used an 241 Am source (59.53 keV), a NaI(Tl) scintillation detector, collimators, a XYZ micrometric table and standard gamma spectrometry electronics connected to a multichannel analyzer, at the LFNA/UEL. For the X-ray microtomographic measurements, the Fein Focus X-ray system of the Nuclear Instrumentation Laboratory of the COPPE, located at the Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, was used. This equipment provide us images with micrometric resolution (53.48 μm) using a conic X-ray beam and bidimensional detection. The microtomographic images were pre-processed and analyzed by the Imago software, developed at Porous Media and Materials Thermophysical Properties Laboratory (LMPT) of the Mechanical Engineering Department, located at Universidade Federal de Santa Catarina, Florianopolis, SC. Employing the The Imago software it was calculated the total porosity, pore size distribution and autocorrelation function C(u) of the binarized microtomographic images of the each sample. The microtomographic 3-D image of each sample was compared with 3-D image reconstructed by the Gaussian truncated method. This method generates a periodic 3-D porous structure by using of the autocorrelation function of one 2-D cross sectional image of the sample. (author)

  5. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    Science.gov (United States)

    Zechlin, H.-S.; Cuoco, A.; Donato, F.; Fornengo, N.; Regis, M.

    2017-01-01

    Photon counts statistics have recently been proven to provide a sensitive observable for characterizing gamma-ray source populations and for measuring the composition of the gamma-ray sky. In this work, we generalize the use of the standard 1-point probability distribution function (1pPDF) to decompose the high-latitude gamma-ray emission observed with Fermi-LAT into: (i) point-source contributions, (ii) the Galactic foreground contribution, and (iii) a diffuse isotropic background contribution. We analyze gamma-ray data in five adjacent energy bands between 1 and 171 GeV. We measure the source-count distribution dN/dS as a function of energy, and demonstrate that our results extend current measurements from source catalogs to the regime of so far undetected sources. Our method improves the sensitivity for resolving point-source populations by about one order of magnitude in flux. The dN/dS distribution as a function of flux is found to be compatible with a broken power law. We derive upper limits on further possible breaks as well as the angular power of unresolved sources. We discuss the composition of the gamma-ray sky and capabilities of the 1pPDF method.

  6. Gamma-ray dosimetry measurements of the Little Boy replica

    International Nuclear Information System (INIS)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis

  7. Precision measurement of radioactivity in gamma-rays spectrometry using two HPGe detectors (BEGe-6530 and GC0818-7600SL models comparison techniques: Application to the soil measurement

    Directory of Open Access Journals (Sweden)

    Guembou Shouop Cebastien Joel

    2017-01-01

    • Proved that the activity concentration determination in gamma spectrometry depended on the energy range emitted by a radionuclide. This study showed that the standard deviation measurement was less important to the result realized with BEGe-6530 HPGe model. Our findings were demonstrated that the results of the Broad Energy Germanium detector were more reliable.

  8. Determination of the Concentration of Radioactive Nuclides of Surface Soils of some Hadhramout's Valleys in Yemen Using Gamma-Ray Spectrometry

    International Nuclear Information System (INIS)

    Bazohair, A. O.; Bayashoot, A. K.; AL-Shamy, A. A.

    2004-01-01

    In this research five surface soil samples have been taken from some Hadhramout's valleys in Yemen (Khrid , Arf , Huwayrah , Buwaish, Khirba ) in the years from (1999) to (2002) and analyzed using gamma-ray spectrometry. The spectra of samples were measured using multichannel analyzer (MCA) that was connected with measurement system for this purpose.A high purity germanium(Hp Ge) detector with resolution of (2.11 keV) at gamma-line(1332 keV) of radioactive source(Co-60) used for detecting ( U 238 , Th 232 , K 40 , Cs 137 ) in the samples. The results showed that the average concentration of radioactive nuclides in the samples of uranium ranged from(37.56 Bq/Kg) to(46.58 Bq/Kg) and for thorium ranged from(37.93 Bq/Kg) to(47.28 Bq/Kg) and for potassium ranged from(347.57 Bq/Kg) to(850.10 Bq/Kg) and for cesium ranged from(6.94 Bq/Kg) to(15.86 Bq/Kg) and the measured precision of samples ranged from(4.71%) to (9.23%). (authors)

  9. Calculation of “LS-curves” for coincidence summing corrections in gamma ray spectrometry

    Science.gov (United States)

    Vidmar, Tim; Korun, Matjaž

    2006-01-01

    When coincidence summing correction factors for extended samples are calculated in gamma-ray spectrometry from full-energy-peak and total efficiencies, their variation over the sample volume needs to be considered. In other words, the correction factors cannot be computed as if the sample were a point source. A method developed by Blaauw and Gelsema takes the variation of the efficiencies over the sample volume into account. It introduces the so-called LS-curve in the calibration procedure and only requires the preparation of a single standard for each sample geometry. We propose to replace the standard preparation by calculation and we show that the LS-curves resulting from our method yield coincidence summing correction factors that are consistent with the LS values obtained from experimental data.

  10. On the Preparation of Working Standards for Gamma-Ray Spectrometry

    International Nuclear Information System (INIS)

    Durasevic, M.; Kandic, A.; Milosevic, Z.; Seslak, B.; Vukanac, I.

    2013-01-01

    In the Laboratory for Radionuclide Metrology at Vinca Institute, activity concentration measurements are routinely performed and numerous calibration standards are required. Thus, a variety of calibration standards whose measurement geometry and chemical composition and density are similar to those of the measured samples were prepared. The standardized solutions of a common mixture of gamma-emitting radionuclides (241Am, 109Cd, 139Ce, 57Co, 60Co,137Cs, 203Hg, 113Sn, 85Sr, 88Y and 210Pb) purchased at the Czech Metrological Institute were used to prepare working standards for efficiency and energy calibration of gamma-ray semiconductor HPGe spectrometer in accordance with the IAEA recommendations. Calibration standards were prepared in different geometries (PVC cylindrical boxes, Marinelly beakers and PVC cylindrical bottles) and with various matrices (mineralized grass, activated carbon, surface soil, water, sand and ached filter paper). The matrix materials were spiked by using the activated carbon as the activity carrier, and homogenized mechanically. A comprehensive review of the procedures and techniques used for working standard preparation is presented in this paper.(author)

  11. Neutron induced gamma spectrometry for on-line compositional analysis in coal conversion and fluidized-bed combustion plants

    International Nuclear Information System (INIS)

    Herzenberg, C.L.; O'Fallon, N.M.; Yarlagadda, B.S.; Doering, R.W.; Cohn, C.E.; Porges, K.G.; Duffey, D.

    1977-01-01

    Nuclear techniques involving relatively penetrating radiation may offer the possibility of non-invasive, continuous on-line instrumental monitoring which is representative of the full process stream. Prompt gamma rays following neutron capture are particularly attractive because the penetrating power of the neutrons and the, typically several MeV, capture gammas makes possible interrogation of material within a pipe. We are evaluating neutron capture gamma techniques for this application, both for elemental composition monitoring and for mass-flow measurement purposes, and this paper will present some recent work on composition analysis by neutron induced gamma spectrometry

  12. Gamma-ray spectroscopy on irradiated fuel rods

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac

    2009-01-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  13. Properties of a large NaI(Tl) spectrometer for the energy measurement of high-energy gamma rays on the Gamma Ray Observatory

    International Nuclear Information System (INIS)

    Hughes, E.B.; Finman, L.C.; Hofstadter, R.; Lepetich, J.E.; Lin, Y.C.; Mattox, J.R.; Nolan, P.L.; Parks, R.; Walker, A.H.

    1986-01-01

    A large NaI(T1) spectrometer is expected to play a crucial role in the measurement of the energy spectra from an all-sky survey of high-energy celestial gamma rays on the Gamma Ray Observatory. The crystal size and requirements of space flight have resulted in a novel crystal-packaging and optics combination. The structure of this spectrometer and the operating characteristics determined in a test program using high energy positrons are described

  14. Determination of protein content in seeds by prompt gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Carbonari, A.W.; Pecequilo, B.R.S.

    1984-01-01

    The protein level in seeds can be directly calculated through the determination of the nitrogen content in grains. The authors show here that the radioactive thermal neutron capture prompt gamma-rays technique can be used to determine the nitrogen content in grains without chemical destruction, with good precision and relative rapidity, by detecting the prompt gamma rays emitted by the 14 N(n,γ) 15 N reaction product. The samples were irradiated in the tangential tube of the IEA-R1 research reactor, in Sao Paulo, and a pair spectrometer was used for the detection of the prompt gamma-rays. The nitrogen content was determined in several samples of soybean, common bean, peas and rice and the results compared with typical nitrogen content values for each grain. 33 references, 1 figure, 1 table

  15. Application of high resolution x-ray spectrometry preceded by neutron activation for elemental analysis of soil samples

    International Nuclear Information System (INIS)

    Hernandez Rivero, A.; Capote Rodriguez, G.; Padilla Alvarez, R.; Herrera Peraza, E.

    1997-01-01

    Utilization of High Resolution X-Ray Spectrometry preceded by activation of the samples by irradiation with neutron fluxes (NAA-RX) is a relatively modern trend in application of nuclear techniques. This method may complement advantageously the usual Neutron Activation Analysis by means of Gamma Spectrometry (NAA-G). In this work results obtained by the application of NAA-RX for non-destructive analysis of Cuban soil samples are discussed. The samples were irradiated with reactor neutron fluxes and the induced characteristic X-rays were measured by using Si(Li)-detector. Concentrations of Fe, Zn and Eu as determined by NAA-RX are compared with both NAA-G and XRF data. For the elaboration of X-Ray and Gamma Spectra the computer programs AXIL and ACTAN were used respectively. (author) [es

  16. Application of high resolution x-ray spectrometry preceded by neutron activation for elemental analysis of soil samples

    International Nuclear Information System (INIS)

    Hernandez Rivero, A.; Capote Rodriguez, G.; Herrera Peraza, E.

    1996-01-01

    Utilization of High Resolution X-Ray Spectrometry preceded by activation of the samples by irradiation with neutron fluxes (NAA R X) is a relatively modern trend in application of nuclear techniques. This method may complement advantageously the usual Neutron Activation Analysis by means of Gamma Spectrometry (NAA-G) In this work results obtained by the application of NAA-RX for non-destructive analysis of Cuban soil samples are discussed. The samples were irradiated with reactor neutron fluxes and the induced characteristic X-rays were measured by using Si(li)-detector. Concentrations of Fe, Zn and Eu as determined by NAA-RX are compared with both NAA-G and XRF data. For the elaboration of X-ray and Gamma Spectra the computer programs AXIL and ACTAN were used respectively

  17. Gamma-ray spectrometry of ultra low levels of radioactivity within the material screening program for the GERDA experiment.

    Science.gov (United States)

    Budjás, D; Gangapshev, A M; Gasparro, J; Hampel, W; Heisel, M; Heusser, G; Hult, M; Klimenko, A A; Kuzminov, V V; Laubenstein, M; Maneschg, W; Simgen, H; Smolnikov, A A; Tomei, C; Vasiliev, S I

    2009-05-01

    In present and future experiments in the field of rare events physics a background index of 10(-3) counts/(keV kg a) or better in the region of interest is envisaged. A thorough material screening is mandatory in order to achieve this goal. The results of a systematic study of radioactive trace impurities in selected materials using ultra low-level gamma-ray spectrometry in the framework of the GERDA experiment are reported.

  18. Low-energy X-ray and gamma spectrometry using silicon photodiodes; Espectrometria de raios X e gama de baixa energia utilizando fotodiodos de silicio

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Iran Jose Oliveira da

    2000-08-01

    The use of semiconductor detectors for radiation detection has increased in recent years due to advantages they present in comparison to other types of detectors. As the working principle of commercially available photodiodes is similar to the semiconductor detector, this study was carried out to evaluate the use of Si photodiodes for low energy x-ray and gamma spectrometry. The photodiodes investigated were SFH-205, SFH-206, BPW-34 and XRA-50 which have the following characteristics: active area of 0,07 cm{sup 2} and 0,25 cm{sup 2}, thickness of the depletion ranging from 100 to 200 {mu}m and junction capacitance of 72 pF. The photodiode was polarized with a reverse bias and connected to a charge sensitive pre-amplifier, followed by a amplifier and multichannel pulse analyzer. Standard radiation source used in this experiment were {sup 241} Am, {sup 109} Cd, {sup 57} Co and {sup 133} Ba. The X-ray fluorescence of lead and silver were also measured through K- and L-lines. All the measurements were made with the photodiodes at room temperature.The results show that the responses of the photodiodes very linear by the x-ray energy and that the energy resolution in FWHM varied between 1.9 keV and 4.4 keV for peaks corresponding to 11.9 keV to 59 keV. The BPW-34 showed the best energy resolution and the lower dark current. The full-energy peak efficiency was also determined and it was observed that the peak efficiency decreases rapidly above 50 keV. The resolution and efficiency are similar to the values obtained with other semiconductor detectors, evidencing that the photodiodes used in that study can be used as a good performance detector for low energy X-ray and gamma spectrometry. (author)

  19. Prospects for Dark Matter Measurements with the Advanced Gamma Ray Imaging System (AGIS)

    Science.gov (United States)

    Buckley, James

    2009-05-01

    AGIS, a concept for a future gamma-ray observatory consisting of an array of 50 atmospheric Cherenkov telescopes, would provide a powerful new tool for determining the nature of dark matter and its role in structure formation in the universe. The advent of more sensitive direct detection experiments, the launch of Fermi and the startup of the LHC make the near future an exciting time for dark matter searches. Indirect measurements of cosmic-ray electrons may already provide a hint of dark matter in our local halo. However, gamma-ray measurements will provide the only means for mapping the dark matter in the halo of our galaxy and other galaxies. In addition, the spectrum of gamma-rays (either direct annihilation to lines or continuum emission from other annihilation channels) will be imprinted with the mass of the dark matter particle, and the particular annihilation channels providing key measurements needed to identify the dark matter particle. While current gamma-ray instruments fall short of the generic sensitivity required to measure the dark matter signal from any sources other than the (confused) region around the Galactic center, we show that the planned AGIS array will have the angular resolution, energy resolution, low threshold energy and large effective area required to detect emission from dark matter annihilation in Galactic substructure or nearby Dwarf spheroidal galaxies.

  20. Gamma and X 93 spectrometry

    International Nuclear Information System (INIS)

    1994-05-01

    The Meetings of Gamma and X 93 Spectrometry were held on 12-14 October 1993. The symposium was organized into six sessions: Instrumentation development, Nuclear matter measurement, Method and calibration, Medical applications, Environment survey (radioactive traces measurement), other applications (spent fuels analysis, various techniques). Separate abstracts were prepared for all the papers in this volume. (TEC)

  1. Performance characteristics of high resolution semiconductor gamma ray spectrometry system

    International Nuclear Information System (INIS)

    Ko Ko Naing

    1994-05-01

    A high purity germanium (HPGe) gamma-ray detector has been used in Nuclear Research Laboratory, Department of Physics, Yangon University for over fourteen years. Now it is still being used and it is coupled to new peripheral devices, such as spectroscopy amplifier, analog to digital converter and computer fit-in S-100 multichannel analyser. Therefore, it is necessary to determine the important parameters: energy resolution, detecting efficiency and relative efficiency of the system. In the present work, these parameters were obtained by using mixed calibrated source. The results were compared to the data given by the manufacturer. Moreover, the parameters of another γ-ray detecting system NaI(T1) were also determined. In conclusion the results obtained from the above two measurements were compared and discussed

  2. Nondestructive and quantitative characterization of TRU and LLW mixed-waste using active and passive gamma-ray spectrometry and computed tomography

    International Nuclear Information System (INIS)

    Camp, D.C.; Martz, H.E.

    1991-01-01

    The technology being proposed by LLNL is an Active and Passive Computed Tomography (A ampersand P CT) Drum Scanner for contact-handled (CH) wastes. It combines the advantages offered by two well-developed nondestructive assay technologies: gamma-ray spectrometry and computed tomography (CT). Coupled together, these two technologies offer to nondestructively and quantitatively characterize mixed- wastes forms. Gamma-ray spectroscopy uses one or more external radiation detectors to passively and nondestructively measure the energy spectrum emitted from a closed container. From the resulting spectrum one can identify most radioactivities detected, be they transuranic isotopes, mixed-fission products, activation products or environmental radioactivities. Spectral libraries exist at LLNL for all four. Active (A) or transmission CT is a well-developed, nondestructive medical and industrial technique that uses an external-radiation beam to map regions of varying attenuation within a container. Passive (P) or emission CT is a technique mainly developed for medical application, e.g., single-photon emission CT. Nondestructive industrial uses of PCT are under development and just coming into use. This report discuses work on the A ampersand P CT Drum Scanner at LLNL

  3. Absolute disintegration rate and 320 keV {gamma}-ray emission probability of {sup 51}Cr

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M.C.M. de [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes /Instituto de Radioprotecao e Dosimetria (LNMRI/ IRD), Avenida Salvador Allende, s/no. Recreio-Rio de Janeiro, CEP 22780-160 (Brazil)], E-mail: candida@ird.gov.br; Iwahara, A.; Poledna, R.; Silva, C.J. da; Delgado, J.U. [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes /Instituto de Radioprotecao e Dosimetria (LNMRI/ IRD), Avenida Salvador Allende, s/no. Recreio-Rio de Janeiro, CEP 22780-160 (Brazil)

    2007-09-21

    This work describes the procedures for determining absolutely the {sup 51}Cr disintegration rate by using the 4{pi}{beta}-{gamma} coincidence and anti-coincidence counting and the sum-peak methods. A 4''x4''-NaI(Tl) scintillation detector was used in the {gamma}- channel of the 4{pi}{beta}-{gamma} coincidence system for {gamma}-ray counting. In the {beta}-channel, a 4{pi} gas flow proportional counter was used for counting of characteristic X-rays and Auger electrons originating from the electron capture events of the {sup 51}Cr decay scheme. Gamma spectrometry measurements by high-pure planar and coaxial germanium detectors were performed in the sum-peak method and in the determination of the 320 keV {gamma}-emission probability of {sup 51}Cr. This latter determined value agrees with the recent values found in the literature, confirming the reliability of the three methods used in this work for the disintegration rate measurements.

  4. Gamma ray astronomy from satellites and balloons

    International Nuclear Information System (INIS)

    Schoenfelder, V.

    1986-01-01

    A survey is given of gamma ray astronomy topics presented at the Cosmic Ray Conference. The major conclusions at the Cosmic Ray Conference in the field of gamma ray astronomy are given. (1) MeV-emission of gamma-ray bursts is a common feature. Variations in duration and energy spectra from burst to burst may explain the discrepancy between the measured log N - log S dependence and the observed isotropy of bursts. (2) The gamma-ray line at 1.809 MeV from Al(26) is the first detected line from a radioactive nucleosynthesis product. In order to understand its origin it will be necessary to measure its longitude distribution in the Milky Way. (3) The indications of a gamma-ray excess found from the direction of Loop I is consistent with the picture that the bulk of cosmic rays below 100 GeV is produced in galactic supernova remnants. (4) The interpretation of the large scale distribution of gamma rays in the Milky Way is controversial. At present an extragalactic origin of the cosmic ray nuclei in the GeV-range cannot be excluded from the gamma ray data. (5) The detection of MeV-emission from Cen A is a promising step towards the interesting field of extragalactic gamma ray astronomy

  5. Measuring planetary neutron albedo fluxes by remote gamma-ray sensing

    International Nuclear Information System (INIS)

    Haines, E.L.; Metzger, A.E.

    1984-01-01

    A remote-sensing γ-ray spectrometer (GRS) is capable of measuring planetary surface composition through the detection of characteristic gamma rays. In addition, the planetary neutron leakage flux may be detected by means of a thin neutron absorber surrounding the γ-ray detector which converts the neutron flux into a γ-ray flux having a unique energy signature. The γ rays representing the neutron flux are observed against interference consisting of cosmic γ rays, planetary continuum and line emission, and a variety of gamma rays arising from cosmic-ray particle interactions with the γ-ray spectrometer and spacecraft (SC). In this paper the amplitudes of planetary and non-planetary neutron fluxes are assessed and their impact on the sensitivity of measurement is calculated for a lunar orbiter mission and a comet nucleus rendezvous mission. For a 100 h observation period from an altitude of 100 km, a GRS on a lunar orbiter can detect a thermal neutron albedo flux as low as 0.002 cm -2 s -1 and measure the expected flux of approx.=0.6 cm -2 s -1 with an uncertainty of 0.001 cm -2 s -1 . A GRS rendezvousing with a comet at a distance equal to the radius of the comet's nucleus, again for a 100 h observation time, should detect a thermal neutron albedo flux at a level of 0.006 cm -2 s -1 and measure the expected flux of approx.=0.4 cm -2 s -1 with an uncertainty of 0.004 cm -2 s -1 . Mapping the planetary neutron flux jointly with the direct detection of H will not only provide a more accurate model for translating observed γ-ray fluxes into concentrations but will also extend the effective sampling depth and should provide a capability for simple stratigraphic modeling of hydrogen. (orig.)

  6. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    Science.gov (United States)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  7. Measuring the radium quartet ({sup 228}Ra, {sup 226}Ra, {sup 224}Ra, {sup 223}Ra) in seawater samples using gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Beek, P. van, E-mail: vanbeek@legos.obs-mip.f [LEGOS, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiales (CNRS/CNES/IRD/UPS), Observatoire Midi Pyrenees, 14 Avenue Edouard Belin, 31400 Toulouse (France); Souhaut, M. [LEGOS, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiales (CNRS/CNES/IRD/UPS), Observatoire Midi Pyrenees, 14 Avenue Edouard Belin, 31400 Toulouse (France); Reyss, J.-L. [LSCE, Laboratoire des Sciences du Climat et de l' Environnement (CNRS/CEA/UVSQ), Avenue de la Terrasse, 91198 Gif-sur-Yvette (France)

    2010-07-15

    Radium isotopes are widely used in marine studies (eg. to trace water masses, to quantify mixing processes or to study submarine groundwater discharge). While {sup 228}Ra and {sup 226}Ra are usually measured using gamma spectrometry, short-lived Ra isotopes ({sup 224}Ra and {sup 223}Ra) are usually measured using a Radium Delayed Coincidence Counter (RaDeCC). Here we show that the four radium isotopes can be analyzed using gamma spectrometry. We report {sup 226}Ra, {sup 228}Ra, {sup 224}Ra, {sup 223}Ra activities measured using low-background gamma spectrometry in standard samples, in water samples collected in the vicinity of our laboratory (La Palme and Vaccares lagoons, France) but also in seawater samples collected in the plume of the Amazon river, off French Guyana (AMANDES project). The {sup 223}Ra and {sup 224}Ra activities determined in these samples using gamma spectrometry were compared to the activities determined using RaDeCC. Activities determined using the two techniques are in good agreement. Uncertainties associated with the {sup 224}Ra activities are similar for the two techniques. RaDeCC is more sensitive for the detection of low {sup 223}Ra activities. Gamma spectrometry thus constitutes an alternate method for the determination of short-lived Ra isotopes.

  8. Determination of correction factors for borehole natural gamma-ray measurements by Monte Carlo simulations

    NARCIS (Netherlands)

    Maucec, M.; Hendriks, Peter; Limburg, J.; de Meijer, R. J.

    2009-01-01

    The analysis of natural gamma-ray spectra measured in boreholes has to take into account borehole parameters such as the presence of casings and borehole diameter. For large, high-efficiency gamma-ray detectors, such as BGO-based systems, which employ full-spectrum data analysis, corresponding

  9. Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Polf, J C; Peterson, S; Beddar, S [M D Anderson Cancer Center, Univeristy of Texas, Houston, TX 77030 (United States); McCleskey, M; Roeder, B T; Spiridon, A; Trache, L [Cyclotron Institute, Texas A and M University, College Station, TX 77843 (United States)], E-mail: jcpolf@mdanderson.org

    2009-11-21

    In this paper, we present results of initial measurements and calculations of prompt gamma ray spectra (produced by proton-nucleus interactions) emitted from tissue equivalent phantoms during irradiations with proton beams. Measurements of prompt gamma ray spectra were made using a high-purity germanium detector shielded either with lead (passive shielding), or a Compton suppression system (active shielding). Calculations of the spectra were performed using a model of both the passive and active shielding experimental setups developed using the Geant4 Monte Carlo toolkit. From the measured spectra it was shown that it is possible to distinguish the characteristic emission lines from the major elemental constituent atoms (C, O, Ca) in the irradiated phantoms during delivery of proton doses similar to those delivered during patient treatment. Also, the Monte Carlo spectra were found to be in very good agreement with the measured spectra providing an initial validation of our model for use in further studies of prompt gamma ray emission during proton therapy. (note)

  10. Gamma ray generator

    Science.gov (United States)

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  11. Determination of Beryllium-7 in Water Hyacinth Using Gamma-Ray Spectrometry

    International Nuclear Information System (INIS)

    Yimchalam, Nopporn; Chankow, Nares; Yangchauy, Udon

    2009-07-01

    Full text: Beryllium-7 (7 B e) is a cosmogenic radionuclide produced in the upper atmosphere and enters the lower atmosphere by atmospheric circulation processes. About 90% of 7 B e decays directly through electron capture to 7 L i at ground state and about 10% to 7 L i at 1 s t excited state followed by 477.6 keV gamma-ray emission with a half-life of 53.3 days. The aim of this research was to measure 7 B e activity in environmental samples including water and aquatic plants. From the preliminary investigation by measurement of the 477.6 keV gamma-ray peak, 7 B e could be found in fresh Water Hyacinth samples. Thus, Water Hyacinth samples were then collected at different times of the year 2007 - 2008 in an area of Bang Khaen campus of Kasetsart University for determination of 7 B e activity using a HPGe detector. It was found that 7 B e specific activity was about 4-7 Bq/kg in the samples collected in rainy season during August-October 2007 and in June 2008 but could not detect in dry seasons i.e. summer and winter. The specific activity of 7 B e in Water Hyacinth sample depended on rainfalls as expected

  12. Pu abundances, concentrations, and isotopics by x- and gamma-ray spectrometry assay techniques

    International Nuclear Information System (INIS)

    Camp, D.C.; Gunnink, R.; Ruhter, W.D.; Prindle, A.L.; Gomes, R.J.

    1986-01-01

    Two x- and gamma-ray systems were recently installed at-line in gloveboxes and will measure Pu solution concentrations from 5 to 105 g/L. These NDA technique, developed and refined over the past decade, are now used domestically and internationally for nuclear material process monitoring and accountability needs. In off- and at-line installations, they can measure solution concentrations to 0.2%. The K-XRFA systems use a transmission source to correct for solution density. The gamma-ray systems use peaks from 59- to 208-keV to determine solution concentrations and relative isotopics. A Pu check source monitors system stability. These two NDA techniques can be combined to form a new, NDA measurement methodology. With the instrument located outside of a glovebox, both relative Pu isotopics and absolute Pu abundances of a sample located inside a glovebox can be measured. The new technique works with either single or dual source excitation; the former for a detector 6 to 20 cm away with no geometric corrections needed; the latter requires geometric corrections or source movement if the sample cannot be measured at the calibration distance. 4 refs., 7 figs., 2 tabs

  13. Measurement of neutron and gamma-ray production double differential cross section at KEK

    International Nuclear Information System (INIS)

    Ishibashi, Kenji

    1995-01-01

    High energy nuclear radiations were measured for 0.8-3.0 GeV proton induced reactions at KEK. The measurement was carried out to overcome the problems arising from the use of secondary beam line of a quite low incident beam intensity. Digital pulse shape discrimination method was applicable to separation between high energy neutrons and gamma-rays. By the use of a number of scintillators, cross sections were obtained for production of neutrons and gamma-rays. (author)

  14. Overview of gamma-ray energy deposition and spectra in fast reactor environments

    International Nuclear Information System (INIS)

    Gold, R.

    1977-01-01

    Efforts to define gamma-ray heating in Breeder Reactor (BR) environments are reviewed. This critique is restricted to programmatic activities in the United States, as best exemplified by current practice for the Experimental Breeder Reactor II (EBR-II). Future needs are also addressed in terms of requirements for the Fast Flux Test Facility (FFTF). Experimental efforts and theoretical analyses are surveyed for both high and low power environments. Special emphasis is placed on experimental techniques for calorimetry, temperature measurement, dosimetry and spectrometry. The relation between neutron and gamma-ray calculations is stressed with particular attention given to contrasting analytical techniques and basic nuclear data requirements. Wherever possible comparisons between theory and experiment are cited

  15. The measurement test of uranium in a uranium-contaminated waste by passive gamma-rays measurement method

    CERN Document Server

    Sukegawa, Y; Ohki, K; Suzuki, S; Yoshida, M

    2002-01-01

    This report is completed about the measurement test and the proofreading of passive gamma - rays measurement method for Non - destructive assay of uranium in a uranium-contaminated waste. The following are the results of the test. 1) The estimation of the amount of uranium by ionization survey meter is difficult for low intensity of gamma-rays emitted from uranium under about 50g. 2) The estimation of the amount of uranium in the waste by NaI detector is possible in case of only uranium, but the estimation from mixed spectrums with transmission source (60-cobalt) is difficult to confirm target peaks. 3) If daughter nuclides of uranium and thorium chain of uranium ore exist, measurement by NaI detector is affected by gamma-rays from the daughter nuclides seriously-As a result, the estimation of the amount of uranium is difficult. 4) The measurement of uranium in a uranium-contaminated waste by germanium detector is possible to estimate of uranium and other nuclides. 5) As to estimation of the amount of uranium...

  16. The use of car-borne gamma-ray spectrometric survey in a basin

    International Nuclear Information System (INIS)

    Liu Tengyao; Lu Shili; Luo Zongquan.

    1985-01-01

    This paper describes the geological results in a basin in the Inner Mongolia which were obtained by using our newly-developed and assembled car-borne gamma-ray spectrometric system. Combined with the work of regional geology and remote sensing, five relatively favourable uranium zones were located within the working area. The field procedures of car-borne gamma-ray spectrometry for less rigid regions is discussed. The gamma-ray spectrometric profiling is mainly used for regional reconnaissance. In the case of enhanced anomalious radioactivity the profiling with varying directions is adopted and the data are plotted on scale 1:50000 topographic map. It is suggested that the car-borne gamma-ray spectrometric system can be calibrated both by the pads specified for portable spectrometers and by testing site when the calibration facility for the car-borne gamma-ray spectrometric system is not available. The effect of rainfall on car-borne gamma-ray spectrometric survey and the simplified field qualitative determination of U-Ra disequilibrium are also briefly discussed

  17. Anisotropies in the diffuse gamma-ray background measured by the Fermi-LAT

    Energy Technology Data Exchange (ETDEWEB)

    Cuoco, A. [Stockholm University-Oskar Klein Center AlbaNova University Center, Fysikum, SE-10691 Stockholm (Sweden); Linden, T. [Department of Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Mazziotta, M.N. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari (Italy); Siegal-Gaskins, J.M. [Einstein Postdoctoral Fellow, California Institute of Technology 1200 E. California Blvd., Pasadena, CA 91125 (United States); Vitale, Vincenzo, E-mail: vincenzo.vitale@roma2.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Tor Vergata, 00133 Roma (Italy); Komatsu, E. [Texas Cosmology Center and Department of Astronomy, University of Texas, Austin, Dept. of Astronomy, 2511 Speedway, Austin, TX 78712 (United States)

    2012-11-11

    The small angular scale fluctuations of the (on large scale) isotropic gamma-ray background (IGRB) carry information about the presence of unresolved source classes. A guaranteed contribution to the IGRB is expected from the unresolved gamma-ray AGN while other extragalactic sources, Galactic gamma-ray source populations and dark matter Galactic and extragalactic structures (and sub-structures) are candidate contributors. The IGRB was measured with unprecedented precision by the Large Area Telescope (LAT) on-board of the Fermi gamma-ray observatory, and these data were used for measuring the IGRB angular power spectrum (APS). Detailed Monte Carlo simulations of Fermi-LAT all-sky observations were performed to provide a reference against which to compare the results obtained for the real data set. The Monte Carlo simulations are also a method for performing those detailed studies of the APS contributions of single source populations, which are required in order to identify the actual IGRB contributors. We present preliminary results of an anisotropy search in the IGRB. At angular scales <2 Degree-Sign (e.g., above multipole 155), angular power above the photon noise level is detected, at energies between 1 and 10 GeV in each energy bin, with statistical significance between 7.2 and 4.1{sigma}. The obtained energy dependences point to the presence of one or more unclustered source populations with the components having an average photon index {Gamma}=2.40{+-}0.07.

  18. Prompt gamma-ray imaging for small animals

    Science.gov (United States)

    Xu, Libai

    Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose

  19. Gamma-ray spectrometry applied to agricultural soil in the northwest of the State of Rio de Janeiro; Gamaespectrometria aplicada em solo agricola no noroeste do Estado do Rio de Janeiro

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Andrea Cristina Lima dos; Nascimento, Carlos Tadeu Carvalho do [Instituto de Geociencias, Universidade de Brasilia, DF (Brazil); Menezes, Paulo de Tarso Luiz, E-mail: andrealima@unb.br, E-mail: carlostadeu@unb.br, E-mail: ptarsomenezes@pq.cnpq.br [Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2008-04-15

    The present work presents the use of gamma-ray spectrometry applied to precision agriculture in a sub-tropical area. Our dataset comprises measurements both in rock and residual soil. The soil dataset shows a reduction of 20% on U and Th and 10% on K, when compared to rock samples. This difference could be related to K supplementation associated to chemical fertilization. (author)

  20. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry.

    Science.gov (United States)

    Ravisankar, R; Vanasundari, K; Chandrasekaran, A; Rajalakshmi, A; Suganya, M; Vijayagopal, P; Meenakshisundaram, V

    2012-04-01

    The natural level of radioactivity in building materials is one of the major causes of external exposure to γ-rays. The primordial radionuclides in building materials are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the radioactivity level in building materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the specific activity concentration of (226)Ra, (232)Th and (40)K in commonly used building materials from Namakkal, Tamil Nadu, India, using gamma-ray spectrometer. The radiation hazard due to the total natural radioactivity in the studied building materials was estimated by different approaches. The concentrations of the natural radionuclides and the radium equivalent activity in studied samples were compared with the corresponding results of different countries. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Gamma-ray scanning of neutron activated geological sediments for studying elemental profile distributions

    International Nuclear Information System (INIS)

    Ellinger, M.; Janghorbani, M.; Starke, K.

    1976-01-01

    Gamma-ray scanning for application to elemental profile studies of geological samples was studied with a neutron activated Baltic Shield sediment. Profile distribution of seven elements were measured. The capabilities and limitations of gamma-ray scanning are discussed by comparing the results with profiles obtained after the mechanical subdivision of the sample and the activation of the appropriately sized separates. With respect to the merits and limitations of scanning gamma-ray spectrometry applied to activated complex matrices the following conclusions were drawn. Qualitatively, the scanning method yields the same information as the much more laborious method of mechanical sudbisubdivision. Quantitatively, it is significantly less accurate. The scanning method has the significant advantage of allowing preservation of the sample. This could be important for such speciments as lunar and archeological materials. The method reduces sample preparation time and the possibility of sample contamination. (T.G.)

  2. GammaSem Proceedings. A Nordic seminar for users of gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Straalberg, E. (ed.) (Institute for Energy Technolgy (Norway)); Berg, K. (National Institute of Radiation Protection (Denmark)); Dowdall, M. (Norwegian Radiation Protection Authority (Norway)) (and others)

    2010-11-15

    The project GammaSem was proposed to the NKS in 2008. The aim of the project was to arrange two seminars for users of gamma spectrometry, in 2009 and 2010. The seminars were meant to provide a forum for discussions and sharing of information on practical issues concerning gamma spectrometry and initiate a network of gamma spectrometry users in the Nordic countries. Such a Nordic network should strengthen the collaboration between laboratories and improve all participants' competence in practical gamma spectrometry. Both seminars' focus was practical challenges met by the users themselves, rather than theoretical matters. Scientists and users of gamma spectrometry from all five Nordic countries were invited to the seminar, as well as scientist from the Baltic countries. A total of 65 people signed up for GammaSem 2010; representing 30 different universities, commercial companies, research institutes and authorities. The working group concept as presented at last year's GammaSem, has not worked out as intended. The reason for this is probably because most of the laboratories that signed up to join the working groups, signed up because they wanted to learn more about the different subjects. In combination with the fact that no funding was made available for the working groups, it was difficult to establish goals on what to achieve. None of the working groups applied for funding from the NKS (or elsewhere) to establish separate projects. There is a big need for more cooperation and for training within the field of gamma spectrometry. This fact has been proved through these two seminars, both by the many different topics that have been discussed, but also by the huge interest for participating in the suggested series of workshop. The GammaSem seminars have thus provided a much welcomed starting point for a broader Nordic collaboration. (Author)

  3. GammaSem Proceedings. A Nordic seminar for users of gamma spectrometry

    International Nuclear Information System (INIS)

    Straelberg, E.; Berg, K.; Dowdall, M.

    2010-11-01

    The project GammaSem was proposed to the NKS in 2008. The aim of the project was to arrange two seminars for users of gamma spectrometry, in 2009 and 2010. The seminars were meant to provide a forum for discussions and sharing of information on practical issues concerning gamma spectrometry and initiate a network of gamma spectrometry users in the Nordic countries. Such a Nordic network should strengthen the collaboration between laboratories and improve all participants' competence in practical gamma spectrometry. Both seminars' focus was practical challenges met by the users themselves, rather than theoretical matters. Scientists and users of gamma spectrometry from all five Nordic countries were invited to the seminar, as well as scientist from the Baltic countries. A total of 65 people signed up for GammaSem 2010; representing 30 different universities, commercial companies, research institutes and authorities. The working group concept as presented at last year's GammaSem, has not worked out as intended. The reason for this is probably because most of the laboratories that signed up to join the working groups, signed up because they wanted to learn more about the different subjects. In combination with the fact that no funding was made available for the working groups, it was difficult to establish goals on what to achieve. None of the working groups applied for funding from the NKS (or elsewhere) to establish separate projects. There is a big need for more cooperation and for training within the field of gamma spectrometry. This fact has been proved through these two seminars, both by the many different topics that have been discussed, but also by the huge interest for participating in the suggested series of workshop. The GammaSem seminars have thus provided a much welcomed starting point for a broader Nordic collaboration. (Author)

  4. Development of software for the determination of gamma ray detection efficiency

    International Nuclear Information System (INIS)

    Silva, Antonio C.O. da; Genezini, Frederico A.; Zahn, Guilherme S.

    2009-01-01

    Gamma spectrometry is frequently used as a tool in analytical chemistry or environmental analyses. The efficiency of the detection setup is one of most important steps of the analyses, but users don't always calculate their own efficiency curve because this procedure is not trivial, and therefore they adapt their measurement geometry to work in a setup that has been previously calibrated, which will often cause limitations. In order to solve this problem, a software was developed that helps a non-experienced user to compute the detection efficiency curve and to determine the detection efficiency at a given gamma-ray energy. (author)

  5. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  6. A rapid analysis of {sup 226}Ra in raw materials and by-products using gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chung Sup; Chung, Kun Ho; Kim, Chang Jong; Ji, Young Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    A gamma-ray peak of {sup 226}Ra (186.2 keV) overlaps with one of {sup 235}U (185.7 keV) in a gamma-ray spectrometry system. Though reference peaks of {sup 235}U can be used to correct the peak interference of {sup 235}U in the analysis of {sup 226}Ra, this requires a complicated calculation process and a high limit of quantitation. On the other hand, evaluating {sup 226}Ra using the correction constant in the overlapped peak can make a rapid measurement of {sup 226}Ra without the complicated calculation process as well as overcome the disadvantage in the indirect measurement of {sup 214}Bi, which means the confinement of {sup 222}Rn gas in a sample container and a time period to recover the secular equilibrium. About 93 samples with 6 species for raw-materials and by-products were prepared to evaluate the activity of {sup 226}Ra using the correction constant. The results were compared with the activity of {sup 214}Bi, which means the indirect measurement of {sup 226}Ra, to validate the method of the direct measurement of {sup 226}Ra using the correction constant. The difference between the direct and indirect measurement of {sup 226}Ra was generally below about ± 20%. However, in the case of the phospho gypsum, a large error of about 50% was found in the comparison results, which indicates the disequilibrium between {sup 238}U and {sup 226}Ra in the materials. Application results of the contribution ratio of {sup 226}Ra were below about ± 10% . The direct measurement of {sup 226}Ra using the correction constant can be an effective method for its rapid measurement of raw materials and by-products because the activity of {sup 226}Ra can be produced with a simple calculation without the consideration of the integrity of a sample container and the time period to recover the secular equilibrium.

  7. The measurement of activities of 226Ra, 232Th, 40K in phosphogypsum by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Parmaksiz, A.

    2004-06-01

    Phosphatic fertilizers are produced from the industrial processing of rock phosphate ores which are known to contain naturally occuring radionuclides such as 238 U and its daughter products. A high volume by-product known as phosphogypsum (PG) from the production of phosphoric acid and phosphate fertilizer causes serious storage and environmental problems in phosphoric acid industries. During the phosphoric acid production process, 226 Ra (t 1/2 =1600 y) ends up in PG which has chemical analogous to calcium periodical table. Since the stockpiles of PG near the phosphatic fertilizer plants are huge amounts, the radioactivity contained in PG has to measured in view of environmental radioactivity problem. In this work, the natural radioactivity in eighty PG samples, issued from a stock of about 60.000 tones was measured by a high resolution gamma ray spectrometer with a HPGe detector. The averaged activity of 226 Ra in PG has been found to be 546 Bq.kg -1 . However, the activities of 232 Th and 40 K measured in PG samples are negligibly small. The extra gamma radiation dose rate arising from 1 - 1.5 kg of PG is estimated to be about 241 nGy/h from 1 m ground level applied in 1 m 2 surface area of field

  8. A new measurement-while-drilling gamma ray log calibrator

    International Nuclear Information System (INIS)

    Meisner, J.; Brooks, A.; Wisniewski, W.

    1985-01-01

    Many of the present methods of calibration for both wireline and MWD gamma ray detectors use a point source at a fixed distance from the detector. MWD calibration errors are introduced from scattering effects, from spectral differences, from position sensitivity and form lack of cylindrical geometry. A new method has been developed at Exploration Logging INc. (EXLOG) that eliminates these errors. The method uses a wrap-around or annular calibrator, referenced to the University of Houston gamma ray API pit. The new calibrator is designed to simulate the API pit's gamma ray emission spectrum with a finite amount of natural source material in the annular shape. Because of the thickness of steel between the MWD gamma ray detector and the formation, there is theoretical necessity for spectral matching. A simple theoretical approach was used to calibrate the new calibrator. Spectral matching allows a closer approximation to wireline logs and makes it possible to estimate the relative spectral content of a formation

  9. Measurements of decay heat and gamma-ray intensity of spent LWR fuel assemblies

    International Nuclear Information System (INIS)

    Vogt, J.; Agrenius, L.; Jansson, P.; Baecklin, A.; Haakansson, A.; Jacobsson, S.

    1999-01-01

    Calorimetric measurements of the decay heat of a number of BWR and PWR fuel assemblies have been performed in the pools at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel, CLAB. Gamma-ray measurements, using high-resolution gamma-ray spectroscopy (HRGS), have been carried out on the same fuel assemblies in order to test if it is possible to find a simple and accurate correlation between the 137 CS -intensity and the decay heat for fuel with a cooling time longer than 10-12 years. The results up to now are very promising and may ultimately lead to a qualified method for quick and accurate determination of the decay heat of old fuel by gamma-ray measurements. By means of the gamma spectrum the operator declared data on burnup, cooling time and initial enrichment can be verified as well. CLAB provides a unique opportunity in the world to follow up the decay heat of individual fuel assemblies during several decades to come. The results will be applicable for design and operation of facilities for wet and dry interim storage and subsequent encapsulation for final disposal of the fuel. (author)

  10. Geochemical interpretation of gamma-ray spectrometry images from the Achala granite (Cordoba, Argentina)

    International Nuclear Information System (INIS)

    Lopez, Luis E.

    1998-01-01

    Data of an old spectrometry gamma-ray survey carried out in the Sierras Pampeanas Range by the National Atomic Energy Commission (Argentina) were reprocessed to obtain a corrected digital archive. The geochemical interpretation of the 250 x 250 meters spectrometric grids from the Achala batholith area was based on the behaviour of the radioelements in a peraluminous magma. Spectrometric maps of potassium, uranium, thorium and their ratios were used. In particular, the Th grid was very useful to define the primary magmatic evolution of the granitoids. K and U correlate roughly with Th distribution. The observed positive correlation between Th and U is thought to be the result of surficial leaching of U from uraninite. Finally, U/Th ratio allows to determine both, the magmatic evolution of the rocks and the mineral phase responsible for U content. (author)

  11. Determination of {sup 126}Sn half-life from ICP-MS and gamma spectrometry measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bienvenu, P.; Arnal, N.; Comte, J. [CEA Cadarache DEN/DEC/SA3C/LARC, Paul Lez Durance (France); Ferreux, L.; Lepy, M.C.; Be, M.M. [CEA Saclay LIST LNE/LNHB, Gif sur Yvette (France); Andreoletti, G. [AREVA Cogema SL/UP2-800, Beaumont Hague (France)

    2009-07-01

    A new value of {sup 126}Sn half-life was determined by combination of inductively coupled plasma-mass spectrometry (ICP-MS) and gamma spectrometry measurements on purified sample solutions collected from nuclear fuel reprocessing. {sup 126}Sn was isolated through dissolution of fission product precipitates and liquid-liquid extraction with N-benzoyl-N-phenyl-hydroxylamine (BPHA). The abundance of {sup 126}Sn atoms together with the absence of interfering species in the analysed solutions made it possible to measure both mass concentration and nuclide activity with high precision and accuracy. This led to a {sup 126}Sn half-life value of 1.980 (57) x 10{sup 5} a. (orig.)

  12. Proton current measurements using the prompt gamma ray diagnostic technique

    International Nuclear Information System (INIS)

    Leeper, R.J.; Burns, E.J.T.; Johnson, D.J.; McMurtry, W.M.

    1981-01-01

    Prompt gamma ray signals from the nuclear reaction 7 Li(p,γ) 8 Be have been used to make time resolved proton current measurements. In these measurements, the proton beam was allowed to strike cylindrical thick lithium metal targets. The time integrated proton current was measured using gamma activation of copper via the reaction 63 Cu(γ,n) 62 Cu(β+). The positron activity of the copper sample was easily measured using coincidence counting techniques. The number of 62 Cu atoms produced per proton incident on a thick Li metal target was determined with separate calibration runs performed on the Sandia 2.5 MeV Van de Graaff accelerator. The time history of the prompt gamma production was measured using six EGG NPM-54 scintillator photomultiplier combinations shielded by 96.5 cm of concrete and 5.1 cm of Pb. The use of six scintillator photomultiplier combinations was necessary to increase the statistical precision of the data. The normalization of the prompt gamma time history data with the total time integrated proton-current measurement yielded the absolute time resolved proton current on target. Data from runs performed on the Sandia Proto I accelerator will be presented

  13. Calibration comparative results for X - and gamma ray spectrometry with HPGe and BEGe detectors for a radon reference chamber

    International Nuclear Information System (INIS)

    Zoran, Maria; Paul, Annette; Arnold, Dirk

    2002-01-01

    Inhaled decay products of 222 Rn are the dominant components of the natural radiation exposure being responsible for about 30% of the whole human radioactive exposure. Field instruments for 222 Rn and his progeny monitoring are calibrated in 'radon climate rooms', where it is possible to vary and monitor 222 Rn and the indoor air parameters ( temperature, humidity, ventilation rate, aerosol concentration). German radon reference chamber used was developed and installed at the Physikalisch-Technische Bundesanstalt in order to serve as a metrological standard for radon and his progeny calibration of active and passive, indoor and outdoor radon monitoring devices in air climate. The basic parts of experimental setup for this γ and X -ray spectrometry analysis consists of a γ-X ray source in a lead shield/collimator, the detectors, the electronics necessary for pulse-height analysis (PHA) to obtain energy spectra. For calibrating system with 226 Ra standard sources (multienergy X ray and gamma emitters), two germanium detectors HPGe (12.5 nominal efficiency) and BEGe (22.5 nominal efficiency) were used. Germanium detectors are semiconductor diodes having a P-I-N structure in which the Intrinsic (I) region is sensitive to ionizing radiation, particularly X-rays and gamma rays. The BEGe is designed with an electrode structure that enhances low energy resolution and is fabricated from selected germanium having an impurity profile that improves charge collection (thus resolution and peak shape) at high energies which is really important in analysis of the complex spectra for uranium and finally for 226 Ra. MAESTRO MCA software and GNUPLOT program were used for spectra acquisition and spectra analysis, respectively . The main aim of this paper was to do a comparatively analysis of the detector performances for this radon chamber spectrometric chain. The calibration data analysis includes energy calibrations for both detection systems as well as comparative X and gamma

  14. The MeV spectra of gamma-ray bursts measured with COMPTEL

    International Nuclear Information System (INIS)

    Hoover, A.S.; Kippen, R.M.; McConnell, M.L.

    2005-01-01

    The past decade has produced a wealth of observational data on the energy spectra of prompt emission from gamma-ray bursts. Most of the data cover the energy range from a few to several hundred KeV. One set of higher energy observations comes from the Imaging Compton Telescope COMPTEL on the Compton Observatory, which measured in the energy range from 0.75 to 30 MeV. We analyzed the full 9.2 years COMPTEL data to reveal the significant detection of 44 gamma-ray bursts. We present preliminary results obtained in the process of preparing a final catalog of the spectral analysis of these events. In addiction, we compare the COMPTEL spectra to simultaneous BATSE measurements for purposes of cross-calibration

  15. Saturation and porosity measurements of different soil samples by gamma ray transmission

    International Nuclear Information System (INIS)

    Akbal, S.; Filiz Baytas, A.

    2000-01-01

    Gamma-ray transmission methods have been used accurately for the study of the properties of soil samples. In this study, the soil samples were collected from various regions of Turkey and a Nal (TI) detector measured the attenuation of strongly collimated monoenergetic gamma beam (from Cs-137) through soil samples. The water saturation and porosity were therefore calculated from the transmission measurements for each soil sample. (authors)

  16. Observations of the highest energy gamma-rays from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dingus, Brenda L.

    2001-01-01

    EGRET has extended the highest energy observations of gamma-ray bursts to GeV gamma rays. Such high energies imply the fireball that is radiating the gamma-rays has a bulk Lorentz factor of several hundred. However, EGRET only detected a few gamma-ray bursts. GLAST will likely detect several hundred bursts and may extend the maximum energy to a few 100 GeV. Meanwhile new ground based detectors with sensitivity to gamma-ray bursts are beginning operation, and one recently reported evidence for TeV emission from a burst

  17. Bulk density calculations from prompt gamma ray yield

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Maslehuddin, M.

    2006-01-01

    Full text: The gamma ray yield from a Prompt Gamma ray Neutron Activation Analysis (PGNAA) setup is a linear function of element concentration and neutron flux in a the sample with constant bulk density. If the sample bulk density varies as well, then the element concentration and the neutron flux has a nonlinear correlation with the gamma ray yield [1]. The measurement of gamma ray yield non-linearity from samples and a standard can be used to estimate the bulk density of the samples. In this study the prompt gamma ray yield from Blast Furnace Slag, Fly Ash, Silica Fumes and Superpozz cements samples have been measured as a function of their calcium and silicon concentration using KFUPM accelerator-based PGNAA setup [2]. Due to different bulk densities of the blended cement samples, the measured gamma ray yields have nonlinear correlation with calcium and silicon concentration of the samples. The non-linearity in the yield was observed to increase with gamma rays energy and element concentration. The bulk densities of the cement samples were calculated from ratio of gamma ray yield from blended cement and that from a Portland cement standard. The calculated bulk densities have good agreement with the published data. The result of this study will be presented

  18. Continuous gamma-ray spectrometry in the fast flux test facility (FFTF)

    International Nuclear Information System (INIS)

    Gold, R.; Kaiser, B.J.; Moore, F.S. Jr.; Bunch, W.L.; McElroy, W.N.; Sheen, E.M.

    1980-03-01

    In-core Compton-recoil γ-ray spectrometry was carried out in FFTF at very low power in the In-Reactor Thimble (IRT). The lower-energy electron spectrum at the FFTF-IRT midplane and the unfolded γ-ray spectrum are shown. 2 figures

  19. GammaSem Proceedings - A Nordic seminar for users of gamma spectrometry

    International Nuclear Information System (INIS)

    Nunez, P.; Klemola, S.; Nielsen, Sven P.; Palsson, S.E.; Israelson, C.

    2010-03-01

    The project GammaSem was proposed to provide a forum for discussions and sharing of information on practical issues concerning gamma spectrometry and to establish a network of users of gamma spectrometry in the Nordic countries, thereby strengthening the collaboration and improving all participants' competence in practical gamma spectrometry. The seminars' focus was practical challenges met by the users themselves, rather than theoretical matters. Scientists and users of gamma spectrometry from all five Nordic countries were invited to the seminar, as well as scientist from the Baltic countries. A total of 75 people participated; representing 34 different universities, commercial companies, research institutes and also all Nordic authorities. During the seminar several key issues for follow-up were identified and working groups for addressing the identified problems were established. The working groups were: 1) Uncertainties and detections of limits 2) True summing coincidence 3) Monte Carlo simulations and efficiency transfer 4) Absorption (density corrections and geometries) 5) Mobile gamma spectrometry systems 6) Nuclear forensics (on special samples and special parts of the spectra). The identified topics will form the basis for the agenda of the next seminar in 2010. There, the different working groups will be invited to present their ideas/solutions to the relevant problems. (author)

  20. GammaSem Proceedings - A Nordic seminar for users of gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, P. (ed.) (Institute for Energy Technology (IFE) (Norway)); Klemola, S. (Radiation and Nuclear Safety Authority (STUK) (Finland)); Nielsen, Sven P. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Roskilde (Denmark)); Palsson, S.E. (Icelandic Radiation Safety Authority (IS)); Israelson, C. (National Institute of Radiation Protection (Denmark))

    2010-03-15

    The project GammaSem was proposed to provide a forum for discussions and sharing of information on practical issues concerning gamma spectrometry and to establish a network of users of gamma spectrometry in the Nordic countries, thereby strengthening the collaboration and improving all participants' competence in practical gamma spectrometry. The seminars' focus was practical challenges met by the users themselves, rather than theoretical matters. Scientists and users of gamma spectrometry from all five Nordic countries were invited to the seminar, as well as scientist from the Baltic countries. A total of 75 people participated; representing 34 different universities, commercial companies, research institutes and also all Nordic authorities. During the seminar several key issues for follow-up were identified and working groups for addressing the identified problems were established. The working groups were: 1) Uncertainties and detections of limits 2) True summing coincidence 3) Monte Carlo simulations and efficiency transfer 4) Absorption (density corrections and geometries) 5) Mobile gamma spectrometry systems 6) Nuclear forensics (on special samples and special parts of the spectra). The identified topics will form the basis for the agenda of the next seminar in 2010. There, the different working groups will be invited to present their ideas/solutions to the relevant problems. (author)

  1. The Study of Radiation of Gamma-Ray Background at Sedimentology Laboratorium, P3TIR, BATAN, Using Gamma Spectrometry

    International Nuclear Information System (INIS)

    Lubis, Ali Arman; Aliyanta, Barokah; Darman

    2002-01-01

    The measurement of background radiation of gamma-ray has been done at Sedimentology Laboratory, SDAL building, P3TIR, BATAN using gamma spectrometer. The measurement was done without shielding with the range of energy between 50 keV and 1500 keV. The identified radiations are coming from environmental radionuclide and man-made radionuclide as well with 32 energy peaks. The environmental radionuclides are from Uranium series, Thorium series, and 4 0 K having dose rate of 12.510 ± O.980, 36.408 ± 3.243, 9.455 ±O.016 n Sv/day, respectively, whilst man-made radionuclide is 6 O C o having dose rate of O.136 ±O.078 n Sv/day

  2. U and Pu Gamma-Ray Measurements of Spent Fuel Using a Gamma-Ray Mirror Band-Pass Filter

    International Nuclear Information System (INIS)

    Ziock, K.-P.; Kisner, R.; Melin, A.; Patton, B.; Alameda, J.; Brejnhold, N.; Decker, T.; Descalle, M.-A.; Fernandez-Perea, M.; Hill, R.; Ruz Armendariz, J.; Soufli, R.

    2015-01-01

    We report the use of grazing incidence gamma-ray mirrors as narrow band-pass filters for advanced non-destructive analysis of spent nuclear fuel. The mirrors limit radiation reaching an HPGe detector to narrow spectral bands around characteristic emission lines from fissile isotopes in the fuel. Ideally, these emissions could be used to determine the fuel's fissile content, but they are normally masked by the overwhelming radiation emitted by short-lived fission by-products. These latter emissions raise the overall background, making direct observation of the fuel with HPGe detectors virtually impossible. Such observations can only be performed using precise collimators that restrict the detector's field of view to very small solid angles. This results in impracticably long dwell times for safeguards measurements targeting the weak isotopic lines of interest. In a proof-ofconcept experiment, a set of simple flat gamma-ray mirrors was used to observe the atomic florescence lines from U and Pu from a spent nuclear fuel pin. For the measurements, the mirrors were placed at the egress of an access port in a hot cell wall. A coarse collimator in the port restricted radiation from a fuel pin placed in front of the port to fully illuminate the front surface of the mirror assembly (0:5 x 3:8 cm2). The mirrors, consisting of highly polished silicon substrates deposited with WC/SiC multilayer coatings, were successfully used to deflect the lines of interest onto an HPGe detector while the intense primary radiation from the spent fuel was blocked by a lead beam stop. The gamma-ray mirror multilayer coatings used here at ∼100 keV, have been experimentally tested at energies as high as 645 keV, indicating that direct observation of nuclear emission lines from 239Pu should be possible with an appropriately designed optic. (author)

  3. Gamma Ray Bursts-Afterglows and Counterparts

    Science.gov (United States)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  4. A Comparison between HPGe and NaI(Tl) detectors performance for gamma-spectrometry of low level measurement

    International Nuclear Information System (INIS)

    Poursiamy, N. H.; Tajikahmadi, H.; Mirshojaei, S. F.

    2005-01-01

    According to progressive usage of nuclear technology, it's important to prevent the contamination of the environment by man-made radioisotopes and exposures of human being. Radioisotopes can enter the human body by inhalation and ingestion which are the most important ways to internal exposures. Measurement of radiation level in foodstuff is one of the most important parameters in environmental safety which is performed according to constitution and standard tests in most countries such as Iran. Gamma spectrometry is carried out by NaI(Tl) and HPGe detector systems for foodstuffs. In this research operation of HPGe and NaI(Tl) detectors in gamma spectrometry with a standard radioactive source are investigated and compared. Also the result of NaI superiority in foodstuff radiation measurement given

  5. Measurement of secondary gamma-ray production cross sections of structural materials for fusion reactor. Extraction of discrete and continuum components

    International Nuclear Information System (INIS)

    Kondo, Tetsuo; Morotomi, Ryutaro; Nishio, Takashi; Murata, Isao; Takahashi, Akito

    2000-01-01

    A new method to deal with measured spectrum of secondary gamma-rays induced by D-T neutrons with Ge detector is proposed. Subtracting background components and discrete peaks from the raw secondary gamma-ray spectrum, the continuum component of secondary gamma-ray was successfully extracted. By using unfolding process, the continuum component of the secondary gamma-ray production cross section was derived. The measured cross section data obtained by this method are very useful for precise evaluation of secondary gamma-ray production cross sections. (author)

  6. Measurement of secondary gamma-ray skyshine and groundshine from intense 14 MeV neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeo; Morotomi, Ryutaro; Kondo, Tetsuo; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan). Dept. of Nuclear Engineering

    2000-03-01

    Secondary gamma-ray skyshine and groundshine, including the direct contribution from the facility building, have been measured with an Hp-Ge detector and an NaI(Tl) detector at the Intense 14 MeV Neutron Source Facility OKTAVIAN of Osaka University, Japan. The mechanism of secondary gamma-rays propagation were analyzed with the measured spectrum with the Hp-Ge detector. The contribution of the skyshine was shown to be a continuum spectrum that was composed of mainly Compton scattered high energy secondary gamma-rays generated in the facility building created by (n, {gamma}) reaction. The contribution of the groundshine considerably contained secondary gamma-rays generated by {sup nat}Si (n, {gamma}) reaction in soil, including the albedo contribution from the ground. And the total contribution contained capture gamma-rays from iron (Fe) and other nuclides. The measurements with the NaI(Tl) detector as well as the Hp-Ge detector were carried out to investigate the dependence of gamma-ray dose as a function of distance from the neutron source up to hundreds meters. Consequently, it was found that the dependence could be fitted with the function of const.{center_dot}exp(-r/{lambda})/r{sup n}, where n values were around 2 except for the skyshine (n {approx} 1). It was thus indicated that the contribution of the skyshine could be propagated farther downfield than the direct contribution from the facility. The measured ratios of the three contributions (skyshine, groundshine, and direct contributions) and the distance dependence in each path were shown to be in good agreement with calculated results by the Monte Carlo transport code MCNP-4A. And the total contributions for the two detectors of NaI(Tl) and Hp-Ge agree excellently with each other. (author)

  7. Overview of gamma spectrometry measurement devices developed by ENVINET a.s

    International Nuclear Information System (INIS)

    Sidlova, V.; Slama, L.; Holecek, V.; Chaloupkova, H.

    2008-01-01

    This paper demonstrates the development and usage of the devices designed for non- destructive radiological characterization of radioactive waste. All ..systems are based on gamma-spectrometry and are divided into two categories - stable and mobile. Stable ones involve only measurement in fixed detector - package configuration. They are used for assessment of packaged waste, mainly in drums. Mobile ones are flexible and allow measurement of a wide range of objects from various positions and can be also transported to arbitrary location. The calibration of such systems is performed by means of appropriate software which allows computation of full-energy peak efficiency in various configurations. (authors)

  8. Gamma-Ray Interactions for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research. Understanding the basic physics of how gamma rays interact with matter can clarify how certain features in a spectrum were produced.

  9. Gamma-ray angular distribution and correlation measurement. II

    International Nuclear Information System (INIS)

    Twin, P.J.

    1975-01-01

    Angular correlations of γ-rays following nuclear reactions depend, in general, on some alignment of the γ-emitting initial state. The methods of alignment are briefly discussed and then the techniques and experimental methods associated with direct angular distributions, particle-gamma correlations, gamma-gamma correlations and linear polarization correlations are dealt with. Finally the inherent ambiguities which arise when different spin and delta values give identical correlations are discussed for the simple direct and particle-gamma correlations together with the question whether the larger information content of gamma-gamma and linear polarization correlations can resolve these ambiguities. (Auth.)

  10. Estimation of americium in cemented waste block using gamma ray spectrometry

    International Nuclear Information System (INIS)

    Singh, Sarbjit; Mhatre, Amol; Sagar, Veena

    2012-05-01

    A method was developed for the estimation of 241 Am present in the cemented waste block which was cylindrical in shape. In such large sample, the attenuation of gamma rays increases with size of the sample and density of the material present. Attenuation correction was incorporated using linear attenuation coefficients of 59.54 keV gamma ray of 241 Am. Also in such large samples, error due to the distribution of activity is more. Estimation of 241 Am in the cemented sample was carried out by applying corrections for attenuation and for the sample geometry. (author)

  11. Design of an automatic sample changer for the measurement of neutron flux by gamma spectrometry

    International Nuclear Information System (INIS)

    Gago, Javier; Bruna, Ruben; Baltuano, Oscar; Montoya, Eduardo; Descreaux, Killian

    2014-01-01

    This paper presents calculus, selection and components design for the construction of an automatic system in order to measure neutron flux in a working nuclear reactor by the gamma spectrometry technique using samples irradiated on the RP-10 nucleus. This system will perform the measurement of interchanging 100 samples in a programed and automatic way, reducing operation time by the user and obtaining more accurate measures. (authors).

  12. Remote planetary geochemical exploration with the NEAR X-ray/gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Trombka, J.I.; Boynton, W.V.; Brueckner, J.; Squyres, S.; Clark, P.E.; Starr, R.; Evans, L.G.; Floyd, S.R.; McClanahan, T.P.; Goldsten, J.; Mcnutt, R.; Schweitzer, J.S.

    1999-01-01

    The X-ray/gamma-ray spectrometer (XGRS) instrument onboard the Near Earth Asteroid Rendezvous (NEAR) spacecraft will map asteroid 433 Eros in the 0.2 keV to 10 MeV energy region. Measurements of the discrete line X-ray and gamma-ray emissions in this energy domain can be used to obtain both qualitative and quantitative elemental composition maps of the asteroid surface. The NEAR X-ray/gamma-ray spectrometer (XGRS) was turned on for the first time during the week of 7 April 1996. Rendezvous with Eros 433 is expected during December 1998. Observations of solar X-ray spectra during both quiescent and active periods have been made. A gamma-ray transient detection system has been implemented and about three gamma-ray transient events a week have been observed which are associated with either gamma-ray bursts or solar flares

  13. Multiple Gamma-Ray Detection Capability of a CeBr3 Detector for Gamma Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. A. Naqvi

    2017-01-01

    Full Text Available The newly developed cerium tribromide (CeBr3 detector has reduced intrinsic gamma-ray activity with gamma energy restricted to 1400–2200 keV energy range. This narrower region of background gamma rays allows the CeBr3 detector to detect more than one gamma ray to analyze the gamma-ray spectrum. Use of multiple gamma-ray intensities in elemental analysis instead of a single one improves the accuracy of the estimated results. Multigamma-ray detection capability of a cylindrical 75 mm × 75 mm (diameter × height CeBr3 detector has been tested by analyzing the chlorine concentration in water samples using eight chlorine prompt gamma rays over 517 to 8578 keV energies utilizing a D-D portable neutron generator-based PGNAA setup and measuring the corresponding minimum detection limit (MDC of chlorine. The measured MDC of chlorine for gamma rays with 517–8578 keV energies varies from 0.07 ± 0.02 wt% to 0.80 ± 0.24. The best value of MDC was measured to be 0.07 ± 0.02 wt% for 788 keV gamma rays. The experimental results are in good agreement with Monte Carlo calculations. The study has shown excellent detection capabilities of the CeBr3 detector for eight prompt gamma rays over 517–8578 keV energy range without significant background interference.

  14. Soil gamma ray spectrometry of the Buquira river basin, SP, Brazil

    International Nuclear Information System (INIS)

    Rivera, Alice

    2002-12-01

    Natural radioactivity found in rocks and its evaluation been frequently used for studies of environmental geochemistry, particularly those of detection and control of pollutants and the consequent changes in environment after antropic interferences. In this work natural radioactivity in forty nine soil samples in the basin of Buquira river, at the Northeast region of Sao Paulo State, has been analysed and measured with a Ge-HP gamma ray spectrometer. A table with the most relevant results found in rocks is shown and discussed. (author)

  15. Study of X-rays and nuclear gamma -rays in muonic thallium

    CERN Document Server

    Backe, H; Jahnke, U; Kankeleit, E; Pearce, R M; Petitjean, C; Schellenberg, L; Schneuwly, H; Schröder, W U; Walter, H K; Zehnder, A

    1972-01-01

    Energies and intensities of muonic X-rays, nuclear gamma -rays and mu -capture gamma -rays were measured in natural muonic thallium with Ge (Li) detectors. The absolute intensities of higher mu X-rays were reproduced by a cascade calculation starting with a statistical population at n=20 including K-, L- and M-conversion. The electron screening effect was deduced from energies of higher mu X-rays. Eight prompt nuclear gamma -rays were found. This excitation explains the anomalous intensity ratios of the 2p-1s and 3d-2p fine structure components. From the nuclear gamma -rays of the first excited states were deduced: the magnetic h.f. splittings, muonic isomer shifts E2/M1 mixing ratios and the half-life in the presence of the muon in /sup 205/Tl. Evidence for a magnetic nuclear polarization was found. An isotope shift of Delta E=10.35+or-0.25 keV was measured for the 1s/sub 1/2/ state which is compared with data from optical spectroscopy. From an analysis of the time distribution of delayed gamma -rays from mu...

  16. Synchrotron measurement of the 3D shape of X-ray reflections from the {gamma}/{gamma}{sup '}-microstructure of nickel-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Epishin, Alexander; Link, Thomas; Ulbricht, Alexander; Bansal, Mamta [Technical Univ. of Berlin (Germany). Inst. of Material Science and Technology; Zizak, Ivo [Helmholtz-Zentrum Berlin for Materials and Energy BESSY II, Berlin (Germany)

    2011-12-15

    The 3D shape of X-ray reflections from the {gamma}/{gamma}{sup '}-microstructure of a nickel-base superalloy was investigated using synchrotron X-ray radiation and a position sensitive area detector. The measurements were performed on the 4{sup th} generation single-crystal nickel-base superalloy TMS138. The results show that X-ray reflections from non-cubic crystallographic planes have a complex 3D shape which changes during rafting. The 3D intensity distributions contain information about the spacing of the planes and their orientation as well. Whereas h00 reflections show the usual splitting into a {gamma}{sup '} and one {gamma}-subreflection, the hh0 and hhh reflections show two and three {gamma}-peaks respectively, resulting from the different types of {l_brace}100{r_brace} matrix channels. Therefore, these 3D diffraction measurements supply additional information about the spatial distribution of microstrains. (orig.)

  17. Comparison of Pu isotopic composition between gamma and mass spectrometry: Experience from IAEA-SAL

    International Nuclear Information System (INIS)

    Parus, J.L.; Raab, W.

    1998-01-01

    About 2000 Pu containing samples have been analysed during the last 8 years at SAL using gamma spectrometry (GS) in parallel with mass spectrometry (MS). Four different detectors have been used for the measurement of gamma-ray spectra and several versions of the MGA program have been used for spectra evaluation. The results of Pu isotopic composition obtained by both methods have neem systematically compared. Attempts to improve the agreement between GS and MS are described. This was done by adjustment of the emission probabilities for some gamma energies and the development of a new correlation equation for 242 Pu. These improvements have been applied for evaluation of two sets containing 320 and 404 samples, respectively analysed in 1991 and in 1992-93. The mean differences and their standard deviations between MS and GS were calculated, showing mean relative differences for 238-241 Pu isotopes in the range from 0.1 to 0.5% with standard deviations within ± 0.4 to ±1%. For 242 Pu these values are about 0.5% and ± 5%, respectively. (author)

  18. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, Majid [Isfahan Nuclear Science and Technology Research Institute (NSTRT), Reactor and Accelerators Research and Development School, Atomic Energy Organization (Iran, Islamic Republic of)], E-mail: m_jalali@entc.org.ir; Mohammadi, Ali [Faculty of Science, Department of Physics, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)

    2008-05-15

    The compounds Na{sub 2}B{sub 4}O{sub 7}, H{sub 3}BO{sub 3}, CdCl{sub 2} and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the {gamma} rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H{sub 3}BO{sub 3} with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds.

  19. Investigation of prompt gamma-ray yields as a function of mass and charge of 236U fission fragments

    International Nuclear Information System (INIS)

    Bogdzel', A.A.; Gundorin, N.A.; Duka-Zojomi, A.; Kliman, Ya.; Krishtiak, J.

    1987-01-01

    New experimental results determining yields of the prompt gamma-rays from the excited states decay of fission fragments are presented. 80 gamma-transitions were observed in 51 fission fragments. The measurements were performed by Ge(Li)-spectrometry in coincidence with fast ionization chamber (10g 235 U). The beam of the resonance neutrons with energy range from 0.7 to 36 eV was used

  20. Comparison of laser fluorimetry, high resolution gamma-ray spectrometry and neutron activation analysis techniques for determination of uranium content in soil samples

    International Nuclear Information System (INIS)

    Ghods, A.; Asgharizadeh, F.; Salimi, B.; Abbasi, A.

    2004-01-01

    Much more concern is given nowadays for exposure of the world population to natural radiation especially to uranium since 57% of that exposure is due to radon-222, which is a member of uranium decay series. Most of the methods used for uranium determination is low concentration require either tedious separation and preconcentration or the accessibility to special instrumentation for detection of uranium at this low level. this study compares three techniques and methods for uranium analysis among different soil sample with variable uranium contents. Two of these techniques, neutron activation analysis and high resolution gamma-ray spectrometry , are non-destructive while the other, laser fluorimetry is done via chemical extraction of uranium. Analysis of standard materials is done also to control the quality and accuracy of the work. In spite of having quite variable ranges of detection limit, results obtained by high resolution gamma-ray spectrometry based on the assumption of having secular equilibrium between uranium and its daughters, which causes deviation whenever this condition was missed. For samples with reasonable uranium content, neutron activation analysis would be a rapid and reliable technique, while for low uranium content laser fluorimetry would be the most appropriate and accurate technique

  1. In situ analysis of coal by scintillation gamma-ray spectrometry in deep boreholes

    International Nuclear Information System (INIS)

    Chrusciel, E.; Kopec, M.; Niewodniczanski, J.; Palka, K.W.; Kaczmarski, S.M.; Wojda, F.

    1987-01-01

    Neutron-gamma and gamma-gamma spectrometric loggings have been used for evaluation of coal seams. Interpretation of the logging curves was based on the method of spectrometric parameters i.e. the ratios of gamma-ray intensities recorded within two energy intervals, which depended strongly on a given parameter of coal, while the influence of other parameters is reduced. The boundaries of energy intervals were chosen by multiple correlation analysis of the results of point measurements and results of coal samples assessments. These energy intervals are later used in continuous borehole logging. Some of the coal parameters can be determined by both logging methods, other by one method only. The logging tools are described and examples of the determination of carbon, sulphur, iron, calcium, ash content, calorific value, density and moisture of coal are given. The agreement with the results of laboratory analyses seems quite satisfactory, especially when the calibration procedure was made for the same part of a coal basin. 13 refs., 6 figs., 5 tabs. (author)

  2. Prompt gamma-ray analysis of steel slag in concrete

    International Nuclear Information System (INIS)

    Naqvi, Akhtar Abbas; Garwan, Muhammad Ahmad; Nagadi, Mahmoud Mohammad; Rehman, Khateeb-ur; Raashid, Mohammad; Masalehuddin Mohiuddin, Mohammad; Al-Amoudi, Omar Saeed Baghabra

    2009-01-01

    Blast furnace slag (BFS) is added to Portland cement concrete to increase its durability, particularly its corrosion resistance. Monitoring the concentration of BFS in concrete for quality control purposes is desired. In this study, the concentration of BFS in concrete was measured by utilizing an accelerator-based prompt gamma-ray neutron activation analysis (PGNAA) setup. The optimum size of the BFS cement concrete specimen that produces the maximum intensity of gamma rays at the detector location was calculated through Monte Carlo simulations. The simulation results were experimentally validated through the gamma-ray yield measurement from BFS cement concrete specimens having different radii. The concentration of BFS in the cement concrete specimens was assessed through calcium and silicon gamma-ray yield measurement from cement concrete specimens containing 5 to 80 wt% BFS. The yield of calcium gamma rays decreases with increasing BFS concentration in concrete while the yield of silicon gamma rays increases with increasing BFS concentration in concrete. The calcium-to-silicon gamma-ray yield ratio has an inverse relation with BFS concentration in concrete. (author)

  3. Moisture profile measurements of concrete samples in vertical flow by gamma ray attenuation method. Medidas do perfil de umidade de amostras de concreto em infiltracao vertical, atraves da atenuacao de raios gama

    Energy Technology Data Exchange (ETDEWEB)

    Appoloni, C R; Nardocci, A C; Obuti, M M [Universidade Estadual de Londrina, PR (Brazil). Dept. de Fisica

    1988-04-01

    This work deals with the study of the water diffusion in concrete by the gamma ray attenuation method. The moisture profiles, [theta] (z,t), of the vertical water flow were determined in concrete samples of different trace and porosity. The data were taken with a vertical and horizontal measurement table, a [sup 60] Co gamma ray source, a NaI (T) scintillation detector and the standard gamma ray spectrometry electronic. The [theta] (z,t) data analysis is presented using a phenomenological model of the moisture profile temporal evolution in heterogeneous materials. Two other models, Cell and Sandwich, were also applied to determine the attenuation coefficient of a non-homogeneous media from the attenuation coefficients of the components, taking into account particles-size effects. (author).

  4. Effect of potassium-salt muds on gamma ray, and spontaneous potential measurements

    International Nuclear Information System (INIS)

    Cox, J.W.; Raymer, L.L.

    1976-01-01

    Interpretations of the gamma ray and Spontaneous Potential curves generally assume the presence of sodium chloride as the dominant salt in both the formation water and the mud filtrate. However, potassium-salt muds are increasingly being used by the oil industry. The potassium cation is significantly different from the sodium cation in its radioactive and electrochemical properties. Natural potassium contains a radioactive isotope which emits gamma rays. Thus, the presence of potassium salts in the mud system may contribute to Gamma-Ray tool response. Since the Gamma Ray is used quantitatively in many geological sequences as an indicator of clay content, a way to correct for the effect of potassium in the mud column is desirable. Correction methods and charts based on laboratory measurements and field observations are presented. The effect of temperature on the resistivity of potassium muds is also briefly discussed. From data available, it appears to be similar to that for NaCl muds. On the bases of field observations and laboratory work, the electrochemical properties of potassium-chloride and potassium-carbonate muds and mud filtrates are discussed. Activity relationships are proposed, and the influence of these salts on the SP component potentials--namely, the liquid-junction, membrane, and bi-ionic potentials--is described. Several field examples are presented

  5. Evaluation of the natural radioactivity using thermoluminescence, gamma spectrometry and neutron activation techniques

    International Nuclear Information System (INIS)

    Fausto, A.M.; Otsubo, S.M.; Paes, W.S.; Yoshimura, E.M.; Okuno, E.; Hiodo, F.; Marques, L.S.; Alcala, A.L.

    1996-01-01

    The evaluation of the radiation dose in the living species due to the natural radioactivity is the main objective of this paper. The region that had been monitored was Intrusive Suite of Itu near to Sao Paulo city. Lateral[and depth distributions of natural radioactivity of the soil were determined using the techniques of thermoluminescence gamma spectrometry and neutron[activation. From the concentration in the soil of K-40 and radioactive elements of U and Th series experimentally determined, the dose due to gamma rays in air at 1 m from the soil was evaluated and the results compared with the direct dose measured with the portable rate-meter. (authors). 11 refs., 3 figs

  6. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Ravisankar, R.; Vanasundari, K.; Chandrasekaran, A.; Rajalakshmi, A.; Suganya, M.; Vijayagopal, P.; Meenakshisundaram, V.

    2012-01-01

    The natural level of radioactivity in building materials is one of the major causes of external exposure to γ-rays. The primordial radionuclides in building materials are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the radioactivity level in building materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the specific activity concentration of 226 Ra, 232 Th and 40 K in commonly used building materials from Namakkal, Tamil Nadu, India, using gamma-ray spectrometer. The radiation hazard due to the total natural radioactivity in the studied building materials was estimated by different approaches. The concentrations of the natural radionuclides and the radium equivalent activity in studied samples were compared with the corresponding results of different countries. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards. - Highlights: ► Most of the building materials contain natural radionuclides. ► The radioactivity level in building materials is used to assess the radiological hazards to human. ► We present the results for the measured activities and radiation hazards of building materials. ► We report that the studied building materials do not pose any significant radiation hazard.

  7. Assessment of calibration parameters for an aerial gamma spectrometry system using Monte-Carlo technique

    International Nuclear Information System (INIS)

    Srinivasan, P.; Raman, Anand; Sharma, D.N.

    2009-01-01

    Aerial gamma spectrometry is a very effective method for quickly surveying a large area, which might get contaminated following a nuclear accident, or due to nuclear weapon fallout. The technique not only helps in identifying the contaminating radionuclide but also in assessing the magnitude and the extent of contamination. These two factors are of importance for the authorities to quickly plan and execute effective counter measures and controls if required. The development of Airborne gamma ray spectrometry systems have been reported by different institutions. The application of these systems have been reported by different authors. Radiation Safety Systems Division of the Bhabha Atomic Research Centre has developed an Aerial Gamma Spectrometry System (AGSS) and the surveying methodology. For an online assessment of the contamination levels, it is essential to calibrate the system (AGSS) either flying it over a known contaminated area or over a simulated contaminated surface by deploying sealed sources on the ground. AGSS has been calibrated for different detectors in aerial exercises using such simulated contamination on the ground. The calibration methodology essentially needs net photo-peak counts in selected energy windows to finally arrive at the Air to Ground Correlation Factors at selected flight parameters such as altitude, speed of flight and the time interval at which each spectrum is acquired. This paper describes the methodology to predict all the necessary parameters like photon fluence at various altitudes, the photo-peak counts in different energy windows, Air to Ground Correlation Factors(AGCF), the dose rate at any height due to air scattered gamma ray photons etc. These parameters are predicted for a given source deployment matrix, detector and altitude of flying using the Monte-Carlo code MCNP (Monte Carlo Neutron and Photon Transport Code.CCC-200, RSIC, ORNL, Tennessee, USA). A methodology to generate the completely folded gamma ray count

  8. Measuring The Variability Of Gamma-Ray Sources With AGILE

    International Nuclear Information System (INIS)

    Chen, Andrew W.; Vercellone, Stefano; Pellizzoni, Alberto; Tavani, Marco

    2005-01-01

    Variability in the gamma-ray flux above 100 MeV at various time scales is one of the primary characteristics of the sources detected by EGRET, both allowing the identification of individual sources and constraining the unidentified source classes. We present a detailed simulation of the capacity of AGILE to characterize the variability of gamma-ray sources, discussing the implications for source population studies

  9. Radon fixation for determination of {sup 224}Ra, {sup 226}Ra and {sup 228}Ra via gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, M. [Departamento Ingenieria Nuclear y Mecanica de Fluidos, E. S. Ingenieros de Bilbao - Universidad del Pais Vasco (UPV/EHU), Alda. Urquijo s/n, 48013 Bilbao (Spain)]. E-mail: inphesom@bi.ehu.es; Idoeta, R. [Departamento Ingenieria Nuclear y Mecanica de Fluidos, E. S. Ingenieros de Bilbao - Universidad del Pais Vasco (UPV/EHU), Alda. Urquijo s/n, 48013 Bilbao (Spain); Abelairas, A. [Departamento Ingenieria Nuclear y Mecanica de Fluidos, E. S. Ingenieros de Bilbao - Universidad del Pais Vasco (UPV/EHU), Alda. Urquijo s/n, 48013 Bilbao (Spain); Legarda, F. [Departamento Ingenieria Nuclear y Mecanica de Fluidos, E. S. Ingenieros de Bilbao - Universidad del Pais Vasco (UPV/EHU), Alda. Urquijo s/n, 48013 Bilbao (Spain)

    2006-04-15

    The aim of this work is the improvement of the procedure for the determination of radium isotopes activities in water, which is done through radiochemical separation and subsequent gamma-ray spectrometry. In addition, radon gas retention is studied using different activated carbon materials. The results of the IAEA Proficiency test: 'Determination of radium and uranium radionuclides in water' of December 2002 [IAEA, 2003. Analytical quality control services: determination of radium and uranium radionuclides in water. Preliminary Report, Seibersdorf] are considered for this work.

  10. GammaWorkshops Proceedings

    International Nuclear Information System (INIS)

    Ramebaeck, H.; Straelberg, E.; Klemola, S.; Nielsen, Sven P.; Palsson, S.E.

    2012-01-01

    Due to a sparse interaction during the last years between practioners in gamma ray spectrometry in the Nordic countries, a NKS activity was started in 2009. This GammaSem was focused on seminars relevant to gamma spectrometry. A follow up seminar was held in 2010. As an outcome of these activities it was suggested that the 2011 meeting should be focused on practical issues, e.g. different corrections needed in gamma spectrometric measurements. This three day's meeting, GammaWorkshops, was held in September at Risoe-DTU. Experts on different topics relevant for gamma spectrometric measurements were invited to the GammaWorkshops. The topics included efficiency transfer, true coincidence summing corrections, self-attenuation corrections, measurement of natural radionuclides (natural decay series), combined measurement uncertainty calculations, and detection limits. These topics covered both lectures and practical sessions. The practical sessions included demonstrations of tools for e.g. corrections and calculations of the above meantioned topics. (Author)

  11. GammaWorkshops Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramebaeck, H. (ed.) (Swedish Defence Research Agency (Sweden)); Straalberg, E. (Institute for Energy Technology, Kjeller (Norway)); Klemola, S. (Radiation and Nuclear Safety Authority, STUK (Finland)); Nielsen, Sven P. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Palsson, S.E. (Icelandic Radiation Safety Authority (Iceland))

    2012-01-15

    Due to a sparse interaction during the last years between practioners in gamma ray spectrometry in the Nordic countries, a NKS activity was started in 2009. This GammaSem was focused on seminars relevant to gamma spectrometry. A follow up seminar was held in 2010. As an outcome of these activities it was suggested that the 2011 meeting should be focused on practical issues, e.g. different corrections needed in gamma spectrometric measurements. This three day's meeting, GammaWorkshops, was held in September at Risoe-DTU. Experts on different topics relevant for gamma spectrometric measurements were invited to the GammaWorkshops. The topics included efficiency transfer, true coincidence summing corrections, self-attenuation corrections, measurement of natural radionuclides (natural decay series), combined measurement uncertainty calculations, and detection limits. These topics covered both lectures and practical sessions. The practical sessions included demonstrations of tools for e.g. corrections and calculations of the above meantioned topics. (Author)

  12. Measurements of proton induced gamma-ray emission cross sections and yields on Al and Na

    International Nuclear Information System (INIS)

    Chiari, M.

    2014-01-01

    Full text: The measurement of the proton induced gamma-ray emission cross sections on low-Z nuclei such as Na and Al of specific interest for environmental and cultural heritage applications, were carried out for proton beam energy from 2.5 to 4.1 MeV, including the measurement of the angular distributions of the emitted rays at selected angles, i.e. 90°, 45° and 0°, using an array of three HPGe detectors coupled to the multi-purpose scattering chamber on the +30° beamline of the Tandetron accelerator at INFN LABEC. The studied gamma-ray inducing reactions were: "2"7Al(p,p’γ)"2"7Al (gamma-ray energies 844 and 1014 keV), and "2"3Na(p,p"’γ)"2"3Na (gamma-ray energies 441 and 1636 keV) and "2"3Na(p,"αγ)"2"0Ne (gamma-ray energy 1634 keV). As a first step, the absolute efficiency of the HPGe detectors placed at 90° and 0° was improved by a factor up to 2 by designing a new target holder, with less absorbing material facing the HPGe detector at 90°, and installing a new Faraday cup/beam stopper with graphite body instead of stainless steel and a thinner Ta cap at the bottom, to reduce the shielding effect for the HPGe detector at 0°. The measurement of the absolute efficiency of the HPGe detectors of the array was carried out using a "1"5"2Eu calibration source mounted on the target holder and placed in the exact position of the target under irradiation. The proton beam energy was calibrated using an aluminum thick target and the resonances at 991.86 keV and 1683.57 keV, respectively in the (p,γ) and (p,p"’γ) reactions on "2"7Al, and a native aluminium oxide thin target and the resonance at 3470 keV in elastic scattering on "1"6O. The targets employed were thin Al (29 μg/cm"2) and NaF (35 μg/cm"2) films evaporated on thin self-supporting Ag foils; in order to obtain the differential gamma-ray inducing cross-sections, we normalized the results by the Rutherford elastic backscattering of protons from Ag, adopting a procedure not relying on the

  13. Evaluation of gamma ray fields by HPGE spectrometry in situ

    Energy Technology Data Exchange (ETDEWEB)

    Krnac, S; Slugen, V [Slovak Technical Univ., Bratislava (Slovakia); Ragan, P; Fueloep, M [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    In this paper the in situ spectrometric measurement for application in gamma radiation dosimetry with portability and flexibility in use was studied. In order to allow operation of the detector in any orientation without liquid nitrogen (LN{sub 2}) spillage, a multi-attitude cryostat (MAC) has been used which consists of a Dewar with LN{sub 2} capacity of 7.0 litres and a holding time of 5 days. This allows the Dewar to be operated in the horizontal position, pointing vertically upward or vertically downward, without loss of LN{sub 2}. The MAC detector has been positioned in a 4{sup p}i{sup -}goniometer and, therefore is movable to any measurable angle. Pulses from the detector have been fed into a portable multichannel analyzer (Canberra 35+) with connection to a PC/AT compatible computer system. The main results and findings of present contribution may be summarized as follows: 1. A technique called the scaling confirmatory factor analysis (SCFA) presented else can be advantageously employed for determination of the response operator characterizing an influence of measuring device on physical gamma-spectra obtained. The in situ response operator has been reproduced only from the internal factors of appropriate latent structure that do not depend upon materials surrounding the detector. 2. The photon fluence rate response operator for in situ application has been obtained from the reduced response operator by a correction according to the geometric factor 4{sup p}i{sup (}r{sub 0}+r){sup 2}.The effective distance r{sub 0} has been determined via a performance of the radial calibration which yields a condition of, minimally, 10 cm distance of the detector cover from the potential sources. 3. The real incident gamma ray spectra achieved by application of the SCFA response allow direct evaluation of spectral distributions of the fundamental photon dosimetric quantities. (Abstract Truncated)

  14. Natural radioelement mapping by carborne and ground gamma-ray spectrometry in the Philippines

    International Nuclear Information System (INIS)

    Reyes, Rolando Y.; Petrache, Christina A.; Tabora, Estrellita U.; Garcia, Teofilo Y.

    2010-01-01

    Over the past years, the Philippine Nuclear Research Institute has been conducting a program aimed at mapping the abundance and distribution of the naturally occurring radioactive elements (radioelements) potassium (K), uranium (U) and thorium (Th) through the use of carborne and ground gamma-ray spectrometric survey techniques. This program was initiated with assistance from the International Atomic Energy Agency (IAEA) through a technical cooperation project entitled ''Gamma Ray Spectrometric Survey of the Philippines'', in which the carborne and ground gamma-ray spectrometric systems were acquired. The objectives of this project were to generate radioelement maps for geological studies and mineral resource assessment, and establish baseline information on the natural radioactivity of the country for environmental studies and monitoring. The pilot survey for this project, conducted over Marinduque Island, Philippines, is presented in this paper. (author)

  15. Neutron detection gamma ray sensitivity criteria

    International Nuclear Information System (INIS)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Mace, Emily K.; Stephens, Daniel L.; Woodring, Mitchell L.

    2011-01-01

    The shortage of 3 He has triggered the search for effective alternative neutron detection technologies for national security and safeguards applications. Any new detection technology must satisfy two basic criteria: (1) it must meet a neutron detection efficiency requirement, and (2) it must be insensitive to gamma-ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this paper to define measureable gamma ray sensitivity criteria for neutron detectors. Quantitative requirements are specified for: intrinsic gamma ray detection efficiency and gamma ray absolute rejection. The gamma absolute rejection ratio for neutrons (GARRn) is defined, and it is proposed that the requirement for neutron detection be 0.9 3 He based neutron detector is provided showing that this technology can meet the stated requirements. Results from tests of some alternative technologies are also reported.

  16. TL detectors for gamma-ray dose measurements in critically accidents

    International Nuclear Information System (INIS)

    Miljanic, S.; Knezevic, Z.; Zorko, B.; Gregori, B.

    2005-01-01

    Full text: Determination of gamma-ray dose in mixed neutron + gamma-ray fields is still a challenging task. Dosemeters used for gamma-ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e. on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosimeter responses to gamma-rays. To reduce all these influences, design of dosemeter holders is of special importance. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma-ray dose determination in mixed fields were examined. Dosemeters were from three different institutions: Ruder Boscovic Institute (RBI), Croatia, Jozef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. At that exercise three accidental scenarios were reproduced: bare reactor, free evolution; lead shielded reactor, steady state; and lead shielded reactor, free evolution. In each irradiation dosemeters were exposed placed on the front of phantom and 'free-in-air'. Also, dosemeters were irradiated in a pure gamma ray field of 60 Co source. Following types of TLDs were used: 7 LiF (TLD-700), CaF 2 :Mn and AI 2 O 3 :Mg,Y - all from RBI; CaF 2 :Mn from JSI and 7 LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the mean participants' values. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed. (author)

  17. Prompt Gamma Ray Spectroscopy for process monitoring

    International Nuclear Information System (INIS)

    Zoller, W.H.; Holmes, J.L.

    1991-01-01

    Prompt Gamma Ray Spectroscopy (PGRS) is a very powerful analytical technique able to measure many metallic, contamination problem elements. The technique involves measurement of gamma rays that are emitted by nuclei upon capturing a neutron. This method is sensitive not only to the target element but also to the particular isotope of that element. PGRS is capable of measuring dissolved metal ions in a flowing system. In the field, isotopic neutron sources are used to produce the desired neutron flux ( 252 Cf can produce neutron flux of the order of 10 8 neutrons/cm 2 --sec.). Due to high penetrating power of gamma radiation, high efficiency gamma ray detectors can be placed in an appropriate geometry to maximize sensitivity, providing real-time monitoring with low detection level capabilities

  18. Cosmic gamma-ray background radiation. Current understandings and problems

    International Nuclear Information System (INIS)

    Inoue, Yoshiyuki

    2015-01-01

    The cosmic gamma-ray background radiation is one of the most fundamental observables in the gamma-ray band. Although the origin of the cosmic gamma-ray background radiation has been a mystery for a long time, the Fermi gamma-ray space telescope has recently measured it at 0.1-820 GeV and revealed that the cosmic GeV gamma-ray background is composed of blazars, radio galaxies, and star-forming galaxies. However, Fermi still leaves the following questions. Those are dark matter contribution, origins of the cosmic MeV gamma-ray background, and the connection to the IceCube TeV-PeV neutrino events. In this proceeding, I will review the current understandings of the cosmic gamma-ray background and discuss future prospects of cosmic gamma-ray background radiation studies. (author)

  19. Development of Wavelet Based Tools for Improving the γ-ray Spectrometry

    International Nuclear Information System (INIS)

    Hamzaoui, E-M.; El Badri, L.; Laraki, K.; Cherkaoui-Elmorsli, R.

    2013-06-01

    In this article, we propose a wavelet transform based tool to improve the use of gamma ray spectrometry as a nuclear technique. First, we attempt to study the problem of filtering the preamplifier's output signals of HPGe detector used in the measurements chain. Thus, we developed a nonlinear method based on discrete Coiflet transform combined to principal component analysis, which allows a significant improvement of the signal to noise ratio (SNR) at the output of the HPGe preamplifier. In a second step, the continuous wavelet transform, based on the Mexican Hat mother function, is used to achieve an automatic processing of the spectrometric data. This method permits us to get an alternative representation of the gamma energy spectrum. The results of different tests, performed in both the presence and the absence of a gamma radiation source, are illustrated. (authors)

  20. Gamma ray densitometry techniques for measuring of volume fractions

    International Nuclear Information System (INIS)

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques

    2015-01-01

    Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)

  1. Gamma ray densitometry techniques for measuring of volume fractions

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques, E-mail: raoniwa@yahoo.com.br, E-mail: ademir@nuclear.ufrj.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)

  2. In-plant measurements of gamma-ray transmissions for precise K-edge and passive assay of plutonium concentration and isotopic abundance in product solutions at the Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Asakura, Y.; Kondo, I.; Masui, J.; Shoji, K.; Russo, P.A.; Hsue, S.T.; Sprinkle, J.K. Jr.; Johnson, S.S.

    1982-01-01

    A field test has been carried out for more than 2 years for determination of plutonium concentration by K-edge absorption densitometry and for determination of plutonium isotopic abundance by transmission-corrected passive gamma-ray spectrometry. This system was designed and built at Los Alamos National Laboratory and installed at the Tokai reprocessing plant of the Power Reactor and Nuclear Fuel Development Corporation as a part of the Tokai Advanced Safeguards Technology Exercise (TASTEX). For K-edge measurement of plutonium concentration, the transmissions at two discrete gamma-ray energies are measured using the 121.1- and 122.1-keV gamma rays from 75 Se and 57 Co. Intensities of the plutonium passive gamma rays in the energy regions between 38 and 51 keV and between 129 and 153 keV are used for determination of the isotopic abundances. More than 200 product solution samples have been measured in a timely fashion during these 2 years. The relative precisions and accuracies of the plutonium concentration measurement are shown to be within 0.6% (1 sigma) in these applications, and those for plutonium isotopic abundances are within 3% for 238 Pu, 0.4% for 239 Pu, 1.2% for 240 Pu, 1.3% for 241 Pu, and 7% for 242 Pu. The time required is 10 min for the concentration assay, 10 min for the isotopics assay, and about 15 min for handling procedures in the laboratory

  3. Comparison of the analytical methods used to determine natural and artificial radionuclides from environmental samples by gamma, alpha and beta spectrometry

    DEFF Research Database (Denmark)

    Pöllänen, Roy; Virtanen, Sinikka; Kämäräinen, Meerit

    In CAMNAR, an extensive interlaboratory exercise on the analytical methods used to determine several radionuclides present in the environmental samples was organized. Activity concentration of different natural radionuclides, such as Rn-222, Pb-210, Po-210, K-40, Ra-226, Ra-228 and isotopes...... of uranium, in addition to artificial Cs-137 and Am-241 were analysed from lake sediment samples and drinking water. The measurement techniques were gamma-ray spectrometry, alpha spectrometry, liquid scintillation counting and inductively coupled plasma mass spectrometry. Twenty six laboratories from nine...

  4. Secondary gamma-ray skyshine from 14 MeV Neutron Source Facility (OKTAVIAN). Comparison of measurement with its simulation

    Energy Technology Data Exchange (ETDEWEB)

    Morotomi, Ryutaro; Kondo, Tetsuo; Murata, Isao; Yoshida, Shigeo; Takahashi, Akito [Osaka Univ., Department of Nuclear Engineering, Suita, Osaka (Japan); Yamamoto, Takayoshi [Osaka Univ., Radio Isotope Research Center, Suita, Osaka (Japan)

    2000-03-01

    Measurement of secondary gamma-ray skyshine was performed at the Intense 14 MeV Neutron Source Facility (OKTAVIAN) of Osaka University with NaI and Hp-Ge detectors. From the result of measurements, some mechanism of secondary gamma-ray skyshine from 14 MeV neutron source facility was found out. The analysis of the measured result were carried out with MCNP-4B for four nuclear data files of JENDL-3.2, JENDL-F.F., FENDL-2, and ENDF/B-VI. It was confirmed that all the nuclear data are fairly reliable for calculations of secondary gamma-ray skyshine. (author)

  5. Radiological Mapping of the Alkaline Intrusive Complex of Jombo, South Coastal Kenya by In-Situ Gamma-Ray Spectrometry

    Science.gov (United States)

    Kaniu, Ian; Darby, Iain G.; Kalambuka Angeyo, Hudson

    2016-04-01

    Carbonatites and alkaline intrusive complexes are rich in a variety of mineral deposits such as rare earth elements (REEs), including Nb, Zr and Mn. These are often associated with U and Th bearing minerals, including monazite, samarskite and pyrochlore. Mining waste resulting from mineral processing activities can be highly radioactive and therefore poses a risk to human health and environment. The Jombo complex located in Kenya's south coastal region is potentially one of the richest sources of Nb and REEs in the world. It consists of the main intrusion at Jombo hill, three associated satellite intrusions at Mrima, Kiruku and Nguluku hills, and several dykes. The complex is highly heterogeneous with regard to its geological formation as it is characterized by alkaline igneous rocks and carbonatites which also influence its radio-ecological dynamics. In-situ gamma spectrometry offers a low-cost, rapid and spatially representative radioactivity estimate across a range of landscapes compared to conventional radiometric techniques. In this work, a wide ranging radiological survey was conducted in the Jombo complex as follow up on previous studies[1,2], to determine radiation exposure levels and source distributions, and perform radiological risk assessments. The in-situ measurements were carried out using a 2.0 l NaI(Tl) PGIS-2 portable detector from Pico Envirotec Inc integrated with GPS, deployed for ground (back-pack) and vehicular gamma-ray spectrometry. Preliminary results of radiological distribution and mapping will be presented. [1] Patel, J. P. (1991). Discovery and Innovation, 3(3): 31-35. [2] Kebwaro, J. M. et. al. (2011). J. Phys. Sci., 6(13): 3105-3110.

  6. LAFARA: a new underground laboratory in the French Pyrénées for ultra low-level gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Beek, P. van; Souhaut, M.; Lansard, B.; Bourquin, M.; Reyss, J.-L.; Ballmoos, P. von; Jean, P.

    2013-01-01

    We describe a new underground laboratory, namely LAFARA (for “LAboratoire de mesure des FAibles RAdioactivités”), that was recently created in the French Pyrénées. This laboratory is primarily designed to analyze environmental samples that display low radioactivity levels using gamma-ray spectrometry. Two high-purity germanium detectors were placed under 85 m of rock (ca. 215 m water equivalent) in the tunnel of Ferrières (Ariège, France). The background is thus reduced by a factor of ∼20 in comparison to above-ground laboratories. Both detectors are fully equipped so that the samples can be analyzed in an automatic mode without requiring permanent presence of a technician in the laboratory. Auto-samplers (twenty positions) and systems to fill liquid nitrogen automatically provide one month of autonomy to the spectrometers. The LAFARA facility allows us to develop new applications in the field of environmental sciences based on the use of natural radionuclides present at low levels in the environment. As an illustration, we present two of these applications: i) dating of marine sediments using the decay of 226 Ra in sedimentary barite (BaSO 4 ), ii) determination of 227 Ac ( 231 Pa) activities in marine sediment cores. - Highlights: ► We describe a new underground laboratory that allows us to conduct low-background gamma-ray spectrometry. ► The background in the underground laboratory is reduced by a factor of ∼20 in comparison to above-ground laboratories. ► The 2 gamma spectrometers are equipped so that they can run automatically (one month of autonomy).

  7. Quantifying the benefits of ultrahigh energy resolution for Gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Drury, Owen B.; Terracol, Stephane F.; Friedrich, Stephan [Advanced Detector Group, Lawrence Livermore National Laboratory, L-270, Livermore CA 94550 (United States)

    2005-03-01

    Cryogenic Gamma-ray spectrometers operating at temperatures of {proportional_to}0.1 K provide an order of magnitude better energy resolution than conventional germanium detectors. Ultra-high energy resolution improves the accuracy of non-destructive analysis of nuclear materials, since a better separation of lines reduces statistical errors as well as systematic errors from background subtraction and efficiency correction. We are developing cryogenic Gamma-spectrometers based on bulk tin absorbers and superconducting molybdenum-copper sensors for nuclear forensics and non-proliferation applications. Here we quantify the improvements in accuracy for isotope analysis with cryogenic detectors in terms of detector performance for different cases of line separation, line intensity ratios and background levels. Precise measurements of isotope ratios are crucial in the context of nuclear attribution, since they provide signatures of composition, age, origin, intended purpose and processing history of illicit nuclear materials. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Assessment of the equilibrium of Th-228 and Ra-228 by gamma-ray spectrometry in mangrove soils

    International Nuclear Information System (INIS)

    Paiva, Jose Daniel S.; Farias, Emerson E.G.; Franca, Elvis J. De

    2015-01-01

    The mangrove environment consists of soil containing high organic matter, characterized by the influence of continental and oceanic waters, relatively high concentrations of salts and exuberant vegetation. Mangroves also present high dynamics of chemical compound cycling, in which soils become quite relevant due to the influence of continental and oceanic sediments. Taking into account the different sources and transport of radionuclides within the mangrove environment, this study focused at the radioactive equilibrium of Thorium-232 series radionuclides, especially the Ra-228 and Thorium-228. For this, soil samples were collected in the crown projection of tree species from two mangroves located in the municipalities of Olinda/Recife and Rio Formoso, Pernambuco State, Brazil. The material was oven-dried and milled and test portions of 38 g were transferred to cylindrical vials and sealed. After 30 days, the natural radioactivity was measured during 80,000 seconds using High Resolution Gamma-Ray Spectrometry with a germanium detector of 2.2 keV of resolution at the 1,332 keV Co-60 photopeak. For Ra-228 determination, 911 keV gamma-ray line (Ac-228) were employed, while 238 keV (Pb-212) and 727 keV (Bi-212) were considered for estimating activity concentrations of Th-228. As a result, Ra-228 and Th 228 were in equilibrium since the activity concentrations (ranging from 35 Bq/kg to 50 Bq/kg) were not significantly different at the 95% confidence level. The results have confirmed that, even for environments of high dynamics such as mangroves, radioactive equilibrium of Th-228 and Ra-228 was kept, corroborating Th-232 determination in mangrove soils. (author)

  9. Assessment of the equilibrium of Th-228 and Ra-228 by gamma-ray spectrometry in mangrove soils

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Jose Daniel S.; Farias, Emerson E.G.; Franca, Elvis J. De, E-mail: paivajds@gmail.com, E-mail: emersonemiliano@yahoo.com.br, E-mail: ejfranca@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2015-07-01

    The mangrove environment consists of soil containing high organic matter, characterized by the influence of continental and oceanic waters, relatively high concentrations of salts and exuberant vegetation. Mangroves also present high dynamics of chemical compound cycling, in which soils become quite relevant due to the influence of continental and oceanic sediments. Taking into account the different sources and transport of radionuclides within the mangrove environment, this study focused at the radioactive equilibrium of Thorium-232 series radionuclides, especially the Ra-228 and Thorium-228. For this, soil samples were collected in the crown projection of tree species from two mangroves located in the municipalities of Olinda/Recife and Rio Formoso, Pernambuco State, Brazil. The material was oven-dried and milled and test portions of 38 g were transferred to cylindrical vials and sealed. After 30 days, the natural radioactivity was measured during 80,000 seconds using High Resolution Gamma-Ray Spectrometry with a germanium detector of 2.2 keV of resolution at the 1,332 keV Co-60 photopeak. For Ra-228 determination, 911 keV gamma-ray line (Ac-228) were employed, while 238 keV (Pb-212) and 727 keV (Bi-212) were considered for estimating activity concentrations of Th-228. As a result, Ra-228 and Th 228 were in equilibrium since the activity concentrations (ranging from 35 Bq/kg to 50 Bq/kg) were not significantly different at the 95% confidence level. The results have confirmed that, even for environments of high dynamics such as mangroves, radioactive equilibrium of Th-228 and Ra-228 was kept, corroborating Th-232 determination in mangrove soils. (author)

  10. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    International Nuclear Information System (INIS)

    Grenier, Isabelle

    2009-01-01

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  11. Mobile gamma spectrometry. Evaluation of the Resume 99 exercise

    International Nuclear Information System (INIS)

    Mellander, H.; Karlsson, S.; Aage, H.K.; Korsbech, U.; Lauritzen, B.; Smethurst, M.

    2002-06-01

    During the RESUME 99 exercise, the radiocaesium ( 137 Cs) activity in the surroundings of Gavle in central Sweden was ma p ped using car-borne gamma-ray spectrometry (CGS). The CGS data along with airborne gamma-ray spectrometry (AGS) data from the same area have been used to examine possible correlations between the CGS and AGS results, detector type and position, and geographical information, such as land-use and road type. The overall differences between various CGS results are small, while larger differences are found between AGS and CGS results. In general only little correlation was found with land-use and with road-type and width. The differences between AGS and CGS results arise because airborne detectors have a different field of view than a ground-based detector. From an analysis of the depth-dependency of AGS and CGS data for a depth-distributed source, it is found that the mean mass depth may be inferred from the ratio of AGS to CGS spectral count rates. Integration of AGS and CGS data requires a precise definition of quantities and units for reporting activity concentrations in a complicated geometry and care must be taken to translate AGS results into equivalent CGS quantities taking into account the spatial distribution of the radionuclides. (au)

  12. Mobile gamma spectrometry. Evaluation of the Resume 99 exercise

    Energy Technology Data Exchange (ETDEWEB)

    Mellander, H.; Karlsson, S. [Swedish Radiation Protection Authority, Stockholm (Sweden); Aage, H.K.; Korsbech, U. [Technical Univ. of Denmark, Lyngby (Denmark); Lauritzen, B. [Risoe National Laboratory, Roskilde (Denmark); Smethurst, M. [Geological Survey of Norway, Trondheim (Norway)

    2002-06-01

    During the RESUME 99 exercise, the radiocaesium ({sup 137}Cs) activity in the surroundings of Gavle in central Sweden was ma{sup p}ped using car-borne gamma-ray spectrometry (CGS). The CGS data along with airborne gamma-ray spectrometry (AGS) data from the same area have been used to examine possible correlations between the CGS and AGS results, detector type and position, and geographical information, such as land-use and road type. The overall differences between various CGS results are small, while larger differences are found between AGS and CGS results. In general only little correlation was found with land-use and with road-type and width. The differences between AGS and CGS results arise because airborne detectors have a different field of view than a ground-based detector. From an analysis of the depth-dependency of AGS and CGS data for a depth-distributed source, it is found that the mean mass depth may be inferred from the ratio of AGS to CGS spectral count rates. Integration of AGS and CGS data requires a precise definition of quantities and units for reporting activity concentrations in a complicated geometry and care must be taken to translate AGS results into equivalent CGS quantities taking into account the spatial distribution of the radionuclides. (au)

  13. Radioactive characterization of samples in various geometry by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Dulama, Cristian; Dobrin, Relu; Toma, Alexandru

    2001-01-01

    There are certain limitations concerning the usage of standard source method for efficiency calibration of gamma - ray spectrometers measuring in extended geometry. These limitations arise from the great diversity of forms, dimensions and densities of the objects which are to be measured. One of the steps in fuel fabrication cycle is the radioactive waste conditioning. At Institute for Nuclear Research INR a radioactive waste management facility operates both for its own purposes and for providing external services. This facility is able to perform conditioning of liquid and solid wastes for interim storage. During the waste conditioning operations there are certain stages when the radioactive measurement of the storage drums is demanded. In order to be able to establish the radioactive content within storage drums during the various procedures that are performed on them at our waste treatment facility we designed and manufactured a mobile equipment for 'in situ' spectrometry. A portable high purity germanium detector was used together with a compact workstation Canberra INSPECTOR incorporating a multi-channel analyzer, a spectroscopic amplifier and a high voltage power supply. Spectral data are processed on-line with a SubNote IBM 486 compatible PC using GeniePC, an OS/2 based spectroscopy software from Canberra. A compact, modular lead housing for the detector was designed and manufactured at INR, using uncontaminated Pb and an inner layer of copper. In front of the detector a lead collimator with cylindrical hole was used to reduce the range of variation for incidence angle. Hence several collimators were manufactured with 10, 20, 40 and 60 mm diameter holes to be able to ensure a proper counting rate in a large range of drum's specific activities by simply changing the collimator. For the efficiency calibration of the spectrometric chain a computer program was written, based on a Monte Carlo algorithm, using a semiempirical method to determinate the effective

  14. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    International Nuclear Information System (INIS)

    Jalali, Majid; Mohammadi, Ali

    2008-01-01

    The compounds Na 2 B 4 O 7 , H 3 BO 3 , CdCl 2 and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the γ rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H 3 BO 3 with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds

  15. The self-absorption effect of gamma rays in 239Pu

    International Nuclear Information System (INIS)

    Hsiaohua Hsu

    1989-01-01

    Nuclear materials assay with gamma-ray spectrum measurement is a well-established method for safeguards. However, for a thick source, the self-absorption of characteristic low-energy gamma rays has been a handicap to accurate assay. The author has carried out Monte Carlo simulations to study this effect using the 239 Pu α-decay gamma-ray spectrum as an example. The thickness of a plutonium metal source can be considered a function of gamma-ray intensity ratios. In a practical application, gamma-ray intensity ratios can be obtained from a measured spectrum. With the help of calculated curves, scientists can find the source thickness and make corrections to gamma-ray intensities, which then lead to an accurate quantitative determination of radioactive isotopes in the material

  16. Evaluation of induced radioactivity in 10 MeV-electron irradiated spices, (1); [gamma]-ray measurement

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Masakazu; Katayama, Tadashi; Ito, Norio; Mizohata, Akira; Matsunami, Tadao; Shibata, Setsuko; Toratani, Hirokazu (Osaka Prefectural Univ., Sakai (Japan). Research Inst. for Advanced Science and Technology); Takeda, Atsuhiko

    1994-02-01

    Black pepper, white pepper, red pepper, ginger and turmeric were irradiated with 10 MeV electrons from a linear accelerator to a dose of 100 kGy and radioactivity was measured in order to estimate induced radioactivity in the irradiated foods. Induced radioactivity could not be detected significantly by [gamma]-ray spectrometry in the irradiated samples except for spiked samples which contain some photonuclear target nuclides in the list of photonuclear reactions which could produce radioactivity below 10 MeV. From the amount of observed radioactivities of short-lived photonuclear products in the spiked samples and calculation of H[sub 50] according to ICRP Publication 30, it was concluded that the induced radioactivity and its biological effects in the 10 MeV electron-irradiated natural samples were negligible in comparison with natural radioactivity from [sup 40]K contained in the samples. (author).

  17. Gamma-ray multiplicity measurements in the 28Si + 64Ni reaction at 163.8 MeV

    International Nuclear Information System (INIS)

    Di Pietro, A.; Cardella, G.; Musumarra, A.; Papa, M.; Pappalardo, G.; Rizzo, F.; De Rosa, A.; D'Onofrio, A.; Inglima, G.; Roca, V.; Romano, M.; Romoli, M.; Sandoli, M.; Terrasi, F.; Fioretto, E.

    1994-01-01

    The 28 Si+ 64 Ni reaction at 163.8 MeV incident energy is studied by measuring in coincidence γ-rays and charged particles identified from Z 2 to Z = 16. The transition from quasi-elastic to more damped reactions is observed when the difference between the detected charge and the projectile one is increased. The strong influence of the particle decay on the measured γ-ray multiplicity is evidenced with the help of the statistical model computer code CASCADE. Dissipative events are well described in the rolling limit with excitation energy equally shared between the fragments. The overall agreement is lost for the fragments with the projectile charge which show a small value of the γ-multiplicity even for dissipative events. This is probably connected with the previously observed non statistical behavior of gamma rays emitted in coincidence with projectile-like fragments. In the alpha-spectrum measured in coincidence with gamma-rays, the deexcitation of fused systems is clearly separated from in flight emission of deep inelastic fragments. The low measured gamma-ray multiplicity for fusion events is qualitatively explained taking into account the effect of alpha-emission in the statistical decay. (orig.)

  18. TL detectors for gamma ray dose measurements in criticality accidents

    International Nuclear Information System (INIS)

    Miljanic, S.; Zorko, B.; Gregori, B.; Knezevic, Z.

    2007-01-01

    Determination of gamma ray dose in mixed neutron + gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Boskovic Inst. (RBI), Croatia, Jozef Stefan Inst. (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7 LiF (TLD-700), CaF 2 :Mn and Al2 O3 :Mg,Y - all from RBI; CaF 2 :Mn from JSI and 7 LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed. (authors)

  19. TL detectors for gamma ray dose measurements in criticality accidents.

    Science.gov (United States)

    Miljanić, Saveta; Zorko, Benjamin; Gregori, Beatriz; Knezević, Zeljka

    2007-01-01

    Determination of gamma ray dose in mixed neutron+gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Bosković Institute (RBI), Croatia, JoZef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7LiF (TLD-700), CaF2:Mn and Al2O3:Mg,Y-all from RBI; CaF2:Mn from JSI and 7LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed.

  20. Study on direct determination of uranium and efficient equilibrium factor by gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Liu Chunkui

    1990-01-01

    The test principle, test set and surveying methods for conducting gamma-ray spectrometry on conveyer are presented. The conversion coefficient of the spectrometer has been found by using duallinear regression analysis of uranium and radon and their higher and lower bands of gamma-ray spectra. The efficient equilibrium factor can be quickly determined, and the direct determination of uranium in the non-equilibrium condition of uranium and radium can be made

  1. Discoveries by the Fermi Gamma Ray Space Telescope

    Science.gov (United States)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  2. Programmer for automatic gamma spectrometry; Ordonnateur de sequence pour spectrometrie gamma automatique

    Energy Technology Data Exchange (ETDEWEB)

    Romanetti, R [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1968-04-01

    With this apparatus, which is constructed of logical integrated circuits, it is possible both to synchronize an automatic gamma spectrometry assembly and to record the spectra on punched cards. An IBM terminal will make it possible with the help of analysis by the least squares method and by a direct dialogue with an IBM 360 computer to obtain analytical results almost instantaneously. (author) [French] Cet appareil, realise en circuits integres logiques, permet d'une part de synchroniser un ensemble automatique de spectrometrie gamma et d'autre part d'enregistrer les spectres sur cartes perforees. Un terminal IBM permettra, a l'aide d'un programme d'analyse par la methode des moindres carres et par un dialogue direct avec un ordinateur IBM 360, de disposer presque intanstanement des resultats des analyses. (auteur)

  3. Gamma-ray multiplicity measurement of the spontaneous fission decay of 252Cf in a segmented HPGe/BGO detector array

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D L; Bernstein, L A; Burke, J T; Gibelin, J; Heffner, M D; Mintz, J; Norman, E B; Phair, L; Scielzo, N D; Sheets, S A; Snyderman, N J; Stoyer, M A; Wiedeking, M

    2008-04-23

    Coincident {gamma} rays from a {sup 252}Cf source were measured using an array of six segmented high-purity germanium (HPGe) Clover detectors each enclosed by 16 bismuth-germanate (BGO) detectors. The detectors were arranged in a cubic pattern around a 1 {micro}Ci {sup 252}Cf source to cover a large solid angle for {gamma}-ray measurement with a reasonable reconstruction of the multiplicity. Neutron multiplicity was determined in certain cases by identifying the prompt {gamma} rays from individual fission fragment pairs. Multiplicity distributions from previous experiments and theoretical models were convolved with the response function of the array and compared to the present results. These results suggest a {gamma}-ray multiplicity spectrum broader than previous measurements and models, and provide no evidence of correlation with neutron multiplicity.

  4. Measurement of concentrations of {gamma}-ray emitters induced in the concrete shield of the JAERI electron linac facility

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Akira; Kawasaki, Katsuya; Kikuchi, Masamitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Harada, Yasunori

    1997-07-01

    Measurement has been made to study distributions of {gamma}-ray emitters induced in the concrete shield of the JAERI electron linac facility. Core boring was carried out at seven positions to take samples from the concrete shield, and {gamma}-ray counting rates and {gamma}-ray spectra of these samples were measured with a NaI(Tl) detector and a Ge semiconductor detector, respectively. The following radionuclides were detected in the concrete samples: {sup 60}Co, {sup 134}Cs, {sup 152}Eu and {sup 154}Eu generated through thermal neutron capture reaction, and {sup 22}Na and {sup 54}Mn generated through nuclear reactions by bremsstrahlung and fast neutrons. The relation between the distributions of {gamma}-ray emitters, as a function of the depth of concrete, and the positions of core boring is discussed. (author)

  5. Measurement of the fission yields of selected prompt and decay fission product gamma-rays of spontaneously fissioning 252Cf and 244Cm

    International Nuclear Information System (INIS)

    Reber, E.L.; Gehrke, R.J.; Aryaeinejad, R.; Hartwell, J.K.

    2005-01-01

    Gamma-ray spectrometry measurements have been made of the fission yields of selected γ -rays emitted by the spontaneously fissioning isotopes 252 Cf and 244 Cm. The measured γ-rays were selected based on their relative abundance in the spectrum and their freedom from interference or, in a few instances, ease of interference correction. From these data and the cumulative and independent yield data of England and Rider, those γ-rays that are primarily produced by radioactive decay, as opposed to direct yield, were converted into the decays per spontaneous fission expressed in percent and compared to cumulative yield values of England and Rider. For those γ-rays whose production is dominated by direct (independent) yield, the ratio of γ-rays per spontaneous fission is reported. The γ-ray yield can be compared to the independent yield values of England and Rider when 100% of the direct feeding passes through the γ-ray. In those cases where both cumulative and independent yields contribute to the observed γ-ray emission rate, a direct comparison is not possible but a method to quantify the contribution from each is proposed. (author)

  6. Measurements of gamma-ray energy deposition in a heterogeneous reactor experimental configuration and their analysis

    International Nuclear Information System (INIS)

    Calamand, D.; Wouters, R. de; Knipe, A.D.; Menil, R.

    1984-10-01

    An important contribution to the power output of a fast reactor is provided by the energy deposition from gamma-rays, and is particularly significant in the inner fertile zones of heterogeneous breeder reactor designs. To establish the validity of calculational methods and data for such systems an extensive series of measurements was performed in the zero power reactor Masurca, as part of the RACINE programme. The experimental study involved four European laboratories and the measurement techniques covered a range of thermoluminescent dosemeters and an ionization chamber. The present paper describes and compares the gamma-ray energy deposition measurements and analysis

  7. Measurement of actinide concentration in solution samples from the NUCEF reprocessing facility by X-ray and low energy gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Howarth, P.J.A.; Uchiyama, Gunzo; Asakura, Toshihide; Sawada, Mutsumi; Hagiya, Hiromichi; Fujine, Sachio

    1999-01-01

    X-ray and low-energy gamma-ray spectroscopy has been used to measure actinide concentration within the backend nuclear fuel reprocessing research facility at NUCEF. Research on advanced reprocessing techniques at NUCEF is based on the PARC refinement of the PUREX process which aims to recover Am and Cm from the highly active waste stream and to control and partition Np and Tc. It is hoped that the PARC process will mitigate the environmental impact of the wastes and improve the economy of reprocessing. The main actinides for which assay is required are U, Pu, Np and Am and knowledge of these concentrations will enable the following to be determined: i.) evaluation of the distribution of actinides throughout the reprocessing facility ii.) verification of the simulated actinide distribution from chemical kinetic simulations of the PARC process and iii.) assurance of safety and control over migrant radioactive species. The research presented here shows that passive measurement of x-rays and low-energy gamma-rays from solution samples provides an accurate and non-destructive means for assaying the concentration. The measurement technique is based on the use of the characteristic low energy gamma-rays and internal conversion x-ray emission from actinides (11 keV to 22 keV). The x-ray emission is a few orders of magnitude more intense than the characteristic gamma-ray emission and can be easily detected from solutions. The experimental system described here can be used for solution monitoring to a minimum concentration of typically 10-6 M for Pu, 10-10 M for Am and 10-6 M for Np. (author)

  8. Gamma-Ray Pulsar Studies With GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  9. Determination of the neutron activation profile of core drill samples by gamma-ray spectrometry.

    Science.gov (United States)

    Gurau, D; Boden, S; Sima, O; Stanga, D

    2018-04-01

    This paper provides guidance for determining the neutron activation profile of core drill samples taken from the biological shield of nuclear reactors using gamma spectrometry measurements. Thus, it provides guidance for selecting a model of the right form to fit data and using least squares methods for model fitting. The activity profiles of two core samples taken from the biological shield of a nuclear reactor were determined. The effective activation depth and the total activity of core samples along with their uncertainties were computed by Monte Carlo simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cosmic veto gamma-spectrometry for Comprehensive Nuclear-Test-Ban Treaty samples

    International Nuclear Information System (INIS)

    Burnett, J.L.; Davies, A.V.

    2014-01-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a global network of monitoring stations that perform high-resolution gamma-spectrometry on air filter samples for the identification of 85 radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a novel cosmic veto gamma-spectrometer has been developed to improve the sensitivity of station measurements, providing a mean background reduction of 80.8% with mean MDA improvements of 45.6%. The CTBT laboratory requirement for a 140 Ba MDA is achievable after 1.5 days counting compared to 5–7 days using conventional systems. The system consists of plastic scintillation plates that detect coincident cosmic-ray interactions within an HPGe gamma-spectrometer using the Canberra Lynx TM multi-channel analyser. The detector is remotely configurable using a TCP/IP interface and requires no dedicated coincidence electronics. It would be especially useful in preventing false-positives at remote station locations (e.g. Halley, Antarctica) where sample transfer to certified laboratories is logistically difficult. The improved sensitivity has been demonstrated for a CTBT air filter sample collected after the Fukushima incident

  11. Cosmic veto gamma-spectrometry for Comprehensive Nuclear-Test-Ban Treaty samples

    Science.gov (United States)

    Burnett, J. L.; Davies, A. V.

    2014-05-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a global network of monitoring stations that perform high-resolution gamma-spectrometry on air filter samples for the identification of 85 radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a novel cosmic veto gamma-spectrometer has been developed to improve the sensitivity of station measurements, providing a mean background reduction of 80.8% with mean MDA improvements of 45.6%. The CTBT laboratory requirement for a 140Ba MDA is achievable after 1.5 days counting compared to 5-7 days using conventional systems. The system consists of plastic scintillation plates that detect coincident cosmic-ray interactions within an HPGe gamma-spectrometer using the Canberra LynxTM multi-channel analyser. The detector is remotely configurable using a TCP/IP interface and requires no dedicated coincidence electronics. It would be especially useful in preventing false-positives at remote station locations (e.g. Halley, Antarctica) where sample transfer to certified laboratories is logistically difficult. The improved sensitivity has been demonstrated for a CTBT air filter sample collected after the Fukushima incident.

  12. Cosmic veto gamma-spectrometry for Comprehensive Nuclear-Test-Ban Treaty samples

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, J.L., E-mail: jonathan.burnett@awe.co.uk; Davies, A.V.

    2014-05-21

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a global network of monitoring stations that perform high-resolution gamma-spectrometry on air filter samples for the identification of 85 radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a novel cosmic veto gamma-spectrometer has been developed to improve the sensitivity of station measurements, providing a mean background reduction of 80.8% with mean MDA improvements of 45.6%. The CTBT laboratory requirement for a {sup 140}Ba MDA is achievable after 1.5 days counting compared to 5–7 days using conventional systems. The system consists of plastic scintillation plates that detect coincident cosmic-ray interactions within an HPGe gamma-spectrometer using the Canberra Lynx{sup TM} multi-channel analyser. The detector is remotely configurable using a TCP/IP interface and requires no dedicated coincidence electronics. It would be especially useful in preventing false-positives at remote station locations (e.g. Halley, Antarctica) where sample transfer to certified laboratories is logistically difficult. The improved sensitivity has been demonstrated for a CTBT air filter sample collected after the Fukushima incident.

  13. Dissecting the Gamma-Ray Background in Search of Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias; Hooper, Dan; McDermott, Samuel D.

    2014-02-01

    Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitive with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of ~ 5 - 10.

  14. Time sequence determination of parent–daughter radionuclides using gamma-spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, J. L.; Britton, R. E.; Abrecht, D. G.; Davies, A. V.

    2017-05-06

    The acquisition of time-stamped list (TLIST) data provides additional information useful to gamma-spectrometry analysis. A novel technique is described that uses non-linear least-squares fitting and the Levenberg-Marquardt algorithm to simultaneously determine parent-daughter atoms from time sequence measurements of only the daughter radionuclide. This has been demonstrated for the radioactive decay of short-lived radon progeny (214Pb/214Bi, 212Pb/212Bi) described using the Bateman first-order differential equation. The calculated atoms are in excellent agreement with measured atoms, with a difference of 1.3 – 4.8% for parent atoms and 2.4% - 10.4% for daughter atoms. Measurements are also reported with reduced uncertainty. The technique has potential to redefine gamma-spectrometry analysis.

  15. Gamma-ray imaging system for real-time measurements in nuclear waste characterisation

    Science.gov (United States)

    Caballero, L.; Albiol Colomer, F.; Corbi Bellot, A.; Domingo-Pardo, C.; Leganés Nieto, J. L.; Agramunt Ros, J.; Contreras, P.; Monserrate, M.; Olleros Rodríguez, P.; Pérez Magán, D. L.

    2018-03-01

    A compact, portable and large field-of-view gamma camera that is able to identify, locate and quantify gamma-ray emitting radioisotopes in real-time has been developed. The device delivers spectroscopic and imaging capabilities that enable its use it in a variety of nuclear waste characterisation scenarios, such as radioactivity monitoring in nuclear power plants and more specifically for the decommissioning of nuclear facilities. The technical development of this apparatus and some examples of its application in field measurements are reported in this article. The performance of the presented gamma-camera is also benchmarked against other conventional techniques.

  16. Nuclear energy - Waste-packages activity measurement - Part.1: high-resolution gamma spectrometry in integral mode with open geometry

    International Nuclear Information System (INIS)

    2004-01-01

    ISO 14850:2004 describes a procedure for measurements of gamma-emitting radionuclide activity in homogeneous objects such as unconditioned waste (including process waste, dismantling waste, etc.), waste conditioned in various matrices (bitumen, hydraulic binder, thermosetting resins, etc.), notably in the form of 100 L, 200 L, 400 L or 800 L drums, and test specimens or samples, (vitrified waste), and waste packaged in a container, notably technological waste. It also specifies the calibration of the gamma spectrometry chain. The gamma energies used generally range from 0,05 MeV to 3 MeV. (authors)

  17. SYSTEMATIC STUDY OF GAMMA-RAY-BRIGHT BLAZARS WITH OPTICAL POLARIZATION AND GAMMA-RAY VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Ryosuke; Fukazawa, Yasushi; Kanda, Yuka; Shiki, Kensei; Kawabata, Miho; Nakaoka, Tatsuya; Takaki, Katsutoshi; Takata, Koji; Ui, Takahiro [Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Nalewajko, Krzysztof; Madejski, Greg M. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Uemura, Makoto; Tanaka, Yasuyuki T.; Kawabata, Koji S.; Akitaya, Hiroshi; Ohsugi, Takashi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Schinzel, Frank K. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Moritani, Yuki [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Sasada, Mahito [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Yamanaka, Masayuki, E-mail: itoh@hep01.hepl.hiroshima-u.ac.jp, E-mail: itoh@hp.phys.titech.ac.jp [Department of Physics, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Hyogo 658-8501 (Japan); and others

    2016-12-10

    Blazars are highly variable active galactic nuclei that emit radiation at all wavelengths from radio to gamma rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies, and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition, and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between 2008 July and 2014 December to investigate the mechanisms of variability and search for a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), this result implies a systematic difference in the intrinsic alignment of magnetic fields in parsec-scale relativistic jets between different types of blazars (flat-spectrum radio quasars vs. BL Lacs) and consequently between different types of radio galaxies (FR I versus FR II).

  18. Gamma ray auto absorption correction evaluation methodology

    International Nuclear Information System (INIS)

    Gugiu, Daniela; Roth, Csaba; Ghinescu, Alecse

    2010-01-01

    Neutron activation analysis (NAA) is a well established nuclear technique, suited to investigate the microstructural or elemental composition and can be applied to studies of a large variety of samples. The work with large samples involves, beside the development of large irradiation devices with well know neutron field characteristics, the knowledge of perturbing phenomena and adequate evaluation of correction factors like: neutron self shielding, extended source correction, gamma ray auto absorption. The objective of the works presented in this paper is to validate an appropriate methodology for gamma ray auto absorption correction evaluation for large inhomogeneous samples. For this purpose a benchmark experiment has been defined - a simple gamma ray transmission experiment, easy to be reproduced. The gamma ray attenuation in pottery samples has been measured and computed using MCNP5 code. The results show a good agreement between the computed and measured values, proving that the proposed methodology is able to evaluate the correction factors. (authors)

  19. X-ray echoes from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dermer, C.D.; Hurley, K.C.; Hartmann, D.H.

    1991-01-01

    The identification of an echo of reflected radiation in time histories of gamma-ray burst spectra can provide important information about the existence of binary companions or accretion disks in gamma-ray burst systems. Because of the nature of Compton scattering, the spectrum of the echo will be attenuated at gamma-ray energies compared with the spectrum of the primary burst emission. The expected temporal and spectral signatures of the echo and a search for such echoes are described, and implications for gamma-ray burst models are discussed. 35 refs

  20. Measurement of gamma ray from fuel of high temperature engineering test reactor. Method of measurement and results

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Nozomu; Nojiri, Naoki; Takada, Eiji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-02-01

    To obtain information in the HTTR core directly, gamma ray from fuel blocks was measured when fuel blocks were discharged from the core and reloaded to the core. Gamma ray was measured using GM detector, CZT semiconductor detector installed in a door valve and area monitors installed in a stand pipe compartment. The measurement was carried out for 20 fuel blocks in 4 columns considering the symmetry of uranium enrichment distribution in the core. Relative axial distribution in each column obtained by the GM detector and CZT detector agreed with calculated results. However, calculation values showed higher values than measured values in upper region of the core, lower those in lower region of the core. The axial distributions were also evaluated by the area monitors. The measured values agreed with calculated values. It became clear that it was possible to obtain the data inside the core by this method. (author)

  1. Multiwavelength Study of Gamma-Ray Bright Blazars

    Science.gov (United States)

    Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.

    2011-01-01

    We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  2. Characterization of leveling problems of Patagonia gamma-ray spectrometry survey, Chubut province (Argentina)

    International Nuclear Information System (INIS)

    Ford, Kenneth L.; Lopez, Luis E.

    1998-01-01

    Measuring the radioelement concentrations of the soils along traverses perpendicular to the flight line direction was performed in order to gather useful information in support of the leveling of the airborne gamma-ray spectrometer survey of Patagonia. Two sites were selected as test areas which ground and airborne spectrometric data were systematically compared to asses the nature of the leveling problems. It is suspected that variations in soil moisture may play a significant roll in the leveling variations. (author)

  3. The Gamma-ray Sky with Fermi

    Science.gov (United States)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  4. Test results of a new detector system for gamma ray isotopic measurements

    International Nuclear Information System (INIS)

    Malcom, J.E.; Bonner, C.A.; Hurd, J.R.; Fleissner,

    1993-01-01

    A new type of gamma-ray detector system for isotopic measurements has been developed. This new system, a ''Duo detector'' array, consists of two intrinsic germanium detectors, a planar followed by a coaxial mounted on the same axis within a single cryostat assembly. This configuration allows the isotopic analysis system to take advantage of spectral data results that are collected simultaneously from different gamma-ray energy regimes. Princeton Gamma Tech (PGT) produced several prototypes of this Duo detector array which were then tested by Rocky Flats personnel until the design was optimized. An application for this detector design is in automated, roboticized NDA systems such as those being developed at the Los Alamos TA-55 Plutonium Facility. The Duo detector design reduces the space necessary for the isotopic instrument by a factor of two (only one liquid nitrogen dewar is needed), and also reduces the complexity of the mechanical systems and controlling software. Data will be presented on measurements of nuclear material with a Duo detector for a wide variety of matrices. Results indicate that the maximum count rate can be increased up to 100,000 counts per second yet maintaining excellent resolution and energy rate product

  5. Collimatorless imaging of gamma rays with help of gamma-ray tracking

    CERN Document Server

    Marel, J V D

    2001-01-01

    In many gamma-ray detector systems that are built for imaging purposes Compton scattered photons are suppressed as much as possible. However, the information from photons that scattered inside a detector system can be used to reconstruct the tracks of the photons with help of gamma-ray tracking. Estimates of the incident directions of the photons can be made and an image can be created. Examples of potential applications for this technique are the use as a gamma-camera in medical imaging (e.g. SPECT) or as a detector for PET. Due to the omission of collimators, much higher detection efficiencies can be achieved, reducing the doses required for an image. A gamma-ray tracking method, called backtracking, has been developed for nuclear spectroscopy. The method tracks gamma-rays originating from a point source in the center of a spherical detector system consisting of position-sensitive germanium detectors. This method can also be used as a tracking technique for imaging of an unknown source distribution. With he...

  6. Measurement of gamma-ray production cross sections in neutron-induced reactions for Al and Pb

    International Nuclear Information System (INIS)

    Pavlik, A.; Vonach, H.; Hitzenberger, H.

    1995-01-01

    The prompt gamma-radiation from the interaction of fast neutrons with aluminum and lead was measured using the white neutron beam of the WNR facility at the Los Alamos National Laboratory. The samples (Al and isotopically enriched 207 Pb and 208 Pb) were positioned at about 20 m or 41 m distance from the neutron production target. The spectra of the emitted gamma-rays were measured with a high-resolution HPGe detector. The incident neutron energy was determined by the time-of-flight method and the neutron fluence was measured with a U fission chamber. From the aluminum gamma-ray spectra excitation functions for prominent gamma-transitions in various residual nuclei (in the range from O to Al) were derived for neutron energies from 3 MeV to 400 MeV. For lead (n,xnγ) reactions were studied for neutron energies up to 200 MeV by analyzing prominent gamma-transitions in the residual nuclei 200,202,204,206,207,208 Pb. The experimental results were compared with nuclear model calculations using the code GNASH. A good overall agreement was obtained without special parameter adjustments

  7. Cadium-Zinc-Telluride (CZT) Gamma Ray Spectrometry

    International Nuclear Information System (INIS)

    William Quam

    2001-01-01

    This report describes CZT crystals and their use in large arrays for generation of gamma ray spectra. Laboratory spectra will be shown together with spectra accumulated by various battery powered portable instruments (see Appendix A). One of these portable instruments was specifically constructed to minimize power consumption and yet provide reasonable isotope identification capability. Detailed data will be presented covering gamma energy resolution, gamma peak shapes, system background, and detector efficiency. Nearly all data were taken with very small crystals of CZT; cubes 5 mm on a side. A few spectra will be presented from cylindrical crystals of about the same size (see Appendix A). The small crystal size leads to low counting rates and extended counting times for reliable isotope identification. We have addressed this problem by using arrays of CZT crystals, initially two crystals and, at present, arrays of eight crystals. Data will be shown relating spectral parameters for these two arrays. System MDA is one way of combining resolution, efficiency, and background that will enable direct comparison of various detector types for individual isotope identification. We have calculated the MDA for an early dual crystal array and the current eight crystal array. Data derived from each array will be presented. In addition, it is possible to extrapolate the MDA methodology to much larger arrays. A 32-crystal array is under construction and extrapolations to 256 and 1024 crystals are considered possible. Estimated MDA values for these larger arrays are also presented. Several 8-crystal arrays have been constructed and versions have been incorporated into portable instruments. Descriptions of these small instruments are given covering physical size, weight, and general configuration. These instruments have been tested for shock and temperature effects and data will be presented on the results of these tests. The MDA concept will also allow extrapolation to large

  8. Committed effective dose determination in cereal flours by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Scheibel, Viviane

    2006-01-01

    The health impact from radionuclides ingestion of foodstuffs was evaluated by the committed effective doses determined in commercial samples of South-Brazilian cereal flours (soy, wheat, corn, manioc, rye, oat, barley and rice flour). The radioactivity traces of 228 Th, 228 Ra, 226 Ra, 40 K, 7 Be and 137 Cs were measured by gamma-ray spectrometry employing a 66% relative efficiency HPGe detector. The energy resolution for the 1332.46 keV line of 60 Co was 2.03 keV. The committed effective doses were calculated with the activities analyzed in the present flour samples, the foodstuff rates of consumption (Brazilian Institute of Geography and Statistics) and the ingestion dose coefficients (International Commission of Radiological Protection). The reliability median activities were verified with χ 2 tests, assuring the fittings quality. The highest concentration levels of 228 Th and 40 K were 3.5 ± 0.4 and 1469 ± 17 Bq.kg -1 for soy flour, respectively, with 95% of confidence level. The lower limit of detection for 137 Cs ranged from 0.04 to 0.4 Bq.kg -1 . The highest committed effective dose was 0.36 μSv.y -1 for 228 Ra in manioc flour (adults). All committed effective doses determined at the present work were lower than the UNSCEAR limits of 140 μSv.y -1 and much lower than the ICRP (1991) limits of 1 mSv.y -1 , for general public. There are few literature references for natural and artificial radionuclides in foodstuffs and mainly for committed effective doses. This work brings the barley flour data, which is not present at the literature and 7 Be data which is not encountered in foodstuffs at the literature, besides all the other flours data information about activities and committed effective doses. (author)

  9. Studies of weak capture-gamma-ray resonances via coincidence techniques

    CERN Document Server

    Rowland, C; Champagne, A E; Dummer, A K; Fitzgerald, R; Harley, E C T; Mosher, J; Runkle, R

    2002-01-01

    A method for measuring weak capture-gamma-ray resonances via gamma gamma-coincidence counting techniques is described. The coincidence apparatus consisted of a large-volume germanium detector and an annular NaI(Tl) crystal. The setup was tested by measuring the weak E sub R =227 keV resonance in sup 2 sup 6 Mg(p,gamma) sup 2 sup 7 Al. Absolute germanium and NaI(Tl) counting efficiencies for a range of gamma-ray energies and for different detector-target geometries are presented. Studies of the gamma-ray background in our spectra are described. Compared to previous work, our method improves the detection sensitivity for weak capture-gamma-ray resonances by a factor of approx 100. The usefulness of the present technique for investigations of interest to nuclear astrophysics is discussed.

  10. Self-attenuation correction in the environmental sample gamma spectrometry; Correcao de auto-absorcao na espectrometria gama de amostras ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Luzia; Nisti, Marcelo B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1997-10-01

    Self-attenuation corrections were calculated for gamma ray spectrometry of environmental samples with densities from 0.42 g/ml up to 1.59 g/ml, measured in Marinelli beakers and polyethylene flasks. These corrections are to be used when the counting efficiency is calculated for water measured in the same geometry. The model of Debertin for Marinelli beaker, numerical integration and experimental linear attenuation coefficients were used. (author). 3 refs., 4 figs., 6 tabs.

  11. X-ray and gamma-ray standards for detector calibration

    International Nuclear Information System (INIS)

    1991-09-01

    The IAEA established a Co-ordinated Research Programme (CRP) on the Measurements and Evaluation of X- and Gamma-Ray Standards for Detector Efficiency Calibration in 1986 with the aim of alleviating the generation of such discrepancies. Within the framework of this CRP, representatives of nine research groups from six Member States and one international organization performed a number of precise measurements and systematic in-depth evaluations of the required decay data. They have also contributed to the development of evaluation methodology and measurement techniques, and stimulated a number of such studies at laboratories not directly involved in the IAEA project. The results of the work of the CRP, which was finished in 1990, are presented in this report. Recommended values of half-lives and photon emission probabilities are given for a carefully selected set of radionuclides that are suitable for detector efficiency calibration (X-rays from 5 to 90 keV and gamma-rays from 30 to about 3000 keV). Detector efficiency calibration for higher gamma-ray energies (up to 14 MeV) is also considered. The evaluation procedures used to obtain the recommended values and their estimated uncertainties are reported, and a summary of the remaining discrepancies is given. Refs and tabs

  12. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Jo, Sung Ha; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 61005 (Korea, Republic of); Hojbota, Calin; Bae, Lee Jin; Jung, Jaehyung; Cho, Min Sang; Cho, Byoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 61005 (Korea, Republic of)

    2016-07-15

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1–10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.

  13. Fundamentals of gamma-ray measurements and radiometric analyses

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1990-01-01

    There are four primary modes of radioactive decay. All can be measured using various types of detectors and are the basis of many analytical techniques and much of what we know about the nucleus and its structure. Alpha particle emission occurs mostly in heavy nuclei of atomic number, Z, greater than 82 like Po, Ra, Th, and U, etc. Beta particles are simply electrons. They are emitted from the nucleus with a distribution of energies ranging from 0--3 MeV. Gamma-rays are photons with energies ranging from a few keV to 10 MeV or more. They usually follow alpha or beta decay, and depending on their energy, can have considerable range in matter. Neutrons are emitted in fission processes and also from a few of the highly excited fission product nuclei. Fission neutrons typically have energies of 1--2 MeV. Like gamma-rays, they have long ranges. The energies involved in nuclear decay processes are much higher than anything encountered in, say, chemical reactions. They are at the very top of the electromagnetic spectrum -- about a million times more energetic than visible light. As a result, these particles always produce ionization, either directly or indirectly, as they pass through matter. It is this ionization which is the basis of all radiation detectors

  14. Mapping the spatial distribution and activity of "2"2"6Ra at legacy sites through Machine Learning interpretation of gamma-ray spectrometry data

    International Nuclear Information System (INIS)

    Varley, Adam; Tyler, Andrew; Smith, Leslie; Dale, Paul; Davies, Mike

    2016-01-01

    Radium ("2"2"6Ra) contamination derived from military, industrial, and pharmaceutical products can be found at a number of historical sites across the world posing a risk to human health. The analysis of spectral data derived using gamma-ray spectrometry can offer a powerful tool to rapidly estimate and map the activity, depth, and lateral distribution of "2"2"6Ra contamination covering an extensive area. Subsequently, reliable risk assessments can be developed for individual sites in a fraction of the timeframe compared to traditional labour-intensive sampling techniques: for example soil coring. However, local heterogeneity of the natural background, statistical counting uncertainty, and non-linear source response are confounding problems associated with gamma-ray spectral analysis. This is particularly challenging, when attempting to deal with enhanced concentrations of a naturally occurring radionuclide such as "2"2"6Ra. As a result, conventional surveys tend to attribute the highest activities to the largest total signal received by a detector (Gross counts): an assumption that tends to neglect higher activities at depth. To overcome these limitations, a methodology was developed making use of Monte Carlo simulations, Principal Component Analysis and Machine Learning based algorithms to derive depth and activity estimates for "2"2"6Ra contamination. The approach was applied on spectra taken using two gamma-ray detectors (Lanthanum Bromide and Sodium Iodide), with the aim of identifying an optimised combination of detector and spectral processing routine. It was confirmed that, through a combination of Neural Networks and Lanthanum Bromide, the most accurate depth and activity estimates could be found. The advantage of the method was demonstrated by mapping depth and activity estimates at a case study site in Scotland. There the method identified significantly higher activity ( 0.4 m), that conventional gross counting algorithms failed to identify. It was

  15. Optical observations of Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Hjorth, J.; Pian, E.; Fynbo, J.P.U.

    2004-01-01

    We briefly review the status and recent progress in the field of optical observations of gamma-ray burst afterglows. We will focus on the fundamental observational evidence for the relationship between gamma-ray bursts and the final evolutionary phases of massive stars. In particular, we will address (i) gamma-ray burst host galaxies, (ii) optically dark gamma-ray burst afterglows, (iii) the gamma-ray burst-supernova connection, and (iv) the relation between X-ray flashes, gamma-ray bursts, and supernovae

  16. National Uranium Resource Evaluation. General procedure for calibration and reduction of aerial gamma-ray measurements: specification BFEC 1250-B

    International Nuclear Information System (INIS)

    Purvance, D.; Novak, E.

    1983-12-01

    The information contained in this specification was acquired over the course of the US Department of Energy (DOE) National Uranium Resource Evaluation (NURE) program during the period 1974 through 1982. NURE was a program of the DOE Grand Junction Area Office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Bendix Field Engineering Corporation (BFEC) has been the operating contractor for the DOE Grand Junction facility. The requirements stipulated herein had been incorporated as contractual specifications for the various subcontractors engaged in the aerial gamma-ray surveys, which were a major aspect of the NURE program. Although this phase of NURE activities has been completed, there exists valuable knowledge gained from these years of experience in the calibration of gamma-ray spectrometer systems and in the reduction of calibration data. Specification BFEC 1250-B is being open-filed by the US Department of Energy at this time to make this knowledge available to those desiring to apply gamma-ray spectrometry to other geophysical problems

  17. An industrial radiography exposure device based on measurement of transmitted gamma-ray intensity

    International Nuclear Information System (INIS)

    Polee, C; Chankow, N; Srisatit, S; Thong-Aram, D

    2015-01-01

    In film radiography, underexposure and overexposure may happen particularly when lacking information of specimen material and hollowness. This paper describes a method and a device for determining exposure in industrial gamma-ray radiography based on quick measurement of transmitted gamma-ray intensity with a small detector. Application software was developed for Android mobile phone to remotely control the device and to display counting data via Bluetooth communication. Prior to film exposure, the device is placed behind a specimen to measure transmitted intensity which is inversely proportional to the exposure. Unlike in using the conventional exposure curve, correction factors for source decay, source-to- film distance, specimen thickness and kind of material are not needed. The developed technique and device make radiographic process economic, convenient and more reliable. (paper)

  18. Photoneutron cross sections measurements in 9Be, 13C e 17O with thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Semmler, Renato

    2006-01-01

    Photoneutron cross sections measurements of 9 Be, 13 C and 17 O have been obtained in the energy interval between 1,6 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 a 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (5 MW) research reactor. The samples have been irradiated inside a 4π geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm 3 , 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A inversion matrix methodology to solve inversion problems for unfolding the set of experimental compound cross sections, was used in order to obtain the cross sections at specific excitation energy values (principal gamma line energies of the capture targets). The cross sections obtained at the energy values of the principal gamma lines were compared with experimental data reported by other authors, with have employed different gamma-ray sources. A good agreement was observed among the experimental data in this work with reported in the literature. (author)

  19. Development and application of marine gamma-ray measurements: a review.

    Science.gov (United States)

    Jones, D G

    2001-01-01

    The development of instruments to measure gamma radiation in the marine environment, particularly on the sea floor, and the range of uses to which they have been put is reviewed. Since the first steps in the late 1950s, systems have been developed in at least 10 countries with the main thrust occurring in the 1970s. Development has continued up to the present, primarily in Europe and the USA. Marine gamma-ray spectrometers have been used for a range of applications including the mapping of rocks and unconsolidated sediments, mineral exploration (mainly for heavy minerals and phosphorites), sediment transport studies and investigations in relation to discharged and dumped nuclear wastes and at nuclear weapon test sites.

  20. The Gamma-ray Universe through Fermi

    Science.gov (United States)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  1. Application for plasma diagnostics with D(α, γ)6Li gamma-ray

    International Nuclear Information System (INIS)

    Ochiai, Kentaro; Kubota, Naoyoshi; Nishitani, Takeo; Taniike, Akira; Kitamura, Akira

    2006-01-01

    The gamma ray measurement from fusion plasma is one of the important techniques to clarify fast ion properties in plasma. Some observation of the gamma-ray in JET plasma was reported. 12 C(d, pγ) 13 C and 9 Be(α, nγ) 12 C reactions on the JET observation are mainly recommended as the actual prospective nuclear reaction on the gamma-ray measurement. However, it is thought that the gamma-ray observation by means of these reactions significantly depends on the conditioning (i.e. densities of the beryllium and carbon in plasma). Therefore, it is also important to examine the availabilities concerning the methods of gamma ray. We have tried to measure the 2.18 MeV gamma ray of D(α, γ) 6 Li reaction and the properties of the another gamma ray emission by MeV-He ++ beam irradiation experiment. (author)

  2. Solid state scintillators for gamma spectrometry

    International Nuclear Information System (INIS)

    La Mela, G.; Torrisi, M.

    1991-01-01

    Using different scintillator crystals, measurements of energy resolution and detection efficiency have been performed to detect gamma rays of energy ranging between 500 en 1550 KeV. This investigation is devoted to characterize the best systems to detect photons coming from positron annihilation processes, such as a PET apparatus where the medical image is the final aim of the investigation, and gamma emission from radioisotopes of biomedical interest

  3. Soil sample moisture content as a function of time during oven drying for gamma-ray spectroscopic measurements

    International Nuclear Information System (INIS)

    Benke, R.R.; Kearfott, K.J.

    1999-01-01

    In routine gamma-ray spectroscopic analysis of collected soil samples, procedure often calls to remove soil moisture by oven drying overnight at a temperature of 100 deg. C . Oven drying not only minimizes the gamma-ray self-attenuation of soil samples due to the absence of water during the gamma-ray spectroscopic analysis, but also allows for a straightforward calculation of the specific activity of radionuclides in soil, historically based on the sample dry weight. Because radon exhalation is strongly dependent on moisture , knowledge of the oven-drying time dependence of the soil moisture content, combined with radon exhalation measurements during oven drying and at room temperature for varying soil moisture contents, would allow conclusions to be made on how the oven-drying radon exhalation rate depends on soil moisture content. Determinations of the oven-drying radon exhalation from soil samples allow corrections to be made for the immediate laboratory gamma-ray spectroscopy of radionuclides in the natural uranium decay chain. This paper presents the results of soil moisture content measurements during oven drying and suggests useful empirical fits to the moisture data

  4. Automatic gamma spectrometry analytical apparatus

    International Nuclear Information System (INIS)

    Lamargot, J.-P.; Wanin, Maurice.

    1980-01-01

    This invention falls within the area of quantitative or semi-quantitative analysis by gamma spectrometry and particularly refers to a device for bringing the samples into the counting position. The purpose of this invention is precisely to provide an automatic apparatus specifically adapted to the analysis of hard gamma radiations. To this effect, the invention relates to a gamma spectrometry analytical device comprising a lead containment, a detector of which the sensitive part is located inside the containment and additionally comprising a transfer system for bringing the analyzed samples in succession to a counting position inside the containment above the detector. A feed compartment enables the samples to be brought in turn one by one on to the transfer system through a duct connecting the compartment to the transfer system. Sequential systems for the coordinated forward feed of the samples in the compartment and the transfer system complete this device [fr

  5. Environmental gamma-ray dose measurements with thermoluminescence dosemeters (TLD) and environmental radiation characteristics

    International Nuclear Information System (INIS)

    Kanematsu, Seiko

    1999-01-01

    It is important to evaluate environmental gamma-ray exposure both at work and home in order to assess people's collective dosages. Environmental gamma radiation was measured for air-absorbed dose with a thermoluminescence dosemeter at various points in the workplace and Ningyotoge, and workplace radiation characteristics were analyzed. From the results, the public dose due to gamma rays generated artificially was assessed to be sufficiently lower than the annual limit. For indoor environments of the workplace, the maximum dosage rate among measured values was 97 nGy/h and the minimum value was 70 nGy/h, the average over one year was 83 nGy/h. The average annual outdoor dosage for a year was 82 nGy/ h. In Ningyotoge, the maximum was 103 nGy/h, minimum 60 nGy/h, and average 88 nGy/h. These values depend on the nature of the soil and weather factors, showing higher values in the summer than in the winter in the workplace. There was no significant difference in the dosage rate in houses and the workplace. (author)

  6. Gamma ray imager on the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pace, D. C., E-mail: pacedc@fusion.gat.com; Taussig, D.; Eidietis, N. W.; Van Zeeland, M. A.; Watkins, M. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Cooper, C. M. [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830 (United States); Hollmann, E. M. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Riso, V. [State University of New York-Buffalo, 12 Capen Hall, Buffalo, New York 14260-1660 (United States)

    2016-04-15

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electrons in the energy range of 1–60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.

  7. High-resolution gamma ray attenuation density measurements on mining exploration drill cores, including cut cores

    Science.gov (United States)

    Ross, P.-S.; Bourke, A.

    2017-01-01

    Physical property measurements are increasingly important in mining exploration. For density determinations on rocks, one method applicable on exploration drill cores relies on gamma ray attenuation. This non-destructive method is ideal because each measurement takes only 10 s, making it suitable for high-resolution logging. However calibration has been problematic. In this paper we present new empirical, site-specific correction equations for whole NQ and BQ cores. The corrections force back the gamma densities to the "true" values established by the immersion method. For the NQ core caliber, the density range extends to high values (massive pyrite, 5 g/cm3) and the correction is thought to be very robust. We also present additional empirical correction factors for cut cores which take into account the missing material. These "cut core correction factors", which are not site-specific, were established by making gamma density measurements on truncated aluminum cylinders of various residual thicknesses. Finally we show two examples of application for the Abitibi Greenstone Belt in Canada. The gamma ray attenuation measurement system is part of a multi-sensor core logger which also determines magnetic susceptibility, geochemistry and mineralogy on rock cores, and performs line-scan imaging.

  8. Lunar based gamma ray astronomy

    International Nuclear Information System (INIS)

    Haymes, R.C.

    1985-01-01

    Gamma ray astronomy represents the study of the universe on the basis of the electromagnetic radiation with the highest energy. Gamma ray astronomy provides a crucial tool for the understanding of astronomical phenomena, taking into account nucleosynthesis in supernovae, black holes, active galaxies, quasars, the sources of cosmic rays, neutron stars, and matter-antimatter annihilation. Difficulties concerning the conduction of studies by gamma ray astronomy are related to the necessity to perform such studies far from earth because the atmosphere is a source of gamma rays. Studies involving the use of gamma ray instruments in earth orbit have been conducted, and more gamma ray astronomy observations are planned for the future. Imperfections of studies conducted in low earth orbit could be overcome by estalishing an observatory on the moon which represents a satellite orbiting at 60 earth radii. Details concerning such an observatory are discussed. 5 references

  9. A study of gamma-ray bursts and a new detector for gamma-ray astronomy

    International Nuclear Information System (INIS)

    Carter, J.N.

    1979-09-01

    Three gamma-ray experiments flown on balloons between August 1975 and August 1976 are described in detail. The successful Transatlantic balloon flight enabled a rate of 3 bursts year -1 with energies > 7 x 10 -7 ergs cm -2 to be established. This result is discussed in the light of other work. The choice of γ-ray detector for optimum sensitivity is presented. In addition various techniques for determining the arrival direction of gamma-ray bursts are compared. A new balloon borne γ-ray burst telescope is proposed. The design, testing and results of the beam calibration of a new drift chamber detector system for high energy (> 50 MeV) γ-rays are presented. A projected angular resolution of 0.8 0 was obtained at 300 MeV. Techniques for the measurement of γ-ray energies are discussed in relation to this instrument. Finally the use of drift chambers in an integrated free flying satellite is illustrated, and the expected performance is presented. (author)

  10. The {sup 124}Sb activity standardization by gamma spectrometry for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M.C.M. de, E-mail: marcandida@yahoo.com.b [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes, Instituto de Radioprotecao e Dosimetria, Comissao Nacional de Energia Nuclear (SEMRA/LNMRI/IRD/CNEN), Av. Salvador Allende s/n, Recreio, Rio de Janeiro, RJ, CEP 22780-160 (Brazil); Iwahara, A.; Delgado, J.U.; Poledna, R.; Silva, R.L. da [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes, Instituto de Radioprotecao e Dosimetria, Comissao Nacional de Energia Nuclear (SEMRA/LNMRI/IRD/CNEN), Av. Salvador Allende s/n, Recreio, Rio de Janeiro, RJ, CEP 22780-160 (Brazil)

    2010-07-21

    This work describes a metrological activity determination of {sup 124}Sb, which can be used as radiotracer, applying gamma spectrometry methods with hyper pure germanium detector and efficiency curves. This isotope with good activity and high radionuclidic purity is employed in the form of meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam) to treat leishmaniasis. {sup 124}Sb is also applied in animal organ distribution studies to solve some questions in pharmacology. {sup 124}Sb decays by {beta}-emission and it produces several photons (X and gamma rays) with energy varying from 27 to 2700 keV. Efficiency curves to measure point {sup 124}Sb solid sources were obtained from a {sup 166m}Ho standard that is a multi-gamma reference source. These curves depend on radiation energy, sample geometry, photon attenuation, dead time and sample-detector position. Results for activity determination of {sup 124}Sb samples using efficiency curves and a high purity coaxial germanium detector were consistent in different counting geometries. Also uncertainties of about 2% (k=2) were obtained.

  11. Swift: A gamma ray burst MIDEX

    International Nuclear Information System (INIS)

    Barthelmy, Scott

    2001-01-01

    Swift is a first of its kind multiwavelength transient observatory for gamma-ray burst astronomy. It has the optimum capabilities for the next breakthroughs in determining the origin of gamma-ray bursts and their afterglows as well as using bursts to probe the early Universe. Swift will also perform the first sensitive hard X-ray survey of the sky. The mission is being developed by an international collaboration and consists of three instruments, the Burst Alert Telescope (BAT), the X-ray Telescope (XRT), and the Ultraviolet and Optical Telescope (UVOT). The BAT, a wide-field gamma-ray detector, will detect ∼1 gamma-ray burst per day with a sensitivity 5 times that of BATSE. The sensitive narrow-field XRT and UVOT will be autonomously slewed to the burst location in 20 to 70 seconds to determine 0.3-5.0 arcsec positions and perform optical, UV, and X-ray spectrophotometry. On-board measurements of redshift will also be done for hundreds of bursts. Swift will incorporate superb, low-cost instruments using existing flight-spare hardware and designs. Strong education/public outreach and follow-up programs will help to engage the public and astronomical community. Swift has been selected by NASA for development and launch in late 2003

  12. Spectrometry and dosimetric evaluation of the gamma-ray emissions of 241Am

    International Nuclear Information System (INIS)

    Bradley, D.A.; Chong, C.S.

    1991-01-01

    New, detailed measurements have been made of the photon spectrum of the radionuclide 241 Am. Observations, recorded for a 95% confidence level over local background, provide affirmation of a number of lines previously considered to be of equivocal existence. A number of hitherto unreported emissions are similarly observed. Peak areas, expressed as a percentage of that for the 59.54 keV emission, have been ascribed to all lines of the detailed spectrum. This leads to an estimated increase in the value of exposure calculated from the measured fluence spectrum, relative to that from the 59.54 keV line, of (3.1 ± 0.8)%, taking into account all emissions beyond the predominating 59.54 keV gamma-ray emission. (author)

  13. Initial Gamma Spectrometry Examination of the AGR-3/4 Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Jason M.; Demkowicz, Paul A.; Stempien, John D.

    2016-11-01

    The initial results from gamma spectrometry examination of the different components from the combined third and fourth US Advanced Gas Reactor Fuel Development TRISO-coated particle fuel irradiation tests (AGR-3/4) have been analyzed. This experiment was designed to provide information about in-pile fission product migration. In each of the 12 capsules, a single stack of four compacts with designed-to-fail particles surrounded by two graphitic diffusion rings (inner and outer) and a graphite sink were irradiated in the Idaho National Laboratory’s Advanced Test Reactor. Gamma spectrometry has been used to evaluate the gamma-emitting fission product inventory of compacts from the irradiation and evaluate the burnup of these compacts based on the activity of the radioactive cesium isotopes (Cs-134 and Cs-137) in the compacts. Burnup from gamma spectrometry compares well with predicted burnup from simulations. Additionally, inner and outer rings were also examined by gamma spectrometry both to evaluate the fission product inventory and the distribution of gamma-emitting fission products within the rings using gamma emission computed tomography. The cesium inventory of the scanned rings compares acceptably well with the expected inventory from fission product transport modeling. The inventory of the graphite fission product sinks is also being evaluated by gamma spectrometry.

  14. Compton Gamma-Ray Observatory

    Science.gov (United States)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  15. Development and calibration automatic equipment's measuring in real time of the environmental radioactivity by gamma spectrometry

    International Nuclear Information System (INIS)

    Casanovas, R.; Morant, J. J.; Salvado, M.

    2013-01-01

    In this paper, we describe the general aspects of the implementation of gamma spectrometry in water, as well as the development of two measuring devices based on this technique: aerosol monitor (RARM-F) and a monitor direct measurement (RARMD2) , both patent applications. Furthermore, they described in detail the aspects of calibration of equipment, which has been made by combining experimental measurements with Monte Carlo simulations. (Author)

  16. Mapping the spatial distribution and activity of {sup 226}Ra at legacy sites through Machine Learning interpretation of gamma-ray spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Adam, E-mail: a.l.varley@stir.ac.uk [Department of Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA (United Kingdom); Tyler, Andrew [Department of Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA (United Kingdom); Smith, Leslie [Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA (United Kingdom); Dale, Paul [Scottish Environmental Protection Agency, Radioactive Substances, Strathallan House, Castle Business Park, Stirling FK9 4TZ (United Kingdom); Davies, Mike [Nuvia Limited, The Library, Eight Street, Harwell Oxford, Didcot, Oxfordshire OX11 0RL (United Kingdom)

    2016-03-01

    Radium ({sup 226}Ra) contamination derived from military, industrial, and pharmaceutical products can be found at a number of historical sites across the world posing a risk to human health. The analysis of spectral data derived using gamma-ray spectrometry can offer a powerful tool to rapidly estimate and map the activity, depth, and lateral distribution of {sup 226}Ra contamination covering an extensive area. Subsequently, reliable risk assessments can be developed for individual sites in a fraction of the timeframe compared to traditional labour-intensive sampling techniques: for example soil coring. However, local heterogeneity of the natural background, statistical counting uncertainty, and non-linear source response are confounding problems associated with gamma-ray spectral analysis. This is particularly challenging, when attempting to deal with enhanced concentrations of a naturally occurring radionuclide such as {sup 226}Ra. As a result, conventional surveys tend to attribute the highest activities to the largest total signal received by a detector (Gross counts): an assumption that tends to neglect higher activities at depth. To overcome these limitations, a methodology was developed making use of Monte Carlo simulations, Principal Component Analysis and Machine Learning based algorithms to derive depth and activity estimates for {sup 226}Ra contamination. The approach was applied on spectra taken using two gamma-ray detectors (Lanthanum Bromide and Sodium Iodide), with the aim of identifying an optimised combination of detector and spectral processing routine. It was confirmed that, through a combination of Neural Networks and Lanthanum Bromide, the most accurate depth and activity estimates could be found. The advantage of the method was demonstrated by mapping depth and activity estimates at a case study site in Scotland. There the method identified significantly higher activity (< 3 Bq g{sup −1}) occurring at depth (> 0.4 m), that conventional gross

  17. X-Ray-Driven Gamma Emission

    International Nuclear Information System (INIS)

    Carroll, J. J.; Karamian, S. A.; Rivlin, L. A.; Zadernovsky, A. A.

    2001-01-01

    X-ray-driven gamma emission describes processes that may release nuclear energy in a 'clean' way, as bursts of incoherent or coherent gamma rays without the production of radioactive by-products. Over the past decade, studies in this area, as a part of the larger field of quantum nucleonics, have gained tremendous momentum. Since 1987 it has been established that photons could trigger gamma emission from a long-lived metastable nuclear excited state of one nuclide and it appears likely that triggering in other isotopes will be demonstrated conclusively in the near future. With these experimental results have come new proposals for the creation of collective and avalanche-like incoherent gamma-ray bursts and even for the ultimate light source, a gamma-ray laser. Obviously, many applications would benefit from controlled bursts of gamma radiation, whether coherent or not. This paper reviews the experimental results and concepts for the production of gamma rays, driven by externally produced X-rays

  18. Evaluation of the water equivalence of solid phantoms using gamma ray transmission measurements

    International Nuclear Information System (INIS)

    Hill, R.F.; Brown, S.; Baldock, C.

    2008-01-01

    Gamma ray transmission measurements have been used to evaluate the water equivalence of solid phantoms. Technetium-99m was used in narrow beam geometry and the transmission of photons measured, using a gamma camera, through varying thickness of the solid phantom material and water. Measured transmission values were compared with Monte Carlo calculated transmission data using the EGSnrc Monte Carlo code to score fluence in a geometry similar to that of the measurements. The results indicate that the RMI457 Solid Water, CMNC Plastic Water and PTW RW3 solid phantoms had similar transmission values as compared to water to within ±1.5%. However, Perspex had a greater deviation in the transmission values up to ±4%. The agreement between the measured and EGSnrc calculated transmission values agreed to within ±1% over the range of phantom thickness studied. The linear attenuation coefficients at the gamma ray energy of 140.5 keV were determined from the measured and EGSnrc calculated transmission data and compared with predicted values derived from data provided by the National Institute of Standards and Technology (NIST) using the XCOM program. The coefficients derived from the measured data were up to 6% lower than those predicted by the XCOM program, while the coefficients determined from the Monte Carlo calculations were between measured and XCOM values. The results indicate that a similar process can be followed to determine the water equivalency of other solid phantoms and at other photon energies

  19. A study on gamma rays from electrochemical cells

    International Nuclear Information System (INIS)

    Shin, Seung Ai

    1993-01-01

    The energies and intensities of gamma rays emitted from 3 cells with Pd-cathodes of φ 1mm x 10mm, φ 2mm x 20mm, φ 1mm x 10mm were determined using HPGe-detector system and compared with Pd-neutron capture model. Very strong gamma rays of 512keC, 622keC, 1051keC and 8 more important ones were found to be identical with characteristic gamma rays of 106 Pd and 109 Pd. It is likely that the neutron capture reaction, A PD(n, γ) A+1 Pd, occurred in the cell and the neutrons came from the fusion reaction of two deutrons. It is necessary, however, to retest the model since another strong 84keV-gamma rays do not belong to any A+1 Pd-gamma spectra and two important 106 Pd-gamma rays 717keV, 1046KeV were not detected. Total amount of emitted gamma rays was large when the size of the Pd-cathod was large. Its depedence on the time of measurement and the preheating period did not have any regularities. Thus the replication is not an easy thing. (Author)

  20. Measurement of the high-energy gamma-ray emission from the Moon with the Fermi Large Area Telescope

    CERN Document Server

    Ackermann, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P.A.; Cavazzuti, E.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Costanza, F.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S.W.; Di Venere, L.; Drell, P.S.; Favuzzi, C.; Fegan, S.J.; Focke, W.B.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J.E.; Guiriec, S.; Harding, A. K.; Hewitt, J. W.; Horan, D.; Hou, X.; Iafrate, G.; Jóhannesson, G.; Kamae, T.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M.N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M.N.; Michelson, P.F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M.E.; Morselli, A.; Murgia, S.; Nuss, E.; Omodei, N.; Orlando, E.; Ormes, J.F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Sgrò, C.; Reposeur, T.; Siskind, E.J.; Spada, F.; Spandre, G.; Spinelli, P.; Takahashi, H.; Thayer, J.B.; Thompson, D.J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Winer, B. L.; Wood, K. S.; Yassine, M.; Cerutti, F.; Ferrari, A.; Sala, P.R.

    2016-01-01

    We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first 7 years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface. The results of the present analysis can be explained in the framework of this model, where the production of gamma rays is due to the interactions of cosmic-ray proton and helium nuclei with the surface of the Moon. Finally, we have used our simulation to derive the cosmic-ray proton and helium spectra near Earth from the Moon gamma-ray data.

  1. The application of computer technique in routine neutron activation analysis using high resolution gamma ray spectrometry

    International Nuclear Information System (INIS)

    Szopa, Z.; Plejewska, M.; Staszelis, J.

    1982-01-01

    A full system of four computer programs for routine - qualitative and quantitative - neutron activation analysis (NAA) using high resolution gamma ray-spectrometry had been elaborated. The structure and possibilities of the ''data flow'' programs i.e. programs DIDPDP and DIDCDC, dedicated for fast and reliable ''off line'' data transfer between the buffer memory of the spectrometric line (9-track magnetic tape) and the fast access memory (disc) of the used computers PDP-11/45 and CYBER-73 had been presented. The structure and organization of the ''data processing'' programs i.e. programs SAWAPS and MAZYG had been presented as well. The utility and reliability of these programs in the case of the large-scale, routine NAA, exampled by analysis of filters with air polutants, had been tested and discussed. Programs are written mainly in FORTRAN. (author)

  2. Geochemical and radiometric surveys of Sabkhet Al-Jaboul area by investigating trace elements, radon measurements and gamma spectrometry

    International Nuclear Information System (INIS)

    Jubeli, Y.; Aissa, M.; Al-Hilal, M.

    1999-08-01

    Radiometric and geochemical surveys were carried out over various geological formations in Sabkhet Al-Jaboul and its surrounding environment for evaluating the levels of radioactivity in the area. Therefore, a number of exploration techniques were used in this study such as gamma ray spectrometry, geochemical exploration and soil radon measurements. Although the results of this survey indicate some slight variations of which might be useful to distinguish between various lithological units, most of the obtained data do not reveal any significant radiometric values that could be considered important from the exploration point of view. However, these data were successfully handled to estimate the natural background of radioactivity throughout the geological units of the region. The results also showed the importance of the sedimentary transition contact zone where the continental fresh and salt favourable geochemical environment for uranium precipitation when other fundamental geological requirements for developing such concentrations are available. (author)

  3. X-ray spectrometry with synchrotron radiation; Roentgenspektrometrie mit Synchrotronstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Matthias [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Arbeitsgruppe ' Roentgen- und IR-Spektrometrie' ; Gerlach, Martin; Holfelder, Ina; Hoenicke, Philipp; Lubeck, Janin; Nutsch, Andreas; Pollakowski, Beatrix; Streeck, Cornelia; Unterumsberger, Rainer; Weser, Jan; Beckhoff, Burkhard

    2014-12-15

    The X-ray spectrometry of the PTB at the BESSY II storage ring with radiation in the range from 78 eV to 10.5 keV is described. After a description of the instrumentation development reference-sample free X-ray fluorescence analysis, the determination of fundamental atomic parameters, X-ray fluorescence analysis under glance-angle incidence, highly-resolving absorption spectrometry, and emission spectrometry are considered. Finally liquid cells and in-situ measurement techniques are described. (HSI)

  4. Extragalactic Gamma-Ray Astrophysics

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    During the last decades, various classes of radio-loud active galactic nuclei have been established as sources of high-energy radiation extending over a very broad range from soft gamma-rays (photon energies E~MeV) up to very-high-energy gamma-rays (E>100 GeV). These include blazars of different types, as well as young and evolved radio galaxies. The observed gamma-ray emission from such implies efficient particle acceleration processes taking place in highly magnetized and relativistic jets produced by supermassive black holes, processes that have yet to be identified and properly understood. In addition, nearby starforming and starburst galaxies, some of which host radio-quiet Seyfert-type nuclei, have been detected in the gamma-ray range as well. In their cases, the observed gamma-ray emission is due to non-thermal activity in the interstellar medium, possibly including also a contribution from accretion disks and nuclear outflows. Finally, the high-energy emission from clusters of galaxies remains elusive...

  5. Generation of laser Compton gamma-rays using Compact ERL

    International Nuclear Information System (INIS)

    Shizuma, Toshiyuki; Hajima, Ryoichi; Nagai, Ryoji; Hayakawa, Takehito; Mori, Michiaki; Seya, Michio

    2015-01-01

    Nondestructive isotope-specific assay system using nuclear resonance fluorescence has been developed at JAEA. In this system, intense, mono-energetic laser Compton scattering (LCS) gamma-rays are generated by combining an energy recovery linac (ERL) and laser enhancement cavity. As technical development for such an intense gamma-ray source, we demonstrated generation of LCS gamma-rays using Compact ERL (supported by the Ministry of Education, Culture, Sports, Science and Technology) developed in collaboration with KEK. We also measured X-ray fluorescence for elements near iron region by using mono-energetic LCS gamma-rays. In this presentation, we will show results of the experiment and future plan. (author)

  6. Gravitational Waves versus X and Gamma Ray Emission in a Short Gamma-Ray Burst

    OpenAIRE

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, Remo

    2012-01-01

    The recent progress in the understanding the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely short gamma-ray burst, GRB 090227B, allows to give an estimate of the gravitational waves versus the X and Gamma-ray emission in a short gamma-ray burst.

  7. Found: A Galaxy's Missing Gamma Rays

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    ]Peng and collaborators argue that this emission is due solely to cosmic-ray interactions with interstellar gas. This picture is supported by the lack of variability in the emission, and the fact that Arp 220s gamma-ray luminosity is consistent with the scaling relation between gamma-ray and infrared luminosity for star-forming galaxies. The authors also argue that, due to Arp 220s high gas density, all cosmic rays will interact with the gas before escaping.Under these two assumptions, Peng and collaborators use the gamma-ray luminosity and the known supernova rate in Arp 220 to estimate how efficiently cosmic rays are acceleratedby supernova remnants in the galaxy. They determine that 4.2 2.6% of the supernova remnants kinetic energy is used to accelerate cosmic rays above 1 GeV.This is the first time such a rate has been measured directly from gamma-ray emission, but its consistent with estimates of 3-10% efficiency in the Milky Way. Future analysis of other ultraluminous infrared galaxies like Arp 220 with Fermi (and Pass 8!) will hopefully reveal more about these recent-merger, starburst environments.CitationFang-Kun Peng et al 2016 ApJ 821 L20. doi:10.3847/2041-8205/821/2/L20

  8. Equipment for x- and gamma ray radiography

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    The following topics related to the equipment for x - and gamma ray radiography are discussed in this chapter. The topics are x-ray source for Industrial Radiography: properties of x-ray, generation of x-ray, mechanism of x-ray production, x-ray equipment, power supply, distribution of x-ray intensity along the tube: gamma ray source for Industrial Radiography: properties of gamma rays, gamma ray sources, gamma ray projectors on cameras, source changing. Care of Radiographic Equipments: Merits and Demerits of x and Gamma Rays

  9. Freshly induced short-lived gamma-ray activity as a measure of fission rates in lightly re-irradiated spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kroehnert, H., E-mail: hanna.kroehnert@psi.c [Paul Scherrer Institut (PSI), OPRA-E07, CH-5232 Villigen (Switzerland); Perret, G., E-mail: gregory.perret@psi.c [Paul Scherrer Institut (PSI), OPRA-E07, CH-5232 Villigen (Switzerland); Murphy, M.F., E-mail: mike.murphy@psi.c [Paul Scherrer Institut (PSI), OPRA-E07, CH-5232 Villigen (Switzerland); Chawla, R., E-mail: rakesh.chawla@epfl.c [Paul Scherrer Institut (PSI), OPRA-E07, CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2010-12-01

    A new measurement technique has been developed to determine fission rates in burnt fuel, following re-irradiation in a zero-power research reactor. The development has been made in the frame of the LIFE-PROTEUS program at the Paul Scherrer Institute, which aims at characterizing the interfaces between fresh and highly burnt fuel assemblies in modern LWRs. To discriminate against the high intrinsic gamma-ray activity of the burnt fuel, the proposed measurement technique uses high-energy gamma-rays, above 2000 keV, emitted by short-lived fission products freshly produced in the fuel. To demonstrate the feasibility of this technique, a fresh UO{sub 2} sample and a 36 GWd/t burnt UO{sub 2} sample were irradiated in the PROTEUS reactor and their gamma-ray activities were recorded directly after irradiation. For both fresh and the burnt fuel samples, relative fission rates were derived for different core positions, based on the short-lived {sup 142}La (2542 keV), {sup 89}Rb (2570 keV), {sup 138}Cs (2640 keV) and {sup 95}Y (3576 keV) gamma-ray lines. Uncertainties on the inter-position fission rate ratios were mainly due to the uncertainties on the net-area of the gamma-ray peaks and were about 1-3% for the fresh sample, and 3-6% for the burnt one. Thus, for the first time, it has been shown that the short-lived gamma-ray activity, induced in burnt fuel by irradiation in a zero-power reactor, can be used as a quantitative measure of the fission rate. For both fresh and burnt fuel, the measured results agreed, within the uncertainties, with Monte Carlo (MCNPX) predictions.

  10. Gamma ray polarimetry using a position sensitive germanium detector

    CERN Document Server

    Kroeger, R A; Kurfess, J D; Phlips, B F

    1999-01-01

    Imaging gamma-ray detectors make sensitive polarimeters in the Compton energy regime by measuring the scatter direction of gamma rays. The principle is to capitalize on the angular dependence of the Compton scattering cross section to polarized gamma rays and measure the distribution of scatter directions within the detector. This technique is effective in a double-sided germanium detector between roughly 50 keV and 1 MeV. This paper reviews device characteristics important to the optimization of a Compton polarimeter, and summarizes measurements we have made using a device with a 5x5 cm active area, 1 cm thickness, and strip-electrodes on a 2 mm pitch.

  11. Field {gamma}-ray spectrometry on the Vulcano island (Aeolian Arc, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Chiozzi, P.; Pasquale, V.; Russo, D.; Verdoya, M. [Dipartimento di Scienze della Terra, Universita di Genova, Genoa (Italy); De Felice, P. [Istituto Nazionale di Metrologica delle Radiazioni Ionizzanti ENEA, Dipartimento Ambiente, Centro Ricerche Casaccia, Rome (Italy)

    1999-08-01

    In situ NaI(Tl) {gamma}-ray spectrometric measurements on the Vulcano island show that the magmatic evolution of the main structural units is reflected by the uranium, thorium and potassium concentrations. The results allowed us to delineate two temporal and radiometric districts. The older district comprises lava flows and pyroclastics of mafic composition forming the whole southern part of the island, with an equivalent uranium concentration and an eTh/eU ratio ranging, on average, from 2.9 to 3.4 ppm and from 2.4 to 4.1, respectively. Rocks of the younger district, ranging from leucitic tephritic and trachytic to rhyolitic composition, show higher K contents (about 6%) and more variable eTh/eU ratios (2.4-6.1)

  12. Sample design and gamma-ray counting strategy of neutron activation system for triton burnup measurements in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jungmin [Department of Energy System Engineering, Seoul National University, Seoul (Korea, Republic of); Cheon, Mun Seong [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr [Department of Energy System Engineering, Seoul National University, Seoul (Korea, Republic of); Hwang, Y.S. [Department of Energy System Engineering, Seoul National University, Seoul (Korea, Republic of)

    2016-11-01

    Highlights: • Sample design for triton burnup ratio measurement is carried out. • Samples for 14.1 MeV neutron measurements are selected for KSTAR. • Si and Cu are the most suitable materials for d-t neutron measurements. • Appropriate γ-ray counting strategies for each selected sample are established. - Abstract: On the purpose of triton burnup measurements in Korea Superconducting Tokamak Advanced Research (KSTAR) deuterium plasmas, appropriate neutron activation system (NAS) samples for 14.1 MeV d-t neutron measurements have been designed and gamma-ray counting strategy is established. Neutronics calculations are performed with the MCNP5 neutron transport code for the KSTAR neutral beam heated deuterium plasma discharges. Based on those calculations and the assumed d-t neutron yield, the activities induced by d-t neutrons are estimated with the inventory code FISPACT-2007 for candidate sample materials: Si, Cu, Al, Fe, Nb, Co, Ti, and Ni. It is found that Si, Cu, Al, and Fe are suitable for the KSATR NAS in terms of the minimum detectable activity (MDA) calculated based on the standard deviation of blank measurements. Considering background gamma-rays radiated from surrounding structures activated by thermalized fusion neutrons, appropriate gamma-ray counting strategy for each selected sample is established.

  13. Gamma-ray burst polarimeter (GAP)

    International Nuclear Information System (INIS)

    Mihara, Tatehiro; Murakami, Toshio; Yonetoku, Daisuke; Gunji, Shuichi; Kubo, Shin

    2013-01-01

    The gamma-ray burst polarimeter (GAP: GAmma-ray burst Polarimeter), which had been almost handcrafted by scientists, has succeeded in working normally in interplanetary space, and in detecting the polarization of the gamma-ray from a mysterious astronomical object 'gamma-ray burst'. It is the first result of the detectors in the world exclusively aiming at detecting gamma-ray polarization. We mainly describe the hardware of our GAP equipment and show the method of preparing equipment to work in the cosmic space with a tight budget. The mechanical structure, the electronic circuits, the software on the equipment, the data analysis on the earth, and the scientific results gained by the observation just over one year, are presented after explaining the principle of gamma-ray polarization detection. Our design to protect equipment against mechanical shock and cosmic radiation may provide useful information for future preparation of compact satellite. (J.P.N.)

  14. Radioactivity Measurement in the Detergent Products by Gamma Spectrometry

    International Nuclear Information System (INIS)

    Ksouri, Abir

    2009-01-01

    Our study focuses on the evaluation of the level of radioactivity in the detergents. We have determined the specific activities of gamma emitting radionuclides belonging to the natural families of uranium, thorium and potassium using gamma spectrometry. The activities of radionuclides ( 235 U, 238U , 226 Ra, 232 Th, 40K) and their descendants are below the minimum detectable activity for dishwasher products, soaps, bleaches and shampoos, whereas they are found to levels considered very low (between 0,2 and 13 Bq/kg on average) in the products washes linens. These values are always lower than those of raw materials, what is explained by the conservation of radioactive material throughout the manufacturing process. The effective dose due to external exposure estimated below the regulatory standard recommended (<1 mSv / year), allows us to show that detergent products are not contaminated by radioactivity, are healthy and do not have harmful radiological impact on the consumer.

  15. Methodology for determination of activity of radionuclides by gamma spectrometry

    International Nuclear Information System (INIS)

    Fragoso, Maria da Conceicao de Farias; Oliveira, Victor Rogerio S. de; Oliveira, Mercia L.; Lima, Fernando Roberto de Andrade

    2014-01-01

    Due to the growth in the number of procedures that make use of the positron emission tomography (PET), there is a need for standard solutions for the calibration of the systems used for the measurement of the PET radiopharmaceutical (activimeter) in radiopharmacies and in nuclear medicine services. Among the existing alternatives for the standardization of radioactive sources, the method known as gamma spectrometry is widely used for short-lived radionuclides. The purpose of this study was to implement the methodology for standardization of the 18 F solutions by gamma spectrometry at the Regional Center for Nuclear Sciences of the Northeast (CRCN-NE/CNEN-NE), Brazil. (author)

  16. Neural network consistent empirical physical formula construction for neutron–gamma discrimination in gamma ray tracking

    International Nuclear Information System (INIS)

    Yildiz, Nihat; Akkoyun, Serkan

    2013-01-01

    Highlights: ► Detector responses in neutron–gamma discrimination were estimated by neural networks. ► Novel consistent neural network empirical physical formulas (EPFs) were constructed for detector responses. ► The EPFs are of explicit mathematical functional form. ► The EPFs can be used to derive various physical functions relevant to neutron–gamma discrimination in gamma ray tracking. -- Abstract: Gamma ray tracking is an efficient detection technique in studying exotic nuclei which lies far from beta stability line. To achieve very powerful and extraordinary resolution ability, new detectors based on gamma ray tracking are currently being developed. To reach this achievement, the neutron–gamma discrimination in these detectors is also an important task. In this paper, by suitable layered feedforward neural networks (LFNNs), we have constructed novel and consistent empirical physical formulas (EPFs) for some highly nonlinear detector counts measured in neutron–gamma discrimination. The detector counts data used in the discrimination was actually borrowed from our previous paper. The counts used here had been originally measured versus the following parameters: energy deposited in the first interaction points, difference in the incoming direction of initial gamma rays, and finally figure of merit values of the clusters determined by tracking. The LFNN–EPFs are of explicit mathematical functional form. Therefore, by various suitable operations of mathematical analysis, these LFNN–EPFs can be used to derivate further physical functions which might be potentially relevant to neutron–gamma discrimination performance of gamma ray tracking.

  17. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Hillier, R.

    1984-01-01

    The book reviews the development of gamma ray astronomy over the past twenty five years. A large section of the book is devoted to the problems of background radiation and the design of detectors. Gamma rays from the sun, the galactic disc, the galaxy, and extra galactic sources; are also discussed. (U.K.)

  18. The reference peak areas of the 1995 IAEA test spectra for gamma-ray spectrum analysis programs are absolute and traceable

    CERN Document Server

    Blaauw, M

    1999-01-01

    A previously validated algorithm for absolute peak area determination was used to verify the reference peak areas supplied with the 1995 IAEA test spectra for gamma-ray spectrometry. These reference peak areas turn out to be absolute and traceable to a precision of 0.9%: The reference peak areas are possibly too low by a factor 0.992+-0.009. It is proposed to employ the test spectra and reference areas to validate the peak areas obtained with any algorithm in gamma-ray spectrometry. (author)

  19. Diagnostic X-ray spectrometry using a commercial CdZnTe detector

    International Nuclear Information System (INIS)

    Becker, P.H.B.

    1998-01-01

    X ray spectrometry using Ge or Si detectors is an established tool to measure characterization parameters of X-ray beams. This work describes how a commercial CdZnTe was used to perform diagnostic X-ray spectrometry. Spectra were measured for two X-ray machines and compared with similar data found in the literature with an agreement of 2% rms

  20. An emergency response intercomparison exercise using a synthetically generated gamma-ray spectrum

    DEFF Research Database (Denmark)

    Dowdall, M.; Selnæs, O.G.; Standring, W.J.F.

    2010-01-01

    Although high resolution gamma ray spectrometry serves as the primary analytical technique in emergency response situations, chances for laboratories to practice analysing the type of spectra that may be expected in the early phase of such a situation are limited. This problem is more acute for l...

  1. Burn-up measurements of spent fuel using gamma spectrometry technique

    International Nuclear Information System (INIS)

    Pereda, C.; Henriquez, C.; Klein, J.; Medel, J.

    2005-01-01

    Burn-up results obtained for HEU (45% of 235 U) fuel assemblies of the RECH-1 Research Reactor using gamma spectrometry technique are presented. The spectra were got from an in-pool facility built in the reactor to be mainly used to measure the burnup of irradiated fuel assemblies with short cooling time, where 95 Zr is being evaluated as possible fission monitor. A program to measure all spent fuel assemblies of the RECH-1 reactor was initiated in the frame of the Regional Project RLA/4/018: 'Management of Spent Fuel from Research Reactors'. The results presented here were obtained from HEU spent fuel assemblies with cooling time greater than 100 days and 137 Cs was used as fission monitor. The efficiency of the in-pool system was determined using a slightly burnt experimental fuel assembly, which has one fuel plate (one of the outer plates) and the rest are dummy plates. An average burn-up of 2.8% of 235 U was previously measured for the experimental fuel assembly utilizing a facility installed in a hot cell and 137 Cs was used as monitor. (author)

  2. Metrological characterization of the numerical system Adonis for gamma spectrometry; Caracterisation metrologique du systeme de spectrometrie gamma numerique Adonis

    Energy Technology Data Exchange (ETDEWEB)

    Plagnard, J.; Morel, J.; Tran Tuan, A

    2005-07-01

    In gamma spectrometry, new acquisition systems based on digital processing of the signals are now available on the market. In order to determine their performances at high count rates, The CEA-LNHB (Commissariat a l'Energie Atomique - Laboratoire National Henri Becquerel) has tested several of these equipments.. These tests have clearly shown that the performances announced by the manufacturers were generally not met. At this point, it was interesting to include in these tests, the system ADONIS (Atelier de Developpement Numerique pour l'Instrumentation en Spectrometrie), which is the new gamma spectrometry system, developed by the CEA-SIAR (Service d'Instrumentation et d'Application des Rayonnements). (authors)

  3. Measurement of plutonium isotopic composition by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Kim, J. S.; Shin, J. S.; Ahn, J. S.

    1998-01-01

    The technology of the analysis of plutonium isotopic ratio is independent of the measurement geometry and applicable to samples of physical and chemical composition. Three standard plutonium samples were measured in the HPGe system. The results showed that CRM 136 and CRM 137 containing 238 Pu(0.223%) and 238 Pu(0.268%) were 18.4% and 14.2% error and CRM 138 of 238 Pu(0.01%) was 76% error. However the analysis represented less than 1.6% and 9% error in the three standard samples of highly involved 239 Pu and 240 Pu. Therefore, gamma-ray spectroscopy is very effective in the plutonium isotope analysis, having greater than 10% in content

  4. Space instrumentation for gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Teegarden, B.J

    1999-02-11

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world.

  5. Space instrumentation for gamma-ray astronomy

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1999-01-01

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world

  6. Measurement of 235U content and flow of UF6 using delayed neutrons or gamma rays following induced fission

    International Nuclear Information System (INIS)

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Perkins, R.W.

    1996-06-01

    Feasibility experiments conducted at Pacific Northwest National Laboratory demonstrate that either delayed neutrons or energetic gamma rays from short-lived fission products can be used to monitor the blending of UF 6 gas streams. A 252 Cf neutron source was used to induce 235 U fission in a sample, and delayed neutrons and gamma rays were measured after the sample moved open-quotes down-stream.close quotes The experiments used a UO 2 powder that was transported down the pipe to simulate the flowing UF 6 gas. Computer modeling and analytic calculation extended the test results to a flowing UF 6 gas system. Neutron or gamma-ray measurements made at two downstream positions can be used to indicate both the 235 U content and UF 6 flow rate. Both the neutron and gamma-ray techniques have the benefits of simplicity and long-term reliability, combined with adequate sensitivity for low-intrusion monitoring of the blending process. Alternatively, measuring the neutron emission rate from (a, n) reactions in the UF 6 provides an approximate measure of the 235 U content without using a neutron source to induce fission

  7. Gammastic: towards a pseudo-gamma spectrometry in plastic scintillators

    International Nuclear Information System (INIS)

    Hamel, Matthieu; Dehe-Pittance, Chrystele; Coulon, Romain; Carrel, Frederick; Pillot, Philippe; Barat, Eric; Dautremer, Thomas; Montagu, Thierry; Normand, Stephane

    2013-06-01

    War against CBRN-E threats needs to continuously develop sensors with improved detection efficiency. More particularly, this topic concerns the NR controls for homeland security. A first analysis requires indeed a fast gamma spectrometry so as to detect potential special nuclear materials (SNM). To this aim, plastic scintillators could represent the best alternative for the production of large-scale, low-cost radiation portal monitors to be deployed on boarders, tolls, etc. Although they are known to be highly sensitive to gamma rays, due to their poor resolution, information relative to the nature of the SNM is tricky. Thus, only the Compton edge is obtained after interaction, and no information of the photoelectric peak is observed. This project concerns new developments on a possible pseudo-gamma spectrometry performed with plastic scintillators. This project is articulated on a combination of two developments: - The design of new materials most suitable for recovering the photoelectric peak after gamma interaction with the scintillator. This work concerns mainly plastic scintillators loading with heavy elements, such as lead or bismuth. - The analysis of the resulting signal with smart algorithms. This work is thus a pluri-disciplinary work performed at CEA LIST and embeds 4 main disciplines: MCNPX simulations (simulated spectra), chemistry of materials (preparation of various plastic scintillators with different properties), instrumentation (lab experiments) and smart algorithms. Really impressive results were obtained with the unfolding of simulated spectra at various energies (from 241 Am to 60 Co) and an innovative approach was proposed to counter-balance the quenching effect of luminescence by heavy elements in plastic scintillators. (authors)

  8. An Industrial Radipgraphy Exposure Device Based on Measurement of Transmitted Gamma-Ray Intensity

    International Nuclear Information System (INIS)

    Polee, C.; Chankow, N.; Srisatit, S.; Thong-Aram, D.

    2014-01-01

    In film radiography, underexposure and overexposure may happen particularly when lacking knowledge of specimen material and hollowness. This paper describes a method and a device for determining exposure in industrial gamma-ray radiography based on quick measurement of transmitted gamma-ray intensity with a D3372 Hamamatsu small GM tube. Application software is developed for Android mobile phone to remotely control the device and to display the counting data via Bluetooth. Prior to placing film, the device is placed behind the specimen to be radiographed to determine the exposure time from the transmitted intensity which is independent on source activity, source-to-film distance, specimen thickness and kind of material. The developed technique and device make radiographic process economic, convenient and more reliable.

  9. Measurement and calculation of secondary gamma rays resulting from exposure of Fe, Pb, and H/sub 2/O to the ARERR-1 spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Makarious, A.S.; Ford, W.E. III; Turnbull, K.R.

    1977-08-01

    Integral experiments were performed to measure the angular distribution of secondary gamma rays produced when various thicknesses of Fe, Pb, and H/sub 2/O samples were exposed to bare and to B/sub 4/C-filtered neutron beams from the Research Reactor of Egypt. For selected experiments, multigroup coupled neutron-gamma cross sections and a discrete ordinates transport theory code (DOT4PI-M) were used to calculate the secondary gamma rays and the transport of primary gamma rays. Integral comparisons between the calculated and measured spectra were favorable. Graphical comparisons of the measured flux for various angles of incidence of the neutron beams on the samples, for various angles of exit on the transmitted side of the samples, and for various sample thicknesses are shown. The comparisons show that the angular distribution of secondary gamma rays for the three materials changes slightly with a change in the angle of beam incident on the sample, but increasing the angle between the normal to the sample and the detector by 60/sup 0/ decreases the measured secondary gamma-ray flux up to a factor of two. An investigation was made to determine the consequences of using single scatter Compton theory versus using discrete ordinates transport calculations to estimate the primary gamma-ray contribution to the measured photon spectra.

  10. Gamma Ray Tomographic Scan Method for Large Scale Industrial Plants

    International Nuclear Information System (INIS)

    Moon, Jin Ho; Jung, Sung Hee; Kim, Jong Bum; Park, Jang Geun

    2011-01-01

    The gamma ray tomography systems have been used to investigate a chemical process for last decade. There have been many cases of gamma ray tomography for laboratory scale work but not many cases for industrial scale work. Non-tomographic equipment with gamma-ray sources is often used in process diagnosis. Gamma radiography, gamma column scanning and the radioisotope tracer technique are examples of gamma ray application in industries. In spite of many outdoor non-gamma ray tomographic equipment, the most of gamma ray tomographic systems still remained as indoor equipment. But, as the gamma tomography has developed, the demand on gamma tomography for real scale plants also increased. To develop the industrial scale system, we introduced the gamma-ray tomographic system with fixed detectors and rotating source. The general system configuration is similar to 4 th generation geometry. But the main effort has been made to actualize the instant installation of the system for real scale industrial plant. This work would be a first attempt to apply the 4th generation industrial gamma tomographic scanning by experimental method. The individual 0.5-inch NaI detector was used for gamma ray detection by configuring circular shape around industrial plant. This tomographic scan method can reduce mechanical complexity and require a much smaller space than a conventional CT. Those properties make it easy to get measurement data for a real scale plant

  11. Prompt Gamma Ray Analysis of Soil Samples

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A.; Khiari, F.Z.; Haseeb, S.M.A.; Hussein, Tanvir; Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.H. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2015-07-01

    Neutron moderation effects were measured in bulk soil samples through prompt gamma ray measurements from water and benzene contaminated soil samples using 14 MeV neutron inelastic scattering. The prompt gamma rays were measured using a cylindrical 76 mm x 76 mm (diameter x height) LaBr{sub 3}:Ce detector. Since neutron moderation effects strongly depend upon hydrogen concentration of the sample, for comparison purposes, moderation effects were studied from samples containing different hydrogen concentrations. The soil samples with different hydrogen concentration were prepared by mixing soil with water as well as benzene in different weight proportions. Then, the effects of increasing water and benzene concentrations on the yields of hydrogen, carbon and silicon prompt gamma rays were measured. Moderation effects are more pronounced in soil samples mixed with water as compared to those from soil samples mixed with benzene. This is due to the fact that benzene contaminated soil samples have about 30% less hydrogen concentration by weight than the water contaminated soil samples. Results of the study will be presented. (authors)

  12. Apparatus for gamma ray radiography

    International Nuclear Information System (INIS)

    Kobayashi, Masatoshi; Enomoto, Shigemasa; Oga, Hiroshi

    1979-01-01

    This is the standard of Japan Non-Destructive Inspection Society, NDIS 1101-79, which stipulates on the design, construction and testing method of the apparatuses for gamma ray radiography used for taking industrial radiograms. The gamma ray apparatuses stipulated in this standard are those containing sealed radioactive isotopes exceeding 100 μCi, which emit gamma ray. The gamma ray apparatuses are classified into three groups according to their movability. The general design conditions, the irradiation dose rate and the sealed radiation sources for the gamma ray apparatuses are stipulated. The construction of the gamma ray apparatuses must be in accordance with the notification No. 52 of the Ministry of Labor, and safety devices and collimators must be equipped. The main bodies of the gamma ray apparatuses must pass the vibration test, penetration test, impact test and shielding efficiency test. The method of each test is described. The attached equipments must be also tested. The tests according to this standard are carried out by the makers of the apparatuses. The test records must be made when the apparatuses have passed the tests, and the test certificates are attached. The limit of guarantee by the endurance test must be clearly shown. The items to be shown on the apparatuses are stipulated. (Kako, I.)

  13. Cosmic Connections:. from Cosmic Rays to Gamma Rays, Cosmic Backgrounds and Magnetic Fields

    Science.gov (United States)

    Kusenko, Alexander

    2013-12-01

    Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed ux of ultrahigh-energy cosmicrays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.

  14. Bibliographical study on the high-purity germanium radiation detectors used in gamma and X spectrometry

    International Nuclear Information System (INIS)

    Bornand, Bernard; Friant, Alain

    1979-03-01

    The germanium or silicon lithium-drifted detectors, Ge(Li) or Si(Li), and high-purity germanium detectors, HP Ge (impurity concentration approximately 10 10 cm -3 ), are the most commonly used at the present time as gamma and X-ray spectrometers. The HP Ge detectors for which room temperature storage is the main characteristic can be obtained with a large volume and a thin window, and are used as the Ge(Li) in γ ray spectrometry or the Si(Li) in X-ray spectrometry. This publication reviews issues from 1974 to 1978 on the state of the art and applications of the HP Ge semiconductor detectors. 101 bibliographical notices with French summaries are presented. An index for authors, documents and periodicals, and subjects is included [fr

  15. A method for the complete analysis of NORM building materials by γ-ray spectrometry using HPGe detectors.

    Science.gov (United States)

    Quintana, B; Pedrosa, M C; Vázquez-Canelas, L; Santamaría, R; Sanjuán, M A; Puertas, F

    2018-04-01

    A methodology including software tools for analysing NORM building materials and residues by low-level gamma-ray spectrometry has been developed. It comprises deconvolution of gamma-ray spectra using the software GALEA with focus on the natural radionuclides and Monte Carlo simulations for efficiency and true coincidence summing corrections. The methodology has been tested on a range of building materials and validated against reference materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Broomhead, Laurent.

    1980-01-01

    The nuclear gamma astronomy is presented, in particular the Gamma Ray Observatory, an enormous eight tonnes machine fitted with gamma telescopes, scheduled for launching around 1985. It is thereby hoped to study the natural nuclear reactions which occur when stars explode [fr

  17. Automation system for measurement of gamma-ray spectra of induced activity for multi-element high-volume neutron activation analysis at the IBR-2 reactor of FLNP at JINR

    International Nuclear Information System (INIS)

    Pavlov, S.S.; Dmitriev, A.Yu.; Chepurchenko, I.A.; Frontas'eva, M.V.

    2014-01-01

    The automation system for measurement of induced activity of gamma-ray spectra for multi-element high-volume neutron activation analysis (NAA) was designed, developed and implemented at the IBR-2 reactor. The system consists of three devices of automatic sample changers for three Canberra HPGe detector-based gamma spectrometry systems. Each sample changer consists of two-axis linear positioning module M202A by DriveSet (DriveSet.de) company and disk with 45 slots for containers with samples. Control of automatic sample changer is performed by the Xemo S360U controller by Systec (systec.de) company. Positioning accuracy can reach 0.1 mm. Special software performs automatic changing of samples and measurement of gamma spectra at constant interaction with the NAA database. The system is unique and can be recommended for other laboratories as one of the possible ways of the NAA integrated automation

  18. Validation of Am-241 measurement in ion chamber type smoke detector by using gamma spectrometry system

    International Nuclear Information System (INIS)

    Yii Mei Wo; Khairul Nizam Razali

    2005-01-01

    Smoke detectors are useful devices in modern days that able to save many lives. Even though, the use of ion chamber type smoke detector (usually contain Americium-241) was exempted in Malaysia, but the trading of this device was controlled by regulation, under the Atomic Energy Licensing Act (Act 304). The activity of the Am-241 can be measured by using the Gamma Spectrometry System since it was much easier, compared to Alpha Spectrometry System. To do so, the system was first need to be calibrated using the standard reference source to find the efficiency of the germanium detector. The method used for the measurement was first validated for several relevant parameters, which include specificity, precision (repeatability), bias (accuracy), linearity, working range, detection limit, robustness and ruggedness to ensure it was fit for the purpose. The measured Am-241 activity inside the smoke detector will be reported together with a reasonable expanded uncertainty arise from the measurement. (Author)

  19. Application of radiochemical-and direct gamma ray spectrometry methods for the determination of the burnup of irradiated uranium oxide

    International Nuclear Information System (INIS)

    Cunha, I.I.L.; Nastasi, M.J.C.; Lima, F.W. de

    1979-01-01

    The burn-up of U 3 O 8 (natural uranium) samples was determined by using both destructive and non-destructive methods, and comparing the results obtained. The radioisotopes 144 Ce, 103 Ru, 106 Ru, 137 Cs and 95 Zr were chosen as monitors. In order to isolate the radioisotopes chosen as monitors, a separation scheme has been established in which the solvent extraction technic is used to separate cerium, cesium, and ruthenium one from the other and from uranium. The separation between zirconium and niobium and of both from the others was accomplished by means of adsorption on a silica-gel column. When the non-destructive method was used, the radioactivity of each nuclide of interest was measured in the presence of all others. For this purpose, use was made of gamma-ray spectrometry and a Ge-Li detector. The comparison of burn-up values obtained by both destructive and non-destructive methods was made by means of Student's 't' test, and it has shown that the averages of results obtained in each case are equal. (Author) [pt

  20. Determination of uranium-235 by differential gamma spectrometry

    International Nuclear Information System (INIS)

    Suner, A.A.; La Gamma de Batistoni, A.M.G.; Botbol, J.

    1974-12-01

    A method for the determination of U-235 contained in solutions of uranium, by gamma spectrometry with Ge(Li) detector is described. Ra-226 is coprecipitated in BaSO 4 . The activity at 186 keV is measured, substracted by the corresponding of a standard. The detection limit is 1% of increment of U-235 over the standard. (author)

  1. Materials testing by computerized tomography with neutrons and gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghobary, A M; Bakkoush, F A; Megahid, R M [Reactor and Neutron Physics Department, Nuclear Research Center, A.E.A., Cairo (Egypt)

    1997-12-31

    The method of computerized tomography by fast neutrons and gamma-rays are used for inspecting and testing of materials by non-destructive technique. The transmission technique was applied using narrow collimated beams of reactor neutrons and gamma-ray. The neutron and gamma-rays transmitted through the object inspection were measured by means of a neutron gamma detector with Ne - 213 liquid organic scintillator. The undesired pulses of neutrons or gamma-rays are rejected from the transmitted beam by a discrimination technique based on the difference in the decay part of light pulse produced by recoil electrons or recoil protons. The transmitted neutrons or gamma-rays for different projections used to get the image of the section through the object investigated using the method of filtered back projection (FBP) algorithm. 8 figs.

  2. An automatic sample changer for gamma spectrometry

    International Nuclear Information System (INIS)

    Andrews, D.J.

    1984-01-01

    An automatic sample changer for gamma spectrometry is described which is designed for large-volume, low radioactivity environmental samples of various sizes up to maximum dimensions 100 mm diameter x 60 mm high. The sample changer is suitable for use with most existing gamma spectrometry systems which utilize GeLi or NaI detectors in vertical mode, in conjunction with a pulse height analyzer having auto-cycle and suitable data output facilities; it is linked to a Nuclear Data ND 6620 computer-based analysis system. (U.K.)

  3. Nuclear models and data for gamma-ray production

    International Nuclear Information System (INIS)

    Young, P.G.

    1975-01-01

    The current Evaluated Nuclear Data File (ENDF/B, Version IV) contains information on prompt gamma-ray production from neutron-induced reactions for some 38 nuclides. In addition, there is a mass of fission product yield, capture, and radioactive decay data from which certain time-dependent gamma-ray results can be calculated. These data are needed in such applications as gamma-ray heating calculations for reactors, estimates of radiation levels near nuclear facilities and weapons, shielding design calculations, and materials damage estimates. The prompt results are comprised of production cross sections, multiplicities, angular distributions, and energy spectra for secondary gamma-rays from a variety of reactions up to an incident neutron energy of 20 MeV. These data are based in many instances on experimental measurements, but nuclear model calculations, generally of a statistical nature, are also frequently used to smooth data, to interpolate between measurements, and to calculate data in unmeasured regions. The techniques and data used in determining the ENDF/B evaluations are reviewed, and comparisons of model-code calculations and ENDF data with recent experimental results are given. 11 figures

  4. Calculation of reasonable exemption levels for surface contamination by measuring overall gamma ray

    International Nuclear Information System (INIS)

    Ogino, Haruyuki; Hattori, Takatoshi

    2008-01-01

    The present regulation on surface contamination [Bq/cm 2 ] is determined from a simple radiological model for the most hazardous radionuclides (Pu-239 for alpha emitters and Sr-90 for beta emitters) and its extremely conservative model is applied for all other alpha and beta emitters. In this study, reasonable exemption levels for surface contamination are calculated for each radionuclide by adopting an original radiological dose evaluation method for surface contamination that can be applied in radiation safety, transport safety and waste safety. Furthermore, a new concept of judging the exemption by estimating the overall contamination [Bq] on the objects from the measurement of gamma ray has been designed and a reasonable value was derived. We conclude that the overall exemption levels obtained by gamma ray measurement can be one order smaller than those obtained by the conventional method for some radionuclides, such as Mn-54, Co-60, Nb-94, Cs-134, Cs-137, Eu-152 and Eu-154. (author)

  5. Cosmic gamma-ray burst

    International Nuclear Information System (INIS)

    Yamagami, Takamasa

    1985-01-01

    Ballon experiments for searching gamma-ray burst were carried out by employing rotating-cross modulation collimators. From a very long observation of total 315 hours during 1975 to 1979, three gamma-ray intensity anomalies were observed which were speculated as a gamma-ray burst. As for the first gamma-ray intensity anomaly observed in 1975, the burst source could be located precisely but the source, heavenly body, could not be specified. Gamma-ray burst source estimation was made by analyzing distribution of burst source in the celestial sphere, burst size distribution, and burst peak. Using the above-mentioned data together with previously published ones, apparent inconsistency was found between the observed results and the adopted theory that the source was in the Galaxy, and this inconsistency was found due to the different time profiles of the burst observed with instruments of different efficiency. It was concluded by these analysis results that employment of logN - logP (relation between burst frequency and burst count) was better than that of logN - logS (burst size) in the examination of gamma-ray burst because the former was less uncertain than the latter. Analyzing the author's observed gamma-ray burst data and the related published data, it was clarified that the burst distribution was almost P -312 for the burst peak value larger than 10 -6 erg/cm 2 .sec. The author could indicate that the calculated celestial distribution of burst source was consistent with the observed results by the derivation using the logN - logP relationship and that the burst larger than 10 -6 erg/cm 2 .sec happens about one thousand times a year, about ten times of the previous value. (Takagi, S.)

  6. Gamma ray benchmark on the spent fuel shipping cask TN 12

    International Nuclear Information System (INIS)

    Blum, P.; Cagnon, R.; Cladel, C.; Ermont, G.; Nimal, J.C.

    1983-05-01

    The purpose of this benchmark is to compare measurements and calculation of gamma-ray dose rates around a shipping cask loaded with 12 spent fuel elements of FESSENHEIM PWR type. The benchmark provides a means to verify gamma-ray sources and gamma-ray transport calculation methods in shipping cask configurations. The comparison between measurements and calculations shows a good agreement except near the fuel element top where the discrepancy reaches a factor 2

  7. Gamma-Ray Astronomy Technology Needs

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  8. Method and apparatus for measuring incombustible content of coal mine dust using gamma-ray backscatter

    International Nuclear Information System (INIS)

    Armstrong, F.E.

    1976-01-01

    A method and apparatus for measuring incombustible content of particulate material, particularly coal mine dust, include placing a sample of the particulate material in a container to define a pair of angularly oriented surfaces of the sample, directing an incident gamma-ray beam from a radiation source at one surface of the sample and detecting gamma-ray backscatter from the other surface of the sample with a radiation detector having an output operating a display to indicate incombustible content of the sample. The positioning of the source and detector along different surfaces of the sample permits the depth of the scattering volume defined by intersection of the incident beam and a detection cone from the detector to be selected such that variations in scattered radiation produced by variations in density of the sample are compensated by variations in the attenuation of the incident beam and the gamma-ray backscatter. 17 claims 5 figures

  9. GRAP, Gamma-Ray Level-Scheme Assignment

    International Nuclear Information System (INIS)

    Franklyn, C.B.

    2002-01-01

    1 - Description of program or function: An interactive program for allocating gamma-rays to an energy level scheme. Procedure allows for searching for new candidate levels of the form: 1) L1 + G(A) + G(B) = L2; 2) G(A) + G(B) = G(C); 3) G(A) + G(B) = C (C is a user defined number); 4) L1 + G(A) + G(B) + G(C) = L2. Procedure indicates intensity balance of feed and decay of each energy level. Provides for optimization of a level energy (and associated error). Overall procedure allows for pre-defining of certain gamma-rays as belonging to particular regions of the level scheme, for example, high energy transition levels, or due to beta- decay. 2 - Method of solution: Search for cases in which the energy difference between two energy levels is equal to a gamma-ray energy within user-defined limits. 3 - Restrictions on the complexity of the problem: Maximum number of gamma-rays: 999; Maximum gamma ray energy: 32000 units; Minimum gamma ray energy: 10 units; Maximum gamma-ray intensity: 32000 units; Minimum gamma-ray intensity: 0.001 units; Maximum number of levels: 255; Maximum level energy: 32000 units; Minimum level energy: 10 units; Maximum error on energy, intensity: 32 units; Minimum error on energy, intensity: 0.001 units; Maximum number of combinations: 6400 (ca); Maximum number of gamma-ray types : 127

  10. Calculation of the detection limits for radionuclides identified in gamma-ray spectra based on post-processing peak analysis results.

    Science.gov (United States)

    Korun, M; Vodenik, B; Zorko, B

    2018-03-01

    A new method for calculating the detection limits of gamma-ray spectrometry measurements is presented. The method is applicable for gamma-ray emitters, irrespective of the influences of the peaked background, the origin of the background and the overlap with other peaks. It offers the opportunity for multi-gamma-ray emitters to calculate the common detection limit, corresponding to more peaks. The detection limit is calculated by approximating the dependence of the uncertainty in the indication on its value with a second-order polynomial. In this approach the relation between the input quantities and the detection limit are described by an explicit expression and can be easy investigated. The detection limit is calculated from the data usually provided by the reports of peak-analyzing programs: the peak areas and their uncertainties. As a result, the need to use individual channel contents for calculating the detection limit is bypassed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Observation of solar gamma-ray by Hinotori

    International Nuclear Information System (INIS)

    Yoshimori, Masato; Okudaira, Kiyoaki; Hirashima, Yo; Kondo, Ichiro.

    1982-01-01

    The solar gamma-ray emitted by solar flare was observed. The gamma-ray is the electromagnetic radiation with the energy more than 300 keV. The line gamma-ray intensity and the time profile were observed. The gamma-ray detector CsI (Tl) was loaded on Hinotori, and the observed gamma-ray was analyzed by a multi-channel analyzer. The observed line gamma-ray was the radiation from Fe-56 and Ne-20. The line gamma-ray from C-12 and O-16 was also seen. These gamma-ray is the direct evidence of the nuclear reaction on the sun. The observed spectrum suggested the existence of the lines from Mg-24 and Si-28. The intensity of the 2.22 MeV gamma-line was small. This fact showed that the origin of this line was different from other nuclear gamma-ray. Two kinds of hard X-ray bursts were detected. The one was impulsive burst, and the other was gradual burst. There was no time difference between the hard X-ray and the gamma-ray of the impulsive burst. The impulsive burst may be explained by the beam model. The delay of time profile in the high energy gamma-ray of the gradual burst was observed. This means that the time when accelerated electrons cause bremsstrahlung depends on the electron energy. The long trapping of electrons at the top of magnetic loop is suggested. (Kato, T.)

  12. Continued Development of a Soft Gamma-Ray Concentrator

    Science.gov (United States)

    Bloser, Peter

    We propose to continue our development of a concept for a soft gamma-ray (E > 100 keV) concentrator using thin-film multilayer structures. Alternating layers of low- and high-density materials will channel soft gamma-ray photons via total external reflection. A suitable arrangement of bent structures will then concentrate the incident radiation to a point. Gamma-ray optics made in this way offer the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and opening the field up to balloon-borne instruments. Under previous APRA funding we have been investigating methods for efficiently producing such multilayer structures and modeling their performance. We now propose to pursue magnetron sputtering (MS) techniques to quickly produce structures with the required smoothness and thickness, to measure their channeling efficiency and compare with calculations, and to design a "lens" with optimized bandpass and throughput and predict its scientific performance. If successful, this work will confirm that this innovative optics concept is suitable for a balloon-born soft gamma-ray telescope with unprecedented sensitivity.

  13. Direct gamma-ray measurement of different radionuclides in the surface water of Suez Canal

    International Nuclear Information System (INIS)

    Lasheen, Y.F.; El-Zakla, T.; Seliman, A.F.; Abdel-Rassoul, A.A.

    2008-01-01

    The radioactivity levels of naturally-occurring 238 U, 232 Th, 226 Ra and 40 K and anthropogenic 137 Cs in surface water from eight locations in the Suez Canal have been assessed by gamma-ray spectrometry. The samples were further characterized by determination of the common cations and anions using ion chromatography. A comparison of 137 Cs radioactivity levels in surface water from the Suez Canal with those of other sea waters is presented. The radioactivity levels of 238 U, 232 Th, 226 Ra and 40 K from sea water are also reported. The effect of total dissolved solids (T.D.S.), chloride, sulphate ion concentrations on the radioactivity levels of 238 U, 232 Th and 226 Ra is discussed. (authors)

  14. Relativistic motion in gamma-ray bursts

    International Nuclear Information System (INIS)

    Krolik, J.H.; Pier, E.A.

    1991-01-01

    Three fundamental problems affect models of gamma-ray bursts, i.e., the energy source, the ability of high-energy photons to escape the radiation region, and the comparative weakness of X-ray emission. It is indicated that relativistic bulk motion of the gamma-ray-emitting plasma generically provides a solution to all three of these problems. Results show that, if the plasma that produces gamma-ray bursts has a bulk relativistic velocity with Lorentz factor gamma of about 10, several of the most troubling problems having to do with gamma-ray bursts are solved. 42 refs

  15. Determination of Pu isotopic composition and 241Am by high resolution gamma spectrometry on solid samples

    International Nuclear Information System (INIS)

    Sarkar, Arnab; Paul, Sumana; Aggarwal, Suresh K.; Tomar, Bhupendra S.

    2011-08-01

    The present report gives a detailed account of the development of non-destructive assay technique using high resolution gamma-ray spectrometry (HRGS) for determination of plutonium (Pu) isotopic composition and the 241 Am content in solid Pu samples. Energy range 120-420 keV was used in this study. The methodology involves in situ relative efficiency calibration during the measurement process itself, to reduce the errors and increase the reliability of the method. Twenty solid Pu samples of power reactor and research reactor grade were analyzed by this method and the results were compared with those obtained by thermal ionization mass spectrometry. The accuracy of the final results depends strongly upon the accuracy of the available nuclear data (decay constant, gamma abundance etc.). MATLAB based programme was written to perform the analysis. A counting time of 4 hour was chosen for achieving good statistics on the results for samples having 100-200 mg of Pu. The attainable accuracy is found to be 0.5-1% for the fissile isotopes ( 239 Pu + 241 Pu) and 5-10% for 241 Am content. (author)

  16. Gamma ray bursts of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  17. Detection and measurement of gamma-ray self-attenuation in plutonium residues

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Foster, L.A.; Estep, R.J.

    1996-01-01

    A new method to correct for self-attenuation in gamma-ray assays of plutonium is presented. The underlying assumptions of the technique are based on a simple but accurate physical model of plutonium residues, particularly pyrochemical salts, in which it is assumed that the plutonium is divided into two portions, each of which can be treated separately from the standpoint of gamma-ray analysis: a portion that is in the form of plutonium metal shot; and a dilute portion that is mixed with the matrix. The performance of the technique is evaluated using assays of plutonium residues by tomographic gamma scanning at the Los Alamos Plutonium Facility. The ability of the method to detect saturation conditions is examined

  18. Highlights of GeV Gamma-Ray Astronomy

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  19. Simulation approach to coincidence summing in {gamma}-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dziri, S., E-mail: samir.dziri@iphc.cnrs.fr [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), University of Strasbourg, CNRS, IN2P3, UMR 7178, 23 rue de Loess, BP 28, 67037 Strasbourg Cedex 2 (France); Nourreddine, A.; Sellam, A.; Pape, A.; Baussan, E. [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), University of Strasbourg, CNRS, IN2P3, UMR 7178, 23 rue de Loess, BP 28, 67037 Strasbourg Cedex 2 (France)

    2012-07-15

    Some of the radionuclides used for efficiency calibration of a HPGe spectrometer are subject to coincidence-summing (CS) and account must be taken of the phenomenon to obtain quantitative results when counting samples to determine their activity. We have used MCNPX simulations, which do not take CS into account, to obtain {gamma}-ray peak intensities that were compared to those observed experimentally. The loss or gain of a measured peak intensity relative to the simulated peak is attributed to CS. CS correction factors are compared with those of ETNA and GESPECOR. Application to a test sample prepared with known radionuclides gave values close to the published activities. - Highlights: Black-Right-Pointing-Pointer Coincidence summing occurs when the solid angle is increased. Black-Right-Pointing-Pointer The loss of counts gives rise to an approximative efficiency curves, this means a wrong quantitative data. Black-Right-Pointing-Pointer To overcome this problem we need mono-energetic source, otherwise, the MCNPX simulation allows by comparison with the experiment data to get the coincidence summing correction factors. Black-Right-Pointing-Pointer By multiplying these factors by the approximative efficiency, we obtain the accurate efficiency.

  20. Applications of outcrop gamma-ray logging to field development and exploration

    International Nuclear Information System (INIS)

    Jordan, D.W.; Slatt, R.M.; Gillespie, R.H.; D'Agostino, A.E.; Scheihing, M.H.

    1991-01-01

    Gamma-ray logs of outcrops have been generated using two techniques. These techniques demonstrate the applicability of outcrop logging to better understand reservoir facies architecture and exploration type problems. The first logging technique employs the use of a standard logging truck and gamma-ray sonde. The truck is positioned near the top of the cliff face and the sonde is lowered to the bottom of the cliff. Gamma-ray counts are recorded as the sonde is raised at a constant rate. The second logging technique employs the use of a commercially available, hand-held, gamma-ray scintillometer. The tool measures total radiation at the outcrop. Equally-spaced measurements are made along the section and are displayed as a function of depth below a reference point. In this paper examples of gamma-ray logging experiments conducted on turbidities of the Jackfork Group (Pennsylvanian) in central and southern Arkansas are discussed, as are application of outcrop gamma-ray logging in the Long Beach Unit of Wilmington Oil Field, California, and Point Mugu (Santa Barbara Channel), California