WorldWideScience

Sample records for gamma-radiation-induced heme oxygenase-1

  1. Kidney injury and heme oxygenase-1

    Directory of Open Access Journals (Sweden)

    Hai-xing MAI

    2012-02-01

    Full Text Available     Heme oxygenase-1 (HO-1 is one of the main pathways to degrade heme in mammals, and the main degradation products are free iron (Fe2+, carbon monoxide (CO, and bilirubin. Heme plays an important role in promoting cell survival, circulation of intracellular substrates, and immune regulation. Previous studies suggest that HO-1 pathway is an important internal factor in determining the susceptibility and severity of acute kidney injury (AKI. The induction of HO-1 expression can attenuate the severity of renal ischemia-reperfusion injury (IRI, and the inhibition of HO-1 expression will aggravate IRI. The present article summarizes the latest advances in research abroad and at home on protective mechanism by which HO-1 prevents AKI to further deepen our understanding of the role of HO-1 in the treatment of AKI.   

  2. Heme oxygenase-1, oxidation, inflammation and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jesus A Araujo

    2012-07-01

    Full Text Available Atherosclerosis is an inflammatory process of the vascular wall characterized by the infiltration of lipids and inflammatory cells. Oxidative modifications of infiltrating low density lipoproteins and induction of oxidative stress play a major role in lipid retention in the vascular wall, uptake by macrophages and generation of foam cells, a hallmark of this disorder. The vasculature has a plethora of protective resources against oxidation and inflammation, many of them regulated by the Nrf2 transcription factor. Heme oxygenase-1 (HO-1 is a Nrf2-regulated gene that plays a critical role in the prevention of vascular inflammation. It is the inducible isoform of heme oxygenase, responsible for the oxidative cleavage of heme groups leading to the generation of biliverdin, carbon monoxide and release of ferrous iron. HO-1 has important antioxidant, antiinflammatory, antiapoptotic, antiproliferative and immunomodulatory effects in vascular cells, most of which play a significant role in the protection against atherogenesis. HO-1 may also be an important feature in macrophage differentiation and polarization to certain subtypes. The biological effects of HO-1 are largely attributable to its enzymatic activity, which can be conceived as a system with three arms of action, corresponding to its three enzymatic byproducts. HO-1 mediated vascular protection may be due to a combination of systemic and vascular local effects. It is usually expressed at low levels but can be highly upregulated in the presence of several proatherogenic stimuli. The HO-1 system is amenable for use in the development of new therapies, some of them currently under experimental and clinical trials. Interestingly, in contrast to the HO-1 antiatherogenic actions, the expression of its transcriptional regulator Nrf2 leads to proatherogenic effects instead. This article reviews the evidence that supports the antiatherogenic role of HO-1, potential pathways and mechanisms mediating

  3. Immunolocalization of heme oxygenase-1 in periodontal diseases

    Directory of Open Access Journals (Sweden)

    G Gayathri

    2014-01-01

    Conclusion: The results of our study is an increasing evidence of involvement of antioxidant enzymes like heme oxygenase-1 in periodontal inflammation and their implication for treatment of chronic periodontitis.

  4. Heme oxygenase-1 deletion affects stress erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Yu-An Cao

    Full Text Available Homeostatic erythropoiesis leads to the formation of mature red blood cells under non-stress conditions, and the production of new erythrocytes occurs as the need arises. In response to environmental stimuli, such as bone marrow transplantation, myelosuppression, or anemia, erythroid progenitors proliferate rapidly in a process referred to as stress erythropoiesis. We have previously demonstrated that heme oxygenase-1 (HO-1 deficiency leads to disrupted stress hematopoiesis. Here, we describe the specific effects of HO-1 deficiency on stress erythropoiesis.We used a transplant model to induce stress conditions. In irradiated recipients that received hmox(+/- or hmox(+/+ bone marrow cells, we evaluated (i the erythrocyte parameters in the peripheral blood; (ii the staining intensity of CD71-, Ter119-, and CD49d-specific surface markers during erythroblast differentiation; (iii the patterns of histological iron staining; and (iv the number of Mac-1(+-cells expressing TNF-α. In the spleens of mice that received hmox(+/- cells, we show (i decreases in the proerythroblast, basophilic, and polychromatophilic erythroblast populations; (ii increases in the insoluble iron levels and decreases in the soluble iron levels; (iii increased numbers of Mac-1(+-cells expressing TNF-α; and (iv decreased levels of CD49d expression in the basophilic and polychromatophilic erythroblast populations.As reflected by effects on secreted and cell surface proteins, HO-1 deletion likely affects stress erythropoiesis through the retention of erythroblasts in the erythroblastic islands of the spleen. Thus, HO-1 may serve as a therapeutic target for controlling erythropoiesis, and the dysregulation of HO-1 may be a predisposing condition for hematologic diseases.

  5. Heme oxygenase-1 and carbon monoxide in pulmonary medicine

    NARCIS (Netherlands)

    Slebos, DJ; Ryter, SW; Choi, AMK

    2003-01-01

    Heme oxygenase-1 (HO-1), an inducible stress protein, confers cytoprotection against oxidative stress in vitro and in vivo. In addition to its physiological role in heme degradation, HO-1 may influence a number of cellular processes, including growth, inflammation, and apoptosis. By virtue of

  6. Heme Oxygenase-1 in Tumors: Is It a False Friend?

    OpenAIRE

    JOZKOWICZ, ALICJA; WAS, HALINA; DULAK, JOZEF

    2007-01-01

    Heme oxygenase-1 (HO-1) catalyzes the oxidation of heme to biologically active products: carbon monoxide (CO), biliverdin, and ferrous iron. It participates in maintaining cellular homeostasis and plays an important protective role in the tissues by reducing oxidative injury, attenuating the inflammatory response, inhibiting cell apoptosis, and regulating cell proliferation. HO-1 is also an important proangiogenic mediator. Most studies have focused on the role of HO-1 in cardiovascular disea...

  7. Effect of a heme oxygenase-1 inducer on NADPH oxidase ...

    African Journals Online (AJOL)

    Purpose: To investigated the effect of hemin, a heme oxygenase-1 (HO-1) inducer, on nicotinamide adenine dinucleotide phosphate oxidase (NOX) expression in rats with alcohol-induced liver injury. Methods: Male Wistar rats were randomly divided into four groups consisting of the control group, the ethanol (EtOH) group, ...

  8. Heme oxygenase-1 in tumors: is it a false friend?

    Science.gov (United States)

    Jozkowicz, Alicja; Was, Halina; Dulak, Jozef

    2007-12-01

    Heme oxygenase-1 (HO-1) catalyzes the oxidation of heme to biologically active products: carbon monoxide (CO), biliverdin, and ferrous iron. It participates in maintaining cellular homeostasis and plays an important protective role in the tissues by reducing oxidative injury, attenuating the inflammatory response, inhibiting cell apoptosis, and regulating cell proliferation. HO-1 is also an important proangiogenic mediator. Most studies have focused on the role of HO-1 in cardiovascular diseases, in which its significant, beneficial activity is well recognized. A growing body of evidence indicates, however, that HO-1 activation may play a role in carcinogenesis and can potently influence the growth and metastasis of tumors. HO-1 is very often upregulated in tumor tissues, and its expression is further increased in response to therapies. Although the exact effect can be tissue specific, HO-1 can be regarded as an enzyme facilitating tumor progression. Accordingly, inhibition of HO-1 can be suggested as a potential therapeutic approach sensitizing tumors to radiation, chemotherapy, or photodynamic therapy.

  9. Role of heme Oxygenase-1 in low dose Radioadaptive response

    Directory of Open Access Journals (Sweden)

    Lingzhi Bao

    2016-08-01

    Full Text Available Radioadaptive response (RAR is an important phenomenon induced by low dose radiation. However, the molecular mechanism of RAR is obscure. In this study, we focused on the possible role of heme oxygenase 1 (HO-1 in RAR. Consistent with previous studies, priming dose of X-ray radiation (1–10 cGy induced significant RAR in normal human skin fibroblasts (AG 1522 cells. Transcription and translation of HO-1 was up-regulated more than two fold by a priming dose of radiation (5 cGy. Zinc protoporphyrin Ⅸ, a specific competitive inhibitor of HO-1, efficiently inhibited RAR whereas hemin, an inducer of HO-1, could mimic priming dose of X-rays to induce RAR. Knocking down of HO-1 by transfection of HO-1 siRNA significantly attenuated RAR. Furthermore, the expression of HO-1 gene was modulated by the nuclear factor (erythroid-derived 2-like 2 (Nrf2, which translocated from cytoplasm to nucleus after priming dose radiation and enhance the antioxidant level of cells.

  10. Increased Plasma Levels of Heme Oxygenase-1 in Human Brucellosis.

    Science.gov (United States)

    Chen, Zhe; Zhang, Yu-Xue; Fu, Dong-Wei; Gao, Qing-Feng; Ge, Feng-Xia; Liu, Wei-Hua

    2016-08-01

    Brucellosis is associated with inflammation and the oxidative stress response. Heme oxygenase-1 (HO-1) is a cytoprotective stress-responsive enzyme that has anti-inflammatory and anti-oxidant effects. Nevertheless, the role of HO-1 in human brucellosis has not yet been studied. The aim of this study was to examine the plasma levels of HO-1 in patients with brucellosis and to evaluate the ability of plasma HO-1 levels as an auxiliary diagnosis, a severity predictor, and a monitor for brucellosis treatments. A total of 75 patients with brucellosis were divided into the acute, subacute, chronic active, and chronic stable groups. An additional 20 volunteers were included as the healthy control group. The plasma HO-1 levels and other laboratory parameters were measured in all groups. Furthermore, the plasma levels of HO-1 in the acute group were compared before and after treatment. The plasma HO-1 levels were considerably increased in the acute (4.97 ± 3.55), subacute (4.98 ± 3.23), and chronic active groups (4.43 ± 3.00) with brucellosis compared to the healthy control group (1.03 ± 0.63) (p brucellosis (r = 0.707, p brucellosis status and may be used as a supplementary plasma marker for diagnosing brucellosis and monitoring its treatment.

  11. Therapeutic Roles of Heme Oxygenase-1 in Metabolic Diseases: Curcumin and Resveratrol Analogues as Possible Inducers of Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Yong Son

    2013-01-01

    Full Text Available Metabolic diseases, such as insulin resistance, type II diabetes, and obesity, are associated with a low-grade chronic inflammation (inflammatory stress, oxidative stress, and endoplasmic reticulum (ER stress. Because the integration of these stresses is critical to the pathogenesis of metabolic diseases, agents and cellular molecules that can modulate these stress responses are emerging as potential targets for intervention and treatment of metabolic diseases. It has been recognized that heme oxygenase-1 (HO-1 plays an important role in cellular protection. Because HO-1 can reduce inflammatory stress, oxidative stress, and ER stress, in part by exerting antioxidant, anti-inflammatory, and antiapoptotic effects, HO-1 has been suggested to play important roles in pathogenesis of metabolic diseases. In the present review, we will explore our current understanding of the protective mechanisms of HO-1 in metabolic diseases and present some emerging therapeutic options for HO-1 expression in treating metabolic diseases, together with the therapeutic potential of curcumin and resveratrol analogues that have their ability to induce HO-1 expression.

  12. Heme oxygenase-1 alleviates alcoholic liver steatosis: histopathological study

    Science.gov (United States)

    Palipoch, Sarawoot; Koomhin, Phanit; Punsawad, Chuchard; Na-Ek, Prasit; Sattayakhom, Apsorn; Suwannalert, Prasit

    2015-01-01

    Excessive alcohol consumption is one of the most important causes of hepatic steatosis, which involves oxidative stress. In particular, increased oxidative stress has been strongly linked to stimulation of the expression of heme oxygenase-1 (HO-1). This study aimed to investigate whether HO-1 could alleviates alcoholic steatosis in rats. Male Wistar rats were randomly divided into 4 groups: 1) the control group, 2) the EtOH group, 3) the EtOH + ZnPP-IX group and 4) the EtOH + Hemin group. Liver histopathology was investigated in weeks 1 and 4 after the start of the treatment period. Alcohol treatment significantly increased the hepatic malondialdehyde (MDA) levels, an oxidative stress marker. In addition, it increased the triglyceride, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in both weeks. Gross examination demonstrated a yellowish and slightly enlarged liver in the alcohol-treated rats. Hematoxylin and eosin (H&E) and Oil Red O staining indicated hepatic steatosis, which was characterized by diffuse, extensive fatty accumulation and discrete lipid droplets of variable size in hepatocytes of the alcohol-treated rats. Administration of the HO-1 inducer hemin resulted in upregulation of hepatic HO-1 gene expression, reduced the MDA, triglyceride, ALT and AST levels and alleviated alcoholic hepatic steatosis, whereas administration of the HO-1 inhibitor zinc protoporphyrin IX (ZnPP-IX) resulted in downregulation of hepatic HO-1 gene expression and could not alleviate alcoholic hepatic steatosis either week. In conclusion, HO-1 could alleviate alcoholic hepatic steatosis in male Wistar rats and may be useful in development of a new therapeutic approach. PMID:26989297

  13. Generation and characterization of human heme oxygenase-1 transgenic pigs.

    Directory of Open Access Journals (Sweden)

    Hye-Jung Yeom

    Full Text Available Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1, an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs. Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.

  14. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging

    DEFF Research Database (Denmark)

    Thomsen, Jens Haugbølle; Etzerodt, Anders; Svendsen, Pia

    2013-01-01

    The haptoglobin- (Hp-) CD163-heme oxygenase-1 (HO-1) pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb)/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex...

  15. In vitro studies on heme oxygenase-1 and P24 antigen HIV-1 level ...

    African Journals Online (AJOL)

    Background: Heme oxygenase-1 (HO-1) is a protein secreted by immune cells as a part of immune response mechanism.HO-1 can be induced by variety agents that causingoxidative stress, such as exposure to 100% oxygenat2,4 ATA pressure.It plays a vital role in maintaining cellular homeostasis.This study was ...

  16. Rapamycin Induces Heme Oxygenase-1 in Liver but Inhibits Bile Flow Recovery after Ischemia

    NARCIS (Netherlands)

    Kist, Alwine; Wakkie, Joris; Madu, Max; Versteeg, Ruth; ten Berge, Judith; Nikolic, Andrej; Nieuwenhuijs, Vincent B.; Porte, Robert J.; Padbury, Robert T. A.; Barritt, Greg J.

    Background/Aims. Rapamycin, which is employed in the management of patients undergoing liver surgery, induces the synthesis of heme oxygenase-1 (HO-1) in some non-liver cell types. The aim was to investigate whether rapamycin can induce HO-1 expression in the liver, and to test the effects of

  17. Functional imaging: monitoring heme oxygenase-1 gene expression in vivo

    Science.gov (United States)

    Zhang, Weisheng; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    The regulation of genetic elements can be monitored in living animals using photoproteins as reporters. Heme oxygenase (HO) is the key catabolic enzyme in the heme degradation pathway. Here, HO expression serves as a model for in vivo functional imaging of transcriptional regulation of a clinically relevant gene. HO enzymatic activity is inhibited by heme analogs, metalloporphyrins, but many members of this family of compounds also activate transcription of the HO-1 promoter. The degree of transcriptional activation by twelve metalloporphyrins, differing at the central metal and porphyrin ring substituents, was evaluated in both NIH 3T3 stable lines and transgenic animals containing HO-1 promoter-luciferase gene fusions. In the correlative cell culture assays, the metalloporphyrins increased transcription form the full length HO promoter fusion to varying degrees, but none increased transcription from a truncated HO-1 promoter. These results suggested that one or both of the two distal enhancer elements located at -4 and -10 Kb upstream from transcriptional start are required for HO-1 induction by heme and its analogs. The full-length HO-1-luc fusion was then evaluated as a transgene in mice. It was possible to monitor the effects of the metalloporphyrins, SnMP and ZnPP, in living animals over time. This spatiotemporal analyses of gene expression in vivo implied that alterations in porphyrin ring substituents and the central metal may affect the extent of gene activation. These data further indicate that using photoprotein reporters, subtle differences in gene expression can be monitored in living animals.

  18. Heme oxygenase-1 promoter polymorphisms and risk of spina bifida.

    Science.gov (United States)

    Fujioka, Kazumichi; Yang, Wei; Wallenstein, Matthew B; Zhao, Hui; Wong, Ronald J; Stevenson, David K; Shaw, Gary M

    2015-09-01

    Spina bifida is the most common form of neural tube defects (NTDs). Etiologies of NTDs are multifactorial, and oxidative stress is believed to play a key role in NTD development. Heme oxygenase (HO), the rate-limiting enzyme in heme degradation, has multiple protective properties including mediating antioxidant processes, making it an ideal candidate for study. The inducible HO isoform (HO-1) has two functional genetic polymorphisms: (GT)n dinucleotide repeats and A(-413)T SNP (rs2071746), both of which can affect its promoter activity. However, no study has investigated a possible association between HO-1 genetic polymorphisms and risk of NTDs. This case-control study included 152 spina bifida cases (all myelomeningoceles) and 148 non-malformed controls obtained from the California Birth Defects Monitoring Program reflecting births during 1990 to 1999. Genetic polymorphisms were determined by polymerase chain reaction and amplified fragment length polymorphisms/restriction fragment length polymorphisms using genomic DNA extracted from archived newborn blood spots. Genotype and haplotype frequencies of two HO-1 promoter polymorphisms between cases and controls were compared. For (GT)n dinucleotide repeat lengths and the A(-413)T SNP, no significant differences in allele frequencies or genotypes were found. Linkage disequilibrium was observed between the HO-1 polymorphisms (D': 0.833); however, haplotype analyses did not show increased risk of spina bifida overall or by race/ethnicity. Although, an association was not found between HO-1 polymorphisms and risk of spina bifida, we speculate that the combined effect of low HO-1 expression and exposures to known environmental oxidative stressors (low folate status or diabetes), may overwhelm antioxidant defenses and increase risk of NTDs and warrants further study. © 2015 Wiley Periodicals, Inc.

  19. Heme oxygenase-1 polymorphism is not associated with risk of colorectal cancer: a Danish prospective study

    DEFF Research Database (Denmark)

    Vogel, Ulla Birgitte; Andersen, Vibeke; Christensen, Jane

    2011-01-01

    Objective: Intake of red and processed meat confers risk of colorectal cancer (CRC). We wanted to test whether heme in meat promotes carcinogenesis. Methods: Heme oxygenase-1 (HO-1, HMOX1) A-413T (rs2071746) was assessed in a nested case–cohort study of 383 CRC cases and 763 randomly selected...... participants from a prospective study of 57 053 individuals. Incidence rate ratios and 95% confidence intervals were calculated. Results: No association was found between the HO-1 polymorphism and CRC (P value for trend for the fully adjusted estimates=0.29). No interaction with meat intake was found (P value...... for interaction=0.55). Conclusion: The studied HO-1 polymorphism was not associated with risk of CRC suggesting that heme from meat is not important in CRC development....

  20. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells

    Directory of Open Access Journals (Sweden)

    Kaori Yama

    2015-04-01

    Full Text Available Epalrestat (EPS is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Recently, we found that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH in rat Schwann cells. GSH plays a crucial role in protecting endothelial cells from oxidative stress, thereby preventing vascular diseases. Here we show that EPS increases GSH levels in not only Schwann cells but also endothelial cells. Treatment of bovine aortic endothelial cells (BAECs, an in vitro model of the vascular endothelium, with EPS caused a dramatic increase in intracellular GSH levels. This was concomitant with the up-regulation of glutamate cysteine ligase, an enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Moreover, EPS stimulated the expression of thioredoxin and heme oxygenase-1, which have important redox regulatory functions in endothelial cells. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that regulates the expression of antioxidant genes. EPS increased nuclear Nrf2 levels in BAECs. Nrf2 knockdown by siRNA suppressed the EPS-induced glutamate cysteine ligase, thioredoxin-1, and heme oxygenase-1 expression. Interestingly, LY294002, an inhibitor of phosphatidylinositol 3-kinase, abolished the EPS-stimulated GSH synthesis, suggesting that the kinase is associated with Nrf2 activation induced by EPS. Furthermore, EPS reduced the cytotoxicity induced by H2O2 and tert-butylhydroperoxide, indicating that EPS plays a role in protecting cells from oxidative stress. Taken together, the results provide evidence that EPS exerts new beneficial effects on endothelial cells by increasing GSH, thioredoxin, and heme oxygenase-1 levels through the activation of Nrf2. We suggest that EPS has the potential to prevent several vascular diseases caused by oxidative stress.

  1. Zinc Protoporphyrin Upregulates Heme Oxygenase-1 in PC-3 Cells via the Stress Response Pathway

    OpenAIRE

    Kwok, Simon C. M.

    2013-01-01

    Zinc protoporphyrin IX (ZnPP), a naturally occurring molecule formed in iron deficiency or lead poisoning, is a potent competitive inhibitor of heme oxygenase-1 (HO-1). It also regulates expression of HO-1 at the transcriptional level. However, the effect of ZnPP on HO-1 expression is controversial. It was shown to induce HO-1 expression in some cells, but suppress it in others. The objective of this study is to investigate the effect of ZnPP on HO-1 expression in prostate cancer PC-3 cells. ...

  2. Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury

    OpenAIRE

    Amersi, Farin; Buelow, Roland; Kato, Hirohisa; Ke, Bibo; Coito, Ana J.; Shen, Xiu-Da; Zhao, Delai; Zaky, Joseph; Melinek, Judy; Lassman, Charles R.; Kolls, Jay K.; Alam, J.; Ritter, Thomas; Volk, Hans-Dieter; Farmer, Douglas G.

    1999-01-01

    We examined the effects of upregulation of heme oxygenase-1 (HO-1) in steatotic rat liver models of ex vivo cold ischemia/reperfusion (I/R) injury. In the model of ischemia/isolated perfusion, treatment of genetically obese Zucker rats with the HO-1 inducer cobalt protoporphyrin (CoPP) or with adenoviral HO-1 (Ad-HO-1) significantly improved portal venous blood flow, increased bile production, and decreased hepatocyte injury. Unlike in untreated rats or those pretreated with the HO-1 inhibito...

  3. Nrf2-dependent induction of innate host defense via heme oxygenase-1 inhibits Zika virus replication

    Science.gov (United States)

    Huang, Hanxia; Falgout, Barry; Takeda, Kazuyo; Yamada, Kenneth M.; Dhawan, Subhash

    2017-01-01

    We identified primary human monocyte-derived macrophages (MDM) as vulnerable target cells for Zika virus (ZIKV) infection. We demonstrate dramatic effects of hemin, the natural inducer of the heme catabolic enzyme heme oxygenase-1 (HO-1), in the reduction of ZIKV replication in vitro. Both LLC-MK2 monkey kidney cells and primary MDM exhibited hemin-induced HO-1 expression with major reductions of > 90% in ZIKV replication, with little toxicity to infected cells. Silencing expression of HO-1 or its upstream regulatory gene, nuclear factor erythroid-related factor 2 (Nrf2), attenuated hemin-induced suppression of ZIKV infection, suggesting an important role for induction of these intracellular mediators in retarding ZIKV replication. The inverse correlation between hemin-induced HO-1 levels and ZIKV replication provides a potentially useful therapeutic modality based on stimulation of an innate cellular response against Zika virus infection. PMID:28068513

  4. A Heme Oxygenase-1 Transducer Model of Degenerative and Developmental Brain Disorders

    Science.gov (United States)

    Schipper, Hyman M.; Song, Wei

    2015-01-01

    Heme oxygenase-1 (HO-1) is a 32 kDa protein which catalyzes the breakdown of heme to free iron, carbon monoxide and biliverdin. The Hmox1 promoter contains numerous consensus sequences that render the gene exquisitely sensitive to induction by diverse pro-oxidant and inflammatory stimuli. In “stressed” astroglia, HO-1 hyperactivity promotes mitochondrial iron sequestration and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure documented in Alzheimer disease, Parkinson disease and certain neurodevelopmental conditions. Glial HO-1 expression may also impact neuroplasticity and cell survival by modulating brain sterol metabolism and the proteasomal degradation of neurotoxic proteins. The glial HO-1 response may represent a pivotal transducer of noxious environmental and endogenous stressors into patterns of neural damage and repair characteristic of many human degenerative and developmental CNS disorders. PMID:25761244

  5. A Heme Oxygenase-1 Transducer Model of Degenerative and Developmental Brain Disorders

    Directory of Open Access Journals (Sweden)

    Hyman M. Schipper

    2015-03-01

    Full Text Available Heme oxygenase-1 (HO-1 is a 32 kDa protein which catalyzes the breakdown of heme to free iron, carbon monoxide and biliverdin. The Hmox1 promoter contains numerous consensus sequences that render the gene exquisitely sensitive to induction by diverse pro-oxidant and inflammatory stimuli. In “stressed” astroglia, HO-1 hyperactivity promotes mitochondrial iron sequestration and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure documented in Alzheimer disease, Parkinson disease and certain neurodevelopmental conditions. Glial HO-1 expression may also impact neuroplasticity and cell survival by modulating brain sterol metabolism and the proteasomal degradation of neurotoxic proteins. The glial HO-1 response may represent a pivotal transducer of noxious environmental and endogenous stressors into patterns of neural damage and repair characteristic of many human degenerative and developmental CNS disorders.

  6. [Effects and mechanisms of heme oxygenase-1 on rats with postresuscitation myocardial dysfunction].

    Science.gov (United States)

    WANG, Xiao-hong; FANG, Xiang-shao; HUANG, Zi-tong; CAO, Xiang-yuan; ZHOU, Li-li

    2012-04-17

    To explore the effects and mechanisms of heme oxygenase-1 on rats with postresuscitation myocardial dysfunction. Male Sprague-Dawley rats were asphyxiated for 9 minutes and resuscitated. They were randomly divided into 4 groups: sham-operated, cardiopulmonary resuscitation (CPR), hemin and hemin + ZnPP (zinc protoporphyrin IX). Resuscitated groups had 2 observation points: 6 and 24 hours post-CPR (n = 8 for each time point). And the sham-operated group of 12 rats were divided in two observation points, according to 6 or 24 hours post-operation (n = 6 each). Hemodynamic was observed. The expression of heme oxygenase-1 (HO-1) in cardiac tissue was detected by Western blot. And the activity of cardiac homogenate superoxide dismutase (SOD) was determined by xanthine oxidase method and the level of malondialdehyde (MDA) measured by the thiobarbituric acid method. Nitrotyrosine protein expression in cardiac tissue was analyzed by immunohistochemistry. (1) The mean blood pressure (MAP) significantly decreased in resuscitated groups after resuscitation (all P ZnPP groups after resuscitation (all P ZnPP groups (all P ZnPP groups (all P ZnPP groups, the expression of HO-1 and the activity of SOD increased, while MDA level and nitrotyrosine protein expression were decreased in group hemin (all P ZnPP groups. HO-1 can reduce myocardial oxidative stress injury after cardiopulmonary resuscitation and effectively improve post-resuscitation myocardial function in rats.

  7. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Meseda, Clement A. [Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Srinivasan, Kumar [Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Wise, Jasen [Qiagen, Frederick, MD (United States); Catalano, Jennifer [Center for Tobacco Products, Food and Drug Administration, Bethesda, MD (United States); Yamada, Kenneth M. [National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Dhawan, Subhash, E-mail: subhash.dhawan@fda.hhs.gov [Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2014-11-07

    Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection.

  8. Acute HIV-1 infection is associated with increased plasma levels of heme oxygenase-1 and presence of heme oxygenase-1-specific regulatory T cells.

    Science.gov (United States)

    Angin, Mathieu; Fathi, Anahita; King, Melanie; Ledoux, Mary B; Piechocka-Trocha, Alicja; Altfeld, Marcus; Addo, Marylyn M

    2017-03-13

    Heme oxygenase-1 (HO-1) is an inducible stress response protein with potent anti-inflammatory activity and recent data suggest a potentially beneficial role in HIV pathogenesis. We investigated the impact of HO-1 and a novel subset of HO-1-specific CD8 regulatory T cells on virus-specific T-cell immunity in HIV-1-infected individuals. HO-1 protein levels were quantified in plasma from individuals at different stages of HIV-1 disease and longitudinally following primary HIV infection. HO-1-specific CD8 T cells were investigated by flow cytometry using human leukocyte antigen (HLA) class I pentamers. Flow-sorted HO-1-specific CD8 T cells were cultured and tested for suppressive activity on HIV-1-specific cytotoxic T-cell clones clones. HO-1 gene expression was determined in sorted peripheral blood mononuclear cell (PBMC) subsets from individuals with acute HIV-1 infection. HO-1 plasma levels were significantly increased in HIV-1 infection, with the highest levels in individuals with acute HIV-1 infection, and gradually declined over time. The frequency of CD8 T cells specific for HO-1 was elevated in study participants with primary HIV-1 infection and flow-sorted HO-1-specific CD8 T cells were capable of suppressing HIV-1-specific lysis of cytotoxic T-cell clones clones. HO-1 gene expression was upregulated in multiple immune cell subsets during acute HIV-1 infection and HO-1 overexpression modulated anti-HIV immunity in vitro. Our data suggest that HO-1 is induced during acute HIV-1 infection, likely mediating anti-inflammatory effects and driving expansion of HO-1-specific CD8 regulatory T cells capable of suppressing HIV-1-specific immune responses in vitro. The investigation of HO-1 and the novel CD8 regulatory cell type described here provide further insight into immune regulation in HIV-1 infection and may hold potential for future immunotherapeutic intervention.

  9. Beyond gastric acid reduction: Proton pump inhibitors induce heme oxygenase-1 in gastric and endothelial cells

    International Nuclear Information System (INIS)

    Becker, Jan C.; Grosser, Nina; Waltke, Christian; Schulz, Stephanie; Erdmann, Kati; Domschke, Wolfram; Schroeder, Henning; Pohle, Thorsten

    2006-01-01

    Proton pump inhibitors (PPIs) have been demonstrated to prevent gastric mucosal injury by mechanisms independent of acid inhibition. Here we demonstrate that both omeprazole and lansoprazole protect human gastric epithelial and endothelial cells against oxidative stress. This effect was abrogated in the presence of the heme oxygenase-1 (HO-1) inhibitor ZnBG. Exposure to either PPI resulted in a strong induction of HO-1 expression on mRNA and protein level, and led to an increased activity of this enzyme. Expression of cyclooxygenase isoforms 1 and 2 remained unaffected, and COX-inhibitors did not antagonize HO-1 induction by PPIs. Our results suggest that the antioxidant defense protein HO-1 is a target of PPIs in both endothelial and gastric epithelial cells. HO-1 induction might account for the gastroprotective effects of PPIs independently of acid inhibition, especially in NSAID gastropathy. Moreover, our findings provide additional perspectives for a possible but yet unexplored use of PPIs in vasoprotection

  10. Identification of heme oxygenase-1-specific regulatory CD8+ T cells in cancer patients

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Sørensen, Rikke Baek; Brimnes, Marie K

    2009-01-01

    Treg deficiencies are associated with autoimmunity. Conversely, CD4+ and CD8+ Tregs accumulate in the tumor microenvironment and are associated with prevention of antitumor immunity and anticancer immunotherapy. Recently, CD4+ Tregs have been much studied, but little is known about CD8+ Tregs...... and the antigens they recognize. Here, we describe what we believe to be the first natural target for CD8+ Tregs. Naturally occurring HLA-A2-restricted CD8+ T cells specific for the antiinflammatory molecule heme oxygenase-1 (HO-1) were able to suppress cellular immune responses with outstanding efficacy. HO-1......-specific CD8+ T cells were detected ex vivo and in situ among T cells from cancer patients. HO-1-specific T cells isolated from the peripheral blood of cancer patients inhibited cytokine release, proliferation, and cytotoxicity of other immune cells. Notably, the inhibitory effect of HO-1-specific T cells...

  11. Heme oxygenase 1 improves glucoses metabolism and kidney histological alterations in diabetic rats

    Directory of Open Access Journals (Sweden)

    Ptilovanciv Ellen ON

    2013-01-01

    Full Text Available Abstract One important concern in the treatment of diabetes is the maintenance of glycemic levels and the prevention of diabetic nephropathy. Inducible heme oxygenase 1 (HO-1 is a rate-limiting enzyme thought to have antioxidant and cytoprotective roles. The goal of the present study was to analyze the effect of HO-1 induction in chronically hyperglycemic rats. The hyperglycemic rats were divided into two groups: one group, called STZ, was given a single injection of streptozotocin; and the other group was given a single streptozotocin injection as well as daily injections of hemin, an HO-1 inducer, over 60 days (STZ + HEME. A group of normoglycemic, untreated rats was used as the control (CTL. Body weight, diuresis, serum glucose levels, microalbuminuria, creatinine clearance rate, urea levels, sodium excretion, and lipid peroxidation were analyzed. Histological alterations and immunohistochemistry for HO-1 and inducible nitric oxide synthase (iNOS were assessed. After 60 days, the STZ group exhibited an increase in blood glucose, diuresis, urea, microalbuminuria, and sodium excretion. There was no weight gain, and there was a decrease in creatinine clearance in comparison to the CTL group. In the STZ + HEME group there was an improvement in the metabolic parameters and kidney function, a decrease in blood glucose, serum urea, and microalbuminuria, and an increase of creatinine clearance, in comparison to the STZ group. There was glomerulosclerosis, collagen deposition in the STZ rats and increase in iNOS and HO-1 expression. In the STZ + HEME group, the glomerulosclerosis and fibrosis was prevented and there was an increase in the expression of HO-1, but decrease in iNOS expression and lipid peroxidation. In conclusion, our data suggest that chronic induction of HO-1 reduces hyperglycemia, improves glucose metabolism and, at least in part, protects the renal tissue from hyperglycemic injury, possibly through the antioxidant

  12. Hormonal fluctuations during the estrous cycle modulate Heme Oxygenase-1 expression in the uterus

    Directory of Open Access Journals (Sweden)

    Maria Laura Zenclussen

    2014-03-01

    Full Text Available Deletion of the Heme Oxygenase-1 (Hmox1 locus in mice results in intrauterine lethality. The expression of the heme catabolyzing enzyme encoded by this gene, namely HO 1, is required to successfully support reproductive events. We have previously observed that HO-1 acts at several key events in reproduction ensuring pregnancy. HO-1 defines ovulation, positively influences implantation and placentation and ensures fetal growth and survival. Here, we embarked on a study aimed to determine whether hormonal changes during the estrous cycle in the mouse define HO-1 expression, thus influencing receptivity. We analyzed the serum levels of progesterone and estrogen by ELISA and HO-1 mRNA expression in uterus by real time RT-PCR at the metestrus, proestrus, estrus and diestrus phases of the estrous cycle. Further, we studied the HO-1 protein expression by Western Blot upon hormone addition to cultured uterine AN3 cells. We observed that HO-1 variations in uterine tissue correlated to changes in hormonal levels at different phases of the estrus cycle. In vitro, HO-1 protein levels in AN3 cells augmented after the addition of physiological concentrations of progesterone and estradiol, which confirmed our in vivo observations. Our data suggest an important role for hormones in HO-1 regulation in uterus that has a significant impact in receptivity and later on blastocyst implantation.

  13. Auranofin protects against cocaine-induced hepatic injury through induction of heme oxygenase-1.

    Science.gov (United States)

    Ashino, Takashi; Sugiuchi, Jinko; Uehara, Junna; Naito-Yamamoto, Yumiko; Kenmotsu, Sachiyo; Iwakura, Yoichiro; Shioda, Seiji; Numazawa, Satoshi; Yoshida, Takemi

    2011-10-01

    Auranofin, a disease-modifying gold compound, has been empirically applying to the management of rheumatoid arthritis. We investigated a protective effect of auranofin against hepatic injury induced by cocaine. Cocaine (75 mg/kg) markedly increased serum alanine amino transferase (ALT) (4,130 IU/l) and aspartate amino transferase (AST) (1,730 IU/l) activities at 16 hr after treatment, and induced hepatic necrosis surrounding central veins in mice. Concurrently, overexpression of heme oxygenase-1 (HO-1), a rate-limiting enzyme for heme degradation and an oxidative stress marker, was identified at the edges of cocaine-mediated necrotic area. Auranofin (10 mg/ml, i.p.) significantly induced hepatic HO-1 protein in mice from 12 hr after treatment. Interestingly, pretreatment with auranofin resulted in the prevention of the increase of serum ALT and AST activities in a dose-dependent manner. On the other hand, although cocaine increased tumor necrosis factor α (TNFα) gene expression in mouse livers, cocaine-induced liver injury was observed in TNFα deficient mice as well as wild-type mice. Auranofin-inducted HO-1 gene expression was observed in human primary hepatocytes as well as mouse primary hepatocytes. The present findings suggest that auranofin is effective in preventing cocaine-induced hepatic injury, and HO-1 may contribute to protect against chemically-induced cytotoxicity.

  14. Heme oxygenase-1: A new druggable target in the management of chronic and acute myeloid leukemia.

    Science.gov (United States)

    Salerno, Loredana; Romeo, Giuseppe; Modica, Maria N; Amata, Emanuele; Sorrenti, Valeria; Barbagallo, Ignazio; Pittalà, Valeria

    2017-12-15

    Heme oxygenase-1 (HO-1) is the enzyme catalyzing the rate-limiting oxidative degradation of cellular heme into free iron, carbon monoxide (CO), and biliverdin, which is then rapidly converted into bilirubin. By means of these catabolic end-products and by removal of pro-oxidant heme, HO-1 exerts antioxidant, antiapoptotic, and immune-modulating effects, leading to overall cytoprotective and beneficial functions in mammalian cells. Therefore, HO-1 is considered a survival molecule in various stress-related conditions. By contrast, growing evidence suggests that HO-1 is a survival-enhancing molecule also in various solid and blood cancers, such as various types of leukemia, promoting carcinogenesis, tumor progression, and chemo-resistance. Among leukemias, chronic myeloid leukemia (CML) is currently therapeutically well treated with tyrosine kinase inhibitors (TKIs) such as Imatinib (IM) and its congeners; nevertheless, resistance to all kinds of current drugs persist in a number of patients. Moreover, treatment outcomes for acute myeloid leukemia (AML) remain unsatisfactory, despite progress in chemotherapy and hematopoietic stem cell transplantation. Therefore, identification of new eligible targets that may improve leukemias therapy is of general interest. Several recent papers prove that inhibition of HO-1 through HO-1 inhibitors as well as modulation of other pathways involving HO-1 by a number of different new or known molecules, are critical for leukemia treatment. This review summarizes the current understanding of the pro-tumorigenic role of HO-1 and its potential as a molecular target for the treatment of leukemias. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Genetic analyses of heme oxygenase 1 (HMOX1 in different forms of pancreatitis.

    Directory of Open Access Journals (Sweden)

    Sebastian Weis

    Full Text Available Heme oxygenase 1 (HMOX1 is the rate limiting enzyme in heme degradation and a key regulator of inflammatory processes. In animal models the course of pancreatitis was ameliorated by up-regulation of HMOX1 expression. Additionally, carbon monoxide released during heme breakdown inhibited proliferation of pancreatic stellate cells and might thereby prevent the development of chronic pancreatitis (CP. Transcription of HMOX1 in humans is influenced by a GT-repeat located in the promoter. As such, HMOX1 variants might be of importance in the pathogenesis of pancreatitis.The GT-repeat and SNP rs2071746 were investigated with fluorescence labelled primers and by melting curve analysis in 285 patients with acute pancreatitis, 208 patients with alcoholic CP, 207 patients with idiopathic/hereditary CP, 147 patients with alcoholic liver cirrhosis, and in 289 controls, respectively. GT-repeat analysis was extended to a total of 446 alcoholic CP patients. In addition, we performed DNA sequencing in 145 patients with alcoholic CP, 138 patients with idiopathic/hereditary CP, 147 patients with alcoholic liver cirrhosis, and 151 controls. Exon 3 screening was extended to additional patients and controls.S- and L-alleles of the GT-repeat, genotypes and alleles of SNP rs2071746 and non-synonymous variants detected by sequencing were found with similar frequencies in all groups.Although functional data implicate a potential influence of HMOX1 variants on the pathogenesis of pancreatitis, we did not find any association. As rare non-synonymous HMOX1 variants were found in patients and controls, it is rather unlikely that they will have functional consequences essential for pancreatitis development.

  16. Heme oxygenase-1 attenuates vascular remodeling following balloon injury in rat carotid arteries.

    Science.gov (United States)

    Tulis, D A; Durante, W; Peyton, K J; Evans, A J; Schafer, A I

    2001-03-01

    The heme oxygenase-1 (HO-1) system of heme catabolism has been proposed to exert protective actions upon the cardiovascular system. This investigation examined the influence of HO-1 induction on vascular remodeling following arterial injury. Rats were subjected to left carotid artery (LCA) balloon injury following pre-treatment with either vehicle, the HO-1 inducer hemin (50 mg/kg, SC), or concomitant treatment with hemin and the HO-1 inhibitor tin-protoporphyrin IX (SnPP-IX; 50 micromol/kg, IP). Animals were injected daily for 14 days post-injury, after which animals were sacrificed and tissues obtained. Western blot analyses revealed vascular HO-1 induction after 2 and 16 days of hemin treatment. Positive immunostaining for HO-1 was detected in the endothelial and adventitial layers following 48 h of hemin treatment and positive medial staining for HO-1 after 16 days of hemin treatment. The injured LCA of hemin-treated animals demonstrated significantly attenuated neointimal (NI) area (-57%), NI thickness (-58%), and NI area/medial wall area ratio (-40%) compared to the injured LCA of vehicle controls. The cross-sectional medial wall areas of both LCA and uninjured RCA were also significantly reduced in the hemin-treated animals. SnPP-IX treatment, however, completely restored the NI area, NI thickness, NI area/medial wall area ratio, and partially restored the medial wall area towards control levels. These results directly implicate HO-1 and the products of heme catabolism in attenuating the arterial response to injury and ensuing vascular wall remodeling.

  17. Spirulina platensis and phycocyanobilin activate atheroprotective heme oxygenase-1: a possible implication for atherogenesis.

    Science.gov (United States)

    Strasky, Zbynek; Zemankova, Lenka; Nemeckova, Ivana; Rathouska, Jana; Wong, Ronald J; Muchova, Lucie; Subhanova, Iva; Vanikova, Jana; Vanova, Katerina; Vitek, Libor; Nachtigal, Petr

    2013-11-01

    Spirulina platensis, a water blue-green alga, has been associated with potent biological effects, which might have important relevance in atheroprotection. We investigated whether S. platensis or phycocyanobilin (PCB), its tetrapyrrolic chromophore, can activate atheroprotective heme oxygenase-1 (Hmox1), a key enzyme in the heme catabolic pathway responsible for generation of a potent antioxidant bilirubin, in endothelial cells and in a mouse model of atherosclerosis. In vitro experiments were performed on EA.hy926 endothelial cells exposed to extracts of S. platensis or PCB. In vivo studies were performed on ApoE-deficient mice fed a cholesterol diet and S. platensis. The effect of these treatments on Hmox1, as well as other markers of oxidative stress and endothelial dysfunction, was then investigated. Both S. platensis and PCB markedly upregulated Hmox1 in vitro, and a substantial overexpression of Hmox1 was found in aortic atherosclerotic lesions of ApoE-deficient mice fed S. platensis. In addition, S. platensis treatment led to a significant increase in Hmox1 promoter activity in the spleens of Hmox-luc transgenic mice. Furthermore, both S. platensis and PCB were able to modulate important markers of oxidative stress and endothelial dysfunction, such as eNOS, p22 NADPH oxidase subunit, and/or VCAM-1. Both S. platensis and PCB activate atheroprotective HMOX1 in endothelial cells and S. platensis increased the expression of Hmox1 in aortic atherosclerotic lesions in ApoE-deficient mice, and also in Hmox-luc transgenic mice beyond the lipid lowering effect. Therefore, activation of HMOX1 and the heme catabolic pathway may represent an important mechanism of this food supplement for the reduction of atherosclerotic disease.

  18. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern (Switzerland); Flueck, Christa E.; Mullis, Primus E. [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern (Switzerland)

    2010-09-24

    Research highlights: {yields} Mutations in POR identified from patients lead to reduced HO-1 activities. {yields} POR mutation Y181D affecting FMN binding results in total loss of HO-1 activity. {yields} POR mutations A287P, C569Y and V608F, lost 50-70% activity. {yields} Mutations in FAD binding domain, R457H, Y459H and V492E lost all HO-1 activity. {yields} POR polymorphisms P228L, R316W, G413S, A503V and G504R have normal activity. -- Abstract: Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

  19. Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gui-bo; Sun, Xiao; Wang, Min [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Ye, Jing-xue [Jilin Agricultural University, No.2888, Xincheng Street, Changchun, 130021, Jilin (China); Si, Jian-yong [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Xu, Hui-bo [Academy of Chinese Medical Sciences of Jilin Province, Gongnongda road 1745, Changchun, 130021, Jiblin (China); Meng, Xiang-bao; Qin, Meng; Sun, Jing [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Wang, Hong-wei, E-mail: hwang@nju.edu.cn [Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093 (China); Sun, Xiao-bo, E-mail: sunsubmit@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China)

    2012-12-01

    Luteolin, a flavonoid that exhibits antioxidative properties, exerts myocardial protection effects. However, the underlying molecular mechanisms are not yet fully understood. To investigate the effects of luteolin on myocardial injury protection and its possible mechanisms, a myocardial injury model was established with intragastric administration of 4 mg/kg isoproterenol (ISO) to male Sprague–Dawley rats (200–220 g) daily for 2 days. We found that pretreatment of luteolin (160, 80 and 40 mg/kg, i.g., respectively) daily for 15 days can prevent ISO-induced myocardial damage, including decrease of serum cardiac enzymes, improvement electrocardiography and heart vacuolation. Luteolin also improved the free radical scavenging and antioxidant potential, suggesting one possible mechanism of luteolin-induced cardio-protection is mediated by blocking the oxidative stress. To clarify the mechanisms, we performed the in vitro study by hydrogen peroxide (H{sub 2}O{sub 2})-induced cytotoxicty model in H9c2 cells. We found that luteolin pretreatment prevented apoptosis, increased the expression of heme oxygenase-1 (HO-1), and enhanced the binding of Nrf2 to the antioxidant response element, providing an adaptive survival response against H{sub 2}O{sub 2}-derived oxidative cytotoxicity. The addition of Znpp, a selective HO-1 competitive inhibitor, reduced the cytoprotective ability of luteolin, indicating the vital role of HO-1 on these effects. Luteolin also activated Akt and ERK, whereas the addition of LY294002 and U0126, the pharmacologic inhibitors of PI3K and ERK, attenuated luteolin-induced HO-1 expression and cytoprotective effect. Taken together, the above findings suggest that luteolin protects against myocardial injury and enhances cellular antioxidant defense capacity through the activation of Akt and ERK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction. -- Highlights: ► Luteolin prevents isoproterenol-induced myocardial damage.

  20. Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression

    International Nuclear Information System (INIS)

    Sun, Gui-bo; Sun, Xiao; Wang, Min; Ye, Jing-xue; Si, Jian-yong; Xu, Hui-bo; Meng, Xiang-bao; Qin, Meng; Sun, Jing; Wang, Hong-wei; Sun, Xiao-bo

    2012-01-01

    Luteolin, a flavonoid that exhibits antioxidative properties, exerts myocardial protection effects. However, the underlying molecular mechanisms are not yet fully understood. To investigate the effects of luteolin on myocardial injury protection and its possible mechanisms, a myocardial injury model was established with intragastric administration of 4 mg/kg isoproterenol (ISO) to male Sprague–Dawley rats (200–220 g) daily for 2 days. We found that pretreatment of luteolin (160, 80 and 40 mg/kg, i.g., respectively) daily for 15 days can prevent ISO-induced myocardial damage, including decrease of serum cardiac enzymes, improvement electrocardiography and heart vacuolation. Luteolin also improved the free radical scavenging and antioxidant potential, suggesting one possible mechanism of luteolin-induced cardio-protection is mediated by blocking the oxidative stress. To clarify the mechanisms, we performed the in vitro study by hydrogen peroxide (H 2 O 2 )-induced cytotoxicty model in H9c2 cells. We found that luteolin pretreatment prevented apoptosis, increased the expression of heme oxygenase-1 (HO-1), and enhanced the binding of Nrf2 to the antioxidant response element, providing an adaptive survival response against H 2 O 2 -derived oxidative cytotoxicity. The addition of Znpp, a selective HO-1 competitive inhibitor, reduced the cytoprotective ability of luteolin, indicating the vital role of HO-1 on these effects. Luteolin also activated Akt and ERK, whereas the addition of LY294002 and U0126, the pharmacologic inhibitors of PI3K and ERK, attenuated luteolin-induced HO-1 expression and cytoprotective effect. Taken together, the above findings suggest that luteolin protects against myocardial injury and enhances cellular antioxidant defense capacity through the activation of Akt and ERK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction. -- Highlights: ► Luteolin prevents isoproterenol-induced myocardial damage. ► Luteolin

  1. Heme oxygenase-1 prevents non-alcoholic steatohepatitis through suppressing hepatocyte apoptosis in mice

    Directory of Open Access Journals (Sweden)

    Fu Na

    2010-10-01

    Full Text Available Abstract Objective Heme oxygenase-1 (HO-1, the rate-limiting enzyme in heme catabolism, has been reported to have potential antioxidant properties. However, the role of HO-1 on hepatocyte apoptosis remains unclear. We aim to elucidate the effects of HO-1 on oxidative stress related hepatocellular apoptosis in nutritional steatohepatitis in mice. Methods C57BL/6J mice were fed with methionine-choline deficient (MCD diet for four weeks to induce hepatic steatohepatitis. HO-1 chemical inducer (hemin, HO-1 chemical inhibitor zinc protoporphyrin IX (ZnPP-IX and/or adenovirus carrying HO-1 gene (Ad-HO-1 were administered to mice, respectively. Hepatocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL assay, the mRNA and protein expression of apoptosis related genes were assayed by quantitative real-time PCR and Western blot. Results Hepatocyte signs of oxidative related apoptotic injury were presented in mice fed with MCD diet for 4 weeks. Induction of HO-1 by hemin or Ad-HO-1 significantly attenuated the severity of liver histology, which was associated with decreased hepatic lipid peroxidation content, reduced number of apoptotic cells by TUNEL staining, down-regulated expression of pro-apoptosis related genes including Fas/FasL, Bax, caspase-3 and caspase-9, reduced expression of cytochrome p4502E1 (CYP2E1, inhibited cytochrome c (Cyt-c release, and up-regulated expression of anti-apoptosis gene Bcl-2. Whereas, inhibition of HO-1 by ZnPP-IX caused oxidative stress related hepatic injury, which concomitant with increased number of TUNEL positive cells and up-regulated expression of pro-apoptosis related genes. Conclusions The present study provided evidences for the protective role of HO-1 in preventing nutritional steatohepatitis through suppressing hepatocyte apoptosis in mice.

  2. Beneficial effect of prolonged heme oxygenase 1 activation in a rat model of chronic heart failure

    Directory of Open Access Journals (Sweden)

    Massimo Collino

    2013-07-01

    We and others have previously demonstrated that heme oxygenase 1 (HO-1 induction by acute hemin administration exerts cardioprotective effects. Here, we developed a rat model of heart failure to investigate whether a long-term induction of HO-1 by chronic hemin administration exerted protective effects. Sprague Dawley rats that underwent permanent ligation of the left coronary artery were closely monitored for survival rate analysis and sacrificed on day 28 post-operation. Administration of hemin (4 mg/kg body weight every other day for 4 weeks induced a massive increase in HO-1 expression and activity, as shown by the increased levels of the two main metabolic products of heme degradation, bilirubin and carbon monoxide (CO. These effects were associated with significant improvement in survival and reduced the extension of myocardial damage. The ischemic hearts of the hemin-treated animals displayed reduced oxidative stress and apoptosis in comparison with the non-treated rats, as shown by the decreased levels of lipid peroxidation, free-radical-induced DNA damage, caspase-3 activity and Bax expression. Besides, chronic HO-1 activation suppressed the elevated levels of myeloperoxidase (MPO activity, interleukin 1β (IL-1β production and tumor necrosis factor-α (TNFα production that were evoked by the ischemic injury, and increased the plasma level of the anti-inflammatory cytokine IL-10. Interestingly, HO-1 inhibitor zinc protoporphyrin IX (ZnPP-IX; 1 mg/kg lowered bilirubin and CO concentrations to control values, thus abolishing all the cardioprotective effects of hemin. In conclusion, the results demonstrate that chronic HO-1 activation by prolonged administration of hemin improves survival and exerts protective effects in a rat model of myocardial ischemia by exerting a potent antioxidant activity and disrupting multiple levels of the apoptotic and inflammatory cascade.

  3. Heme-Oxygenase-1 Expression Contributes to the Immunoregulation Induced by Fasciola hepatica and Promotes Infection

    Science.gov (United States)

    Carasi, Paula; Rodríguez, Ernesto; da Costa, Valeria; Frigerio, Sofía; Brossard, Natalie; Noya, Verónica; Robello, Carlos; Anegón, Ignacio; Freire, Teresa

    2017-01-01

    Fasciola hepatica, also known as the liver fluke, is a trematode that infects livestock and humans causing fasciolosis, a zoonotic disease of increasing importance due to its worldwide distribution and high economic losses. This parasite immunoregulates the host immune system by inducing a strong Th2 and regulatory T immune response by immunomodulating dendritic cell (DC) maturation and alternative activation of macrophages. In this paper, we show that F. hepatica infection in mice induces the upregulation of heme-oxygenase-1 (HO-1), the rate-limiting enzyme in the catabolism of free heme that regulates the host inflammatory response. We show and characterize two different populations of antigen presenting cells that express HO-1 during infection in the peritoneum of infected animals. Cells that expressed high levels of HO-1 expressed intermediate levels of F4/80 but high expression of CD11c, CD38, TGFβ, and IL-10 suggesting that they correspond to regulatory DCs. On the other hand, cells expressing intermediate levels of HO-1 expressed high levels of F4/80, CD68, Ly6C, and FIZZ-1, indicating that they might correspond to alternatively activated macrophages. Furthermore, the pharmacological induction of HO-1 with the synthetic metalloporphyrin CoPP promoted F. hepatica infection increasing the clinical signs associated with the disease. In contrast, treatment with the HO-1 inhibitor SnPP protected mice from parasite infection, indicating that HO-1 plays an essential role during F. hepatica infection. Finally, HO-1 expression during F. hepatica infection was associated with TGFβ and IL-10 levels in liver and peritoneum, suggesting that HO-1 controls the expression of these immunoregulatory cytokines during infection favoring parasite survival in the host. These results contribute to the elucidation of the immunoregulatory mechanisms induced by F. hepatica in the host and provide alternative checkpoints to control fasciolosis. PMID:28798750

  4. Heme-Oxygenase-1 Expression Contributes to the Immunoregulation Induced by Fasciola hepatica and Promotes Infection

    Directory of Open Access Journals (Sweden)

    Paula Carasi

    2017-07-01

    Full Text Available Fasciola hepatica, also known as the liver fluke, is a trematode that infects livestock and humans causing fasciolosis, a zoonotic disease of increasing importance due to its worldwide distribution and high economic losses. This parasite immunoregulates the host immune system by inducing a strong Th2 and regulatory T immune response by immunomodulating dendritic cell (DC maturation and alternative activation of macrophages. In this paper, we show that F. hepatica infection in mice induces the upregulation of heme-oxygenase-1 (HO-1, the rate-limiting enzyme in the catabolism of free heme that regulates the host inflammatory response. We show and characterize two different populations of antigen presenting cells that express HO-1 during infection in the peritoneum of infected animals. Cells that expressed high levels of HO-1 expressed intermediate levels of F4/80 but high expression of CD11c, CD38, TGFβ, and IL-10 suggesting that they correspond to regulatory DCs. On the other hand, cells expressing intermediate levels of HO-1 expressed high levels of F4/80, CD68, Ly6C, and FIZZ-1, indicating that they might correspond to alternatively activated macrophages. Furthermore, the pharmacological induction of HO-1 with the synthetic metalloporphyrin CoPP promoted F. hepatica infection increasing the clinical signs associated with the disease. In contrast, treatment with the HO-1 inhibitor SnPP protected mice from parasite infection, indicating that HO-1 plays an essential role during F. hepatica infection. Finally, HO-1 expression during F. hepatica infection was associated with TGFβ and IL-10 levels in liver and peritoneum, suggesting that HO-1 controls the expression of these immunoregulatory cytokines during infection favoring parasite survival in the host. These results contribute to the elucidation of the immunoregulatory mechanisms induced by F. hepatica in the host and provide alternative checkpoints to control fasciolosis.

  5. Simvastatin ameliorates established pulmonary hypertension through a heme oxygenase-1 dependent pathway in rats

    Directory of Open Access Journals (Sweden)

    Lee Yung-Chie

    2009-05-01

    Full Text Available Abstract Background Simvastatin has been shown to ameliorate pulmonary hypertension by several mechanisms in experimental animal models. In this study, we hypothesized that the major benefits of simvastatin in pulmonary hypertension occur via the heme oxygenase-1 pathway. Methods Simvastatin (10 mg/kgw/day was tested in two rat models of pulmonary hypertension (PH: monocrotaline administration and chronic hypoxia. The hemodynamic changes, right heart hypertrophy, HO-1 protein expression, and heme oxygenase (HO activity in lungs were measured in both models with and without simvastatin treatment. Tin-protoporphyrin (SnPP, 20 μmol/kg w/day, a potent inhibitor of HO activity, was used to confirm the role of HO-1. Results Simvastatin significantly ameliorated pulmonary arterial hypertension from 38.0 ± 2.2 mm Hg to 22.1 ± 1.9 mm Hg in monocrotaline-induced PH (MCT-PH and from 33.3 ± 0.8 mm Hg to 17.5 ± 2.9 mm Hg in chronic hypoxia-induced PH (CH-PH rats. The severity of right ventricular hypertrophy was significantly reduced by simvastatin in MCT-PH and CH-PH rats. Co-administration with SnPP abolished the benefits of simvastatin. Simvastatin significantly increased HO-1 protein expression and HO activity in the lungs of rats with PH; however co-administration of SnPP reduced HO-1 activity only. These observations indicate that the simvastatin-induced amelioration of pulmonary hypertension was directly related to the activity of HO-1, rather than its expression. Conclusion This study demonstrated that simvastatin treatment ameliorates established pulmonary hypertension primarily through an HO-1-dependent pathway.

  6. Pharmacological Induction of Heme Oxygenase-1 Impairs Nuclear Accumulation of Herpes Simplex Virus Capsids upon Infection

    Directory of Open Access Journals (Sweden)

    Francisco J. Ibáñez

    2017-10-01

    Full Text Available Heme oxygenase-1 (HO-1 is an inducible enzyme that is expressed in response to physical and chemical stresses, such as ultraviolet radiation, hyperthermia, hypoxia, reactive oxygen species (ROS, as well as cytokines, among others. Its activity can be positively modulated by cobalt protoporphyrin (CoPP and negatively by tin protoporphirin (SnPP. Once induced, HO-1 degrades iron-containing heme into ferrous iron (Fe2+, carbon monoxide (CO and biliverdin. Importantly, numerous products of HO-1 are cytoprotective with anti-apoptotic, anti-oxidant, anti-inflammatory, and anti-cancer effects. The products of HO-1 also display antiviral properties against several viruses, such as the human immunodeficiency virus (HIV, influenza, hepatitis B, hepatitis C, and Ebola virus. Here, we sought to assess the effect of modulating HO-1 activity over herpes simplex virus type 2 (HSV-2 infection in epithelial cells and neurons. There are no vaccines against HSV-2 and treatment options are scarce in the immunosuppressed, in which drug-resistant variants emerge. By using HSV strains that encode structural and non-structural forms of the green fluorescent protein (GFP, we found that pharmacological induction of HO-1 activity with CoPP significantly decreases virus plaque formation and the expression of virus-encoded genes in epithelial cells as determined by flow cytometry and western blot assays. CoPP treatment did not affect virus binding to the cell surface or entry into the cytoplasm, but rather downstream events in the virus infection cycle. Furthermore, we observed that treating cells with a CO-releasing molecule (CORM-2 recapitulated some of the anti-HSV effects elicited by CoPP. Taken together, these findings indicate that HO-1 activity interferes with the replication cycle of HSV and that its antiviral effects can be recapitulated by CO.

  7. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia

    Science.gov (United States)

    Minamino, Tohru; Christou, Helen; Hsieh, Chung-Ming; Liu, Yuxiang; Dhawan, Vijender; Abraham, Nader G.; Perrella, Mark A.; Mitsialis, S. Alex; Kourembanas, Stella

    2001-07-01

    Chronic hypoxia causes pulmonary hypertension with smooth muscle cell proliferation and matrix deposition in the wall of the pulmonary arterioles. We demonstrate here that hypoxia also induces a pronounced inflammation in the lung before the structural changes of the vessel wall. The proinflammatory action of hypoxia is mediated by the induction of distinct cytokines and chemokines and is independent of tumor necrosis factor- signaling. We have previously proposed a crucial role for heme oxygenase-1 (HO-1) in protecting cardiomyocytes from hypoxic stress, and potent anti-inflammatory properties of HO-1 have been reported in models of tissue injury. We thus established transgenic mice that constitutively express HO-1 in the lung and exposed them to chronic hypoxia. HO-1 transgenic mice were protected from the development of both pulmonary inflammation as well as hypertension and vessel wall hypertrophy induced by hypoxia. Significantly, the hypoxic induction of proinflammatory cytokines and chemokines was suppressed in HO-1 transgenic mice. Our findings suggest an important protective function of enzymatic products of HO-1 activity as inhibitors of hypoxia-induced vasoconstrictive and proinflammatory pathways.

  8. Modulation of Melanogenesis by Heme Oxygenase-1 via p53 in Normal Human Melanocytes.

    Science.gov (United States)

    Lim, Hee-Sun; Jin, Suna; Yun, Sook Jung

    2016-01-01

    As a key regulator of melanogenesis, p53 controls microphthalmia-associated transcription factor (MITF) and tyrosinase expression. The anti-oxidant enzyme heme oxygenase-1 (HO-1) is induced by various forms of cellular stress and diverse oxidative stimuli. However, few studies have examined the role of HO-1 in melanogenesis. Therefore, the aim of this study was to determine the role of HO-1 in melanogenesis and the mechanism underlying this relationship. Cultures of normal human melanocytes were treated with the HO-1 inducer cobalt protoporphyrin (CoPP) or the HO-1 inhibitor zinc protoporphyrin (ZnPP). We then measured the melanin content of the cells. Additional analyses consisted of Western blotting and RT-PCR. The results showed that the cellular melanin content was increased by CoPP and decreased by ZnPP. The Western blot and RT-PCR analyses showed that CoPP increased p53, MITF and tyrosinase levels, and ZnPP reduced all of them. The knockdown of p53 by siRNA transfection was followed by large decreases in the expression levels of p53, MITF and tyrosinase at 3 h of transfection. The presence of CoPP or ZnPP had no significant increased or decreased effects on MITF and tyrosinase levels from 15 h in the siRNA transfectants. Our results suggest that HO-1 modulates melanogenesis in human melanocytes via a p53-dependent pathway.

  9. Zinc Protoporphyrin Upregulates Heme Oxygenase-1 in PC-3 Cells via the Stress Response Pathway

    Directory of Open Access Journals (Sweden)

    Simon C. M. Kwok

    2013-01-01

    Full Text Available Zinc protoporphyrin IX (ZnPP, a naturally occurring molecule formed in iron deficiency or lead poisoning, is a potent competitive inhibitor of heme oxygenase-1 (HO-1. It also regulates expression of HO-1 at the transcriptional level. However, the effect of ZnPP on HO-1 expression is controversial. It was shown to induce HO-1 expression in some cells, but suppress it in others. The objective of this study is to investigate the effect of ZnPP on HO-1 expression in prostate cancer PC-3 cells. Incubation of PC-3 cells with 10 μM ZnPP for 4 h showed only a slight induction of HO-1 mRNA and protein, but the induction was high after 16 h and was maintained through 48 h of incubation. Of all the known responsive elements in the HO-1 promoter, ZnPP activated mainly the stress response elements. Of the various protein kinase inhibitors and antioxidant tested, only Ro 31-8220 abrogated ZnPP-induced HO-1 expression, suggesting that activation of HO-1 gene by ZnPP may involve protein kinase C (PKC. The involvement of PKC α, β, δ, η, θ, and ζ isoforms was ruled out by the use of specific inhibitors. The isoform of PKC involved and participation of other transcription factors remain to be studied.

  10. Crucial role of heme oxygenase-1 on the sensitivity of cholangiocarcinoma cells to chemotherapeutic agents.

    Science.gov (United States)

    Kongpetch, Sarinya; Kukongviriyapan, Veerapol; Prawan, Auemduan; Senggunprai, Laddawan; Kukongviriyapan, Upa; Buranrat, Benjaporn

    2012-01-01

    Cancer cells acquire drug resistance via various mechanisms including enhanced cellular cytoprotective and antioxidant activities. Heme oxygenase-1 (HO-1) is a key enzyme exerting potent cytoprotection, cell proliferation and drug resistance. We aimed to investigate roles of HO-1 in human cholangiocarcinoma (CCA) cells for cytoprotection against chemotherapeutic agents. KKU-100 and KKU-M214 CCA cell lines with high and low HO-1 expression levels, respectively, were used to evaluate the sensitivity to chemotherapeutic agents, gemcitabine (Gem) and doxorubicin. Inhibition of HO-1 by zinc protoporphyrin IX (ZnPP) sensitized both cell types to the cytotoxicity of chemotherapeutic agents. HO-1 gene silencing by siRNA validated the cytoprotective effect of HO-1 on CCA cells against Gem. Induction of HO-1 protein expression by stannous chloride enhanced the cytoprotection and suppression of apoptosis caused by anticancer agents. The sensitizing effect of ZnPP was associated with increased ROS formation and loss of mitochondrial transmembrane potential, while Gem alone did not show any effects. A ROS scavenger, Tempol, abolished the sensitizing effect of ZnPP on Gem. Combination of ZnPP and Gem enhanced the release of cytochrome c and increased p21 levels. The results show that HO-1 played a critical role in cytoprotection in CCA cells against chemotherapeutic agents. Targeted inhibition of HO-1 may be a strategy to overcome drug resistance in chemotherapy of bile duct cancer.

  11. Inhibition of heme oxygenase-1 enhances the cytotoxic effect of gemcitabine in urothelial cancer cells.

    Science.gov (United States)

    Miyake, Makito; Fujimoto, Kiyohide; Anai, Satoshi; Ohnishi, Sayuri; Nakai, Yasushi; Inoue, Takeshi; Matsumura, Yoshiaki; Tomioka, Atsushi; Ikeda, Tomohiro; Okajima, Eijiro; Tanaka, Nobumichi; Hirao, Yoshihiko

    2010-06-01

    Elevated heme oxygenase-1 (HO-1) is associated with resistance to chemo- and radiotherapy through anti-apoptotic function. The present study evaluated whether the HO-1 inhibitor, zinc protoporphyrin IX (ZnPP), enhances the cytotoxic effect of gemcitabine in urothelial carcinoma (UC). The in vitro cytotoxic effect of combination treatment of gemcitabine and ZnPP on UC cells was examined. The in vivo growth inhibitory effects of intraperitoneal administration of gemcitabine and/or ZnPP on mouse subcutaneous tumours were examined. The apoptotic changes were analysed with the detection of DNA fragmentation and cleaved caspase-3. HO-1 was up-regulated by both gemcitabine and irradiation treatment in vitro. ZnPP sensitised the UC cells to both therapies. Enhanced apoptosis was induced by the ZnPP combined with gemicitabine. ZnPP enhanced the antitumour effect of gemcitabine in vivo along with decreased numbers of proliferating cells and increased numbers of apoptotic cells. These findings suggest that ZnPP combined with gemcitabine or irradiation therapy may be an effective therapeutic modality for UC patients.

  12. Zinc Protoporphyrin Upregulates Heme Oxygenase-1 in PC-3 Cells via the Stress Response Pathway.

    Science.gov (United States)

    Kwok, Simon C M

    2013-01-01

    Zinc protoporphyrin IX (ZnPP), a naturally occurring molecule formed in iron deficiency or lead poisoning, is a potent competitive inhibitor of heme oxygenase-1 (HO-1). It also regulates expression of HO-1 at the transcriptional level. However, the effect of ZnPP on HO-1 expression is controversial. It was shown to induce HO-1 expression in some cells, but suppress it in others. The objective of this study is to investigate the effect of ZnPP on HO-1 expression in prostate cancer PC-3 cells. Incubation of PC-3 cells with 10  μ M ZnPP for 4 h showed only a slight induction of HO-1 mRNA and protein, but the induction was high after 16 h and was maintained through 48 h of incubation. Of all the known responsive elements in the HO-1 promoter, ZnPP activated mainly the stress response elements. Of the various protein kinase inhibitors and antioxidant tested, only Ro 31-8220 abrogated ZnPP-induced HO-1 expression, suggesting that activation of HO-1 gene by ZnPP may involve protein kinase C (PKC). The involvement of PKC α , β , δ , η , θ , and ζ isoforms was ruled out by the use of specific inhibitors. The isoform of PKC involved and participation of other transcription factors remain to be studied.

  13. Antagonism of proteasome inhibitor-induced heme oxygenase-1 expression by PINK1 mutation.

    Directory of Open Access Journals (Sweden)

    Xiang-Jun Sheng

    Full Text Available PTEN-induced putative kinase 1 (PINK1 is an integral protein in the mitochondrial membrane and maintains mitochondrial fidelity. Pathogenic mutations in PINK1 have been identified as a cause of early-onset autosomal recessive familial Parkinson's disease (PD. The ubiquitin proteasome pathway is associated with neurodegenerative diseases. In this study, we investigated whether mutations of PINK1 affects the cellular stress response following proteasome inhibition. Administration of MG132, a peptide aldehyde proteasome inhibitor, significantly increased the expression of heme oxygenase-1 (HO-1 in rat dopaminergic neurons in the substantia nigra and in the SH-SY5Y neuronal cell line. The induction of HO-1 expression by proteasome inhibition was reduced in PINK1 G309D mutant cells. MG132 increased the levels of HO-1 through the Akt, p38, and Nrf2 signaling pathways. Compared with the cells expressing WT-PINK1, the phosphorylation of Akt and p38 was lower in those cells expressing the PINK1 G309D mutant, which resulted in the inhibition of the nuclear translocation of Nrf2. Furthermore, MG132-induced neuronal death was enhanced by the PINK1 G309D mutation. In this study, we demonstrated that the G309D mutation impairs the neuroprotective function of PINK1 following proteasome inhibition, which may be related to the pathogenesis of PD.

  14. Molecular mechanism and functional consequences of lansoprazole-mediated heme oxygenase-1 induction

    Science.gov (United States)

    Schulz-Geske, Stephanie; Erdmann, Kati; Wong, Ronald J; Stevenson, David K; Schröder, Henning; Grosser, Nina

    2009-01-01

    AIM: To investigate the molecular mechanism and functional consequences of heme oxygenase-1 (HO-1) activation by lansoprazole in endothelial cells and macrophages. METHODS: Expression of HO-1 mRNA was analyzed by Northern blotting. Western blotting was used to determine the HO-1 and ferritin protein levels. NADPH-dependent reactive oxygen species (ROS) formation was measured with lucigenin-enhanced chemiluminescence. HO-1 promoter activity in mouse fibroblasts, stably transfected with a 15-kb HO-1 gene that drives expression of the reporter gene luciferase, was assessed using in vivo bioluminescence imaging. RESULTS: Lansoprazole increased HO-1 mRNA levels in endothelial cells and HO-1 protein levels in macrophages. In addition, lansoprazole-induced ferritin protein levels in both cell systems. Moreover, induction of the antioxidant proteins HO-1 and ferritin by lansoprazole was followed by a decrease in NADPH-mediated ROS formation. The radical scavenging properties of lansoprazole were diminished in the presence of the HO inhibitor, chromium mesoporphyrin IX. Induction of HO-1 gene expression by lansoprazole was not related to oxidative stress or to the activation of the mitogen-activated protein kinase pathway. However, the phosphatidylinositol 3-kinase inhibitor LY294002 showed a concentration-dependent inhibition of HO-1 mRNA and promoter activity. CONCLUSION: Activation of HO-1 and ferritin may account for the gastric protection of lansoprazole and is dependent on a pathway blocked by LY294002. PMID:19764090

  15. Induction of heme oxygenase-1 by chamomile protects murine macrophages against oxidative stress.

    Science.gov (United States)

    Bhaskaran, Natarajan; Shukla, Sanjeev; Kanwal, Rajnee; Srivastava, Janmejai K; Gupta, Sanjay

    2012-06-27

    Protection of cells from oxidative insult may be possible through direct scavenging of reactive oxygen species, or through stimulation of intracellular antioxidant defense mechanisms by induction of antioxidant gene expression. In this study we investigated the cytoprotective effect of chamomile and elucidated the underlying mechanisms. The cytoprotective effect of chamomile was examined on H(2)O(2)-induced cellular stress in RAW 264.7 murine macrophages. RAW 264.7 murine macrophages treated with chamomile were protected from cell death caused by H(2)O(2). Treatment with 50μM H(2)O(2) for 6h caused significant increase in cellular stress accompanied by cell death in RAW 264.7 macrophages. Pretreatment with chamomile at 10-20μg/mL for 16h followed by H(2)O(2) treatment protected the macrophages against cell death. Chamomile exposure significantly increased the expression of antioxidant enzymes viz. heme oxygenase-1 (HO-1), peroxiredoxin-1 (Prx-1), and thioredoxin-1 (Trx-1) in a dose-dependent manner, compared with their respective controls. Chamomile increased nuclear translocation of Nrf2 with increased phosphorylated Nrf2 levels, and binding to the antioxidant response element in the nucleus. These molecular findings for the first time provide insights into the mechanisms underlying the induction of phase 2 enzymes through the Keap1-Nrf2 signaling pathway by chamomile, and provide evidence that chamomile possesses antioxidant and cytoprotective properties. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Myeloid Heme Oxygenase-1 Regulates the Acute Inflammatory Response to Zymosan in the Mouse Air Pouch

    Directory of Open Access Journals (Sweden)

    Rita Brines

    2018-01-01

    Full Text Available Heme oxygenase-1 (HO-1 is induced by many stimuli to modulate the activation and function of different cell types during innate immune responses. Although HO-1 has shown anti-inflammatory effects in different systems, there are few data on the contribution of myeloid HO-1 and its role in inflammatory processes is not well understood. To address this point, we have used HO-1M-KO mice with myeloid-restricted deletion of HO-1 to specifically investigate its influence on the acute inflammatory response to zymosan in vivo. In the mouse air pouch model, we have shown an exacerbated inflammation in HO-1M-KO mice with increased neutrophil infiltration accompanied by high levels of inflammatory mediators such as interleukin-1β, tumor necrosis factor-α, and prostaglandin E2. The expression of the degradative enzyme matrix metalloproteinase-3 (MMP-3 was also enhanced. In addition, we observed higher levels of serum MMP-3 in HO-1M-KO mice compared with control mice, suggesting the presence of systemic inflammation. Altogether, these findings demonstrate that myeloid HO-1 plays an anti-inflammatory role in the acute response to zymosan in vivo and suggest the interest of this target to regulate inflammatory processes.

  17. Effects of Remote Ischemic Preconditioning on Heme Oxygenase-1 Expression and Cutaneous Wound Repair

    Directory of Open Access Journals (Sweden)

    Niels A. J. Cremers

    2017-02-01

    Full Text Available Skin wounds may lead to scar formation and impaired functionality. Remote ischemic preconditioning (RIPC can induce the anti-inflammatory enzyme heme oxygenase-1 (HO-1 and protect against tissue injury. We aim to improve cutaneous wound repair by RIPC treatment via induction of HO-1. RIPC was applied to HO-1-luc transgenic mice and HO-1 promoter activity and mRNA expression in skin and several other organs were determined in real-time. In parallel, RIPC was applied directly or 24h prior to excisional wounding in mice to investigate the early and late protective effects of RIPC on cutaneous wound repair, respectively. HO-1 promoter activity was significantly induced on the dorsal side and locally in the kidneys following RIPC treatment. Next, we investigated the origin of this RIPC-induced HO-1 promoter activity and demonstrated increased mRNA in the ligated muscle, heart and kidneys, but not in the skin. RIPC did not change HO-1 mRNA and protein levels in the wound 7 days after cutaneous injury. Both early and late RIPC did not accelerate wound closure nor affect collagen deposition. RIPC induces HO-1 expression in several organs, but not the skin, and did not improve excisional wound repair, suggesting that the skin is insensitive to RIPC-mediated protection.

  18. Effects of apoE genotype on macrophage inflammation and heme oxygenase-1 expression.

    Science.gov (United States)

    Jofre-Monseny, Laia; Loboda, Agnieszka; Wagner, Anika E; Huebbe, Patricia; Boesch-Saadatmandi, Christine; Jozkowicz, Alicja; Minihane, Anne-Marie; Dulak, Jozef; Rimbach, Gerald

    2007-05-25

    In order to gain a more comprehensive understanding of the aetiology of apolipoprotein E4 genotype-cardiovascular disease (CVD) associations, the impact of the apoE genotype on the macrophage inflammatory response was examined. The murine monocyte-macrophage cell line (RAW 264.7) stably transfected to produce equal amounts of human apoE3 or apoE4 was used. Following LPS stimulation, apoE4-macrophages showed higher and lower concentrations of tumour necrosis factor alpha (pro-inflammatory) and interleukin 10 (anti-inflammatory), respectively, both at mRNA and protein levels. In addition, increased expression of heme oxygenase-1 (a stress-induced anti-inflammatory protein) was observed in the apoE4-cells. Furthermore, in apoE4-macrophages, an enhanced transactivation of the key redox sensitive transcription factor NF-kappaB was shown. Current data indicate that apoE4 macrophages have an altered inflammatory response, which may contribute to the higher CVD risk observed in apoE4 carriers.

  19. Crucial role of heme oxygenase-1 on the sensitivity of cholangiocarcinoma cells to chemotherapeutic agents.

    Directory of Open Access Journals (Sweden)

    Sarinya Kongpetch

    Full Text Available Cancer cells acquire drug resistance via various mechanisms including enhanced cellular cytoprotective and antioxidant activities. Heme oxygenase-1 (HO-1 is a key enzyme exerting potent cytoprotection, cell proliferation and drug resistance. We aimed to investigate roles of HO-1 in human cholangiocarcinoma (CCA cells for cytoprotection against chemotherapeutic agents. KKU-100 and KKU-M214 CCA cell lines with high and low HO-1 expression levels, respectively, were used to evaluate the sensitivity to chemotherapeutic agents, gemcitabine (Gem and doxorubicin. Inhibition of HO-1 by zinc protoporphyrin IX (ZnPP sensitized both cell types to the cytotoxicity of chemotherapeutic agents. HO-1 gene silencing by siRNA validated the cytoprotective effect of HO-1 on CCA cells against Gem. Induction of HO-1 protein expression by stannous chloride enhanced the cytoprotection and suppression of apoptosis caused by anticancer agents. The sensitizing effect of ZnPP was associated with increased ROS formation and loss of mitochondrial transmembrane potential, while Gem alone did not show any effects. A ROS scavenger, Tempol, abolished the sensitizing effect of ZnPP on Gem. Combination of ZnPP and Gem enhanced the release of cytochrome c and increased p21 levels. The results show that HO-1 played a critical role in cytoprotection in CCA cells against chemotherapeutic agents. Targeted inhibition of HO-1 may be a strategy to overcome drug resistance in chemotherapy of bile duct cancer.

  20. Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury

    Science.gov (United States)

    Amersi, Farin; Buelow, Roland; Kato, Hirohisa; Ke, Bibo; Coito, Ana J.; Shen, Xiu-Da; Zhao, Delai; Zaky, Joseph; Melinek, Judy; Lassman, Charles R.; Kolls, Jay K.; Alam, J.; Ritter, Thomas; Volk, Hans-Dieter; Farmer, Douglas G.; Ghobrial, Rafik M.; Busuttil, Ronald W.; Kupiec-Weglinski, Jerzy W.

    1999-01-01

    We examined the effects of upregulation of heme oxygenase-1 (HO-1) in steatotic rat liver models of ex vivo cold ischemia/reperfusion (I/R) injury. In the model of ischemia/isolated perfusion, treatment of genetically obese Zucker rats with the HO-1 inducer cobalt protoporphyrin (CoPP) or with adenoviral HO-1 (Ad-HO-1) significantly improved portal venous blood flow, increased bile production, and decreased hepatocyte injury. Unlike in untreated rats or those pretreated with the HO-1 inhibitor zinc protoporphyrin (ZnPP), upregulation of HO-1 by Western blots correlated with amelioration of histologic features of I/R injury. Adjunctive infusion of ZnPP abrogated the beneficial effects of Ad-HO-1 gene transfer, documenting the direct involvement of HO-1 in protection against I/R injury. Following cold ischemia/isotransplantation, HO-1 overexpression extended animal survival from 40% in untreated controls to about 80% after CoPP or Ad-HO-1 therapy. This effect correlated with preserved hepatic architecture, improved liver function, and depressed infiltration by T cells and macrophages. Hence, CoPP- or gene therapy–induced HO-1 prevented I/R injury in steatotic rat livers. These findings provide the rationale for refined new treatments that should increase the supply of usable donor livers and ultimately improve the overall success of liver transplantation. J. Clin. Invest. 104:1631–1639 (1999). PMID:10587527

  1. Brain death induces renal expression of heme oxygenase-1 and heat shock protein 70

    Directory of Open Access Journals (Sweden)

    van Dullemen Leon FA

    2013-01-01

    Full Text Available Abstract Background Kidneys derived from brain dead donors have lower graft survival and higher graft-function loss compared to their living donor counterpart. Heat Shock Proteins (HSP are a large family of stress proteins involved in maintaining cell homeostasis. We studied the role of stress-inducible genes Heme Oxygenase-1 (HO-1, HSP27, HSP40, and HSP70 in the kidney following a 4 hour period of brain death. Methods Brain death was induced in rats (n=6 by inflating a balloon catheter in the epidural space. Kidneys were analysed for HSPs using RT-PCR, Western blotting, and immunohistochemistry. Results RT-PCR data showed a significant increase in gene expression for HO-1 and HSP70 in kidneys of brain dead rats. Western blotting revealed a massive increase in HO-1 protein in brain dead rat kidneys. Immunohistochemistry confirmed these findings, showing extensive HO-1 protein expression in the renal cortical tubules of brain dead rats. HSP70 protein was predominantly increased in renal distal tubules of brain dead rats treated for hypotension. Conclusion Renal stress caused by brain death induces expression of the cytoprotective genes HO-1 and HSP70, but not of HSP27 and HSP40. The upregulation of these cytoprotective genes indicate that renal damage occurs during brain death, and could be part of a protective or recuperative mechanism induced by brain death-associated stress.

  2. Critical role of heme oxygenase-1 in Foxp3-mediated immune suppression

    International Nuclear Information System (INIS)

    Choi, Byung-Min; Pae, Hyun-Ock; Jeong, Young-Ran; Kim, Young-Myeong; Chung, Hun-Taeg

    2005-01-01

    Foxp3, which encodes the transcription factor scurfin, is indispensable for the development and function of CD4 + CD25 + regulatory T cells (Treg). Recent data suggest conversion of peripheral CD4 + CD25 - naive T cells to CD4 + CD25 + Treg by acquisition of Foxp3 through costimulation with TCR and TGF-β or forced expression of the gene. One critical question is how Foxp3 causes T cells to become regulatory. In the present work, we demonstrate that Foxp3 can induce heme oxygenase-1 (HO-1) expression and subsequently such regulatory phenotypes as the suppression of nontransfected cells in a cell-cell contact-dependent manner as well as impaired proliferation and production of cytokines upon stimulation in Jurkat T cells. Moreover, we confirm the expression of both Foxp3 and HO-1 in peripheral CD4 + CD25 + Treg and suppressive function of the cells are relieved by the inhibition of HO-1 activity. In summary, we demonstrate that Foxp3 induces HO-1 expression and HO-1 engages in Foxp3-mediated immune suppression

  3. Nicotinic receptor activation by epibatidine induces heme oxygenase-1 and protects chromaffin cells against oxidative stress.

    Science.gov (United States)

    Egea, Javier; Rosa, Angelo O; Cuadrado, Antonio; García, Antonio G; López, Manuela G

    2007-09-01

    Activation of neuronal nicotinic acetylcholine receptors (nAChR) provides neuroprotection against different toxic stimuli that often lead to overproduction of reactive oxygen species (ROS) and cell death. ROS production has been related with disease progression in several neurodegenerative pathologies such as Alzheimer's or Parkinson's diseases. In this context, we investigated here if the exposure of bovine chromaffin cells to the potent nAChR agonist epibatidine protected against rotenone (30 micromol/L) plus oligomycin (10 micromol/L) (rot/oligo) toxicity, an in vitro model of mitochondrial ROS production. Epibatidine induced a concentration- and time-dependent protection, which was maximal at 3 mumol/L after 24 h. Pre-incubation with dantrolene (100 micromol/L) (a blocker of the ryanodine receptor channel), chelerythrine (1 micromol/L) (a protein kinase C inhibitor), or PD98059 (50 micromol/L) (a MEK inhibitor), aborted epibatidine-elicited cytoprotection. Mitochondrial depolarization, ROS, and caspase 3 active produced by rot/oligo were also prevented by epibatidine. Epibatidine doubled the amount of heme oxygenase-1 (HO-1), a critical cell defence enzyme against oxidative stress. Furthermore, the HO-1 inhibitor Sn(IV) protoporphyrin IX dichloride reversed the epibatidine protecting effects and HO-1 inducer Co (III) protoporphyrin IX dichloride exhibited neuroprotective effects by itself. The results of this study point to HO-1 as the cytoprotective target of nAChR activation through the following pathway: endoplasmic reticulum Ca(2+)-induced Ca(2+)-release activates the protein kinase C/extracellular regulated kinase/HO-1 axis to mitigate mitochondrial depolarization and ROS production. This study provides a mechanistic insight on how nAChR activation translates into an antioxidant and antiapoptotic signal through up-regulation of HO-1.

  4. Ginkgo biloba extract neuroprotective action is dependent on heme oxygenase 1 in ischemic reperfusion brain injury.

    Science.gov (United States)

    Saleem, Sofiyan; Zhuang, Hean; Biswal, Shyam; Christen, Yves; Doré, Sylvain

    2008-12-01

    Ginkgo biloba extracts are now prescribed in several countries for their reported health benefits, particularly for medicinal properties in the brain. The standardized Ginkgo extract, EGb761, has been reported to protect neurons against oxidative stress, but the underlying mechanisms are not fully understood. To characterize the oral consumption of EGb761 in transient ischemia, we performed the middle cerebral artery occlusion (MCAO) filament model in wild-type and heme oxygenase 1 (HO-1) knockouts. Mice were pretreated for 7 days before the transient occlusion or posttreated acutely during reperfusion; then neurobehavioral scores and infarct volumes were assessed. Furthermore, primary cortical neuronal cultures were used to investigate the contribution of the antioxidant enzyme HO-1 in the EGb761-associated cytoprotection. Mice that were pretreated with EGb761 had 50.9+/-5.6% less neurological dysfunction and 48.2+/-5.3% smaller infarct volumes than vehicle-treated mice; this effect was abolished in HO-1 knockouts. In addition to the prophylactic properties of EGb761, acute posttreatment 5 minutes and 4.5 hours after reperfusion also led to significant reduction in infarct size (P<0.01). After our previous demonstration that EGb761 significantly induced HO-1 levels in a dose- and time-dependent manner in neuronal cultures, here we revealed that this de novo HO-1 induction was required for neuroprotection against free radical damage and excitotoxicity as it was significantly attenuated by the enzyme inhibitor. These results demonstrate that EGb761 could be used as a preventive or therapeutic agent in cerebral ischemia and suggest that HO-1 contributes, at least in part, to EGb761 neuroprotection.

  5. Heme oxygenase-1 modulates degeneration of the intervertebral disc after puncture in Bach 1 deficient mice.

    Science.gov (United States)

    Ohta, Ryo; Tanaka, Nobuhiro; Nakanishi, Kazuyoshi; Kamei, Naosuke; Nakamae, Toshio; Izumi, Bunichiro; Fujioka, Yuki; Ochi, Mitsuo

    2012-09-01

    Intervertebral disc degeneration is considered to be a major feature of low back pain. Furthermore, oxidative stress has been shown to be an important factor in degenerative diseases such as osteoarthritis and is considered a cause of intervertebral disc degeneration. The purpose of this study was to clarify the correlation between oxidative stress and intervertebral disc degeneration using Broad complex-Tramtrack-Bric-a-brac and cap'n'collar homology 1 deficient (Bach 1-/-) mice which highly express heme oxygenase-1 (HO-1). HO-1 protects cells from oxidative stress. Caudal discs of 12-week-old and 1-year-old mice were evaluated as age-related models. Each group and period, 5 mice (a total of 20 mice, a total of 20 discs) were evaluated as age-related model. C9-C10 caudal discs in 12-week-old Bach 1-/- and wild-type mice were punctured using a 29-gauge needle as annulus puncture model. Each group and period, 5 mice (a total of 60 mice, a total of 60 discs) were evaluated. The progress of disc degeneration was evaluated at pre-puncture, 1, 2, 4, 8 and 12 weeks post-puncture. Radiographic, histologic and immunohistologic analysis were performed to compare between Bach 1-/- and wild-type mice. In the age-related model, there were no significant differences between Bach 1-/- and wild-type mice radiologically and histologically. However, in the annulus puncture model, histological scoring revealed significant difference at 8 and 12 weeks post-puncture. The number of HO-1 positive cells was significantly greater in Bach 1-/- mice at every period. The apoptosis rate was significantly lower at 1 and 2 weeks post-puncture in Bach 1-/- mice. Oxidative stress prevention may avoid the degenerative process of the intervertebral disc after puncture, reducing the number of apoptosis cells. High HO-1 expression may also inhibit oxidative stress and delay the process of intervertebral disc degeneration.

  6. Overexpression of Heme Oxygenase-1 Prevents Renal Interstitial Inflammation and Fibrosis Induced by Unilateral Ureter Obstruction.

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    Full Text Available Renal fibrosis plays an important role in the onset and progression of chronic kidney diseases. Many studies have demonstrated that heme oxygenase-1 (HO-1 is involved in diverse biological processes as a cytoprotective molecule, including anti-inflammatory, anti-oxidant, anti-apoptotic, antiproliferative, and immunomodulatory effects. However, the mechanisms of HO-1 prevention in renal interstitial fibrosis remain unknown. In this study, HO-1 transgenic (TG mice were employed to investigate the effect of HO-1 on renal fibrosis using a unilateral ureter obstruction (UUO model and to explore the potential mechanisms. We found that HO-1 was adaptively upregulated in kidneys of both TG and wild type (WT mice after UUO. The levels of HO-1 mRNA and protein were increased in TG mice compared with WT mice under normal conditions. HO-1 expression was further enhanced after UUO and remained high during the entire experimental process. Renal interstitial fibrosis in the TG group was significantly attenuated compared with that in the WT group after UUO. Moreover, overexpression of HO-1 inhibited the loss of peritubular capillaries. In addition, UUO-induced activation and proliferation of myofibroblasts were suppressed by HO-1 overexpression. Furthermore, HO-1 restrained tubulointerstitial infiltration of macrophages and regulated the secretion of inflammatory cytokines in UUO mice. We also found that high expression of HO-1 inhibited reactivation of Wnt/β-catenin signaling, which could play a crucial role in attenuating renal fibrosis. In conclusion, these data suggest that HO-1 prevents renal tubulointerstitial fibrosis possibly by regulating the inflammatory response and Wnt/β-catenin signaling. This study provides evidence that augmentation of HO-1 levels may be a therapeutic strategy against renal interstitial fibrosis.

  7. Induction of heme oxygenase-1 protects against nutritional fibrosing steatohepatitis in mice

    Directory of Open Access Journals (Sweden)

    Kong Li

    2011-02-01

    Full Text Available Abstract Background Heme oxygenase-1 (HO-1, an antioxidant defense enzyme, has been shown to protect against oxidant-induced liver injury. However, its role on liver fibrosis remains unclear. This study aims to elucidate the effect and the mechanism of HO-1 in nutritional fibrosing steatohepatitis in mice. Methods Male C57BL/6J mice were fed with a methionine-choline deficient (MCD diet for eight weeks to induce hepatic fibrosis. HO-1 chemical inducer (hemin, HO-1 chemical inhibitor zinc protoporphyrin IX (ZnPP-IX and/or adenovirus carrying HO-1 gene (Ad-HO-1 were administered to mice, respectively. Liver injury was assessed by serum ALT, AST levels and histological examination; hepatic lipid peroxides levels were determined; the expression levels of several fibrogenic related genes were assayed by real-time quantitative PCR and Western blot. Results MCD feeding mice showed progressive hepatic injury including hepatic steatosis, inflammatory infiltration and fibrosis. Induction of HO-1 by hemin or Ad-HO-1 significantly attenuated the severity of liver injury. This effect was associated with the up-regulation of HO-1, reduction of hepatic lipid peroxides levels, down-regulation of inflammatory factors tumor necrosis factor-alpha, interleukin-6 and suppressor of cytokine signaling-1 as well as the pro-fibrotic genes alpha-smooth muscle actin, transforming growth factor-β1, matrix metallopeptidase-2 and matrix metallopeptidase-9. A contrary effect was observed in mice treated with ZnPP-IX. Conclusions The present study provided the evidence for the protective role of HO-1 in ameliorating MCD diet-induced fibrosing steatohepatitis. Modulation of HO-1 expression might serve as a therapeutic approach for fibrotic steatohepatitis.

  8. Isoflurane post-treatment improves pulmonary vascular permeability via upregulation of heme oxygenase-1.

    Science.gov (United States)

    Dong, Xiang; Hu, Rong; Sun, Yu; Li, Qifang; Jiang, Hong

    2013-09-01

    Isoflurane (ISO) has been shown to attenuate acute lung injury (ALI). Induction of heme oxygenase-1 (HO-1) and suppression of inducible nitric oxide synthase (iNOS) expression provide cytoprotection in lung and vascular injury. The aim of this study was to investigate the effect of post-treatment with isoflurane on lung vascular permeability and the role of HO-1 in an ALI rat model induced by cecal ligation and puncture (CLP). Male Sprague-Dawley rats were randomly assigned to one of four groups: sham group, sham rats post-treated with vehicle (Sham); CLP group, CLP rats post-treated with vehicle (CLP); ISO group, CLP rats post-treated with isoflurane (ISO); and ZnPP group, CLP rats injected with zinc protoporphyrin IX (ZnPP), a competitive inhibitor of HO-1, 1 hour before the operation, and post-treated with isoflurane (ZnPP). Isoflurane (1.4%) was administered 2 hour after CLP. At 24 hour after CLP, the extent of ALI was evaluated by lung wet/dry ratio, Evans blue dye (EBD) extravasation, lung permeability index (LPI), as well as histological and immunohistochemical examinations. We also determined pulmonary iNOS and HO-1 expression. Compared with the CLP group, the isoflurane post-treatment group showed improved pulmonary microvascular permeability as detected by EBD extravasation, LPI, as well as histological and immunohistochemical examinations. Furthermore, isoflurane decreased iNOS and increased HO-1 expression in lung tissue. Pretreatment with ZnPP prevented the protective effects of isoflurane in rats. These findings indicate that the protective role of isoflurane post-conditioning against CLP-induced lung injury may be associated with its role in upregulating HO-1 in ALI.

  9. Heme oxygenase-1 regulates the progression of K/BxN serum transfer arthritis.

    Directory of Open Access Journals (Sweden)

    Rita Brines

    Full Text Available Heme oxygenase-1 (HO-1 is induced in many cell types as a defense mechanism against stress. We have investigated the possible role of endogenous HO-1 in the effector phase of arthritis using the K/BxN serum transfer model of arthritis in HO-1 heterozygous and homozygous knock-out mice.Arthritis was induced in C57/Black-6 xFVB (HO-1(+/+, HO-1(+/- and HO-1(-/- mice by intraperitoneal injection of 150 µl serum from arthritic K/BxN mice at days 0 and 2. Blood was collected and animals were sacrificed at day 10. Histological analysis was performed in ankle sections. The levels of inflammatory mediators were measured in serum and paw homogenates by enzyme-linked immunosorbent assay or Multiplex technology. The incidence of arthritis was higher in HO-1(+/- and HO-1(-/- groups compared with HO-1(+/+. The inflammatory response was aggravated in HO-1(+/- mice as shown by arthritic score and the migration of inflammatory cells that could be related to the enhancement of CXCL-1 production. In addition, the HO-1(+/- group showed proteoglycan depletion significantly higher than HO-1(+/+ mice. Serum levels of matrix metalloproteinase-3, monocyte chemotactic protein-1, plasminogen activator inhibitor-1, E-selectin and intercellular adhesion molecule-1 were increased in arthritic HO-1(-/- mice, whereas vascular endothelial growth factor and some cytokines such as interferon-γ showed a reduction compared to HO-1(+/+ or HO-1(+/- mice. In addition, down-regulated gene expression of ferritin, glutathione S-reductase A1 and superoxide dismutase-2 was observed in the livers of arthritic HO-1(+/- animals.Endogenous HO-1 regulates the production of systemic and local inflammatory mediators and plays a protective role in K/BxN serum transfer arthritis.

  10. Heme Oxygenase-1/Carbon Monoxide System and Embryonic Stem Cell Differentiation and Maturation into Cardiomyocytes.

    Science.gov (United States)

    Suliman, Hagir B; Zobi, Fabio; Piantadosi, Claude A

    2016-03-01

    The differentiation of embryonic stem (ES) cells into energetically efficient cardiomyocytes contributes to functional cardiac repair and is envisioned to ameliorate progressive degenerative cardiac diseases. Advanced cell maturation strategies are therefore needed to create abundant mature cardiomyocytes. In this study, we tested whether the redox-sensitive heme oxygenase-1/carbon monoxide (HO-1/CO) system, operating through mitochondrial biogenesis, acts as a mechanism for ES cell differentiation and cardiomyocyte maturation. Manipulation of HO-1/CO to enhance mitochondrial biogenesis demonstrates a direct pathway to ES cell differentiation and maturation into beating cardiomyocytes that express adult structural markers. Targeted HO-1/CO interventions up- and downregulate specific cardiogenic transcription factors, transcription factor Gata4, homeobox protein Nkx-2.5, heart- and neural crest derivatives-expressed protein 1, and MEF2C. HO-1/CO overexpression increases cardiac gene expression for myosin regulatory light chain 2, atrial isoform, MLC2v, ANP, MHC-β, and sarcomere α-actinin and the major mitochondrial fusion regulators, mitofusin 2 and MICOS complex subunit Mic60. This promotes structural mitochondrial network expansion and maturation, thereby supporting energy provision for beating embryoid bodies. These effects are prevented by silencing HO-1 and by mitochondrial reactive oxygen species scavenging, while disruption of mitochondrial biogenesis and mitochondrial DNA depletion by loss of mitochondrial transcription factor A compromise infrastructure. This leads to failure of cardiomyocyte differentiation and maturation and contractile dysfunction. The capacity to augment cardiomyogenesis via a defined mitochondrial pathway has unique therapeutic potential for targeting ES cell maturation in cardiac disease. Our findings establish the HO-1/CO system and redox regulation of mitochondrial biogenesis as essential factors in ES cell differentiation as well

  11. Heme Oxygenase-1 Mediates Oxidative Stress and Apoptosis in Coxsackievirus B3-Induced Myocarditis

    Directory of Open Access Journals (Sweden)

    Oana N. Ursu

    2014-01-01

    Full Text Available Background: Heme oxygenase-1 (HO-1, which is suggested to play a role in defending the organism against oxidative stress-mediated injuries, can be induced by diverse factors including viruses and iron. As coxsackievirus B3 (CVB3-infected SWR/J mice susceptible for chronic myocarditis were found to have a significant iron incorporation and HO-1 upregulation in the myocardium, we aimed to investigate the molecular interplay between HO-1 expression and iron homeostasis in the outcome of viral myocarditis. Methods and Results: In susceptible SWR/J mice, but not in resistant C57BL/6 mice, we observed at later stages of CVB3 myocarditis significant iron deposits in macrophages and also in cardiomyocytes, which were spatially associated with oxidative stress, upregulation of HO-1 and caspase-3 activation. HO-1, which is also expressed in cultivated RAW 264.7 macrophages upon incubation with iron and/or CVB3, could be downregulated by inhibition of NO/iNOS using L-NAME. Moreover, specific inhibition of HO-1 by tin mesoporphyrin revealed a suppression of superoxide production in iron and/or CVB3-treated macrophages. The molecular relationship of HO-1 and caspase-3 activation was proven by downregulation with HO-1 siRNA in iron- and/or CVB3-treated cultivated cells. Importantly, iron was found to increase viral replication in vitro. Conclusion: These results indicate that HO-1 induces a paracrine signalling in macrophages via reactive oxygen species production, mediating apoptosis of heart muscle cells at later stages of myocarditis. Notably, in genetically susceptible mice iron potentiates the detrimental effects of CVB3 by the NO/HO-1 pathway, thus increasing cardiac pathogenicity.

  12. Heme oxygenase-1 prevents smoke induced B-cell infiltrates: a role for regulatory T cells?

    Directory of Open Access Journals (Sweden)

    Luinge Marjan A

    2008-02-01

    Full Text Available Abstract Background Smoking is the most important cause for the development of COPD. Since not all smokers develop COPD, it is obvious that other factors must be involved in disease development. We hypothesize that heme oxygenase-1 (HO-1, a protective enzyme against oxidative stress and inflammation, is insufficiently upregulated in COPD. The effects of HO-1 modulation on cigarette smoke induced inflammation and emphysema were tested in a smoking mouse model. Methods Mice were either exposed or sham exposed to cigarette smoke exposure for 20 weeks. Cobalt protoporphyrin or tin protoporphyrin was injected during this period to induce or inhibit HO-1 activity, respectively. Afterwards, emphysema development, levels of inflammatory cells and cytokines, and the presence of B-cell infiltrates in lung tissue were analyzed. Results Smoke exposure induced emphysema and increased the numbers of inflammatory cells and numbers of B-cell infiltrates, as well as the levels of inflammatory cytokines in lung tissue. HO-1 modulation had no effects on smoke induced emphysema development, or the increases in neutrophils and macrophages and inflammatory cytokines. Interestingly, HO-1 induction prevented the development of smoke induced B-cell infiltrates and increased the levels of CD4+CD25+ T cells and Foxp3 positive cells in the lungs. Additionally, the CD4+CD25+ T cells correlated positively with the number of Foxp3 positive cells in lung tissue, indicating that these cells were regulatory T cells. Conclusion These results support the concept that HO-1 expression influences regulatory T cells and indicates that this mechanism is involved in the suppression of smoke induced B-cell infiltrates. The translation of this interaction to human COPD should now be pursued.

  13. Plasma heme oxygenase-1 concentration is elevated in individuals with type 2 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Wei Bao

    Full Text Available BACKGROUND: Circulating concentrations of heme oxygenase-1 (HO-1 have been recently reported to be elevated in several chronic disorders. However, no study has ever examined the association between circulating HO-1 concentrations and type 2 diabetes mellitus (T2DM. METHODS AND FINDINGS: 581 cases with newly-diagnosed T2DM (New-T2DM and 611 comparison controls were recruited in this two-phase case-control study, comprising 420 cases and 429 controls collected in the first phase study and 161 cases and 182 controls in the second phase replication study. Analyses, using both separated data and combined data from the two-phase studies, show that plasma HO-1 concentrations were significantly increased in New-T2DM cases compared to controls (P<0.001. Plasma HO-1 concentrations were significantly correlated with plasma glucose concentrations, HOMA-beta and HOMA-IR (P<0.001. After adjustment for age, sex, BMI and family history of diabetes, the ORs for New-T2DM in the highest quartile of plasma HO-1 concentrations, compared with the lowest, was 8.23 (95% CI 5.55-12.21; P for trend <0.001. The trend remained significant after additional adjustment for fasting plasma glucose/insulin, HOMA-beta/HOMA-IR, TC/TG, smoking, drinking and history of hypertension, and even in further stratification analysis by age, sex, BMI, smoking, drinking and history of hypertension. CONCLUSIONS: Elevated plasma HO-1 concentrations are associated with higher ORs for New-T2DM, which add more knowledge regarding the important role of oxidative stress in T2DM. More consequent studies were warranted to confirm the clinical utility of plasma HO-1, especially in diagnosis and prognosis of T2DM and its complications.

  14. Upregulation of Heme Oxygenase-1 in Response to Wild Thyme Treatment Protects against Hypertension and Oxidative Stress.

    Science.gov (United States)

    Mihailovic-Stanojevic, Nevena; Miloradović, Zoran; Ivanov, Milan; Bugarski, Branko; Jovović, Đurđica; Karanović, Danijela; Vajić, Una-Jovana; Komes, Draženka; Grujić-Milanović, Jelica

    2016-01-01

    High blood pressure is the most powerful contributor to the cardiovascular morbidity and mortality, and inverse correlation between consumption of polyphenol-rich foods or beverages and incidence of cardiovascular diseases gains more importance. Reactive oxygen species plays an important role in the development of hypertension. We found that wild thyme (a spice plant, rich in polyphenolic compounds) induced a significant decrease of blood pressure and vascular resistance in hypertensive rats. The inverse correlation between vascular resistance and plasma heme oxygenase-1 suggests that endogenous vasodilator carbon monoxide generated by heme oxidation could account for this normalization of blood pressure. Next product of heme oxidation, bilirubin (a chain-breaking antioxidant that acts as a lipid peroxyl radical scavenger), becomes significantly increased after wild thyme treatment and induces the reduction of plasma lipid peroxidation in hypertensive, but not in normotensive rats. The obtained results promote wild thyme as useful supplement for cardiovascular interventions.

  15. Upregulation of Heme Oxygenase-1 in Response to Wild Thyme Treatment Protects against Hypertension and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Nevena Mihailovic-Stanojevic

    2016-01-01

    Full Text Available High blood pressure is the most powerful contributor to the cardiovascular morbidity and mortality, and inverse correlation between consumption of polyphenol-rich foods or beverages and incidence of cardiovascular diseases gains more importance. Reactive oxygen species plays an important role in the development of hypertension. We found that wild thyme (a spice plant, rich in polyphenolic compounds induced a significant decrease of blood pressure and vascular resistance in hypertensive rats. The inverse correlation between vascular resistance and plasma heme oxygenase-1 suggests that endogenous vasodilator carbon monoxide generated by heme oxidation could account for this normalization of blood pressure. Next product of heme oxidation, bilirubin (a chain-breaking antioxidant that acts as a lipid peroxyl radical scavenger, becomes significantly increased after wild thyme treatment and induces the reduction of plasma lipid peroxidation in hypertensive, but not in normotensive rats. The obtained results promote wild thyme as useful supplement for cardiovascular interventions.

  16. Repeat polymorphisms in the Homo sapiens heme oxygenase-1 gene in diabetic and idiopathic gastroparesis.

    Directory of Open Access Journals (Sweden)

    Simon J Gibbons

    Full Text Available Idiopathic and diabetic gastroparesis in Homo sapiens cause significant morbidity. Etiology or risk factors have not been clearly identified. Failure to sustain elevated heme oxygenase-1 (HO1 expression is associated with delayed gastric emptying in diabetic mice and polymorphisms in the HO1 gene (HMOX1, NCBI Gene ID:3162 are associated with worse outcomes in other diseases.Our hypothesis was that longer polyGT alleles are more common in the HMOX1 genes of individuals with gastroparesis than in controls without upper gastrointestinal motility disorders.Repeat length was determined in genomic DNA. Controls with diabetes (84 type 1, 84 type 2 and without diabetes (n = 170 were compared to diabetic gastroparetics (99 type 1, 72 type 2 and idiopathic gastroparetics (n = 234. Correlations of repeat lengths with clinical symptom sub-scores on the gastroparesis cardinal symptom index (GCSI were done. Statistical analyses of short (32 repeat alleles and differences in allele length were used to test for associations with gastroparesis.The distribution of allele lengths was different between groups (P = 0.016. Allele lengths were longest in type 2 diabetics with gastroparesis (29.18±0.35, mean ± SEM and longer in gastroparetics compared to non-diabetic controls (28.50±0.14 vs 27.64±0.20 GT repeats/allele, P = 0.0008. Type 2 diabetic controls had longer alleles than non-diabetic controls. In all gastroparetic groups, allele lengths were longer in African Americans compared to other racial groups, differences in the proportion of African Americans in the groups accounted for the differences between gastroparetics and controls. Diabetic gastroparetics with 1 or 2 long alleles had worse GCSI nausea sub-scores (3.30±0.23 as compared to those with 0 long alleles (2.66±0.12, P = 0.022.Longer poly-GT repeats in the HMOX1 gene are more common in African Americans with gastroparesis. Nausea symptoms are worse in subjects with longer alleles.

  17. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals

    International Nuclear Information System (INIS)

    Lawal, Akeem O.; Zhang, Min; Dittmar, Michael; Lulla, Aaron; Araujo, Jesus A.

    2015-01-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. - Highlights: • We examined the role of HO-1 expression on diesel exhaust particle (DEP) in endothelial cells. • DEPs exert cytotoxic and inflammatory effects on human microvascular endothelial cells (HMECs). • DEPs induce HO-1 expression in HMECs. • HO-1 protects against the oxidative stress induced by DEps. • HO-1 attenuates the proinflammatory effects

  18. [The protection of heme oxygenase-1 from acute cardiocyte injury in rats].

    Science.gov (United States)

    Yang, Ren-qiang; Cheng, Xiao-shu; Liu, Chen; Wang, Ling; Li, Ping; Wu, Yan-qing; Wu, Qing-hua; Su, Hai; Dai, Yu-cheng

    2008-08-01

    To observe the protection of Heme oxygenase-1 (HO-1) from lipopolysaccharide (LPS)-induced cardiocyte injury and its mechanism. Cardiocyte was isolated from SD neonate rat and cultured in vitro, and was divided into control group (normal culture), LPS group (with stimulation of 30 micromoL/L LPS for 1 hour), LPS + Hemin group (with same treatment to LPS group after stimulation of 5 micromoL/L Hemin for 1 hour), and LPS + ZnPP group (with same treatment to LPS group after stimulation of 3 micromoL/L ZnPP for 1 hour). The level of lactic-dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD) were measured by thio-barbituric acid and xanthine oxidase techniques. The cell heart rhythm, survival rate and apoptosis rate were examined. The expressions of nuclear factor kappaB (NF-kappaB), HO-1 and tumor necrosis factor-alpha (TNF-alpha) were measured with Western blotting. The HO-1 mRNA was examined by RT-PCR. The level of LDH and MDA in LPS, LPS + Hemin, and LPS + ZnPP groups were (113 +/- 15), (79 +/- 13), (154 +/- 22) U/L, and (1.88 +/- 0.36), (1.16 +/- 0.32), (2.84 +/- 0.44) mmoL/L respectively, which were all obviously higher than those in control group [(69 +/- 10) U/L, (0.87 +/- 0.25) mmol/L, P ZnPP groups (17.8 +/- 1.8, 22.5 +/- 2.4, 13.4 +/- 1.5 U/mL, respectively) was all obviously lower than that in control group (24.3 +/- 3.6 U/mL, P ZnPP groups than those in control group (P ZnPP groups was higher than that in control group (P ZnPP groups was higher than those in control group (P ZnPP group was highest. LPS can induce cardiocyte injury, which can be inhibited through the anti-inflammatory, anti-oxidant, and anti-apoptosis functions by HO-1.

  19. Heme oxygenase-1 induction improves cardiac function following myocardial ischemia by reducing oxidative stress.

    Directory of Open Access Journals (Sweden)

    Yossi Issan

    Full Text Available Oxidative stress plays a key role in exacerbating diabetes and cardiovascular disease. Heme oxygenase-1 (HO-1, a stress response protein, is cytoprotective, but its role in post myocardial infarction (MI and diabetes is not fully characterized. We aimed to investigate the protection and the mechanisms of HO-1 induction in cardiomyocytes subjected to hypoxia and in diabetic mice subjected to LAD ligation.In vitro: cultured cardiomyocytes were treated with cobalt-protoporphyrin (CoPP and tin protoporphyrin (SnPP prior to hypoxic stress. In vivo: CoPP treated streptozotocin-induced diabetic mice were subjected to LAD ligation for 2/24 h. Cardiac function, histology, biochemical damage markers and signaling pathways were measured.HO-1 induction lowered release of lactate dehydrogenase (LDH and creatine phospho kinase (CK, decreased propidium iodide staining, improved cell morphology and preserved mitochondrial membrane potential in cardiomyocytes. In diabetic mice, Fractional Shortening (FS was lower than non-diabetic mice (35±1%vs.41±2, respectively p<0.05. CoPP-treated diabetic animals improved cardiac function (43±2% p<0.01, reduced CK, Troponin T levels and infarct size compared to non-treated diabetic mice (P<0.01, P<0.001, P<0.01 respectively. CoPP-enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the decrease in superoxide levels in cardiac tissues and plasma TNFα levels (p<0.05. The increased levels of HO-1 by CoPP treatment after LAD ligation led to a shift of the Bcl-2/bax ratio towards the antiapoptotic process (p<0.05. CoPP significantly increased the expression levels of pAKT and pGSK3β (p<0.05 in cardiomyocytes and in diabetic mice with MI. SnPP abolished CoPP's cardioprotective effects.HO-1 induction plays a role in cardioprotection against hypoxic damage in cardiomyocytes and in reducing post ischemic cardiac damage in the diabetic heart as proved by the increased levels of pAKT with

  20. Repeat polymorphisms in the Homo sapiens heme oxygenase-1 gene in diabetic and idiopathic gastroparesis.

    Science.gov (United States)

    Gibbons, Simon J; Grover, Madhusudan; Choi, Kyoung Moo; Wadhwa, Akhilesh; Zubair, Adeel; Wilson, Laura A; Wu, Yanhong; Abell, Thomas L; Hasler, William L; Koch, Kenneth L; McCallum, Richard W; Nguyen, Linda A B; Parkman, Henry P; Sarosiek, Irene; Snape, William J; Tonascia, James; Hamilton, Frank A; Pasricha, Pankaj J; Farrugia, Gianrico

    2017-01-01

    Idiopathic and diabetic gastroparesis in Homo sapiens cause significant morbidity. Etiology or risk factors have not been clearly identified. Failure to sustain elevated heme oxygenase-1 (HO1) expression is associated with delayed gastric emptying in diabetic mice and polymorphisms in the HO1 gene (HMOX1, NCBI Gene ID:3162) are associated with worse outcomes in other diseases. Our hypothesis was that longer polyGT alleles are more common in the HMOX1 genes of individuals with gastroparesis than in controls without upper gastrointestinal motility disorders. Repeat length was determined in genomic DNA. Controls with diabetes (84 type 1, 84 type 2) and without diabetes (n = 170) were compared to diabetic gastroparetics (99 type 1, 72 type 2) and idiopathic gastroparetics (n = 234). Correlations of repeat lengths with clinical symptom sub-scores on the gastroparesis cardinal symptom index (GCSI) were done. Statistical analyses of short (32) repeat alleles and differences in allele length were used to test for associations with gastroparesis. The distribution of allele lengths was different between groups (P = 0.016). Allele lengths were longest in type 2 diabetics with gastroparesis (29.18±0.35, mean ± SEM) and longer in gastroparetics compared to non-diabetic controls (28.50±0.14 vs 27.64±0.20 GT repeats/allele, P = 0.0008). Type 2 diabetic controls had longer alleles than non-diabetic controls. In all gastroparetic groups, allele lengths were longer in African Americans compared to other racial groups, differences in the proportion of African Americans in the groups accounted for the differences between gastroparetics and controls. Diabetic gastroparetics with 1 or 2 long alleles had worse GCSI nausea sub-scores (3.30±0.23) as compared to those with 0 long alleles (2.66±0.12), P = 0.022. Longer poly-GT repeats in the HMOX1 gene are more common in African Americans with gastroparesis. Nausea symptoms are worse in subjects with longer alleles.

  1. Role of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity

    International Nuclear Information System (INIS)

    Kang, Su Jin; Ryoo, In-geun; Lee, Young Joon; Kwak, Mi-Kyoung

    2012-01-01

    Silver nanoparticles (nano-Ag) have been widely used in various commercial products including textiles, electronic appliances and biomedical products. However, there remains insufficient information on the potential risk of nano-Ag to human health and environment. In the current study, we have investigated the role of NF-E2-related factor 2 (Nrf2) transcription factor in nano-Ag-induced cytotoxicity. When Nrf2 expression was blocked using interring RNA expression in ovarian carcinoma cell line, nano-Ag treatment showed a substantial decrease in cell viability with concomitant increases in apoptosis and DNA damage compared to the control cells. Target gene analysis revealed that the expression of heme oxygenase-1 (HO-1) was highly elevated by nano-Ag in nonspecific shRNA expressing cells, while Nrf2 knockdown cells (NRF2i) did not increase HO-1 expression. The role of HO-1 in cytoprotection against nano-Ag was reinforced by results using pharmacological inducer of HO-1: cobalt protoporphyrin-mediated HO-1 activation in the NRF2i cells prevented nano-Ag-mediated cell death. Similarly, pharmacological or genetic inhibition of HO-1 in nonspecific control cells exacerbated nano-Ag toxicity. As the upstream signaling mechanism, nano-Ag required the phosphoinositide 3-kinase (PI3K) and p38MAPK signaling cascades for HO-1 induction. The treatment with either PI3K inhibitor or p38MAPK inhibitor suppressed HO-1 induction and intensified nano-Ag-induced cell death. Taken together, these results suggest that Nrf2-dependent HO-1 up-regulation plays a protective role in nano-Ag-induced DNA damage and consequent cell death. In addition, nano-Ag-mediated HO-1 induction is associated with the PI3K and p38MAPK signaling pathways. -- Highlights: ► Role of Nrf2 signaling in silver nanoparticle toxicity. ► Silver nanoparticle toxicity is increased by Nrf2 blockade. ► Nrf2-dependent HO-1 induction protects cells from silver nanoparticle toxicity. ► PI3K and p38MAPK cascades are

  2. Amyloid Beta-Mediated Hypomethylation of Heme Oxygenase 1 Correlates with Cognitive Impairment in Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Hye Youn Sung

    Full Text Available To identify epigenetically regulated genes involved in the pathogenesis of Alzheimer's disease (AD we analyzed global mRNA expression and methylation profiles in amyloid precursor protein (APP-Swedish mutant-expressing AD model cells, H4-sw and selected heme oxygenase-1 (HMOX1, which is associated with pathological features of AD such as neurofibrillary tangles and senile plaques. We examined the epigenetic regulatory mechanism of HMOX1 and its application as a diagnostic and prognostic biomarker for AD. Our results show that HMOX1 mRNA and protein expression was approximately 12.2-fold and 7.9-fold increased in H4-sw cells, respectively. Increased HMOX1 expression was also detected in the brain, particularly the hippocampus, of AD model transgenic mice. However, the methylation of specific CpG sites within its promoter, particularly at CpG located -374 was significantly decreased in H4-sw cells. Treatment of neuroglioma cells with the demethylating agent 5-aza-2'-deoxycytidine resulted in reduced methylation of HMOX1 promoter accompanied by enhanced HMOX1 expression strongly supporting DNA methylation-dependent transcriptional regulation of HMOX1. Toxic Aβ-induced aberrant hypomethylation of HMOX1 at -374 promoter CpG site was correlated with increased HMOX1 expression. In addition to neuroglioma cells, we also found Aβ-induced epigenetic regulation of HMOX1 in human T lymphocyte Jurkat cells. We evaluated DNA methylation status of HMOX1 at -374 promoter CpG site in blood samples from AD patients, patients with mild cognitive impairment (MCI, and control individuals using quantitative methylation-specific polymerase chain reaction. We observed lower methylation of HMOX1 at the -374 promoter CpG site in AD patients compared to MCI and control individuals, and a correlation between Mini-Mental State Examination score and demethylation level. Receiver operating characteristics analysis revealed good discrimination of AD patients from MCI

  3. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chenglong [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zheng, Haining [Department of Hyperbaric Oxygen, Nanjing General Hospital of Nanjing Military Command, Nanjing (China); Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Ding, Dafa, E-mail: dingdafa2004@aliyun.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Lu, Yibing, E-mail: luyibing2004@126.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2015-10-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK.

  4. [Protective effects of the induction of heme oxygenase-1 on ischemia reperfusion lung injury: in vivo experiment with rats].

    Science.gov (United States)

    Jia, Xiao-min; Zhou, Zhong-xin; Huang, Ji-jiang; Chu, Wei; Guan, Qiu-hua

    2007-05-08

    To investigate the protective effects of the induction of heme oxygenase-1 (HO-1) on ischemia/reperfusion lung injury. Forty Sprague-Dawley rats were randomly divided into four equal groups: sham group, lung ischemia/reperfusion injury (I/R) group, undergoing ligaturing of the left lung hilum for 30 minutes followed by reperfusion for 120 minutes; hemin group, undergoing intraperitoneal injection of hemin, an inducer of HO-1, 48 hours before the ligation and reperfusion; zinc protoporphyrin (ZnPP) group, undergoing intravenous injection of ZnPP, an inhibitor of heme oxygenase, 15 min after the ischemia-reperfusion; and sham operation group, undergoing sham operation. Two hours after the I/R arterial blood samples were collected and then the left lungs of the rats were taken out. Plasma tumor necrosis factor-alpha (TNF-alpha) and lung superoxide dismutase (SOD) activity were examined. Lung wet-to-dry weight (W/D) ratio was measured. The ultrastructure of the pulmonary alveoli and its capillaries were studied by using transmissional electronmicroscopy. The lung W/D ratio of the hemin group was 5.92 +/- 0.66, significantly lower than that of the I/R group (7.55 +/- 0.66, P ZnPP group (7.34 +/- 0.39, P ZnPP group (2.8 +/- 0.4 U/mg protein and 3.0 +/- 0.4 U/mg protein respectively, both P ZnPP groups (452.26 +/- 22.59 and 438.59 +/- 30.26 respectively, both P ZnPP groups. The induction of heme oxygenase-1 can protect effectively the lesion of lung pathology in ischemia reperfusion in vivo.

  5. Heme oxygenase-1 induction contributes to renoprotection by G-CSF during rhabdomyolysis-associated acute kidney injury

    Science.gov (United States)

    Wei, Qingqing; Hill, William D.; Su, Yunchao; Huang, Shuang

    2011-01-01

    Granulocyte colony-stimulating factor (G-CSF) is renoprotective during acute kidney injury (AKI) induced by ischemia and cisplatin nephrotoxicity; however, the underlying mechanism is not entirely clear. Rhabdomyolysis is another important clinical cause of AKI, due to the release of nephrotoxins (e.g., heme) from disrupted muscles. The current study has determined the effects of G-CSF on rhabdomyolysis-associated AKI using in vivo and in vitro models. In C57BL/6 mice, intramuscular injection of glycerol induced AKI, which was partially prevented by G-CSF pretreatment. Consistently, glycerol-induced renal tissue damage was ameliorated by G-CSF. In addition, animal survival following the glycerol injection was improved from ∼30 to ∼70% by G-CSF. In cultured renal tubular cells, hemin-induced apoptosis was also suppressed by G-CSF. Interestingly, G-CSF induced heme oxygenase-1 (HO-1, a critical enzyme for heme/hemin degradation and detoxification) in both cultured tubular cells and mouse kidneys. Blockade of HO-1 with protoporphyrin IX zinc(II) (ZnPP) could largely diminish the protective effects of G-CSF. Together, these results demonstrated the renoprotective effects of G-CSF in rhabdomyolysis-associated AKI. Notably, G-CSF may directly protect against tubular cell injury under the disease condition by inducing HO-1. PMID:21511696

  6. Pharmacological Inhibition of Host Heme Oxygenase-1 Suppresses Mycobacterium tuberculosis Infection In Vivo by a Mechanism Dependent on T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Diego L. Costa

    2016-10-01

    Full Text Available Heme oxygenase-1 (HO-1 is a stress response antioxidant enzyme which catalyzes the degradation of heme released during inflammation. HO-1 expression is upregulated in both experimental and human Mycobacterium tuberculosis infection, and in patients it is a biomarker of active disease. Whether the enzyme plays a protective versus pathogenic role in tuberculosis has been the subject of debate. To address this controversy, we administered tin protoporphyrin IX (SnPPIX, a well-characterized HO-1 enzymatic inhibitor, to mice during acute M. tuberculosis infection. These SnPPIX-treated animals displayed a substantial reduction in pulmonary bacterial loads comparable to that achieved following conventional antibiotic therapy. Moreover, when administered adjunctively with antimycobacterial drugs, the HO-1 inhibitor markedly enhanced and accelerated pathogen clearance. Interestingly, both the pulmonary induction of HO-1 expression and the efficacy of SnPPIX treatment in reducing bacterial burden were dependent on the presence of host T lymphocytes. Although M. tuberculosis expresses its own heme-degrading enzyme, SnPPIX failed to inhibit its enzymatic activity or significantly restrict bacterial growth in liquid culture. Together, the above findings reveal mammalian HO-1 as a potential target for host-directed monotherapy and adjunctive therapy of tuberculosis and identify the immune response as a critical regulator of this function.

  7. [Genistein attenuates monocrotaline-induced pulmonary arterial hypertension in rats by up-regulating heme oxygenase-1 expression].

    Science.gov (United States)

    Zhang, Yukun; Wang, Daoxin; Zhu, Tao; Li, Changyi

    2012-02-01

    To study the effect of genistein on the expression of heme oxygenase-1 (HO-1) in rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). Sixty male Sprague-Dawley rats were randomly divided into 4 groups (n=15), namely the control group, model group, low-dose (20 µg/kg) genistein group and high-dose (80 µg/kg) genistein group. The hemodynamic parameters were measured and the remodeling of pulmonary small arteries was observed by electron microscope (EM). The expression of HO-1 in the lung tissues were detected by Western blotting. Compared with the model group, genistein treatment significantly reduced the elevated mean pulmonary arterial pressure, improved the right ventricular hypertrophy index, and increased the expression of HO-1 in a dose-dependent manner. Genistein attentuates pulmonary arterial hypertension in MCT-treated rats possibly by up-regulation of HO-1 in the lung tissues.

  8. Heme oxygenase 1-mediated neurogenesis is enhanced by Ginkgo biloba (EGb 761®) after permanent ischemic stroke in mice.

    Science.gov (United States)

    Nada, Shadia E; Tulsulkar, Jatin; Shah, Zahoor A

    2014-04-01

    Stroke is the fourth leading cause of death and a major cause of disability in stroke survivors. Studies have underlined the importance of repair mechanisms in the recovery phase of stroke. Neurogenesis in response to brain injury is one of the regeneration processes that, if enhanced, may offer better stroke treatment alternatives. Previously, we have demonstrated antioxidant, neuritogenic, and angiogenic properties of Ginkgo biloba/EGb 761® (EGb 761) in different mouse models of stroke. In the present study, we were interested to study whether EGb 761 could protect mice from permanent middle cerebral artery occlusion (pMCAO) and enhance neurogenesis. EGb 761 pre- and posttreated mice had lower infarct volume and improved motor skills with enhanced proliferation of neuronal stem/progenitor cells (NSPCs) at 24 h and 7 days posttreatment. Netrin-1 and its receptors (DCC and UNC5B) that mediate axonal attraction and repulsion were observed to be overexpressed in NSPCs only, implying that netrin-1 and its receptors might have partly played a role in enhanced neurogenesis. Interestingly, in heme oxygenase 1 knockout mice (HO1(-/-)), neurogenesis was significantly lower than in vehicle-treated mice at day 8. Furthermore, EGb 761 posttreated mice also demonstrated heme oxygenase 1 (HO1)-activated pathway of phosphorylated glycogen synthase kinase 3 α/β (p-GSK-3 α/β), collapsin response mediator protein 2 (CRMP-2), semaphorin3A (SEMA3A), and Wnt, suggesting probable signaling pathways involved in proliferation, differentiation, and migration of NSPCs. Together, these results propose that EGb 761 not only has antioxidant, neuritogenic, and angiogenic properties, but can also augment the repair and regeneration mechanisms following stroke.

  9. Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca(2+) pathways.

    Science.gov (United States)

    Cui, Weiti; Qi, Fang; Zhang, Yihua; Cao, Hong; Zhang, Jing; Wang, Ren; Shen, Wenbiao

    2015-03-01

    Methane-rich water triggered adventitious rooting by regulating heme oxygenase1/carbon monoxide and calcium pathways in cucumber explants. Heme oxygenase1/carbon monoxide (HO1/CO) and calcium (Ca(2+)) were reported as the downstream signals in auxin-induced cucumber adventitious root (AR) formation. Here, we observed that application of methane-rich water (MRW; 80% saturation) obviously induced AR formation in IAA-depleted cucumber explants. To address the universality, we checked adventitious rooting in soybean and mung bean explants, and found that MRW (50 and 10% saturation, respectively) exhibited the similar inducing results. To further determine if the HO1/CO system participated in MRW-induced adventitious rooting, MRW, HO1 inducer hemin, its activity inhibitor zinc protoporphyrin IX (ZnPP), and its catalytic by-products CO, bilirubin, and Fe(2+) were used to detect their effects on cucumber adventitious rooting in IAA-depleted explants. Subsequent results showed that MRW-induced adventitious rooting was blocked by ZnPP and further reversed by 20% saturation CO aqueous solution. However, the other two by-products of HO1, bilirubin and Fe(2+), failed to induce AR formation. Above responses were consistent with the MRW-induced increases of HO1 transcript and corresponding protein level. Further molecular evidence indicted that expression of marker genes, including auxin signaling-related genes and cell cycle regulatory genes, were modulated by MRW alone but blocked by the cotreatment with ZnPP, the latter of which could be significantly rescued by the addition of CO. By using the Ca(2+)-channel blocker and Ca(2+) chelator, the involvement of Ca(2+) pathway in MRW-induced adventitious rooting was also suggested. Together, our results indicate that MRW might serve as a stimulator of adventitious rooting, which was partially mediated by HO1/CO and Ca(2+) pathways.

  10. Oxidative Stress Is Related to the Deleterious Effects of Heme Oxygenase-1 in an In Vivo Neuroinflammatory Rat Model

    Directory of Open Access Journals (Sweden)

    Claire Tronel

    2013-01-01

    Full Text Available Heme oxygenase-1 (HO-1 induction is associated with beneficial or deleterious effects depending on the experimental conditions adopted and the neurodegenerative rodent models used. The present study aimed first to evaluate the effects of cerebral HO-1 induction in an in vivo rat model of neuroinflammation by intrastriatal injection of quinolinic acid (QA and secondly to explore the role played by reactive oxygen species (ROS and free iron (Fe2+ derived from heme catabolism promoted by HO-1. Chronic I.P. treatment with the HO-1 inductor and substrate hemin was responsible for a significant dose-related increase of cerebral HO-1 production. Brain tissue loss, microglial activation, and neuronal death were significantly higher in rats receiving QA plus hemin (H-QA versus QA and controls. Significant increase of ROS production in H-QA rat brain was inhibited by the specific HO-1 inhibitor ZnPP which supports the idea that ROS level augmentation in hemin-treated animals is a direct consequence of HO-1 induction. The cerebral tissue loss and ROS level in hemin-treated rats receiving the iron chelator deferoxamine were significantly decreased, demonstrating the involvement of Fe2+in brain ROS production. Therefore, the deleterious effects of HO-1 expression in this in vivo neuroinflammatory model were linked to a hyperproduction of ROS, itself promoted by free iron liberation.

  11. Gastroprotective effect of ghrelin against indomethacin-induced gastric injury in rats: possible role of heme oxygenase-1 pathway.

    Science.gov (United States)

    Allam, Mona M; El-Gohary, Ola A

    2017-07-01

    Ghrelin has been shown to ameliorate gastric injury by several mechanisms in experimental animal models. The present study aimed to investigate the effect of pretreatment with ghrelin on indomethacin-induced gastric injury in rats and the role of heme oxygenase-1(HO-1) pathway as a novel mechanism underlying the gastroprotective effect of ghrelin. In all groups studied, ulcer score (U.S), ulcer index (U.I) and preventive index (P.I) were evaluated and the gastric inflammatory biomarkers including levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and myeloperoxidase (MPO) activity as well as prostaglandin E2 (PGE2), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), HO-1 and bilirubin as an indicator of heme oxygenase activity were measured. Indomethacin induced significant elevation in U.S and U.I as well as the inflammatory and the oxidative markers and reduced the PGE2 in addition to HO-1 level and activity. Pretreatment with ghrelin reversed these results. In order to elucidate the possible role of HO-1 in mediating the protective effects of ghrelin, tin protoporphyrin (SnPP) HO-1 blocker was administrated; it significantly attenuated the gastroprotective effect of ghrelin. In conclusion HO-1 activity significantly contributes toward ghrelin-mediated gastroprotection.

  12. Soyasaponin Bb Protects Rat Hepatocytes from Alcohol-Induced Oxidative Stress by Inducing Heme Oxygenase-1.

    Science.gov (United States)

    Lijie, Zhu; Ranran, Fu; Xiuying, Liu; Yutang, He; Bo, Wang; Tao, Ma

    2016-01-01

    It has been known that oxidative stress induced by alcohol played a crucial role in the formation of alcoholic liver disease. Although the formation mechanisms underlying liver injury induced by alcohol still remained largely unknown, it has been considered that oxidative stress played a core role in the pathogenesis of hepatocyte damage. The aim of this study was to investigate the effects of soyasaponin Bb (Ss-Bb) on oxidative stress in alcohol-induced rat hepatocyte injury. It has been shown that the administration of Ss-Bb could significantly restore antioxidant activity in BRL 3A cells. Moreover, the impaired liver function and morphology changes resulting from ethanol exposure were improved by Ss-Bb treatment. Treatment with a pharmacological inhibitor of haem oxygenase-1 (HO-1) indicated a critical role of HO-1 in mediating the protective role. Finally, we found that pretreatment with Ss-Bb to ethanol exposure cells increased the expression level of HO-1. It was suggested that Ss-Bb may protect against alcohol-induced hepatocyte injury through ameliorating oxidative stress, and the induction of HO-1 was an important protective mechanism. Effects of soyasaponin Bb was investigated on oxidative stress in rat hepatocytesCell viability and antioxidant capacities were evaluated to determine the effectsThe expression level of HO-1 was measured to reveal the proptective mechanisms.

  13. Effects of Metalloporphyrins on Heme Oxygenase-1 Transcription: Correlative Cell Culture Assays Guide in Vivo Imaging

    Directory of Open Access Journals (Sweden)

    Monica Hajdena-Dawson

    2003-07-01

    Full Text Available Heme oxygenase (HO is the rate-limiting step in the heme degradation pathway and is a potential target for the control, or prevention, of pathologic jaundice in neonates. Metalloporphyrins (Mps, a diverse set of synthetic derivatives of heme, can competitively inhibit the HO enzymes. However, certain Mps are phototoxic and some increase transcription of HO-1, the inducible HO isozyme. Therefore, effective development of this class of compounds as therapeutics for treating pathologic jaundice will require rapid and integrated biological screens to identify the most efficacious and safe Mps. To study the safety of these compounds, we assessed their cytotoxic effects and measured luciferase activity by bioluminescent imaging (BLI as an index of HO-1 transcription, first in live cell cultures and then in living transgenic reporter mice. A total of 12 Mps were first evaluated in the correlative cell culture assay. Based on results from this study, 2 Mps, zinc protoporphyrin (ZnPP and zinc bis glycol porphyrin (ZnBG, were selected for further studies in the live animal model. In vitro BLI showed ZnPP to be a strong inducer of HO-1 transcription in comparison to ZnBG, which showed minimal induction. Cytotoxicity studies revealed that ZnPP was phototoxic, whereas ZnBG had no effect on cell viability. In vivo BLI showed that both ZnPP and ZnBG had minimal effects on the levels of HO-1 transcription in the animals. Furthermore, serum enzyme assays indicated that neither caused detectable liver toxicity. These findings, and especially those with ZnBG, support the use of selected Mps as therapies for pathologic jaundice. Coupling the high throughput advantage of cell culture with the capability of imaging for whole-body temporal analyses could accelerate and refine the preclinical phases of drug development. Thus, this study serves as a model for understanding the effects of specific compounds in relation to defined targets using an integrated approach.

  14. Protective effect of heme oxygenase-1 on lung injury induced by erythrocyte instillation in rats.

    Science.gov (United States)

    Pang, Qing-Feng; Zhou, Qiao-Mei; Zeng, Si; Dou, Li-Dong; Ji, Yong; Zeng, Yin-Ming

    2008-09-05

    Intratracheal instillation of blood induces self-repaired acute lung injury. However, the mechanism of repair has been unclear. Heme-oxygenase (HO)-1, which catalyzes heme breakdown, acts as an inducible defense against oxidative stress and plays an important role in inflammation. The objective of this study was to test the role of HO-1 in lung injury caused by intratracheal instillation of red cells. Forty healthy, male Sprague-Dawley rats were randomly divided into five groups: normal group, saline group, erythrocyte group, erythrocyte+zinc-protoporphyrin (ZnPP, HO-1 inhibitor) group and saline+ZnPP group. At 2 days after intratracheal instillation of red cells, lung tissues and lavage samples were isolated for biochemical determinations and histological measurements. Histological analysis revealed that administration of ZnPP worsened the acute lung injury induced by instilled erythrocytes. HO-1 was over-expressed in the erythrocyte group and in the erythrocyte + ZnPP group. Compared with the erythrocyte + ZnPP group, the levels of total protein, lactate dehydrogenase and tumor necrosis factor-alpha in the lavage were lower (P < 0.01), while the level of interleukin-10 was higher in the erythrocyte group (P < 0.01). HO-1 protects against erythrocyte-induced inflammatory injury in lung.

  15. A novel, "double-clamp" binding mode for human heme oxygenase-1 inhibition.

    Directory of Open Access Journals (Sweden)

    Mona N Rahman

    Full Text Available The development of heme oxygenase (HO inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl-4,4-diphenyl-2-butanone (QC-308. Using a carbon monoxide (CO formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC(50 = 0.27±0.07 µM than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC(50 = 4.0±1.8 µM. The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This "double-clamp" binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.

  16. Up-regulation of heme oxygenase-1 contributes to the amelioration of aluminum-induced oxidative stress in Medicago sativa.

    Science.gov (United States)

    Cui, Weiti; Zhang, Jing; Xuan, Wei; Xie, Yanjie

    2013-10-15

    In this report, pharmacological, histochemical and molecular approaches were used to investigate the effect of heme oxygenase-1 (HO-1) up-regulation on the alleviation of aluminum (Al)-induced oxidative stress in Medicago sativa. Exposure of alfalfa to AlCl3 (0-100 μM) resulted in a dose-dependent inhibition of root elongation as well as the enhancement of thiobarbituric acid reactive substances (TBARS) content. 1 and 10 μM (in particular) Al(3+) increased alfalfa HO-1 transcript or its protein level, and HO activity in comparison with the decreased changes in 100 μM Al-treated samples. After recuperation, however, TBARS levels in 1 and 10 μM Al-treated alfalfa roots returned to control values, which were accompanied with the higher levels of HO activity. Subsequently, exogenous CO, a byproduct of HO-1, could substitute for the cytoprotective effects of the up-regulation of HO-1 in alfalfa plants upon Al stress, which was confirmed by the alleviation of TBARS and Al accumulation, as well as the histochemical analysis of lipid peroxidation and loss of plasma membrane integrity. Theses results indicated that endogenous CO generated via heme degradation by HO-1 could contribute in a critical manner to its protective effects. Additionally, the pretreatments of butylated hydroxytoluene (BHT) and hemin, an inducer of HO-1, exhibited the similar cytoprotective roles in the alleviation of oxidative stress, both of which were impaired by the potent inhibitor of HO-1, zinc protoporphyrin IX (ZnPP). However, the Al-induced inhibition of root elongation was not influenced by CO, BHT and hemin, respectively. Together, the present results showed up-regulation of HO-1 expression could act as a mechanism of cell protection against oxidative stress induced by Al treatment. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Andrographolide induces Nrf2 and heme oxygenase 1 in astrocytes by activating p38 MAPK and ERK.

    Science.gov (United States)

    Wong, Siew Ying; Tan, Michelle G K; Wong, Peter T H; Herr, Deron R; Lai, Mitchell K P

    2016-09-23

    Andrographolide is the major labdane diterpenoid originally isolated from Andrographis paniculata and has been shown to have anti-inflammatory and antioxidative effects. However, there is a dearth of studies on the potential therapeutic utility of andrographolide in neuroinflammatory conditions. Here, we aimed to investigate the mechanisms underlying andrographolide's effect on the expression of anti-inflammatory and antioxidant heme oxygenase-1 (HO-1) in primary astrocytes. Measurements of the effects of andrograholide on antioxidant HO-1 and its transcription factor, Nrf2, include gene expression, protein turnover, and activation of putative signaling regulators. Andrographolide potently activated Nrf2 and also upregulated HO-1 expression in primary astrocytes. Andrographolide's effects on Nrf2 seemed to be biphasic, with acute (within 1 h) reductions in Nrf2 ubiquitination efficiency and turnover rate, followed by upregulation of Nrf2 mRNA between 8 and 24 h. The acute regulation of Nrf2 by andrographolide seemed to be independent of Keap1 and partly mediated by p38 MAPK and ERK signaling. These data provide further insights into the mechanisms underlying andrographolide's effects on astrocyte-mediated antioxidant, and anti-inflammatory responses and support the further assessment of andrographolide as a potential therapeutic for neurological conditions in which oxidative stress and neuroinflammation are implicated.

  18. Effect of Heme Oxygenase-1 on Mitofusin-1 protein in LPS-induced ALI/ARDS in rats

    Science.gov (United States)

    Yu, Jianbo; Wang, Ying; Li, Zhen; Dong, Shuan; Wang, Dan; Gong, Lirong; Shi, Jia; Zhang, Yuan; Liu, Daquan; Mu, Rui

    2016-01-01

    Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common and important oxidative stress in the lung. Mitochondrial fusion responds to the normal morphology and function of cells and is finely regulated by mitochondrial fusion proteins, such as mitofusin-1 protein (Mfn1), mitofusin-2 protein (Mfn2) and optical atrophy 1 (OPA1). Additionally, Mfn1 has been identified as the most important protein in mitochondrial fusion. Heme oxygenase-1 (HO-1) is a stress-inducible protein that plays a critical role in protecting against oxidative stress. However, whether the protection of HO-1 is related to mitochondrial fusion is still a question. Thus, our in vitro and in vivo experiments aimed to identify the relationship between HO-1 and Mfn1. Here, we used Hemin and ZnPP-IX as treatments in an in vivo experiment. Then, HO-1 and Mfn1 were measured using RT-PCR and Western blotting. Supernatants were analyzed for MDA, SOD, and ROS. Our results implied that HO-1 upregulation suppressed oxidative stress induced by LPS, and the possible mechanism could be associated with Mfn1 and the PI3K/Akt pathway. PMID:27830717

  19. Cobalt-protoporphyrin enhances heme oxygenase 1 expression and attenuates liver ischemia/reperfusion injury by inhibiting apoptosis.

    Science.gov (United States)

    Li, Jing; Wu, Bin; Teng, Dahong; Sun, Xiaoye; Li, Junjie; Li, Jiang; Zhang, Guoliang; Cai, Jinzhen

    2018-03-01

    The aim of the present study was to investigate the preconditioning effect and underlying mechanisms of cobalt-protoporphyrin (CoPP) in a mouse model of liver ischemia‑reperfusion (I/R) injury. Mice were divided into five groups: Sham‑operated (control), I/R, I/R + CoPP, I/R + CoPP and zinc‑protoporphyrin (ZnPP) and I/R + ZnPP. Serum levels of aspartate transaminase (AST) and alanine aminotransferase (ALT) were detected using commercial kits. The expression of the pro‑apoptotic protein caspase‑3 was detected by immunohistochemistry and the expression levels of the anti‑apoptotic protein B‑cell lymphoma 2 (Bcl‑2) and heme oxygenase 1 (HO‑1) were analyzed by western blotting. Sections of liver tissue were stained with hematoxylin and eosin to observe pathologic alterations. Furthermore, hepatocyte apoptosis was detected using a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. AST and ALT levels of the CoPP preconditioned group were significantly reduced compared with the IR injury group (PZnPP group. Furthermore, the percentage of apoptotic cells as detected by TUNEL was significantly decreased in the CoPP group compared with the I/R group (PZnPP. In conclusion, the results of the present study suggested that CoPP may induce HO‑1 overexpression and produce anti‑apoptotic effects in liver I/R injury.

  20. Effects of hyperbaric oxygen therapy on acetaminophen induced nephrotoxicity and hepatotoxicity: the role of heme oxygenase-1

    Directory of Open Access Journals (Sweden)

    Iclal Karatop-Cesur

    2016-09-01

    Full Text Available The aim of this study was to investigate the effects of hyperbaric oxygen (HBO therapy on acetaminophen (APAP induced renal and liver injudr and the role of heme oxygenase-1 (HO-1 activation. Wistar-Albino rats were randomly assigned into four groups. Control group received no treatment. APAP (3gr/kg was administered by gastric lavage in APAP group. Animals in the APAP+HBO and APAP+zinc protoporphyrin (ZnPP+HBO groups received HBO therapy (90 min at 2.5 atm, starting 1 hour after APAP administration, for 2 consecutive days.HO-1 activity was inhibited by ZnPP. APAP+ZnPP+HBO group received intraperitoneal 50 µmol\\kg ZnPP injection 30 minutes after APAP treatment and HBO therapy for 2 days. Serum and tissue samples were taken at 48 hours after APAP treatment. Renal and liver functions were evaluated by serum levels of urea, creatinine and transaminases. Lipid peroxidation and tissue levels of antioxidant enzymes were measure by ELISA. Tissue injury was evaluated by light microscopy.HO-1 level was determined by immunohistochemistry. HO-1 mRNA level was investigated by polymerase chain reaction (PCR. Serum transaminase levels significantly increased after APAP treatment (p [Dis Mol Med 2016; 4(3.000: 37-42

  1. Negative feedback regulation of lipopolysaccharide-induced inducible nitric oxide synthase gene expression by heme oxygenase-1 induction in macrophages.

    Science.gov (United States)

    Ashino, Takashi; Yamanaka, Rieko; Yamamoto, Masayuki; Shimokawa, Hiroaki; Sekikawa, Kenji; Iwakura, Yoichiro; Shioda, Seiji; Numazawa, Satoshi; Yoshida, Takemi

    2008-04-01

    Heme oxygenase-1 (HO-1) is induced under infectious diseases in macrophages. We performed experiments using various gene deficient mouse-derived macrophages to determine a detailed induction mechanism of HO-1 by lipopolysaccharide (LPS) and the functional role of HO-1 induction in macrophages. LPS (1 microg/mL) maximally induced inducible nitric oxide synthase (iNOS) and HO-1 mRNAs in wild-type (WT) macrophages at 6h and 12h after treatment, respectively, and liberated tumor necrosis factor alpha (TNFalpha) from WT macrophages. LPS also induced iNOS and HO-1 in TNFalpha(-/-) macrophages, but not in iNOS(-/-) macrophages. Interestingly, although LPS strongly induced iNOS, it failed to induce HO-1 almost completely in nuclear-factor erythroid 2-related factor 2 (Nrf2)(-/-) macrophages. The LPS-induced iNOS gene expression was suppressed by pretreatment with HO-1 inducers, hemin and Co-protoporphyrin (CoPP), but not with HO-1 inhibitor, Sn-protoporphyrin in WT macrophages. In the Nrf2(-/-) macrophages, the ability of CoPP to induce HO-1 and its inhibitory effect on the LPS-induced iNOS gene expression were lower than seen in WT macrophages. The present findings suggest that HO-1 is induced via NO-induced nuclear translocation of Nrf2, and the enzymatic function of HO-1 inhibits the overproduction of NO in macrophages.

  2. Induction of Heme Oxygenase-1 with Hemin Reduces Obesity-Induced Adipose Tissue Inflammation via Adipose Macrophage Phenotype Switching

    Directory of Open Access Journals (Sweden)

    Thai Hien Tu

    2014-01-01

    Full Text Available Adipose macrophages with the anti-inflammatory M2 phenotype protect against obesity-induced inflammation and insulin resistance. Heme oxygenase-1 (HO-1, which elicits antioxidant and anti-inflammatory activity, modulates macrophage phenotypes and thus is implicated in various inflammatory diseases. Here, we demonstrate that the HO-1 inducer, hemin, protects against obesity-induced adipose inflammation by inducing macrophages to switch to the M2 phenotype. HO-1 induction by hemin reduced the production of proinflammatory cytokines (TNF-α and IL-6 from cocultured adipocytes and macrophages by inhibiting the activation of inflammatory signaling molecules (JNK and NF-κB in both cell types. Hemin enhanced transcript levels of M2 macrophage marker genes (IL-4, Mrc1, and Clec10a in the cocultures, while reducing transcripts of M1 macrophage markers (CD274 and TNF-α. The protective effects of hemin on adipose inflammation and macrophage phenotype switching were confirmed in mice fed a high-fat diet, and these were associated with PPARγ upregulation and STAT6 activation. These findings suggest that induction of HO-1 with hemin protects against obesity-induced adipose inflammation through M2 macrophage phenotype switching, which is induced by the PPARγ and STAT6 pathway. HO-1 inducers such as hemin may be useful for preventing obesity-induced adipose inflammation.

  3. A novel antioxidant peptide, purified from Bacillus amyloliquefaciens, showed strong antioxidant potential via Nrf-2 mediated heme oxygenase-1 expression.

    Science.gov (United States)

    Rahman, Md Saifur; Hee Choi, Yun; Seok Choi, Yoon; Alam, Md Badrul; Han Lee, Sang; Cheol Yoo, Jin

    2018-01-15

    A novel antioxidant peptide YD1 (∼1.0kDa), purified from the strain Bacillus amyloliquefaciens CBSYD1, displayed activity in several in vitro assays and was also efficient against Gram-positive, Gram-negative as well as multidrug-resistant (MDR) bacteria. Strain growth was adapted to bile-salt conditions where a clear halos-zone was observed in a bile-salt plate assay and was viable in different digestive track conditions. YD1 treatment on RAW 264.7 cells increased the transcriptional and translational activities of NF-E2-related factor-2 (Nrf-2) through the enhanced levels of heme oxygenase-1 (HO-1). Furthermore, the YD1-treated group showed higher levels of antioxidant enzymes compared to the oxidative stress group. YD1 demonstrated a strong antioxidant activity by decreasing nitric oxide (NO) and reactive oxygen species (ROS) in RAW 264.7 cells. This study suggests that YD1 and the strain could be a natural antioxidant and a probiotic candidate respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Heme Oxygenase-1/CO as protective mediators in cigarette smoke- induced lung cell injury and chronic obstructive pulmonary disease.

    Science.gov (United States)

    Dolinay, Tamás; Choi, Augustine M K; Ryter, Stefan W

    2012-05-01

    Chronic obstructive pulmonary disease (COPD) is a disease involving airways restriction, alveolar destruction, and loss of lung function, primarily due to cigarette smoke (CS) exposure. The inducible stress protein heme oxygenase-1 (HO-1) has been implicated in cytoprotection against the toxic action of many xenobiotics, including CS. HO-1 also protects against elastase-induced emphysema. Differential expression of HO-1 in epithelial cells and macrophages may contribute to COPD susceptibility. Genetic polymorphisms in the HO-1 gene, which may account for variations in HO-1 expression among subpopulations, may be associated with COPD pathogenesis. Carbon monoxide (CO), a primary reaction product of HO-1 has been implicated in cytoprotection in many acute lung injury models, though it's precise role in chronic CS-induced lung injury remains unclear. CO is a potential biomarker of CS exposure and of inflammatory lung conditions. To date, a single clinical trial has addressed the possible therapeutic potential of CO in COPD patients. The implications of the cytoprotective potential of HO-1/CO system in CS-induced lung injury and COPD are discussed.

  5. Modulation of heme oxygenase-1 expression and activity affects streptozotocin-induced diabetic nephropathy in rats.

    Science.gov (United States)

    Ali, Marwa A M; Heeba, Gehan H; El-Sheikh, Azza A K

    2017-10-01

    Heme oxygenase (HO)-1 has exhibited nephro-protective actions in different animal models; however, its full mechanistic potential in diabetic nephropathy (DN) has not yet been elucidated. Hence, the present study has been undertaken by inducing DN in rats using streptozotocin (50 mg/kg i.p.), with or without either HO-1 inducer; hemin (HM; 40 μmol/kg, s.c.), or HO-1 blocker; zinc protoporphyrin-IX (ZnPP; 50 μmol/kg, i.p.), for one month. Compared to control, rats with DN suffered from hyperglycemia and hyperlipidemia, with signs of renal damage, as assessed by distortion in renal histopathologic architecture and kidney function. Renal oxidative/nitrosative stress was evident by increased malondialdehyde, nitric oxide, myeloperoxidase, with decreased reduced glutathione, superoxide dismutase, and catalase. DN group also exhibited high renal expression of the pro-inflammatory cytokine; tumor necrosis factor (TNF)-α, and the apoptotic marker; caspase 3, assessed by Western blot. Renal HO-1 protein expression and activity were increased in DN rats compared to control. Administration of HM, but not ZnPP, to DN rats improved kidney function, histopathologic features, lipid profile, TNF-α, and caspase 3 expressions, with no effect on blood glucose level. HM increased, while ZnPP decreased renal HO-1 activity in DN rats. It is noteworthy that neither intervention affected HO-1 activity or renal oxidative capacity in non-diabetic rats. Interestingly, the expression of HO-1 was upregulated by both HM and ZnPP in DN rats. In conclusion, activation of HO-1 via HM ameliorated renal damage in STZ-induced DN in rats, probably through antioxidant, anti-nitrosative, anti-inflammatory, and anti-apoptotic mechanisms. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  6. Terminalia Chebulanin Attenuates Psoriatic Skin Lesion via Regulation of Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Jingang An

    2016-07-01

    Full Text Available Background/Aims: Psoriasis is one of the most common inflammatory skin disorders, affecting 3% of the general population. Terminalia chebulanin (TC is a polyphenolic compound that possesses antioxidant and anti-inflammatory activities. The current study was designed to investigate the effect of TC on psoriatic lesions. Methods: We examined the protective effect of TC against psoriatic lesions in mice and keratinocyte proliferation in HaCaT cells. Results: We found that TC exhibited potent anti-psoriatic activities, as evidenced by improvement of erythema and scaling scores, decrease of epidermal, ear and skinfold thickening, decrease of tumor necrosis factor α (TNFα, interleukin (IL-17A, IL-23 and matrix metalloproteinase (MMP-9 expression, and decrease of TBARS content and increase of GSH content in IMQ-treated mice, and decrease of keratinocyte proliferation, TNFα, IL-17A and IL-23 expression, and ROS level in M5-treated cells. All those effects induced by TC were inhibited by zinc protoporphyrin IX (ZnPP, an inhibitor of heme oxygenase (HO-1, indicating that HO-1 was responsible the anti-psoriatic effect of TC. Moreover, TC inhibited the upregulation of p65 NF-κB under in vitro psoriatic condition. ZnPP suppressed TC-induced inhibition of p65 NF-κB expression. Overexpression of p65 NF-κB significantly suppressed TC-induced decrease of TNFα, IL-17A and IL-23 expression and keratinocyte proliferation, indicating that HO-1-mediated downregulation of NF-κB was involved in the anti-psoriatic effect of TC. Conclusions: The data demonstrate that TC may serve as a potential therapeutic option for psoriatic patients.

  7. Inhibiting heme oxygenase-1 attenuates rat liver fibrosis by removing iron accumulation.

    Science.gov (United States)

    Wang, Qiu-Ming; Du, Jian-Ling; Duan, Zhi-Jun; Guo, Shi-Bin; Sun, Xiao-Yu; Liu, Zhen

    2013-05-21

    To investigate the effects of the heme oxygenase (HO)-1/carbon monoxide system on iron deposition and portal pressure in rats with hepatic fibrosis induced by bile duct ligation (BDL). Male Sprague-Dawley rats were divided randomly into a Sham group, BDL group, Fe group, deferoxamine (DFX) group, zinc protoporphyrin (ZnPP) group and cobalt protoporphyrin (CoPP) group. The levels of HO-1 were detected using different methods. The serum carboxyhemoglobin (COHb), iron, and portal vein pressure (PVP) were also quantified. The plasma and mRNA levels of hepcidin were measured. Hepatic fibrosis and its main pathway were assessed using Van Gieson's stain, hydroxyproline, transforming growth factor-β1 (TGF-β1), nuclear factor-E2-related factor 2 (Nrf2), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1). Serum COHb and protein and mRNA expression levels of HO-1 and Nrf2 were increased in the BDL group compared with the Sham group and were much higher in the CoPP group. The ZnPP group showed lower expression of HO-1 and Nrf2 and lower COHb. The levels of iron and PVP were enhanced in the BDL group but were lower in the ZnPP and DFX groups and were higher in the CoPP and Fe groups. Hepcidin levels were higher, whereas superoxide dismutase levels were increased and malonaldehyde levels were decreased in the ZnPP and DFX groups. The ZnPP group also showed inhibited TGF-β1 expression and regulated TIMP-1/MMP-2 expression, as well as obviously attenuated liver fibrosis. Reducing hepatic iron deposition and CO levels by inhibiting HO-1 activity though the Nrf2/Keap pathway could be helpful in improving hepatic fibrosis and regulating PVP.

  8. Heme Oxygenase-1 Inhibits HLA Class I Antibody-Dependent Endothelial Cell Activation.

    Directory of Open Access Journals (Sweden)

    Eva Zilian

    Full Text Available Antibody-mediated rejection (AMR is a key limiting factor for long-term graft survival in solid organ transplantation. Human leukocyte antigen (HLA class I (HLA I antibodies (Abs play a major role in the pathogenesis of AMR via their interactions with HLA molecules on vascular endothelial cells (ECs. The antioxidant enzyme heme oxygenase (HO-1 has anti-inflammatory functions in the endothelium. As complement-independent effects of HLA I Abs can activate ECs, it was the goal of the current study to investigate the role of HO-1 on activation of human ECs by HLA I Abs. In cell cultures of various primary human macro- and microvascular ECs treatment with monoclonal pan- and allele-specific HLA I Abs up-regulated the expression of inducible proinflammatory adhesion molecules and chemokines (vascular cell adhesion molecule-1 [VCAM-1], intercellular cell adhesion molecule-1 [ICAM-1], interleukin-8 [IL-8] and monocyte chemotactic protein 1 [MCP-1]. Pharmacological induction of HO-1 with cobalt-protoporphyrin IX reduced, whereas inhibition of HO-1 with either zinc-protoporphyrin IX or siRNA-mediated knockdown increased HLA I Ab-dependent up-regulation of VCAM-1. Treatment with two carbon monoxide (CO-releasing molecules, which liberate the gaseous HO product CO, blocked HLA I Ab-dependent EC activation. Finally, in an in vitro adhesion assay exposure of ECs to HLA I Abs led to increased monocyte binding, which was counteracted by up-regulation of HO-1. In conclusion, HLA I Ab-dependent EC activation is modulated by endothelial HO-1 and targeted induction of this enzyme may be a novel therapeutic approach for the treatment of AMR in solid organ transplantation.

  9. Blocking heme oxygenase-1 by zinc protoporphyrin reduces tumor hypoxia-mediated VEGF release and inhibits tumor angiogenesis as a potential therapeutic agent against colorectal cancer

    OpenAIRE

    Cheng, Chun-Chia; Guan, Siao-Syun; Yang, Hao-Jhih; Chang, Chun-Chao; Luo, Tsai-Yueh; Chang, Jungshan; Ho, Ai-Sheng

    2016-01-01

    Background Hypoxia in tumor niche is one of important factors to start regeneration of blood vessels, leading to increase survival, proliferation, and invasion in cancer cells. Under hypoxia microenvironment, furthermore, steadily increased hypoxia-inducible factor-1? (HIF-1?) is observed, and can increase vascular endothelial growth factor (VEGF) expression and promote angiogenesis. Zinc protoporphyrin (ZnPP), a heme oxygenase-1 (HO-1) inhibitor, is potential to inhibit tumor proliferation a...

  10. Adaphostin toxicity in a sensitive non-small cell lung cancer model is mediated through Nrf2 signaling and heme oxygenase 1

    OpenAIRE

    Monks Anne; Shoemaker Robert H; Fer Nicole D

    2010-01-01

    Abstract Background Preclinical toxicity of adaphostin has been related to oxidative stress. This study investigated the regulatory mechanism underlying adaphostin induction of heme oxygenase 1 (HMOX1) which plays a significant role in modulation of drug-induced toxicity in the non-small cell lung cancer cell line model, NCI-H522. Methods The transcriptional response of NCI-H522 to adaphostin prominently involved oxidative stress genes, particularly HMOX1. Reactive oxygen species (ROS) involv...

  11. Eff ects of hemin, a heme oxygenase-1 inducer in L-arginine-induced acute pancreatitis and associated lung injury in adult male albino rats

    Directory of Open Access Journals (Sweden)

    Aziz N. M.

    2017-01-01

    Full Text Available Objective. The aim of the current study was to assess the protective outcome of hemin, a heme oxygenase-1 (HO-1 inducer on L-arginine-induced acute pancreatitis in rats. Acute pancreatitis (AP is considered to be a critical inflammatory disorder with a major impact on the patient health. Various theories have been recommended regarding the pathophysiology of AP and associated pulmonary complications.

  12. L-Ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1

    International Nuclear Information System (INIS)

    Huang, Ya-Ni; Wang, Jiz-Yuh; Lee, Ching-Tien; Lin, Chih-Hung; Lai, Chien-Cheng; Wang, Jia-Yi

    2012-01-01

    Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of L-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measured using the fluorochrome 2′,7′-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. -- Highlights: ► Besides the anti-oxidant effect, Vit. C also induces HO-1 expression in brain cells. ► Vit. C reduces METH neurotoxicity and ROS production by

  13. L-Ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ya-Ni [Department of Nursing, Hsin Sheng College of Medical Care and Management, Taoyuan, Taiwan (China); Wang, Jiz-Yuh [Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lee, Ching-Tien [Department of Nursing, Hsin Sheng College of Medical Care and Management, Taoyuan, Taiwan (China); Lin, Chih-Hung [Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lai, Chien-Cheng [Far Eastern Memorial Hospital, Department of Surgery, Taipei, Taiwan (China); Wang, Jia-Yi, E-mail: jywang2010@tmu.edu.tw [Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2012-12-01

    Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of L-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measured using the fluorochrome 2′,7′-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. -- Highlights: ► Besides the anti-oxidant effect, Vit. C also induces HO-1 expression in brain cells. ► Vit. C reduces METH neurotoxicity and ROS production by

  14. Fetal Microsatellite in the Heme Oxygenase 1 Promoter Is Associated With Severe and Early-Onset Preeclampsia.

    Science.gov (United States)

    Kaartokallio, Tea; Utge, Siddheshwar; Klemetti, Miira M; Paananen, Jussi; Pulkki, Kari; Romppanen, Jarkko; Tikkanen, Ilkka; Heinonen, Seppo; Kajantie, Eero; Kere, Juha; Kivinen, Katja; Pouta, Anneli; Lakkisto, Päivi; Laivuori, Hannele

    2018-01-01

    Preeclampsia is a vascular pregnancy disorder that often involves impaired placental development. HO-1 (heme oxygenase 1, encoded by HMOX1 ) is a stress response enzyme crucial for endothelial and placental function. Long version of the guanine-thymine (GT n ) microsatellite in the HMOX1 promoter decreases HO-1 expression, and the long maternal repeat is associated with late-onset preeclampsia. Our aim was to study whether the length of fetal repeat is associated with mother's preeclampsia, whether the length of fetal and maternal repeats affect HO-1 levels in placenta and maternal serum, and whether HO-1 levels are altered in preeclampsia. We genotyped the repeat in the cord blood of 609 preeclamptic and 745 nonpreeclamptic neonates. HO-1 levels were measured in 36 placental samples, and in the first (222 cases/243 controls) and third (176 cases/53 controls) pregnancy trimester serum samples using enzyme-linked immunosorbent assay. The long fetal GT n repeat was associated with preeclampsia and its severe and early-onset subtypes. Interaction analysis suggested the maternal and fetal effects to be independent. Placental or serum HO-1 levels were not altered in preeclamptics, possibly reflecting heterogeneity of preeclampsia. Carriers of the long fetal and maternal repeats had lower placental and serum HO-1 levels, respectively, providing functional evidence for the association. We conclude that the long fetal GT n repeat may increase mother's risk for especially severe and early-onset preeclampsia. The fetal and maternal risk alleles likely predispose to different disease subtypes. © 2017 American Heart Association, Inc.

  15. Identification of Heme Oxygenase-1 as a Novel Predictor of Hematopoietic Stem Cell Transplantation Outcomes in Acute Leukemia

    Directory of Open Access Journals (Sweden)

    Yinghao Lu

    2016-09-01

    Full Text Available Objective: The main aim of this study was to determine the correlation between clinical outcome and heme oxygenase-1 (HO-1 expression before and after hematopoietic stem cell transplantation (HSCT in acute leukemia. Methods: HO-1 mRNA levels in 83 patients were measured using qRT-PCR. In a comparative analysis of HO-1 levels in relation to different post-transplant outcomes, the HO-1 threshold, determined via the receiver operating characteristic (ROC curve, was effectively used to predict clinical relapse and acute graft-versus-host disease (aGVHD. The correlations among clinical relapse, aGVHD and HO-1 expression were analyzed based on this threshold. Results: Leukemia risk stratification and relative expression of HO-1 before pretreatment had significant effects on clinical relapse. Leukemia risk stratification, relative expression of HO-1 after HSCT and the interval from diagnosis to transplantation had a significant influence on aGVHD. Both relapse and aGVHD appeared to be associated with relative HO-1 expression. The relative expression rate of HO-1 was 1.131-1.186 before pretreatment, and strongly associated with post-transplantation relapse. The relative expression rate of HO-1 was 1.102-1.144 after transplantation, and closely related to aGVHD. ROC curve analysis revealed high specificity and sensitivity of HO-1 expression in predicting relapse and aGVHD after allo-HSCT. Conclusions: HO-1 expression can be effectively used as a predictor of relapse as well as a diagnostic factor of aGVHD after transplantation for allo-HSCT patients with acute leukemia.

  16. Selegiline increases heme oxygenase-1 expression and the cytotoxicity produced by dopamine treatment of neuroblastoma SK-N-SH cells

    Directory of Open Access Journals (Sweden)

    C.R.M. Rieder

    2004-07-01

    Full Text Available Increased dopamine catabolism may be associated with oxidative stress and neuronal cell death in Parkinson's disease. The present study was carried out to examine the effect of dopamine on the expression of heme oxygenase-1 and -2 (HO-1 and HO-2 in human neuroblastomas (SK-N-SH cell line and the effects of selegiline and antioxidants on this expression. Cells were kept with close control of pH and were incubated with varying concentrations of dopamine (0.1-100 µM for 24 h. HO-1 and HO-2 cDNA probes were prepared by reverse transcription-polymerase chain reaction amplification. The mRNA expression of HO-1 and HO-2 was measured by Northern blot analysis. The levels of HO-1 mRNA increased after dopamine treatment, in a dose-dependent manner, in all cell lines studied, whereas levels of the two HO-2 transcripts did not. The HO-1 and HO-2 protein expression was analyzed by Western blotting. HO-1 protein was undetectable in untreated SK-N-SH cells and increased after treatment with dopamine. In contrast, the HO-2 protein (36 kDa was detected in untreated cells and the levels did not change as a result of treatment. alpha-Tocopherol (10-100 µM and ascorbic acid (100 µM did not attenuate the effects of dopamine. Selegiline (10 µM produced significant increase (P < 0.01 in the induction of HO-1 by dopamine (more than six times the control values. The increased expression of HO-1 following dopamine treatment indicates that dopamine produces oxidative stress in this cell line.

  17. Molecular cloning and characterization of a heme oxygenase1 gene from sunflower and its expression profiles in salinity acclimation.

    Science.gov (United States)

    Zhu, Kaikai; Jin, Qijiang; Samma, Muhammad Kaleem; Lin, Guoqing; Shen, Wenbiao

    2014-06-01

    Heme oxygenase1 (HO1) is involved in protecting plants from environmental stimuli. In this study, a sunflower (Helianthus annuus L.) HO1 gene (HaHO1) was cloned and sequenced. It was confirmed that HaHO1 encodes a precursor protein of 32.93 kDa with an N-terminal plastid transit peptide which was validated by subcellular localization. The amino acid sequence of HaHO1 shared high homology with other plant HO1s. The predicted three-dimensional structure showed a high degree of structural conservation as compared to the known HO1 crystal structures. Phylogenetic analysis revealed that HaHO1 clearly grouped with the plant HO1-like sequences. Moreover, the purified recombinant mature HaHO1 expressed in Escherichia coli exhibits HO activity. Thus, it was concluded that HaHO1 encodes a functional HO1 in sunflower. Additionally, HaHO1 gene was ubiquitously expressed in all tested tissues, and induced differentially during different growth stages after germination, and could be differentially induced by several stresses and hemin treatment. For example, a pretreatment with a low concentration of NaCl (25 mM) could lead to the induction of HaHO1 gene expression and thereafter a salinity acclamatory response. Above cytoprotective effect could be impaired by the potent HO1 inhibitor zinc protoporphyrin IX (ZnPPIX), which was further rescued by the addition of 50% carbon monoxide aqueous solution (in particular) or bilirubin, two catalytic by-products of HO1, respectively. Similarly, a HO1 inducer, hemin, could mimic the salinity acclamatory response. Together, these findings strongly suggested that the up-regulation of HaHO1 might be required for the observed salinity acclimation in sunflower plants.

  18. Desipramine protects neuronal cell death and induces heme oxygenase-1 expression in Mes23.5 dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Hsiao-Yun Lin

    Full Text Available Desipramine is known principally as a tricyclic antidepressant drug used to promote recovery of depressed patients. It has also been used in a number of other psychiatric and medical conditions. The present study is the first to investigate the neuroprotective effect of desipramine.Mes23.5 dopaminergic cells were used to examine neuroprotective effect of desipramine. Western blot, reverse transcription-PCR, MTT assay, siRNA transfection and electrophoretic mobility shift assay (EMSA were carried out to assess the effects of desipramine. Desipramine induces endogenous anti-oxidative enzyme, heme oxygenase-1 (HO-1 protein and mRNA expression in concentration- and time-dependent manners. A different type of antidepressant SSRI (selective serotonin reuptake inhibitor, fluoxetine also shows similar effects of desipramine on HO-1 expression. Moreover, desipramine induces HO-1 expression through activation of ERK and JNK signaling pathways. Desipramine also increases NF-E2-related factor-2 (Nrf2 accumulation in the nucleus and enhances Nrf2-DNA binding activity. Moreover, desipramine-mediated increase of HO-1 expression is reduced by transfection with siRNA against Nrf2. On the other hand, pretreatment of desipramine protects neuronal cells against rotenone- and 6-hydroxydopamine (6-OHDA-induced neuronal death. Furthermore, inhibition of HO-1 activity by a HO-1 pharmacological inhibitor, ZnPP IX, attenuates the neuroprotective effect of desipramine. Otherwise, activation of HO-1 activity by HO-1 activator and inducer protect 6-OHDA-induced neuronal death.These findings suggest that desipramine-increased HO-1 expression is mediated by Nrf2 activation through the ERK and JNK signaling pathways. Our results also suggest that desipramine provides a novel effect of neuroprotection, and neurodegenerative process might play an important role in depression disorder.

  19. Isoflurane Preconditioning at Clinically Relevant Doses Induce Protective Effects of Heme Oxygenase-1 on Hepatic Ischemia Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    Yu Weifeng

    2011-03-01

    Full Text Available Abstract Background Activation of heme oxygenase-1 (HO-1 has been proved to reduce damages to the liver in ischemia reperfusion injury. The objective of present study was to determine whether clinic relevant doses of isoflurane treatment could be sufficient to activate HO-1 inducing, which confers protective effect against hepatic ischemia-reperfusion injury. Methods The hepatic artery and portal vein to the left and the median liver lobes of forty male Sprague-Dawley rats were occluded for 60 minutes. Reperfusion was allowed for 4 hours before the animal subjects were sacrificed. Six groups (n = 12 were included in the study. A negative control group received sham operation and positive control group a standard ischemia-reperfusion regimen. The third group was pretreated with isoflurane prior to the ischemia-reperfusion. The fourth group received an HO-1 inhibitor zinc protoporphyrin (Znpp prior to the isoflurane pretreatment and the ischemia-reperfusion. The fifth group received Znpp alone before ischemia-reperfusion procedure, and the sixth group was administrated with a HO-1 inducer hemin prior to IR. HO-1 in the liver was measured using an enzymatic activity assay, a Western blot analysis, as well as immunohistochemical method. Extent of liver damage was estimated by determination of the serum transaminases, liver lipid peroxidation and hepatic histology. Infiltration of the liver by neutrophils was measured using a myeloperoxidase activity assay. TNFα mRNA in the liver was measured using RT-PCR. Results Isoflurane pretreatment significantly attenuated the hepatic injuries and inflammatory responses caused by the ischemia reperfusion. Selectively inhibiting HO-1 with ZnPP completed blocked the protective effects of isoflurane. Inducing HO-1 with hemin alone produced protective effects similar in magnitude to that of isoflurane. Conclusions Clinic relevant doses of isoflurane attenuate ischemia reperfusion injury in rats by increasing the

  20. IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-inflammatory cytokine production.

    Science.gov (United States)

    Jamal Uddin, Md; Joe, Yeonsoo; Kim, Seul-Ki; Oh Jeong, Sun; Ryter, Stefan W; Pae, Hyun-Ock; Chung, Hun Taeg

    2016-03-01

    The immunoresponsive gene 1 (IRG1) protein has crucial functions in embryonic implantation and neurodegeneration. IRG1 promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species (ROS). The cytoprotective protein heme oxygenase-1 (HO-1), which generates endogenous carbon monoxide (CO), is expressed in the lung during Lipopolysaccharide (LPS) tolerance and cross tolerance. However, the detailed molecular mechanisms and functional links between IRG1 and HO-1 in the innate immune system remain unknown. In the present study, we found that the CO releasing molecule-2 (CORM-2) and chemical inducers of HO-1 increased IRG1 expression in a time- and dose-dependent fashion in RAW264.7 cells. Furthermore, inhibition of HO-1 activity by zinc protoporphyrin IX (ZnPP) and HO-1 siRNA significantly reduced expression of IRG1 under these conditions. In addition, treatment with CO and HO-1 induction significantly increased A20 expression, which was reversed by ZnPP and HO-1 siRNA. LPS-stimulated TNF-α was significantly decreased, whereas IRG1 and A20 were increased by CORM-2 application and HO-1 induction, which in turn were abrogated by ZnPP. Interestingly, siRNA against IRG1 and A20 reversed the effects of CO and HO-1 on LPS-stimulated TNF-α production. Additionally, CO and HO-1 inducers significantly increased IRG1 and A20 expression and downregulated TNF-α production in a LPS-stimulated sepsis mice model. Furthermore, the effects of CO and HO-1 on TNF-α production were significantly reversed when ZnPP was administered. In conclusion, CO and HO-1 induction regulates IRG1 and A20 expression, leading to inhibition of inflammation in vitro and in an in vivo mice model.

  1. The PPARγ agonist, rosiglitazone, attenuates airway inflammation and remodeling via heme oxygenase-1 in murine model of asthma

    Science.gov (United States)

    Xu, Jing; Zhu, Yan-ting; Wang, Gui-zuo; Han, Dong; Wu, Yuan-yuan; Zhang, De-xin; Liu, Yun; Zhang, Yong-hong; Xie, Xin-ming; Li, Shao-jun; Lu, Jia-mei; Liu, Lu; Feng, Wei; Sun, Xiu-zhen; Li, Man-xiang

    2015-01-01

    Aim: Rosiglitazone is one of the specific PPARγ agonists showing potential therapeutic effects in asthma. Though PPARγ activation was considered protective in inhibiting airway inflammation and remodeling in asthma, the specific mechanisms are still unclear. This study was aimed to investigate whether heme oxygenase-1 (HO-1) related pathways were involved in rosiglitazone-activated PPARγ signaling in asthma treatment. Methods: Asthma was induced in mice by multiple exposures to ovalbumin (OVA) in 8 weeks. Prior to every OVA challenge, the mice received rosiglitazone (5 mg/kg, po). After the mice were sacrificed, the bronchoalveolar lavage fluid (BALF), blood samples and lungs were collected for analyses. The activities of HO-1, MMP-2 and MMP-9 in airway tissue were assessed, and the expression of PPARγ, HO-1 and p21 proteins was also examined. Results: Rosiglitazone administration significantly attenuated airway inflammation and remodeling in mice with OVA-induced asthma, which were evidenced by decreased counts of total cells, eosinophils and neutrophils, and decreased levels of IL-5 and IL-13 in BALF, and by decreased airway smooth muscle layer thickness and reduced airway collagen deposition. Furthermore, rosiglitazone administration significantly increased PPARγ, HO-1 and p21 expression and HO-1 activity, decreased MMP-2 and MMP-9 activities in airway tissue. All the therapeutic effects of rosiglitazone were significantly impaired by co-administration of the HO-1 inhibitor ZnPP. Conclusion: Rosiglitazone effectively attenuates airway inflammation and remodeling in OVA- induced asthma of mice by activating PPARγ/HO-1 signaling pathway. PMID:25619395

  2. Mycobacterium tuberculosis Induction of Heme Oxygenase-1 Expression Is Dependent on Oxidative Stress and Reflects Treatment Outcomes

    Directory of Open Access Journals (Sweden)

    Neesha Rockwood

    2017-05-01

    Full Text Available The antioxidant enzyme heme oxygenase-1 (HO-1 is implicated in the pathogenesis of tuberculosis (TB and has been proposed as a biomarker of active disease. Nevertheless, the mechanisms by which Mycobacterium tuberculosis (Mtb induces HO-1 as well as how its expression is affected by HIV-1 coinfection and successful antitubercular therapy (ATT are poorly understood. We found that HO-1 expression is markedly increased in rabbits, mice, and non-human primates during experimental Mtb infection and gradually decreased during ATT. In addition, we examined circulating concentrations of HO-1 in a cohort of 130 HIV-1 coinfected and uninfected pulmonary TB patients undergoing ATT to investigate changes in expression of this biomarker in relation to HIV-1 status, radiological disease severity, and treatment outcome. We found that plasma levels of HO-1 were elevated in untreated HIV-1 coinfected TB patients and correlated positively with HIV-1 viral load and negatively with CD4+ T cell count. In both HIV-1 coinfected and Mtb monoinfected patients, HO-1 levels were substantially reduced during successful TB treatment but not in those who experienced treatment failure or subsequently relapsed. To further delineate the molecular mechanisms involved in induction of HO-1 by Mtb, we performed a series of in vitro experiments using mouse and human macrophages. We found that Mtb-induced HO-1 expression requires NADPH oxidase-dependent reactive oxygen species production induced by the early-secreted antigen ESAT-6, which in turn triggers nuclear translocation of the transcription factor NRF-2. These observations provide further insight into the utility of HO-1 as a biomarker of both disease and successful therapy in TB monoinfected and HIV-TB coinfected patients and reveal a previously undocumented pathway linking expression of the enzyme with oxidative stress.

  3. Methionine sulfoxide reductase B3 deficiency stimulates heme oxygenase-1 expression via ROS-dependent and Nrf2 activation pathways

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Geun-Hee; Kim, Ki Young; Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr

    2016-05-13

    Methionine sulfoxide reductase B3 (MsrB3), which is primarily found in the endoplasmic reticulum (ER), is an important protein repair enzyme that stereospecifically reduces methionine-R-sulfoxide residues. We previously found that MsrB3 deficiency arrests the cell cycle at the G{sub 1}/S stage through up-regulation of p21 and p27. In this study, we report a critical role of MsrB3 in gene expression of heme oxygenase-1 (HO-1), which has an anti-proliferative effect associated with p21 up-regulation. Depletion of MsrB3 elevated HO-1 expression in mammalian cells, whereas MsrB3 overexpression had no effect. MsrB3 deficiency increased cellular reactive oxygen species (ROS), particularly in the mitochondria. ER stress, which is associated with up-regulation of HO-1, was also induced by depletion of MsrB3. Treatment with N-acetylcysteine as an ROS scavenger reduced augmented HO-1 levels in MsrB3-depleted cells. MsrB3 deficiency activated Nrf2 transcription factor by enhancing its expression and nuclear import. The activation of Nrf2 induced by MsrB3 depletion was confirmed by increased expression levels of its other target genes, such as γ-glutamylcysteine ligase. Taken together, these data suggest that MsrB3 attenuates HO-1 induction by inhibiting ROS production, ER stress, and Nrf2 activation. -- Highlights: •MsrB3 depletion induces HO-1 expression. •MsrB3 deficiency increases cellular ROS and ER stress. •MsrB3 deficiency activates Nrf2 by increasing its expression and nuclear import. •MsrB3 attenuates HO-1 induction by inhibiting ROS production and Nrf2 activation.

  4. Heme oxygenase-1 (HO-1 expression in prostate cancer cells modulates the oxidative response in bone cells.

    Directory of Open Access Journals (Sweden)

    Mercedes Ferrando

    Full Text Available Prostate cancer (PCa is a leading cause of death among males. It is currently estimated that inflammatory responses are linked to 15-20% of all deaths from cancer worldwide. PCa is dominated by complications arising from metastasis to the bone where the tumor cells interact with the bone microenvironment impairing the balance between bone formation and degradation. However, the molecular nature of this interaction is not completely understood. Heme oxygenase-1 (HO-1 counteracts oxidative damage and inflammation. Previous studies from our laboratory showed that HO-1 is implicated in PCa, demonstrating that endogenous HO-1 inhibits bone derived-prostate cancer cells proliferation, invasion and migration and decreases tumor growth and angiogenesis in vivo. The aim of this work was to analyze the impact of HO-1 modulated PCa cells on osteoblasts proliferation in vitro and on bone remodeling in vivo. Using a co-culture system of PC3 cells with primary mice osteoblasts (PMOs, we demonstrated that HO-1 pharmacological induction (hemin treatment abrogated the diminution of PMOs proliferation induced by PCa cells and decreased the expression of osteoclast-modulating factors in osteoblasts. No changes were detected in the expression of genes involved in osteoblasts differentiation. However, co-culture of hemin pre-treated PC3 cells (PC3 Hem with PMOs provoked an oxidative status and activated FoxO signaling in osteoblasts. The percentage of active osteoblasts positive for HO-1 increased in calvarias explants co-cultured with PC3 Hem cells. Nuclear HO-1 expression was detected in tumors generated by in vivo bone injection of HO-1 stable transfected PC3 (PC3HO-1 cells in the femur of SCID mice. These results suggest that HO-1 has the potential to modify the bone microenvironment impacting on PCa bone metastasis.

  5. Fibroblast growth factor 10 protects neuron against oxygen–glucose deprivation injury through inducing heme oxygenase-1

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong-Hua; Yang, Li-Ye; Chen, Wei; Li, Ying-Ke, E-mail: liyingke6f@126.com; Yuan, Hong-Bin, E-mail: yuanhongbin6f@126.com

    2015-01-02

    Highlights: • FGF10 attenuates OGD induced injury in cortical neuron. • FGF10 reduces OGD triggered ROS level in cortical neuron. • FGF10 induces HO-1 expression upon OGD stimuli in cortical neuron. • Knockdown of HO-1 impairs the neuroprotection of FGF10 in OGD model. - Abstract: Fibroblast growth factors (FGFs) are a family of structurally related heparin-binding proteins with diverse biological functions. FGFs participate in mitogenesis, angiogenesis, cell proliferation, development, differentiation and cell migration. Here, we investigated the potential effect of FGF10, a member of FGFs, on neuron survival in oxygen–glucose deprivation (OGD) model. In primary cultured mouse cortical neurons upon OGD, FGF10 treatment (100 and 1000 ng/ml) attenuated the decrease of cell viability and rescued the LDH release. Tuj-1 immunocytochemistry assay showed that FGF10 promoted neuronal survival. Apoptosis assay with Annexin V + PI by flow cytometry demonstrated that FGF10 treatment reduced apoptotic cell proportion. Moreover, immunoblotting showed that FGF10 alleviated the cleaved caspase-3 upregulation caused by OGD. FGF10 treatment also depressed the OGD-induced increase of caspase-3, -8 and -9 activities. At last, we found FGF10 triggered heme oxygenase-1 (HO-1) protein expression rather than hypoxia-inducible factor-1 (HIF-1), AMP-activated protein kinase (AMPK) signaling and extracellular signal-regulated kinases 1/2 (ERK1/2) signaling. Knockdown of HO-1 by siRNA partly abolished the neuroprotection of FGF10 in OGD model. In summary, our observations provide the first evidence for the neuroprotective function of FGF10 against ischemic neuronal injury and suggest that FGF10 may be a promising agent for treatment of ischemic stroke.

  6. Impact of Bariatric Surgery on Heme Oxygenase-1, Inflammation, and Insulin Resistance in Morbid Obesity with Obstructive Sleep Apnea.

    Science.gov (United States)

    Tirado, Raquel; Masdeu, Maria José; Vigil, Laura; Rigla, Mercedes; Luna, Alexis; Rebasa, Pere; Pareja, Rocío; Hurtado, Marta; Caixàs, Assumpta

    2017-09-01

    Morbid obesity and obstructive sleep apnea (OSA) interact at an inflammatory level. Bariatric surgery reduces inflammatory responses associated with obesity. Heme oxygenase-1 (HO-1) is an enzyme with anti-inflammatory properties, which might be increased in morbid obesity or OSA. We studied morbidly obese patients with OSA to determine: (a) HO-1 plasma concentrations according to OSA severity and their relationship with insulin resistance and inflammation and (b) the impact of bariatric surgery on HO-1 and parameters of insulin resistance and inflammation. We analyzed the homeostasis model insulin resistance index (HOMA) and plasma concentrations of HO-1, tumor necrosis factor alpha, interleukin-6, interleukin-1-beta, C reactive protein (CRP), and adiponectin according to polysomnography findings in 66 morbidly obese patients before bariatric surgery and 12 months after surgery. Before surgery, HO-1 plasma concentrations were similar in three groups of patients with mild, moderate, and severe OSA, and correlated with HOMA (r = 0.27, p = 0.02). Twelve months after surgery, low-grade inflammation and insulin resistance had decreased in all the groups, but HO-1 plasma concentration had decreased only in the severe OSA group (p = 0.02). In this group, the reduction in HO-1 correlated with a reduction in CRP concentrations (r = 0.43, p = 0.04) and with improved HOMA score (r = 0.37, p = 0.03). Bariatric surgery decreases HO-1 concentrations in morbid obesity with severe OSA, and this decrease is associated with decreases in insulin resistance and in inflammation.

  7. Treatment of Chronic Experimental Autoimmune Encephalomyelitis with Epigallocatechin-3-Gallate and Glatiramer Acetate Alters Expression of Heme-Oxygenase-1.

    Directory of Open Access Journals (Sweden)

    Antonia Janssen

    Full Text Available We previously demonstrated that epigallocatechin-3-gallate (EGCG synergizes with the immunomodulatory agent glatiramer acetate (GA in eliciting anti-inflammatory and neuroprotective effects in the relapsing-remitting EAE model. Thus, we hypothesized that mice with chronic EAE may also benefit from this combination therapy. We first assessed how a treatment with a single dose of GA together with daily application of EGCG may modulate EAE. Although single therapies with a suboptimal dose of GA or EGCG led to disease amelioration and reduced CNS inflammation, the combination therapy had no effects. While EGCG appeared to preserve axons and myelin, the single GA dose did not improve axonal damage or demyelination. Interestingly, the neuroprotective effect of EGCG was abolished when GA was applied in combination. To elucidate how a single dose of GA may interfere with EGCG, we focused on the anti-inflammatory, iron chelating and anti-oxidant properties of EGCG. Surprisingly, we observed that while EGCG induced a downregulation of the gene expression of heme oxygenase-1 (HO-1 in affected CNS areas, the combined therapy of GA+EGCG seems to promote an increased HO-1 expression. These data suggest that upregulation of HO-1 may contribute to diminish the neuroprotective benefits of EGCG alone in this EAE model. Altogether, our data indicate that neuroprotection by EGCG in chronic EAE may involve regulation of oxidative processes, including downmodulation of HO-1. Further investigation of the re-dox balance in chronic neuroinflammation and in particular functional studies on HO-1 are warranted to understand its role in disease progression.

  8. Heme Oxygenase-1 Induction by Carbon Monoxide Releasing Molecule-3 Suppresses Interleukin-1β-Mediated Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Chih-Chung Lin

    2017-11-01

    Full Text Available Neurodegenerative disorders and brain damage are initiated by excessive production of reactive oxygen species (ROS, which leads to tissue injury, cellular death and inflammation. In cellular anti-oxidant systems, heme oxygenase-1 (HO-1 is an oxidative-sensor protein induced by ROS generation or carbon monoxide (CO release. CO releasing molecules (CORMs, including CORM-3, exert anti-oxidant and anti-inflammatory effects. However, the molecular mechanisms of CORM-3-induced HO-1 expression and protection against interleukin (IL-1β-induced inflammatory responses have not been fully elucidated in rat brain astrocytes (RBA-1. To study the regulation of CORM-3-induced HO-1 expression, signaling pathways, promoter activity, mRNA and protein expression were assessed following treatment with pharmacological inhibitors and gene-specific siRNA knockdown. We found that CORM-3 mediated HO-1 induction via transcritional and translational processes. Furthermore, CORM-3-induced HO-1 expression was mediated by phosphorylation of several protein kinases, such as c-Src, Pyk2, protein kinase Cα (PKCα and p42/p44 mitogen-activated protein kinase (MAPK, which were inhibited by respective pharmacological inhibitors or by gene-specific knockdown with siRNA transfections. Next, we found that CORM-3 sequentially activated the c-Src/Pyk2/PKCα/p42/p44 MAPK pathway, thereby up-regulating mRNA for the activator protein (AP-1 components c-Jun and c-Fos; these effects were attenuated by an AP-1 inhibitor (Tanshinone IIA; TSIIA and other relevant inhibitors. Moreover, CORM-3-induced upregulation of HO-1 attenuated the IL-1β-induced cell migration and matrix metallopeptidase-9 mRNA expression in RBA-1 cells. These effects were reversed by an matrix metalloproteinase (MMP2/9 inhibitor or by transfection with HO-1 siRNA.

  9. Heme oxygenase-1 attenuates inflammation and oxidative damage in a rat model of smoke-induced emphysema.

    Science.gov (United States)

    Wei, Jingjing; Fan, Guoquan; Zhao, Hui; Li, Jianqiang

    2015-11-01

    Emphysema is a serious disease of the respiratory system and is associated with inflammation and oxidative stress. Heme oxygenase-1 (HO-1), a rate-limiting enzyme involved in heme biosynthesis, exerts potent anti-inflammatory, antioxidant, anti-apoptotic and anti‑proliferative effects in various diseases. In the present study, we examined the effects of HO-1 on smoke‑induced emphysema, as well as the underlying mechanisms in a rat model of smoke-induced emphysema. Rats were either exposed to cigarette smoke or sham‑exposed for 20 weeks to establish the model of smoke-induced emphysema. The rats were subcutaneously injected with protoporphyrin IX [tin-protoporphyrin IX (SnPP) or ferriprotoporphyrin IX chloride (hemin)] during this period to examine the protective effects of HO-1. Subsequently, the development of emphysema, inflammatory cells, the levels of inflammatory mediators, particularly interleukin (IL)-17, tumor necrosis factor (TNF)‑α, monocyte chemotactic protein‑1 [MCP‑1, also known as chemokine (C-C motif) ligand 2 (CCL2)], IL-8 [also known as chemokine (C-X-C motif) ligand 8 (CXCL8)], macrophage inflammatory protein‑2α [MIP-2α, also known as chemokine (C-X-C motif) ligand 2 (CXCL2)] and IL-10, as well as the malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) content were determined. Exposure to smoke increased the total cell, neutrophil and macrophage counts in the bronchoalveolar lavage fluid (BALF). It also increased the levels of the inflammatory mediators, IL-17, TNF-α, MCP-1, IL-8 and MIP-2α, as well as the MDA content and induced emphysema. Treatment with hemin upregulated HO-1 expression and attenuated the development of smoke-induced emphysema by reducing inflammatory cell infiltration, decreasing the levels of inflammatory mediators and attenuating oxidative damage, to a certain extent. In conclusion, our findings demonstrate that HO-1 exerts anti-inflammatory and antioxidant effects, thus attenuating the

  10. Upregulation of endothelial heme oxygenase-1 expression through the activation of the JNK pathway by sublethal concentrations of acrolein.

    Science.gov (United States)

    Wu, C C; Hsieh, C W; Lai, P H; Lin, J B; Liu, Y C; Wung, B S

    2006-08-01

    Acrolein is a highly electrophilic alpha,beta-unsaturated aldehyde that is present in cigarette smoke. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme activated by various such electrophilic compounds. In this study, the regulatory effects of acrolein upon the expression of HO-1 were investigated in endothelial cells (ECs). We demonstrate that acrolein induces the elevation of HO-1 protein levels, and subsequent enzyme activity, at non-cytotoxic concentrations. An additional alpha,beta-unsaturated aldehyde, cinnamaldehyde, was also found to increase HO-1 expression and have less cytotoxicity than acrolein. Moreover, acrolein-mediated HO-1 induction is abrogated in the presence of actinomycin D and cycloheximide. Nrf2 is a transcription factor involved in the induction of HO-1 through an antioxidant response element (ARE) in the promoter region of the HO-1 gene. We show that acrolein induces Nrf2 translocation and ARE-luciferase reporter activity. Acrolein was also found to induce the production of both superoxide and H2O2 at levels greater than 100 microM. However, with the exception of NAC, no antioxidant generated any effect upon acrolein-dependent HO-1 expression in ECs. Our present findings suggest that reactive oxygen species (ROS) may not be a major modulator for HO-1 induction. Using buthionine sulfoximine to deplete the intracellular GSH levels further enhanced the effects of acrolein. We also found that cellular GSH level was rapidly reduced after both 10 and 100 microM acrolein treatment. However, after 6 h of exposure to ECs, only 10 microM acrolein treatment increases GSH level. In addition, only the JNK inhibitor SP600125 and tyrosine kinase inhibitor genistein had any significant inhibitory impact upon the upregulation of HO-1 by acrolein. Pretreatment with a range of other PI3 kinase inhibitors, including wortmannin and LY294002, showed no effects. Hence, we show in our current experiments that a sublethal concentration of acrolein is in fact a

  11. Upregulation of endothelial heme oxygenase-1 expression through the activation of the JNK pathway by sublethal concentrations of acrolein

    International Nuclear Information System (INIS)

    Wu, C.C.; Hsieh, C.W.; Lai, P.H.; Lin, J.B.; Liu, Y.C.; Wung, B.S.

    2006-01-01

    Acrolein is a highly electrophilic α,β-unsaturated aldehyde that is present in cigarette smoke. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme activated by various such electrophilic compounds. In this study, the regulatory effects of acrolein upon the expression of HO-1 were investigated in endothelial cells (ECs). We demonstrate that acrolein induces the elevation of HO-1 protein levels, and subsequent enzyme activity, at non-cytotoxic concentrations. An additional α,β-unsaturated aldehyde, cinnamaldehyde, was also found to increase HO-1 expression and have less cytotoxicity than acrolein. Moreover, acrolein-mediated HO-1 induction is abrogated in the presence of actinomycin D and cycloheximide. Nrf2 is a transcription factor involved in the induction of HO-1 through an antioxidant response element (ARE) in the promoter region of the HO-1 gene. We show that acrolein induces Nrf2 translocation and ARE-luciferase reporter activity. Acrolein was also found to induce the production of both superoxide and H 2 O 2 at levels greater than 100 μM. However, with the exception of NAC, no antioxidant generated any effect upon acrolein-dependent HO-1 expression in ECs. Our present findings suggest that reactive oxygen species (ROS) may not be a major modulator for HO-1 induction. Using buthionine sulfoximine to deplete the intracellular GSH levels further enhanced the effects of acrolein. We also found that cellular GSH level was rapidly reduced after both 10 and 100 μM acrolein treatment. However, after 6 h of exposure to ECs, only 10 μM acrolein treatment increases GSH level. In addition, only the JNK inhibitor SP600125 and tyrosine kinase inhibitor genistein had any significant inhibitory impact upon the upregulation of HO-1 by acrolein. Pretreatment with a range of other PI3 kinase inhibitors, including wortmannin and LY294002, showed no effects. Hence, we show in our current experiments that a sublethal concentration of acrolein is in fact a novel HO-1 inducer

  12. Protective effect of hypercapnic acidosis in ischemia-reperfusion lung injury is attributable to upregulation of heme oxygenase-1.

    Directory of Open Access Journals (Sweden)

    Shu-Yu Wu

    Full Text Available Hypercapnic acidosis (HCA has protective effects in animal models of acute lung injury, but the mechanism underlying the effect of HCA is unclear. Heme oxygenase-1 (HO-1 is an antioxidant enzyme that protects tissue from inflammation injury. We investigated whether HO-1 contributes to the protective effects of HCA in ischemia-reperfusion (IR-induced lung injury. Typical acute lung injury in rats was successfully induced by 40 min of ischemia and 90 min of reperfusion in an isolated perfused lung model. The rat lungs were randomly assigned to the control group, IR group or IR + HCA group with or without zinc protoporphyrin IX (ZnPP, an HO-1 activity inhibitor. At the end of the experiment, bronchoalveolar lavage fluid (BALF and lung tissues were collected to evaluate the degree of lung injury. In in vitro experiments, HO-1 siRNA transfected A549 cells were exposed to a normoxic or hypoxia-reoxygenation (H/R environment in the presence or absence of HCA. IR caused significant increases in the pulmonary arterial pressure, lung weight to body weight and wet/dry ratios, lung weight gain, capillary filtration coefficient, lung injury scores, neutrophil infiltration, and concentrations of protein and TNF-α in the BALF. IR also induced degradation of inhibitor of nuclear factor (NF-κB-α, increased IκB kinase (IKK-β phosphorylation and nuclear translocation of NF-κB, and up-regulated HO-1 expression and activity. Furthermore, IR decreased Bcl-2 protein expression and increased the number of active caspase-3 stained cells. HCA treatment enhanced HO-1 expression and activity, and accordingly reduced IKK-NF-κB signaling, inhibited apoptosis, and significantly attenuated IR-induced changes. Treatment with ZnPP partially blocked the protective effect of HCA. In addition, HO-1 siRNA significantly reversed HCA-mediated inhibition of NF-κB signaling in A549 cells subjected to H/R. In conclusion, the protective effect of HCA in IR lung injury in rats was

  13. Mechanism of hepatoprotection in proestrus female rats following trauma-hemorrhage: heme oxygenase-1-derived normalization of hepatic inflammatory responses.

    Science.gov (United States)

    Yang, Shaolong; Hu, Shunhua; Chen, Jianguo; Choudhry, Mashkoor A; Rue, Loring W; Bland, Kirby I; Chaudry, Irshad H

    2009-06-01

    Hepatic damage occurs in males and ovariectomized (OVX), not in proestrus (PE), females following trauma-hemorrhage (T-H). The mechanism responsible for hepatoprotection remains unknown. We hypothesized protection in PE is a result of enhanced heme oxygenase-1 (HO-1)-derived down-regulation of liver inflammatory responses. PE and OVX rats underwent T-H (midline laparotomy, 60% blood loss). PE rats received vehicle (Veh; saline), HO-1 inhibitor chromium mesoporphyrin IX chloride (CrMP; 2.5 mg/kg), zinc protoporphyrin IX (ZnPP; 25 mg/kg), or Akt/PI-3K inhibitor Wortmannin (Wort; 1 mg/kg) 30 min prior to resuscitation or sham operation i.p. OVX rats received Veh or 17beta-estradiol (E2; 1 mg/kg) 30 min before hemorrhage. Rats were killed 2 h thereafter. Following T-H, left ventricular performance was maintained in PE and E2 OVX rats but was depressed in OVX and CrMP-, ZnPP-, and Wort-treated PE rats; liver damage was not evident in PE rats, and CrMP, ZnPP, and Wort abrogated protection; liver HO-1, p38 MAPK, Akt/PI3K, and Bcl-2 expression increased in PE and E2 OVX rats, which was abrogated by CrMP, ZnPP, and Wort, and liver ICAM-1, caspase-3, phospho-IkappaB-alpha, and NF-kappaB expression increased in OVX and CrMP-, ZnPP-, and Wort-PE rats; liver myeloperoxidase, NF-kappaB DNA-binding activity, TNF-alpha, IL-6, plasma proinflammatory cytokines, and cytokine-induced neutrophil chemoattractants increased in OVX and CrMP-, ZnPP-, and Wort-PE rats; and plasma estradiol levels and hepatic estrogen receptor-alpha and -beta expression decreased in OVX but were unaltered by CrMP, ZnPP, and Wort. Thus, enhanced HO-1 in PE and E2 OVX females modulates inflammatory responses and protects liver following T-H.

  14. Protective Effect of Hypercapnic Acidosis in Ischemia-Reperfusion Lung Injury Is Attributable to Upregulation of Heme Oxygenase-1

    Science.gov (United States)

    Wu, Shu-Yu; Li, Min-Hui; Ko, Fu-Chang; Wu, Geng-Chin

    2013-01-01

    Hypercapnic acidosis (HCA) has protective effects in animal models of acute lung injury, but the mechanism underlying the effect of HCA is unclear. Heme oxygenase-1 (HO-1) is an antioxidant enzyme that protects tissue from inflammation injury. We investigated whether HO-1 contributes to the protective effects of HCA in ischemia-reperfusion (IR)-induced lung injury. Typical acute lung injury in rats was successfully induced by 40 min of ischemia and 90 min of reperfusion in an isolated perfused lung model. The rat lungs were randomly assigned to the control group, IR group or IR + HCA group with or without zinc protoporphyrin IX (ZnPP), an HO-1 activity inhibitor. At the end of the experiment, bronchoalveolar lavage fluid (BALF) and lung tissues were collected to evaluate the degree of lung injury. In in vitro experiments, HO-1 siRNA transfected A549 cells were exposed to a normoxic or hypoxia-reoxygenation (H/R) environment in the presence or absence of HCA. IR caused significant increases in the pulmonary arterial pressure, lung weight to body weight and wet/dry ratios, lung weight gain, capillary filtration coefficient, lung injury scores, neutrophil infiltration, and concentrations of protein and TNF-α in the BALF. IR also induced degradation of inhibitor of nuclear factor (NF)-κB-α, increased IκB kinase (IKK)-β phosphorylation and nuclear translocation of NF-κB, and up-regulated HO-1 expression and activity. Furthermore, IR decreased Bcl-2 protein expression and increased the number of active caspase-3 stained cells. HCA treatment enhanced HO-1 expression and activity, and accordingly reduced IKK-NF-κB signaling, inhibited apoptosis, and significantly attenuated IR-induced changes. Treatment with ZnPP partially blocked the protective effect of HCA. In addition, HO-1 siRNA significantly reversed HCA-mediated inhibition of NF-κB signaling in A549 cells subjected to H/R. In conclusion, the protective effect of HCA in IR lung injury in rats was mediated in

  15. Induction of heme oxygenase-1 attenuates lipopolysaccharide-induced cyclooxygenase-2 expression in mouse brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Yang Chuen-Mao

    2010-11-01

    Full Text Available Abstract Background Prostaglandin E2 (PGE2, an arachidonic acid metabolite converted by cyclooxygenase-2 (COX-2, plays important roles in the regulation of endothelial functions in response to bacterial infection. The enzymatic activity of COX-2 can be down-regulated by heme oxygenase-1 (HO-1 induction. However, the mechanisms underlying HO-1 modulating COX-2 protein expression are not known. Objective The aim of the present study was to investigate whether the up-regulation of HO-1 regulates COX-2 expression induced by lipopolysaccharide (LPS, an endotoxin produced by Gram negative bacteria, in mouse brain endothelial cells (bEnd.3 Methods Cultured bEnd.3 cells were used to investigate LPS-induced COX-2 expression and PGE2 production. Cobalt protoporphyrin IX (CoPP, an HO-1 inducer, infection with a recombinant adenovirus carried with HO-1 gene (Adv-HO-1, or zinc protoporphyrin (ZnPP, an HO-1 inhibitor was used to stimulate HO-1 induction or inhibit HO-1 activity. The expressions of COX-2 and HO-1 were evaluated by western blotting. PGE2 levels were detected by an enzyme-linked immunoassay. Hemoglobin (a chelator of carbon monoxide, CO, one of metabolites of HO-1 and CO-RM2 (a CO releasing molecule were used to investigate the mechanisms of HO-1 regulating COX-2 expression. Results We found that LPS-induced COX-2 expression and PGE2 production were mediated through NF-κB (p65 via activation of Toll-like receptor 4 (TLR4. LPS-induced COX-2 expression was inhibited by HO-1 induction by pretreatment with CoPP or infection with Adv-HO-1. This inhibitory effect of HO-1 was reversed by pretreatment with either ZnPP or hemoglobin. Pretreatment with CO-RM2 also inhibited TLR4/MyD88 complex formation, NF-κB (p65 activation, COX-2 expression, and PGE2 production induced by LPS. Conclusions We show here a novel inhibition of HO-1 on LPS-induced COX-2/PGE2 production in bEnd.3. Our results reinforce the emerging role of cerebral endothelium-derived HO-1

  16. NLRP3 inflammasome activation in D-galactosamine and lipopolysaccharide-induced acute liver failure: role of heme oxygenase-1.

    Science.gov (United States)

    Kim, Seok-Joo; Lee, Sun-Mee

    2013-12-01

    D-Galactosamine (GalN) and lipopolysaccharide (LPS) are commonly used to study mechanisms of hepatic malfunction that result in hepatic inflammation and subsequent fulminant hepatic failure. Inflammasomes are intracellular multiprotein complexes that in response to cellular danger signals trigger the biological maturation of proinflammatory cytokines. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that induces anti-inflammatory and antioxidant activity against oxidative cellular stress. This study examined activation of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome in GalN/LPS-induced hepatic injury and the role of HO-1 in the signaling pathways of inflammasome. Mice (C57BL/6) were pretreated twice with hemin (HO-1 inducer, 30 mg/kg) and zinc protoporphyrin (ZnPP; HO-1 inhibitor, 10mg/kg) at 12 and 2h before GalN (800 mg/kg)/LPS (40 μg/kg) administration. HO-1 induction with hemin reversed the lethality induced by GalN/LPS administration, and ZnPP pretreatment blocked this change. Lipid peroxidation markedly increased after GalN/LPS treatment, whereas glutathione content decreased in the GalN/LPS group. These changes were attenuated by hemin, but ZnPP reversed the effects of hemin. Serum levels of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β increased after GalN/LPS treatment; these increases were attenuated by hemin. Hepatic mRNA levels of TNF-α, IL-1β, and NLRP3 increased after GalN/LPS treatment, and hemin attenuated increases in TNF-α and IL-1β. After GalN/LPS treatment, the hepatic expression of NLRP3, ASC, and caspase-1 (p10) was increased. In immunoprecipitation studies, hemin attenuated the interaction of NLRP3 with ASC and caspase-1. GalN/LPS induced expression of the thioredoxin-interacting protein (TXNIP) gene and the interaction between NLRP3 and TXNIP; again, hemin attenuated these effects. The effects of hemin were reversed by ZnPP. Our findings suggest that activation of the NLRP3 inflammasome leads

  17. [Study on the role of autophagy in heme oxygenase 1 preventing hepatic ischemia/reperfusion injury in rats].

    Science.gov (United States)

    Lan, Sheng; Li, Jintai; Liu, Yi

    2017-03-01

    To identify the role of autopahgy in the protective mechanism of heme oxygenase 1 (HO-1) against hepatic ischemia/reperfusion (I/R) injury. Forty healthy male Sprague-Dawley (SD) rats were randomly (random number table) divided into five groups (n = 8 in each group), namely sham group, model group, cobalt protoporphyrin (CoPP) group, zinc protoporphyrin (ZnPP) group and 6-amino-3-methylpurine (3-MA) group. Partial hepatic I/R model was established by clamping the pedicles of left and median lobes for 1 hour and reopening for 6 hours in rats, and the rats in sham group were only received celiotomp without hepatic I/R. In the CoPP group, CoPP (a HO-1 inducer, 5 mg/kg) was administered i.p 24 hours before I/R. In the ZnPP or 3-MA group, besides pretreatment with CoPP, the rats were given ZnPP (a HO-1 inhibitor, 25 mg/kg) or 3-MA (an autophagy inhibitor, 30 mg/kg) i.p 1 hour before I/R. Serum alanine aminotransferase (ALT) was determined with automatic biochemistry analyzer. The hepatic pathological scores (PS) were determined under light microscope using hematoxylin-eosin (HE) staining. The hepatocyte apoptosis index (AI) was assessed with terminal dexynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Autophagosomes in liver tissue were counted under electron microscope. The mRNA expressions of HO-1, caspase-3, Beclin-1 and Atg-5 in the liver were determined by reverse transcription-polymerase chain reaction (RT-PCR). The HO-1 activity was also measured by the generation of bilirubin with the method of double-wave spectrophotometry. Compared with the sham group, the level of serum ALT significantly increased in the I/R group (U/L: 560.3±73.6 vs. 49.1±13.8, P ZnPP group, the activity of HO-1 was much lower than that in the CoPP group, and as a result autophagy was decreased and liver injury was increased. In the 3-MA group, although there was no difference in the activity of HO-1 compared with that in the CoPP group, autophagy was inhibited

  18. Hepatic expression of heme oxygenase-1 and antioxidant response element-mediated genes following administration of ethinyl estradiol to rats

    International Nuclear Information System (INIS)

    Morio, Lisa A.; Leone, Angelique; Sawant, Sharmilee P.; Nie, Alex Y.; Brandon Parker, J.; Taggart, Peter; Barron, Alfred M.; McMillian, Michael K.; Lord, Peter

    2006-01-01

    Heme oxygenase-1 (HO-1) is one of several enzymes induced by hepatotoxicants, and is thought to have an important protective role against cellular stress during liver inflammation and injury. The objective of the present study was to evaluate the role of HO-1 in estradiol-induced liver injury. A single dose of ethinyl estradiol (500 mg/kg, po) resulted in mild liver injury. Repeated administration of ethinyl estradiol (500 mg/kg/day for 4 days, po) resulted in no detectable liver injury or dysfunction. Using RT-PCR analysis, we demonstrate that HO-1 gene expression in whole liver tissue is elevated (> 20-fold) after the single dose of ethinyl estradiol. The number and intensity of HO-1 immunoreactive macrophages were increased after the single dose of ethinyl estradiol. HO-1 expression was undetectable in hepatic parenchymal cells from rats receiving Methocel control or a single dose of ethinyl estradiol, however cytosolic HO-1 immunoreactivity in these cells after repeated dosing of ethinyl estradiol was pronounced. The increases in HO-1 mRNA and HO-1 immunoreactivity following administration of a single dose of ethinyl estradiol suggested that this enzyme might be responsible for the observed protection of the liver during repeated dosing. To investigate the effect of HO-1 expression on ethinyl estradiol-induced hepatotoxicity, rats were pretreated with hemin (50 μmol/kg, ip, a substrate and inducer of HO-1), with tin protoporphyrin IX (60 μmol/kg, ip, an HO-1 inhibitor), or with gadolinium chloride (10 mg/kg, iv, an inhibitor/toxin of Kupffer cells) 24 h before ethinyl estradiol treatment. Pretreatment with modulators of HO-1 expression and activity had generally minimal effects on ethinyl estradiol-induced liver injury. These data suggest that HO-1 plays a limited role in antioxidant defense against ethinyl estradiol-induced oxidative stress and hepatotoxicity, and suggests that other coordinately induced enzymes are responsible for protection observed with

  19. [Dynamic changes of heme oxygenase-1 protein and mRNA in the brains of rats with experimental allergic encephalomyelitis].

    Science.gov (United States)

    Tan, Guo-Jun; Zhu, Yi-Fei; Cao, Cui-Fang; Zhao, Xiao-Yun; Ma, Chang-Sheng; Yang, Tian-Zhu

    2004-10-25

    In order to investigate the role of heme oxygenase-1 (HO-1) in the molecular mechanism of experimental allergic encephalomyelitis (EAE), which was induced by guinea pig spinal cord homogenate + complete freund adjuvant on Wistar rats, we observed the gene of HO-1 and its protein expression with reverse transcriptase polymerase chain reaction(RT-PCR) and immunohistochemistry 1, 7, 14, and 21 d after EAE induction in rats. The relationship between HO-1 and the symptoms of EAE was also observed. The results showed that the levels of HO-1 mRNA and its protein expression were very low in the brains of the control group, whereas they were enhanced gradually with pathological course in the brain and onsets of symptoms, signs of EAE. On day 7, the level of HO-1 mRNA reached the peak, but the expression level of HO-1 protein in the brains reached the peak on day 14. The immunoreactive cells of HO-1 were mainly located at the choroid plexuses and subfornical organ (SFO), as well as in regions around the "sleeve-like" lesion foci, all of which were coincident with the locations of lesions of EAE. The levels of HO-1 mRNA and its protein expression were lowered gradually on day 21, which were in parallel with the severities of symptoms and signs of EAE. After a specific inhibitor of HO-1, Snpp-9, was applied, both of the symptoms and pathological lesions of EAE in the rat brains were mitigated markedly. Therefore, these results may suggest that the dynamic changes of HO-1 mRNA and its protein expression are in parallel with the changes of symptoms and pathological lesions of EAE in the brain. In conclusion, the levels of HO-1 mRNA and its protein expression in brains may play an important role in the pathogenesis of EAE, and application of inhibitors of HO-1 may be one of the potential therapeutic ways for the prevention and treatment of EAE.

  20. 50 Hz electric field effects on protein carbonyl (PCO), heme oxygenase-1 (HO-1) and hydroxyproline levels

    International Nuclear Information System (INIS)

    Ozgur, Elcin; Goknur, Guler; Seyhan, Nesrin

    2008-01-01

    Full text: Non-ionizing electromagnetic field (EMF) radiation sources, such as power lines and other Extremely Low Frequency (ELF) sources have become one of the most ubiquitous components of the spectrum of the human environment, and the possibility that they may have hazardous effects on human health is a major a public concern. Although it is well documented that EMFs have biological effects, the degree to which these exposures constitute a human health hazard is not clear yet. Today relation between production of oxidative stress resulted by reactive oxygen species and electrical stimulus, also the protective effects of antioxidant treatments are mentioned in many researches. In this study, it was aimed to determine both oxidation of proteins and protein collagen levels under 50 Hz 12 kV/m vertical Electric (E) Field exposure and the N-Acetylcysteine (NAC) administration which is a well-known antioxidant. To this end, protein carbonyl levels (PCO) as bio-markers of oxidative stress and Heme oxygenase-1 (HO-1), an enzyme that catalyzes the degradation of heme analyzed to figure out the protein oxidation. Hydroxyproline level, a major component of the protein collagen was measured in order to express the level of collagen in lung tissue. Guinea pigs, weighted 250-300 g, were used in the study. A total forty male guinea pigs were randomly divided into four groups which are composed of 10 guinea pigs each for groups: 1) Group I (Sham); 2) Group II (NAC-administrated group); 3) Group III (E Field Exposure group); 4) Group IV (NAC administrated + E Field exposed group). One week exposure period for 8 hours per daily was conducted for each exposure groups (Group III, Group IV ). The electric field exposure period was from 9 a.m. to 5 p.m. After the last exposure day, the guinea pigs were anesthetized by the injection of ketamine and xylazine. The guinea pigs were killed by decapitation. Statistical analyses were carried out using SPSS software (SPSS 11.5 for windows

  1. Serum Heme Oxygenase-1 and BMP-7 Are Potential Biomarkers for Bone Metabolism in Patients with Rheumatoid Arthritis and Ankylosing Spondylitis.

    Science.gov (United States)

    Yuan, Tong-Ling; Chen, Jin; Tong, Yan-Li; Zhang, Yan; Liu, Yuan-Yuan; Wei, James Cheng-Chung; Liu, Yi; Zhao, Yi; Herrmann, Martin

    2016-01-01

    Backgrounds. Heme oxygenase-1 (HO-1) has been reported to play a regulatory role in osteoclastogenesis. Bone morphogenetic protein (BMP) pathways induce osteoblastic differentiation and bone remodeling. Aims. To identify serum levels of HO-1, BMP-7, and Runt related-transcription factor 2 (Runx2) in patients with rheumatoid arthritis (RA) and ankylosing spondylitis (AS) and to investigate the relationships between HO-1, BMP-7, Runx2, and other common biomarkers for bone metabolism. Results. Serum levels of HO-1 and BMP-7 were revealed to be significantly higher in patients with RA or AS than in healthy controls (p pathways in the two types of arthritis.

  2. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhao-Hua [Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Kumari, Namita; Nekhai, Sergei [Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington, DC (United States); Clouse, Kathleen A. [Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Wahl, Larry M. [National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Yamada, Kenneth M. [Laboratory of Cell and Development Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Dhawan, Subhash, E-mail: subhash.dhawan@fda.hhs.gov [Viral Immunology Section, Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2013-06-07

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed by transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM.

  3. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    International Nuclear Information System (INIS)

    Zhou, Zhao-Hua; Kumari, Namita; Nekhai, Sergei; Clouse, Kathleen A.; Wahl, Larry M.; Yamada, Kenneth M.; Dhawan, Subhash

    2013-01-01

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed by transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM

  4. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells

    International Nuclear Information System (INIS)

    Choi, Solip; Nguyen, Van Thu; Tae, Nara; Lee, Suhyun; Ryoo, Sungwoo; Min, Byung-Sun; Lee, Jeong-Hyung

    2014-01-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE 2 , butyl lucidenateD 2 (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum. - Highlights: • The anti-inflammatory effects of selected triterpenes from Ganoderma lucidum are demonstrated. • Heme oxygenase-1 induction is attributable to the anti-inflammatory properties of these triterpenes

  5. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Solip [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of); Nguyen, Van Thu [College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702 (Korea, Republic of); Tae, Nara; Lee, Suhyun [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of); Ryoo, Sungwoo [Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of); Min, Byung-Sun [College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702 (Korea, Republic of); Lee, Jeong-Hyung, E-mail: jhlee36@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of)

    2014-11-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE{sub 2}, butyl lucidenateD{sub 2} (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum. - Highlights: • The anti-inflammatory effects of selected triterpenes from Ganoderma lucidum are demonstrated. • Heme oxygenase-1 induction is attributable to the anti-inflammatory properties of these

  6. Endothelin-1-induced hypertrophic alterations and heme oxygenase-1 expression in cardiomyoblasts are counteracted by beta estradiol: in vitro and in vivo studies.

    Science.gov (United States)

    Barta, Tunde; Tosaki, Agnes; Haines, David; Balla, Gyorgy; Lekli, Istvan; Tosaki, Arpad

    2018-04-01

    Endothelin-1 (ET-1), a potent vasoconstrictor normally active in maintaining vascular tone, may mediate significant pathogenic effects, contributing to several serious diseases when aberrantly expressed or regulated. The present study evaluates the capacity of ET-1 to affect endothelin-1-associated hypertrophic activity and decreased expression of heme oxygenase-1 by H9c2 rat cardiomyoblasts in vitro, corresponding to in vivo processes underlying cardiovascular diseases (CVDs). Beta estradiol (β-E) is tested for its capacity to alter the effects of ET-1. H9c2 cells, cultured 48 h, were stimulated with 100-10,000 nM of ET-1 and evaluated for changes in cell size, cell viability, and expression of the cytoprotective heat shock protein heme oxygenase-1 (HO-1), with 200 nM of β-E included in selected cultures to evaluate its effect on ET-1-mediated changes. The application of 100 to 10,000 nM of ET-1 resulted in a significant increase in average cell size and decreases in both cell viability and HO-1 protein content (p < 0.05). Moreover, 200 nM of β-E was observed to significantly counteract these effects by cardiomyoblasts stimulated with 1000 nM of ET-1 (p < 0.05). Sprague-Dawley rats treated intravenously with 1000 ng/kg of ET-1 demonstrated reduced HO-1 expression in peripheral blood and left ventricular tissue, which was counteracted by injection of 200 ng/kg β-E-demonstrating a possible correspondence between in vitro and in vivo effects. An outcome of particular value for clinical use of β-E, in the management of cardiac hypertrophy, is the observed capacity of the drug to abate ET-1-mediated suppression of HO-1 expression. It has been previously demonstrated that HO-1 inducers exhibit potent cardioprotective properties, thus offering the promise of combining them with β-E, allowing lower effective dosage of the drug and concomitantly lower adverse side effects associated with its clinical use. Major findings of this investigation are that

  7. Simvastatin protects against the development of monocrotaline-induced pulmonary hypertension in rats via a heme oxygenase-1-dependent pathway.

    Science.gov (United States)

    Zhang, Wei-Hua; Zhang, Yun-Jian; Liu, Chun-Ping; Yu, Bing-Xiang; Lu, Wei-Xuan

    2011-10-01

    Heme oxygease-1 (HO-1) is the rate-limiting enzyme in heme catabolism. Induction of HO-1 has been shown to have vasodilatory, anti-inflammatory, and proapoptotic effects. More recently, experimental studies suggested the potential of simvastatin as a novel therapy for pulmonary hypertension (PH); however, the underlying mechanism remains to be investigated. The aim of this study was to evaluate whether HO-1 is required for the pulmonary vascular protective effects of simvastatin. Simvastatin (2 mg/kg/day) was administered once daily to rats for 4 weeks after monocrotaline (MCT) injection. Zn-protoporphyrin (Znpp), a potent inhibitor of HO, was used to confirm the role of HO-1. The hemodynamic changes, right heart hypertrophy, interleukin-6 (IL-6) level, and HO-1 protein expression in lungs were measured at day 28. Simvastatin significantly ameliorated mean pulmonary arterial hypertension (20.6 mm Hg). In addition, perivascular infiltration of inflammatory cells and the level of IL-6 were decreased in simvastatin treatment group. Simvastatin also increased significantly lung HO-1 protein expression. Inhibiting HO-1 using Znpp resulted in a loss of the effect of simvastatin in MCT rats. These results suggest that HO-1 expression is critical for the vascular protective effects of simvastatin in MCT-induced PH rats.

  8. Chinese herbal medicine compound Yi-Zhi-Hao pellet inhibits replication of influenza virus infection through activation of heme oxygenase-1

    Directory of Open Access Journals (Sweden)

    Jinqiu Yin

    2017-11-01

    Full Text Available As a leading cause of respiratory disease, influenza A virus (IAV presents a pandemic threat in annual seasonal outbreaks. Given the limitation of existing anti-influenza therapies, there remains to be a requirement for new drugs. Compound Yi-Zhi-Hao pellet (CYZH is a famous traditional Chinese medicine (TCM used in the clinic, whose formula has been recorded in Complication of National Standard for Traditional Chinese Medicine to treat common cold. In this study, we found that CYZH exhibited a broad-spectrum anti-influenza activity and inhibited the expression of viral RNA and proteins in vitro. Mechanistically, CYZH had no inhibitory activities against viral protein hemagglutinin and IAV RNA-dependent RNA polymerase. Instead, it induced activation of erythroid 2-related factor 2 (Nrf2 and nuclear factor kappa B (NF-κB, which subsequently upregulated heme oxygenase-1 (HO-1 expression. Also, CYZH protected cells from oxidative damage induced by reactive oxygen series. In conclusions, CYZH inhibits IAV replication in vitro, at least partly by activating expression of the Nrf2/HO-1 pathway.

  9. Cobalt Alleviates GA-Induced Programmed Cell Death in Wheat Aleurone Layers via the Regulation of H2O2 Production and Heme Oxygenase-1 Expression

    Science.gov (United States)

    Wu, Mingzhu; Li, Jiale; Wang, Fangquan; Li, Feng; Yang, Jun; Shen, Wenbiao

    2014-01-01

    Heme oxygenase-1 (HO-1) and hydrogen peroxide (H2O2) are key signaling molecules that are produced in response to various environmental stimuli. Here, we demonstrate that cobalt is able to delay gibberellic acid (GA)-induced programmed cell death (PCD) in wheat aleurone layers. A similar response was observed when samples were pretreated with carbon monoxide (CO) or bilirubin (BR), two end-products of HO catalysis. We further observed that increased HO-1 expression played a role in the cobalt-induced alleviation of PCD. The application of HO-1-specific inhibitor, zinc protoporphyrin-IX (ZnPPIX), substantially prevented the increases of HO-1 activity and the alleviation of PCD triggered by cobalt. The stimulation of HO-1 expression, and alleviation of PCD might be caused by the initial H2O2 production induced by cobalt. qRT-PCR and enzymatic assays revealed that cobalt-induced gene expression and the corresponding activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), three enzymes that metabolize reactive oxygen species, were consistent with the H2O2 accumulation during GA treatment. These cobalt responses were differentially blocked by co-treatment with ZnPPIX. We therefore suggest that HO-1 functions in the cobalt-triggered alleviation of PCD in wheat aleurone layers, which is also dependent on the enhancement of the activities of antioxidant enzymes. PMID:25405743

  10. A role for heme oxygenase-1 in the antioxidant and antiapoptotic effects of erythropoietin: the start of a good news/bad news story?

    Science.gov (United States)

    Calò, Lorenzo A; Davis, Paul A; Piccoli, Antonio; Pessina, Achille C

    2006-01-01

    Erythropoietin (EPO) is the major regulator of erythropoiesis. EPO's actions have been shown to be antiapoptotic and dependent on JAK2 signaling and Akt phosphorylation. These effects serve as link between EPO and heme oxygenase-1 (HO-1). HO-1 is an inducible enzyme with potent antioxidant and antiapoptotic activities which are regulated by Akt signaling. EPO's ability to alter cellular systems that involve apoptosis and oxidants suggests that EPO treatments are likely to have multiple and different effects which may start a good news/bad news story. Recombinant human EPO is the recognized treatment of choice to address anemia and to stimulate erythropoiesis in chronic renal failure patients, through its antiapoptotic action which likely involves HO-1. On the other hand, EPO treatment to address anemia in cancer patients, while providing significant improvements in cancer patients' quality of life, its effects on survival are equivocal, likely due to its linkage with HO-1. Two clinical trials of EPO in patients with solid tumors have, in fact, shown specific negative effects on survival. However, EPO's effect on tumor growth and survival is not uniformily pro growth and pro survival, as EPO may act synergistically with chemotherapy to induce apoptosis. Finally, compounds have been synthesized that do not trigger EPO receptor and thus may allow experimental distinction and, therefore, at least potentially affect at the clinical level the tissue-protective effects of EPO (e.g., antiapoptosis) without provoking its other potentially detrimental effects. Copyright 2006 S. Karger AG, Basel

  11. Involvement of Heme Oxygenase-1 Induction in the Cytoprotective and Immunomodulatory Activities of Viola patrinii in Murine Hippocampal and Microglia Cells

    Directory of Open Access Journals (Sweden)

    Bin Li

    2012-01-01

    Full Text Available A number of diseases that lead to injury of the central nervous system are caused by oxidative stress and inflammation in the brain. In this study, NNMBS275, consisting of the ethanol extract of Viola patrinii, showed potent antioxidative and anti-inflammatory activity in murine hippocampal HT22 cells and BV2 microglia. NNMBS275 increased cellular resistance to oxidative injury caused by glutamate-induced neurotoxicity and reactive oxygen species generation in HT22 cells. In addition, the anti-inflammatory effects of NNMBS275 were demonstrated by the suppression of proinflammatory mediators, including proinflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2 and cytokines (tumor necrosis factor-α and interleukin-1β. Furthermore, we found that the neuroprotective and anti-inflammatory effects of NNMBS275 were linked to the upregulation of nuclear transcription factor-E2-related factor 2-dependent expression of heme oxygenase-1 in HT22 and BV2 cells. These results suggest that NNMBS275 possesses therapeutic potential against neurodegenerative diseases that are induced by oxidative stress and neuroinflammation.

  12. Conversion of biliverdin to bilirubin by biliverdin reductase contributes to endothelial cell protection by heme oxygenase-1-evidence for direct and indirect antioxidant actions of bilirubin.

    Science.gov (United States)

    Jansen, Thomas; Hortmann, Marcus; Oelze, Matthias; Opitz, Benjamin; Steven, Sebastian; Schell, Richard; Knorr, Maike; Karbach, Susanne; Schuhmacher, Swenja; Wenzel, Philip; Münzel, Thomas; Daiber, Andreas

    2010-08-01

    Heme oxygenase-1 (HO-1) is highly protective in various pathophysiological states such as cardiovascular and neurodegenerative diseases. HO-1-derived bilirubin is an efficient scavenger of reactive oxygen and nitrogen species (RONS). It remains to determine whether conversion of biliverdin to bilirubin is an essential step for HO-1-conferred protection of endothelial cells. RONS scavenging activities of biliverdin versus bilirubin were assessed by different RONS generating systems and detection techniques. We also silenced the biliverdin reductase (BVR) or HO-1 gene in cultured primary human endothelial cells (HUVECs) and measured the effect on RONS formation upon stimulation with lipopolysaccharide (LPS). In addition, effects of bilirubin and biliverdin on expression of GTP-cyclohydrolase were assessed in an endothelial cell line (EA.hy 926). HO-1- and BVR-silenced cells have increased levels of oxidative stress and bilirubin but not biliverdin increased expression of the protective protein GTP-cyclohydrolase. Moreover, protection by hemin-induced HO-1 expression or biliverdin-triggered bilirubin formation was impaired upon silencing of the HO-1 or BVR gene, respectively. Since bilirubin significantly scavenged RONS but chronic treatment was even more protective our observations support direct and indirect antioxidant properties of BVR and bilirubin and an important role for BVR and bilirubin in HO-1 conferred protection of endothelial cells.

  13. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenjie [Ophthalmology Hospital, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Zhang, Xiaomei, E-mail: zhangxm667@163.com [Ophthalmology Hospital, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Lu, Hong [Ophthalmology Hospital, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Matsukura, Makoto [Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082 (Japan); Zhao, Jien; Shinohara, Makoto [Ashikita Institution for Developmental Disabilities, 2813 Oaza Ashikita, Ashikita-machi, Ashikita, Kumamoto 869-5461 (Japan)

    2013-05-10

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV.

  14. Zinc protoporphyrin suppresses cancer cell viability through a heme oxygenase-1-independent mechanism: the involvement of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Wang, Shuai; Avery, Jori E; Hannafon, Bethany N; Lind, Stuart E; Ding, Wei-Qun

    2013-06-01

    Zinc protoporphyrin (ZnPP), a known inhibitor of heme oxygenase-1 (HO-1), has been reported to have anticancer activity in both in vitro and in vivo model systems. While the mechanisms of ZnPP's anticancer activity remain to be elucidated, it is generally believed that ZnPP suppresses tumor growth through inhibition of HO-1 activity. We examined this hypothesis by altering cellular levels of HO-1 in human ovarian (A2780) and prostate cancer (DU145) cells and found that ZnPP inhibits cancer cell viability through an HO-1-independent mechanism. Neither over-expression nor knockdown of HO-1 significantly alters ZnPP's cytotoxicity in human cancer cells, indicating that HO-1 does not mediate ZnPP's inhibitory effect on cancer cell growth. Consistent with these observations, tin protoporphyrin (SnPP), a well-established HO-1 inhibitor, was found to be much less cytotoxic than ZnPP, and docosahexaenoic acid (DHA), an HO-1 inducer, enhanced ZnPP's cytotoxicity. In an effort to define the mechanisms of ZnPP-induced cytotoxicity, we found that ZnPP but not SnPP, diminished β-catenin expression through proteasome degradation and potently suppressed β-catenin-mediated signaling in our model systems. Thus, ZnPP-induced cytotoxicity is independent of HO-1 expression in cancer cells and the Wnt/β-catenin pathway is potentially involved in ZnPP's anticancer activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Eriodictyol Protects Endothelial Cells against Oxidative Stress-Induced Cell Death through Modulating ERK/Nrf2/ARE-Dependent Heme Oxygenase-1 Expression.

    Science.gov (United States)

    Lee, Seung Eun; Yang, Hana; Son, Gun Woo; Park, Hye Rim; Park, Cheung-Seog; Jin, Young-Ho; Park, Yong Seek

    2015-06-26

    The pathophysiology of cardiovascular diseases is complex and may involve oxidative stress-related pathways. Eriodictyol is a flavonoid present in citrus fruits that demonstrates anti-inflammatory, anti-cancer, neurotrophic, and antioxidant effects in a range of pathophysiological conditions including vascular diseases. Because oxidative stress plays a key role in the pathogenesis of cardiovascular disease, the present study was designed to verify whether eriodictyol has therapeutic potential. Upregulation of heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, in endothelial cells is considered to be helpful in cardiovascular disease. In this study, human umbilical vein endothelial cells (HUVECs) treated with eriodictyol showed the upregulation of HO-1 through extracellular-regulated kinase (ERK)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Further, eriodictyol treatment provided protection against hydrogen peroxide-provoked cell death. This protective effect was eliminated by treatment with a specific inhibitor of HO-1 and RNA interference-mediated knockdown of HO-1 expression. These data demonstrate that eriodictyol induces ERK/Nrf2/ARE-mediated HO-1 upregulation in human endothelial cells, which is directly associated with its vascular protection against oxidative stress-related endothelial injury, and propose that targeting the upregulation of HO-1 is a promising approach for therapeutic intervention in cardiovascular disease.

  16. Heme Oxygenase-1 Activity as a Correlate to Exercise-Mediated Amelioration of Cognitive Decline and Neuropathological Alterations in an Aging Rat Model of Dementia

    Directory of Open Access Journals (Sweden)

    Andrea Kurucz

    2018-01-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder with cognitive impairment. Physical exercise has long been proven to be beneficial in the disorder. The present study was designed to examine the effect of voluntary exercise on spatial memory, imaging, and pathological abnormalities. Particular focus has been given to the role of heme oxygenase-1 (HO-1—an important cellular cytoprotectant in preserving mental acuity—using an aging rat model of dementia. Male and female Wistar rats were segregated into six groups—namely, (i aged sedentary (control females (ASF, n=8; (ii aged sedentary (control males (ASM, n=8; (iii aged running females (ARF, n=8; (iv aged running males (ARM, n=8; (v young control females (YCF, n=8; and (vi young control males (YCM, n=8. Rats in the ARF and ARM groups had free access to a standardized inbuilt running wheel during the 3-month evaluation period. Spatial memory was investigated using the Morris Water Test, imaging and pathological alterations were assessed using positron emission tomography (PET imaging and histopathological examinations (H&E, Congo red staining, respectively, and HO-1 enzyme activity assays were also conducted. The outcomes suggest that voluntary physical exercise mitigates impaired spatial memory and neuropathological changes exhibited by the aging sedentary group, via elevated HO-1 activity, contributing to the antioxidant capacity in the aging brain.

  17. Role of Oxidative Stress in the Induction of Metallothionein-2A and Heme Oxygenase-1 Gene Expression by the Antineoplastic Agent Gallium Nitrate in Human Lymphoma Cells

    Science.gov (United States)

    Yang, Meiying; Chitambar, Christopher R.

    2008-01-01

    The mechanisms of action of gallium nitrate, an antineoplastic drug, are only partly understood. Using a DNA microarray to examine genes induced by gallium nitrate in CCRF-CEM cells, we found that gallium increased metallothionein-2A (MT2A) and heme oxygenase-1 (HO-1) gene expression and altered the levels of other stress-related genes. MT2A and HO-1 were increased after 6 and 16 h of incubation with gallium nitrate. An increase in oxidative stress, evidenced by a decrease in cellular GSH and GSH/GSSG ratio, and an increase in dichlorodihydrofluoroscein (DCF) fluorescence, was seen after 1 – 4 h incubation of cells with gallium nitrate. DCF fluorescence was blocked by the mitochondria-targeted antioxidant mitoquinone. N-acetyl-L-cysteine blocked gallium-induced MT2A and HO-1 expression and increased gallium’s cytotoxicity. Studies with a zinc-specific fluoroprobe suggested that gallium produced an expansion of an intracellular labile zinc pool, suggesting an action of gallium on zinc homeostasis. Gallium nitrate increased the phosphorylation of p38 mitogen-activated protein kinase and activated Nrf-2, a regulator of HO-1 gene transcription. Gallium-induced Nrf-2 activation and HO-1 expression were diminished by a p38 MAP kinase inhibitor. We conclude that gallium nitrate induces cellular oxidative stress as an early event which then triggers the expression of HO-1 and MT2A through different pathways. PMID:18586083

  18. Serum Heme Oxygenase-1 and BMP-7 Are Potential Biomarkers for Bone Metabolism in Patients with Rheumatoid Arthritis and Ankylosing Spondylitis

    Directory of Open Access Journals (Sweden)

    Tong-ling Yuan

    2016-01-01

    Full Text Available Backgrounds. Heme oxygenase-1 (HO-1 has been reported to play a regulatory role in osteoclastogenesis. Bone morphogenetic protein (BMP pathways induce osteoblastic differentiation and bone remodeling. Aims. To identify serum levels of HO-1, BMP-7, and Runt related-transcription factor 2 (Runx2 in patients with rheumatoid arthritis (RA and ankylosing spondylitis (AS and to investigate the relationships between HO-1, BMP-7, Runx2, and other common biomarkers for bone metabolism. Results. Serum levels of HO-1 and BMP-7 were revealed to be significantly higher in patients with RA or AS than in healthy controls (p<0.01. In RA group, HO-1 was positively correlated with BMP-7, Runx2, and tartrate-resistant acid phosphatase-5b (TRAP-5b (p<0.05, resp., BMP-7 was positively correlated with Runx2 and TRAP-5b (p<0.05, resp., and Runx2 was negatively correlated with N-terminal midfragment of osteocalcin (NMID (p<0.05. In AS group, we observed identical correlation between HO-1 and BMP-7, but opposite correlations between BMP-7 and TRAP-5b and between Runx2 and NMID, when comparing with the RA cohort. Conclusion. Our findings suggest that HO-1 and BMP-7 are potential biomarkers for bone metabolism in patients with RA and AS. The different correlations between the bone markers point to distinct differences in bone remodeling pathways in the two types of arthritis.

  19. Cadmium-induced heme oxygenase-1 gene expression is associated with the depletion of glutathione in the roots of Medicago sativa.

    Science.gov (United States)

    Cui, Weiti; Fu, Guangqing; Wu, Honghong; Shen, Wenbiao

    2011-02-01

    Following previous findings that cadmium (Cd) induces heme oxygenase-1 (HO1) gene expression in alfalfa seedling roots, we now show that the decreased glutathione (GSH) and ascorbic acid (AsA) contents, induction of HO-1 gene expression and its protein level by Cd was mimicked by a GSH depletor diethylmaleate (DEM). Meanwhile, above Cd- or DEM-induced decreased GSH content followed by HO-1 up-regulation could be strengthened or reversed differentially by the application of a selective inhibitor of GSH biosynthesis L: -buthionine-sulfoximine (BSO), or exogenous GSH and AsA, respectively. The antioxidative behavior of HO-1 induction was further confirmed by histochemical staining for the detection of loss of membrane integrity in a short period of treatment time. Additionally, the induction of HO-1 transcript was inhibited by the transcriptional inhibitor actinomycin D (ActD) or protein synthesis inhibitor cycloheximide (CX, especially). In contrast, the level of HO-2 transcript did not change upon various treatments. Together, above results suggested that Cd-induced up-regulation of HO-1 gene expression is associated with GSH depletion, which is at least existing transcriptional regulation level, thus leading to enhanced antioxidative capability transiently.

  20. Postneonatal Mortality and Liver Changes in Cloned Pigs Associated with Human Tumor Necrosis Factor Receptor I-Fc and Human Heme Oxygenase-1 Overexpression

    Directory of Open Access Journals (Sweden)

    Geon A. Kim

    2017-01-01

    Full Text Available Soluble human tumor necrosis factor (shTNFRI-Fc and human heme oxygenase 1 (hHO-1 are key regulators for protection against oxidative and inflammatory injury for xenotransplantation. Somatic cells with more than 10 copy numbers of shTNFRI-Fc and hHO-1 were employed in somatic cell nuclear transfer to generate cloned pigs, thereby resulting in seven cloned piglets. However, produced piglets were all dead within 24 hours after birth. Obviously, postnatal death with liver apoptosis was reported in the higher copy number of shTNFRI-Fc and hHO-1 piglets. In liver, the transcript levels of ferritin heavy chain, light chain, transferrin, and inducible nitric oxide synthase were significantly highly expressed compared to those of lower copy number of shTNFRI-Fc and hHO-1 piglets (P<0.05. Also, H2O2 contents were increased, and superoxide dismutase was significantly lower in the higher copy number of shTNFRI-Fc and hHO-1 piglets (P<0.05. These results indicate that TNFRI-Fc and hHO-1 overexpression may apparently induce free iron in the liver and exert oxidative stress by enhancing reactive oxygen species production and block normal postneonatal liver metabolism.

  1. Cordyceps sinensis increases hypoxia tolerance by inducing heme oxygenase-1 and metallothionein via Nrf2 activation in human lung epithelial cells.

    Science.gov (United States)

    Singh, Mrinalini; Tulsawani, Rajkumar; Koganti, Praveen; Chauhan, Amitabh; Manickam, Manimaran; Misra, Kshipra

    2013-01-01

    Cordyceps sinensis, an edible mushroom growing in Himalayan regions, is widely recognized in traditional system of medicine. In the present study, we report the efficacy of Cordyceps sinensis in facilitating tolerance to hypoxia using A549 cell line as a model system. Treatment with aqueous extract of Cordyceps sinensis appreciably attenuated hypoxia induced ROS generation, oxidation of lipids and proteins and maintained antioxidant status similar to that of controls via induction of antioxidant gene HO1 (heme oxygenase-1), MT (metallothionein) and Nrf2 (nuclear factor erythroid-derived 2-like 2). In contrast, lower level of NF κ B (nuclear factor kappaB) and tumor necrosis factor- α observed which might be due to higher levels of HO1, MT and transforming growth factor- β . Further, increase in HIF1 (hypoxia inducible factor-1) and its regulated genes; erythropoietin, vascular endothelial growth factor, and glucose transporter-1 was observed. Interestingly, Cordyceps sinensis treatment under normoxia did not regulate the expression HIF1, NF κ B and their regulated genes evidencing that Cordyceps sinensis per se did not have an effect on these transcription factors. Overall, Cordyceps sinensis treatment inhibited hypoxia induced oxidative stress by maintaining higher cellular Nrf2, HIF1 and lowering NF κ B levels. These findings provide a basis for possible use of Cordyceps sinensis in tolerating hypoxia.

  2. Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system.

    Science.gov (United States)

    Jin, Qijiang; Zhu, Kaikai; Cui, Weiti; Xie, Yanjie; Han, Bin; Shen, Wenbiao

    2013-05-01

    Hydrogen gas (H2) was recently proposed as a novel antioxidant and signalling molecule in animals. However, the physiological roles of H2 in plants are less clear. Here, we showed that exposure of alfalfa seedlings to paraquat stress increased endogenous H2 production. When supplied with exogenous H2 or the heme oxygenase-1 (HO-1)-inducer hemin, alfalfa plants displayed enhanced tolerance to oxidative stress induced by paraquat. This was evidenced by alleviation of the inhibition of root growth, reduced lipid peroxidation and the decreased hydrogen peroxide and superoxide anion radical levels. The activities and transcripts of representative antioxidant enzymes were induced after exposure to either H2 or hemin. Further results showed that H2 pretreatment could dramatically increase levels of the MsHO-1 transcript, levels of the protein it encodes and HO-1 activity. The previously mentioned H2-mediated responses were specific for HO-1, given that the potent HO-1-inhibitor counteracted the effects of H2. The effects of H2 were reversed after the addition of an aqueous solution of 50% carbon monoxide (CO). We also discovered enhanced tolerance of multiple environmental stresses after plants were pretreated with H2 . Together, these results suggested that H2 might function as an important gaseous molecule that alleviates oxidative stress via HO-1 signalling. © 2012 Blackwell Publishing Ltd.

  3. Red Yeast Rice Protects Circulating Bone Marrow-Derived Proangiogenic Cells against High-Glucose-Induced Senescence and Oxidative Stress: The Role of Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Jung-Tung Liu

    2017-01-01

    Full Text Available The inflammation and oxidative stress of bone marrow-derived proangiogenic cells (PACs, also named endothelial progenitor cells, triggered by hyperglycemia contributes significantly to vascular dysfunction. There is supporting evidence that the consumption of red yeast rice (RYR; Monascus purpureus-fermented rice reduces the vascular complications of diabetes; however, the underlying mechanism remains unclear. This study aimed to elucidate the effects of RYR extract in PACs, focusing particularly on the role of a potent antioxidative enzyme, heme oxygenase-1 (HO-1. We found that treatment with RYR extract induced nuclear factor erythroid-2-related factor nuclear translocation and HO-1 mRNA and protein levels in PACs. RYR extract inhibited high-glucose-induced (30 mM PAC senescence and the development of reactive oxygen species (ROS in a dose-dependent manner. The HO-1 inducer cobalt protoporphyrin IX also decreased high-glucose-induced cell senescence and oxidative stress, whereas the HO-1 enzyme inhibitor zinc protoporphyrin IX and HO-1 small interfering RNA significantly reversed RYR extract-caused inhibition of senescence and reduction of oxidative stress in high-glucose-treated PACs. These results suggest that RYR extract serves as alternative and complementary medicine in the treatment of these diseases, by inducing HO-1, thereby decreasing the vascular complications of diabetes.

  4. Epigallocatechin Gallate Attenuates Proliferation and Oxidative Stress in Human Vascular Smooth Muscle Cells Induced by Interleukin-1β via Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Po-Len Liu

    2014-01-01

    Full Text Available Proliferation of vascular smooth muscle cells (VSMCs triggered by inflammatory stimuli and oxidative stress contributes importantly to atherogenesis. The association of green tea consumption with cardiovascular protection has been well documented in epidemiological observations, however, the underlying mechanisms remain unclear. This study aimed to elucidate the effects of the most active green tea catechin derivative, (−-epigallocatechin-3-gallate (EGCG, in human aortic smooth muscle cells (HASMCs, focusing particularly on the role of a potent anti-inflammatory and antioxidative enzyme heme oxygenase-1 (HO-1. We found that pretreatment of EGCG dose- and time-dependently induced HO-1 protein levels in HASMCs. EGCG inhibited interleukin- (IL-1β-induced HASMC proliferation and oxidative stress in a dose-dependent manner. The HO-1 inducer CoPPIX decreased IL-1β-induced cell proliferation, whereas the HO-1 enzyme inhibitor ZnPPIX significantly reversed EGCG-caused growth inhibition in IL-1β-treated HASMCs. At the molecular level, EGCG treatment significantly activated nuclear factor erythroid-2-related factor (Nrf2 transcription activities. These results suggest that EGCG might serve as a complementary and alternative medicine in the treatment of these pathologies by inducing HO-1 expression and subsequently decreasing VSMC proliferation.

  5. Gamma Radiation-Induced Template Polymerization Technique

    International Nuclear Information System (INIS)

    Siyam, T.

    2005-01-01

    Gamma radiation induced copolymerization of acrylamide sodiumacrylate (AM-AANa) in the presence and absence of the polymer additive was studied at low monomer concentration(1.4M/l). The results showed that the exponents of the dose rate for the polymerization rate was found to be 1.3 and 1.4 in the absence and in the presence of the polymer additive respectively. The molecular weight of the formed polymer increased by addition of the polymer to the system. In the presence of the polymer the comonomers polymerize on the added polymer. In the absence of the added polymer the comonomers polymerize according to the copolymerization process at the initial stage of the copolymerization. While at high conversion the residual comonomers polymerize on the formed macromolecular chains of the produced polymer. These studies showed that the copolymerization in the presence of added polymer is completely template copolymerization while in the absence of the polymer the copolymerization process is only template process with a high conversion

  6. Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes.

    Science.gov (United States)

    Turkseven, Saadet; Kruger, Adam; Mingone, Christopher J; Kaminski, Pawel; Inaba, Muneo; Rodella, Luigi F; Ikehara, Susumu; Wolin, Michael S; Abraham, Nader G

    2005-08-01

    Increased heme oxygenase (HO)-1 activity attenuates endothelial cell apoptosis and decreases superoxide anion (O2-) formation in experimental diabetes by unknown mechanisms. We examined the effect of HO-1 protein and HO activity on extracellular SOD (EC-SOD), catalase, O2-, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) levels and vascular responses to ACh in control and diabetic rats. Vascular EC-SOD and plasma catalase activities were significantly reduced in diabetic compared with nondiabetic rats (P inhibitor of HO-1 activity, decreased EC-SOD protein. Increased HO-1 activity in diabetic rats was associated with a decrease in iNOS but increases in eNOS and plasma catalase activity. On the other hand, aortic ring segments from diabetic rats exhibited a significant reduction in vascular relaxation to ACh, which was reversed with cobalt protoporphyrin treatment. These data demonstrate that an increase in HO-1 protein and activity, i.e., CO and bilirubin production, in diabetic rats brings about a robust increase in EC-SOD, catalase, and eNOS with a concomitant increase in endothelial relaxation and a decrease in O2-. These observations in experimental diabetes suggest that the vascular cytoprotective mechanism of HO-1 against oxidative stress requires an increase in EC-SOD and catalase.

  7. Regulation of heme oxygenase-1 expression and MAPK pathways in response to kaempferol and rhamnocitrin in PC12 cells

    International Nuclear Information System (INIS)

    Hong, J.-T.; Yen, J.-H.; Wang Lisu; Lo, Y.-H.; Chen, Z.-T.; Wu, M.-J.

    2009-01-01

    Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities, especially neural diseases. Our aim of research is to investigate the protective effects and mechanisms of kaempferol and rhamnocitrin (kaempferol-7-methyl ether) on oxidative damage in rat pheochromocytoma PC12 cells induced by a limited supply of serum and hydrogen peroxide (H 2 O 2 ). The current result demonstrated that kaempferol protected PC12 cells from serum deprivation-induced apoptosis. Pretreatment of cells with kaempferol also diminished intracellular generation of reactive oxygen species (ROS) in response to H 2 O 2 and strongly elevated cell viability. RT-Q-PCR and Western blotting revealed that kaempferol and rhamnocitrin significantly induced heme oxygenase (HO)-1 gene expression. Addition of zinc protoporphyrin (Znpp), a HO-1 competitive inhibitor, significantly attenuated their protective effects in H 2 O 2 -treated cells, indicating the vital role of HO-1 in cell resistance to oxidative injury. While investigating the signaling pathways responsible for HO-1 induction, we observed that kaempferol induced sustained extracellular signal-regulated protein kinase 1/2 (ERK1/2) in PC12 cells grown in low serum medium; while rhamnocitrin only stimulated transient ERK cascade. Addition of U0126, a highly selective inhibitor of MEK1/2, which is upstream of ERK1/2, had no effect on kaempferol- or rhamnocitrin-induced HO-1 mRNA expression, indicating no direct cross-talk between these two pathways. Furthermore, both kaempferol and rhamnocitrin were able to persistently attenuate p38 phosphorylation. Taking together, the above findings suggest that kaempferol and rhamnocitrin can augment cellular antioxidant defense capacity, at least in part, through regulation of HO-1 expression and MAPK signal transduction.

  8. Protective effects of Ulmus davidiana var. japonica against OVA-induced murine asthma model via upregulation of heme oxygenase-1.

    Science.gov (United States)

    Lee, Mee-Young; Seo, Chang-Seob; Ha, Heykyung; Jung, Dayoung; Lee, Hoyoung; Lee, Nam-Hun; Lee, Jin-Ah; Kim, Jung-Hoon; Lee, Yeun-Kyung; Son, Jong-Keun; Shin, Hyeun-Kyoo

    2010-07-06

    Traditionally, the stem and root bark of Ulmus davidiana var. japonica (Ulmaceae) are Korean herbal medicines used for anti-inflammatory and anticancer therapy. In this study, we investigated the protective effects of Ulmus davidiana var. japonica ethanolic extract (UD) in a murine asthma model. Furthermore, we determined whether heme oxygenase (HO)-1 is required for the protective activity of UD. Airways of ovalbumin (OVA)-sensitized mice exposed to OVA challenge developed eosinophilia, mucus hypersecretion and increased cytokine levels. UD was applied 1h prior to OVA challenge. Mice were administered UD orally at doses of 100 and 200mg/kg once daily on days 18-23. Bronchoalveolar lavage fluid (BALF) was collected 48 h after the final OVA challenge. Levels of interleukin (IL)-4 and IL-5 in BALF were measured using enzyme-linked immunosorbent assays (ELISAs). Lung tissue sections 4 microm in thickness were stained with Mayer's hematoxylin and eosin for assessment of cell infiltration and mucus production with PAS (periodic acid shift reagent) staining, in conjunction with ELISA, immunohistochemistry and Western blot analyses for HO-1 protein expression. Orally administered UD significantly inhibited the number of OVA-induced inflammatory cells and IgE production, along with reduced T-helper (Th)2 cytokine levels, such as IL-4 and IL-5, in BALF and lung tissue. In addition, UD induced a marked decrease in OVA-induced reactive oxygen species (ROS), inflammatory cell infiltration and mucus production in lung tissue. These effects were correlated with HO-1 mRNA and protein induction. Our results indicate that UD protects against OVA-induced airway inflammation, at least in part, via HO-1 upregulation. Crown Copyright (c) 2010. Published by Elsevier Ireland Ltd. All rights reserved.

  9. (+)-Nootkatone and (+)-valencene from rhizomes of Cyperus rotundus increase survival rates in septic mice due to heme oxygenase-1 induction.

    Science.gov (United States)

    Tsoyi, Konstantin; Jang, Hwa Jin; Lee, Young Soo; Kim, Young Min; Kim, Hye Jung; Seo, Han Geuk; Lee, Jae Heun; Kwak, Jong Hwan; Lee, Dong-Ung; Chang, Ki Churl

    2011-10-11

    The rhizomes of Cyperus rotundus have been used as traditional folk medicine for the treatment of inflammatory diseases. However, the mechanism by which extract of rhizomes of Cyperus rotundus (ECR) elicits anti-inflammation has not been extensively investigated so far. The aim of the present study was to test whether heme oxygenase (HO)-1 induction is involved in the anti-inflammatory action of ECR. Induction of HO-1 and inhibition of inducible nitric oxide synthase (iNOS)/NO production by ECR and its 12 constituents (3 monoterpenes, 5 sesquiterpenes, and 4 aromatic compounds) were investigated using RAW264.7 cells in vitro. In addition, anti-inflammatory action of ECR and its two active ingredients (nookkatone, valencene) were confirmed in sepsis animal model in vivo. ECR increased HO-1 expression in a concentration-dependent manner, which was correlated with significant inhibition of iNOS/NO production in LPS-activated RAW264.7 cells. Among 12 compounds isolated from ECR, mostly sesquiterpenes induced stronger HO-1 expression than monoterpenes in macrophage cells. Nootkatone and valencene (sesquiterpenes) significantly inhibited iNOS expression and NO production in LPS-simulated RAW264.7 cells. Inhibition of iNOS expression by nootkatone, valencene, and ECR were significantly reduced in siHO-1 RNA transfected cells. Furthermore, all three showed marked inhibition of high mobility group box-1 (HMGB1) in LPS-activated macrophages and increased survival rates in cecal ligation and puncture (CLP)-induced sepsis in mice. Taken together, we concluded that possible anti-inflammatory mechanism of ECR is, at least, due to HO-1 induction, in which sesquiterpenes such as nootkatone and valencene play a crucial role. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Upregulation of heme oxygenase-1 expression by dehydrodiconiferyl alcohol (DHCA) through the AMPK–Nrf2 dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junghun; Kim, Sunyoung, E-mail: sunyoung@snu.ac.kr

    2014-11-15

    Oxidative stress is induced by the accumulation of free radicals, resulting in an imbalanced cellular redox state, which has been implicated in a variety of human diseases. Dehydrodiconiferyl alcohol (DHCA), a lignan compound isolated from Cucurbita moschata, has previously been reported to contain anti-adipogenic and anti-lipogenic effects on 3T3-L1 cells and primary MEFs (Abraham and Kappas, 2008). In this study, it was tested whether DHCA could affect the expression of HO-1, using Raw264.7 mouse macrophage cell line. DHCA increased the protein and RNA levels of HO-1 and upregulated its promoter activity. Data from transient transfection assays indicated that ARE located in the E1 region of the HO-1 promoter are important in this DHCA-mediated induction of HO-1 expression. DHCA was also shown to enhance the nuclear translocation and binding of Nrf2 to the respective DNA sequences. The upregulation of HO-1 expression by DHCA was also observed in primary macrophages derived from wild type animals, but not in those from Nrf2 KO mice. Effects of DHCA on HO-1 and Nrf2 were reduced when cells were treated with an AMPK inhibitor, Compound C, but not by PI3K/Akt or MAPK inhibitors. Data from an experiment using a specific siRNA or chemical inhibitor for HO-1 suggested that the DHCA-mediated induction of the HO-1 protein could suppress the LPS-stimulated production of NO. Taken together, our data suggest that DHCA induces the expression of HO-1 by controlling its promoter activity through the AMPK–Nrf2 pathway, eventually leading to the reduction of NO production, and may thus have potential as an effective antioxidant. - Highlights: • Dehydrodiconiferyl alcohol (DHCA) induced the expression of heme oxygenase (HO)-1. • The AMPK–Nrf2 pathway is critically involved in the DHCA-mediated induction of HO-1. • DHCA increased the expression of HO-1, Gclc and Gclm in primary macrophages. • DHCA-mediated induction of HO-1 contributed to the suppression of NO production.

  11. Heme oxygenase-1 protects rat liver against warm ischemia/reperfusion injury via TLR2/TLR4-triggered signaling pathways.

    Science.gov (United States)

    Huang, Han-Fei; Zeng, Zhong; Wang, Kun-Hua; Zhang, Hai-Yan; Wang, Shuai; Zhou, Wen-Xiang; Wang, Zhan-Bo; Xu, Wang-Gang; Duan, Jian

    2015-03-14

    To investigate the efficacy and molecular mechanisms of induced heme oxygenase (HO)-1 in protecting liver from warm ischemia/reperfusion (I/R) injury. Partial warm ischemia was produced in the left and middle hepatic lobes of SD rats for 75 min, followed by 6 h of reperfusion. Rats were treated with saline, cobalt protoporphyrin (CoPP) or zinc protoporphyrin (ZnPP) at 24 h prior to the ischemia insult. Blood and samples of ischemic lobes subjected to ischemia were collected at 6 h after reperfusion. Serum transaminases level, plasma lactate dehydrogenase and myeloperoxidase activity in liver were measured. Liver histological injury and inflammatory cell infiltration were evaluated by tissue section and liver immunohistochemical analysis. We used quantitative reverse transcription polymerase chain reaction to analyze liver expression of inflammatory cytokines and chemokines. The cell lysates were subjected to immunoprecipitation with anti-Toll-IL-1R-containing adaptor inducing interferon-β (TRIF) and anti-myeloid differentiation factor 88 (MyD88), and then the immunoprecipitates were analyzed by SDS-PAGE and immunoblotted with the indicated antibodies. HO-1 protected livers from I/R injury, as evidenced by diminished liver enzymes and well-preserved tissue architecture. In comparison with ZnPP livers 6 h after surgery, CoPP treatment livers showed a significant increase inflammatory cell infiltration of lymphocytes, plasma cells, neutrophils and macrophages. The Toll-like receptor (TLR)-4 and TANK binding kinase 1 protein levels of rats treated with CoPP significantly reduced in TRIF-immunoprecipitated complex, as compared with ZnPP treatment. In addition, pretreatment with CoPP reduced the expression levels of TLR2, TLR4, IL-1R-associated kinase (IRAK)-1 and tumor necrosis factor receptor-associated factor 6 in MyD88-immunoprecipitated complex. The inflammatory cytokines and chemokines mRNA expression rapidly decreased in CoPP-pretreated liver, compared with the

  12. Sofalcone, a gastric mucosa protective agent, increases vascular endothelial growth factor via the Nrf2-heme-oxygenase-1 dependent pathway in gastric epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Akiko [Department of Clinical Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Onda, Kenji, E-mail: knjond@toyaku.ac.jp [Department of Clinical Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Kawahara, Hirofumi; Uchiyama, Yuka; Nakayama, Hiroko; Omi, Takamasa; Nagaoka, Masayoshi [Department of Clinical Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Matsui, Hirofumi [Division of Gastroenterology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8575 (Japan); Hirano, Toshihiko [Department of Clinical Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan)

    2010-07-30

    Research highlights: {yields} Sofalcone increases HO-1 in gastric epithelial cells. {yields} The induction of HO-1 by sofalcone treatment follows the activation of Nrf2. {yields} The production of VEGF by sofalcone treatment is mediated by HO-1 induction. -- Abstract: Sofalcone, 2'-carboxymethoxy-4,4-bis(3-methyl-2-butenyloxy)chalcone, is an anti-ulcer agent that is classified as a gastric mucosa protective agent. Recent studies indicate heat shock proteins such as HSP32, also known as heme-oxygenase-1(HO-1), play important roles in protecting gastrointestinal tissues from several stresses. We have previously reported that sofalcone increases the expression of HO-1 in adipocytes and pre-adipocytes, although the effect of sofalcone on HO-1 induction in gastrointestinal tissues is not clear. In the current study, we investigated the effects of sofalcone on the expression of HO-1 and its functional role in rat gastric epithelial (RGM-1) cells. We found that sofalcone increased HO-1 expression in RGM-1 cells in both time- and concentration-dependent manners. The HO-1 induction was associated with the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in RGM-1 cells. We also observed that sofalcone increased vascular endothelial growth factor (VEGF) production in the culture medium. Treatment of RGM-1 cells with an HO-1 inhibitor (tin-protoporphyrin), or HO-1 siRNA inhibited sofalcone-induced VEGF production, suggesting that the effect of sofalcone on VEGF expression is mediated by the HO-1 pathway. These results suggest that the gastroprotective effects of sofalcone are partly exerted via Nrf2-HO-1 activation followed by VEGF production.

  13. GT-repeat polymorphism in the heme oxygenase-1 gene promoter is associated with cardiovascular mortality risk in an arsenic-exposed population in northeastern Taiwan

    International Nuclear Information System (INIS)

    Wu, Meei-Maan; Chiou, Hung-Yi; Chen, Chi-Ling; Wang, Yuan-Hung; Hsieh, Yi-Chen; Lien, Li-Ming; Lee, Te-Chang; Chen, Chien-Jen

    2010-01-01

    Inorganic arsenic has been associated with increased risk of atherosclerotic vascular disease and mortality in humans. A functional GT-repeat polymorphism in the heme oxygenase-1 (HO-1) gene promoter is inversely correlated with the development of coronary artery disease and restenosis after clinical angioplasty. The relationship of HO-1 genotype with arsenic-associated cardiovascular disease has not been studied. In this study, we evaluated the relationship between the HO-1 GT-repeat polymorphism and cardiovascular mortality in an arsenic-exposed population. A total of 504 study participants were followed up for a median of 10.7 years for occurrence of cardiovascular deaths (coronary heart disease, cerebrovascular disease, and peripheral arterial disease). Cardiovascular risk factors and DNA samples for determination of HO-1 GT repeats were obtained at recruitment. GT repeats variants were grouped into the S (< 27 repeats) or L allele (≥ 27 repeats). Relative mortality risk was estimated using Cox regression analysis, adjusted for competing risk of cancer and other causes. For the L/L, L/S, and S/S genotype groups, the crude mortalities for cardiovascular disease were 8.42, 3.10, and 2.85 cases/1000 person-years, respectively. After adjusting for conventional cardiovascular risk factors and competing risk of cancer and other causes, carriers with class S allele (L/S or S/S genotypes) had a significantly reduced risk of cardiovascular mortality compared to non-carriers (L/L genotype) [OR, 0.38; 95% CI, 0.16-0.90]. In contrast, no significant association was observed between HO-1 genotype and cancer mortality or mortality from other causes. Shorter (GT)n repeats in the HO-1 gene promoter may confer protective effects against cardiovascular mortality related to arsenic exposure.

  14. MAPK/JNK1 activation protects cells against cadmium-induced autophagic cell death via differential regulation of catalase and heme oxygenase-1 in oral cancer cells.

    Science.gov (United States)

    So, Keum-Young; Kim, Sang-Hun; Jung, Ki-Tae; Lee, Hyun-Young; Oh, Seon-Hee

    2017-10-01

    Antioxidant enzymes are related to oral diseases. We investigated the roles of heme oxygenase-1 (HO-1) and catalase in cadmium (Cd)-induced oxidative stress and the underlying molecular mechanism in oral cancer cells. Exposing YD8 cells to Cd reduced the expression levels of catalase and superoxide dismutase 1/2 and induced the expression of HO-1 as well as autophagy and apoptosis, which were reversed by N-acetyl-l-cysteine (NAC). Cd-exposed YD10B cells exhibited milder effects than YD8 cells, indicating that Cd sensitivity is associated with antioxidant enzymes and autophagy. Autophagy inhibition via pharmacologic and genetic modulations enhanced Cd-induced HO-1 expression, caspase-3 cleavage, and the production of reactive oxygen species (ROS). Ho-1 knockdown increased autophagy and apoptosis. Hemin treatment partially suppressed Cd-induced ROS production and apoptosis, but enhanced autophagy and CHOP expression, indicating that autophagy induction is associated with cellular stress. Catalase inhibition by pharmacological and genetic modulations increased Cd-induced ROS production, autophagy, and apoptosis, but suppressed HO-1, indicating that catalase is required for HO-1 induction. p38 inhibition upregulated Cd-induced phospho-JNK and catalase, but suppressed HO-1, autophagy, apoptosis. JNK suppression exhibited contrary results, enhancing the expression of phospho-p38. Co-suppression of p38 and JNK1 failed to upregulate catalase and procaspase-3, which were upregulated by JNK1 overexpression. Overall, the balance between the responses of p38 and JNK activation to Cd appears to have an important role in maintaining cellular homeostasis via the regulation of antioxidant enzymes and autophagy induction. In addition, the upregulation of catalase by JNK1 activation can play a critical role in cell protection against Cd-induced oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Melatonin inhibits type 1 interferon signaling of toll-like receptor 4 via heme oxygenase-1 induction in hepatic ischemia/reperfusion.

    Science.gov (United States)

    Kang, Jung-Woo; Lee, Sun-Mee

    2012-08-01

    The cytoprotective mechanisms of melatonin in hepatic ischemia/reperfusion (I/R) injury associated with heme oxygenase-1 (HO-1) induction and type 1 interferon (IFN) signaling pathway downstream of toll-like receptor 4 (TLR4) were investigated. Rats were subjected to 60min of ischemia followed by 5-hr reperfusion. Melatonin (10mg/kg) or vehicle (5% ethanol in saline) was administered intraperitoneally 15min prior to ischemia and immediately before reperfusion. Rats were pretreated with zinc protoporphyrin (ZnPP, 10mg/kg, i.p.), a HO-1 inhibitor, at 16 and 3hr prior to ischemia. Melatonin attenuated the I/R-induced increase in serum alanine aminotransferase activity, and ZnPP reversed this attenuation. Melatonin augmented the levels of HO activity and HO-1 protein and mRNA expression, and this enhancement was reversed by ZnPP. Melatonin enhanced the level of NF-E2-related factor-2 (Nrf2) nuclear translocation, and ZnPP reversed this increase. Overexpression of TLR4 and its adaptor proteins, toll-receptor-associated activator of interferon (TRIF), and myeloid differentiation factor 88 (MyD88), induced by I/R, was attenuated by melatonin; ZnPP reversed the effect of melatonin on TLR4 and TRIF expression. Melatonin suppressed the increased interaction between TLR4/TRIF and TLR4/MyD88, which was reversed by ZnPP. Melatonin attenuated the increased levels of JAK2 and STAT1 activation as well as IFN-β, and ZnPP reversed these inhibitory effects of melatonin. Melatonin inhibited the level of chemokine (C-X-C motif) ligand 10 (CXCL-10), and ZnPP reversed this inhibition. Our findings suggest that melatonin protects the liver against I/R injury by HO-1 overexpression, which suppresses the type 1 IFN signaling pathway downstream of TLR4. © 2012 John Wiley & Sons A/S.

  16. Heme Oxygenase-1 Deficiency Diminishes Methicillin-Resistant Staphylococcus aureus Clearance Due to Reduced TLR9 Expression in Pleural Mesothelial Cells.

    Directory of Open Access Journals (Sweden)

    Satindra Gahlot

    Full Text Available Methicillin Resistant Staphylococcus aureus (MRSA cause pneumonia and empyema thoraces. TLR9 activation provides protection against bacterial infections and Heme oxygenase-1 (HO-1 is known to enhance host innate immunity against bacterial infections. However, it is still unclear whether HO-1 regulates TLR-9 expression in the pleura and modulates the host innate defenses during MRSA empyema. In order to determine if HO-1 regulates host innate immune functions via modulating TLR expression, in MRSA empyema, HO-1+/+ and HO-1-/- mouse pleural mesothelial cells (PMCs were infected with MRSA (1:10, MOI in the presence or absence of Cobalt Protoporphyrin (CoPP and Zinc Protoporphyrin (ZnPP or CORM-2 (a Carbon monoxide donor and the expression of mTLR9 and mBD14 was assessed by RT-PCR. In vivo, HO-1+/+ and HO-1-/- mice were inoculated with MRSA (5x106 CFU intra-pleurally and host bacterial load was measured by CFU, and TLR9 expression in the pleura was determined by histochemical-immunostaining. We noticed MRSA inducing differential expression of TLR9 in HO-1+/+ and HO-1 -/- PMCs. In MRSA infected HO-1+/+ PMCs, TLR1, TLR4, and TLR9 expression was several fold higher than MRSA infected HO-1-/- PMCs. Particularly TLR9 expression was very low in MRSA infected HO-1-/- PMCs both in vivo and in vitro. Bacterial clearance was significantly higher in HO-1+/+ PMCs than compared to HO-1-/- PMCs in vitro, and blocking TLR9 activation diminished MRSA clearance significantly. In addition, HO-1-/- mice were unable to clear the MRSA bacterial load in vivo. MRSA induced TLR9 and mBD14 expression was significantly high in HO-1+/+ PMCs and it was dependent on HO-1 activity. Our findings suggest that HO-1 by modulating TLR9 expression in PMCs promotes pleural innate immunity in MRSA empyema.

  17. Targeting of heat-shock protein 32/heme oxygenase-1 in canine mastocytoma cells is associated with reduced growth and induction of apoptosis.

    Science.gov (United States)

    Hadzijusufovic, Emir; Rebuzzi, Laura; Gleixner, Karoline V; Ferenc, Veronika; Peter, Barbara; Kondo, Rudin; Gruze, Alexander; Kneidinger, Michael; Krauth, Maria-Theresa; Mayerhofer, Matthias; Samorapoompichit, Puchit; Greish, Khaled; Iyer, Arun K; Pickl, Winfried F; Maeda, Hiroshi; Willmann, Michael; Valent, Peter

    2008-11-01

    Advanced mast cell (MC) neoplasms are usually resistant to conventional therapy. Therefore, current research focuses on new targets in neoplastic MC and development of respective targeted drugs. Mastocytomas in dogs often behave as aggressive tumors. We report that heat-shock protein 32 (Hsp32), also known as heme oxygenase-1, is a survival-enhancing molecule and new target in canine mastocytoma cells. As assessed by reverse transcriptase polymerase chain reaction, Northern blotting, immunocytochemistry, and Western blotting, primary neoplastic dog MC, and the canine mastocytoma-derived cell line C2 expressed Hsp32 mRNA and the Hsp32 protein in a constitutive manner. The KIT-targeting drug midostaurin inhibited expression of Hsp32, as well as survival in C2 cells. Confirming the functional role of Hsp32, the inhibitory effect of midostaurin on C2 cells was markedly reduced by the Hsp32-inductor hemin. Two pharmacologic Hsp32-inhibitors, styrene maleic-acid micelle-encapsulated ZnPP (SMA-ZnPP) and pegylated zinc-protoporphyrin (PEG-ZnPP) were applied. Both drugs were found to inhibit proliferation of C2 cells as well as growth of primary neoplastic canine MC. The growth-inhibitory effects of SMA-ZnPP and PEG-ZnPP were dose- and time-dependent (IC(50): 1-10 muM) and found to be associated with induction of apoptosis. Hsp32 is an important survival factor and interesting new target in neoplastic canine MC. Trials with Hsp32-targeted drugs are now warranted to define the clinical efficacy of these drugs.

  18. Induction of heme oxygenase-1 with hemin alleviates cisplatin-induced reproductive toxicity in male rats and enhances its cytotoxicity in prostate cancer cell line.

    Science.gov (United States)

    Heeba, Gehan Hussein; Hamza, Alaaeldin Ahmed; Hassanin, Soha Osama

    2016-12-15

    Cisplatin-induced testicular damage is a major obstacle in the application of cisplatin as chemotherapeutic agent. However, it remains as one of the most widely employed anticancer agents in treating various solid tumors including prostate cancer. Since heme-oxygenase-1 (HO-1) is a cytoprotective enzyme with anti-oxidative stress, anti-inflammatory and anticancer activities, we investigated the effects of up-regulation of HO-1 by hemin and its inhibition by zinc protoporphyrin-IX (ZnPP) on cisplatin-induced testicular toxicity in adult rats. Furthermore, the anticancer effect of hemin and ZnPP, with and without cisplatin, was evaluated on human prostate cancer cell line, PC3. Results of the animal study showed that hemin reversed cisplatin-induced perturbations in sperm characteristics, normalized serum testosterone level, and ameliorated cisplatin-induced alterations in testicular and epididymal weights, and restored normal testicular architecture. Moreover, hemin increased the expression and activity of HO-1 protein and prevented cisplatin-induced testicular toxicity by virtue of its antioxidant and anti-inflammatory effects. This effect was evidenced by amelioration of testicular oxidative stress markers (malondialdehyde, nitric oxide, reduced glutathione contents, and catalase activity) and inflammatory mediators (tumor necrosis factor-α and nitric oxide synthase expressions). In contrast, administration of ZnPP (HO-1 inhibitor) did not show significant improvement against cisplatin-induced testicular toxicity. Finally, in vitro analyses showed that, hemin augmented the anticancer efficacy of cisplatin, while ZnPP inhibited its apoptotic effect in PC3 cells. In conclusion, the induction of HO-1 represents a potential therapeutic approach to protect the testicular tissue from the detrimental effects of cisplatin without repressing, but rather augmenting, its cytotoxic effects on PC3 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Blocking heme oxygenase-1 by zinc protoporphyrin reduces tumor hypoxia-mediated VEGF release and inhibits tumor angiogenesis as a potential therapeutic agent against colorectal cancer.

    Science.gov (United States)

    Cheng, Chun-Chia; Guan, Siao-Syun; Yang, Hao-Jhih; Chang, Chun-Chao; Luo, Tsai-Yueh; Chang, Jungshan; Ho, Ai-Sheng

    2016-01-28

    Hypoxia in tumor niche is one of important factors to start regeneration of blood vessels, leading to increase survival, proliferation, and invasion in cancer cells. Under hypoxia microenvironment, furthermore, steadily increased hypoxia-inducible factor -1α (HIF-1α) is observed, and can increase vascular endothelial growth factor (VEGF) expression and promote angiogenesis. Zinc protoporphyrin (ZnPP), a heme oxygenase-1 (HO-1) inhibitor, is potential to inhibit tumor proliferation and progression. However, the mechanism of ZnPP in inhibition of tumor is not completely clear. We hypothesize that ZnPP may modulate HIF-1α through inhibiting HO-1, and then inhibit angiogenesis and tumor progression. This study aimed to dissect the mechanism of ZnPP in tumor suppression. We observed the amount of VEGF was increased in the sera of the colorectal cancer (CRC) patients (n = 34, p ZnPP inhibited the expressions of HIF-1α and VEGF coupled with cell proliferations of HCT-15 cells, suggesting that ZnPP blocked HIF-1α expression, and then inhibited the consequent VEGF production. In the xenograft model, we also observed that the animals exposed to ZnPP displayed much smaller tumor nodules and less degree of angiogenesis with decreased expression of the angiogenesis marker, αvβ3 integrin, compared to that in normal control. This study demonstrated that VEGF level in serum was elevated in the patients with CRC. The HO-1 inhibitor, ZnPP, possessed the properties of anti-tumor agent by decreasing HIF-1α levels, blocking VEGF production, impairing tumor angiogenesis, and inhibiting tumor growth.

  20. Lipoxin A4-induced heme oxygenase-1 protects cardiomyocytes against hypoxia/reoxygenation injury via p38 MAPK activation and Nrf2/ARE complex.

    Directory of Open Access Journals (Sweden)

    Xiao-Qing Chen

    Full Text Available To investigate whether lipoxin A4 (LXA4 increases expression of heme oxygenase-1(HO-1 in cardiomyocytes, whether LXA4-induced HO-1 protects cardiomyocytes against hypoxia/reoxygenation (H/R injury, and what are the mechanisms involved in the LXA4-induced HO-1 induction.Rat cardiomyocytes were exposed to H/R injury with or without preincubation with LXA4 or HO-1 inhibitor ZnPP-IX or various signal molecule inhibitors. Expressions of HO-1 protein and mRNA were analyzed by using Western blot and RT-PCR respectively. Activity of nuclear factor E2-related factor 2 (Nrf2 binding to the HO-1 E1 enhancer was assessed by chromatin immunoprecipitation. Nrf2 binding to the HO-1 antioxidant responsive element (ARE were measured by using electrophoretic mobility shift assay.Pretreatment of the cells undergoing H/R lesion with LXA4 significantly reduced the lactate dehydrogenase and creatine kinase productions, increased the cell viability, and increased the expressions of HO-1 protein and mRNA and HO-1 promoter activity. HO-1 inhibition abolished the protective role of LXA4 on the cells undergoing H/R lesion. LXA4 increased p38 mitogen-activated protein kinase (p38 MAPK activation, nuclear translocation of Nrf2, Nrf2 binding to the HO-1 ARE and E1 enhancer in cardiomyocytes with or without H/R exposure.The protection role of LXA4 against H/R injury of cardiomyocytes is related to upregulation of HO-1, via activation of p38 MAPK pathway and nuclear translocation of Nrf2 and Nrf2 binding to the HO-1 ARE and E1 enhancer, but not via activation of phosphatidyinositol-3-kinase or extracellular signal-regulated kinase pathway.

  1. Targeting of heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) in leukemic cells in chronic myeloid leukemia: a novel approach to overcome resistance against imatinib.

    Science.gov (United States)

    Mayerhofer, Matthias; Gleixner, Karoline V; Mayerhofer, Julia; Hoermann, Gregor; Jaeger, Eva; Aichberger, Karl J; Ott, Rene G; Greish, Khaled; Nakamura, Hideaki; Derdak, Sophia; Samorapoompichit, Puchit; Pickl, Winfried F; Sexl, Veronika; Esterbauer, Harald; Schwarzinger, Ilse; Sillaber, Christian; Maeda, Hiroshi; Valent, Peter

    2008-02-15

    Resistance toward imatinib and other BCR/ABL tyrosine kinase inhibitors remains an increasing clinical problem in the treatment of advanced stages of chronic myeloid leukemia (CML). We recently have identified the heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) as a BCR/ABL-dependent survival molecule in CML cells. We here show that silencing Hsp32/HO-1 in CML cells by an siRNA approach results in induction of apoptosis. Moreover, targeting Hsp32/HO-1 by either pegylated zinc protoporphyrine (PEG-ZnPP) or styrene maleic acid-micelle-encapsulated ZnPP (SMA-ZnPP) resulted in growth inhibition of BCR/ABL-transformed cells. The effects of PEG-ZnPP and SMA-ZnPP were demonstrable in Ba/F3 cells carrying various imatinib-resistant mutants of BCR/ABL, including the T315I mutant, which exhibits resistance against all clinically available BCR/ABL tyrosine kinase inhibitors. Growth-inhibitory effects of PEG-ZnPP and SMA-ZnPP also were observed in the CML-derived human cell lines K562 and KU812 as well as in primary leukemic cells obtained from patients with freshly diagnosed CML or imatinib-resistant CML. Finally, Hsp32/HO-1-targeting compounds were found to synergize with either imatinib or nilotinib in producing growth inhibition in imatinib-resistant K562 cells and in Ba/F3 cells harboring the T315I mutant of BCR/ABL. In summary, these data show that HO-1 is a promising novel target in imatinib-resistant CML.

  2. Hydrogen-rich water protects against inflammatory bowel disease in mice by inhibiting endoplasmic reticulum stress and promoting heme oxygenase-1 expression.

    Science.gov (United States)

    Shen, Nai-Ying; Bi, Jian-Bin; Zhang, Jing-Yao; Zhang, Si-Min; Gu, Jing-Xian; Qu, Kai; Liu, Chang

    2017-02-28

    To investigate the therapeutic effect of hydrogen-rich water (HRW) on inflammatory bowel disease (IBD) and to explore the potential mechanisms involved. Male mice were randomly divided into the following four groups: control group, in which the mice received equivalent volumes of normal saline (NS) intraperitoneally (ip); dextran sulfate sodium (DSS) group, in which the mice received NS ip (5 mL/kg body weight, twice per day at 8 am and 5 pm) for 7 consecutive days after IBD modeling; DSS + HRW group, in which the mice received HRW (in the same volume as the NS treatment) for 7 consecutive days after IBD modeling; and DSS + HRW + ZnPP group, in which the mice received HRW (in the same volume as the NS treatment) and ZnPP [a heme oxygenase-1 (HO-1) inhibitor, 25 mg/kg] for 7 consecutive days after IBD modeling. IBD was induced by feeding DSS to the mice, and blood and colon tissues were collected on the 7 th d after IBD modeling to determine clinical symptoms, colonic inflammation and the potential mechanisms involved. The DSS + HRW group exhibited significantly attenuated weight loss and a lower extent of disease activity index compared with the DSS group on the 7 th d ( P ZnPP obviously reversed the protective role of HRW. In the DSS + HRW + ZnPP group, colon shortening and colonic wall thickening were significantly aggravated, and the macroscopic damage scores were similar to those of the DSS + HRW group ( P < 0.05). The histological study also showed more serious colonic damage that was similar to the DSS group. HRW has a significant therapeutic potential in IBD by inhibiting inflammatory factors, oxidative stress and ER stress and by up-regulating HO-1 expression.

  3. Discovery of Novel Small-Molecule Inducers of Heme Oxygenase-1 That Protect Human iPSC-Derived Cardiomyocytes from Oxidative Stress.

    Science.gov (United States)

    Kirby, R Jason; Divlianska, Daniela B; Whig, Kanupriya; Bryan, Nadezda; Morfa, Camilo J; Koo, Ada; Nguyen, Kevin H; Maloney, Patrick; Peddibhotla, Satayamaheshwar; Sessions, E Hampton; Hershberger, Paul M; Smith, Layton H; Malany, Siobhan

    2018-01-01

    Oxidative injury to cardiomyocytes plays a critical role in cardiac pathogenesis following myocardial infarction. Transplantation of stem cell-derived cardiomyocytes has recently progressed as a novel treatment to repair damaged cardiac tissue but its efficacy has been limited by poor survival of transplanted cells owing to oxidative stress in the post-transplantation environment. Identification of small molecules that activate cardioprotective pathways to prevent oxidative damage and increase survival of stem cells post-transplantation is therefore of great interest for improving the efficacy of stem cell therapies. This report describes a chemical biology phenotypic screening approach to identify and validate small molecules that protect human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) from oxidative stress. A luminescence-based high-throughput assay for cell viability was used to screen a diverse collection of 48,640 small molecules for protection of hiPSC-CMs from peroxide-induced cell death. Cardioprotective activity of "hit" compounds was confirmed using impedance-based detection of cardiomyocyte monolayer integrity and contractile function. Structure-activity relationship studies led to the identification of a potent class of compounds with 4-(pyridine-2-yl)thiazole scaffold. Examination of gene expression in hiPSC-CMs revealed that the hit compound, designated cardioprotectant 312 (CP-312), induces robust upregulation of heme oxygenase-1, a marker of the antioxidant response network that has been strongly correlated with protection of cardiomyocytes from oxidative stress. CP-312 therefore represents a novel chemical scaffold identified by phenotypic high-throughput screening using hiPSC-CMs that activates the antioxidant defense response and may lead to improved pharmacological cardioprotective therapies. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Transforming growth factor β1 enhances heme oxygenase 1 expression in human synovial fibroblasts by inhibiting microRNA 519b synthesis.

    Directory of Open Access Journals (Sweden)

    Shu-Jui Kuo

    Full Text Available Osteoarthritis (OA is manifested by synovial inflammation and cartilage destruction that is directly linked to synovitis, joint swelling and pain. In the light of the role of synovium in the pathogenesis and the symptoms of OA, synovium-targeted therapy is a promising strategy to mitigate the symptoms and progression of OA. Transforming growth factor beta 1 (TGF-β1, a secreted homodimeric protein, possesses unique and potent anti-inflammatory and immune-regulatory properties in many cell types. Heme oxygenase 1 (HO-1 is an inducible anti-inflammatory and stress responsive enzyme that has been proven to prevent injuries caused by many diseases. Despite the similar anti-inflammatory profile and their involvement in the pathogenesis of arthritic diseases, no studies have as yet explored the possibility of any association between the expression of TGF-β1 and HO-1.TGF-β1-induced HO-1 expression was examined by HO-1 promoter assay, qPCR, and Western blotting. The siRNAs and enzyme inhibitors were utilized to determine the intermediate involved in the signal transduction pathway. We showed that TGF-β1 stimulated the synthesis of HO-1 in a concentration- and time-dependent manner, which can be mitigated by blockade of the phospholipase (PLCγ/protein kinase C alpha (PKCα pathway. We also showed that the expression of miRNA-519b, which blocks HO-1 transcription, is inhibited by TGF-β1, and the suppression of miRNA 519b could be reversed via blockade of the PLCγ/PKCα pathway.TGF-β1 stimulated the expression of HO-1 via activating the PLCγ/PKCα pathway and suppressing the downstream expression of miRNA-519b. These results may shed light on the pathogenesis and treatment of OA.

  5. BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1.

    Science.gov (United States)

    Harusato, Akihito; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Hirai, Yasuko; Higashimura, Yasuki; Katada, Kazuhiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Muto, Akihiko; Igarashi, Kazuhiko; Yoshikawa, Toshikazu

    2013-01-01

    BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.

  6. Heightened Plasma Levels of Heme Oxygenase-1 and Tissue Inhibitor of Metalloproteinase-4 as Well as Elevated Peripheral Neutrophil Counts Are Associated With TB-Diabetes Comorbidity

    Science.gov (United States)

    Pavan Kumar, Nathella; Sridhar, Rathinam; Banurekha, Vaithilingam V.; Jawahar, Mohideen S.; Nutman, Thomas B.; Sher, Alan; Babu, Subash

    2014-01-01

    Background: The increased prevalence of type 2 diabetes mellitus (T2DM) in countries endemic for TB poses a serious complication in the clinical management of this major infectious disease. Understanding the impact of T2DM on TB and the determinants of comorbidity is critical in responding to this growing public health problem with better therapeutic approaches. Here, we performed an exploratory study assessing a series of biologic parameters that could serve as markers of pathogenesis in TB with T2DM. Methods: Cross-sectional analyses of levels of heme oxygenase-1 (HO-1), acute phase proteins, tissue metalloproteinases, and tissue inhibitors of metalloproteinase (TIMPs) as well as cytokines and chemokines were performed in plasma samples from individuals with active pulmonary TB or with coincident TB and T2DM from South India. Results: Compared with patients with TB without diabetes, those with coincident T2DM exhibited increased Mycobacterium tuberculosis bacillary loads in sputum. Plasma levels of HO-1 but not of other acute phase proteins were higher in patients with TB and T2DM than in patients without diabetes, independent of bacillary sputum loads. HO-1 concentrations also positively correlated with random plasma glucose, circulating glycosylated hemoglobin, and low-density lipoprotein levels. Moreover, patients with coincident TB and T2DM exhibited increased plasma levels of TIMP-4 and elevated peripheral blood neutrophil counts, which, when considered together with HO-1, resulted in increased power to discriminate individuals with active TB with and without T2DM. Conclusions: Elevated plasma levels of HO-1 and TIMP-4 and peripheral blood neutrophil counts are potential single and combined markers of pathogenesis in TB and T2DM. PMID:24458266

  7. Adaphostin toxicity in a sensitive non-small cell lung cancer model is mediated through Nrf2 signaling and heme oxygenase 1

    Directory of Open Access Journals (Sweden)

    Monks Anne

    2010-07-01

    Full Text Available Abstract Background Preclinical toxicity of adaphostin has been related to oxidative stress. This study investigated the regulatory mechanism underlying adaphostin induction of heme oxygenase 1 (HMOX1 which plays a significant role in modulation of drug-induced toxicity in the non-small cell lung cancer cell line model, NCI-H522. Methods The transcriptional response of NCI-H522 to adaphostin prominently involved oxidative stress genes, particularly HMOX1. Reactive oxygen species (ROS involvement was additionally established by generation of ROS prior to modulation of adaphostin-toxicity with antioxidants. To identify up-stream regulatory elements of HMOX1, immunofluorescence was used to evaluate nuclear translocation of the transcription factor, NF-E2-related factor 2 (Nrf2, in the presence of adaphostin. The PI3-kinase inhibitor, wortmannin, was employed as a pharmacological inhibitor of this process. Results Generation of ROS provided a substantial foundation for the sensitivity of NCI-H522 to adaphostin. However, in contrast to leukemia cell lines, transcriptional response to oxidative stress was associated with induction of HMOX1, which was dependent on nuclear translocation of the transcription factor, Nrf2. Pretreatment of cells with wortmannin inhibited translocation of Nrf2 and induction of HMOX1. Wortmannin pretreatment was also able to diminish adaphostin induction of HMOX1, and as a consequence, enhance the toxicity of adaphostin to NCI-H522. Conclusions Adaphostin-induced oxidative stress in NCI-H522 was mediated through nuclear translocation of Nrf2 leading to upregulation of HMOX1. Inhibition of Nrf2 translocation by wortmannin inhibited this cytoprotective response, and enhanced the toxicity of adaphostin, suggesting that inhibitors of the PI3K pathway, such as wortmannin, might augment the antiproliferative effects of adaphostin in solid tumors that depend on the Nrf2/ARE pathway for protection against oxidative stress.

  8. Adaphostin toxicity in a sensitive non-small cell lung cancer model is mediated through Nrf2 signaling and heme oxygenase 1.

    Science.gov (United States)

    Fer, Nicole D; Shoemaker, Robert H; Monks, Anne

    2010-07-09

    Preclinical toxicity of adaphostin has been related to oxidative stress. This study investigated the regulatory mechanism underlying adaphostin induction of heme oxygenase 1 (HMOX1) which plays a significant role in modulation of drug-induced toxicity in the non-small cell lung cancer cell line model, NCI-H522. The transcriptional response of NCI-H522 to adaphostin prominently involved oxidative stress genes, particularly HMOX1. Reactive oxygen species (ROS) involvement was additionally established by generation of ROS prior to modulation of adaphostin-toxicity with antioxidants. To identify up-stream regulatory elements of HMOX1, immunofluorescence was used to evaluate nuclear translocation of the transcription factor, NF-E2-related factor 2 (Nrf2), in the presence of adaphostin. The PI3-kinase inhibitor, wortmannin, was employed as a pharmacological inhibitor of this process. Generation of ROS provided a substantial foundation for the sensitivity of NCI-H522 to adaphostin. However, in contrast to leukemia cell lines, transcriptional response to oxidative stress was associated with induction of HMOX1, which was dependent on nuclear translocation of the transcription factor, Nrf2. Pretreatment of cells with wortmannin inhibited translocation of Nrf2 and induction of HMOX1. Wortmannin pretreatment was also able to diminish adaphostin induction of HMOX1, and as a consequence, enhance the toxicity of adaphostin to NCI-H522. Adaphostin-induced oxidative stress in NCI-H522 was mediated through nuclear translocation of Nrf2 leading to upregulation of HMOX1. Inhibition of Nrf2 translocation by wortmannin inhibited this cytoprotective response, and enhanced the toxicity of adaphostin, suggesting that inhibitors of the PI3K pathway, such as wortmannin, might augment the antiproliferative effects of adaphostin in solid tumors that depend on the Nrf2/ARE pathway for protection against oxidative stress.

  9. Molecular cloning, characterization, and expression of an alfalfa (Medicago sativa L.) heme oxygenase-1 gene, MsHO1, which is pro-oxidants-regulated.

    Science.gov (United States)

    Fu, Guang-Qing; Xu, Sheng; Xie, Yan-Jie; Han, Bin; Nie, Li; Shen, Wen-Biao; Wang, Ren

    2011-07-01

    It has been documented that plant heme oxygenase-1 (HO-1; EC 1.14.99.3) is both development- and stress-regulated, thus it plays a vital role in light signalling and stress responses. In this study, an alfalfa (Medica sativa L.) HO-1 gene MsHO1 was isolated and sequenced. It contains four exons and three introns within genomic DNA sequence and encodes a polypeptide with 283 amino acids. MsHO1 had a conserved HO signature sequence and showed high similarity to other HOs in plants, especially HO-1 isoform. The MsHO1:GFP fusion protein was localized in the chloroplast. Further biochemical activity analysis of mature MsHO1, which was expressed in Escherichia coli, showed that the Vmax was 48.78 nmol biliverdin-IXα (BV) h⁻¹ nmol⁻¹ protein with an apparent Km value for hemin of 2.33 μM, and the optimum Tm and pH were 37 °C and 7.2, respectively. Results of semi-quantitative RT-PCR and western blot showed that the expressions of MsHO1 were higher in alfalfa stems and leaves than those in germinating seeds and roots. Importantly, MsHO1 gene expression and protein level were induced significantly by some pro-oxidant compounds, including hemin and nitric oxide (NO) donor sodium nitroprusside (SNP). In conclusion, MsHO1 may play an important role in oxidative responses. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  10. Eupatolide inhibits PDGF-induced proliferation and migration of aortic smooth muscle cells through ROS-dependent heme oxygenase-1 induction.

    Science.gov (United States)

    Kim, Namho; Hwangbo, Cheol; Lee, Suhyun; Lee, Jeong-Hyung

    2013-11-01

    The abnormal proliferation and migration of vascular smooth muscle cell (VSMC) contributes importantly to the pathogenesis of atherosclerosis and restenosis. Here, we investigated the effects of eupatolide (EuTL), a sesquiterpene lactone isolated from the medicinal plant Inula britannica, on platelet-derived growth factor (PDGF)-induced proliferation and migration of primary rat aortic smooth muscle cells (RASMCs), as well as its underlying mechanisms. EuTL remarkably inhibited PDGF-induced proliferation and migration of RASMCs. Treatment of RASMCs with EuTL induced both protein and mRNA expression of heme oxygenase-1 (HO-1). SB203580 (a p38 inhibitor), SP600125 (a JNK inhibitor), U0126 (a MEK inhibitor) and LY294002 (a PI3K inhibitor) did not suppress EuTL-induced HO-1 expression; however, N-acetylcysteine (NAC, an antioxidant) blocked EuTL-induced HO-1 expression. Moreover, treatment of RASMCs with EuTL increased reactive oxygen species (ROS) accumulation and nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2); however, this translocation was also inhibited by NAC. NAC or inhibition of HO-1 significantly attenuated the inhibitory effects of EuTL on PDGF-induced proliferation and migration of RASMCs. Taken together, these findings suggest that EuTL could suppress PDGF-induced proliferation and migration of VSMCs through HO-1 induction via ROS-Nrf2 pathway and may be a potential HO-1 inducer for preventing or treating vascular diseases. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Renal intramedullary infusion of tempol normalizes the blood pressure response to intrarenal blockade of heme oxygenase-1 in angiotensin II-dependent hypertension.

    Science.gov (United States)

    Stec, David E; Juncos, Luis A; Granger, Joey P

    2016-04-01

    Previous studies have demonstrated that intramedullary inhibition of heme oxygenase-1 (HO-1) increases the blood pressure and superoxide production response to angiotensin II (Ang II) infusion. The present study was designed to test the hypothesis that increased renal medullary superoxide production contributes to the increase in blood pressure in response to blockade of renal medullary HO-1 in Ang II-induced hypertension. Male C57BL/6J mice (16-24 weeks of age) were implanted with chronic intrarenal medullary interstitial (IRMI) and infused with: saline, tempol (6 mM), the HO-1 inhibitor QC-13 (25 μM), or a combination of tempol + QC-13. Tempol treatment was started 2 days before infusion of QC-13. After 2 days, Ang II was infused subcutaneously at a rate of 1 μg/kg/min for 10 days. Blood pressures on days 7-10 of Ang II infusion alone averaged 150 ± 3 mm Hg in mice receiving IRMI infusion of saline. IRMI infusion of QC-13 increased blood pressure in Ang II-treated mice to 164 ± 2 (P tempol had a blood pressure of 136 ± 3 mm Hg. Ang II-treated mice receiving IRMI infusion of tempol and QC-13 had a significantly lower blood pressure (142 ± 2 mm Hg, P tempol alone or in combination with QC-13. These results demonstrate that renal medullary interstitial blockade of HO-1 exacerbates Ang II-induced hypertension via a mechanism that is dependent on enhanced superoxide generation and highlight the important antioxidant function of HO-1 in the renal medulla. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  12. Omeprazole induces heme oxygenase-1 in fetal human pulmonary microvascular endothelial cells via hydrogen peroxide-independent Nrf2 signaling pathway.

    Science.gov (United States)

    Patel, Ananddeep; Zhang, Shaojie; Shrestha, Amrit Kumar; Maturu, Paramahamsa; Moorthy, Bhagavatula; Shivanna, Binoy

    2016-11-15

    Omeprazole (OM) is an aryl hydrocarbon receptor (AhR) agonist and a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Recently, we showed that OM induces NAD (P) H quinone oxidoreductase-1 (NQO1) via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent mechanism. Heme oxygenase-1 (HO-1) is another cytoprotective and antioxidant enzyme that is regulated by Nrf2. Whether OM induces HO-1 in fetal human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce HO-1 expression via Nrf2 in HPMEC. OM induced HO-1 mRNA and protein expression in a dose-dependent manner. siRNA-mediated knockdown of AhR failed to abrogate, whereas knockdown of Nrf2 abrogated HO-1 induction by OM. To identify the underlying molecular mechanisms, we determined the effects of OM on cellular hydrogen peroxide (H 2 O 2 ) levels since oxidative stress mediated by the latter is known to activate Nrf2. Interestingly, the concentration at which OM induced HO-1 also increased H 2 O 2 levels. Furthermore, H 2 O 2 independently augmented HO-1 expression. Although N-acetyl cysteine (NAC) significantly decreased H 2 O 2 levels in OM-treated cells, we observed that OM further increased HO-1 mRNA and protein expression in NAC-pretreated compared to vehicle-pretreated cells, suggesting that OM induces HO-1 via H 2 O 2 -independent mechanisms. In conclusion, we provide evidence that OM transcriptionally induces HO-1 via AhR - and H 2 O 2 - independent, but Nrf2 - dependent mechanisms. These results have important implications for human disorders where Nrf2 and HO-1 play a beneficial role. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Inhibition of miR-92a Suppresses Oxidative Stress and Improves Endothelial Function by Upregulating Heme Oxygenase-1 in db/db Mice.

    Science.gov (United States)

    Gou, Lingshan; Zhao, Lei; Song, Wencong; Wang, Li; Liu, Jian; Zhang, Hongsong; Huang, Yuhong; Lau, Chi Wai; Yao, Xiaoqiang; Tian, Xiao Yu; Wong, Wing Tak; Luo, Jiang-Yun; Huang, Yu

    2018-02-10

    Inhibition of microRNA-92a (miR-92a) is reported to suppress endothelial inflammation and delay atherogenesis. We hypothesize that miR-92a inhibition protects endothelial function through suppressing oxidative stress in diabetic db/db mice. In this study, we found elevated expression of miR-92a in aortic endothelium from db/db mice and in renal arteries from diabetic subjects. Endothelial cells (ECs) exposed to advanced glycation end products (AGEs) and oxidized low-density lipoprotein express higher level of miR-92a. Overexpression of miR-92a impairs endothelium-dependent relaxations (EDRs) in C57BL/6 mouse aortas. Overexpression of miR-92a suppresses expression of heme oxygenase-1 (HO-1), a critical cytoprotective enzyme, whereas inhibition of miR-92a increases HO-1 expression in human umbilical vein ECs (HUVECs) and db/db mouse aortas. Importantly, miR-92a inhibition by Ad-anti-miR-92a improved EDRs and reduced reactive oxygen species (ROS) production in db/db mouse aortas. HO-1 inhibition by SnMP or HO-1 knockdown by shHO-1 reversed the suppressive effect of miR-92a inhibition on ROS production induced by AGE treatment in C57BL/6 mouse aortas. In addition, SnMP reversed miR-92a inhibition-induced improvement of EDRs in AGE-treated C57BL/6 mouse aortas and in db/db mouse aortas. Expression of miR-92a is increased in diabetic aortic endothelium and inhibition of miR-92a exerts vasoprotective effect in diabetic mice through HO-1 upregulation in ECs. MiR-92a expression is elevated in diabetic ECs. MiR-92a overexpression impairs endothelial function and suppresses HO-1 expression in ECs. Inhibition of miR-92a attenuates oxidative stress and improves endothelial function through enhancing HO-1 expression and activity in db/db mouse aortas. Antioxid. Redox Signal. 28, 358-370.

  14. Non-Lethal Sonodynamic Therapy Inhibits Atherosclerotic Plaque Progression in ApoE-/- Mice and Attenuates ox-LDL-mediated Macrophage Impairment by Inducing Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2017-05-01

    Full Text Available Background: Previous studies from our group showed that low-intensity sonodynamic therapy (SDT has protective effects on atherosclerosis (AS. However, because the intensity of ultrasound passing through tissue is attenuated, the consequences of very low-intensity SDT, referred to as non-lethal SDT (NL-SDT, on atherosclerotic plaques are unclear. The aim of this study was to determine whether NL-SDT affects atherosclerotic plaques and to elucidate the possible underlying mechanisms. Methods: An AS model was established using ApoE-/- mice fed a western diet. En face Oil Red O staining was used to measure atherosclerotic plaque size. Hematoxylin and eosin staining and immunohistochemical staining were used to observe plaque morphology and assess the location of macrophages and heme oxygenase 1 (HO-1. HO-1 mRNA and protein levels in AS plaques were evaluated by real-time PCR and western blotting. Human THP-1 cells and mouse peritoneal macrophages were used in this study. Western blotting was used to investigate the expression of cellular proteins after NL-SDT. Macrophage apoptosis was evaluated by TUNEL assays and flow cytometry with Annexin V/PI double staining. Intracellular reactive oxygen species (ROS and mitochondrial membrane potential (MMP were measured with 2′-7′-dichlorofluorescein diacetate (DCFH-DA and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl benzimidazolyl carbocyanine iodide (JC-1 staining, respectively. Results: NL-SDT significantly inhibited AS progression and reduced the necrotic core area. NL-SDT induced HO-1 expression in lesional macrophages and in cultured macrophages. NL-SDT activated the protein kinase B (AKT and extracellular signal-related protein kinase (ERK pathways and the transcription factor NF-E2-related factor 2 (Nrf2.NL-SDT significantly reduced oxidized LDL (ox-LDL-induced macrophage MMP collapse, ROS production and cell apoptosis. Zinc protoporphyrin (ZnPP, a HO-1-specific inhibitor, reversed the

  15. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways

    International Nuclear Information System (INIS)

    Do, Minh Truong; Kim, Hyung Gyun; Khanal, Tilak; Choi, Jae Ho; Kim, Dong Hee; Jeong, Tae Cheon; Jeong, Hye Gwang

    2013-01-01

    Resistance to therapy is the major obstacle to more effective cancer treatment. Heme oxygenase-1 (HO-1) is often highly up-regulated in tumor tissues, and its expression is further increased in response to therapies. It has been suggested that inhibition of HO-1 expression is a potential therapeutic approach to sensitize tumors to chemotherapy and radiotherapy. In this study, we tested the hypothesis that the anti-tumor effects of metformin are mediated by suppression of HO-1 expression in cancer cells. Our results indicate that metformin strongly suppresses HO-1 mRNA and protein expression in human hepatic carcinoma HepG2, cervical cancer HeLa, and non-small-cell lung cancer A549 cells. Metformin also markedly reduced Nrf2 mRNA and protein levels in whole cell lysates and suppressed tert-butylhydroquinone (tBHQ)-induced Nrf2 protein stability and antioxidant response element (ARE)-luciferase activity in HepG2 cells. We also found that metformin regulation of Nrf2 expression is mediated by a Keap1-independent mechanism and that metformin significantly attenuated Raf-ERK signaling to suppress Nrf2 expression in cancer cells. Inhibition of Raf-ERK signaling by PD98059 decreased Nrf2 mRNA expression in HepG2 cells, confirming that the inhibition of Nrf2 expression is mediated by an attenuation of Raf-ERK signaling in cancer cells. The inactivation of AMPK by siRNA, DN-AMPK or the pharmacological AMPK inhibitor compound C, revealed that metformin reduced HO-1 expression in an AMPK-independent manner. These results highlight the Raf-ERK-Nrf2 axis as a new molecular target in anticancer therapy in response to metformin treatment. - Highlights: • Metformin inhibits HO-1 expression in cancer cells. • Metformin attenuates Raf-ERK-Nrf2 signaling. • Suppression of HO-1 by metformin is independent of AMPK. • HO-1 inhibition contributes to anti-proliferative effects of metformin

  16. Transduction of PEP-1-heme oxygenase-1 into insulin-producing INS-1 cells protects them against cytokine-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Jin; Kang, Hyung Kyung [Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Song, Dong Keun [Department of Pharmacology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Eum, Won Sik; Park, Jinseu [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Choi, Soo Young, E-mail: sychoi@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Kwon, Hyeok Yil, E-mail: hykwon@hallym.ac.kr [Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2015-06-05

    Pro-inflammatory cytokines play a crucial role in the destruction of pancreatic β-cells, thereby triggering the development of autoimmune diabetes mellitus. We recently developed a cell-permeable fusion protein, PEP-1-heme oxygenase-1 (PEP-1-HO-1) and investigated the anti-inflammatory effects in macrophage cells. In this study, we transduced PEP-1-HO-1 into INS-1 insulinoma cells and examined its protective effect against cytokine-induced cell death. PEP-1-HO-1 was successfully delivered into INS-1 cells in time- and dose-dependent manner and was maintained within the cells for at least 48 h. Pre-treatment with PEP-1-HO-1 increased the survival of INS-1 cells exposed to cytokine mixture (IL-1β, IFN-γ, and TNF-α) in a dose-dependent manner. PEP-1-HO-1 markedly decreased cytokine-induced production of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA). These protective effects of PEP-1-HO-1 against cytokines were correlated with the changes in the levels of signaling mediators of inflammation (iNOS and COX-2) and cell apoptosis/survival (Bcl-2, Bax, caspase-3, PARP, JNK, and Akt). These results showed that the transduced PEP-1-HO-1 efficiently prevented cytokine-induced cell death of INS-1 cells by alleviating oxidative/nitrosative stresses and inflammation. Further, these results suggested that PEP-1-mediated HO-1 transduction may be a potential therapeutic strategy to prevent β-cell destruction in patients with autoimmune diabetes mellitus. - Highlights: • We showed that PEP-1-HO-1 was efficiently delivered into INS-1 cells. • Transduced PEP-1-HO-1 exerted a protective effect against cytokine-induced cell death. • Transduced PEP-1-HO-1 inhibited cytokine-induced ROS and NO accumulation. • PEP-1-HO-1 suppressed cytokine-induced expression of iNOS, COX-2, and Bax. • PEP-1-HO-1 transduction may be an efficient tool to prevent β-cell destruction.

  17. Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishikado, Atsushi [Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Nishio, Yoshihiko, E-mail: nishio@belle.shiga-med.ac.jp [Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Morino, Katsutaro; Ugi, Satoshi; Kondo, Hajime [Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Makino, Taketoshi [Research and Development Department, Sunstar Inc., 3-1, Asahi-Machi, Takatsuki, Osaka 569-1195 (Japan); Kashiwagi, Atsunori; Maegawa, Hiroshi [Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan)

    2010-11-05

    Research highlights: {yields} Low doses of 4-HHE and 4-HNE induce HO-1 expression in vascular endothelial cells. {yields} 4-HHE and 4-HNE increase the intranuclear expression and DNA binding of Nrf2. {yields} 4-HHE and 4-HNE-induced HO-1 expression depends on the activation of Nrf2. {yields} Pretreatment with 4-HHE and 4-HNE prevents oxidative stress-induced cytotoxicity. -- Abstract: Large-scale clinical studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic and docosahexaenoic acids reduce cardiovascular events without improving classical risk factors for atherosclerosis. Recent studies have proposed that direct actions of n-3 PUFAs themselves, or of their enzymatic metabolites, have antioxidative and anti-inflammatory effects on vascular cells. Although a recent study showed that plasma 4-hydroxy hexenal (4-HHE), a peroxidation product of n-3 PUFA, increased after supplementation of docosahexaenoic acid, the antiatherogenic effects of 4-HHE in vascular cells remain unclear. In the present study, we tested the hypothesis that 4-HHE induces the antioxidative enzyme heme oxygenase-1 (HO-1) through activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulatory transcriptional factor, and prevents oxidative stress-induced cytotoxicity in vascular endothelial cells. This mechanism could partly explain the cardioprotective effects of n-3 PUFAs. Human umbilical vein endothelial cells were stimulated with 1-10 {mu}M 4-HHE or 4-hydroxy nonenal (4-HNE), a peroxidation product of n-6 PUFAs. Both 4-HHE and 4-HNE dose-dependently increased HO-1 mRNA and protein expression, and intranuclear expression and DNA binding of Nrf2 at 5 {mu}M. Small interfering RNA for Nrf2 significantly reduced 4-HHE- or 4-HNE-induced HO-1 mRNA and protein expression. Furthermore, pretreatment with 4-HHE or 4-HNE prevented tert-butyl hydroperoxide-induced cytotoxicity. In conclusion, 4-HHE, a peroxidation product of n-3 PUFAs, stimulated

  18. [The impact of hydrogen sulfide on the heme oxygenase-1/carbon monoxide system in Coxsackie virus B3-induced myocarditis in mice].

    Science.gov (United States)

    Zhang, S Y; Wu, T T; Ren, Y; Xia, T H; Wu, R Z

    2017-09-24

    Objective: To explore the impact of hydrogen sulfide (H(2)S) on the heme oxygenase-1/carbon monoxide pathway in Coxsackie virus B3 (CVB3)-induced murine myocarditis (VMC) model. Method: A total of 70 inbred male Balb/c mouse (4-6 weeks old) were randomized into the following four groups: Normal, VMC, PAG and NaHS ( n =10 for Normal, n =20 for VMC, PAG and NaHS groups). Mice in Normal group were non-infected mice treated with intraperitoneal injection of sterile phosphate-buffered saline daily for 10 days.Mice in VMC group received intraperitoneal CVB3 injection (0.1 ml 10(-5.69)TCID(50)m·ml(-1)·d(-1) and PBS for 10 days), and mice in PAG group received additional intraperitoneal DL-proparglygylcine injection (40 mg·kg(-1)·d(-1) for 10 days), mice in NaHS group received additional intraperitoneal NaHS injection (50 μmol·kg(-1)·d(-1) for 10 days). All mice were sacrificed on day 10th, and body weight and heart weight, the ratio of heart weight to body weight were compared among groups.Pathological changes of heart tissues were observed microscopically by HE and the histopathologic scores were valued.The content of COHb was tested after the gathering of blood specimens while reverse transcription-polymerase chain reaction was used to detect myocardial HO-1 mRNA expression. Results: (1) Pathological findings in myocardium: hearts sections in Normal group were normal and no inflammatory cells and necrosis were found.A notable cellular infiltration, interstitial edema, vascular hyperemia and necrosis were observed in heart section of VMC, PAG and NaHS group.Extensive inflammations and larger area of myocardial cells necrosis were evidenced in PAG group and above changes were significantly reduced in NaHS group.(2) Comparison of the ratio of heart weight to body weight and histological scores of myocardium: the ratio was significantly higher in the VMC, PAG, NaHS groups than in Normal group ( P <0.05), which was higher in PAG group and lower in NaHS group as

  19. [Effects of heme oxygenase-1/carbon monoxide pathway on the mitochondrial fusion in rat alveolar epithelial type II cells stimulated by lipopolysaccharide].

    Science.gov (United States)

    Jia, Haojuan; Shi, Jia; Dong, Shu'an; Zhang, Yuan; Yu, Jianbo

    2018-03-01

    To investigate the effects of heme oxygenase-1/carbon monoxide (HO-1/CO) pathway on mitochondrial fusion in rat alveolar epithelial type II cells (AEC II) stimulated by lipopolysaccharide (LPS). Once the cultured in vitro rat AEC II cells line RLE-6TN reached confluency of 85%, they were subcultured and randomly divided into seven groups (n = 5 each). RLE-6TN cells were routinely cultured in control group. The cells in LPS group was stimulated with 10 mg/L LPS to reproduce the model of endotoxin challenge in AECII cells. The cells in carbon monoxide-releasing molecule-2 (CORM-2, in vitro CO release agent) + LPS group (CL group) and Hemin (HO-1 inducer) + LPS group (HL group) were pretreated with 100 μmol/L CORM-2 or 20 μmol/L Hemin for 1 hour, respectively, followed by 10 mg/L LPS stimulation. The cells in zinc protoporphyrin-IX (ZnPP-IX, HO-1 inhibitor) + LPS group (ZL group) was pretreated with 10 μmol/L ZnPP-IX for 0.5 hour followed by 10 mg/L LPS stimulation. The cells in CORM-2 + ZnPP-IX + LPS group (CZL group) and Hemin + ZnPP-IX + LPS group (HZL group) were pretreated with 100 μmol/L CORM-2 or 20 μmol/L Hemin respectively for 1 hour, and other treatments were similar to those previously described in ZL group. At 24 hours after LPS stimulation, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the supernatant were determined by enzyme linked immunosorbent assay (ELISA), the protein expressions of HO-1, mitochondrial fusion related proteins 1 and 2 (Mfn1, Mfn2) and optic atrophy 1 (OPA1) were determined by Western Blot. Compared with control group, IL-6 and TNF-α contents in the supernatant were increased, HO-1 protein expression was up-regulated, Mfn1, Mfn2 and OPA1 protein expressions were down-regulated in all treatment groups. Compared with LPS group, IL-6 and TNF-α contents were significantly decreased after CORM-2 or Hemin pretreatment [IL-6 (ng/L): 48.6±3.7, 48.4±3.1 vs. 58.7±2.5; TNF-α (ng/L): 40.7±5.3, 39.4±4.3 vs. 51.8±5

  20. Identification of danthron as an isoform-specific inhibitor of HEME OXYGENASE-1/cytochrome P450 reductase interaction with anti-tumor activity.

    Science.gov (United States)

    Chou, Yi-Tai; Hsu, Fu-Fei; Hu, Dun-Yao; Chen, Ying-Chih; Hsu, Yuan-Hao; Hsu, John T-A; Chau, Lee-Young

    2018-01-23

    Heme oxygenase (HO) catalyzes NADPH-dependent degradation of heme to liberate iron, carbon monoxide and biliverdin. The interaction between HO and cytochrome P450 reductase (CPR), an electron donor, is essential for HO activity. HO-1 is a stress-inducible isoform whereas HO-2 is constitutively expressed. HO-1 induction is commonly seen in cancers and impacts disease progression, supporting the possibility of targeting HO-1 for cancer therapy. We employed a cell-based bioluminescence resonance energy transfer assay to screen compounds with ability to inhibit HO-1/CPR interaction. The effect of the identified compound on HO-1/CPR interaction was confirmed by pull down assay. Moreover, the anti-tumorigenic activity of the identified compound on HO-1-enhanced tumor growth and migration was assessed by trypan blue exclusion method and wound healing assay. Danthron was identified as an effective small molecule able to interfere with the interaction between HO-1 and CPR but not HO-2 and CPR. Additional experiments with structural analogues of danthron revealed that the positions of hydroxyl moieties significantly affected the potency of inhibition on HO-1/CPR interaction. Pull-down assay confirmed that danthron inhibited the interaction of CPR with HO-1 but not HO-2. Danthron suppressed growth and migration of HeLa cells with stable HO-1 overexpression but not mock cells. In contrast, anthrarufin, a structural analog with no ability to interfere HO-1/CPR interaction, exhibited no significant effect on HO-1-overexpressing HeLa cells. These findings demonstrate that danthron is an isoform-specific inhibitor for HO-1/CPR interaction and may serve as a lead compound for novel anticancer drug.

  1. Metallothionein-III protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a PI3K and ERK/Nrf2-dependent manner

    International Nuclear Information System (INIS)

    Hwang, Yong Pil; Kim, Hyung Gyun; Han, Eun Hee; Jeong, Hye Gwang

    2008-01-01

    The zinc-binding protein metallothionein-III (MT-III) is associated with resistance to neuronal injury. However, the underlying mechanism for its effects is unclear. In this study, we demonstrate that MT-III prevents the accumulation of reactive oxygen species (ROS) in dopaminergic SH-SY5Y cells challenged with the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA) by a mechanism that involves phosphatidylinositol 3-kinase (PI3K) and ERK kinase/NF-E2-related factor 2 (Nrf2) dependent induction of the stress response protein heme oxygenase-1 (HO-1). Pretreatment of SH-SY5Y cells with MT-III significantly reduced 6-OHDA-induced generation of ROS, caspase-3 activation, and subsequent cell death. Also, MT-III up-regulates HO-1 expression and this expression confers neuroprotection against oxidative injury induced by 6-OHDA. Moreover, MT-III induces Nrf2 nuclear translocation, which is upstream of MT-III-induced HO-1 expression, and PI3K and ERK1/2 activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and neuroprotection. Taken together, these results suggest that the PI3K and ERK/Nrf2 signaling pathway controls the intracellular levels of ROS by regulating the expression of the antioxidant enzyme HO-1

  2. Psidium guajava extract inhibits thymus and activation-regulated chemokine (TARC/CCL17) production in human keratinocytes by inducing heme oxygenase-1 and blocking NF-κB and STAT1 activation.

    Science.gov (United States)

    Han, Eun Hee; Hwang, Yong Pil; Choi, Jae Ho; Yang, Ji Hye; Seo, Jong Kwon; Chung, Young Chul; Jeong, Hye Gwang

    2011-09-01

    Psidium guajava (P. guajava) is a food and medicinal plant with antioxidant, anti-inflammatory, and anti-allergic activities that support its traditional uses. The aim of this study was to determine the effects of P. guajava ethyl acetate extract (PGEA) on atopic dermatitis and to investigate the possible mechanisms by which PGEA inhibits cytokine-induced Th2 chemokine expression in HaCaT human keratinocyte cells. We found that PGEA suppressed the IFN-γ/TNF-α-co-induced production of thymus and activation-regulated chemokine (TARC) protein and mRNA in HaCaT cells. Additionally, PGEA inhibited the TNF-α/IFN-γ-co-induced activation of NF-κB and STAT1 and increased the expression of heme oxygenase-1 (HO-1) protein and mRNA. HO-1 inhibitor enhanced the suppressive effects of PGEA on TNF-α/IFN-γ-co-induced TARC production and gene expression. Collectively, these data demonstrate that PGEA inhibits chemokine expression in keratinocytes by inducing HO-1 expression and it suggests a possible therapeutic application in atopic dermatitis and other inflammatory skin diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells

    International Nuclear Information System (INIS)

    Hwang, Yong Pil; Jeong, Hye Gwang

    2010-01-01

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a popular traditional herbal medicine. Ginsenoside Rb1 (Rb1), an active component commonly found in ginseng root, is a phytoestrogen that exerts estrogen-like activity. In this study, we demonstrate that the phytoestrogen Rb1 inhibits 6-hydroxydopamine (6-OHDA)-induced oxidative injury via an ER-dependent Gβ1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of SH-SY5Y cells with Rb1 significantly reduced 6-OHDA-induced caspase-3 activation and subsequent cell death. Rb1 also up-regulated HO-1 expression, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, Rb1 induced both Nrf2 nuclear translocation, which is upstream of HO-1 expression and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Also, Rb1-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that Rb1 augments the cellular antioxidant defenses through ER-dependent HO-1 induction via the Gβ1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress. Thus our study indicates that Rb1 has a partial cytoprotective role in dopaminergic cell culture systems.

  4. The Cytoprotective Effect of Petalonia binghamiae Methanol Extract against Oxidative Stress in C2C12 Myoblasts: Mediation by Upregulation of Heme Oxygenase-1 and Nuclear Factor-Erythroid 2 Related Factor 2

    Directory of Open Access Journals (Sweden)

    Ji Sook Kang

    2015-04-01

    Full Text Available This study was designed to examine the protective effects of the marine brown algae Petalonia binghamiae against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms. P. binghamiae methanol extract (PBME prevented hydrogen peroxide (H2O2-induced growth inhibition and exhibited scavenging activity against intracellular reactive oxygen species (ROS induced by H2O2 in mouse-derived C2C12 myoblasts. PBME also significantly attenuated H2O2-induced comet tail formation in a comet assay, histone γH2A.X phosphorylation, and annexin V-positive cells, suggesting that PBME prevented H2O2-induced cellular DNA damage and apoptotic cell death. Furthermore, PBME increased the levels of heme oxygenase-1 (HO-1, a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2 related factor 2 (Nrf2. However, zinc protoporphyrin IX, a HO-1 competitive inhibitor, significantly abolished the protective effects of PBME on H2O2-induced ROS generation, growth inhibition, and apoptosis. Collectively, these results demonstrate that PBME augments the antioxidant defense capacity through activation of the Nrf2/HO-1 pathway.

  5. The induction of heme oxygenase-1 suppresses heat shock protein 90 and the proliferation of human breast cancer cells through its byproduct carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wen-Ying [Department of Pathology, Chi-Mei Hospital, Tainan, Taiwan (China); Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Chen, Yen-Chou [Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Shih, Chwen-Ming; Lin, Chun-Mao; Cheng, Chia-Hsiung; Chen, Ku-Chung [Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Biochemistry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lin, Cheng-Wei, E-mail: cwlin@tmu.edu.tw [Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Biochemistry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2014-01-01

    Heme oxygenase (HO)-1 is an oxidative stress-response enzyme which catalyzes the degradation of heme into bilirubin, ferric ion, and carbon monoxide (CO). Induction of HO-1 was reported to have antitumor activity; the inhibitory mechanism, however, is still unclear. In the present study, we found that treatment with [Ru(CO){sub 3}Cl{sub 2}]{sub 2} (RuCO), a CO-releasing compound, reduced the growth of human MCF7 and MDA-MB-231 breast cancer cells. Analysis of growth-related proteins showed that treatment with RuCO down-regulated cyclinD1, CDK4, and hTERT protein expressions. Interestingly, RuCO treatment resulted in opposite effects on wild-type and mutant p53 proteins. These results were similar to those of cells treated with geldanamycin (a heat shock protein (HSP)90 inhibitor), suggesting that RuCO might affect HSP90 activity. Moreover, RuCO induced mutant p53 protein destabilization accompanied by promotion of ubiquitination and proteasome degradation. The induction of HO-1 by cobalt protoporphyrin IX (CoPP) showed consistent results, while the addition of tin protoporphyrin IX (SnPP), an HO-1 enzymatic inhibitor, diminished the RuCO-mediated effect. RuCO induction of HO-1 expression was reduced by a p38 mitogen-activated protein kinase inhibitor (SB203580). Additionally, treatment with a chemopreventive compound, curcumin, induced HO-1 expression accompanied with reduction of HSP90 client protein expression. The induction of HO-1 by curcumin inhibited 12-O-tetradecanoyl-13-acetate (TPA)-elicited matrix metalloproteinase-9 expression and tumor invasion. In conclusion, we provide novel evidence underlying HO-1's antitumor mechanism. CO, a byproduct of HO-1, suppresses HSP90 protein activity, and the induction of HO-1 may possess potential as a cancer therapeutic. - Highlights: • CO and HO-1 inhibited the growth of human breast cancer cells. • CO and HO-1 attenuated HSP90 and its client proteins expression. • CO induced mutant p53 protein

  6. Adiponectin Inhibits LPS-Induced HMGB1 Release through an AMP Kinase and Heme Oxygenase-1-Dependent Pathway in RAW 264 Macrophage Cells

    Directory of Open Access Journals (Sweden)

    Mohamed Elfeky

    2016-01-01

    Full Text Available High mobility group protein B1 (HMGB1 is a late inflammatory mediator that exaggerates septic symptoms. Adiponectin, an adipokine, has potent anti-inflammatory properties. However, possible effects of adiponectin on lipopolysaccharide- (LPS- induced HMGB1 release are unknown. The aim of this study was to investigate effects of full length adiponectin on HMGB1 release in LPS-stimulated RAW 264 macrophage cells. Treatment of the cells with LPS alone significantly induced HMGB1 release associated with HMGB1 translocation from the nucleus to the cytosol. However, prior treatment with adiponectin suppressed LPS-induced HMGB1 release and translocation. The anti-inflammatory cytokine interleukin- (IL- 10 similarly suppressed LPS-induced HMGB1 release. Adiponectin treatment decreased toll-like receptor 4 (TLR4 mRNA expression and increased heme oxygenase- (HO- 1 mRNA expression without inducing IL-10 mRNA, while IL-10 treatment decreased TLR2 and HMGB1 mRNA expression and increased the expression of IL-10 and HO-1 mRNA. Treatment with the HO-1 inhibitor ZnPP completely prevented the suppression of HMGB1 release by adiponectin but only partially inhibited that induced by IL-10. Treatment with compound C, an AMP kinase (AMPK inhibitor, abolished the increase in HO-1 expression and the suppression of HMGB1 release mediated by adiponectin. In conclusion, our results indicate that adiponectin suppresses HMGB1 release by LPS through an AMPK-mediated and HO-1-dependent IL-10-independent pathway.

  7. Heme oxygenase-1 plays a pro-life role in experimental brain stem death via nitric oxide synthase I/protein kinase G signaling at rostral ventrolateral medulla

    Directory of Open Access Journals (Sweden)

    Dai Kuang-Yu

    2010-09-01

    Full Text Available Abstract Background Despite its clinical importance, a dearth of information exists on the cellular and molecular mechanisms that underpin brain stem death. A suitable neural substrate for mechanistic delineation on brain stem death resides in the rostral ventrolateral medulla (RVLM because it is the origin of a life-and-death signal that sequentially increases (pro-life and decreases (pro-death to reflect the advancing central cardiovascular regulatory dysfunction during the progression towards brain stem death in critically ill patients. The present study evaluated the hypothesis that heme oxygnase-1 (HO-1 may play a pro-life role as an interposing signal between hypoxia-inducible factor-1 (HIF-1 and nitric oxide synthase I (NOS I/protein kinase G (PKG cascade in RVLM, which sustains central cardiovascular regulatory functions during brain stem death. Methods We performed cardiovascular, pharmacological, biochemical and confocal microscopy experiments in conjunction with an experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos (Mev; 10 nmol bilaterally into RVLM of adult male Sprague-Dawley rats. Results Western blot analysis coupled with laser scanning confocal microscopy revealed that augmented HO-1 expression that was confined to the cytoplasm of RVLM neurons occurred preferentially during the pro-life phase of experimental brain stem death and was antagonized by immunoneutralization of HIF-1α or HIF-1β in RVLM. On the other hand, the cytoplasmic presence of HO-2 in RVLM neurons manifested insignificant changes during both phases. Furthermore, immunoneutralization of HO-1 or knockdown of ho-1 gene in RVLM blunted the augmented life-and-death signals exhibited during the pro-life phase. Those pretreatments also blocked the upregulated pro-life NOS I/PKG signaling without affecting the pro-death NOS II/peroxynitrite cascade in RVLM. Conclusions We conclude that transcriptional

  8. Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats.

    Science.gov (United States)

    Yen, Ting-Lin; Chen, Ray-Jade; Jayakumar, Thanasekaran; Lu, Wan-Jung; Hsieh, Cheng-Ying; Hsu, Ming-Jen; Yang, Chih-Hao; Chang, Chao-Chien; Lin, Yen-Kuang; Lin, Kuan-Hung; Sheu, Joen-Rong

    2016-04-01

    Stroke pathogenesis involves complex oxidative stress-related pathways. The nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) pathways have been considered molecular targets in pharmacologic intervention for ischemic diseases. Andrographolide, a labdane diterpene, has received increasing attention in recent years because of its various pharmacologic activities. We determined that andrographolide modulates the mitogen-activated protein kinase (MAPK)-Nrf2-HO-1 signaling cascade in primary cerebral endothelial cells (CECs) to provide positive protection against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in rats. In the present study, andrographolide (10 μM) increased HO-1 protein and messenger RNA expressions, Nrf2 phosphorylation, and nuclear translocation in CECs, and these activities were disrupted by a p38 MAPK inhibitor, SB203580, but not by the extracellular signal-regulated kinase inhibitor PD98059 or c-Jun amino-terminal kinase inhibitor SP600125. Similar results were observed in confocal microscopy analysis. Moreover, andrographolide-induced Nrf2 and HO-1 protein expressions were significantly inhibited by Nrf2 small interfering RNA. Moreover, HO-1 knockdown attenuated the protective effect of andrographolide against oxygen-glucose deprivation-induced CEC death. Andrographolide (0.1 mg/kg) significantly suppressed free radical formation, blood-brain barrier disruption, and brain infarction in MCAO-insulted rats, and these effects were reversed by the HO-1 inhibitor zinc protoporphyrin IX. The mechanism is attributable to HO-1 activation, as directly evidenced by andrographolide-induced pronounced HO-1 expression in brain tissues, which was highly localized in the cerebral capillary. In conclusion, andrographolide increased Nrf2-HO-1 expression through p38 MAPK regulation, confirming that it provides protection against MCAO-induced brain injury. These findings provide strong evidence that andrographolide could

  9. A possible involvement of Nrf2-mediated heme oxygenase-1 up-regulation in protective effect of the proton pump inhibitor pantoprazole against indomethacin-induced gastric damage in rats

    Directory of Open Access Journals (Sweden)

    Lee Ho-Jae

    2012-10-01

    Full Text Available Abstract Background Proton pump is an integral membrane protein that is ubiquitous ATP binding cassette (ABC involved in many transport processes in all living organisms, among which a specialized form of pump, so called p-type proton pump, exists in the parietal cells of stomach. Though proton pump inhibitors (PPIs are frequently prescribed to prevent nonsteroidal anti-inflammatory drugs (NSAIDs-induced gastric damage, the acid suppressive actions do not suffice to explain. Methods In order to document the effects of pantoprazole, one of PPIs, on the NSAIDs-induced gastric damage, in vitro and in vivo studies were performed. Immunocytochemistry, Western blot analysis, electrophoretic mobility shift assay and RT-PCR were conducted to evaluate the induction of heme oxygenase-1 (HO-1 through Nrf2 activation in normal gastric mucosal RGM-1 cells or in vivo stomach tissues from rats treated with indomethacin and/or pantoprazole. Results Pantoprazole activated Nrf2 through inactivation of Keap1, after which the expression of HO-1 was significantly increased in a dose-dependent manner in RGM-1 cells. Increased ARE-DNA binding activity was observed maximally at 1 h with 300 μM of pantoprazole. The expression of HO-1 induced by pantoprazole was significantly associated with the increased in vitro tube formation (P P In vivo model of indomethacin-induced gastric damage could validate in vitro-drawn results that pantoprazole remarkably protected against indomethacin-induced gastric damage, in which zinc protoporphyrin (5 mg/kg, ip significantly abolished the protective efficacy of pantoprazole. Conclusion These results demonstrate that Nrf2-mediated HO-1 induction of PPIs afforded a significant protective effect against NSAIDs-induced gastric damage beyond acid suppressive actions.

  10. [Influences of heme oxygenase-1, carbon monoxide and nitric oxide synthase, nitrogen monoxide systems on vascular remodeling of injured balloon carotid artery in rabbits and the intercorrelations among the two systems].

    Science.gov (United States)

    Liu, Danan; He, Zuoyun; Wu, Lirong; Fang, Ying; Liu, Xingde; Li, Ping

    2011-08-01

    The aim of this study was to investigate the influences of heme oxygenase-1, carbon monoxide and nitricoxide synthase, nitrogen monoxide systems on vascular remodeling of injured balloon carotid artery in rabbits and the intercorrelations among the two systems after balloon angioplasty. Seventy rabbits were randomly divided into seven groups, i. e., control group, SH group, Chol group, Arg group, L-NAME group, Hem group, and Znpp group. The control group received normal chow, while all the rabbits the rest six groups received 1.5% cholesterol diet. Among the six test groups, to those in Chol group and SH group nothing else was added except the 1.5% cholesterol. L-arginine or L-nitro-arginine methylester was added to those in the Arg group and in the L-NAME group with drinking water. Hemin or zincprotoporphyrin IX was added to those in Hem group and in Znpp group by injecting the medicine into the abdominal cavity. After two weeks, the experimental groups underwent balloon injury at one side common carotid artery. Compared to Chol group, the HO-1 activity and CO production increased significantly. The intima area was reduced distinctly in Hem group, while there were opposite results in Znpp group. Compared with that in Chol group, the NF-kappaB activity of Arg group and Hem group were lower significantly. That of L-NAME group and Znpp group were higher significantly. Compared with that in the Chol group, the cNOS activity and NO production were eleveated markedly in Arg group while they were decreased markedly in L-NAME group. The intima area was reduced significantly in Arg group, while in L-NAME group they were not different from those in Chol group. These results suggested that the reciprocal relationship between HO-1/CO and NOS/NO system in restenosis may play the inhibitory role against neointimal proliferation and vascular wall remodeling after balloon angioplasty.

  11. The anti-inflammatory activity of Phellinus linteus (Berk. & M.A. Curt.) is mediated through the PKCdelta/Nrf2/ARE signaling to up-regulation of heme oxygenase-1.

    Science.gov (United States)

    Kim, Byung-Chul; Jeon, Woo-Kwang; Hong, Hye-Young; Jeon, Kyung-Bum; Hahn, Jang-Hee; Kim, Young-Myeong; Numazawa, Satoshi; Yosida, Takemi; Park, Eun-Hee; Lim, Chang-Jin

    2007-09-05

    It has been reported that heme oxygenase-1 (HO-1) mediates the anti-inflammatory activity of the n-BuOH subfraction (PL) prepared from fruiting bodies of Phellinus linteus. This continuing work aimed to elucidate the signaling pathway to the up-regulation of HO-1 by PL. In RAW264.7 macrophage cells, PL was able to enhance phosphorylation of protein kinase Cdelta (PKCdelta), but not PKCalpha/betaII, in a time-dependent manner. PL-induced HO-1 expression was dramatically released by GF109203X, a general inhibitor of PKC, and rottlerin, a specific PKCdelta inhibitor but not by Gö6976, a selective inhibitor for PKCalpha/beta. Additionally, PL treatment resulted in a marked increase in antioxidant response element (ARE)-driven transcriptional activity, which was dependent on PKCdelta but not PKCalpha. An increase by PL treatment in the ARE-driven transcriptional activity was further enhanced by Nrf2, whereas it was diminished by Keap1. Furthermore, pretreatment of rottlerin and overexpression of PKCdelta (K376R), a kinase-inactive form of PKCdelta, partly blocked the suppression by PL of nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, and iNOS promoter activity, which were elevated in the lypopolysaccharide (LPS)-activated macrophages. Similarly, expression of matrix metalloproteinase-9 (MMP-9) and its promoter activity were suppressed by PL, which were dependent upon PKCdelta. The present findings indicate that Phellinus linteus gives rise to an anti-inflammatory activity though the PKCdelta/Nrf2/ARE signaling to the up-regulation of HO-1 in an in vitro inflammation model.

  12. Characterization of docosahexaenoic acid (DHA)-induced heme oxygenase-1 (HO-1) expression in human cancer cells: the importance of enhanced BTB and CNC homology 1 (Bach1) degradation.

    Science.gov (United States)

    Wang, Shuai; Hannafon, Bethany N; Wolf, Roman F; Zhou, Jundong; Avery, Jori E; Wu, Jinchang; Lind, Stuart E; Ding, Wei-Qun

    2014-05-01

    The effect of docosahexaenoic acid (DHA) on heme oxygenase-1 (HO-1) expression in cancer cells has never been characterized. This study examines DHA-induced HO-1 expression in human cancer cell model systems. DHA enhanced HO-1 gene expression in a time- and concentration-dependent manner, with maximal induction at 21 h of treatment. This induction of HO-1 expression was confirmed in vivo using a xenograft nude mouse model fed a fish-oil-enriched diet. The increase in HO-1 gene transcription induced by DHA was significantly attenuated by the antioxidant N-acetyl cysteine, suggesting the involvement of oxidative stress. This was supported by direct measurement of lipid peroxide levels after DHA treatment. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs) that mediate the DHA-induced increase in HO-1 gene transcription. Knockdown of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression compromised the DHA-induced increase in HO-1 gene transcription, indicating the importance of the Nrf2 pathway in this event. However, the nuclear protein levels of Nrf2 remained unchanged upon DHA treatment. Further studies demonstrated that DHA reduces nuclear Bach1 protein expression by promoting its degradation and attenuates Bach1 binding to the AREs in the HO-1 gene promoter. In contrast, DHA enhanced Nrf2 binding to the AREs without affecting nuclear Nrf2 expression levels, indicating a new cellular mechanism that mediates DHA's induction of HO-1 gene transcription. To our knowledge, this is the first characterization of DHA-induced HO-1 expression in human malignant cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The heme oxygenase-1 inducer THI-56 negatively regulates iNOS expression and HMGB1 release in LPS-activated RAW 264.7 cells and CLP-induced septic mice.

    Science.gov (United States)

    Park, Eun Jung; Jang, Hwa Jin; Tsoyi, Konstantin; Kim, Young Min; Park, Sang Won; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl

    2013-01-01

    The nuclear DNA binding protein high mobility group box 1 (HMGB1) has recently been suggested to act as a late mediator of septic shock. The effect of ((S)-6,7-dihydroxy-1-(4-hydroxynaphthylmethyl)-1,2,3,4-tetrahydroisoquinoline alkaloid, also known as THI-56, in an experimental model of sepsis was investigated. THI-56 exhibited potent anti-inflammatory properties in response to LPS in RAW 264.7 cells. In particular, THI-56 significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and the release of HMGB1 in activated macrophages. THI-56 activated NE-F2-regulated factor 2 (Nrf-2)/heme oxygenase 1 (HO-1). The specific knockdown of the HO-1 gene by HO-1 siRNA significantly reversed the inhibitory effects of THI-56 on iNOS expression and HMGB1 release in LPS-stimulated macrophages. Importantly, THI-56 administration protected animals from death induced by either a lethal dose of LPS or cecal ligation and puncture (CLP). Furthermore, the ALT, AST, BUN, creatinine, and HMGB1 levels in the blood were significantly increased in CLP-induced septic mice, and the administration of THI-56 reduced these levels in a concentration-dependent and zinc protoporphyrin IX (ZnPPIX)-sensitive manner. In addition, the administration of THI-56 significantly ameliorated not only lung damage but also macrophage infiltration in the livers of CLP-induced septic mice, and these effects were also abrogated in the presence of ZnPPIX. Thus, we conclude that THI-56 significantly attenuates the proinflammatory response induced by LPS and reduces organ damage in a CLP-induced sepsis model through the upregulation of Nrf-2/HO-1.

  14. Obesity, Oxidative Stress, and Their Effect on Serum Heme Oxygenase-1 Concentrations and Insulin in Children Aged 3 to 5 Years in a Pediatric Hospital of the Ministry of Health CDMX.

    Science.gov (United States)

    Carmona-Montesinos, Enrique; Velazquez-Perez, Raul; Pichardo Aguirre, Edna; Rivas-Arancibia, Selva

    2016-12-01

    Obesity during early stages of life may condition states of oxidative stress. Heme oxygenase-1 (HO-1) is an enzyme involved in oxidative metabolism; it has antioxidant and anti-inflammatory functions and is related in sensitivity to insulin. However, a high concentration of this enzyme has been described to cause alterations such as insulin resistance. The objective of this work was to study the relationship between obesity, oxidative stress, HO-1, and insulin in children aged 3 to 5 years. To achieve our objective, we studied a control group of children (n = 50) and a group of obese children (n = 50) who underwent an anthropometric evaluation. Additionally, we quantified peroxidized lipids, oxidized low-density lipoproteins (Ox-LDLs), oxidized and reduced glutathione, HO-1, and insulin. We also calculated the homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-%B, and HOMA-%S indices. According to the data distribution, nonparametric and Spearman's rank correlation coefficient tests were conducted. The results demonstrate that obese children show a statistically relevant increase in BMI/age, serum concentrations of peroxidized lipids, Ox-LDLs, oxidized glutathione, HO-1, and insulin (p < 0.005). In addition, there was an increase in the HOMA-IR and HOMA-%B (p < 0.0001) indices and a decrease of reduced glutathione, as well as a reduction in the HOMA-%S, compared with the children of the control group (p < 0.003). With the results obtained, we can conclude that obese preschool children show a chronic state of oxidative stress, an increase of HO-1, and an incipient state of insulin resistance. Finally, the increased reactive oxygen species could be one of the leading factors involved in insulin resistance and Ox-LDL increase from the preschool stage.

  15. 2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-κB, AP-1 and MAPK pathways in human proximal tubular cells

    Science.gov (United States)

    Gong, Xuezhong; Ivanov, Vladimir N.; Hei, Tom K.

    2015-01-01

    Our recent study demonstrated that sodium arsenite at a clinically relevant dose induced nephrotoxicity in human renal proximal tubular epithelial cell line HK-2, which could be inhibited by natural product 2,3,5,6-Tetramethylpyrazine (TMP) with antioxidant activity. The present study demonstrated that arsenic exposure resulted in protein and enzymatic induction of heme oxygenase-1 (HO-1) in dose- and time-dependent manners in HK-2 cells. Blocking HO-1enzymatic activity by Zinc protoporphyrin (ZnPP) augmented arsenic-induced apoptosis, ROS production and mitochondrial dysfunction, suggesting a critical role for HO-1 as a renal protectant in this procession. On the other hand, TMP, upstream of HO-1, inhibited arsenic-induced ROS production and ROS-dependent HO-1 expression. TMP also prevented mitochondria dysfunction and suppressed activation of the intrinsic apoptotic pathway in HK-2 cells. Our results revealed that the regulation of arsenic-induced HO-1 expression was performed through multiple ROS-dependent signal pathways and the corresponding transcription factors, including p38 MAPK and JNK (but not ERK), AP-1, Nrf2 and NF-κB. TMP inhibited arsenic-induced activations of JNK, p38 MAPK, ERK, AP-1 and Nrf2 and block HO-1 protein expression. The present study, furthermore, demonstrated arsenic-induced expression of Arsenic response protein 2 (ARS2) that was regulated by p38 MAPK, ERK and NF-κB. To our knowledge, this is the first report showing that ARS2 involved in arsenic-induced nephrotoxicity while TMP pretreatment prevented such an up-regulation of ARS2 in HK-2 cells. Given ARS2 and HO-1 sharing the similar regulation mechanism, we speculated that ARS2 might also mediate cell survival in this procession. In summary, our study highlighted a role of HO-1 in the protection against arsenic-induced cytotoxicity downstream from the primary targets of TMP and further indicated that TMP may be used as a potential therapeutic agent in the treatment of arsenic

  16. Sofalcone upregulates the nuclear factor (erythroid-derived 2)-like 2/heme oxygenase-1 pathway, reduces soluble fms-like tyrosine kinase-1, and quenches endothelial dysfunction: potential therapeutic for preeclampsia.

    Science.gov (United States)

    Onda, Kenji; Tong, Stephen; Nakahara, Anzu; Kondo, Mei; Monchusho, Hideaki; Hirano, Toshihiko; Kaitu'u-Lino, Tu'uhevaha; Beard, Sally; Binder, Natalie; Tuohey, Laura; Brownfoot, Fiona; Hannan, Natalie J

    2015-04-01

    Preeclampsia is a severe complication of pregnancy, characterized by hypertension, oxidative stress, and severe endothelial dysfunction. Antiangiogenic factors, soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin, play key pathophysiological roles in preeclampsia. Heme oxygenase-1 (HO-1) is a cytoprotective, antioxidant enzyme reported to be downregulated in preeclampsia. Studies propose that inducing HO-1 may also decrease sFlt-1 production. Sofalcone, a gastric antiulcer agent in clinical use, is known to induce HO-1 in gastric epithelium. We aimed to investigate whether sofalcone induces HO-1 and reduces sFlt-1 release from primary human placental and endothelial cells and blocks endothelial dysfunction in vitro. We isolated human trophoblasts and endothelial cells (human umbilical vein endothelial cells) and also used uterine microvascular cells. We investigated the effects of sofalcone on (1) HO-1 production, (2) activation of the nuclear factor (erythroid-derived 2)-like 2 pathway, (3) sFlt-1 and soluble endoglin release, (4) tumor necrosis factor α-induced monocyte adhesion and vascular cell adhesion molecule upregulation, and (5) endothelial tubule formation. Sofalcone potently increased HO-1 mRNA and protein in both primary trophoblasts and human umbilical vein endothelial cells. Furthermore, sofalcone treatment caused nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 and transactivation of other nuclear factor (erythroid-derived 2)-like 2 responsive genes (NQO1, TXN, and GCLC). Importantly, sofalcone significantly decreased the secretion of sFlt-1 from primary human trophoblasts. Sofalcone potently suppressed endothelial dysfunction in 2 in vitro models, blocking tumor necrosis factor α-induced monocyte adhesion and vascular cell adhesion molecule 1 expression in human umbilical vein endothelial cells. These results indicate that in primary human tissues, sofalcone can potently activate antioxidant nuclear factor

  17. Expression of Cyclooxygenase-2, Nitric Oxide Synthase 2 and Heme Oxygenase-1 mRNA Induced byBis-Eugenol in RAW264.7 Cells and their Antioxidant Activity Determined Using the Induction Period Method.

    Science.gov (United States)

    Murakami, Yukio; Kawata, Akifumi; Fujisawa, Seiichiro

    2017-01-01

    To clarify the mechanisms responsible for the anti-inflammatory/proinflammatory activities of eugenol-related compounds, we investigated the cytotoxicity and up-regulatory/down-refgulatory effects of the biphenols curcumin, bis-eugenol, magnolol and honokiol, and the monophenols eugenol and isoeugenol, on major regulators of cyclooxygenase-2 (Cox-2), nitric oxide synthase 2 (Nos2) and heme oxygenase-1 (HO-1) mRNA in RAW264.7 cells. mRNA expression was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR), and the theoretical parameters were calculated using the DFT/B3LYP/6-31* method. Also, the antioxidant activity of eugenol-related compounds in combination with 2-mercapto-1-methylimidazole (MMI, as a model for glutathione (GSH)) was investigated using the induction period method for polymerization of methyl methacrylate initiated by benzoyl peroxide (BPO). The cytotoxicity of eugenol-related compounds showed a linear relationship with their softness (σ) and electrophilicity (ω). At a concentration of 50 μM, biphenols except for bis-eugenol elicited the expression of mRNA for both Cox-2 and Nos2, but monophenols did not. In contrast, bis-eugenol elicited Cox-2 gene expression, but down-regulated Nos2 gene expression. bis-Eugenol alone induced the expression of HO-1 mRNA, and when combined with MMI it showed a potent antagonistic effect on BPO-induced antioxidant activity. The ability of methoxyphenols to inhibit LPS-stimulated Cox-2 gene expression declined in the order curcumin > isoeugenol > bis-eugenol > eugenol, and the rank of ability was related to their ω value. Most eugenol-related compounds had proinflammatory activity at high concentrations. However, they had also anti-inflammatory activity at lower concentrations. Eugenol-related compounds may exert antioxidant and anti-inflammatory activity in LPS-stimulated RAW264.7 cells possibly by inhibiting the activation of nuclear factor-kappa B (Nf-ĸB), whereas bis

  18. Isorhamnetin inhibits Prevotella intermedia lipopolysaccharide-induced production of interleukin-6 in murine macrophages via anti-inflammatory heme oxygenase-1 induction and inhibition of nuclear factor-κB and signal transducer and activator of transcription 1 activation.

    Science.gov (United States)

    Jin, J Y; Choi, E Y; Park, H R; Choi, J I; Choi, I S; Kim, S J

    2013-12-01

    Interleukin-6 (IL-6) is a key proinflammatory cytokine that has been considered to be important in the pathogenesis of periodontal disease. Therefore, host-modulatory agents directed at inhibiting IL-6 appear to be beneficial in terms of attenuating periodontal disease progression and potentially improving disease susceptibility. In the current study, we investigated the effect of the flavonoid isorhamnetin on the production of IL-6 in murine macrophages stimulated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in inflammatory periodontal disease, and its mechanisms of action. Lipopolysaccharide from P. intermedia ATCC 25611 was isolated using the standard hot phenol-water method. Culture supernatants were collected and assayed for IL-6. We used real-time PCR to quantify IL-6 and heme oxygenase-1 (HO-1) mRNA expression. The expression of HO-1 protein and the levels of signaling proteins were monitored using immunoblot analyses. The DNA-binding activity of nuclear factor-κB (NF-κB) was analyzed using ELISA-based assay kits. Isorhamnetin significantly down-regulated P. intermedia LPS-induced production of IL-6 as well as its mRNA expression in RAW264.7 cells. Isorhamnetin up-regulated the expression of HO-1 at both gene transcription and translation levels in cells stimulated with P. intermedia LPS. In addition, inhibition of HO-1 activity by tin protoporphyrin IX blocked the inhibitory effect of isorhamnetin on IL-6 production. Isorhamnetin failed to prevent LPS from activating either c-Jun N-terminal kinase or p38 pathways. Isorhamnetin did not inhibit NF-κB transcriptional activity at the level of inhibitory κB-α degradation. Isorhamnetin suppressed NF-κB signaling through inhibition of nuclear translocation and DNA binding activity of NF-κB p50 subunit and attenuated signal transducer and activator of transcription 1 signaling. Although further research is required to clarify the detailed mechanism of action, we propose

  19. Curcumin-Induced Heme Oxygenase-1 Expression Prevents H2O2-Induced Cell Death in Wild Type and Heme Oxygenase-2 Knockout Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Niels A. J. Cremers

    2014-10-01

    Full Text Available Mesenchymal stem cell (MSC administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO and iron/ferritin by breaking down heme. Since HO-activity mediates anti-apoptotic, anti-inflammatory, and anti-oxidative effects, we hypothesized that modulation of the HO-system affects MSC survival. Adipose-derived MSCs (ASCs from wild type (WT and HO-2 knockout (KO mice were isolated and characterized with respect to ASC marker expression. In order to analyze potential modulatory effects of the HO-system on ASC survival, WT and HO-2 KO ASCs were pre-treated with HO-activity modulators, or downstream effector molecules biliverdin, bilirubin, and CO before co-exposure of ASCs to a toxic dose of H2O2. Surprisingly, sensitivity to H2O2-mediated cell death was similar in WT and HO-2 KO ASCs. However, pre-induction of HO-1 expression using curcumin increased ASC survival after H2O2 exposure in both WT and HO-2 KO ASCs. Simultaneous inhibition of HO-activity resulted in loss of curcumin-mediated protection. Co-treatment with glutathione precursor N-Acetylcysteine promoted ASC survival. However, co-incubation with HO-effector molecules bilirubin and biliverdin did not rescue from H2O2-mediated cell death, whereas co-exposure to CO-releasing molecules-2 (CORM-2 significantly increased cell survival, independently from HO-2 expression. Summarizing, our results show that curcumin protects via an HO-1 dependent mechanism against H2O2-mediated apoptosis, and likely through the generation of CO. HO-1 pre-induction or administration of CORMs may thus form an attractive strategy to improve MSC therapy.

  20. Comparison of gamma radiation - induced effects in two human prostate cancer cells

    International Nuclear Information System (INIS)

    Vucic, V.; Adzic, M.; Ruzdijic, S.; Radojcic, M.B. . E-mail address of corresponding author: vesnav@vin.bg.ac.yu; Vucic, V.)

    2005-01-01

    In this study, the effects of gamma radiation on two hormone refractory human prostate cancer cell lines, DU 145 and PC-3, were followed. It was shown that gamma radiation induced significant inhibition of cell proliferation and viability in dose dependent manner. Antiproliferative effects of radiation were similar in both cell lines, and more pronounced than cytotoxic effects. In addition to that, PC-3 cell line was more resistant to radiation -induced cytotoxicity. (author)

  1. Activity of Lactobacillus casei and its gamma-radiation induced mutant in different types of milk

    International Nuclear Information System (INIS)

    Singh, J.; Ranganathan, B.

    1979-01-01

    Lactobacillus casei (RTS) and one of its gamma-radiation induced mutants, selected on the basis of increased proteolytic activity were individually inoculated in skimmed milk samples of different species. After incubation at 37 0 C for 24 hours, both the cultures produced higher titratable and volatile acidities and liberated more tyrosine in buffalo's milk as compared to either cow's or goat's milk. These cultures did not produce diacetyl or acetoin in different types of milk. It was further observed that the mutant was biochemically more active as compared to the parent culture. L. casei (RTS), irrespective of milk of different species. (orig.) [de

  2. Evaluation of the heme oxygenase-1 expression in esophagitis and esophageal cancer induced by different reflux experimental models and diethylnitrosamine Avaliação da expressão da Heme Oxigenase-1 em esofagite e câncer de esôfago induzidos por diferentes modelos experimentais de refluxo e diethilnitrosamina

    Directory of Open Access Journals (Sweden)

    Cleber Rosito Pinto Kruel

    2010-06-01

    Full Text Available PURPOSE: To study the expression of heme-oxygenase-1 (HO-1, an enzyme induced by oxidative stress, in specimens obtained from an experimental model in rats that evaluated the role of gastric and duodenal reflux in esophageal carcinogenesis. METHODS: Esophageal specimens embedded in paraffin obtained from different experimental groups of rats were used for immunohistochemistry analysis of HO-1 expression. The rats had been divided into the following groups and were killed after 22 weeks: (1 cardioplasty to induce acid reflux; (2 esophagoduodenal anastomosis to induce duodenal reflux; (3 no treatment; (4 cardioplasty + diethylnitrosamine (DEN; (5 esophagoduodenal anastomosis + DEN; and (6 DEN. The study sample comprised 3 specimens from each group with the most severe histopathological lesions found on each study branch. RESULTS: The expression of HO-1 was seen only in rat specimens submitted to esophagoduodenal anastomosis (Groups 2 and 5, and the analysis of mean fluorescence intensity revealed a significant increase of HO-1 expression (4.8 and 4.6 fold, respectively when compared with the control group (Group 3 (pOBJETIVO: Estudar a expressão da HO-1 (enzima induzida pelo estresse em diferentes peças esofágicas obtidas de um estudo experimental em ratos que avaliou o papel do refluxo gastroesofágico e duodeno esofágico na carcinogênese experimental. MÉTODOS: Blocos de parafina contendo peças de esôfago provenientes de um estudo experimental com ratos foram utilizados para verificar a expressão imunohistoquímica da HO-1. Os ratos haviam sido divididos nos seguintes grupos: (1 Cardioplastia com o objetivo de promover refluxo ácido, (2 Anastomose esofagoduodenal para indução de refluxo misto (ácido e biliar, (3 sem tratamento (controles, (4 cardioplastia + dietil-nitrosamina (DEN, (5 Anastomose esofagoduodenal + DEN, (6 DEN. Amostras contendo três peças de cada grupo com as lesões histopatológicas mais graves encontradas em cada

  3. Evaluation of heme oxygenase 1 (HO 1) in Cd and Ni induced cytotoxicity and crosstalk with ROS quenching enzymes in two to four leaf stage seedlings of Vigna radiata.

    Science.gov (United States)

    Mahawar, Lovely; Kumar, Rajesh; Shekhawat, Gyan Singh

    2018-03-01

    Research on heme oxygenase in plants has received consideration in recent years due to its several roles in development, defense, and metabolism during various environmental stresses. In the current investigation, the role of heme oxygenase (HO) 1 was evaluated in reducing heavy metal (Cd and Ni) uptake and alleviating Cd and Ni toxicity effects in the hydroponically grown seedlings of Vigna radiata var. PDM 54. Seedlings were subjected to Cd- and Ni-induced oxidative stress independently at different concentrations ranging from 10 to 100 μM. After 96 h (fourth day) of treatment, the stressed plants were harvested to study the cellular homeostasis and detoxification mechanism by examining the growth, stress parameters (LPX, H 2 O 2 content), and non-enzymatic and enzymatic parameters (ascorbate peroxidase (APX), guaicol peroxidase (GPX), and catalase (CAT)) including HO 1. At 50 μM CdCl 2 and 60 μM NiSO 4 , HO 1 activity was found to be highest in leaves which were 1.39 and 1.16-fold, respectively. The greatest HO 1 activity was reflected from the reduction of H 2 O 2 content at these metal concentrations (50 μM CdCl 2 and 60 μM NiSO 4 ) which is correlated with the increasing activity of other antioxidant enzymes (CAT, APX). Thus, HO 1 works within a group that generates the defense machinery for the plant's survival by scavenging ROS which is confirmed by a time-dependent study. Hence, it is concluded that seedlings of V. radiata were more tolerant towards metal-induced oxidative stress in which HO 1 is localized in its residential area (plastids).

  4. Anti-Inflammatory and Cytoprotective Effects of TMC-256C1 from Marine-Derived Fungus Aspergillus sp. SF-6354 via up-Regulation of Heme Oxygenase-1 in Murine Hippocampal and Microglial Cell Lines

    Directory of Open Access Journals (Sweden)

    Dong-Cheol Kim

    2016-04-01

    Full Text Available In the course of searching for bioactive secondary metabolites from marine fungi, TMC-256C1 was isolated from an ethyl acetate extract of the marine-derived fungus Aspergillus sp. SF6354. TMC-256C1 displayed anti-neuroinflammatory effect in BV2 microglial cells induced by lipopolysaccharides (LPS as well as neuroprotective effect against glutamate-stimulated neurotoxicity in mouse hippocampal HT22 cells. TMC-256C1 was shown to develop a cellular resistance to oxidative damage caused by glutamate-induced cytotoxicity and reactive oxygen species (ROS generation in HT22 cells, and suppress the inflammation process in LPS-stimulated BV2 cells. Furthermore, the neuroprotective and anti-neuroinflammatory activities of TMC-256C1 were associated with upregulated expression of heme oxygenase (HO-1 and nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2 in HT22 and BV2 cells. We also found that TMC-256C1 activated p38 mitogen-activated protein kinases (MAPK and phosphatidylinositol 3-kinase (PI3K/Akt signaling pathways in HT22 and BV2 cells. These results demonstrated that TMC-256C1 activates HO-1 protein expression, probably by increasing nuclear Nrf2 levels via the activation of the p38 MAPK and PI3K/Akt pathways.

  5. Reactive oxygen species and PI3K/Akt signaling play key roles in the induction of Nrf2-driven heme oxygenase-1 expression in sulforaphane-treated human mesothelioma MSTO-211H cells.

    Science.gov (United States)

    Lee, Yoon-Jin; Jeong, Hyang-Yun; Kim, Yong-Bae; Lee, Yong-Jin; Won, Seong Youn; Shim, Jung-Hyun; Cho, Moon-Kyun; Nam, Hae-Seon; Lee, Sang-Han

    2012-02-01

    The nuclear factor erythroid-derived 2 related factor 2 (Nrf2)/heme oxygenase (HO)-1 induction plays cytoprotective roles against oxidative injury, apoptosis, and anticancer therapy; however, little is known about its regulation in human mesothelioma MSTO-211H cells. In this study, we investigated Nrf2/HO-1 induction in response to sulforaphane and determined the signaling pathways involved in this process. Sulforaphane treatment decreased cell viability and triggered a rapid and transient increase in the intracellular ROS levels. Pretreatment with N-acetylcysteine (NAC) prevented sulforaphane-induced cytotoxicity. Erk1/2 was activated within 1h of sulforaphane addition, whereas Akt phosphorylation was suppressed until the first 8h, and was then maintained at an elevated level until 72h, displaying a biphasic regulatory feature. Nrf2 protein levels in both nuclear and whole cell lysates were increased after sulforaphane treatment and were decreased by pretreatment with NAC, actinomycin D and cycloheximide. Activation of the Nrf2/HO-1 system after sulforaphane treatment was suppressed by pretreatment with NAC or Ly294002, a PI3K inhibitor. Knockdown of Nrf2 with siRNA decreased cell viability and attenuated sulforaphane-induced HO-1 up-regulation. Overall, our results indicate that ROS generation and/or activation of PI3K/Akt signaling regulate cell survival and Nrf2-driven HO-1 expression in sulforaphane-treated MSTO-211H cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Involvement of heme oxygenase-1 expression in neuroprotection by piceatannol, a natural analog and a metabolite of resveratrol, against glutamate-mediated oxidative injury in HT22 neuronal cells.

    Science.gov (United States)

    Son, Yong; Byun, Seung Jae; Pae, Hyun-Ock

    2013-08-01

    Neuronal cell death caused by oxidative stress is common in a variety of neural diseases and can be investigated in detail in cultured HT22 neuronal cells, where the amino acid glutamate at high concentrations causes glutathione depletion by inhibition of the glutamate/cystine antiporter system, intracellular accumulation of reactive oxygen species (ROS) and eventually oxidative stress-induced neuronal cell death. Using this paradigm, we have previously reported that resveratrol (3,5,4'-trans-trihydroxystilbene) protects HT22 neuronal cells from glutamate-induced oxidative stress by inducing heme oxygenase (HO)-1 expression. Piceatannol (3,5,4',3'-trans-trihydroxystilbene), which is a hydroxylated resveratrol analog and one of the resveratrol metabolites, is estimated to exert neuroprotective effect similar to that of resveratrol. The aim of this study, thus, is to determine whether piceatannol, similarly to resveratrol, would protect HT22 neuronal cells from glutamate-induced oxidative stress. Glutamate at high concentrations induced neuronal cell death and ROS formation. Piceatannol reduced glutamate-induced cell death and ROS formation. The observed cytoprotective effect was much higher when HT22 neuronal cells were pretreated with piceatannol for 6 or 12 h prior to glutamate treatment than when pretreated for 0.5 h. Piceatannol also increased HO-1 expression and HO activity via its activation of nuclear factor-E2-related factor 2 (Nrf2). Interestingly, neuroprotective effect of piceatannol was partly (but not completely) abolished by either down-regulation of HO-1 expression or blockage of HO-1 activity. Taken together, our results suggest that piceatannol, similar to resveratrol, is capable of protecting HT22 neuronal cells against glutamate-induced cell death, at least in part, by inducing Nrf2-dependent HO-1 expression.

  7. Proteção funcional da enzima heme-oxigenase-1 na lesão renal aguda isquêmica e tóxica Protección funcional de la enzima heme-oxigenasa-1 en la lesión renal aguda isquémica y tóxica Functional protection of heme-oxygenase-1 enzyme in ischemic and toxic acute kidney injury

    Directory of Open Access Journals (Sweden)

    Cassiane Dezoti

    2009-01-01

    estudio demuestran que la isquemia y la PmxB inducen AKL por la elevación de los peróxidos urinarios. El inductor de HO-1 atenuó la lesión en ambos modelos por atenuación del mecanismo redox.OBJECTIVE: To investigate the functional protection of heme-oxygenase-1 enzyme (HO-1 when using its inducer (Hemin and inhibitor (zinc protoporphyrin-ZnPP in ischemic and toxic acute kidney injury by Polymixin B in mice. MATERIALS: Adult male Wistar mice divided into 8 groups were used: SHAM (control, Ischemic (Isq, Isq+Hemin (Inducer of H0-1, Isq+ZnPP (inhibitor of H0-1, SALINA (control, Polimyxin B (PmxB, PmxB+Hemin, PmxB+ZnPP. METHOD: Analysis consists of Jaffé (creatinine clearance [crCl] and FOX-2 (urinary peroxides [UP]. RESULTS: Thirty minutes renal ischemia and its treatment with PmxB reduced the crCl and maintained urinary output. Urinary peroxide levels increased in both injuries. The administration of the inducer of H0-1 resulted in improvement in renal function and reduction in the levels of urinary peroxide. CONCLUSIONS: Findings indicated that ischemia and PmxB induce LAR (acute kidney injury [AKI] by elevating the levels of urinary peroxide. The HO-1 inducer ameliorated the injury in both animal models through redox mechanism.

  8. Investigation of gamma radiation induced changes in local structure of borosilicate glass by TDPAC and EXAFS

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashwani, E-mail: kashwani@barc.gov.in [Bhabha Atomic Research Centre, Radioanalytical Chemistry Division (India); Nayak, C.; Rajput, P. [Bhabha Atomic Research Centre, Atomic and Molecular Physics Division (India); Mishra, R. K. [Bhabha Atomic Research Centre, Waste Management Division (India); Bhattacharyya, D. [Bhabha Atomic Research Centre, Atomic and Molecular Physics Division (India); Kaushik, C. P. [Bhabha Atomic Research Centre, Waste Management Division (India); Tomar, B. S. [Bhabha Atomic Research Centre, Radioanalytical Chemistry Division (India)

    2016-12-15

    Gamma radiation induced changes in local structure around the probe atom (Hafnium) were investigated in sodium barium borosilicate (NBS) glass, used for immobilization of high level liquid waste generated from the reprocessing plant at Trombay, Mumbai. The (NBS) glass was doped with {sup 181}Hf as a probe for time differential perturbed angular correlation (TDPAC) spectroscopy studies, while for studies using extended X-ray absorption fine structure (EXAFS) spectroscopy, the same was doped with 0.5 and 2 % (mole %) hafnium oxide. The irradiated as well as un-irradiated glass samples were studied by TDPAC and EXAFS techniques to obtain information about the changes (if any) around the probe atom due to gamma irradiation. TDPAC spectra of unirradiated and irradiated glasses were similar and reminescent of amorphous materials, indicating negligible effect of gamma radiation on the microstructure around Hafnium probe atom, though the quaqdrupole interaction frequency (ω{sub Q}) and asymmetry parameter (η) did show a marginal decrease in the irradiated glass compared to that in the unirradiated glass. EXAFS measurements showed a slight decrease in the Hf-O bond distance upon gamma irradiation of Hf doped NBS glass indicating densification of the glass matrix, while the cordination number around hafnium remains unchanged.

  9. Gamma radiation induced micronuclei and erythrocyte cellular abnormalities in the fish Catla catla

    Energy Technology Data Exchange (ETDEWEB)

    Anbumani, S. [Biodosimetry Laboratory, Radiological Safety Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamilnadu 603102 (India); Mohankumar, Mary N., E-mail: marynmk@rediffmail.com [Biodosimetry Laboratory, Radiological Safety Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamilnadu 603102 (India)

    2012-10-15

    Ionizing radiation induced DNA damage in fishes is a scarcely studied topic and very few studies are available in fishes exposed to ionizing radiation using the erythrocyte micronucleus assay under laboratory conditions. Since radionuclides released accidentally or during a nuclear disaster can contaminate inland water bodies, biomonitoring methods are required for assessing the impacts of high and low levels of radiation that may ultimately result in ionizing radiation exposure to both humans and non-human biota. Fresh water fish, Catla catla were subjected to protracted (0.002 Gy/min) and acute (3.2 Gy/min) gamma radiation to a total dose of 5 Gy. Peripheral blood samples were collected at different intervals (days 3, 6, 12, 18, 30, 45, 90, 135, 202) and analyzed by the erythrocyte micronucleus assay. Nuclear anomalies observed were micronuclei (MN), deformed nuclei (DN), nuclear bud (NBu), nuclear bridge (NBr), vacuolated nucleus (VN), binucleated cell (BNC), apoptotic cells (AC) while cytoplasmic abnormalities detected were vacuolated cytoplasm (VC), anisochromasia (AN), echinocytes (EC) and enucleus (EN). Both exposures caused a statistically significant increase in nuclear and cytoplasmic abnormalities that correlated with micronucleus and other nuclear anomalies. However, the extent of damage is higher after an acute exposure lasting for a longer period leading to apoptosis. Nuclear and cytoplasmic abnormalities are the resultants of gamma radiation induced genotoxicity and cytotoxicity.

  10. Effect of a heme oxygenase-1 inducer on NADPH oxidase ...

    African Journals Online (AJOL)

    Acute alcohol consumption leads to fatty liver. Although fatty liver is a reversible injury, its progression can develop into more severe liver problems including steatohepatitis and cirrhosis [1]. Previous studies showed that oxidative stress is an important factor contributing to the development of alcohol-induced liver injury [2].

  11. Effectiveness of grape seed extract on gamma radiation-induced hazards in albino rats

    International Nuclear Information System (INIS)

    Abd El Azime, A.S.

    2008-01-01

    The present study was designed to determine the possible protective effect of grape seed extract (GSE), rich in proanthocyanidins against gamma radiation-induced oxidative stress associated to serum metabolic disorders in the liver, heart and pancreas tissues of rats. Male albino rats received GSE (100 mg/day/Kg body weight), by gavages, for 14 successive days before whole body exposure to 5 Gy gamma radiation (shot dose). Animals were sacrificed 1, 14, and 28 days post radiation exposure. The results showed that in the irradiated group, tissues superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities were decreased significantly, while thiobarbituric acid reactive substances (TBARS) content was increased, which was in parallel with significant increases in the activity of serum lactate dehydrogenase (LDH), creatine phosphokinase (CPK), aspartate and alanine aminotransferase (AST and ALT). Hyperglycemia, hyperinsulinaemia, hyperlipidaemia, decreases in red blood cells count (RBCs) count and hemoglobin (Hb) content were also observed in irradiated rats. n the GSE-treated irradiated group, significant increases of SOD, CAT, and GSH-Px activities with significant reduction of TBARS levels were observed in cardiac, liver, and pancreas tissues, in parallel to significant decreases in the activity of serum LDH, CPK, AST, and ALT compared with their corresponding values in the irradiated group. Moreover, serum glucose and insulin contents, RBCs count and Hb content were significantly improved in the GSE-treated irradiated rats. Furthermore, the marked increase in serum triglycerides and total cholesterol observed in irradiated rats, along with elevated LDL-C and decreased HDL-C levels were significantly improved in GSE treated rats. In conclusion, the present data demonstrate that GSE through its free radical scavenging and antioxidant properties attenuates ionizing radiation-induced oxidative injury suggesting that it may be a potential

  12. {gamma}-Radiation-induced follicular degeneration in the prepubertal mouse ovary

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Joo [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Yoon, Yong-Dal [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)]. E-mail: ydyoon@hanyang.ac.kr

    2005-10-15

    Prepubertal mice were whole-body irradiated with a mean lethal dose (LD{sub 50}) of {gamma}-radiation using a {sup 60}Co source with a total dose of 7.2 Gy and a dose rate of 12.0 cGy/min. At day 0 before the irradiation and at day 1, 2, and 3 after the irradiation, the ovaries were collected and the morphological changes were assessed. The ratios (%) of atretic or polymorphonuclear leukocytes (neutrophil)-infiltrated follicles in the largest cross sections were calculated. In the early atretic follicle of the control mouse ovary, both apoptotic and mitotic cells were observed and occasionally neutrophils were infiltrated into the follicle cavity. However, in the atretic follicles 2 days post-irradiation, numerous cell fragments, apoptotic cells and bodies, and especially, a number of neutrophils were observed. In the non-irradiated control, the ratios of atretic follicles were 58.0 {+-} 8.6 and 27.3 {+-} 11.2 (mean {+-} S.E.M.) in antral and preantral follicles, respectively. The ratios of the number of antral and preantral follicles with one or more neutrophils to the total number of atretic follicles were 29.3 {+-} 12.0. At 2 days post-irradiation, the ratios of atretic follicles were increased to 94.0 {+-} 3.4 and 86.9 {+-} 7.6 in antral and preantral follicles, respectively. The ratios of neutrophil-containing follicles among the atretic one were increased to 65.9 {+-} 11.5 and 57.8 {+-} 15.4 at 2 and 3 days after the irradiation, respectively. Taken together, the present results show that {gamma}-radiation induces apoptotic and inflammatory degeneration of mouse ovarian follicles. Besides, neutrophils may be involved in the acute atretic degeneration in {gamma}-irradiated mouse ovarian follicles.

  13. Radioprotective potential of Decalepis hamiltonii: a study on gamma radiation-induced oxidative stress and toxicity in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Pasha, Muzeer; Shivanandappa, T.; Ramesh, S.R.; Sanjeev, Ganesh

    2016-01-01

    Radiation-induced damage to normal tissues restricts the therapeutic use of radiation in clinical application for cancer treatment and thereby limits the efficacy of the treatment. The use of chemical compounds as radioprotectors is a desirable strategy to improve the therapeutic index of radiotherapy. However, most of the synthetic radioprotective compounds studied have shown to have undesirable properties of toxicity. There is a need for safer, natural radioprotective agents without compromising efficacy of the treatment. We have investigated the radioprotective potential of Decalepis hamiltonii (Dh) root extract which is rich in natural antioxidants by employing Drosophila melanogaster as a model. Irradiation of Drosophila with 100, 200, and 400 Gy of gamma radiation induced dose-dependent mortality. Elevation in the levels of thiobarbituric acid reactive substances (TBARS), the activities of catalase (CAT) and superoxide dismutase (SOD), and depletion of glutathione (GSH) content suggested radiation-induced oxidative stress. Pretreatment of flies with Dh root extract protected them from radiation-induced mortality and oxidative stress as evidenced by reduction in TBARS and restoration of the antioxidant enzymes, SOD and CAT, and GSH to control levels. This is the first report of radioprotective action of Dh root extract in D. melanogaster. (author)

  14. Possible Protective Effect of Aqueous Extract of Moringa oleifera Lam. on Gamma Radiation Induced-Oxidative Stress in Rats

    International Nuclear Information System (INIS)

    Abd El-Azime, A.Sh.; Kamal El-Dein, E.M.

    2014-01-01

    Medicinal herbs are used in indigenous system of medicine for various diseases. Moringa oleifera (M. oleifera) has a high medicinal value which has been recognized. The present study was designed to evaluate the protective effect of aqueous extract of M. oleifera leaves against whole body gamma radiation-induced toxicity in rats. Rats received orally by gavage the aqueous extract of M. oleifera leaves 300 mg/Kg body weight/day for 40 days and rats subjected to whole body gamma-irradiation at a dose of 5 Gy delivered as single exposure dose at day 35 of M. oleifera treatment rats and sacrificed at 5th day after irradiation. The results obtained showed that exposure to gamma radiation provoked a significant increase in serum gamma-glutamyl transpeptidase (γ-GT), alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP), glucose, total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C) and very low density lipoprotein cholesterol (vLDL-C) level. While high density lipoprotein cholesterol (HDL-C) and insulin level showed a significant decrease. Moreover a significant decrease of glutathione (GSH) content, superoxide dismutase (SOD) and catalase (CAT) activities associated to a significant increase of thiobarbituric acid reactive substances (TBARS) were recorded in blood and liver of rats. Treatment with M. oleifera significantly reduced the radiation-induced serum and liver biochemical disorders which was associated with a significant amelioration in antioxidant status in both liver and serum. The results indicated that M. oleifera might protect from radiation induced damage due to its ability to scavenge free radicals

  15. Studies on the Use of Gamma Radiation-Induced for Preparation of Some Modified Resins for the Separation of Some Metal Ions

    International Nuclear Information System (INIS)

    Abo-Zahra, S.F.

    2012-01-01

    The work carried out in the present thesis is based on preparation, characterization and applications of some modified resins such as: poly(acrylamide)/poly(maleic acid) P(AAm)/P(MA) interpolymer complex (resin), poly(acrylamide-acrylic acid-amidoxime) P(AAm-AA-AO) resin and poly(hydroxamic acid) P(HA) resin. Poly(acrylamide)/poly(maleic acid) P(AAm)/P(MA) interpolymer complex (resin) was prepared by template polymerization of maleic acid (MA) monomer on poly(acrylamide) P(AAm) hydrogel as a template polymer in the presence of N,N'-methylenebisacrylamide (NMBA) as a crosslinker using gamma radiation-induced technique. Poly(acrylamide-acrylic acid-amidoxime) P(AAm-AA-AO) resin was prepared by template polymerization of acrylic acid (AA) and acrylonitrile (AN) monomers on P(AAm) hydrogel as a template polymer in the presence of NMBA as a crosslinker using gamma radiation-induced technique. The conversion of nitrile group to amidoxime one was carried out by the treatment of the prepared resin with an alkaline solution of hydroxylamine. Poly(hydroxamic acid) P(HA) resin was prepared from the reaction of the corresponding water-soluble P(AAm) previously prepared by gamma radiation-induced with hydroxylamine hydrochloride in an alkaline medium. The functional groups on the prepared polymeric resins were confirmed by using Fourier transform infrared (FTIR) spectra. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) measurements, scanning electron microscopy (SEM) and electron spin resonance (ESR) measurements were performed to evaluate the properties of the prepared polymeric resins, free or complexed with metal ions such as Cu 2+ metal ions.

  16. Increase of RhoB in {gamma}-radiation-induced apoptosis is regulated by c-Jun N-terminal kinase in Jurkat T cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun-Ho [Laboratory of Cytogenetics and Tissue Regeneration, KIRAMS, Seoul 139-706 (Korea, Republic of); Won, Misun; Choi, Chung-Hae; Ahn, Jiwon; Kim, Bo-Kyung [Genome Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Song, Kyung-Bin [Department of Food Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kang, Chang-Mo, E-mail: kangcm@kcch.re.kr [Laboratory of Cytogenetics and Tissue Regeneration, KIRAMS, Seoul 139-706 (Korea, Republic of); Chung, Kyung-Sook, E-mail: kschung@kribb.re.kr [Genome Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of)

    2010-01-08

    The Ras-related small GTP-binding protein RhoB is known to be a pro-apoptotic protein and immediate-early inducible by genotoxic stresses. In addition, JNK activation is known to function in {gamma}-radiation-induced apoptosis. However, it is unclear how JNK activation and {gamma}-radiation-dependent RhoB induction are related. Here we verified the relationship between JNK activation and RhoB induction. RhoB induction by {gamma}-radiation occurred at the transcriptional level and transcriptional activation of RhoB was concomitant with an increase in RhoB protein. {gamma}-Radiation-induced RhoB expression was markedly attenuated by pretreatment with a JNK-specific inhibitor, SP600125, but not by a p38 MAPK inhibitor, SB203580. Inhibition of JNK caused a decrease in early apoptotic cell death that correlated with RhoB expression. However, PI3K inhibition had no significant effects, indicating that the AKT survival pathway was not involved. The siRNA knockdown of JNK resulted in a decrease in RhoB expression and the siRNA knockdown of RhoB restored cell growth even in the {gamma}-irradiated cells. These results suggest that RhoB regulation involves the JNK pathway and contributes to the early apoptotic response of Jurkat T cells to {gamma}-radiation.

  17. A dual component heme biosensor that integrates heme transport and synthesis in bacteria.

    Science.gov (United States)

    Nobles, Christopher L; Clark, Justin R; Green, Sabrina I; Maresso, Anthony W

    2015-11-01

    Bacterial pathogens acquire host iron to power cellular processes and replication. Heme, an iron-containing cofactor bound to hemoglobin, is scavenged by bacterial proteins to attain iron. Methods to measure intracellular heme are laborious, involve complex chemistry, or require radioactivity. Such drawbacks limit the study of the mechanistic steps of heme transport and breakdown. Hypothesizing heme homeostasis could be measured with fluorescent methods, we coupled the conversion of heme to biliverdin IXα (a product of heme catabolism) by heme oxygenase 1 (HO1) with the production of near-infrared light upon binding this verdin by infrared fluorescent protein (IFP1.4). The resultant heme sensor, IFP-HO1, was fluorescent in pathogenic E. coli exposed to heme but not in the absence of the heme transporter ChuA and membrane coupling protein TonB, thereby validating their long-standing proposed role in heme uptake. Fluorescence was abolished in a strain lacking hemE, the central gene in the heme biosynthetic pathway, but stimulated by iron, signifying the sensor reports on intracellular heme production. Finally, an invasive strain of E. coli harboring the sensor was fluorescent during an active infection. This work will allow researchers to expand the molecular toolbox used to study heme and iron acquisition in culture and during infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Inhibition of {gamma}-radiation induced DNA damage in plasmid pBR322 by TMG, a water-soluble derivative of vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, R.; Nair, C.K.K. [Bhabha Atomic Research Centre, Mumbai (India); Wani, K.; Huilgol, N.G. [Nanavati Hospital and MRC, Vile Parle (India); Kagiya, Tsutomu V. [Kinki Research Foundation, Kyoto (Japan)

    2002-06-01

    Alpha-tocopherol monoglucoside (TMG), a water-soluble derivative of {alpha}-tocopherol, has been examined for its ability to protect DNA against radiation-induced strand breaks. Gamma radiation, up to a dose of 6 Gy (dose rate, 0.7 Gy/minute), induced a dose-dependent increase in single strand breaks (SSBs) in plasmid pBR322 DNA. TMG inhibited the formation of {gamma}-radiation induced DNA single strand breaks (SSBs) in a concentration-dependent manner; 500 {mu}M of TMG protected the single strand breaks completely. It also protected thymine glycol formation induced by {gamma}-radiation in a dose-dependent manner, based on an estimation of thymine glycol by HPLC. (author)

  19. Extratumoral Heme Oxygenase-1 (HO-1 Expressing Macrophages Likely Promote Primary and Metastatic Prostate Tumor Growth.

    Directory of Open Access Journals (Sweden)

    Sofia Halin Bergström

    Full Text Available Aggressive tumors induce tumor-supporting changes in the benign parts of the prostate. One factor that has increased expression outside prostate tumors is hemoxygenase-1 (HO-1. To investigate HO-1 expression in more detail, we analyzed samples of tumor tissue and peritumoral normal prostate tissue from rats carrying cancers with different metastatic capacity, and human prostate cancer tissue samples from primary tumors and bone metastases. In rat prostate tumor samples, immunohistochemistry and quantitative RT-PCR showed that the main site of HO-1 synthesis was HO-1+ macrophages that accumulated in the tumor-bearing organ, and at the tumor-invasive front. Small metastatic tumors were considerably more effective in attracting HO-1+ macrophages than larger non-metastatic ones. In clinical samples, accumulation of HO-1+ macrophages was seen at the tumor invasive front, almost exclusively in high-grade tumors, and it correlated with the presence of bone metastases. HO-1+ macrophages, located at the tumor invasive front, were more abundant in bone metastases than in primary tumors. HO-1 expression in bone metastases was variable, and positively correlated with the expression of macrophage markers but negatively correlated with androgen receptor expression, suggesting that elevated HO-1 could be a marker for a subgroup of bone metastases. Together with another recent observation showing that selective knockout of HO-1 in macrophages reduced prostate tumor growth and metastatic capacity in animals, the results of this study suggest that extratumoral HO-1+ macrophages may have an important role in prostate cancer.

  20. Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats

    NARCIS (Netherlands)

    Suttorp, C.M.; Xie, R.; Lundvig, D.M.S.; Kuijpers-Jagtman, A.M.; Uijttenboogaart, J.T.; Rheden, R.E.M. van; Maltha, J.C.; Wagener, F.A.D.T.G.

    2016-01-01

    Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root

  1. Kaempferol protects against gamma radiation-induced mortality and damage via inhibiting oxidative stress and modulating apoptotic molecules in vivo and vitro.

    Science.gov (United States)

    Wang, Jing; Li, Tiejun; Feng, Jingjing; Li, Li; Wang, Rong; Cheng, Hao; Yuan, Yongfang

    2018-04-20

    To investigate the potential protective effect of kaempferol, a representative flavonoid, against radiation induced mortality and injury in vivo and vitro.C57BL/6 male mice and human umbilical venous endothelial cells (HUVECs) were pretreated with kaempferol before radiation. We found that kaempferol can effectively increase 30-day survival rate after 8.5 Gy lethal total body irradiation (TBI). Mice were sacrificed at 7th day after 7 Gy TBI, we found kaempferol against radiation-induced tissues damage, by inhibiting the oxidative stress, and attenuating morphological changes and cell apoptosis. In vitro, kaempferol increased HUVECs cell viability and decrease apoptosis. It also mitigated oxidative stress and restored the abnormal expression of prx-5, Cyt-c, Caspase9 and Caspase3 in mRNA and protein level in HUVECs after radiation. Taken together, it suggests kaempferol can protect against gamma-radiation induced tissue damage and mortality. The present study is the first report of the radioprotective role of kaempferol in vivo and vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Zinc Protoporphyrin Regulates Cyclin D1 Expression Independent of Heme Oxygenase Inhibition*

    OpenAIRE

    La, Ping; Fernando, Amal P.; Wang, Zhi; Salahudeen, Ameen; Yang, Guang; Lin, Qing; Wright, Clyde J.; Dennery, Phyllis A.

    2009-01-01

    Zinc protoporphyrin IX (ZnPP), an endogenous heme analogue that inhibits heme oxygenase (HO) activity, represses tumor growth. It can also translocate into the nucleus and up-regulate heme oxygenase 1 (HMOX1) gene expression. Here, we demonstrate that tumor cell proliferation was inhibited by ZnPP, whereas tin protoporphyrin (SnPP), another equally potent HO-1 inhibitor, had no effect. Microarray analysis on 128 tumorigenesis related genes showed that ZnPP suppressed genes involved in cell pr...

  3. Westernized high-fat diet accelerates weight loss in dextran sulfate sodium-induced colitis in mice, which is further aggravated by supplementation of heme

    NARCIS (Netherlands)

    van der Logt, Elise M. J.; Blokzijl, Tjasso; van der Meer, Roelof; Faber, Klaas Nico; Dijkstra, Gerard

    The Western diet, rich in fat and red meat, predisposes for inflammatory bowel disease (IBD); however, little is known about mechanisms involved. Red meat contains high levels of heme, a well-known inducer of the cytoprotective enzyme heme oxygenase-1 (HO-1). Pharmacological induction of HO-1

  4. Dry powder inhalation of hemin to induce heme oxygenase expression in the lung

    NARCIS (Netherlands)

    Zijlstra, G.S.; Brandsma, C.; Harpe, M.F.H.; Van Dam, G.M.; Slebos, D.J.; Kerstjens, H.A.M.; de Boer, Anne; Frijlink, H.W.

    2007-01-01

    The purpose of this study was to formulate hemin as a powder for inhalation and to show proof of concept of heme oxygenase 1 (HO-1) expression in the lungs of mice by inhalation of hemin. Hemin was spray dried from a neutralized sodium hydroxide solution. The particle size distribution of the powder

  5. Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450.

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-05-01

    The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1a(fl/fl);alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Flvcr1a(fl/fl);alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1a(fl/fl);alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. Methods We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1afl/fl;alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Results Flvcr1afl/fl;alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1afl/fl;alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. Conclusions In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. PMID:24486949

  7. Role of heme in bromine-induced lung injury

    Science.gov (United States)

    Lam, Adam; Vetal, Nilam; Matalon, Sadis; Aggarwal, Saurabh

    2016-01-01

    Bromine (Br2) gas inhalation poses an environmental and occupational hazard resulting in high morbidity and mortality. In this review, we underline the acute lung pathology (within 24 hours of exposure) and potential therapeutic interventions that may be utilized to mitigate Br2-induced human toxicity. We will discuss our latest published data, which suggests that an increase in heme-dependent tissue injury underlies the pathogenesis of Br2 toxicity. Our study was based on previous findings that demonstrated that Br2 upregulates the heme-degrading enzyme heme oxygenase-1 (HO-1), which converts toxic heme into billiverdin. Interestingly, following Br2 inhalation, heme levels were indeed elevated in bronchoalveolar lavage fluid, plasma, and whole lung tissue in C57BL/6 mice. High heme levels correlated with increased lung oxidative stress, lung inflammation, respiratory acidosis, lung edema, higher airway resistance, and mortality. However, therapeutic reduction of heme levels, by either scavenging with hemopexin or degradation by HO-1, improved lung function and survival. Therefore, heme attenuation may prove a useful adjuvant therapy to treat patients after Br2 exposure. PMID:27244263

  8. Heme metabolism as an integral part of iron homeostasis

    Directory of Open Access Journals (Sweden)

    Paweł Lipiński

    2014-01-01

    Full Text Available Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways – heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S] – is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages.

  9. [Heme metabolism as an integral part of iron homeostasis].

    Science.gov (United States)

    Lipiński, Paweł; Starzyński, Rafał R; Styś, Agnieszka; Gajowiak, Anna; Staroń, Robert

    2014-01-02

    Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways--heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S])--is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis) as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages.

  10. Control of intracellular heme levels: Heme transporters and Heme oxygenases

    Science.gov (United States)

    Khan, Anwar A.; Quigley, John G.

    2011-01-01

    Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number of transporters of heme and heme synthesis intermediates have been described. Here we review aspects of heme metabolism and discuss our current understanding of heme transporters, with emphasis on the function of the cell-surface heme exporter, FLVCR. Knockdown of Flvcr in mice leads to both defective erythropoiesis and disturbed systemic iron homeostasis, underscoring the critical role of heme transporters in mammalian physiology. PMID:21238504

  11. Nrf2-AKT interactions regulate heme oxygenase 1 expression in kidney epithelia during hypoxia and hypoxia-reoxygenation.

    Science.gov (United States)

    Potteti, Haranatha R; Tamatam, Chandramohan R; Marreddy, Rakesh; Reddy, Narsa M; Noel, Sanjeev; Rabb, Hamid; Reddy, Sekhar P

    2016-11-01

    Ischemia-reperfusion (IR)-induced kidney injury is a major clinical problem, but its underlying mechanisms remain unclear. The transcription factor known as nuclear factor, erythroid 2-like 2 (NFE2L2 or Nrf2) is crucial for protection against oxidative stress generated by pro-oxidant insults. We have previously shown that Nrf2 deficiency enhances susceptibility to IR-induced kidney injury in mice and that its upregulation is protective. Here, we examined Nrf2 target antioxidant gene expression and the mechanisms of its activation in both human and murine kidney epithelia following acute (2 h) and chronic (12 h) hypoxia and reoxygenation conditions. We found that acute hypoxia modestly stimulates and chronic hypoxia strongly stimulates Nrf2 putative target HMOX1 expression, but not that of other antioxidant genes. Inhibition of AKT1/2 or ERK1/2 signaling blocked this induction; AKT1/2 but not ERK1/2 inhibition affected Nrf2 levels in basal and acute hypoxia-reoxygenation states. Unexpectedly, chromatin immunoprecipitation assays revealed reduced levels of Nrf2 binding at the distal AB1 and SX2 enhancers and proximal promoter of HMOX1 in acute hypoxia, accompanied by diminished levels of nuclear Nrf2. In contrast, Nrf2 binding at the AB1 and SX2 enhancers significantly but differentially increased during chronic hypoxia and reoxygenation, with reaccumulation of nuclear Nrf2 levels. Small interfering-RNA-mediated Nrf2 depletion attenuated acute and chronic hypoxia-inducible HMOX1 expression, and primary Nrf2-null kidney epithelia showed reduced levels of HMOX1 induction in response to both acute and chronic hypoxia. Collectively, our data demonstrate that Nrf2 upregulates HMOX1 expression in kidney epithelia through a distinct mechanism during acute and chronic hypoxia reoxygenation, and that both AKT1/2 and ERK1/2 signaling are required for this process. Copyright © 2016 the American Physiological Society.

  12. Inhibition of heme oxygenase-1 enhances the radiosensitivity in human nonsmall cell lung cancer a549 cells.

    Science.gov (United States)

    Zhang, Wenyi; Qiao, Tiankui; Zha, Lin

    2011-10-01

    Abstract undergoing radiotherapy or chemotherapy failed to respond. The aim of this study was to evaluate whether Inhibitor of HO-1, zinc protoporphyrin IX (Znpp), enhances the radiosensitivity in human nonsmall cell lung cancer (NSCLC) A549 Cells. A549 cells were induced by Znpp and irradiated by X-rays. Then, expression of HO-1 was measured by real-time polymerase chain reaction. Cell survival was evaluated using the MTS assay and the clonogenic survival assay; apoptosis and cell cycle distribution were monitored by flow cytometry. First, overexpression of the HO-1 mRNA was found in treatment with irradiation alone in A549 cells, and expression of the HO-1 mRNA was reduced after combined treatments with 12 μmol/L of Znpp and irradiation. Second, diminished cell viability percentage, decreased cell clonogenic survival fraction, enhanced cell apoptotic index, and increased percentage of cells in the G1 phase were found after combined treatments with 12 μmol/L of Znpp and irradiation compared to either treatment alone (pZnpp, can increase the radiosensitivity of human NSCLC A549 cells.

  13. Effects of Heme Oxygenase-1 Upregulation on Blood Pressure and Cardiac Function in an Animal Model of Hypertensive Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2013-01-01

    Full Text Available In this study, we evaluate the effect of HO-1 upregulation on blood pressure and cardiac function in the new model of infarct spontaneous hypertensive rats (ISHR. Male spontaneous hypertensive rats (SHR at 13 weeks (n = 40 and age-matched male Wistar (WT rats (n = 20 were divided into six groups: WT (sham + normal saline (NS, WT (sham + Co(III Protoporphyrin IX Chloride (CoPP, SHR (myocardial infarction (MI + NS, SHR (MI + CoPP, SHR (MI + CoPP + Tin Mesoporphyrin IX Dichloride (SnMP, SHR (sham + NS; CoPP 4.5 mg/kg, SnMP 15 mg/kg, for six weeks, one/week, i.p., n = 10/group. At the sixth week, echocardiography (UCG and hemodynamics were performed. Then, blood samples and heart tissue were collected. Copp treatment in the SHR (MI + CoPP group lowered blood pressure, decreased infarcted area, restored cardiac function (left ventricular ejection fraction (LVEF, left ventricular fraction shortening (LVFS, +dp/dtmax, (−dp/dtmax/left ventricular systolic pressure (LVSP, inhibited cardiac hypertrophy and ventricular enlargement (downregulating left ventricular end-systolic diameter (LVEDD, left ventricular end-systolic diameter (LVESD and heart weight/body weight (HW/BW, lowered serum CRP, IL-6 and Glu levels and increased serum TB, NO and PGI2 levels. Western blot and immunohistochemistry showed that HO-1 expression was elevated in the SHR (MI + CoPP group, while co-administration with SnMP suppressed the benefit functions mentioned above. In conclusion, HO-1 upregulation can lower blood pressure and improve post-infarct cardiac function in the ISHR model. These functions may be involved in the inhibition of inflammation and the ventricular remodeling process and in the amelioration of glucose metabolism and endothelial dysfunction.

  14. Wearing red for signaling: the heme-bach axis in heme metabolism, oxidative stress response and iron immunology.

    Science.gov (United States)

    Igarashi, Kazuhiko; Watanabe-Matsui, Miki

    2014-04-01

    The connection between gene regulation and metabolism is an old issue that warrants revisiting in order to understand both normal as well as pathogenic processes in higher eukaryotes. Metabolites affect the gene expression by either binding to transcription factors or serving as donors for post-translational modification, such as that involving acetylation and methylation. The focus of this review is heme, a prosthetic group of proteins that includes hemoglobin and cytochromes. Heme has been shown to bind to several transcription factors, including Bach1 and Bach2, in higher eukaryotes. Heme inhibits the transcriptional repressor activity of Bach1, resulting in the derepression of its target genes, such as globin in erythroid cells and heme oxygenase-1 in diverse cell types. Since Bach2 is important for class switch recombination and somatic hypermutation of immunoglobulin genes as well as regulatory and effector T cell differentiation and the macrophage function, the heme-Bach2 axis may regulate the immune response as a signaling cascade. We discuss future issues regarding the topic of the iron/heme-gene regulation network based on current understanding of the heme-Bach axis, including the concept of "iron immunology" as the synthesis of the iron metabolism and the immune response.

  15. Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: Duodenal expression profile of genes involved in heme iron absorption.

    Directory of Open Access Journals (Sweden)

    Robert Staroń

    Full Text Available Heme is an efficient source of iron in the diet, and heme preparations are used to prevent and cure iron deficiency anemia in humans and animals. However, the molecular mechanisms responsible for heme absorption remain only partially characterized. Here, we employed young iron-deficient piglets as a convenient animal model to determine the efficacy of oral heme iron supplementation and investigate the pathways of heme iron absorption. The use of bovine hemoglobin as a dietary source of heme iron was found to efficiently counteract the development of iron deficiency anemia in piglets, although it did not fully rebalance their iron status. Our results revealed a concerted increase in the expression of genes responsible for apical and basolateral heme transport in the duodenum of piglets fed a heme-enriched diet. In these animals the catalytic activity of heme oxygenase 1 contributed to the release of elemental iron from the protoporphyrin ring of heme within enterocytes, which may then be transported by the strongly expressed ferroportin across the basolateral membrane to the circulation. We hypothesize that the well-recognized high bioavailability of heme iron may depend on a split pathway mediating the transport of heme-derived elemental iron and intact heme from the interior of duodenal enterocytes to the bloodstream.

  16. Control of intracellular heme levels: Heme transporters and heme oxygenases

    OpenAIRE

    Khan, Anwar A.; Quigley, John G.

    2011-01-01

    Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number...

  17. The expression, function and targeting of haem oxygenase-1 in cancer

    DEFF Research Database (Denmark)

    Hjortsø, Mads Duus; Andersen, Mads Hald

    2014-01-01

    Haem oxygenase-1 (HO-1) catalyses the rate-limiting step in haem degradation. All three metabolites resulting from haem degradation (carbon monoxide (CO), biliverdin and free iron) have anti-inflammatory and anti-apoptotic properties. HO-1 is a stress-inducible enzyme found extensively expressed......, several anticancer strategies aim at targeting HO-1. The inhibition of HO-1 may cause tumour cells to become more sensitive to chemotherapy and radiation therapy. The water-soluble forms of the HO-1 inhibitor Zinc protoporphyrin (ZnPP) have seemed promising in different in-vivo models, in which it has...

  18. Heme transport and erythropoiesis

    Science.gov (United States)

    Yuan, Xiaojing; Fleming, Mark D.; Hamza, Iqbal

    2013-01-01

    In humans, systemic heme homeostasis is achieved via coordinated regulation of heme synthesis, transport and degradation. Although the heme biosynthesis and degradation pathways have been well characterized, the pathways for heme trafficking and incorporation into hemoproteins remains poorly understood. In the past few years, researchers have exploited genetic, cellular and biochemical tools, to identify heme transporters and, in the process, reveal unexpected functions for this elusive group of proteins. However, given the complexity of heme trafficking pathways, current knowledge of heme transporters is fragmented and sometimes contradictory. This review seeks to focus on recent studies on heme transporters with specific emphasis on their functions during erythropoiesis. PMID:23415705

  19. Gamma Radiation-Induced Mutations in Soybeans

    International Nuclear Information System (INIS)

    Smutkupt, S.

    1998-01-01

    The main objective of soybean radiation experiments was to create genetic variability in soybeans of various cultivars, mutants and mutation-derived lines with the aim of producing superior breeding lines with resistance to soybean rust (Phakopsora pachyhrizi Syd.) It took altogether 12 generations over six years after gamma irradiation if soybean seeds to produce the best resistant line (81-1-038) which a variety could be developed from it. This Line 81-1-038 showed a very good specific resistance to soybean rust, Thai race 2 and moderately resistance to Thai race 1. In the rainy season of 1985, Line 81-1-038 out yielded S.J.4 (a mother line) by 868 kg/ha in a yield trail at Suwan Farm, Pak Chong, Nakorn Rajchasima. This soybean rust mutant was later named D oi Kham

  20. Polymorphisms in the Haem Oxygenase-1 promoter are not associated with severity of Plasmodium falciparum malaria in Ghanaian children

    DEFF Research Database (Denmark)

    Hansson, Helle H; Sørensen, Lasse Maretty; Balle, Christina

    2015-01-01

    BACKGROUND: Haem oxygenase-1 (HO-1) catabolizes haem and has both cytotoxic and cytoprotective effects. Polymorphisms in the promoter of the Haem oxygenase-1 (HMOX1) gene encoding HO-1 have been associated with several diseases including severe malaria. The objective of this study was to determin...

  1. Erythropoietin Attenuates Pulmonary Vascular Remodeling in Experimental Pulmonary Arterial Hypertension through Interplay between Endothelial Progenitor Cells and Heme Oxygenase

    OpenAIRE

    van Loon, Rosa Laura E; Bartelds, Beatrijs; Wagener, Frank A D T G; Affara, Nada; Mohaupt, Saffloer; Wijnberg, Hans; Pennings, Sebastiaan W C; Takens, Janny; Berger, Rolf M F

    2015-01-01

    BACKGROUND: Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO) attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progenitor cells (EPCs) and activation of the cytoprotective enzyme heme oxygenase-1 (HO-1). METHODS: Rats with flow-associated PAH, resembling pediatric PAH, were treated with HO-1 inducer EPO in the pre...

  2. Erythropoietin Attenuates Pulmonary Vascular Remodeling in Experimental Pulmonary Arterial Hypertension through Interplay between Endothelial Progenitor Cells and Heme Oxygenase

    OpenAIRE

    van Loon, Rosa Laura E.; Bartelds, Beatrijs; Wagener, Frank A. D. T. G.; Affara, Nada; Mohaupt, Saffloer; Wijnberg, Hans; Pennings, Sebastiaan W. C.; Takens, Janny; Berger, Rolf M. F.

    2015-01-01

    Background Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO) attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progenitor cells (EPCs) and activation of the cytoprotective enzyme heme oxygenase-1 (HO-1). Methods Rats with flow-associated PAH, resembling pediatric PAH, were treated with HO-1 inducer EPO i...

  3. Heme Sensor Proteins*

    Science.gov (United States)

    Girvan, Hazel M.; Munro, Andrew W.

    2013-01-01

    Heme is a prosthetic group best known for roles in oxygen transport, oxidative catalysis, and respiratory electron transport. Recent years have seen the roles of heme extended to sensors of gases such as O2 and NO and cell redox state, and as mediators of cellular responses to changes in intracellular levels of these gases. The importance of heme is further evident from identification of proteins that bind heme reversibly, using it as a signal, e.g. to regulate gene expression in circadian rhythm pathways and control heme synthesis itself. In this minireview, we explore the current knowledge of the diverse roles of heme sensor proteins. PMID:23539616

  4. Heme and HO-1 inhibition of HCV, HBV, and HIV

    Directory of Open Access Journals (Sweden)

    Warren N Schmidt

    2012-10-01

    Full Text Available Hepatitis C virus, human immunodeficiency virus, and hepatitis B virus are chronic viral infections that cause considerable morbidity and mortality throughout the world. In the decades following the identification and sequencing of these viruses, in vitro experiments demonstrated that heme oxygenase-1, its oxidative products, and related compounds of the heme oxygenase system are virucidal for all three viruses. The purpose of this review is to critically evaluate and summarize the seminal studies that described and characterized this remarkable behavior. It will also discuss more recent work that discovered the antiviral mechanisms and target sites of these unique antiviral agents. In spite of the fact that these viruses are diverse pathogens with quite profound differences in structure and life cycle, it is significant that heme and related compounds show striking similarity for viral target sites across all three species. Collectively, these findings strongly indicate that we should move forward and develop heme and related tetrapyrroles into versatile antiviral agents that could be used therapeutically in patients with single or multiple viral infections.

  5. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury

    Science.gov (United States)

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A.; Traylor, Amie; Agarwal, Anupam

    2016-01-01

    Abstract Aims: Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. Results: C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1−/−) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. Innovation: This is the first study delineating the role of heme in ALI caused by Br2. Conclusion: The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI. Antioxid. Redox Signal. 24, 99–112. PMID:26376667

  6. A Novel Semisynthetic Flavonoid 7-O-Galloyltaxifolin Upregulates Heme Oxygenase-1 in RAW264.7 Cells via MAPK/Nrf2 Pathway

    Czech Academy of Sciences Publication Activity Database

    Vrba, J.; Gažák, Radek; Kuzma, Marek; Papoušková, B.; Vacek, J.; Weiszenstein, M.; Křen, Vladimír; Ulrichová, J.

    2013-01-01

    Roč. 56, č. 3 (2013), s. 856-866 ISSN 0022-2623 R&D Projects: GA ČR(CZ) GAP301/11/0767 Institutional support: RVO:61388971 Keywords : OXIDATIVE STRESS * HUMAN HEPATOCYTES * RESPONSE ELEMENT Subject RIV: CE - Biochemistry Impact factor: 5.480, year: 2013

  7. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    International Nuclear Information System (INIS)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi; Rhim, Hyangshuk; Bae, Yong Soo; Choi, Soo Young; Park, Jinseu

    2014-01-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction

  8. Downregulation of PGC-1α Prevents the Beneficial Effect of EET-Heme Oxygenase-1 on Mitochondrial Integrity and Associated Metabolic Function in Obese Mice

    Directory of Open Access Journals (Sweden)

    Shailendra P. Singh

    2016-01-01

    Full Text Available Background/Objectives. Obesity and metabolic syndrome and associated adiposity are a systemic condition characterized by increased mitochondrial dysfunction, inflammation, and inhibition of antioxidant genes, HO-1, and EETs levels. We postulate that EETs attenuate adiposity by stimulating mitochondrial function and induction of HO-1 via activation of PGC-1α in adipose and hepatic tissue. Methods. Cultured murine adipocytes and mice fed a high fat (HF diet were used to assess the functional relationship among EETs, PGC-1α, HO-1, and mitochondrial signaling using an EET-agonist (EET-A and PGC-1α-deficient cells and mice using lentiviral PGC-1α(sh. Results. EET-A is a potent inducer of PGC-1α, HO-1, mitochondrial biogenesis (cytochrome oxidase subunits 1 and 4 and SIRT3, fusion proteins (Mfn 1/2 and OPA1 and fission proteins (DRP1 and FIS1 (p<0.05, fasting glucose, BW, and blood pressure. These beneficial effects were prevented by administration of lenti-PGC-1α(sh. EET-A administration prevented HF diet induced mitochondrial and dysfunction in adipose tissue and restored VO2 effects that were abrogated in PGC-1α-deficient mice. Conclusion. EET is identified as an upstream positive regulator of PGC-1α that leads to increased HO-1, decreased BW and fasting blood glucose and increased insulin receptor phosphorylation, that is, increased insulin sensitivity and mitochondrial integrity, and possible use of EET-agonist for treatment of obesity and metabolic syndrome.

  9. Resveratrol attenuates lipopolysaccharide-induced hepatitis in D-Galactosamine sensitized rats: Role of nitric oxide synthase 2 and heme oxygenase-1

    Czech Academy of Sciences Publication Activity Database

    Farghali, H.; Černý, D.; Kameníková, L.; Martínek, J.; Hořínek, A.; Kmoníčková, Eva; Zídek, Zdeněk

    2009-01-01

    Roč. 21, 3-4 (2009), s. 216-225 ISSN 1089-8603 R&D Projects: GA ČR GA305/07/0061 Grant - others:GA ČR(CZ) GA305/09/0004; GA MZd(CZ) NR9379 Institutional research plan: CEZ:AV0Z50390512 Keywords : resveratrol * lipopolysacchride * nitrix oxide Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.506, year: 2009

  10. Heme Oxygenase-1 Attenuates Hypoxia-Induced sFlt-1 and Oxidative Stress in Placental Villi through Its Metabolic Products CO and Bilirubin

    Directory of Open Access Journals (Sweden)

    Eric M. George

    2012-01-01

    Full Text Available One of the most prevalent complications of pregnancy is preeclampsia, a hypertensive disorder which is a leading cause of maternal and perinatal morbidity and premature birth with no effective pharmacological intervention. While the underlying cause is unclear, it is believed that placental ischemia/hypoxia induces the release of factors into the maternal vasculature and lead to widespread maternal endothelial dysfunction. Recently, HO-1 has been shown to downregulate two of these factors, reactive oxygen species and sFlt-1, and we have reported that HO-1 induction attenuates many of the pathological factors of placental ischemia experimentally. Here, we have examined the direct effect of HO-1 and its bioactive metabolites on hypoxia-induced changes in superoxide and sFlt-1 in placental vascular explants and showed that HO-1 and its metabolites attenuate the production of both factors in this system. These findings suggest that the HO-1 pathway may be a promising therapeutic approach for the treatment of preeclampsia.

  11. Sulforaphane Suppresses Hepatitis C Virus Replication by Up-Regulating Heme Oxygenase-1 Expression through PI3K/Nrf2 Pathway.

    Directory of Open Access Journals (Sweden)

    Jung-Sheng Yu

    Full Text Available Hepatitis C virus (HCV infection-induced oxidative stress is a major risk factor for the development of HCV-associated liver disease. Sulforaphane (SFN is an antioxidant phytocompound that acts against cellular oxidative stress and tumorigenesis. However, there is little known about its anti-viral activity. In this study, we demonstrated that SFN significantly suppressed HCV protein and RNA levels in HCV replicon cells and infectious system, with an IC50 value of 5.7 ± 0.2 μM. Moreover, combination of SFN with anti-viral drugs displayed synergistic effects in the suppression of HCV replication. In addition, we found nuclear factor erythroid 2-related factor 2 (Nrf2/HO-1 induction in response to SFN and determined the signaling pathways involved in this process, including inhibition of NS3 protease activity and induction of IFN response. In contrast, the anti-viral activities were attenuated by knockdown of HO-1 with specific inhibitor (SnPP and shRNA, suggesting that anti-HCV activity of SFN is dependent on HO-1 expression. Otherwise, SFN stimulated the phosphorylation of phosphoinositide 3-kinase (PI3K leading Nrf2-mediated HO-1 expression against HCV replication. Overall, our results indicated that HO-1 is essential in SFN-mediated anti-HCV activity and provide new insights in the molecular mechanism of SFN in HCV replication.

  12. Structure-Activity Relationships in the Cytoprotective Effect of Caffeic Acid Phenethyl Ester (CAPE) and Fluorinated Derivatives: Effects on Heme Oxygenase-1 Induction and Antioxidant Activities

    Science.gov (United States)

    2010-03-09

    derivatives than their direct antioxidant activity. © 2010 Published by Elsevier B.V. 1. Introduction Caffeic acid phenethyl ester (CAPE), a polyphenolic ...al., 2006). Fluorine substitution in the design and synthesis of small molecules for potential therapeutic use has become very common (Kirk, 2006...has been suggested that the methylation of polyphenolic compounds may result in the loss of their free radical scavenging ability (Deng et al., 2006

  13. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Rhim, Hyangshuk [Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Bae, Yong Soo [Department of Biological Science, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Soo Young [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Park, Jinseu, E-mail: jinpark@hallym.ac.kr [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  14. Amelioration of Ischemia/Reperfusion Injury During Resuscitation from Hemorrhage by Induction of Heme Oxygenase-1 (HO-1) in a Conscious Mouse Model of Uncontrolled Hemorrhage

    Science.gov (United States)

    2013-10-01

    iinst oxidative stress. Several pol)·phenols including caffe1c acid phenethyl ester (CAPE). curcumin , rcsverauol, caffcic acid. catcd1in, and...activity in an ;11 dim model of mcnadione-induccd o<cidative stres) in human umbilical vein endothelial cells. CAPE. curcumin . and resverarrol showed dose...purpot1cd protective properties of several polyphenols, including caffeic acid phencthyl ester (CAPE), curcumin (CUC), resveratrol (RES), caffeic acid (CA

  15. Heme arginate improves reperfusion patterns after ischemia: a randomized, placebo-controlled trial in healthy male subjects

    Directory of Open Access Journals (Sweden)

    Andreas Martin

    2012-08-01

    Full Text Available Abstract Background Heme arginate can induce heme oxygenase-1 to protect tissue against ischemia-reperfusion injury. Blood oxygen level dependent (BOLD functional magnetic resonance imaging measures changes in tissue oxygenation with a high spatial and temporal resolution. BOLD imaging was applied to test the effect of heme arginate on experimental ischemia reperfusion injury in the calf muscles. Methods A two period, controlled, observer blinded, crossover trial was performed in 12 healthy male subjects. Heme arginate (1 mg/kg body weight or placebo were infused 24 h prior to a 20 min leg ischemia induced by a thigh cuff. 3 Tesla BOLD-imaging of the calf was performed and signal time courses from soleus, gastrocnemius and tibialis anterior muscle were available from 11 participants for technical reasons. Results Peak reactive hyperemia signal of the musculature was significantly increased and occurred earlier after heme arginate compared to placebo (106.2±0.6% at 175±16s vs. 104.5±0.6% at 221±19s; p = 0.025 for peak reperfusion and p = 0.012 for time to peak. Conclusions A single high dose of heme arginate improves reperfusion patterns during ischemia reperfusion injury in humans. BOLD sensitive, functional MRI is applicable for the assessment of experimental ischemia reperfusion injury in skeletal muscle. Trial registration ClinicalTrials: NCT01461512 EudraCT: 2008-006967-35

  16. Heme Gazing: Illuminating Eukaryotic Heme Trafficking, Dynamics, and Signaling with Fluorescent Heme Sensors.

    Science.gov (United States)

    Hanna, David A; Martinez-Guzman, Osiris; Reddi, Amit R

    2017-04-04

    Heme (iron protoporphyrin IX) is an essential protein prosthetic group and signaling molecule required for most life on Earth. All heme-dependent processes require the dynamic and rapid mobilization of heme from sites of synthesis or uptake to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitate that heme mobilization be carefully controlled to mitigate the deleterious effects of this essential toxin. Indeed, a number of disorders, including certain cancers, cardiovascular diseases, and aging and age-related neurodegenerative diseases, are tied to defects in heme homeostasis. However, the molecules and mechanisms that mediate heme transport and trafficking, and the dynamics of these processes, are poorly understood. This is in large part due to the lack of physical tools for probing cellular heme. Herein, we discuss the recent development of fluorescent probes that can monitor and image kinetically labile heme with respect to its mobilization and role in signaling. In particular, we will highlight how heme gazing with these tools can uncover new heme trafficking factors upon being integrated with genetic screens and illuminate the concentration, subcellular distribution, and dynamics of labile heme in various physiological contexts. Altogether, the monitoring of labile heme, along with recent biochemical and cell biological studies demonstrating the reversible regulation of certain cellular processes by heme, is challenging us to reconceptualize heme from being a static cofactor buried in protein active sites to a dynamic and mobile signaling molecule.

  17. Opposite effect of oxidative stress on inducible nitric oxide synthase and haem oxygenase-1 expression in intestinal inflammation: anti-inflammatory effect of carbon monoxide

    NARCIS (Netherlands)

    Dijkstra, Gerard; Blokzijl, Hans; Bok, Lisette; Homan, Manon; van Goor, Harry; Faber, Klaas Nico; Jansen, Peter L. M.; Moshage, Han

    2004-01-01

    Inducible nitric oxide synthase (iNOS) is expressed in intestinal epithelial cells (IEC) of patients with active inflammatory bowel disease (IBD) and in IEC of endotoxaemic rats. The induction of iNOS in IEC is an element of the NF-kappaB-mediated survival pathway. Haem oxygenase-1 (HO-1) is an

  18. Quercetin suppressed CYP2E1-dependent ethanol hepatotoxicity via depleting heme pool and releasing CO.

    Science.gov (United States)

    Tang, Yuhan; Tian, Hongtao; Shi, Yanru; Gao, Chao; Xing, Mingyou; Yang, Wei; Bao, Wei; Wang, Di; Liu, Liegang; Yao, Ping

    2013-06-15

    Naturally occuring quercetin protects hepatocytes from ethanol-induced oxidative stress, and heme oxygenase-1 (HO-1) induction and carbon monoxide (CO) metabolite may be implicated in the beneficial effect. However, the precise mechanism by which quercetin counteracts CYP2E1-mediated ethanol hepatotoxicity through HO-1 system is still remained unclear. To explore the potential mechanism, herein, ethanol (4.0 g/kg.bw.) was administrated to rats for 90 days. Our data showed that chronic ethanol over-activated CYP2E1 but suppressed HO-1 with concurrent hepatic oxidative damage, which was partially normalized by quercetin (100mg/kg.bw.). Quercetin (100 μM) induced HO-1 and depleted heme pool when incubated to human hepatocytes. Ethanol-stimulated (100mM) CYP2E1 upregulation was suppressed by quercetin but further enhanced by HO-1 inhibition with resultant heme accumulation. CO scavenging blocked the suppression of quercetin only on CYP2E1 activity. CO donor dose-dependently inactivated CYP2E1 of ethanol-incubated microsome, which was mimicked by HO-1 substrate but abolished by CO scavenger. Thus, CYP2E1-mediated ethanol hepatotoxicity was alleviated by quercetin through HO-1 induction. Depleted heme pool and CO releasing limited protein synthesis and inhibited enzymatic activity of CYP2E1, respectively. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Polymorphisms in the Haem Oxygenase-1 promoter are not associated with severity of Plasmodium falciparum malaria in Ghanaian children.

    Science.gov (United States)

    Hansson, Helle H; Maretty, Lasse; Balle, Christina; Goka, Bamenla Q; Luzon, Elisa; Nkrumah, Francis N; Schousboe, Mette L; Rodrigues, Onike P; Bygbjerg, Ib Christian; Kurtzhals, Jørgen A L; Alifrangis, Michael; Hempel, Casper

    2015-04-11

    Haem oxygenase-1 (HO-1) catabolizes haem and has both cytotoxic and cytoprotective effects. Polymorphisms in the promoter of the Haem oxygenase-1 (HMOX1) gene encoding HO-1 have been associated with several diseases including severe malaria. The objective of this study was to determine the allele and genotype frequencies of two single nucleotide polymorphisms; A(-413)T and G(-1135)A, and a (GT)n repeat length polymorphism in the HMOX1 promoter in paediatric malaria patients and controls to determine possible associations with malaria disease severity. Study participants were Ghanaian children (n=296) admitted to the emergency room at the Department of Child Health, Korle-Bu Teaching Hospital, Accra, Ghana during the malaria season from June to August in 1995, 1996 and 1997, classified as having uncomplicated malaria (n=101) or severe malaria (n=195; defined as severe anaemia (n=63) or cerebral malaria (n=132)). Furthermore, 287 individuals without a detectable Plasmodium infection or asymptomatic carriers of the parasite were enrolled as controls. Blood samples from participants were extracted for DNA and allele and genotype frequencies were determined with allele-specific PCR, restriction fragment length analysis and microsatellite analysis. The number of (GT)n repeats in the study participants varied between 21 and 46 with the majority of alleles having lengths of 26 (8.1%), 29/30 (13.2/17.9%) and 39/40 (8.0/13.8%) repeats, and was categorized into short, medium and long repeats. The (-413)T allele was very common (69.8%), while the (-1135)A allele was present in only 17.4% of the Ghanaian population. The G(-1135)A locus was excluded from further analysis after failing the Hardy-Weinberg equilibrium test. No significant differences in allele or genotype distribution of the A(-413)T and (GT)n repeat polymorphisms were found between the controls and the malaria patients, or between the disease groups, for any of the analysed polymorphisms and no associations with

  20. Zinc protoporphyrin regulates cyclin D1 expression independent of heme oxygenase inhibition.

    Science.gov (United States)

    La, Ping; Fernando, Amal P; Wang, Zhi; Salahudeen, Ameen; Yang, Guang; Lin, Qing; Wright, Clyde J; Dennery, Phyllis A

    2009-12-25

    Zinc protoporphyrin IX (ZnPP), an endogenous heme analogue that inhibits heme oxygenase (HO) activity, represses tumor growth. It can also translocate into the nucleus and up-regulate heme oxygenase 1 (HMOX1) gene expression. Here, we demonstrate that tumor cell proliferation was inhibited by ZnPP, whereas tin protoporphyrin (SnPP), another equally potent HO-1 inhibitor, had no effect. Microarray analysis on 128 tumorigenesis related genes showed that ZnPP suppressed genes involved in cell proliferation and angiogenesis. Among these genes, CYCLIN D1 (CCND1) was specifically inhibited as were its mRNA and protein levels. Additionally, ZnPP inhibited CCND1 promoter activity through an Sp1 and Egr1 overlapping binding site (S/E). We confirmed that ZnPP modulated the S/E site, at least partially by associating with Sp1 and Egr1 proteins rather than direct binding to DNA targets. Furthermore, administration of ZnPP significantly inhibited cyclin D1 expression and progression of a B-cell leukemia/lymphoma 1 tumor in mice by preferentially targeting tumor cells. These observations show HO independent effects of ZnPP on cyclin D1 expression and tumorigenesis.

  1. Zinc Protoporphyrin Regulates Cyclin D1 Expression Independent of Heme Oxygenase Inhibition*

    Science.gov (United States)

    La, Ping; Fernando, Amal P.; Wang, Zhi; Salahudeen, Ameen; Yang, Guang; Lin, Qing; Wright, Clyde J.; Dennery, Phyllis A.

    2009-01-01

    Zinc protoporphyrin IX (ZnPP), an endogenous heme analogue that inhibits heme oxygenase (HO) activity, represses tumor growth. It can also translocate into the nucleus and up-regulate heme oxygenase 1 (HMOX1) gene expression. Here, we demonstrate that tumor cell proliferation was inhibited by ZnPP, whereas tin protoporphyrin (SnPP), another equally potent HO-1 inhibitor, had no effect. Microarray analysis on 128 tumorigenesis related genes showed that ZnPP suppressed genes involved in cell proliferation and angiogenesis. Among these genes, CYCLIN D1 (CCND1) was specifically inhibited as were its mRNA and protein levels. Additionally, ZnPP inhibited CCND1 promoter activity through an Sp1 and Egr1 overlapping binding site (S/E). We confirmed that ZnPP modulated the S/E site, at least partially by associating with Sp1 and Egr1 proteins rather than direct binding to DNA targets. Furthermore, administration of ZnPP significantly inhibited cyclin D1 expression and progression of a B-cell leukemia/lymphoma 1 tumor in mice by preferentially targeting tumor cells. These observations show HO independent effects of ZnPP on cyclin D1 expression and tumorigenesis. PMID:19850937

  2. A Lactobacillus rhamnosus strain induces a heme oxygenase dependent increase in Foxp3+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Khalil Karimi

    Full Text Available We investigated the consequences of feeding with a Lactobacillus species on the immune environment in GALT, and the role of dendritic cells and heme oxygenase-1 in mediating these responses. Feeding with a specific strain of Lactobacillus rhamnosus induced a significant increase in CD4+CD25+Foxp3+ functional regulatory T cells in GALT. This increase was greatest in the mesenteric lymph nodes and associated with a marked decrease in TNF and IFNγ production. Dendritic cell regulatory function and HO-1 expression was also increased. The increase in Foxp3+ T cells could be prevented by treatment with a heme oxygenase inhibitor. However, neither inhibition of heme oxygenase nor blockade of IL-10 and TGFβ prevented the inhibition of inflammatory cytokine production. In conclusion Lactobacillus feeding induced a tolerogenic environment in GALT. HO-1 was critical to the enhancement of Foxp3+ regulatory T cells while additional, as yet unknown, pathways were involved in the down-regulation of inflammatory cytokine production by T cells.

  3. Heme Synthesis and Acquisition in Bacterial Pathogens

    OpenAIRE

    Choby, Jacob E.; Skaar, Eric P.

    2016-01-01

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host source...

  4. Heme isomers substantially affect heme's electronic structure and function

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    Inspection of heme protein structures in the protein data bank reveals four isomers of heme characterized by different relative orientations of the vinyl side chains; remarkably, all these have been reported in multiple protein structures. Density functional theory computations explain this as due...

  5. Gamma radiation induced mutant for improved yield components in sunflower

    International Nuclear Information System (INIS)

    Elangovan, M.

    2001-01-01

    Sunflower has become an important oilseed in the Indian vegetable oil pool following its introduction from Russia in 1969. It can be used for all quality products useful to humans. The need for genetic variability and new useful gene sources has necessitated that sunflower breeders and geneticists utilize a wide range of germplasm in their breeding programmes. The induction of mutations in sunflower by physical and chemical mutagens has been practiced quite intensively in the last two decades. The results recorded to date suggest that utilization of mutagenesis could be a great advantage in improving the sunflower crop. An induced mutation programme was undertaken to generate variability in the variety 'Morden' using gamma rays. The certified and genetically pure seeds were irradiated with 50, 100, and 150 Gy gamma rays and used for further studies. Selection in M 2 generations, raised from different treatments, revealed the presence of an erectophylly leaf mutant from 50 Gy treatment. The isolated mutant showed improved yield components like head diameter, 100- seed weight and yield per plant. The mutant was a plant with short petiole length and erect leaves. This type of leaf get sunlight throughout the day. From morning to afternoon, the first half of the leaf gets sunlight, and from afternoon to evening the second half of the leaf gets sunlight. As a result of getting sunlight the whole day, the plant had more photosynthetic products and grew vigorously. Plant height, head diameter and 100-seed weight had direct effect on seed yield, and the number of leaves and stem diameter influenced the seed yield indirectly. In the M 3 generation, the mutant showed an almost two-fold increase over the parent variety for all investigated characters, except that of the yield per plant where there was a three-fold increase. The present investigation has shown that there are remarkable possibilities of increasing the yield components in sunflower by induced mutations

  6. Wheat Germ Oil Attenuates Gamma Radiation-Induced Skeletal ...

    African Journals Online (AJOL)

    Muscular strength is important in sport as well as in daily activities. Exposure to ionizing radiation is thought to increase oxidative stress and damage muscle tissue. Wheat germ oil is a natural unrefined vegetable oil. It is an excellent source of vitamin E, octacosanol, linoleic and linolenic essential fatty acids, which may be ...

  7. Gamma radiation induced effects on slaughterhouse wastewater treatment

    International Nuclear Information System (INIS)

    Melo, Rita; Cabo Verde, Sandra; Branco, Joaquim; Botelho, M. Luisa

    2008-01-01

    A preliminary study using gamma radiation on slaughterhouse wastewater samples was carried out. Chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) results were obtained at a dose rate of 0.9 kGy h -1 . A decrease of COD, BOD and colour was observed after irradiation at high absorbed doses. The microbiological results, following irradiation in the same conditions, correlated with the BOD results. The results obtained highlight the potential of this technology for wastewater treatment

  8. Gamma-radiation-induced interactions between amino acids and glucagon

    International Nuclear Information System (INIS)

    Mee, L.K.; Kim, H.J.; Adelstein, S.J.; Taub, I.A.

    1984-01-01

    The interaction of glucagon and phenylalanine mediated by the OH. radical causes formation of higher molecular weight products of glucagon and phenylalnine, loss of amino acid residues in glucagon, and formation of adducts of glucagon and phenylalanine. The relative yields of these products depend upon the molar ratio of phenylalanine to glucagon in solution. At low ratios, glucagon aggregation and loss of amino acid residues predominate; at high ratios, the formation of phenylalanine dimers (and possible trimers and tetramers) predominates. The formation of adducts reaches a maximum at a phenylalanine:glucagon molar ratio of 3-4, and then decreases gradually, as the molar ratio increases, but is still discernible even at high molar ratios. Mechanisms for the formation of adducts are suggested. The influence of the primary aqueous radical intermediates, OH., H., and e - /sub aq/, on adduct formation has been evaluated for several different amino acids by irradiating in the presence of specific radical scavengers. For the aromatic amino acids (phenylalanine, tryptophan, and tyrosine), OH. is considerably more effective than e - /sub aq/ for mediating adduct formation, whereas for histidine and methionine, these primary radicals are equally effective

  9. Gamma radiation induced effects on slaughterhouse wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Rita [Departamento de Fisica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal)], E-mail: ritamelo@itn.pt; Cabo Verde, Sandra [Departamento de Fisica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal); Branco, Joaquim [Departamento de Quimica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal); Botelho, M. Luisa [Departamento de Fisica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal)

    2008-01-15

    A preliminary study using gamma radiation on slaughterhouse wastewater samples was carried out. Chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) results were obtained at a dose rate of 0.9 kGy h{sup -1}. A decrease of COD, BOD and colour was observed after irradiation at high absorbed doses. The microbiological results, following irradiation in the same conditions, correlated with the BOD results. The results obtained highlight the potential of this technology for wastewater treatment.

  10. Gamma radiation-induced synthesis and characterization of Polyvinylpyrrolidone nanogels

    Science.gov (United States)

    Ges, A. A.; Viltres, H.; Borja, R.; Rapado, M.; Aguilera, Y.

    2017-01-01

    Due to the importance of bioactive peptides, proteins and drug for pharmaceutical purpose, there is a growing interest for suitable delivery systems, able to increase their bioavailability and to target them to the desired location. Some of the most studied delivery systems involve encapsulation or entrapment of drugs into biocompatible polymeric devices. A multitude of techniques have been described for the synthesis of nanomaterials from polymers, however, the use of ionizing radiation (γ, e-), to obtain nano- and microgels polymer is characterized by the possibility of obtaining products with a high degree of purity. Although, in the world, electronic radiation is used for this purpose, gamma radiation has not been utilized for these purposes. In this paper is developed the formulation the formulation of Polyvinylpyrrolidone (PVP) nanogels synthesized by gamma radiation techniques, for their evaluation as potential system of drug delivery. Experiments were performed in absence of oxygen using aqueous solutions of PVP (0.05% -1%). Crosslinking reactions were carried out at 25° C in a gamma irradiation chamber with a 60Co source (MPX-γ 30). The Viscosimetry, Light Scattering, X-Ray Diffraction and Transmission Electron Microscopy (TEM), were used as characterization techniques.

  11. Prevention of gamma radiation induced anaemia in mice by diltiazem

    International Nuclear Information System (INIS)

    Nunia, V.; Goyal, P.K.

    2004-01-01

    Intraperitoneal administration of diltiazem (DTZ), half an hour prior to whole body gamma irradiation (2.5, 5.0, and 7.5 Gy), showed the protection of animals from radiation-induced anaemia. Radiation exposure significantly (p<0.001) reduced the number of pro- and normoblasts in bone marrow and red blood cell (RBC) counts, hemoglobin (Hb), hematocrit (Hct), and erythropoietin (EPO) level in blood, but increased myeloid/erythroid ratio. At all the radiation doses, the maximum decrease in these values was noted on the 3rd day, followed by a gradual recovery from the 7th day, but it was not recorded as normal even until the end of experimentation. In animals pretreated with DTZ, these values were measured higher at all the time periods in comparison to corresponding control, and these were almost normal at the last autopsy interval only at 2.5 Gy radiation dose. DTZ maintained the higher EPO level in blood, which acted on bone marrow and spleen colony forming unit for erythroblast (CFU-E), and stimulated such cells to produce RBCs. These results confirm that DTZ has the potency to alter anaemic condition favorably through the protection of bone marrow stem cells, and subsequently it maintains the higher number of pro-and normoblasts in bone marrow, RBC counts, Hb, Hct percentage, and EPO level in blood and the lower myeloid/erythroid ratio in bone marrow. (author)

  12. Distributions of particulate Heme

    NARCIS (Netherlands)

    Gledhill, M.; Achterberg, E.P.; Honey, D.J.; Nielsdottir, M.C.; Rijkenberg, M.J.A.

    2013-01-01

    Concentrations of heme b, the iron-containing component of b-type hemoproteins, ranged from?

  13. Heme arginate potentiates latent HIV-1 reactivation while inhibiting the acute infection.

    Science.gov (United States)

    Shankaran, Prakash; Vlkova, Lenka; Liskova, Jana; Melkova, Zora

    2011-12-01

    Human immunodeficiency virus-1 (HIV-1) successfully escapes from host immune surveillance, vaccines and antiretroviral agents. The available antiretroviral compounds can only control viremia, but it is impossible to eliminate the virus from the organism, namely because HIV-1 provirus persists in the reservoir cells from which the virus repeatedly disseminates into new cells. Current therapeutic approaches, however, do not specifically address the stage of virus reactivation. Heme has been demonstrated as very efficient in inhibiting HIV-1 reverse transcription, while its derivative hemin ameliorated HIV-1 infection via induction of heme oxygenase-1. Normosang (heme arginate; HA) is a human hemin-containing compound used to treat acute porphyria. In this work, we studied the effects of HA in HIV-1-acutely infected T-cell lines, and in cell lines harboring either a complete HIV-1 provirus (ACH-2 cells) or an HIV-1 "mini-virus" (Jurkat clones expressing EGFP under control of HIV LTR). We demonstrate that HA inhibited HIV-1 replication during the acute infection, which was accompanied by the inhibition of reverse transcription. On the other hand, HA alone stimulated the reactivation of HIV-1 "mini-virus" and synergized with phorbol ester or TNF-α in the reactivation of HIV-1 provirus. The stimulatory effects of HA were inhibited by N-acetyl cysteine, suggesting an increased redox stress and activation of NF-κB. Further, HA induced expression of heme oxygenase-1 (HO-1) in ACH-2 cells, while HO-1 was found expressed in untreated Jurkat clones. Inhibitor of HO-1 activity, tin protoporphyrin IX, further increased HA-mediated reactivation of HIV-1 "mini-virus" in Jurkat clones, and this effect was also inhibited by N-acetyl cysteine. The stimulatory effects of HA on HIV-1 reactivation thus seem to involve HO-1 and generation of free radicals. Additionally, the effective concentrations of HA did neither affect normal T-cell activation with PMA nor induce activation of the

  14. Heme Synthesis and Acquisition in Bacterial Pathogens.

    Science.gov (United States)

    Choby, Jacob E; Skaar, Eric P

    2016-08-28

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Heme on innate immunity and inflammation

    Directory of Open Access Journals (Sweden)

    Fabianno Ferreira Dutra

    2014-05-01

    Full Text Available Heme is an essential molecule expressed ubiquitously all through our tissues. Heme plays major functions in cellular physiology and metabolism as the prostetic group of diverse proteins. Once released from cells and from hemeproteins free heme causes oxidative damage and inflammation, thus acting as a prototypic damage-associated molecular pattern. In this context, free heme is a critical component of the pathological process of sterile and infectious hemolytic conditions including malaria, hemolytic anemias, ischemia-reperfusion and hemorrhage. The plasma scavanger proteins hemopexin and albumin reduce heme toxicity and are responsible for transporting free heme to intracellular compartments where it is catabolized by heme-oxygenase enzymes. Upon hemolysis or severe cellular damage the serum capacity to scavange heme may saturate and increase free heme to sufficient amounts to cause tissue damage in various organs. The mechanism by which heme causes reactive oxygen generation, activation of cells of the innate immune system and cell death are not fully understood. Although heme can directly promote lipid peroxidation by its iron atom, heme can also induce ROS generation and production of inflammatory mediators through the activation of selective signaling pathways. Heme activates innate immune cells such as macrophages and neutrophils through activation of innate immune receptors. The importance of these events has been demonstrated in infectious and non-infectious diseases models. In this review we will discuss the mechanisms behind heme-induced citotoxicity and inflammation and the consequences of these events on different tissues and diseases.

  16. Oxidative stress modulates heme synthesis and induces peroxiredoxin-2 as a novel cytoprotective response in β-thalassemic erythropoiesis.

    Science.gov (United States)

    De Franceschi, Lucia; Bertoldi, Mariarita; De Falco, Luigia; Santos Franco, Sara; Ronzoni, Luisa; Turrini, Franco; Colancecco, Alessandra; Camaschella, Clara; Cappellini, Maria Domenica; Iolascon, Achille

    2011-11-01

    β-thalassemic syndromes are inherited red cell disorders characterized by severe ineffective erythropoiesis and increased levels of reactive oxygen species whose contribution to β-thalassemic anemia is only partially understood. We studied erythroid precursors from normal and β-thalassemic peripheral CD34(+) cells in two-phase liquid culture by proteomic, reverse transcriptase polymerase chain reaction and immunoblot analyses. We measured intracellular reactive oxygen species, heme levels and the activity of δ-aminolevulinate-synthase-2. We exposed normal cells and K562 cells with silenced peroxiredoxin-2 to H(2)O(2) and generated a recombinant peroxiredoxin-2 for kinetic measurements in the presence of H(2)O(2) or hemin. In β-thalassemia the increased production of reactive oxygen species was associated with down-regulation of heme oxygenase-1 and biliverdin reductase and up-regulation of peroxiredoxin-2. In agreement with these observations in β-thalassemic cells we found decreased heme levels related to significantly reduced activity of the first enzyme of the heme pathway, δ-aminolevulinate synthase-2 without differences in its expression. We demonstrated that the activity of recombinant δ-aminolevulinate synthase-2 is inhibited by both reactive oxygen species and hemin as a protective mechanism in β-thalassemic cells. We then addressed the question of the protective role of peroxiredoxin-2 in erythropoiesis by exposing normal cells to oxidative stress and silencing peroxiredoxin-2 in human erythroleukemia K562 cells. We found that peroxiredoxin-2 expression is up-regulated in response to oxidative stress and required for K562 cells to survive oxidative stress. We then showed that peroxiredoxin-2 binds heme in erythroid precursors with high affinity, suggesting a possible multifunctional cytoprotective role of peroxiredoxin-2 in β-thalassemia. In β-thalassemic erythroid cells the reduction of δ-aminolevulinate synthase-2 activity and the increased

  17. Heme Mobilization in Animals: A Metallolipid's Journey.

    Science.gov (United States)

    Reddi, Amit R; Hamza, Iqbal

    2016-06-21

    Heme is universally recognized as an essential and ubiquitous prosthetic group that enables proteins to carry out a diverse array of functions. All heme-dependent processes, from protein hemylation to heme signaling, require the dynamic and rapid mobilization of heme to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitates that heme mobilization is carefully controlled at the cellular and systemic level. However, the molecules and mechanisms that mediate heme homeostasis are poorly understood. In this Account, we provide a heuristic paradigm with which to conceptualize heme trafficking and highlight the most recent developments in the mechanisms underlying heme trafficking. As an iron-containing tetrapyrrole, heme exhibits properties of both transition metals and lipids. Accordingly, we propose its transport and trafficking will reflect principles gleaned from the trafficking of both metals and lipids. Using this conceptual framework, we follow the flow of heme from the final step of heme synthesis in the mitochondria to hemoproteins present in various subcellular organelles. Further, given that many cells and animals that cannot make heme can assimilate it intact from nutritional sources, we propose that intercellular heme trafficking pathways must exist. This necessitates that heme be able to be imported and exported from cells, escorted between cells and organs, and regulated at the organismal level via a coordinated systemic process. In this Account, we highlight recently discovered heme transport and trafficking factors and provide the biochemical foundation for the cell and systems biology of heme. Altogether, we seek to reconceptualize heme from an exchange inert cofactor buried in hemoprotein active sites to an exchange labile and mobile metallonutrient.

  18. Structural Characterization of Heme Environmental Mutants of CgHmuT that Shuttles Heme Molecules to Heme Transporters

    Directory of Open Access Journals (Sweden)

    Norifumi Muraki

    2016-05-01

    Full Text Available Corynebacteria contain a heme uptake system encoded in hmuTUV genes, in which HmuT protein acts as a heme binding protein to transport heme to the cognate transporter HmuUV. The crystal structure of HmuT from Corynebacterium glutamicum (CgHmuT reveals that heme is accommodated in the central cleft with His141 and Tyr240 as the axial ligands and that Tyr240 forms a hydrogen bond with Arg242. In this work, the crystal structures of H141A, Y240A, and R242A mutants were determined to understand the role of these residues for the heme binding of CgHmuT. Overall and heme environmental structures of these mutants were similar to those of the wild type, suggesting that there is little conformational change in the heme-binding cleft during heme transport reaction with binding and the dissociation of heme. A loss of one axial ligand or the hydrogen bonding interaction with Tyr240 resulted in an increase in the redox potential of the heme for CgHmuT to be reduced by dithionite, though the wild type was not reduced under physiological conditions. These results suggest that the heme environmental structure stabilizes the ferric heme binding in CgHmuT, which will be responsible for efficient heme uptake under aerobic conditions where Corynebacteria grow.

  19. Hemoglobin and heme scavenger receptors

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Møller, Holger Jon; Moestrup, Søren Kragh

    2010-01-01

    Heme, the functional group of hemoglobin, myoglobin, and other hemoproteins, is a highly toxic substance when it appears in the extracellular milieu. To circumvent potential harmful effects of heme from hemoproteins released during physiological or pathological cell damage (such as hemolysis...... and rhabdomyolysis), specific high capacity scavenging systems have evolved in the mammalian organism. Two major systems, which essentially function in a similar way by means of a circulating latent plasma carrier protein that upon ligand binding is recognized by a receptor, are represented by a) the hemoglobin...

  20. Resonance Raman and EPR spectroscopic studies on heme-heme oxygenase complexes.

    Science.gov (United States)

    Sun, J; Wilks, A; Ortiz de Montellano, P R; Loehr, T M

    1993-12-28

    The binding of ferrous and ferric hemes and manganese(II)- and manganese(III)-substituted hemes to heme oxygenase has been investigated by optical absorption, resonance Raman, and EPR spectroscopy. The results are consistent with the presence of a six-coordinate heme moiety ligated to an essential histidine ligand and a water molecule. The latter ionizes with a pKa approximately 8.0 to give a mixture of high-spin and low-spin six-coordinate hydroxo adducts. Addition of excess cyanide converts the heme to a hexacoordinate low-spin species. The resonance Raman spectrum of the ferrous heme-heme oxygenase complex and that of the Mn(II)protoporphyrin-heme oxygenase complex shows bands at 216 and 212 cm-1, respectively, that are assigned to the metal-histidine stretching mode. The EPR spectrum of the oxidized heme-heme oxygenase complex has a strongly axial signal with g parallel of approximately 6 and g perpendicular approximately 2. 14NO and 15NO adducts of ferrous heme-heme oxygenase exhibit EPR hyperfine splittings of approximately 20 and approximately 25 Gauss, respectively. In addition, both nitrosyl complexes show additional superhyperfine splittings of approximately 7 Gauss from spin-spin interaction with the proximal histidine nitrogen. The heme environment in the heme-heme oxygenase enzyme-substrate complex has spectroscopic properties similar to those of the heme in myoglobin. Hence, there is neither a strongly electron-donating fifth (proximal) ligand nor an electron-withdrawing network on the distal side of the heme moiety comparable to that for cytochromes P-450 and peroxidases. This observation has profound implications about the nature of the oxygen-activating process in the heme-->biliverdin reaction that are discussed in this paper.

  1. Andrographolide inhibits hypoxia-induced hypoxia-inducible factor 1α and endothelin 1 expression through the heme oxygenase 1/CO/cGMP/MKP-5 pathways in EA.hy926 cells.

    Science.gov (United States)

    Lin, Hung-Chih; Su, Shih-Li; Lin, Wan-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Lii, Chong-Kuei; Chen, Haw-Wen

    2018-03-01

    Andrographolide is a potent anti-inflammatory agent found in Andrographis paniculata. Endothelin 1 (ET-1) is an endothelium-derived vasoconstrictor with pro-inflammatory properties secreted in response to hypoxia. Mitogen-activated protein kinase phosphatase 5 (MKP-5) is a dual-specificity phosphatase that dephosphorylates threonine and tyrosine residues of MAPKs. We showed previously that hypoxia-induced HIF-1α expression and ET-1 secretion are dependent on p38 MAPK in EA.hy926 cells. Here, we investigate what role MKP-5 plays in andrographolide's inhibition of hypoxia-induced expression of HIF-1α and ET-1. Hypoxic conditions were created using the hypoxia-mimetic agent CoCl 2 . Andrographolide enhanced HO-1 and MKP-5 expression and cellular cGMP content in addition to inhibiting hypoxia-induced ROS generation. Concomitantly, the HO-1 byproduct CO and the cGMP analogue 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP) increased MKP-5 expression, and pretreatment with CO and 8-Br-cGMP inhibited hypoxia-induced HIF-1α and ET-1 expression. Transfection of HO-1 siRNA or pretreatment with the HO-1 inhibitor ZnPP-9 or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a specific inhibitor of soluble guanylate cyclase, reduced andrographolide-induced MKP-5 expression. Moreover, silencing MKP-5 or treatment with the phosphatase inhibitor vanadate abrogated andrographolide's suppressing hypoxia-induced p38 MAPK activation and HIF-1α expression. The inhibition of hypoxia-induced HIF-1α and ET-1 expression by andrographolide is likely associated with HO-1/CO/cGMP/MKP-5 pathways, which is involved in inhibiting hypoxia-induced p38 MAPK activation. © 2017 Wiley Periodicals, Inc.

  2. Decursin Isolated from Angelica gigas Nakai Rescues PC12 Cells from Amyloid β-Protein-Induced Neurotoxicity through Nrf2-Mediated Upregulation of Heme Oxygenase-1: Potential Roles of MAPK

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-01-01

    Full Text Available Decursin (D, purified from Angelica gigas Nakai, has been proven to exert neuroprotective property. Previous study revealed that D reduced Aβ25‒35-induced cytotoxicity in PC12 cells. Our study explored the underlying mechanisms by which D mediates its therapeutic effects in vitro. Pretreatment of cells with D diminished intracellular generation of ROS in response to Aβ25‒35. Western blot revealed that D significantly increased the expression and activity of HO-1, which was correlated with its protection against Aβ25‒35-induced injury. Addition of ZnPP, an HO-1 competitive inhibitor, significantly attenuated its protective effect in Aβ25‒35-treated cells, indicating the vital role of HO-1 resistance to oxidative injury. Moreover, D induced Nrf2 nuclear translocation, the upstream of HO-1 expression. While investigating the signaling pathways responsible for HO-1 induction, D activated ERK and dephosphorylated p38 in PC12 cells. Addition of U0126, a selective inhibitor of ERK, blocked D-induced Nrf2 activation and HO-1 induction and meanwhile reversed the protection of D against Aβ25‒35-induced cell death. These findings suggest D augments cellular antioxidant defense capacity through both intrinsic free radical scavenging activity and activation of MAPK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction, thereby protecting the PC12 cells from Aβ25‒35-induced oxidative cytotoxicity.

  3. Anti-inflammatory effect of a selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor via the stimulation of heme oxygenase-1 in LPS-activated mice and J774.1 murine macrophages

    Directory of Open Access Journals (Sweden)

    Sung Bum Park

    2016-08-01

    Full Text Available 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1 converts inactive cortisone to the active cortisol. 11β-HSD1 may be involved in the resolution of inflammation. In the present study, we investigate the anti-inflammatory effects of 2-(3-benzoyl-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344, a selective 11β-HSD1 inhibitor, in lipopolysaccharide (LPS-activated C57BL/6J mice and macrophages. LPS increased 11β-HSD1 activity and expression in macrophages, which was inhibited by KR-66344. In addition, KR-66344 increased survival rate in LPS treated C57BL/6J mice. HO-1 mRNA expression level was increased by KR-66344, and this effect was reversed by the HO competitive inhibitor, ZnPP, in macrophages. Moreover, ZnPP reversed the suppression of ROS formation and cell death induced by KR-66344. ZnPP also suppressed animal survival rate in LPS plus KR-66344 treated C57BL/6J mice. In the spleen of LPS-treated mice, KR-66344 prevented cell death via suppression of inflammation, followed by inhibition of ROS, iNOS and COX-2 expression. Furthermore, LPS increased NFκB-p65 and MAPK phosphorylation, and these effects were abolished by pretreatment with KR-66344. Taken together, KR-66344 protects against LPS-induced animal death and spleen injury by inhibition of inflammation via induction of HO-1 and inhibition of 11β-HSD1 activity. Thus, we concluded that the selective 11β-HSD1 inhibitor may provide a novel strategy in the prevention/treatment of inflammatory disorders in patients.

  4. Exogenous Hydrogen Peroxide Contributes to Heme Oxygenase-1 Delaying Programmed Cell Death in Isolated Aleurone Layers of Rice Subjected to Drought Stress in a cGMP-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Guanghui Wang

    2018-02-01

    Full Text Available Hydrogen peroxide (H2O2 is a reactive oxygen species (ROS that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H2O2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H2O2 scavengers ascorbic acid (AsA and dimethylthiourea (DMTU and the H2O2 synthesis inhibitor diphenyleneiodonium (DPI for scavenging or diminishing drought-induced endogenous H2O2. Conversely, the zinc protoporphyrin IX (ZnPPIX, an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H2O2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H2O2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H2O2 level was inhibited, the effect of exogenous H2O2 on the induction of HO-1 was enhanced. Furthermore, exogenous H2O2-activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3′,5′-cyclic guanosine monophosphate (8-Br-cGMP (the membrane permeable cGMP analog promoted the effect of exogenous H2O2-delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD of aleurone layers by cooperating with nitric oxide (NO, and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H2O2 (as a signaling molecule triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H2O2 promoted cell death.

  5. Exogenous Hydrogen Peroxide Contributes to Heme Oxygenase-1 Delaying Programmed Cell Death in Isolated Aleurone Layers of Rice Subjected to Drought Stress in a cGMP-Dependent Manner.

    Science.gov (United States)

    Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping

    2018-01-01

    Hydrogen peroxide (H 2 O 2 ) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H 2 O 2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H 2 O 2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H 2 O 2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H 2 O 2 . Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H 2 O 2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H 2 O 2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H 2 O 2 level was inhibited, the effect of exogenous H 2 O 2 on the induction of HO-1 was enhanced. Furthermore, exogenous H 2 O 2 -activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3',5'-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H 2 O 2 -delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H 2 O 2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H 2 O 2 promoted cell death.

  6. Heme-dependent Metabolite Switching Regulates H2S Synthesis in Response to Endoplasmic Reticulum (ER) Stress.

    Science.gov (United States)

    Kabil, Omer; Yadav, Vinita; Banerjee, Ruma

    2016-08-05

    Substrate ambiguity and relaxed reaction specificity underlie the diversity of reactions catalyzed by the transsulfuration pathway enzymes, cystathionine β-synthase (CBS) and γ-cystathionase (CSE). These enzymes either commit sulfur metabolism to cysteine synthesis from homocysteine or utilize cysteine and/or homocysteine for synthesis of H2S, a signaling molecule. We demonstrate that a kinetically controlled heme-dependent metabolite switch in CBS regulates these competing reactions where by cystathionine, the product of CBS, inhibits H2S synthesis by the second enzyme, CSE. Under endoplasmic reticulum stress conditions, induction of CSE and up-regulation of the CBS inhibitor, CO, a product of heme oxygenase-1, flip the operating preference of CSE from cystathionine to cysteine, transiently stimulating H2S production. In contrast, genetic deficiency of CBS leads to chronic stimulation of H2S production. This metabolite switch from cystathionine to cysteine and/or homocysteine renders H2S synthesis by CSE responsive to the known modulators of CBS: S-adenosylmethionine, NO, and CO. Used acutely, it regulates H2S synthesis; used chronically, it might contribute to disease pathology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Haeme oxygenase-1 overexpression via nAChRs and the transcription factor Nrf2 has antinociceptive effects in the formalin test.

    Science.gov (United States)

    Egea, Javier; Rosa, Angelo O; Lorrio, Silvia; del Barrio, Laura; Cuadrado, Antonio; López, Manuela G

    2009-11-01

    Epibatidine has shown antinociceptive effects in various pain models, being 200-fold more potent than morphine. Previous results from our laboratory demonstrated that HO-1 overexpression has an antinociceptive effect in the formalin test. Furthermore, epibatidine was able to induce haeme oxygenase-1 (HO-1). So, the aim of this study was to investigate the effect of HO-1 overexpression induced by epibatidine in nociception elicited by formalin injection in the mice hindpaw. Administration of epibatidine (4 microg/kg) 24h before the test reduced the nociceptive response during the first phase and second phase of the formalin test. This effect was prevented by treatment with tin protoporphyrin (SnPP, an inhibitor of HO-1 activity) administered via intraplantar 5min before the test, suggesting a main role of HO-1. Western blot analysis revealed that epibatidine treatment increased by 2-fold HO-1 expression in the paw; this effect was lost in knockout mice for nuclear factor-erythroid 2-related factor 2 (Nrf2) and was accompanied by the loss of its antinociceptive effect. Furthermore, the antinociceptive effect of epibatidine was related to the activation of alpha7 and/or alpha9 nAChRs since methyllycaconitine (MLA) and mecamylamine but not dihydro-beta-erythroidine (DHbetaE) reverted this effect. Finally, we showed by flow cytometry and by immunofluorescence that white blood cells of the animals injected with epibatidine expressed more HO-1 than control animals, and this expression was also reverted by MLA pre-treatment. These findings demonstrate that HO-1 induction by epibatidine has antinociceptive and anti-inflammatory effects by the activation of MLA-sensitive nAChRs.

  8. Andrographolide exerts anti-hepatitis C virus activity by up-regulating haeme oxygenase-1 via the p38 MAPK/Nrf2 pathway in human hepatoma cells.

    Science.gov (United States)

    Lee, Jin-Ching; Tseng, Chin-Kai; Young, Kung-Chia; Sun, Hung-Yu; Wang, Shainn-Wei; Chen, Wei-Chun; Lin, Chun-Kuang; Wu, Yu-Hsuan

    2014-01-01

    This study aimed to evaluate the anti-hepatitis C virus (HCV) activity of andrographolide, a diterpenoid lactone extracted from Andrographis paniculata, and to identify the signalling pathway involved in its antiviral action. Using HCV replicon and HCVcc infectious systems, we identified anti-HCV activity of andrographolide by measuring protein and RNA levels. A reporter activity assay was used to determine transcriptional regulation of anti-HCV agents. A specific inhibitor and short hairpin RNAs were used to investigate the mechanism responsible for the effect of andrographolide on HCV replication. In HCV replicon and HCVcc infectious systems, andrographolide time- and dose-dependently suppressed HCV replication. When combined with IFN-α, an inhibitor targeting HCV NS3/4A protease (telaprevir), or NS5B polymerase (PSI-7977), andrographolide exhibited a significant synergistic effect. Andrographolide up-regulated the expression of haeme oxygenase-1 (HO-1), leading to increased amounts of its metabolite biliverdin, which was found to suppress HCV replication by promoting the antiviral IFN responses and inhibiting NS3/4A protease activity. Significantly, these antiviral effects were attenuated by an HO-1-specific inhibitor or HO-1 gene knockdown, indicating that HO-1 contributed to the anti-HCV activity of andrographolide. Andrographolide activated p38 MAPK phosphorylation, which stimulated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated HO-1 expression, and this was found to be associated with its anti-HCV activity. Our results demonstrate that andrographolide has the potential to control HCV replication and suggest that targeting the Nrf2-HO-1 signalling pathway might be a promising strategy for drug development. © 2013 The British Pharmacological Society.

  9. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa.

    Science.gov (United States)

    Cui, Weiti; Li, Le; Gao, Zhaozhou; Wu, Honghong; Xie, Yanjie; Shen, Wenbiao

    2012-09-01

    This work examines the involvement of haem oxygenase-1 (HO-1) in salicylic acid (SA)-induced alleviation of oxidative stress as a result of cadmium (Cd) stress in alfalfa (Medicago sativa L.) seedling roots. CdCl(2) exposure caused severe growth inhibition and Cd accumulation, which were potentiated by pre-treatment with zinc protoporphyrin (ZnPPIX), a potent HO-1 inhibitor. Pre-treatment of plants with the HO-1 inducer haemin or SA, both of which could induce MsHO1 gene expression, significantly reduced the inhibition of growth and Cd accumulation. The alleviation effects were also evidenced by a decreased content of thiobarbituric acid-reactive substances (TBARS). The antioxidant behaviour was confirmed by histochemical staining for the detection of lipid peroxidation and the loss of plasma membrane integrity. Furthermore, haemin and SA pre-treatment modulated the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), and guaiacol peroxidase (POD), or their corresponding transcripts. Significant enhancement of the ratios of reduced/oxidized homoglutathione (hGSH), ascorbic acid (ASA)/dehydroascorbate (DHA), and NAD(P)H/NAD(P)(+), and expression of their metabolism genes was observed, consistent with a decreased reactive oxygen species (ROS) distribution in the root tips. These effects are specific for HO-1, since ZnPPIX blocked the above actions, and the aggravated effects triggered by SA plus ZnPPIX were differentially reversed when carbon monoxide (CO) or bilirubin (BR), two catalytic by-products of HO-1, was added. Together, the results suggest that HO-1 is involved in the SA-induced alleviation of Cd-triggered oxidative stress by re-establishing redox homeostasis.

  10. Drug-enhanced carbon monoxide production from heme by cytochrome P450 reductase

    Directory of Open Access Journals (Sweden)

    Dragic Vukomanovic

    2017-01-01

    Full Text Available Carbon monoxide (CO formed endogenously is considered to be cytoprotective, and the vast majority of CO formation is attributed to the degradation of heme by heme oxygenases-1 and -2 (HO-1, HO-2. Previously, we observed that brain microsomes containing HO-2 produced many-fold more CO in the presence of menadione and its congeners; herein we explored these observations further. We determined the effects of various drugs on CO production of rat brain microsomes and recombinant human cytochrome P450 reductase (CPR; CO was measured by gas chromatography with reductive detection. Brain microsomes of Sprague-Dawley rats or recombinant human cytochrome P450 reductase (CPR were incubated with NADPH and various drugs in closed vials in phosphate buffer at pH 7.4 and 37°C. After 15 minutes, the reaction was stopped by cooling in dry ice, and the headspace gas was analyzed for CO production using gas chromatography with reductive (mercuric oxide detection. We observed drug-enhanced CO production in the presence of both microsomes and recombinant CPR alone; the presence of HO was not required. A range of structurally diverse drugs were capable of amplifying this CO formation; these molecules had structures consistent with redox cycling capability. The addition of catalase to a reaction mixture, that contained activating drugs, inhibited the production of CO. Drug-enhanced CO formation can be catalyzed by CPR. The mechanism of CPR activation was not through classical drug-receptor mediation. Redox cycling may be involved in the drug-induced amplification of CO production by CPR through the production of reactive oxygen species.

  11. Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin.

    Science.gov (United States)

    Fang, Jun; Sawa, Tomohiro; Akaike, Takaaki; Greish, Khaled; Maeda, Hiroshi

    2004-03-01

    Heme oxygenase-1 (HO-1), an inducible enzyme that catalyzes oxidative degradation of heme to form biliverdin, carbon monoxide and free iron, may protect tumor cells against oxidative stress, thus contributing to rapid tumor growth in vivo. Here, we discuss whether pegylated zinc protoporphyrin (PEG-ZnPP), a potent HO inhibitor, modulates the chemotherapeutic response of tumor cells to treatment that generates reactive oxygen species (ROS). PEG-ZnPP is a water-soluble HO inhibitor that accumulates in tumor tissues after intravenous administration. Cytotoxicity of antitumor agents in vitro was determined by means of MTT and annexin V assays using human colon carcinoma SW480 cells. Mice bearing sarcoma 180 tumors were used as an in vivo model. Pegylated D-amino acid oxidase (PEG-DAO), which behaves as an oxidative chemotherapeutic agent by generating toxic oxidants at tumor tissues, was administered with its substrate D-proline to mice with or without PEG-ZnPP pretreatment. PEG-ZnPP-treated SW480 cells became vulnerable to insults caused by various cytotoxic agents; the 50% lethal doses were reduced by 25%, 39%, 83%, and 61% for hydrogen peroxide, t-butyl hydroperoxide, camptothecin and doxorubicin, respectively. Cells treated with PEG-ZnPP plus cytotoxic oxidants exhibited marked production of intracellular ROS, which paralleled the incidence of apoptosis. PEG-ZnPP pretreatment significantly reduced tumor growth in mice receiving PEG-DAO/D-proline compared to no PEG-ZnPP pretreatment. These findings suggest that HO-1 may become an attractive target for chemotherapeutic intervention. Further study of the effect of PEG-ZnPP plus conventional anticancer drugs that generate ROS, such as cisplatin, camptothecin, doxorubicin, mitomycin C and etoposide, is warranted. Copyright 2003 Wiley-Liss, Inc.

  12. A role for heme in Alzheimer's disease: Heme binds amyloid β and has altered metabolism

    OpenAIRE

    Atamna, Hani; Frey, William H.

    2004-01-01

    Heme is a common factor linking several metabolic perturbations in Alzheimer's disease (AD), including iron metabolism, mitochondrial complex IV, heme oxygenase, and bilirubin. Therefore, we determined whether heme metabolism was altered in temporal lobes obtained at autopsy from AD patients and age-matched nondemented subjects. AD brain demonstrated 2.5-fold more heme-b (P < 0.01) and 26% less heme-a (P = 0.16) compared with controls, resulting in a highly significant 2.9-fold decrease in he...

  13. Identification of the Mitochondrial Heme Metabolism Complex.

    Science.gov (United States)

    Medlock, Amy E; Shiferaw, Mesafint T; Marcero, Jason R; Vashisht, Ajay A; Wohlschlegel, James A; Phillips, John D; Dailey, Harry A

    2015-01-01

    Heme is an essential cofactor for most organisms and all metazoans. While the individual enzymes involved in synthesis and utilization of heme are fairly well known, less is known about the intracellular trafficking of porphyrins and heme, or regulation of heme biosynthesis via protein complexes. To better understand this process we have undertaken a study of macromolecular assemblies associated with heme synthesis. Herein we have utilized mass spectrometry with coimmunoprecipitation of tagged enzymes of the heme biosynthetic pathway in a developing erythroid cell culture model to identify putative protein partners. The validity of these data obtained in the tagged protein system is confirmed by normal porphyrin/heme production by the engineered cells. Data obtained are consistent with the presence of a mitochondrial heme metabolism complex which minimally consists of ferrochelatase, protoporphyrinogen oxidase and aminolevulinic acid synthase-2. Additional proteins involved in iron and intermediary metabolism as well as mitochondrial transporters were identified as potential partners in this complex. The data are consistent with the known location of protein components and support a model of transient protein-protein interactions within a dynamic protein complex.

  14. The use and abuse of heme in apicomplexan parasites.

    Science.gov (United States)

    van Dooren, Giel G; Kennedy, Alexander T; McFadden, Geoffrey I

    2012-08-15

    Heme is an essential prosthetic group for most life on Earth. It functions in numerous cellular redox reactions, including in antioxidant defenses and at several stages of the electron transport chain in prokaryotes and eukaryotic mitochondria. Heme also functions as a sensor and transport molecule for gases such as oxygen. Heme is a complex organic molecule and can only be synthesized through a multienzyme pathway from simpler precursors. Most free-living organisms synthesize their own heme by a broadly conserved metabolic pathway. Parasites are adept at scavenging molecules from their hosts, and heme is no exception. In this review we examine recent advances in understanding heme usage and acquisition in Apicomplexa, a group of parasites that include the causative agents of malaria, toxoplasmosis, and several major parasites of livestock. Heme is critical to the survival of Apicomplexa, although the functions of heme in these organisms remain poorly understood. Some Apicomplexa likely scavenge heme from their host organisms, while others retain the ability to synthesize heme. Surprisingly, some Apicomplexa may be able to both synthesize and scavenge heme. Several Apicomplexa live in intracellular environments that contain high levels of heme. Since heme is toxic at high concentrations, parasites must carefully regulate intracellular heme levels and develop mechanisms to detoxify excess heme. Indeed, drugs interfering with heme detoxification serve as major antimalarials. Understanding heme requirements and regulation in apicomplexan parasites promises to reveal multiple targets for much-needed therapeutic intervention against these parasites.

  15. Structural analysis of heme proteins: implications for design and prediction

    Directory of Open Access Journals (Sweden)

    Bonkovsky Herbert L

    2011-03-01

    Full Text Available Abstract Background Heme is an essential molecule and plays vital roles in many biological processes. The structural determination of a large number of heme proteins has made it possible to study the detailed chemical and structural properties of heme binding environment. Knowledge of these characteristics can provide valuable guidelines in the design of novel heme proteins and help us predict unknown heme binding proteins. Results In this paper, we constructed a non-redundant dataset of 125 heme-binding protein chains and found that these heme proteins encompass at least 31 different structural folds with all-α class as the dominating scaffold. Heme binding pockets are enriched in aromatic and non-polar amino acids with fewer charged residues. The differences between apo and holo forms of heme proteins in terms of the structure and the binding pockets have been investigated. In most cases the proteins undergo small conformational changes upon heme binding. We also examined the CP (cysteine-proline heme regulatory motifs and demonstrated that the conserved dipeptide has structural implications in protein-heme interactions. Conclusions Our analysis revealed that heme binding pockets show special features and that most of the heme proteins undergo small conformational changes after heme binding, suggesting the apo structures can be used for structure-based heme protein prediction and as scaffolds for future heme protein design.

  16. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans.

    Science.gov (United States)

    Weinborn, Valerie; Valenzuela, Carolina; Olivares, Manuel; Arredondo, Miguel; Weill, Ricardo; Pizarro, Fernando

    2017-05-24

    The aim of this study was to establish the effect of a prebiotic mix on heme and non-heme iron (Fe) bioavailability in humans. To this purpose, twenty-four healthy women were randomized into one of two study groups. One group ate one yogurt per day for 12 days with a prebiotic mix (prebiotic group) and the other group received the same yogurt but without the prebiotic mix (control group). Before and after the intake period, the subjects participated in Fe absorption studies. These studies used 55 Fe and 59 Fe radioactive isotopes as markers of heme Fe and non-heme Fe, respectively, and Fe absorption was measured by the incorporation of radioactive Fe into erythrocytes. The results showed that there were no significant differences in heme and non-heme Fe bioavailability in the control group. Heme Fe bioavailability of the prebiotic group increased significantly by 56% post-prebiotic intake. There were no significant differences in non-heme Fe bioavailability in this group. We concluded that daily consumption of a prebiotic mix increases heme Fe bioavailability and does not affect non-heme iron bioavailability.

  17. Dioxygen reactivity of meso-hydroxylated hemes: intermediates in ...

    Indian Academy of Sciences (India)

    Keywords. Heme oxygenase; heme degradation; coupled oxidation; variable temperature paramagnetic NMR. Abstract. Heme oxygenase (HO) is the only enzyme in mammals known to catalyse the physiological degradation of unwanted heme into biliverdin, Fe ion and CO. The process involves introduction of the hydroxyl ...

  18. HEME-HEME COMUNICATION DURING THE ALKALINE INDUCED STRUCTURAL TRANSITION IN CYTOCROME C OXIDASE

    Science.gov (United States)

    Ji, Hong; Rousseau, Denis L.; Yeh, Syun-Ru

    2009-01-01

    Alkaline induced conformational changes at pH 12.0 in the oxidized as well as the reduced state of cytochrome c oxidase have been systematically studied with time-resolved optical absorption and resonance Raman spectroscopies. In the reduced state, the heme a3 first converts from the native five-coordinate configuration to a six-coordinate bis-histidine intermediate as a result of the coordination of one of the CuB ligands, H290 or H291, to the heme iron. The coordination state change in the heme a3 causes the alteration in the microenvironment of the formyl group of the heme a3 and the disruption of the H-bond between R38 and the formyl group of the heme a. This structural transition, which occurs within 1 minute following the initiation of the pH jump, is followed by a slower reaction, in which Schiff base linkages are formed between the formyl groups of the two hemes and their nearby amino acid residues, presumably R38 and R302 for the heme a and a3, respectively. In the oxidized enzyme, a similar Schiff base modification on heme a and a3 was observed but it is triggered by the coordination of the H290 or H291 to heme a3 followed by the breakage of the native proximal H378-iron and H376-iron bonds in heme a and a3, respectively. In both oxidation states, the synchronous formation of the Schiff base linkages in heme a and a3 relies on the structural communication between the two hemes via the H-bonding network involving R438 and R439 and the propionate groups of the two hemes as well as the helix X housing the two proximal ligands, H378 and H376, of the hemes. The heme-heme communication mechanism revealed in this work may be important in controlling the coupling of the oxygen and redox chemistry in the heme sites to proton pumping during the enzymatic turnover of CcO. PMID:18187199

  19. Free heme and sickle hemoglobin polymerization

    Science.gov (United States)

    Uzunova, Veselina V.

    This work investigates further the mechanism of one of the most interesting of the protein self-assembly systems---the polymerization of sickle hemoglobin and the role of free heme in it. Polymerization of sickle hemoglobin is the primary event in the pathology of a chronic hemolytic condition called sickle cell anemia with complex pathogenesis, unexplained variability and symptomatic treatment. Auto-oxidation develops in hemoglobin solutions exposed to room temperature and causes release of ferriheme. The composition of such solutions is investigated by mass spectrometry. Heme dimers whose amount corresponds to the initial amounts of heme released from the protein are followed. Differences in the dimer peak height are established for hemoglobin variants A, S and C and depending on the exposure duration. The effects of free heme on polymerization kinetics are studied. Growth rates and two characteristic parameters of nucleation are measured for stored Hb S. After dialysis of polymerizing solutions, no spherulites are detected at moderately high supersaturation and prolonged exposure times. The addition of 0.16-0.26 mM amounts of heme to dialyzed solutions leads to restoration of polymerization. The measured kinetic parameters have higher values compared to the ones before dialysis. The amount of heme in non-dialyzed aged solution is characterized using spectrophotometry. Three methods are used: difference in absorbance of dialyzed and non-dialyzed solutions, characteristic absorbance of heme-albumin complex and absorbance of non-dialyzed solutions with added potassium cyanide. The various approaches suggest the presence of 0.12 to 0.18 mM of free ferriheme in such solutions. Open questions are whether the same amounts of free heme are present in vivo and whether the same mechanism operates intracellulary. If the answer to those questions is positive, then removal of free heme from erythrocytes can influence their readiness to sickle.

  20. A rapid, simple method for obtaining radiochemically pure hepatic heme

    International Nuclear Information System (INIS)

    Bonkowski, H.L.; Bement, W.J.; Erny, R.

    1978-01-01

    Radioactively-labelled heme has usually been isolated from liver to which unlabelled carrier has been added by long, laborious techniques involving organic solvent extraction followed by crystallization. A simpler, rapid method is devised for obtaining radiochemically-pure heme synthesized in vivo in rat liver from delta-amino[4- 14 C]levulinate. This method, in which the heme is extracted into ethyl acetate/glacial acetic acid and in which porphyrins are removed from the heme-containing organic phase with HCl washes, does not require addition of carrier heme. The new method gives better heme recoveries than and heme specific activities identical to, those obtained using the crystallization method. In this new method heme must be synthesized from delta-amino[4- 14 C]levulinate; it is not satisfactory to use [2- 14 C]glycine substrate because non-heme counts are isolated in the heme fraction. (Auth.)

  1. Heme environment in HmuY, the heme-binding protein of Porphyromonas gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, Halina [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Wojaczynski, Jacek [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Mariusz [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Kroliczewski, Jaroslaw [Laboratory of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-148 Wroclaw (Poland); Latos-Grazynski, Lechoslaw [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Teresa, E-mail: Teresa.Olczak@biotech.uni.wroc.pl [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland)

    2009-05-29

    Porphyromonas gingivalis, a Gram-negative anaerobic bacterium implicated in the development and progression of chronic periodontitis, acquires heme for growth by a novel mechanism composed of HmuY and HmuR proteins. The aim of this study was to characterize the nature of heme binding to HmuY. The protein was expressed, purified and detailed investigations using UV-vis absorption, CD, MCD, and {sup 1}H NMR spectroscopy were carried out. Ferric heme bound to HmuY may be reduced by sodium dithionite and re-oxidized by potassium ferricyanide. Heme complexed to HmuY, with a midpoint potential of 136 mV, is in a low-spin Fe(III) hexa-coordinate environment. Analysis of heme binding to several single and double HmuY mutants with the methionine, histidine, cysteine, or tyrosine residues replaced by an alanine residue identified histidines 134 and 166 as potential heme ligands.

  2. Heme environment in HmuY, the heme-binding protein of Porphyromonas gingivalis

    International Nuclear Information System (INIS)

    Wojtowicz, Halina; Wojaczynski, Jacek; Olczak, Mariusz; Kroliczewski, Jaroslaw; Latos-Grazynski, Lechoslaw; Olczak, Teresa

    2009-01-01

    Porphyromonas gingivalis, a Gram-negative anaerobic bacterium implicated in the development and progression of chronic periodontitis, acquires heme for growth by a novel mechanism composed of HmuY and HmuR proteins. The aim of this study was to characterize the nature of heme binding to HmuY. The protein was expressed, purified and detailed investigations using UV-vis absorption, CD, MCD, and 1 H NMR spectroscopy were carried out. Ferric heme bound to HmuY may be reduced by sodium dithionite and re-oxidized by potassium ferricyanide. Heme complexed to HmuY, with a midpoint potential of 136 mV, is in a low-spin Fe(III) hexa-coordinate environment. Analysis of heme binding to several single and double HmuY mutants with the methionine, histidine, cysteine, or tyrosine residues replaced by an alanine residue identified histidines 134 and 166 as potential heme ligands.

  3. Utility of heme analogues to intentionally modify heme-globin interactions in myoglobin.

    Science.gov (United States)

    Neya, Saburo; Nagai, Masako; Nagatomo, Shigenori; Hoshino, Tyuji; Yoneda, Tomoki; Kawaguchi, Akira T

    2016-05-01

    Myoglobin reconstitution with various synthetic heme analogues was reviewed to follow the consequences of modified heme-globin interactions. Utility of dimethyl sulfoxide as the solvent for water-insoluble hemes was emphasized. Proton NMR spectroscopy revealed that loose heme-globin contacts in the heme pocket eventually caused the dynamic heme rotation around the iron-histidine bond. The full rotational rate was estimated to be about 1400 s(-1) at room temperature for 1,4,5,8-tetramethylhemin. The X-ray analysis of the myoglobin containing iron porphine, the smallest heme without any side chains, showed that the original globin fold was well conserved despite the serious disruption of native heme-globin contacts. Comparison between the two myoglobins with static and rotatory prosthetic groups indicated that the oxygen and carbon monoxide binding profiles were almost unaffected by the heme motion. On the other hand, altered tetrapyrrole array of porphyrin dramatically changed the dissociation constant of oxygen from 0.0005 mm Hg of porphycene-myoglobin to ∞ in oxypyriporphyrin-myoglobin. Heme-globin interactions in myoglobin were also monitored with circular dichroism spectroscopy. The observation on several reconstituted protein revealed an unrecognized role of the propionate groups in protoheme. Shortening of heme 6,7-propionates to carboxylates resulted in almost complete disappearance of the positive circular dichroism band in the Soret region. The theoretical analysis suggested that the disappeared circular dichroism band reflected the cancellation effects between different conformers of the carboxyl groups directly attached to heme periphery. The above techniques were proposed to be applicable to other hemoproteins to create new biocatalysts. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson

  4. Insights on Heme Synthesis in the Malaria Parasite.

    Science.gov (United States)

    Nagaraj, Viswanathan A; Padmanaban, Govindarajan

    2017-08-01

    The malaria parasite has a functional heme-biosynthetic pathway, although it can access host hemoglobin-heme. The heme pathway is dispensable for blood stages, but essential in the mosquito stages which do not acquire hemoglobin-heme. We propose that the blood stage parasites maintain a dynamic heme pool through multiple back-up mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation.

    Science.gov (United States)

    Tanimura, Nobuyuki; Miller, Eli; Igarashi, Kazuhiko; Yang, David; Burstyn, Judith N; Dewey, Colin N; Bresnick, Emery H

    2016-02-01

    Metal ion-containing macromolecules have fundamental roles in essentially all biological processes throughout the evolutionary tree. For example, iron-containing heme is a cofactor in enzyme catalysis and electron transfer and an essential hemoglobin constituent. To meet the intense demand for hemoglobin assembly in red blood cells, the cell type-specific factor GATA-1 activates transcription of Alas2, encoding the rate-limiting enzyme in heme biosynthesis, 5-aminolevulinic acid synthase-2 (ALAS-2). Using genetic editing to unravel mechanisms governing heme biosynthesis, we discovered a GATA factor- and heme-dependent circuit that establishes the erythroid cell transcriptome. CRISPR/Cas9-mediated ablation of two Alas2 intronic cis elements strongly reduces GATA-1-induced Alas2 transcription, heme biosynthesis, and surprisingly, GATA-1 regulation of other vital constituents of the erythroid cell transcriptome. Bypassing ALAS-2 function in Alas2 cis element-mutant cells by providing its catalytic product 5-aminolevulinic acid rescues heme biosynthesis and the GATA-1-dependent genetic network. Heme amplifies GATA-1 function by downregulating the heme-sensing transcriptional repressor Bach1 and via a Bach1-insensitive mechanism. Through this dual mechanism, heme and a master regulator collaborate to orchestrate a cell type-specific transcriptional program that promotes cellular differentiation. © 2015 The Authors.

  6. Structural mechanisms of nonplanar hemes in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, J.A.

    1997-05-01

    The objective is to assess the occurrence of nonplanar distortions of hemes and other tetrapyrroles in proteins and to determine the biological function of these distortions. Recently, these distortions were found by us to be conserved among proteins belonging to a functional class. Conservation of the conformation of the heme indicates a possible functional role. Researchers have suggested possible mechanisms by which heme distortions might influence biological properties; however, no heme distortion has yet been shown conclusively to participate in a structural mechanism of hemoprotein function. The specific aims of the proposed work are: (1) to characterize and quantify the distortions of the hemes in all of the more than 300 hemoprotein X-ray crystal structures in terms of displacements along the lowest-frequency normal coordinates, (2) to determine the structural features of the protein component that generate and control these nonplanar distortions by using spectroscopic studies and molecular-mechanics calculations for the native proteins, their mutants and heme-peptide fragments, and model porphyrins, (3) to determine spectroscopic markers for the various types of distortion, and, finally, (4) to discover the functional significance of the nonplanar distortions by correlating function with porphyrin conformation for proteins and model porphyrins.

  7. Measurement of Heme Synthesis Levels in Mammalian Cells.

    Science.gov (United States)

    Hooda, Jagmohan; Alam, Maksudul; Zhang, Li

    2015-07-09

    Heme serves as the prosthetic group for a wide variety of proteins known as hemoproteins, such as hemoglobin, myoglobin and cytochromes. It is involved in various molecular and cellular processes such as gene transcription, translation, cell differentiation and cell proliferation. The biosynthesis levels of heme vary across different tissues and cell types and is altered in diseased conditions such as anemia, neuropathy and cancer. This technique uses [4-(14)C] 5-aminolevulinic acid ([(14)C] 5-ALA), one of the early precursors in the heme biosynthesis pathway to measure the levels of heme synthesis in mammalian cells. This assay involves incubation of cells with [(14)C] 5-ALA followed by extraction of heme and measurement of the radioactivity incorporated into heme. This procedure is accurate and quick. This method measures the relative levels of heme biosynthesis rather than the total heme content. To demonstrate the use of this technique the levels of heme biosynthesis were measured in several mammalian cell lines.

  8. Chemical-induced coordinated and reciprocal changes in heme metabolism, cytochrome P450 synthesis and others in the liver of humans and rodents.

    Science.gov (United States)

    Yoshida, Takemi; Ashino, Takashi; Kobayashi, Yasuna

    2016-01-01

    A wide variety of drugs and chemicals have been shown to produce induction and inhibition of heme-metabolizing enzymes, and of drug-metabolizing enzymes, including cytochrome P450s (P450s, CYPs), which consist of many molecular species with lower substrate specificity. Such chemically induced enzyme alterations are coordinately or reciprocally regulated through the same and/or different signal transductions. From the toxicological point of view, these enzymatic changes sometimes exacerbate inherited diseases, such as precipitation of porphyrogenic attacks, although the induction of these enzymes is dependent on the animal species in response to the differences in the stimuli of the liver, where they are also metabolized by P450s. Since P450s are hemoproteins, their induction and/or inhibition by chemical compounds could be coordinately accompanied by heme synthesis and/or inhibition. This review will take a retrospective view of research works carried out in our department and current findings on chemical-induced changes in hepatic heme metabolism in many places, together with current knowledge. Specifically, current beneficial aspects of induction of heme oxygenase-1, a rate-limiting heme degradation enzyme, and its relation to reciprocal and coordinated changes in P450s, with special reference to CYP2A5, in the liver are discussed. Mechanistic studies are also summarized in relation to current understanding on these aspects. Emphasis is also paid to an example of a single chemical compound that could cause various changes by mediating multiple signal transduction systems. Current toxicological studies have been developing by utilizing a sophisticated "omics" technology and survey integrated changes in the tissues produced by the administration of a chemical, even in time- and dose-dependent manners. Toxicological studies are generally carried out step by step to determine and elucidate mechanisms produced by drugs and chemicals. Such approaches are correct

  9. Heme biosynthesis and its regulation : Toward understanding and improvement of heme biosynthesis in filamentous fungi.

    NARCIS (Netherlands)

    S. de Weert; P.J. Punt; Christien Lokman; C.A. van den Hondel; A.C. Franken; A.F. Ram

    2011-01-01

    Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally

  10. Heme biosynthesis and its regulation: Towards understanding and improvement of heme biosynthesis in filamentous fungi

    NARCIS (Netherlands)

    Franken, A.C.W.; Lokman, B.C.; Ram, A.F.J.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Weert, S. de

    2011-01-01

    Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally

  11. Differential induction of heme oxygenase and other stress proteins in cultured hippocampal astrocytes and neurons by inorganic lead

    International Nuclear Information System (INIS)

    Cabell, Leigh; Ferguson, Charles; Luginbill, Deana; Kern, Marcey; Weingart, Adam; Audesirk, Gerald

    2004-01-01

    We examined the effects of exposure to inorganic lead (Pb 2+ ) on the induction of stress proteins in cultured hippocampal neurons and astrocytes, with particular emphasis on the induction of heme oxygenase-1 (HO-1). In radiolabeled neuronal cultures, Pb 2+ exposure had no significant effect on the synthesis of any protein at any concentration (up to 250 μM) or duration of exposure (up to 4 days). In radiolabeled astrocyte cultures, however, Pb 2+ exposure (100 nM to 100 μM; 1-4 days) increased synthesis of proteins with approximate molecular weights of 23, 32, 45, 57, 72, and 90 kDa. Immunoblot experiments showed that Pb 2+ exposure (100 nM to 10 μM, 1-14 days) induces HO-1 synthesis in astrocytes, but not in neurons; this is probably the 32-kDa protein. The other heme oxygenase isoform, HO-2, is present in both neurons and astrocytes, but is not inducible by Pb 2+ at concentrations up to 100 μM. HO-1 can be induced by a variety of stimuli. We found that HO-1 induction in astrocytes is increased by combined exposure to Pb 2+ and many other stresses, including heat, nitric oxide, H 2 O 2 , and superoxide. One of the stimuli that may induce HO-1 is oxidative stress. Lead exposure causes oxidative stress in many cell types, including astrocytes. Induction of HO-1 by Pb 2+ is reduced by the hydroxyl radical scavengers dimethylthiourea (DMTU) and mannitol, but not by inhibitors of calmodulin, calmodulin-dependent protein kinases, protein kinase C, or extracellular signal-regulated kinases (ERK). Therefore, we conclude that oxidative stress is an important mechanism by which Pb 2+ induces HO-1 synthesis in astrocytes

  12. Induction of heme oxygenas-1 attenuates NLRP3 inflammasome activation in lipopolysaccharide-induced mastitis in mice.

    Science.gov (United States)

    Xiaoyu, Hu; Si, Hongbin; Li, Shumin; Wang, Wenqing; Guo, Jian; Li, Yanyi; Cao, Yongguo; Fu, Yunhe; Zhang, Naisheng

    2017-11-01

    Mastitis is one of most prevalent production disease in dairy herds worldwide, and is responsible for enormous economic losses. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme, which is involved in the response to oxidative stress and inflammatory response. The purpose of this study was to detect the protective effect of HO-1 on LPS-induced mastitis in mice. BALB/c mice were pretreated with hemin (HO-1 inducer) and zinc protoporphyrin (ZnPP; HO-1 inhibitor) at 2h before LPS stimulation. The results showed that the mammary gland damage, production of inflammatory cytokines IL-1β, and MPO activity in mammary gland tissues were significantly reduced after pretreated with hemin compared with the group of LPS stimulation only. However, ZnPP reversed the effects of hemin. Furthermore, we found that the levels of ROS and NLRP3 inflammasome were increased after LPS stimulation. The increases were inhibited by hemin and the inhibition of hemin on ROS production and NLRP3 inflammasome activation were blocked by ZnPP. In addition, the results showed that hemin reduced the expression of thioredoxin-interacting protein (TXNIP) induced by LPS, and ZnPP attenuated these changes. In conclusion, the results suggested that overproduction of HO-1 may inhibit the activation of NLRP3 inflammasome and the expression of TXNIP. Induction of HO-1 may be served as a promising method against mastitis induced by LPS. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Heme synthesis in normal mouse liver and mouse liver tumors

    International Nuclear Information System (INIS)

    Stout, D.L.; Becker, F.F.

    1990-01-01

    Hepatic cancers from mice and rats demonstrate decreased levels of delta-aminolevulinic acid synthase, the rate-limiting enzyme in the heme synthetic pathway, and increased heme oxygenase, the heme-catabolizing enzyme. These findings suggest that diminution of P-450, b5, and catalase in these lesions may result from a heme supply that is limited by decreased heme synthesis and increased heme catabolism. Heme synthesis was measured in mouse liver tumors (MLT) and adjacent tumor-free lobes (BKG) by administering the radiolabeled heme precursors 55 FeCl3 and [2- 14 C]glycine and subsequently extracting the heme for determination of specific activity. Despite reduced delta-aminolevulinic acid synthase activity in MLT, both tissues incorporated [2-14C]glycine into heme at similar rates. At early time points, heme extracted from MLT contained less 55Fe than that from BKG. This was attributed to the findings that MLT took up 55Fe at a slower rate than BKG and had larger iron stores than BKG. The amount of heme per milligram of protein was also similar in both tissues. These findings militate against the hypothesis that diminished hemoprotein levels in MLT result from limited availability of heme. It is probable, therefore, that decreased hemoprotein levels in hepatic tumors are linked to a general program of dedifferentiation associated with the cancer phenotype. Diminution of hemoprotein in MLT may result in a relatively increased intracellular heme pool. delta-Aminolevulinic acid synthase and heme oxygenase are, respectively, negatively and positively regulated by heme. Thus, their alteration in MLT may be due to the regulatory influences of the heme pool

  14. Heme oxygenase and the immune system in normal and pathological pregnancies

    Directory of Open Access Journals (Sweden)

    Maide eOzen

    2015-04-01

    Full Text Available Normal pregnancy is an immunotolerant state. Many factors, including environmental, socioeconomic, genetic, and immunologic changes by infection and/or other causes of inflammation, may contribute to inter-individual differences resulting in a normal or pathologic pregnancy. In particular, imbalances in the immune system can cause many pregnancy-related diseases, such as infertility, abortions, pre-eclampsia, and preterm labor, which result in maternal/fetal death, prematurity, or small-for-gestational age newborns. New findings imply that myeloid regulatory cells and regulatory T cells (Tregs may mediate immunotolerance during normal pregnancy. Effector T cells (Teffs have, in contrast, been implicated to cause adverse pregnancy outcomes. Furthermore, feto-maternal tolerance affects the developing fetus. It has been shown that the Treg/Teff balance affects litter size and adoptive transfer of pregnancy-induced Tregs can prevent fetal rejection in the mouse. Heme oxygenase-1 (HO-1 has a protective role in many conditions through its anti-inflammatory, anti-apoptotic, antioxidative, and anti-proliferative actions. HO-1 is highly expressed in the placenta and plays a role in angiogenesis and placental vascular development and in regulating vascular tone in pregnancy. In addition, HO-1 is a major regulator of immune homeostasis by mediating crosstalk between innate and adaptive immune systems. Moreover, HO-1 can inhibit inflammation-induced phenotypic maturation of immune effector cells and pro-inflammatory cytokine secretion and promote anti-inflammatory cytokine production. HO-1 may also be associated with T-cell activation and can limit immune-based tissue injury by promoting Treg suppression of effector responses. Thus, HO-1 and its byproducts may protect against pregnancy complications by its immunomodulatory effects, and the regulation of HO-1 or its downstream effects has the potential to prevent or treat pregnancy complications and

  15. Heme and non-heme iron transporters in non-polarized and polarized cells

    Directory of Open Access Journals (Sweden)

    Yasui Yumiko

    2010-06-01

    Full Text Available Abstract Background Heme and non-heme iron from diet, and recycled iron from hemoglobin are important products of the synthesis of iron-containing molecules. In excess, iron is potentially toxic because it can produce reactive oxygen species through the Fenton reaction. Humans can absorb, transport, store, and recycle iron without an excretory system to remove excess iron. Two candidate heme transporters and two iron transporters have been reported thus far. Heme incorporated into cells is degraded by heme oxygenases (HOs, and the iron product is reutilized by the body. To specify the processes of heme uptake and degradation, and the reutilization of iron, we determined the subcellular localizations of these transporters and HOs. Results In this study, we analyzed the subcellular localizations of 2 isoenzymes of HOs, 4 isoforms of divalent metal transporter 1 (DMT1, and 2 candidate heme transporters--heme carrier protein 1 (HCP1 and heme responsive gene-1 (HRG-1--in non-polarized and polarized cells. In non-polarized cells, HCP1, HRG-1, and DMT1A-I are located in the plasma membrane. In polarized cells, they show distinct localizations: HCP1 and DMT1A-I are located in the apical membrane, whereas HRG-1 is located in the basolateral membrane and lysosome. 16Leu at DMT1A-I N-terminal cytosolic domain was found to be crucial for plasma membrane localization. HOs are located in smooth endoplasmic reticulum and colocalize with NADPH-cytochrome P450 reductase. Conclusions HCP1 and DMT1A-I are localized to the apical membrane, and HRG-1 to the basolateral membrane and lysosome. These findings suggest that HCP1 and DMT1A-I have functions in the uptake of dietary heme and non-heme iron. HRG-1 can transport endocytosed heme from the lysosome into the cytosol. These localization studies support a model in which cytosolic heme can be degraded by HOs, and the resulting iron is exported into tissue fluids via the iron transporter ferroportin 1, which is

  16. Dioxygen reactivity of meso-hydroxylated hemes: intermediates in ...

    Indian Academy of Sciences (India)

    ) is highly unusual since it uses heme as both its substrate and prosthetic group. Mammalian heme oxygenases are membrane-bound and are relatively difficult to purify and study.2–6. This makes investigation of the enzyme structure.

  17. Conversion of a heme-based oxygen sensor to a heme oxygenase by hydrogen sulfide: effects of mutations in the heme distal side of a heme-based oxygen sensor phosphodiesterase (Ec DOS)

    Czech Academy of Sciences Publication Activity Database

    Du, Y.; Liu, G.; Yan, Y.; Huang, D.; Luo, W.; Martínková, M.; Man, Petr; Shimizu, T.

    2013-01-01

    Roč. 26, č. 5 (2013), s. 839-852 ISSN 0966-0844 Institutional support: RVO:61388971 Keywords : Heme oxygenase * Heme protein * Hydrogen sulfide Subject RIV: CE - Biochemistry Impact factor: 2.689, year: 2013

  18. Molecular hijacking of siroheme for the synthesis of heme and d1 heme.

    Science.gov (United States)

    Bali, Shilpa; Lawrence, Andrew D; Lobo, Susana A; Saraiva, Lígia M; Golding, Bernard T; Palmer, David J; Howard, Mark J; Ferguson, Stuart J; Warren, Martin J

    2011-11-08

    Modified tetrapyrroles such as chlorophyll, heme, siroheme, vitamin B(12), coenzyme F(430), and heme d(1) underpin a wide range of essential biological functions in all domains of life, and it is therefore surprising that the syntheses of many of these life pigments remain poorly understood. It is known that the construction of the central molecular framework of modified tetrapyrroles is mediated via a common, core pathway. Herein a further branch of the modified tetrapyrrole biosynthesis pathway is described in denitrifying and sulfate-reducing bacteria as well as the Archaea. This process entails the hijacking of siroheme, the prosthetic group of sulfite and nitrite reductase, and its processing into heme and d(1) heme. The initial step in these transformations involves the decarboxylation of siroheme to give didecarboxysiroheme. For d(1) heme synthesis this intermediate has to undergo the replacement of two propionate side chains with oxygen functionalities and the introduction of a double bond into a further peripheral side chain. For heme synthesis didecarboxysiroheme is converted into Fe-coproporphyrin by oxidative loss of two acetic acid side chains. Fe-coproporphyrin is then transformed into heme by the oxidative decarboxylation of two propionate side chains. The mechanisms of these reactions are discussed and the evolutionary significance of another role for siroheme is examined.

  19. Heme compounds in dinosaur trabecular bone.

    Science.gov (United States)

    Schweitzer, M H; Marshall, M; Carron, K; Bohle, D S; Busse, S C; Arnold, E V; Barnard, D; Horner, J R; Starkey, J R

    1997-06-10

    Six independent lines of evidence point to the existence of heme-containing compounds and/or hemoglobin breakdown products in extracts of trabecular tissues of the large theropod dinosaur Tyrannosaurus rex. These include signatures from nuclear magnetic resonance and electron spin resonance that indicate the presence of a paramagnetic compound consistent with heme. In addition, UV/visible spectroscopy and high performance liquid chromatography data are consistent with the Soret absorbance characteristic of this molecule. Resonance Raman profiles are also consistent with a modified heme structure. Finally, when dinosaurian tissues were extracted for protein fragments and were used to immunize rats, the resulting antisera reacted positively with purified avian and mammalian hemoglobins. The most parsimonious explanation of this evidence is the presence of blood-derived hemoglobin compounds preserved in the dinosaurian tissues.

  20. Heme and erythropoieis: more than a structural role

    OpenAIRE

    Chiabrando, Deborah; Mercurio, Sonia; Tolosano, Emanuela

    2014-01-01

    Erythropoiesis is the biological process that consumes the highest amount of body iron for heme synthesis. Heme synthesis in erythroid cells is finely coordinated with that of alpha (α) and beta (β)-globin, resulting in the production of hemoglobin, a tetramer of 2α- and 2β-globin chains, and heme as the prosthetic group. Heme is not only the structural component of hemoglobin, but it plays multiple regulatory roles during the differentiation of erythroid precursors since it controls its own ...

  1. Heme detection in parasitic protists of the group Trypanosomatidae

    OpenAIRE

    KOVÁŘOVÁ, Julie

    2010-01-01

    This study deals with detection of heme in three different species of the group Trypanosomatidae: Trypanosoma brucei, Leishmania tarentolae and Phytomonas serpens. The main goal was to improve the current knowledge about heme metabolism in Phytomonas serpens. It was found that P. serpens does not require heme for growth, though it does ingest it if available.

  2. Red meat and colon cancer : how dietary heme initiates hyperproliferation

    NARCIS (Netherlands)

    IJssennagger, N.

    2012-01-01

    Colorectal cancer is a leading cause of cancer deaths in Western countries. The risk to develop colorectal cancer is associated with the intake of red meat. Red meat contains the porphyrin pigment heme. Heme is an irritant for the colonic wall and it is previously shown that the addition of heme

  3. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    OpenAIRE

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We inv...

  4. Regulation of heme biosynthesis and transport in metazoa.

    Science.gov (United States)

    Sun, FengXiu; Cheng, YongJiao; Chen, CaiYong

    2015-08-01

    Heme is an iron-containing tetrapyrrole that plays a critical role in regulating a variety of biological processes including oxygen and electron transport, gas sensing, signal transduction, biological clock, and microRNA processing. Most metazoan cells synthesize heme via a conserved pathway comprised of eight enzyme-catalyzed reactions. Heme can also be acquired from food or extracellular environment. Cellular heme homeostasis is maintained through the coordinated regulation of synthesis, transport, and degradation. This review presents the current knowledge of the synthesis and transport of heme in metazoans and highlights recent advances in the regulation of these pathways.

  5. Mononuclear non-heme iron(III)

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 2. Mononuclear non-heme iron(III) complexes of linear and tripodal tridentate ligands as functional models for catechol dioxygenases: Effect of -alkyl substitution on regioselectivity and reaction rate. Mallayan Palaniandavar Kusalendiran Visvaganesan.

  6. Inhibition of Heme Peroxidases by Melamine

    Directory of Open Access Journals (Sweden)

    Pattaraporn Vanachayangkul

    2012-01-01

    Full Text Available In 2008 melamine-contaminated infant formula and dairy products in China led to over 50,000 hospitalizations of children due to renal injuries. In North America during 2007 and in Asia during 2004, melamine-contaminated pet food products resulted in numerous pet deaths due to renal failure. Animal studies have confirmed the potent renal toxicity of melamine combined with cyanuric acid. We showed previously that the solubility of melamine cyanurate is low at physiologic pH and ionic strength, provoking us to speculate how toxic levels of these compounds could be transported through the circulation without crystallizing until passing into the renal filtrate. We hypothesized that melamine might be sequestered by heme proteins, which could interfere with heme enzyme activity. Four heme peroxidase enzymes were selected for study: horseradish peroxidase (HRP, lactoperoxidase (LPO, and cyclooxygenase-1 and -2 (COX-1 and -2. Melamine exhibited noncompetitive inhibition of HRP (9.5±0.7mM, and LPO showed a mixed model of inhibition (14.5±4.7mM. The inhibition of HRP and LPO was confirmed using a chemiluminescent peroxidase assay. Melamine also exhibited COX-1 inhibition, but inhibition of COX-2 was not detected. Thus, our results demonstrate that melamine inhibits the activity of three heme peroxidases.

  7. Heme pathway evolution in kinetoplastid protists

    Czech Academy of Sciences Publication Activity Database

    Cenci, U.; Moog, D.; Curtis, B.A.; Tanifuji, G.; Eme, L.; Lukeš, Julius; Archibald, J.M.

    2016-01-01

    Roč. 16, MAY 18 (2016), č. článku 109. ISSN 1471-2148 Institutional support: RVO:60077344 Keywords : heme * kinetoplastea * Paramoeba pemaquidensis * Perkinsela * evolution * endosymbiosis * Prokinetoplastina * lateral gene transfer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.221, year: 2016

  8. Heme and erythropoieis: more than a structural role.

    Science.gov (United States)

    Chiabrando, Deborah; Mercurio, Sonia; Tolosano, Emanuela

    2014-06-01

    Erythropoiesis is the biological process that consumes the highest amount of body iron for heme synthesis. Heme synthesis in erythroid cells is finely coordinated with that of alpha (α) and beta (β)-globin, resulting in the production of hemoglobin, a tetramer of 2α- and 2β-globin chains, and heme as the prosthetic group. Heme is not only the structural component of hemoglobin, but it plays multiple regulatory roles during the differentiation of erythroid precursors since it controls its own synthesis and regulates the expression of several erythroid-specific genes. Heme is synthesized in developing erythroid progenitors by the stage of proerythroblast, through a series of eight enzymatic reactions divided between mitochondria and cytosol. Defects of heme synthesis in the erythroid lineage result in sideroblastic anemias, characterized by microcytic anemia associated to mitochondrial iron overload, or in erythropoietic porphyrias, characterized by porphyrin deposition in erythroid cells. Here, we focus on the heme biosynthetic pathway and on human erythroid disorders due to defective heme synthesis. The regulatory role of heme during erythroid differentiation is discussed as well as the heme-mediated regulatory mechanisms that allow the orchestration of the adaptive cell response to heme deficiency. Copyright© Ferrata Storti Foundation.

  9. The Chemistry and Biochemistry of Heme c: Functional Bases for Covalent Attachment

    OpenAIRE

    Bowman, Sarah E. J.; Bren, Kara L.

    2008-01-01

    A discussion of the literature concerning the synthesis, function, and activity of heme c-containing proteins is presented. Comparison of the properties of heme c, which is covalently bound to protein, is made to heme b, which is bound noncovalently. A question of interest is why nature uses biochemically expensive heme c in many proteins when its properties are expected to be similar to heme b. Considering the effects of covalent heme attachment on heme conformation and on the proximal histi...

  10. Insulin enhances the peroxidase activity of heme by forming heme-insulin complex: Relevance to type 2 diabetes mellitus.

    Science.gov (United States)

    Huang, Yi; Yang, Zhen; Xu, Huan; Zhang, Pengfei; Gao, Zhonghong; Li, Hailing

    2017-09-01

    Evidences have implicated the involvement of heme in the type 2 diabetes mellitus (T2Dm) pathogenesis, but possible mediators linking between heme and diabetes are still poorly understood. Here, we explored a potential mechanism that linked heme, insulin and diabetes. Our results demonstrated the formation of heme-insulin complex by two classical methods, i.e. UV-vis and capillary electrophoresis-frontal analysis (CE-FA). UV-vis results implied heme binding insulin via bis-histidine sites, and CE-FA further revealed that, when insulin uses two sites binding with heme, this interaction occurs at high affinity (K d =3.13×10 -6 M). Molecule docking supported that histidine-B5 of insulin binds with heme-Fe. In addition to that, tyrosine-B26, phenylalanine-B1 and valine-B2 are also contributed to binding heme. The binding amplified the peroxidase activity of heme itself. Under oxidative and nitrative stress, it affects pathogenesis of diabetes from two aspects: promoting insulin cross-linking that leads to permanent loss of insulin functionality on one hand, and enhancing protein tyrosine nitration that may result in inactivation of proteins associated with diabetes on the other hand. This study suggested that the enhanced peroxidase activity of heme through binding with insulin might be a previously unrecognized contributor to the pathogenesis of T2Dm in some heme-associated disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability.

    Science.gov (United States)

    Kořený, Luděk; Sobotka, Roman; Kovářová, Julie; Gnipová, Anna; Flegontov, Pavel; Horváth, Anton; Oborník, Miroslav; Ayala, Francisco J; Lukeš, Julius

    2012-03-06

    Heme is an iron-coordinated porphyrin that is universally essential as a protein cofactor for fundamental cellular processes, such as electron transport in the respiratory chain, oxidative stress response, or redox reactions in various metabolic pathways. Parasitic kinetoplastid flagellates represent a rare example of organisms that depend on oxidative metabolism but are heme auxotrophs. Here, we show that heme is fully dispensable for the survival of Phytomonas serpens, a plant parasite. Seeking to understand the metabolism of this heme-free eukaryote, we searched for heme-containing proteins in its de novo sequenced genome and examined several cellular processes for which heme has so far been considered indispensable. We found that P. serpens lacks most of the known hemoproteins and does not require heme for electron transport in the respiratory chain, protection against oxidative stress, or desaturation of fatty acids. Although heme is still required for the synthesis of ergosterol, its precursor, lanosterol, is instead incorporated into the membranes of P. serpens grown in the absence of heme. In conclusion, P. serpens is a flagellate with unique metabolic adaptations that allow it to bypass all requirements for heme.

  12. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans.

    Science.gov (United States)

    Hamza, Iqbal; Dailey, Harry A

    2012-09-01

    The appearance of heme, an organic ring surrounding an iron atom, in evolution forever changed the efficiency with which organisms were able to generate energy, utilize gasses and catalyze numerous reactions. Because of this, heme has become a near ubiquitous compound among living organisms. In this review we have attempted to assess the current state of heme synthesis and trafficking with a goal of identifying crucial missing information, and propose hypotheses related to trafficking that may generate discussion and research. The possibilities of spatially organized supramolecular enzyme complexes and organelle structures that facilitate efficient heme synthesis and subsequent trafficking are discussed and evaluated. Recently identified players in heme transport and trafficking are reviewed and placed in an organismal context. Additionally, older, well established data are reexamined in light of more recent studies on cellular organization and data available from newer model organisms. This article is part of a Special Issue entitled: Cell Biology of Metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Palliative effects of lutein intervention in gamma-radiation-induced cellular damages in Swiss albino mice.

    Science.gov (United States)

    Vasudeva, Vidya; Tenkanidiyoor, Yogish Somayaji; Radhakrishna, Vishakh; Shivappa, Pooja; Lakshman, Srikanth Patil; Fernandes, Ronald; Patali, Krishna Ananthapura

    2017-01-01

    Radiation-induced hematological, biochemical, and cytogenetic damages to the normal cells are major concerns in the field of radiotherapy. The carotenoids and their derivatives have been the source of antioxidants with wide range of medicinal applications. The objective is to evaluate the protective effects of lutein, a carotenoid, against radiation-induced cellular and tissue damages. Swiss albino mice were grouped into 5, 50, 250, and 500 mg/kg b.wt. of lutein treatment groups, a sham and vehicle control group. The groups were irradiated with a lethal dose of 10 Gy y'-radiation. The mortality was recorded for 30 days to optimize the protective dose against radiation. The mice were administered with the compound orally for 15 consecutive days and irradiated with a sublethal dose of 6Gy. The hematological changes in blood and antioxidant parameters were determined in liver, kidney homogenates, and hemolysate/serum. The hematological parameters were recorded using an automated cell counter. The antioxidants such as malondialdehyde (MDA), glutathione (GSH), superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase were spectrophotometrically determined. The red blood cell, white blood cell count, lymphocyte count, hemoglobin, platelet levels, and hematocrit value were found to be decreased in the irradiated groups. Lutein pretreatment maintains near-normal levels of these parameters indicating resistance/recovery from the radiation-induced damages. The antioxidant levels were found to be reduced in all the irradiated groups. However, lutein pretreatment (50 mg/kg b.wt.) has increased the catalase activity of hemolysate. Lutein pretreatment has reduced the MDA levels in hemolysate, when administered at doses of 5, 250, and 500 mg/kg b.wt. in comparison to its control. The study demonstrates the radioprotective potential of lutein by maintaining the hematological and antioxidant homeostasis.

  14. Gamma-radiation induced damage of proteins in the thick fraction of egg white

    Directory of Open Access Journals (Sweden)

    MARIJA VUCKOVIC

    2005-11-01

    Full Text Available The thick fraction of egg white saturated with either N2O or Ar was irradiated in the dose range 1.5–45 kGy at 60Co gamma source. The gel structure decomposition and other processes accompanied with changes in protein molecular mass were followed by Sephadex G-200 exclusion chromatography, denaturing SDS-polyacrylamide gel electrophoresis, viscosity and turbidity measurements. The complex behaviour of viscosity was observed in the N2O saturated sample (where the hydrated electron was converted into the OH radical; the initial abrupt decrease that radually slows down reaching the minimum at 12 kGy (hmin = 2.7 mPa s followed by the slow rise was measured. The Ar saturated sample ([eaq-] ~ [OH] showed both the significantly faster initial decrease and lower viscosity minimum (hmin = 2.2 mPa s. The combined Sephadex G-200 exclusion chromatography and denaturing SDS-polyacrylamide gel electrophoresis data revealed that the three-dimensional egg white (hydrated gel structure was (efficiently decomposed even in the N2O saturated sample. The protein scission was detected in the entire dose range studied, while the protein agglomeration is not noticed at low doses (around 1.5 kGy; however, it dominates at higher doses. In the highest dose region studied, the loss of structure in SDS-PAGE chromatograms indicates that the agglomerates are formed from protein fragments rather than from intact proteins. The continuous linear increase in turbidity was measured. The results obtained indicate that ionizing radiation causes the breakdown of the protein network of the thick fraction of egg white via the reduction of S–S bridges by the hydrated electron and the protein fragmentation due to the direct action of ionizing radiation. The protein agglomeration is initiated by the reaction of the OH radical; its inefficiency at low doses is attributed to the glucose antioxidant properties and radical immobility.

  15. Study on gamma radiation-induced synthesis of gold nanoparticles stabilized by hyaluronan

    International Nuclear Information System (INIS)

    Dang Van Phu; Bui Duy Du

    2013-01-01

    Gold nanoparticles (AuNPs) with diameter from 4 to 10 nm were synthesized by γ-irradiation in hyaluronan (HA) solution without usage of any OH radical scavenger. The size distribution of AuNPs were determined by TEM images. The λ max (517-525 nm) of colloidal AuNPs solutions as prepared was measured by UV-Vis spectroscopy. The influence factor on the size of AuNPs particularly the concentration of Au 3+ , HA and dose rate were investigated. The colloidal solution of AuNPs/HA as synthesized was stable more than 6 months stored under ambient condition. AuNPs with the size less than 10 nm narrow size distribution stabilized by HA which is biocompatible polysaccharide can potentially be applied in biomedicine and cosmetic. (author)

  16. Protective role of garlic against gamma radiation induced histological and histochemical changes in rat liver

    International Nuclear Information System (INIS)

    Abdel Motaal, N.A.; Abdel Maguid, A.

    2007-01-01

    The present work was planned to evaluate the radioprotective effect of garlic (Allium sativum) against the hazardous action of gamma radiation on liver of rat one and ten days post-exposure. Garlic was orally administered (100 mg/ kg body wt) to rats daily for two weeks before exposure to single dose whole body gamma-irradiation (5Gy). The results showed that exposure of rats to gamma- irradiation caused massive portal infiltration with inflammatory cells, dilatation of blood sinusoids, an increase in the number of Kupffer cells, vacuolation of some hepatocytes as well as pyknosis and karyolysis of hepatic nuclei in the liver tissue. Histochemical examination of liver one day post- irradiation illustrated weak to moderate glycogen particles. While, on ten days post-irradiation, a strong activity for glycogen was detected. The disturbance in carbohydrate metabolism is closely related to the radiation induced histological damage in the liver tissue. Administration of garlic for 2 weeks pre-irradiation reduced the radiation induced histopathological changes and showed marked protection against the tissue damaging effect of radiation. It could be concluded that treatment of rats with garlic before exposure to gamma-irradiation offered a noticeable radioprotective effect of the studied organ

  17. Gamma radiation-induced Impairment of hippocampal neurogenesis, comparison of single and fractionated dose regimens

    International Nuclear Information System (INIS)

    Khoshbin khoshnazar, A. R; Jahanshahi, M; Azami, N. S

    2012-01-01

    Radiation therapy of the brain is associated with many consequences, including cognitive disorders. Pathogenesis of radiation induced cognitive disorder is not clear, but reduction of neurogenesis in hippocampus may be an underlying reason. 24 adult male rats entered to study. Radiation absorbed dose to midbrain was 10 Gy, delivered by routine cobalt radiotherapy machine which its output was measured 115.24 cGy/min. The rats were divided in four groups of sixes, including groups of control, single fraction 10 Gy, fractionated 10 Gy and finally anaesthesia sham group. Number of pyramidal nerve cells was counted in two regions of hippocampus formation (CA1 and CA3). The radiation could reduce the number of cells in two regions of hippocampus significantly (p=0.000). It seems fractionated 10 Gy irradiation to more efficient than single fraction, while role of anaesthesia drug should be cautiously assessed. Moreover the rate of neurogenesis reduction was determined the same in these regions of hippocampus meaning the same radiosensitivity of cells

  18. Screening of gamma radiation-induced pathogen resistance rice lines against Xanthomonas oryzae pv. oryzae

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chan Ju; Lee, Ha Yeon; Kim, Woong Bom; Ahmad, Raza; Moon, Jae Sun; Kwon, Suk Yoon [Korea Research Institute of Beoscience and Biotechnology, Daejeon (Korea, Republic of); Kim, Dong Sub [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-09-15

    Bacterial blight is one of the most serious diseases of rice (Oryza sativa L.), and it has been known that Xanthomonas oryzae pv. oryzae (Xoo) causes this disease symptom. To develop resistance rice cultivars against Xoo, 3,000 lines of M{sub 3}, which were irradiated with gamma ray, were tested by 'scissor-dip method' primarily, and 191 putative resistant lines were selected. In M{sub 4} generation, these lines were screened again with various ways such as measuring of symptom of bacterial blight in leaf, number of tiller, fresh weight, and phenotypic segregation ratio in next generation. Finally, six resistance lines were selected. RT-PCR analysis revealed that these lines displayed high level of R-genes such as Xa21, Pi36, and Pi-ta. These results indicate that mutations by gamma ray cause disruptions of regulatory signal transduction systems of these R-genes. Furthermore, these selected mutants could be useful for the development of rice cultivar resistant to Xoo.

  19. Gamma radiation induced enhancement in the antioxidant and radioprotective activities of flavonoids

    International Nuclear Information System (INIS)

    Arul Anantha Kumar, A.; Sonwani, Swetha; Bakkiam, D.

    2018-01-01

    Recently γ-radiation has been used as a tool to induce structural changes in natural biomolecules to enhance their biological and physiological properties. Flavonoids are a family of plant derived polyphenolic compounds having considerable scientific and therapeutic importance. Structurally they are the benzo-γ-pyrone derivatives containing phenolic and pyrane rings. Flavonoid radioprotection is an intense area of research thanks to features like natural origin, effectiveness at non-toxic dose levels and lack of side effects. But till date no report is available on the effect of γ-radiation mediated enhancement in radioprotection activity of flavonoids. In view of this the present study was carried out to determine the γ-radiation induced structural changes in selected flavonoids i.e. apigenin, naringenin and genistein and also to explore the possibility of enhancement in their antioxidant and radioprotective activities

  20. Wheat Germ Oil Attenuates Gamma Radiation- Induced Skeletal Muscles Damage in Rats

    International Nuclear Information System (INIS)

    Said, U.Z.; Saada, H.N.; Shedid, Sh.M.; Mahdy, E.M.E.; Shousha, W.Gh.

    2008-01-01

    Muscular strength is important in sport as well as in daily activities. Exposure to ionizing radiation is thought to increase oxidative stress and damage muscle tissue. Wheat germ oil is a natural unrefined vegetable oil. It is an excellent source of vitamin E, octacosanol, linoleic and linolenic essential fatty acids, which may be beneficial in neutralizing the free oxygen radicals. The present study was designed to investigate the efficacy of wheat germ oil, on radiation-induced oxidative damage in rats skeletal muscle. Wheat germ oil was supplemented orally via gavages to rats at a dose of 54 mg/ kg body weight/day for 14 successive days pre- and 7 post-exposure to 5 Gy (one shot dose) of whole body gamma irradiation. Animals were sacrificed 7, 14 and 21 days post radiation exposure. The results revealed that whole body gamma-irradiation of rats induces oxidative stress in skeletal muscles obvious by significant elevation in the level of thiobarbituric acid reactive substances (TBARS) associated with significant decreases in the content of reduced glutathione (GSE1), as well as decreases in superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. Irradiated rats showed, also, significant decreases in creatine phosphokinase (CPK), glutamate dehydrogenase (GDH) and glucose-6-phosphate dehydrogenase (G-6-PD) activities. Furthermore, total iron, total copper and total calcium levels were significantly increased in skeletal muscles of irradiated rats group compared to control group. Wheat germ oil treated-irradiated rats showed significantly less sever damage and remarkable improvement in all the measured parameters, compared to irradiated rats. It could be concluded that wheat germ oil by attenuating radiation induced oxidative stress might play a role in maintaining skeletal muscle integrity

  1. Gamma radiation induced mutagenesis of lysobacter enzymogenes for enhanced chitinolytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Keun; Kim, Kyoung Youl; Senthilkumar, M. [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-03-15

    Two chitinase producing strains CHI2 and CHI4 were isolated from soybean rhizosphere soil. Both the strains belonged to Lysobacter enzymogenes as indicated by 16S rDNA sequence analysis. Though strain CHI2 and CHI4 produced extracellular chitinase, they differ in their chitinolytic activity. CHI4 produced approximately three times the higher amounts of enzyme than that of CHI2 under specified conditions. CHI2 produced 535.67 U I{sup -1} of chitinase after 48 h incubation with a specific activity of 3.91 U mg{sup -1} of protein while strain CHI4 produced 1584.13 U I{sup -1} of chitinase with a specific activity of 10.88 U mg{sup -1} protein. SDS-PAGE analysis indicated that the molecular weight of chitinase enzyme was approximately 45 kDa. A faint band with a molecular weight of 55 kDa reveals the possibility for the isolates to gamma rays at their LD{sub 99} value (0.23 kGy). Totally, 11 mutants of CHI2 and CHI4 are reported to have enhanced chitinase activity. Several leaky mutant clones with decreased enzyme activity and a defective mutant (CHI2-M16) with complete loss of chitinase activity were also dentified. CHI4-M18, CHI4-M8 and CHI4-M29 showed 78.8, 41.5, and 31.9% increased chitinase activity over type CHI4.

  2. Protective effects of Nigella sativa on gamma radiation-induced jejunal mucosal damage in rats.

    Science.gov (United States)

    Orhon, Zeynep Nur; Uzal, Cem; Kanter, Mehmet; Erboga, Mustafa; Demiroglu, Murat

    2016-05-01

    The aim of this study was to compare the efficacy of Nigella sativa in protection of jejunal mucosa against harmful effects of gamma radiation. Radiotherapy group received abdominal gamma radiation of 15Gy in addition to physiological saline. Radiotherapy+Nigella sativa treatment group received abdominal gamma radiation of 15Gy in addition to Nigella sativa treatment in the amount of 400mg/kg. Radiotherapy and treatment groups were sacrificed 3 days after the exposure to irradiation. Then, jejunum samples were harvested for biochemical and histological assessment of mucosal injury. Nigella sativa treatment was found to significantly lower elevated tissue malondialdehyde (MDA) levels and, to raise reduced glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activity in intestinal tissues samples. Single dose 15Gy gamma-irradiation was noted to result in a marked jejunal mucosal injury. Three days after exposure to irradiation, the villi and Lieberkühn crypts were observed as denuded, and villous height diminished. Concomitantly with inflammatory cell invasion, capillary congestion and ulceration were observed in the atrophic mucosa. Nigella sativa treatment significantly attenuated the radiation induced morphological changes in the irradiated rat jejunal mucosa. Nigella sativa has protective effects against radiation-induced damage, suggesting that clinical transfer is feasible. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Development of gamma radiation induced mutants of Nipponbare and their characteristics

    International Nuclear Information System (INIS)

    Antipuesto, M.W.; Braceros, R.C.; Pastor, H.M.; Padolina, T.F.

    2005-01-01

    Nipponbare, a japonica rice subspecies, was the variety sequenced by the Syngenta Team and the International Rice Genome Sequencing Project (IRGSP). It was also selected for the production of mutated population for its use in these projects and for possible application of generated mutants in functional genomics. The basic seed stock of Nipponbare was also taken from the same source of the IRGSP through the National Rice Germplasm Evaluation and Enhancement Center in Stutgart, Arkansas. The authors have produced a total of 1,063 M3 gamma radiated mutants in their collection. However, only 342 desirable mutants were pursued for phenotyping. As a result, 47 agronomically important line were isolated for further characterization for any altered response to biotic, and physiological traits. Initial result from the SSR genotyping using SSR markers (RM 312, RM 323, RM 208, RM 138, RM 156, RM 261, RM 164, and RM 122), the mutants that were assayed exhibited the same allelic pattern as the wild type and therefore, it showed the same nuclear genetic background of the wild type

  4. Study of the potential effect of selenium on gamma-radiation induced ovarian failure

    International Nuclear Information System (INIS)

    Said, R.S.M.

    2012-01-01

    Radiotherapy is a major factor contributing to female infertility by inducing premature ovarian failure (POF). Therefore, the need for an effective radioprotective agent is evident. The present study investigated the mechanism of potential radioprotective effect of sodium selenite on radiation-induced ovarian failure and whether sodium selenite can stimulate in vivo follicular development in experimental rats. Immature female Sprague-Dawely rats were either exposed to gamma radiation (3.2 Gy, LD 20 ), once and/or treated with sodium selenite (0.5 mg/kg), once daily for one week before irradiation. Follicular and oocyte development, apoptotic markers, proliferation marker as well as oxidative stress markers were assessed 24-h after irradiation. In addition, fertility assessment was performed after female rats became completely mature at two months of age. Sodium selenite significantly enhanced follicular development as compared to the irradiated group. Sodium selenite significantly reversed the oxidative stress effects of radiation that was evidenced by increasing in lipid peroxide level and decreasing in glutathione level, and glutathione peroxidase (GPx) activity. Assessment of apoptosis and cell proliferation markers revealed that caspase 3 and cytochrome c expressions markedly-increased, whereas, PCNA expression markedly-decreased in the irradiated group; in contrast, sodium selenite treatment prevented these alterations. Histopathological examination further confirmed the radioprotective efficacy of sodium selenite and its in-vivo effect on ovarian follicles’ maturation. In conclusion, sodium selenite showed a radioprotective effect and improved folliculogenesis through increasing ovarian granulosa cells proliferation, estradiol and FSH secretion, and GPx activity, whilst decreasing lipid peroxidation and oxidative stress, leading to inhibition of the apoptosis pathway through decreasing the expressions of caspase 3 and cytochrome c.

  5. Gamma radiation-induced preparation of some acrylamide polymers for treatment of waste water

    International Nuclear Information System (INIS)

    Siyam, T.; Hanna, E.

    1992-01-01

    Water-soluble acrylamide copolymers such as: poly (acrylamide-co-sodium) [P(AM-CO-AA Na)], (acrylamide-CO-diallylethylamine-hydrochloride) [P(AM-CO-DAEA-H Cl)] and poly (acrylamide-sodium acrylate-diallylethylamine-hydrochloride) [P(AM-AANa-DAEA-H Cl)] were prepared by gamma radiation-initiated polymerization of the corresponding co monomer or termonomer solutions. The prepared copolymers were used in the treatment of water (metal sulphate solutions). It was found that the polymer efficiency increases with increasing the PH-value and the polymer concentration. The efficiency of the different polymers compared in what concerns elimination of Cu++ and Mg++. The polymer dosage depends on the hydration sheath of the cation. The mechanism for interaction of each polymeric chains with the ions of waste water was also discussed. 3 figs, 1 tab

  6. Gamma radiation-induced heritable mutations at repetitive DNA loci in out-bred mice

    International Nuclear Information System (INIS)

    Somers, C.M.; Sharma, R.; Quinn, J.S.; Boreham, D.R.

    2004-01-01

    Recent studies have shown that expanded-simple-tandem-repeat (ESTR) DNA loci are efficient genetic markers for detecting radiation-induced germ line mutations in mice. Dose responses following irradiation, however, have only been characterized in a small number of inbred mouse strains, and no studies have applied Esters to examine potential modifiers of radiation risk, such as adaptive response. We gamma-irradiated groups of male out-bred Swiss-Webster mice with single acute doses of 0.5 and 1.0 Gy, and compared germ line mutation rates at ESTR loci to a sham-irradiated control. To test for evidence of adaptive response we treated a third group with a total dose of 1.1 Gy that was fractionated into a 0.1 Gy adapting dose, followed by a challenge dose of 1.0 Gy 24 h later. Paternal mutation rates were significantly elevated above the control in the 0.5 Gy (2.8-fold) and 1.0 Gy (3.0-fold) groups, but were similar to each other despite the difference in radiation dose. The doubling dose for paternal mutation induction was 0.26 Gy (95% CI = 0.14-0.51 Gy). Males adapted with a 0.1 Gy dose prior to a 1.0 Gy challenge dose had mutation rates that were not significantly elevated above the control, and were 43% reduced compared to those receiving single doses. We conclude that pre-meiotic male germ cells in out-bred Swiss-Webster mice are sensitive to ESTR mutations induced by acute doses of ionizing radiation, but mutation induction may become saturated at a lower dose than in some strains of inbred mice. Reduced mutation rates in the adapted group provide intriguing evidence for suppression of ESTR mutations in the male germline through adaptive response. Repetitive DNA markers may be useful tools for exploration of biological factors affecting the probability of heritable mutations caused by low-dose ionizing radiation exposure. The biological significance of ESTR mutations in terms of radiation risk assessment, however, is still undetermined

  7. Biosynthesis of heme in immature erythroid cells. The regulatory step for heme formation in the human erythron

    International Nuclear Information System (INIS)

    Gardner, L.C.; Cox, T.M.

    1988-01-01

    Heme formation in reticulocytes from rabbits and rodents is subject to end product negative feedback regulation: intracellular free heme has been shown to control acquisition of transferrin iron for heme synthesis. To identify the site of control of heme biosynthesis in the human erythron, immature erythroid cells were obtained from peripheral blood and aspirated bone marrow. After incubation with human 59Fe transferrin, 2-[14C]glycine, or 4-[14C]delta-aminolevulinate, isotopic incorporation into extracted heme was determined. Addition of cycloheximide to increase endogenous free heme, reduced incorporation of labeled glycine and iron but not delta-aminolevulinate into cell heme. Incorporation of glycine and iron was also sensitive to inhibition by exogenous hematin (Ki, 30 and 45 microM, respectively) i.e. at concentrations in the range which affect cell-free protein synthesis in reticulocyte lysates. Hematin treatment rapidly diminished incorporation of intracellular 59Fe into heme by human erythroid cells but assimilation of 4-[14C]delta-aminolevulinate into heme was insensitive to inhibition by hematin (Ki greater than 100 microM). In human reticulocytes (unlike those from rabbits), addition of ferric salicylaldehyde isonicotinoylhydrazone, to increase the pre-heme iron pool independently of the transferrin cycle, failed to promote heme synthesis or modify feedback inhibition induced by hematin. In human erythroid cells (but not rabbit reticulocytes) pre-incubation with unlabeled delta-aminolevulinate or protoporphyrin IX greatly stimulated utilization of cell 59Fe for heme synthesis and also attenuated end product inhibition. In human erythroid cells heme biosynthesis is thus primarily regulated by feedback inhibition at one or more steps which lead to delta-aminolevulinate formation

  8. Role of Heme and Heme-Proteins in Trypanosomatid Essential Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Karina E. J. Tripodi

    2011-01-01

    Full Text Available Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi, leishmaniasis (Leishmania spp., and African trypanosomiasis (Trypanosoma brucei. Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.

  9. Is the calcium transporter a potential candidate for heme transport?

    OpenAIRE

    Latunde-Dada, Gladys O.

    2016-01-01

    Heme is of significant importance in iron nutrition and in systemic iron metabolism. The crux of the matter is that while much is known about non-heme metabolism, the vectorial import of exogenous porphyrin macromolecules into the enterocyte and possibly into blood circulation is still speculative. The inhibitory effect of calcium on heme iron absorption has been previously reported in the literature. This paper postulates that the gastrointestinal Ca transporter, TRPV6 might be a putative tr...

  10. Moessbauer spectroscopic study of polymer-bound heme complexes

    International Nuclear Information System (INIS)

    Tsuchida, Eishun; Nishide, Hiroyuki; Yokoyama, Hiroyuki; Inoue, Hidenari; Shirai, Tsuneo.

    1984-01-01

    Moessbauer spectra were measured on the heme complexes of poly(1-vinyl- and 1-vinyl-2-methylimidazole)(PVI and PMI) and heme derivatives with covalently bound imidazoleligand (IH) and 2-methylimidazole-ligand (MIH) embedded in poly(1-vinyl-2-pyrrolidone) film. Quadrupole splitting (ΔE sub(Q)) for the carbon monoxide adduct of PMI-heme indicated large electronic field gradient at the iron nucleus, probably due to steric hindrance of the polymer chain, and this behavior agreed with its low affinity with carbon monoxide. PMI-heme formed an oxygen adduct and its isomer shift and ΔE sub(Q) values were obtained. (author)

  11. The antimalarial drug artemisinin alkylates heme in infected mice

    Science.gov (United States)

    Robert, Anne; Benoit-Vical, Françoise; Claparols, Catherine; Meunier, Bernard

    2005-01-01

    Heme alkylation by the antimalarial drug artemisinin is reported in vivo, within infected mice that have been treated at pharmacologically relevant doses. Adducts resulting from the alkylation of heme by the drug were characterized in the spleen of treated mice, and their glucuroconjugated derivatives were present in the urine. Because these heme-artemisinin adducts were not observed in noninfected mice, this report confirms that the alkylating activity of this antimalarial drug is related to the presence of the parasite in infected animals. The identification of heme-artemisinin adducts in mice should be considered as the signature of the alkylation capacity of artemisinin in vivo. PMID:16155128

  12. Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells.

    Science.gov (United States)

    Foresti, Roberta; Bains, Sandip K; Pitchumony, Tamil Selvi; de Castro Brás, Lisandra E; Drago, Filippo; Dubois-Randé, Jean-Luc; Bucolo, Claudio; Motterlini, Roberto

    2013-10-01

    The nuclear factor erythroid derived 2-related factor 2 (Nrf2) and the antioxidant protein heme oxygenase-1 (HO-1) are crucial components of the cellular stress response. These two systems work together to combat oxidative stress and inflammation and are attractive drug targets for counteracting different pathologies, including neuroinflammation. We aimed to identify the most effective Nrf2/HO-1 activators that modulate the inflammatory response in microglia cells. In the present study, we searched the literature and selected 56 compounds reported to activate Nrf2 or HO-1 and analyzed them for HO-1 induction at 6 and 24h and cytotoxicity in BV2 microglial cells in vitro. Approximately 20 compounds up-regulated HO-1 at the concentrations tested (5-20 μM) with carnosol, supercurcumin, cobalt protoporphyrin-IX and dimethyl fumarate exhibiting the best induction/low cytotoxicity profile. Up-regulation of HO-1 by some compounds resulted in increased cellular bilirubin levels but did not augment the expression of proteins involved in heme synthesis (ALAS 1) or biliverdin reductase. Bilirubin production by HO-1 inducers correlated with their potency in inhibiting nitrite production after challenge with interferon-γ (INF-γ) or lipopolysaccharide (LPS). The compounds down-regulated the inflammatory response (TNF-α, PGE2 and nitrite) more strongly in cells challenged with INF-γ than LPS, and silencing HO-1 or Nrf2 with shRNA differentially affected the levels of inflammatory markers. These findings indicate that some small activators of Nrf2/HO-1 are effective modulators of microglia inflammation and highlight the chemical scaffolds that can serve for the synthesis of potent new derivatives to counteract neuroinflammation and neurodegeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Protein oxidation mediated by heme-induced active site conversion specific for heme-regulated transcription factor, iron response regulator.

    Science.gov (United States)

    Kitatsuji, Chihiro; Izumi, Kozue; Nambu, Shusuke; Kurogochi, Masaki; Uchida, Takeshi; Nishimura, Shin-ichiro; Iwai, Kazuhiro; O'Brian, Mark R; Ikeda-Saito, Masao; Ishimori, Koichiro

    2016-01-05

    The Bradyrhizobium japonicum transcriptional regulator Irr (iron response regulator) is a key regulator of the iron homeostasis, which is degraded in response to heme binding via a mechanism that involves oxidative modification of the protein. Here, we show that heme-bound Irr activates O2 to form highly reactive oxygen species (ROS) with the "active site conversion" from heme iron to non-heme iron to degrade itself. In the presence of heme and reductant, the ROS scavenging experiments show that Irr generates H2O2 from O2 as found for other hemoproteins, but H2O2 is less effective in oxidizing the peptide, and further activation of H2O2 is suggested. Interestingly, we find a time-dependent decrease of the intensity of the Soret band and appearance of the characteristic EPR signal at g = 4.3 during the oxidation, showing the heme degradation and the successive formation of a non-heme iron site. Together with the mutational studies, we here propose a novel "two-step self-oxidative modification" mechanism, during which O2 is activated to form H2O2 at the heme regulatory motif (HRM) site and the generated H2O2 is further converted into more reactive species such as ·OH at the non-heme iron site in the His-cluster region formed by the active site conversion.

  14. Insights into the mechanism of isoenzyme-specific signal peptide peptidase-mediated translocation of heme oxygenase.

    Directory of Open Access Journals (Sweden)

    Bianca Schaefer

    Full Text Available It has recently been shown that signal peptide peptidase (SPP can catalyze the intramembrane cleavage of heme oxygenase-1 (HO-1 that leads to translocation of HO-1 into the cytosol and nucleus. While there is consensus that translocated HO-1 promotes tumor progression and drug resistance, the physiological signals leading to SPP-mediated intramembrane cleavage of HO-1 and the specificity of the process remain unclear. In this study, we used co-immunoprecipitation and confocal laser scanning microscopy to investigate the translocation mechanism of HO-1 and its regulation by SPP. We show that HO-1 and the closely related HO-2 isoenzyme bind to SPP under normoxic conditions. Under hypoxic conditions SPP mediates intramembrane cleavage of HO-1, but not HO-2. In experiments with an inactive HO-1 mutant (H25A we show that translocation is independent of the catalytic activity of HO-1. Studies with HO-1 / HO-2 chimeras indicate that the membrane anchor, the PEST-domain and the nuclear shuttle sequence of HO-1 are necessary for full cleavage and subsequent translocation under hypoxic conditions. In the presence of co-expressed exogenous SPP, the anchor and the PEST-domain are sufficient for translocation. Taken together, we identified the domains involved in HO-1 translocation and showed that SPP-mediated cleavage is isoform-specific and independent of HO-activity. A closer understanding of the translocation mechanism of HO-1 is of particular importance because nuclear HO-1 seems to lead to tumor progression and drug resistance.

  15. Role of the heme oxygenase/carbon monoxide pathway in the pathogenesis and prevention of hepatic encephalopathy.

    Science.gov (United States)

    Wang, Qiu-Ming; Yin, Xue-Ying; Duan, Zhi-Jun; Guo, Shi-Bin; Sun, Xiao-Yu

    2013-07-01

    Hepatic encephalopathy (HE) is a severe complication of liver cirrhosis and its pathogenesis has yet to be fully elucidated. Previous studies have demonstrated that heme oxygenase-1 (HO-1) is important in the induction of liver cirrhosis. The present study aimed to investigate the role of HO-1 in the pathogenesis of HE. Rats were divided into 5 treatment groups; sham, bile duct ligation (BDL), HE, zinc protoporphyrin (ZnPP) and cobalt protoporphyrin (CoPP). The levels of HO-1 were examined by western blotting and quantitative real-time PCR (qRT-PCR). Serum levels of carboxyhemoglobin (COHb), ammonia levels in the plasma and brain, brain water content and portal vein pressure (PVP) were also quantified. Aquaporin-4 expression levels were measured by immunohistochemistry and qRT-PCR. The results demonstrated that the levels of HO-1 in the brain and the serum levels of COHb were significantly increased in the HE group compared with the BDL group. Brain water content, PVP and ammonia levels in the plasma and brain were increased in the HE and CoPP groups; however, these were reduced following the treatment with ZnPP. The levels of AQP-4 expression and oxidative stress in the brain were reduced following treatment with ZnPP and increased following treatment with CoPP. In conclusion, following the inhibition of HO-1 expression, treatment with ZnPP improved HE due to reducing the expression levels of AQP-4 and oxidative stress. Therefore, ZnPP treatment may represent a novel therapeutic approach for HE.

  16. Erythropoietin attenuates pulmonary vascular remodeling in experimental pulmonary arterial hypertension through interplay between endothelial progenitor cells and heme-oxygenase

    Directory of Open Access Journals (Sweden)

    Rosa L.E. Loon

    2015-08-01

    Full Text Available BackgroundPulmonary arterial hypertension (PAH is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progenitor cells (EPCs and activation of the cytoprotective enzyme heme oxygenase-1 (HO1.MethodsRats with flow-associated PAH, resembling pediatric PAH, were treated with HO-1 inducer EPO in the presence or absence of the selective HO-activity-inhibitor tin-mesoporphyrin (SnMP. HO-activity, circulating EPCs and pulmonary vascular lesions were assessed after 3 weeks.ResultsIn PAH-rats, circulating EPCs were decreased and HO-activity was increased compared to control. EPO-treatment restored circulating EPCs and improved pulmonary vascular remodeling, as shown by a reduced wall thickness and occlusion rate of the intra-acinar vessels. Inhibition of HO-activity with SnMP aggravated PAH. Moreover, SnMP treatment abrogated EPO-induced amelioration of pulmonary vascular remodeling, while surprisingly further increasing circulating EPCs as compared with EPO alone.ConclusionsIn experimental PAH, EPO treatment restored the number of circulating EPC’s to control level, improved pulmonary vascular remodeling, and showed important interplay with HO-activity. Inhibition of increased HO-activity in PAH-rats exacerbated progression of pulmonary vascular remodeling, despite the presence of restored numbers of circulating EPC’s. We suggest that both EPO-induced HO1 and EPCs are promising targets to ameliorate the pulmonary vasculature in PAH.

  17. Characterization of heme binding to recombinant α1-microglobulin

    Directory of Open Access Journals (Sweden)

    Elena eKarnaukhova

    2014-12-01

    Full Text Available Background: Alpha-1-microglobulin (A1M, a small lipocalin protein found in plasma and tissues, has been identified as a heme and radical scavenger that may participate in the mitigation of toxicities caused by degradation of hemoglobin. The objective of this work was to investigate heme interactions with A1M in vitro using various analytical techniques and to optimize analytical methodology suitable for rapid evaluation of the ligand binding properties of recombinant A1M versions. Methods: To examine heme binding properties of A1M we utilized UV/Vis absorption spectroscopy, visible circular dichroism (CD, catalase-like activity, migration shift electrophoresis, and surface plasmon resonance (SPR, which was specifically developed for the assessment of His-tagged A1M. Results: The results of this study confirm that A1M is a heme binding protein that can accommodate heme at more than one binding site and/or in coordination with different amino acid residues depending upon heme concentration and ligand-to-protein molar ratio. UV/Vis titration of A1M with heme revealed an unusually large bathochromic shift, up to 38 nm, observed for heme binding to a primary binding site. UV/Vis spectroscopy, visible CD and catalase-like activity suggested that heme is accommodated inside His-tagged (tgA1M and tagless A1M (ntA1M in a rather similar fashion although the His-tag is very likely involved into coordination with iron of the heme molecule. SPR data indicated kinetic rate constants and equilibrium binding constants with KD values in a uM range. Conclusions: This study provided experimental evidence of the A1M heme binding properties by aid of different techniques and suggested an analytical methodology for a rapid evaluation of ligand-binding properties of recombinant A1M versions, also suitable for other His-tagged proteins.

  18. Relationship between natural and heme-mediated antibody polyreactivity

    Energy Technology Data Exchange (ETDEWEB)

    Hadzhieva, Maya; Vassilev, Tchavdar [Stephan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Bayry, Jagadeesh; Kaveri, Srinivas; Lacroix-Desmazes, Sébastien [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France); Dimitrov, Jordan D., E-mail: jordan.dimitrov@crc.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France)

    2016-03-25

    Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens. A question remains whether the presence of certain level of natural polyreactivity of antibodies is a prerequisite for heme-induced further extension of antigen binding potential. Here we used a second monoclonal antibody (Hg32) with unknown specificity and absence of intrinsic polyreactivity as a model to study the potential of heme to induce polyreactivity of antibodies. We demonstrated that exposure to heme greatly extends the antigen binding potential of Hg32, suggesting that the intrinsic binding promiscuity is not a prerequisite for the induction of polyreactivity by heme. In addition we compared the kinetics and thermodynamics of the interaction of heme-exposed antibodies with a panel of unrelated antigens. These analyses revealed that the two heme-sensitive antibodies adopt different mechanisms of binding to the same set of antigens. This study contributes to understanding the phenomenon of induced antibody polyreactivity. The data may also be of importance for understanding of physiological and pathological roles of polyreactive antibodies. - Highlights: • Exposure of certain monoclonal IgE antibodies to heme results in gain of antigen binding polyreactivity. • Natural polyreactivity of antibodies is dispensable for acquisition of polyreactivity through interaction with heme. • Heme-induced monoclonal IgE antibodies differ in their thermodynamic mechanisms of antigen recognition.

  19. Heme Recognition By a Staphylococcus Aureus IsdE

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, J.C.; Vermeiren, C.L.; Heinrichs, D.E.; Murphy, M.E.P.

    2009-06-03

    Staphylococcus aureus is a Gram-positive bacterial pathogen and a leading cause of hospital acquired infections. Because the free iron concentration in the human body is too low to support growth, S. aureus must acquire iron from host sources. Heme iron is the most prevalent iron reservoir in the human body and a predominant source of iron for S. aureus. The iron-regulated surface determinant (Isd) system removes heme from host heme proteins and transfers it to IsdE, the cognate substrate-binding lipoprotein of an ATP-binding cassette transporter, for import and subsequent degradation. Herein, we report the crystal structure of the soluble portion of the IsdE lipoprotein in complex with heme. The structure reveals a bi-lobed topology formed by an N- and C-terminal domain bridged by a single {alpha}-helix. The structure places IsdE as a member of the helical backbone metal receptor superfamily. A six-coordinate heme molecule is bound in the groove established at the domain interface, and the heme iron is coordinated in a novel fashion for heme transporters by Met{sup 78} and His{sup 229}. Both heme propionate groups are secured by H-bonds to IsdE main chain and side chain groups. Of these residues, His{sup 299} is essential for IsdE-mediated heme uptake by S. aureus when growth on heme as a sole iron source is measured. Multiple sequence alignments of homologues from several other Gram-positive bacteria, including the human pathogens pyogenes, Bacillus anthracis, and Listeria monocytogenes, suggest that these other systems function equivalently to S. aureus IsdE with respect to heme binding and transport.

  20. Administration of heme arginate ameliorates murine type 2 diabetes independently of heme oxygenase activity.

    Directory of Open Access Journals (Sweden)

    Abhijeet K Choudhary

    Full Text Available Amelioration of rodent type 2 diabetes by hemin has been linked to increased heme oxygenase (HO activity, however alternative mechanisms have recently been proposed for its anti-diabetic effect. We sought to determine the anti-diabetic efficacy of heme arginate (HA, a clinically licensed preparation of heme, and whether its predominant mode of action is via increased HO activity. Intravenous administration of HA reduced hyperglycemia in diabetic (db/db mice. Co-administration of the HO inhibitor stannous (IV mesoporphyrin IX dichloride (SM resulted unexpectedly in a further improvement in glycaemic control despite restoring HO activity to baseline levels. The anti-diabetic effects of HA±SM were associated with increased adiposity, increased serum adiponectin levels, reduced adipose tissue and islet inflammation and preservation of islet β-cell function. HO activity independent effects of HA on adipogenesis and β-cell inflammation were further confirmed in cell culture models using the 3T3-L1 pre-adipocyte and MIN6 β-cell lines, respectively. In conclusion, our work demonstrates that the heme component of HA ameliorates experimental type 2 diabetes by promoting metabolically favourable adipogenesis and preserving islet β-cell function, but this is not mediated via increased HO activity.

  1. Mechanisms of Peroxynitrite Interactions with Heme Proteins

    Science.gov (United States)

    Su, Jia; Groves, John T.

    2010-01-01

    Oxygenated hemoproteins are known to react rapidly with nitric oxide (NO) to produce peroxynitrite (PN) at the heme site. This process could lead either to attenuation of the effects of NO or to nitrosative protein damage. Peroxynitrite is a powerful nitrating and oxidizing agent that has been implicated in a variety of cell injuries. Accordingly, it is important to delineate the nature and variety of reaction mechanisms of PN reactions with heme proteins. In this Forum we survey the range of reactions of PN with heme proteins, with particular attention to myoglobin and cytochrome c. While these two proteins are textbook paradigms for oxygen binding and electron transfer, respectively, both have recently been shown to have other important functions that involve nitric oxide and peroxynitrite. We have recently described direct evidence that ferrylMb and NO2 are both produced during the reaction of PN and metmyolgobin (metMb). Kinetic evidence indicates that these products evolve from initial formation of a caged radical intermediate [FeIV=O .NO2]. This caged pair reacts mainly via internal return with a rate constant kr to form metMb and nitrate in an oxygen rebound scenario. Detectable amounts of ferrylMb are observed by stopped-flow spectrophotometry, appearing at a rate consistent with the rate, kobs of heme-mediated PN decomposition. Freely-diffusing NO2, which is liberated concomitantly from the radical pair (ke), preferentially nitrates myoglobin Tyr103 and added fluorescein. For cytochrome c, Raman spectroscopy has revealed that a substantial fraction of cytochrome c converts to a β-sheet structure, at the expense of turns and helices at low pH. It is proposed that a short β-sheet segment, comprising residues 37-39 and 58-61, extends itself into the large 37-61 loop when the latter is destabilized by protonation of H26, which forms an anchoring H-bond to loop residue P44. This conformation change ruptures the Met80-Fe bond, as revealed by changes in

  2. Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment.

    Science.gov (United States)

    Smalley, J W; Olczak, T

    2017-02-01

    Porphyromonas gingivalis, a main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis requires heme as a source of iron and protoporphyrin IX for its survival and the ability to establish an infection. Porphyromonas gingivalis is able to accumulate a defensive cell-surface heme-containing pigment in the form of μ-oxo bisheme. The main sources of heme for P. gingivalis in vivo are hemoproteins present in saliva, gingival crevicular fluid, and erythrocytes. To acquire heme, P. gingivalis uses several mechanisms. Among them, the best characterized are those employing hemagglutinins, hemolysins, and gingipains (Kgp, RgpA, RgpB), TonB-dependent outer-membrane receptors (HmuR, HusB, IhtA), and hemophore-like proteins (HmuY, HusA). Proteins involved in intracellular heme transport, storage, and processing are less well characterized (e.g. PgDps). Importantly, P. gingivalis may also use the heme acquisition systems of other bacteria to fulfill its own heme requirements. Porphyromonas gingivalis displays a novel paradigm for heme acquisition from hemoglobin, whereby the Fe(II)-containing oxyhemoglobin molecule must first be oxidized to methemoglobin to facilitate heme release. This process not only involves P. gingivalis arginine- and lysine-specific gingipains, but other proteases (e.g. interpain A from Prevotella intermedia) or pyocyanin produced by Pseudomonas aeruginosa. Porphyromonas gingivalis is then able to fully proteolyze the more susceptible methemoglobin substrate to release free heme or to wrest heme from it directly through the use of the HmuY hemophore. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Dietary heme-mediated PPARα activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon.

    Directory of Open Access Journals (Sweden)

    Noortje Ijssennagger

    Full Text Available Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome analysis of mucosa of heme-fed mice showed, besides stress- and proliferation-related genes, many upregulated lipid metabolism-related PPARα target genes. The aim of this study was to investigate the role of PPARα in heme-induced hyperproliferation and hyperplasia. Male PPARα KO and WT mice received a purified diet with or without heme. As PPARα is proposed to protect against oxidative stress and lipid peroxidation, we hypothesized that the absence of PPARα leads to more surface injury and crypt hyperproliferation in the colon upon heme-feeding. Heme induced luminal cytotoxicity and lipid peroxidation and colonic hyperproliferation and hyperplasia to the same extent in WT and KO mice. Transcriptome analysis of colonic mucosa confirmed similar heme-induced hyperproliferation in WT and KO mice. Stainings for alkaline phosphatase activity and expression levels of Vanin-1 and Nrf2-targets indicated a compromised antioxidant defense in heme-fed KO mice. Our results suggest that the protective role of PPARα in antioxidant defense involves the Nrf2-inhibitor Fosl1, which is upregulated by heme in PPARα KO mice. We conclude that PPARα plays a protective role in colon against oxidative stress, but PPARα does not mediate heme-induced hyperproliferation. This implies that oxidative stress of surface cells is not the main determinant of heme-induced hyperproliferation and hyperplasia.

  4. Identification of the receptor scavenging hemopexin-heme complexes

    DEFF Research Database (Denmark)

    Hvidberg, Vibeke; Maniecki, Maciej Bogdan; Jacobsen, Christian

    2005-01-01

    and is suggested to facilitate cellular heme metabolism. Using a ligand-affinity approach, we purified the human hemopexin-heme receptor and identified it as the low-density lipoprotein receptor-related protein (LRP)/CD91, a receptor expressed in several cell types including macrophages, hepatocytes, neurons......-heme complexes are removed by a receptor-mediated pathway showing striking similarities to the CD163-mediated haptoglobin-hemoglobin clearance in macrophages. Furthermore, the data indicate a hitherto unknown role of LRP/CD91 in inflammation......., and syncytiotrophoblasts. Binding experiments, including Biacore analysis, showed that hemopexin-heme complex formation elicits the high receptor affinity. Uptake studies of radio-labeled hemopexin-heme complex in LRP/CD91-expressing COS cells and confocal microscopy of the cellular processing of fluorescent hemopexin...

  5. [Update on the biology of heme synthesis in erythroid cells].

    Science.gov (United States)

    Fujiwara, Tohru; Harigae, Hideo

    2015-02-01

    Heme is a prosthetic group of hemoproteins playing important roles in oxygen transport, detoxification, circadian rhythm, microRNA processing, regulation of transcription, and translation. The majority of heme (-85%) is synthesized in red blood cells mainly for hemoglobin production, whereas hepatocytes account for most of the rest, functioning primarily in the synthesis of cytochrome P450 enzymes and mitochondrial respiratory enzymes. Thus, failure of heme biosynthesis causes severe inherited or acquired disorders in humans, including porphyria and sideroblastic anemia. The heme biosynthetic pathway is composed of eight enzymes that work in either mitochondria or the cytoplasm, which have been extensively researched and frequently reviewed. On the other hand, the mechanisms governing transport and intracellular trafficking of heme intermediates, as well as their potential links to human diseases, are poorly understood. Herein, we focus on recent understanding of the heme biosynthetic pathway and on human disorders due to defective heme synthesis in erythroid cells, such as X-linked sideroblastic anemia and erythropoietic protoporphyria.

  6. Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes

    International Nuclear Information System (INIS)

    Lara, F.A.; Sant'Anna, C.; Lemos, D.; Laranja, G.A.T.; Coelho, M.G.P.; Reis Salles, I.; Michel, A.; Oliveira, P.L.; Cunha-e-Silva, N.; Salmon, D.; Paes, M.C.

    2007-01-01

    Epimastigotes multiplies in the insect midgut by taking up nutrients present in the blood meal including heme bound to hemoglobin of red blood cell. During blood meal digestion by vector proteases in the posterior midgut, hemoglobin is clipped off into amino acids, peptides, and free heme. In this paper, we compared the heme and hemoglobin uptake kinetics and followed their intracellular trafficking. Addition of heme to culture medium increased epimastigote proliferation in a dose-dependent manner, while medium supplemented with hemoglobin enhanced growth after 3-day lag phase. Medium supplemented with globin-derived peptides stimulated cell proliferation in a dose-independent way. Using Palladium mesoporphyrin IX (Pd-mP) as a fluorescent heme-analog, we observed that heme internalization proceeded much faster than that observed by hemoglobin-rhodamine. Binding experiments showed that parasites accumulated the Pd-mP into the posterior region of the cell whereas hemoglobin-rhodamine stained the anterior region. Finally, using different specific inhibitors of ABC transporters we conclude that a P-glycoprotein homologue transporter is probably involved in heme transport through the plasma membrane

  7. HEME and HEPA filter element dissolution process

    International Nuclear Information System (INIS)

    Cicero, C.A.

    1992-01-01

    High Efficiency Mist Eliminators (HEME) and High Efficiency Particulate Airfilters (HEPA) are to be used in the Defense Waste Processing Facility (DWPF) at the Savannah River Plant to remove volatile and semi-volatile effluents from the off-gases generated during the vitrification process. When removed, these filters are likely to contain radioactive contaminants, organics, and hazardous materials, which make their disposal by normal methods impractical. Hence, an alternative disposal method is needed. The alternative disposal method evaluated in this study is dissolution of the filters with caustic and acid solutions. Dissolution converts the waste into an aqueous stream, which can be transferred to the Tank Farm and disposed of by normal means. This process was shown to be effective on a small scale in earlier studies, but the results were not well documented and the studies were not performed on fouled filters

  8. Dietary heme iron does not prevent postgastrectomy anemia but fructooligosaccharides improve bioavailability of heme iron in rats.

    Science.gov (United States)

    Ohta, A; Sakai, K; Takasaki, M; Uehara, M; Tokunaga, T; Adachi, T

    1999-09-01

    Gastrectomized rats exhibit iron deficiency anemia. We observed the effects of dietary heme-iron and short chain frucooligosaccharides (Sc-FOS) in relation to prevention of postgastrectomy anemia in rats. Twelve laparotomized (sham-operated) rats were fed iron-citrate (control) as iron source diet without or with Sc-FOS (75 g/kg of diet) and twenty four totally gastrectomized (Bilroth II) rats, were fed a iron-citrate (control) or heme-iron (heme) as iron source diet without or with Sc-FOS (75 g/kg of diet) for 4 weeks. All rats received an intramuscular injection of vitamin B-12 every two weeks. Tail blood was collected every other week for determination of hematocrit and hemoglobin concentration. At the end of the experiment, the rats were killed and whole blood was collected. The total gastrectomy induced the postgastrectomy anemia. Dietary Sc-FOS increase iron absorption and thereby prevented completely this anemia in gastrectomized rats fed the control diet but this effect of Sc-FOS in rats fed heme diet was not complete. Dietary heme iron could not prevent postgastrectomy anemia itself, but fructooligosaccharides improve bioavailability of not only non-heme iron such as iron-citrate, but also heme-iron in rats.

  9. Heme orientational disorder in human adult hemoglobin reconstituted with a ring fluorinated heme and its functional consequences

    International Nuclear Information System (INIS)

    Nagao, Satoshi; Hirai, Yueki; Kawano, Shin; Imai, Kiyohiro; Suzuki, Akihiro; Yamamoto, Yasuhiko

    2007-01-01

    A ring fluorinated heme, 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12, 18-trimethyl-porphyrin-atoiron(III), has been incorporated into human adult hemoglobin (Hb A). The heme orientational disorder in the individual subunits of the protein has been readily characterized using 19 F NMR and the O 2 binding properties of the protein have been evaluated through the oxygen equilibrium analysis. The equilibrated orientations of hemes in α- and β- subunits of the reconstituted protein were found to be almost completely opposite to each other, and hence were largely different from those of the native and the previously reported reconstituted proteins [T. Jue, G.N. La Mar, Heme orientational heterogeneity in deuterohemin-reconstituted horse and human hemoglobin characterized by proton nuclear magnetic resonance spectroscopy, Biochem. Biophys. Res. Commun. 119 (1984) 640-645]. Despite the large difference in the degree of the heme orientational disorder in the subunits of the proteins, the O 2 affinity and the cooperativity of the protein reconstituted with 2-MF were similar to those of the proteins reconstituted with a series of hemes chemically modified at the heme 3- and 8-positions [K. Kawabe, K. Imaizumi, Z. Yoshida, K. Imai, I. Tyuma, Studies on reconstituted myoglobins and hemoglobins II. Role of the heme side chains in the oxygenation of hemoglobin, J. Biochem. 92 (1982) 1713-1722], whose O 2 affinity and cooperativity were higher and lower, respectively, relative to those of native protein. These results indicated that the heme orientational disorder could exert little effect, if any, on the O 2 affinity properties of Hb A. This finding provides new insights into structure-function relationship of Hb A

  10. Genome-wide analysis reveals novel genes essential for heme homeostasis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Scott Severance

    2010-07-01

    Full Text Available Heme is a cofactor in proteins that function in almost all sub-cellular compartments and in many diverse biological processes. Heme is produced by a conserved biosynthetic pathway that is highly regulated to prevent the accumulation of heme--a cytotoxic, hydrophobic tetrapyrrole. Caenorhabditis elegans and related parasitic nematodes do not synthesize heme, but instead require environmental heme to grow and develop. Heme homeostasis in these auxotrophs is, therefore, regulated in accordance with available dietary heme. We have capitalized on this auxotrophy in C. elegans to study gene expression changes associated with precisely controlled dietary heme concentrations. RNA was isolated from cultures containing 4, 20, or 500 microM heme; derived cDNA probes were hybridized to Affymetrix C. elegans expression arrays. We identified 288 heme-responsive genes (hrgs that were differentially expressed under these conditions. Of these genes, 42% had putative homologs in humans, while genomes of medically relevant heme auxotrophs revealed homologs for 12% in both Trypanosoma and Leishmania and 24% in parasitic nematodes. Depletion of each of the 288 hrgs by RNA-mediated interference (RNAi in a transgenic heme-sensor worm strain identified six genes that regulated heme homeostasis. In addition, seven membrane-spanning transporters involved in heme uptake were identified by RNAi knockdown studies using a toxic heme analog. Comparison of genes that were positive in both of the RNAi screens resulted in the identification of three genes in common that were vital for organismal heme homeostasis in C. elegans. Collectively, our results provide a catalog of genes that are essential for metazoan heme homeostasis and demonstrate the power of C. elegans as a genetic animal model to dissect the regulatory circuits which mediate heme trafficking in both vertebrate hosts and their parasites, which depend on environmental heme for survival.

  11. Acquisition of iron from transferrin regulates reticulocyte heme synthesis

    International Nuclear Information System (INIS)

    Ponka, P.; Schulman, H.M.

    1985-01-01

    Fe-salicylaldehyde isonicotinoylhydrazone (SIH), which can donate iron to reticulocytes without transferrin as a mediator, has been utilized to test the hypothesis that the rate of iron uptake from transferrin limits the rate of heme synthesis in erythroid cells. Reticulocytes take up 59 Fe from [ 59 Fe]SIH and incorporate it into heme to a much greater extent than from saturating concentrations of [ 59 Fe]transferrin. Also, Fe-SIH stimulates [2- 14 C]glycine into heme when compared to the incorporation observed with saturating levels of Fe-transferrin. In addition, delta-aminolevulinic acid does not stimulate 59 Fe incorporation into heme from either [ 59 Fe]transferrin or [ 59 Fe]SIH but does reverse the inhibition of 59 Fe incorporation into heme caused by isoniazid, an inhibitor of delta-aminolevulinic acid synthase. Taken together, these results suggest the hypothesis that some step(s) in the pathway of iron from extracellular transferrin to intracellular protoporphyrin limits the overall rate of heme synthesis in reticulocytes

  12. TMEM14C is required for erythroid mitochondrial heme metabolism.

    Science.gov (United States)

    Yien, Yvette Y; Robledo, Raymond F; Schultz, Iman J; Takahashi-Makise, Naoko; Gwynn, Babette; Bauer, Daniel E; Dass, Abhishek; Yi, Gloria; Li, Liangtao; Hildick-Smith, Gordon J; Cooney, Jeffrey D; Pierce, Eric L; Mohler, Kyla; Dailey, Tamara A; Miyata, Non; Kingsley, Paul D; Garone, Caterina; Hattangadi, Shilpa M; Huang, Hui; Chen, Wen; Keenan, Ellen M; Shah, Dhvanit I; Schlaeger, Thorsten M; DiMauro, Salvatore; Orkin, Stuart H; Cantor, Alan B; Palis, James; Koehler, Carla M; Lodish, Harvey F; Kaplan, Jerry; Ward, Diane M; Dailey, Harry A; Phillips, John D; Peters, Luanne L; Paw, Barry H

    2014-10-01

    The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias.

  13. Deconvoluting heme biosynthesis to target blood-stage malaria parasites

    Science.gov (United States)

    Sigala, Paul A; Crowley, Jan R; Henderson, Jeffrey P; Goldberg, Daniel E

    2015-01-01

    Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevulinic acid (ALA), resulting in accumulation of the phototoxic intermediate protoporphyrin IX (PPIX). Here we use photodynamic imaging, mass spectrometry, parasite gene disruption, and chemical probes to reveal that vestigial host enzymes in the cytoplasm of Plasmodium-infected erythrocytes contribute to ALA-stimulated heme biosynthesis and that ALA uptake depends on parasite-established permeability pathways. We show that PPIX accumulation in infected erythrocytes can be harnessed for antimalarial chemotherapy using luminol-based chemiluminescence and combinatorial stimulation by low-dose artemisinin to photoactivate PPIX to produce cytotoxic reactive oxygen. This photodynamic strategy has the advantage of exploiting host enzymes refractory to resistance-conferring mutations. DOI: http://dx.doi.org/10.7554/eLife.09143.001 PMID:26173178

  14. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information

    Directory of Open Access Journals (Sweden)

    Hu Jianjun

    2011-05-01

    Full Text Available Abstract Background Accurate prediction of binding residues involved in the interactions between proteins and small ligands is one of the major challenges in structural bioinformatics. Heme is an essential and commonly used ligand that plays critical roles in electron transfer, catalysis, signal transduction and gene expression. Although much effort has been devoted to the development of various generic algorithms for ligand binding site prediction over the last decade, no algorithm has been specifically designed to complement experimental techniques for identification of heme binding residues. Consequently, an urgent need is to develop a computational method for recognizing these important residues. Results Here we introduced an efficient algorithm HemeBIND for predicting heme binding residues by integrating structural and sequence information. We systematically investigated the characteristics of binding interfaces based on a non-redundant dataset of heme-protein complexes. It was found that several sequence and structural attributes such as evolutionary conservation, solvent accessibility, depth and protrusion clearly illustrate the differences between heme binding and non-binding residues. These features can then be separately used or combined to build the structure-based classifiers using support vector machine (SVM. The results showed that the information contained in these features is largely complementary and their combination achieved the best performance. To further improve the performance, an attempt has been made to develop a post-processing procedure to reduce the number of false positives. In addition, we built a sequence-based classifier based on SVM and sequence profile as an alternative when only sequence information can be used. Finally, we employed a voting method to combine the outputs of structure-based and sequence-based classifiers, which demonstrated remarkably better performance than the individual classifier alone

  15. HeLp, a heme-transporting lipoprotein with an antioxidant role.

    Science.gov (United States)

    Maya-Monteiro, Clarissa M; Alves, Liliane R; Pinhal, Nelson; Abdalla, Dulcineia S P; Oliveira, Pedro L

    2004-01-01

    Plasma lipoproteins involved in lipid transport are target for free radical-evoked pathological conditions in several mammalian models. The main hemolymphatic protein of Boophilus microplus is a heme-binding lipoprotein (HeLp, for Heme LipoProtein) that carries dietary heme produced from degradation of vertebrate hemoglobin to tissues of the tick. Addition of heme to phospholipid liposomes resulted in intense lipid peroxidation, which was inhibited by addition of HeLp. HeLp prevented lysis of red blood cells by heme. HeLp also inhibited reactions of heme with tert-butyl hydroperoxide (t-BOOH) or hydrogen peroxide. HeLp, quite differently from other lipoproteins, presents a protective intrinsic mechanism to counteract heme toxicity, while preserving the heme molecule to be reused by the tick. This is the first report of a lipoprotein acting as an antioxidant particle against heme-induced radical damage.

  16. SOUL in mouse eyes is a new hexameric heme-binding protein with characteristic optical absorption, resonance Raman spectral, and heme-binding properties.

    Science.gov (United States)

    Sato, Emiko; Sagami, Ikuko; Uchida, Takeshi; Sato, Akira; Kitagawa, Teizo; Igarashi, Jotaro; Shimizu, Toru

    2004-11-09

    SOUL is specifically expressed in the retina and pineal gland and displays more than 40% sequence homology with p22HBP, a heme protein ubiquitously expressed in numerous tissues. SOUL was purified as a dimer in the absence of heme from the Escherichia coli expression system but displayed a hexameric structure upon heme binding. Heme-bound SOUL displayed optical absorption and resonance Raman spectra typical of 6-coordinate low-spin heme protein, with one heme per monomeric unit for both the Fe(III) and Fe(II) complexes. Spectral data additionally suggest that one of the axial ligands of the Fe(III) heme complex is His. Mutation of His42 (the only His of SOUL) to Ala resulted in loss of heme binding, confirming that this residue is an axial ligand of SOUL. The K(d) value of heme for SOUL was estimated as 4.8 x 10(-9) M from the association and dissociation rate constants, suggesting high binding affinity. On the other hand, p22HBP was obtained as a monomer containing one heme per subunit, with a K(d) value of 2.1 x 10(-11) M. Spectra of heme-bound p22HBP were different from those of SOUL but similar to those of heme-bound bovine serum albumin in which heme bound to a hydrophobic cavity with no specific axial ligand coordination. Therefore, the heme-binding properties and coordination structure of SOUL are distinct from those of p22HBP, despite high sequence homology. The physiological role of the new heme-binding protein, SOUL, is further discussed in this report.

  17. The Role of Heme Chirality in the Circular Dichroism of Heme Proteins

    Science.gov (United States)

    Woody, Robert W.; Pescitelli, Gennaro

    2014-07-01

    The rotational strength (R) of the Soret transition in sperm-whale myoglobin (SW Mb), the hemoglobin from Chironomus thummi thummi (CTT Hb), and human hemoglobin (hHb) has been calculated using 20 high-resolution ( Raro > Rpep. For CTT Hb and hHB, the orders were, respectively, Rint > Rpep > Raro and Rint > Raro ≈ Rpep. Human Hb ɑ chains showed the same trend as CTT Hb. Only in the hHb β chains did Raro predominate, with the order Raro > Rint > Rpep. The total predicted Rtot for SW Mb, CTT Hb, and hHb averaged +0.77±0.10 (0.56 - 0.80), -0.37±0.12 (-0.5), and +0.31±0.17 DBM (0.23 - 0.50), respectively. (Values in parentheses are experimental values.) Thus, contrary to the currently accepted view, coupling with aromatic side-chain or peptide transitions is not the dominant factor in the Soret circular dichroism (CD) of these proteins. The Soret CD is dominated by intrinsic CD of the heme chromophore, of which vinyl torsion is the major determinant. This result suggests an explanation for the large effect of heme isomerism on the Soret CD of Mb and Hb. Rotation about the ɑ-γ axis may be associated with large changes in vinyl torsion and thus substantially alter the intrinsic CD, even reversing its sign.

  18. A Novel Heme-responsive Element Mediates Transcriptional Regulation in Caenorhabditis elegans*

    Science.gov (United States)

    Sinclair, Jason; Hamza, Iqbal

    2010-01-01

    Hemes are prosthetic groups that participate in diverse biochemical pathways across phylogeny. Although heme can also regulate broad physiological processes by directly modulating gene expression in Metazoa, the regulatory pathways for sensing and responding to heme are not well defined. Caenorhabditis elegans is a heme auxotroph and relies solely on environmental heme for sustenance. Worms respond to heme availability by regulating heme-responsive genes such as hrg-1, an intestinal heme transporter that is up-regulated by >60-fold during heme depletion. To identify the mechanism for the heme-dependent regulation of hrg-1, we interrogated the hrg-1 promoter. Deletion and mutagenesis studies of the hrg-1 promoter revealed a 23-bp heme-responsive element that is both necessary and sufficient for heme-dependent regulation of hrg-1. Furthermore, our studies show that the heme regulation of hrg-1 is mediated by both activation and repression in conjunction with ELT-2 and ELT-4, transcription factors that specify intestinal expression. PMID:20938051

  19. Heme oxygenase/carbon monoxide-biliverdin pathway may be involved in the antinociceptive activity of etoricoxib, a selective COX-2 inhibitor.

    Science.gov (United States)

    Grangeiro, Niedja M G; Aguiar, Jordana A; Chaves, Hellíada V; Silva, Antonio A R; Lima, Vilma; Benevides, Norma M B; Brito, Gerly A C; da Graça, José R V; Bezerra, Mirna M

    2011-01-01

    The aim of this study was to assess the interaction between the heme oxygenase-1/ biliverdin/carbon monoxide (HO-1/BVD/CO) and cyclooxygenase-2 (COX-2) pathways in the writhing test. Mice were pretreated with 0.1, 1 or 10 mg/kg, ip etoricoxib, a selective COX-2 inhibitor, or with one of the following HO-1/BVD/CO pathway modulators: 1, 3 or 9 mg/kg, sc ZnPP IX, a specific HO-1 inhibitor, 0.3, 1 or 3 mg/kg, sc hemin, a substrate of the HO-1/BVD/CO pathway; or 0.00025, 0.025 or 2.5 μmol/kg, sc DMDC, a CO donor. Mice pretreated with etoricoxib or one of the HO-1/BVD/CO pathway modulators received an injection of acetic acid (ip) after 30 and 60 min, respectively. Next, the number of writhes was quantified between 0 and 30 min after stimulus injection. In another series of experiments, ineffective doses of etoricoxib were co-administered with hemin or DMDC and an effective dose of etoricoxib with ZnPP IX, followed by an acetic acid injection. Four hours after the acetic acid injection, levels of bilirubin, which is a product of BVD conversion by the BVD reductase enzyme, in the peritoneal lavage were determined. Hemin or DMDC reduced (pZnPP IX potentiated (pZnPP IX. Pretreatment with ZnPP IX reduced bilirubin levels, but etoricoxib pretreatment significantly increased the bilirubin concentration in peritoneal exudates. The data obtained from these experiments showed that the HO-1/BVD/CO pathway was activated in the acetic acid-induced abdominal writhing model. The analgesic effect of etoricoxib was at least partially dependent on the participation of the HO-1/BVD/CO pathway.

  20. Wiring of heme enzymes by methylene-blue labeled dendrimers

    DEFF Research Database (Denmark)

    Álvarez-Martos, Isabel; Shahdost-fard, Faezeh; Ferapontova, Elena

    2017-01-01

    Redox-modified branched 3D dendrimeric nanostructures may be considered as perspective wires for electrical connection between redox enzymes and electrodes. Here, we studied electron transfer (ET) reactions and bioelectrocatalysis of heme-containing horseradish peroxidase (HRP) and heme- and moli......Redox-modified branched 3D dendrimeric nanostructures may be considered as perspective wires for electrical connection between redox enzymes and electrodes. Here, we studied electron transfer (ET) reactions and bioelectrocatalysis of heme-containing horseradish peroxidase (HRP) and heme......- and molibdopterin-containing sulfite oxidase (SOx), wired to gold by the methylene blue (MB)-labeled polyamidoamine (PAMAM) dendrimers. The enzymes’ electrochemical transformation and bioelectrocatalytic function could be followed at both unlabeled and MB-labeled dendrimer-modified electrodes with the formal redox...... potentials of the heme centers being at 341 mV for HRP and 185 mV for SOx. In contrast to the HRP-dendrimer and HRP-MB-dendrimer systems, which demonstrated very close bioelectrocatalytic patterns, multicofactor SOx wired to MB-dendrimer showed a bioelectrocatalysis superior to that based on direct ET...

  1. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Science.gov (United States)

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. Heme oxygenase activity correlates with serum indices of iron homeostasis in healthy nonsmokers

    Science.gov (United States)

    Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirm...

  3. The heme complex of Hmu O, a bacterial heme degradation enzyme from Corynebacterium diphtheriae. Structure of the catalytic site.

    Science.gov (United States)

    Chu, G C; Tomita, T; Sönnichsen, F D; Yoshida, T; Ikeda-Saito, M

    1999-08-27

    Hmu O, a heme degradation enzyme in Corynebacterium diphtheriae, forms a stoichiometric complex with iron protoporphyrin IX and catalyzes the oxygen-dependent conversion of hemin to biliverdin, carbon monoxide, and free iron. Using a multitude of spectroscopic techniques, we have determined the axial ligand coordination of the heme-Hmu O complex. The ferric complex shows a pH-dependent reversible transition between a water-bound hexacoordinate high spin neutral pH form and an alkaline form, having high spin and low spin states, with a pK(a) of 9. (1)H NMR, EPR, and resonance Raman of the heme-Hmu O complex establish that a neutral imidazole of a histidine residue is the proximal ligand of the complex, similar to mammalian heme oxygenase. EPR of the deoxy cobalt porphyrin IX-Hmu O complex confirms this proximal histidine coordination. Oxy cobalt-Hmu O EPR reveals a hydrogen-bonding interaction between the O(2) and an exchangeable proton in the Hmu O distal pocket and two distinct orientations for the bound O(2). Mammalian heme oxygenase has only one O(2) orientation. This difference and the mixed spin states at alkaline pH indicate structural differences in the distal environment between Hmu O and its mammalian counterpart.

  4. Novel Insights in Mammalian Catalase Heme Maturation: Effect of NO and Thioredoxin-1

    OpenAIRE

    Chakravarti, Ritu; Gupta, Karishma; Majors, Alana; Ruple, Lisa; Aronica, Mark; Stuehr, Dennis J.

    2015-01-01

    Catalase is a tetrameric heme-containing enzyme with essential antioxidant functions in biology. Multiple factors including nitric oxide (NO) have been shown to attenuate its activity. However, the possible impact of NO in relation to the maturation of active catalase, including its heme acquisition and tetramer formation, has not been investigated. We found that NO attenuates heme insertion into catalase in both short-term and long-term incubations. The NO inhibition in catalase heme incorpo...

  5. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes

    OpenAIRE

    Chiabrando, Deborah; Vinchi, Francesca; Fiorito, Veronica; Mercurio, Sonia; Tolosano, Emanuela

    2014-01-01

    Heme (iron-protoporphyrin IX) is an essential co-factor involved in multiple biological processes: oxygen transport and storage, electron transfer, drug and steroid metabolism, signal transduction, and micro RNA processing. However, excess free-heme is highly toxic due to its ability to promote oxidative stress and lipid peroxidation, thus leading to membrane injury and, ultimately, apoptosis. Thus, heme metabolism needs to be finely regulated. Intracellular heme amount is controlled at multi...

  6. Staphylococcus aureus HemX Modulates Glutamyl-tRNA Reductase Abundance To Regulate Heme Biosynthesis

    OpenAIRE

    Jacob E. Choby; Caroline M. Grunenwald; Arianna I. Celis; Svetlana Y. Gerdes; Jennifer L. DuBois; Eric P. Skaar; Kimberly A. Kline

    2018-01-01

    Staphylococcus aureus is responsible for a significant amount of devastating disease. Its ability to colonize the host and cause infection is supported by a variety of proteins that are dependent on the cofactor heme. Heme is a porphyrin used broadly across kingdoms and is synthesized de novo from common cellular precursors and iron. While heme is critical to bacterial physiology, it is also toxic in high concentrations, requiring that organisms encode regulatory processes to control heme hom...

  7. Giardia intestinalis incorporates heme into cytosolic cytochrome b₅.

    Science.gov (United States)

    Pyrih, Jan; Harant, Karel; Martincová, Eva; Sutak, Robert; Lesuisse, Emmanuel; Hrdý, Ivan; Tachezy, Jan

    2014-02-01

    The anaerobic intestinal pathogen Giardia intestinalis does not possess enzymes for heme synthesis, and it also lacks the typical set of hemoproteins that are involved in mitochondrial respiration and cellular oxygen stress management. Nevertheless, G. intestinalis may require heme for the function of particular hemoproteins, such as cytochrome b5 (cytb5). We have analyzed the sequences of eukaryotic cytb5 proteins and identified three distinct cytb5 groups: group I, which consists of C-tail membrane-anchored cytb5 proteins; group II, which includes soluble cytb5 proteins; and group III, which comprises the fungal cytb5 proteins. The majority of eukaryotes possess both group I and II cytb5 proteins, whereas three Giardia paralogs belong to group II. We have identified a fourth Giardia cytb5 paralog (gCYTb5-IV) that is rather divergent and possesses an unusual 134-residue N-terminal extension. Recombinant Giardia cytb5 proteins, including gCYTb5-IV, were expressed in Escherichia coli and exhibited characteristic UV-visible spectra that corresponded to heme-loaded cytb5 proteins. The expression of the recombinant gCYTb5-IV in G. intestinalis resulted in the increased import of extracellular heme and its incorporation into the protein, whereas this effect was not observed when gCYTb5-IV containing a mutated heme-binding site was expressed. The electrons for Giardia cytb5 proteins may be provided by the NADPH-dependent Tah18-like oxidoreductase GiOR-1. Therefore, GiOR-1 and cytb5 may constitute a novel redox system in G. intestinalis. To our knowledge, G. intestinalis is the first anaerobic eukaryote in which the presence of heme has been directly demonstrated.

  8. The heme-regulatory motif of nuclear receptor Rev-erbβ is a key mediator of heme and redox signaling in circadian rhythm maintenance and metabolism.

    Science.gov (United States)

    Carter, Eric L; Ramirez, Yanil; Ragsdale, Stephen W

    2017-07-07

    Rev-erbβ is a heme-responsive transcription factor that regulates genes involved in circadian rhythm maintenance and metabolism, effectively bridging these critical cellular processes. Heme binding to Rev-erbβ indirectly facilitates its interaction with the nuclear receptor co-repressor (NCoR1), resulting in repression of Rev-erbβ target genes. Fe 3+ -heme binds in a 6-coordinate complex with axial His and Cys ligands, the latter provided by a heme-regulatory motif (HRM). Rev-erbβ was thought to be a heme sensor based on a weak K d value for the Rev-erbβ·heme complex of 2 μm determined with isothermal titration calorimetry. However, our group demonstrated with UV-visible difference titrations that the K d value is in the low nanomolar range, and the Fe 3+ -heme off-rate is on the order of 10 -6 s -1 making Rev-erbβ ineffective as a sensor of Fe 3+ -heme. In this study, we dissected the kinetics of heme binding to Rev-erbβ and provided a K d for Fe 3+ -heme of ∼0.1 nm Loss of the HRM axial thiolate via redox processes, including oxidation to a disulfide with a neighboring cysteine or dissociation upon reduction of Fe 3+ - to Fe 2+ -heme, decreased binding affinity by >20-fold. Furthermore, as measured in a co-immunoprecipitation assay, substitution of the His or Cys heme ligands in Rev-erbβ was accompanied by a significant loss of NCoR1 binding. These results demonstrate the importance of the Rev-erbβ HRM in regulating interactions with heme and NCoR1 and advance our understanding of how signaling through HRMs affects the major cellular processes of circadian rhythm maintenance and metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Kinetics of heme transfer by the Shr NEAT domains of Group A Streptococcus.

    Science.gov (United States)

    Ouattara, Mahamoudou; Pennati, Andrea; Devlin, Darius J; Huang, Ya-Shu; Gadda, Giovanni; Eichenbaum, Zehava

    2013-10-15

    The hemolytic Group A Streptococcus (GAS) is a notorious human pathogen. Shr protein of GAS participates in iron acquisition by obtaining heme from host hemoglobin and delivering it to the adjacent receptor on the surface, Shp. Heme is then conveyed to the SiaABC proteins for transport across the membrane. Using rapid kinetic studies, we investigated the role of the two heme binding NEAT modules of Shr. Stopped-flow analysis showed that holoNEAT1 quickly delivered heme to apoShp. HoloNEAT2 did not exhibit such activity; only little and slow transfer of heme from NEAT2 to apoShp was seen, suggesting that Shr NEAT domains have distinctive roles in heme transport. HoloNEAT1 also provided heme to apoNEAT2, by a fast and reversible process. To the best of our knowledge this is the first transfer observed between isolated NEAT domains of the same receptor. Sequence alignment revealed that Shr NEAT domains belong to two families of NEAT domains that are conserved in Shr orthologs from several species. Based on the heme transfer kinetics, we propose that Shr proteins modulate heme uptake according to heme availability by a mechanism where NEAT1 facilitates fast heme delivery to Shp, whereas NEAT2 serves as a temporary storage for heme on the bacterial surface. Copyright © 2013. Published by Elsevier Inc.

  10. Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex.

    Science.gov (United States)

    Girvan, Hazel M; Bradley, Justin M; Cheesman, Myles R; Kincaid, James R; Liu, Yilin; Czarnecki, Kazimierz; Fisher, Karl; Leys, David; Rigby, Stephen E J; Munro, Andrew W

    2016-09-13

    DGCR8 is the RNA-binding partner of the nuclease Drosha. Their complex (the "Microprocessor") is essential for processing of long, primary microRNAs (pri-miRNAs) in the nucleus. Binding of heme to DGCR8 is essential for pri-miRNA processing. On the basis of the split Soret ultraviolet-visible (UV-vis) spectrum of ferric DGCR8, bis-thiolate sulfur (cysteinate, Cys(-)) heme iron coordination of DGCR8 heme iron was proposed. We have characterized DGCR8 heme ligation using the Δ276 DGCR8 variant and combined electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), electron nuclear double resonance, resonance Raman, and electronic absorption spectroscopy. These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys(-)/Cys(-)) axial coordination in ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8's optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV-vis absorption spectra of the Fe(II) and Fe(II)-CO forms indicate discrete species exhibiting peaks with absorption coefficients substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron-nuclear double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate coordination in this form. UV-vis MCD and near-infrared MCD provide data consistent with this conclusion. UV-vis MCD data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the ferrous-CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform.

  11. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection.

    Directory of Open Access Journals (Sweden)

    Viswanathan Arun Nagaraj

    Full Text Available Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS, and the last enzyme, ferrochelatase (FC, in the heme-biosynthetic pathway of Plasmodium berghei (Pb. The wild-type and knockout (KO parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-(14C] aminolevulinic acid (ALA. We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.

  12. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes

    Czech Academy of Sciences Publication Activity Database

    Oborník, Miroslav; Green, B. R.

    2005-01-01

    Roč. 22, č. 12 (2005), s. 2343-2353 ISSN 0737-4038 R&D Projects: GA AV ČR IAA500220502 Institutional research plan: CEZ:AV0Z60220518 Keywords : heme biosynthetic pathway * algae * chloroplasts Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.233, year: 2005

  13. Dioxygen reactivity of meso-hydroxylated hemes: intermediates in ...

    Indian Academy of Sciences (India)

    radation of heme into biliverdin, CO (a potential neurotransmitter) and free iron in a reaction that re- quires O2, NADPH and cytochrome P450 reductase.2–6. It also provides a mechanism for the recovery and reutilization of the iron atom. This is important be- cause only 1–3% of the iron utilized daily in the synthesis of red ...

  14. Cysteine-independent activation/inhibition of heme oxygenase-2

    Directory of Open Access Journals (Sweden)

    Dragic Vukomanovic

    2016-01-01

    Full Text Available Reactive thiols of cysteine (cys residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2 isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2 and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  15. Identification of two genes potentially associated in iron-heme ...

    Indian Academy of Sciences (India)

    Classic characteristics are poor predictors of the risk of thromboembolism. Thus, better markers for the carotid atheroma plaque formation and symptom causing are needed. Our objective was to study by microarray analysis gene expression of genes involved in homeostasis of iron and heme in carotid atheroma plaque ...

  16. Coordinate expression of heme and globin is essential for effective erythropoiesis.

    Science.gov (United States)

    Doty, Raymond T; Phelps, Susan R; Shadle, Christina; Sanchez-Bonilla, Marilyn; Keel, Siobán B; Abkowitz, Janis L

    2015-12-01

    Erythropoiesis requires rapid and extensive hemoglobin production. Heme activates globin transcription and translation; therefore, heme synthesis must precede globin synthesis. As free heme is a potent inducer of oxidative damage, its levels within cellular compartments require stringent regulation. Mice lacking the heme exporter FLVCR1 have a severe macrocytic anemia; however, the mechanisms that underlie erythropoiesis dysfunction in these animals are unclear. Here, we determined that erythropoiesis failure occurs in these animals at the CFU-E/proerythroblast stage, a point at which the transferrin receptor (CD71) is upregulated, iron is imported, and heme is synthesized--before ample globin is produced. From the CFU-E/proerythroblast (CD71(+) Ter119(-) cells) stage onward, erythroid progenitors exhibited excess heme content, increased cytoplasmic ROS, and increased apoptosis. Reducing heme synthesis in FLVCR1-defient animals via genetic and biochemical approaches improved the anemia, implying that heme excess causes, and is not just associated with, the erythroid marrow failure. Expression of the cell surface FLVCR1 isoform, but not the mitochondrial FLVCR1 isoform, restored normal rbc production, demonstrating that cellular heme export is essential. Together, these studies provide insight into how heme is regulated to allow effective erythropoiesis, show that erythropoiesis fails when heme is excessive, and emphasize the importance of evaluating Ter119(-) erythroid cells when studying erythroid marrow failure in murine models.

  17. ATP-binding cassette B10 regulates early steps of heme synthesis.

    Science.gov (United States)

    Bayeva, Marina; Khechaduri, Arineh; Wu, Rongxue; Burke, Michael A; Wasserstrom, J Andrew; Singh, Neha; Liesa, Marc; Shirihai, Orian S; Langer, Nathaniel B; Paw, Barry H; Ardehali, Hossein

    2013-07-19

    Heme plays a critical role in gas exchange, mitochondrial energy production, and antioxidant defense in cardiovascular system. The mitochondrial transporter ATP-binding cassette (ABC) B10 has been suggested to export heme out of the mitochondria and is required for normal hemoglobinization of erythropoietic cells and protection against ischemia-reperfusion injury in the heart; however, its primary function has not been established. The aim of this study was to identify the function of ABCB10 in heme synthesis in cardiac cells. Knockdown of ABCB10 in cardiac myoblasts significantly reduced heme levels and the activities of heme-containing proteins, whereas supplementation with δ-aminolevulinic acid reversed these defects. Overexpression of mitochondrial δ-aminolevulinic acid synthase 2, the rate-limiting enzyme upstream of δ-aminolevulinic acid export, failed to restore heme levels in cells with ABCB10 downregulation. ABCB10 and heme levels were increased by hypoxia, and reversal of ABCB10 upregulation caused oxidative stress and cell death. Furthermore, ABCB10 knockdown in neonatal rat cardiomyocytes resulted in a significant delay of calcium removal from the cytoplasm, suggesting a relaxation defect. Finally, ABCB10 expression and heme levels were altered in failing human hearts and mice with ischemic cardiomyopathy. ABCB10 plays a critical role in heme synthesis pathway by facilitating δ-aminolevulinic acid production or export from the mitochondria. In contrast to previous reports, we show that ABCB10 is not a heme exporter and instead is required for the early mitochondrial steps of heme biosynthesis.

  18. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease.

    Science.gov (United States)

    Camus, Stéphane M; De Moraes, João A; Bonnin, Philippe; Abbyad, Paul; Le Jeune, Sylvain; Lionnet, François; Loufrani, Laurent; Grimaud, Linda; Lambry, Jean-Christophe; Charue, Dominique; Kiger, Laurent; Renard, Jean-Marie; Larroque, Claire; Le Clésiau, Hervé; Tedgui, Alain; Bruneval, Patrick; Barja-Fidalgo, Christina; Alexandrou, Antigoni; Tharaux, Pierre-Louis; Boulanger, Chantal M; Blanc-Brude, Olivier P

    2015-06-11

    Intravascular hemolysis describes the relocalization of heme and hemoglobin (Hb) from erythrocytes to plasma. We investigated the concept that erythrocyte membrane microparticles (MPs) concentrate cell-free heme in human hemolytic diseases, and that heme-laden MPs have a physiopathological impact. Up to one-third of cell-free heme in plasma from 47 patients with sickle cell disease (SCD) was sequestered in circulating MPs. Erythrocyte vesiculation in vitro produced MPs loaded with heme. In silico analysis predicted that externalized phosphatidylserine (PS) in MPs may associate with and help retain heme at the cell surface. Immunohistology identified Hb-laden MPs adherent to capillary endothelium in kidney biopsies from hyperalbuminuric SCD patients. In addition, heme-laden erythrocyte MPs adhered and transferred heme to cultured endothelial cells, inducing oxidative stress and apoptosis. In transgenic SAD mice, infusion of heme-laden MPs triggered rapid vasoocclusions in kidneys and compromised microvascular dilation ex vivo. These vascular effects were largely blocked by heme-scavenging hemopexin and by the PS antagonist annexin-a5, in vitro and in vivo. Adversely remodeled MPs carrying heme may thus be a source of oxidant stress for the endothelium, linking hemolysis to vascular injury. This pathway might provide new targets for the therapeutic preservation of vascular function in SCD. © 2015 by The American Society of Hematology.

  19. Cytochrome c and c1 heme lyases are essential in Plasmodium berghei.

    Science.gov (United States)

    Posayapisit, Navaporn; Songsungthong, Warangkhana; Koonyosying, Pongpisid; Falade, Mofolusho O; Uthaipibull, Chairat; Yuthavong, Yongyuth; Shaw, Philip J; Kamchonwongpaisan, Sumalee

    Malaria parasites possess a de novo heme synthetic pathway. Interestingly, this pathway is dispensable during the blood stages of development in mammalian hosts. The assembly of the two most important hemeproteins, cytochromes c and c1, is mediated by cytochrome heme lyase enzymes. Plasmodium spp. possess two cytochrome heme lyases encoded by separate genes. Given the redundancy of heme synthesis, we sought to determine if heme lyase function also exhibits redundancy. To answer this question, we performed gene knockout experiments. We found that the PBANKA_143950 and PBANKA_0602600 Plasmodium berghei genes encoding cytochrome c (Pbcchl) and cytochrome c1 (Pbcc 1 hl) heme lyases, respectively, can only be disrupted when a complementary gene is present. In contrast, four genes in the de novo heme synthesis pathway can be disrupted without complementation. This work provides evidence that Pbcchl and Pbcc 1 hl are both essential and thus may be antimalarial targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. CYTOCHROME P450 REGULATION: THE INTERPLAY BETWEEN ITS HEME AND APOPROTEIN MOIETIES IN SYNTHESIS, ASSEMBLY, REPAIR AND DISPOSAL123

    OpenAIRE

    Correia, Maria Almira; Sinclair, Peter R.; De Matteis, Francesco

    2010-01-01

    Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biot...

  1. Dietary heme-mediated PPARa activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon

    NARCIS (Netherlands)

    IJssenagger, N.; Wit, de N.J.W.; Muller, M.R.; Meer, van der R.

    2012-01-01

    Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome

  2. Bacterial Nitric Oxide Synthase Is Required for the Staphylococcus aureus Response to Heme Stress.

    Science.gov (United States)

    Surdel, Matthew C; Dutter, Brendan F; Sulikowski, Gary A; Skaar, Eric P

    2016-08-12

    Staphylococcus aureus is a pathogen that causes significant morbidity and mortality worldwide. Within the vertebrate host, S. aureus requires heme as a nutrient iron source and as a cofactor for multiple cellular processes. Although required for pathogenesis, excess heme is toxic. S. aureus employs a two-component system, the heme sensor system (HssRS), to sense and protect against heme toxicity. Upon activation, HssRS induces the expression of the heme-regulated transporter (HrtAB), an efflux pump that alleviates heme toxicity. The ability to sense and respond to heme is critical for the pathogenesis of numerous Gram-positive organisms, yet the mechanism of heme sensing remains unknown. Compound '3981 was identified in a high-throughput screen as an activator of staphylococcal HssRS that triggers HssRS independently of heme accumulation. '3981 is toxic to S. aureus; however, derivatives of '3981 were synthesized that lack toxicity while retaining HssRS activation, enabling the interrogation of the heme stress response without confounding toxic effects of the parent molecule. Using '3981 derivatives as probes of the heme stress response, numerous genes required for '3981-induced activation of HssRS were uncovered. Specifically, multiple genes involved in the production of nitric oxide were identified, including the gene encoding bacterial nitric oxide synthase (bNOS). bNOS protects S. aureus from oxidative stress imposed by heme. Taken together, this work identifies bNOS as crucial for the S. aureus heme stress response, providing evidence that nitric oxide synthesis and heme sensing are intertwined.

  3. Binding analysis of ferritin with heme using α-casein and biotinylated-hemin: detection of heme-binding capacity of Dpr derived from heme synthesis-deficient Streptococcus mutans.

    Science.gov (United States)

    Mieno, Ayako; Yamamoto, Yuji; Yoshikawa, Yasunaga; Watanabe, Kiyotaka; Mukai, Takao; Orino, Koichi

    2013-01-01

    Bacterial and mammalian ferritins are known to bind heme. The use of α-casein and biotinylated hemin could be applicable to detection of protein-bound heme and of proteins with heme-binding capacity, respectively. Although commercial horse spleen ferritin and purified horse spleen ferritin (L:H subunit ratio=4) bound to an α-casein-coated plate, and this binding could be inhibited by hemin, recombinant iron-binding protein (rDpr), derived from heme-deficient Streptococcus mutans and expressed in Escherichia coli, did not bind to an α-casein-coated plate. Both horse spleen ferritins bound to α-casein-immobilized beads. Commercial horse spleen ferritin and rDpr showed direct binding to hemin-agarose beads. After preincubation of commercial horse spleen ferritin or rDpr with biotinylated hemin, they showed indirect binding to avidin-immobilized beads through biotinylated hemin. These results demonstrate that α-casein is useful for detection of heme-binding ferritin and that both hemin-agarose and the combination of biotinylated hemin and avidin-beads are useful for detection of the heme-binding capacity of ferritin. In addition, this study also revealed that Dpr, a decameric iron-binding protein, from heme-deficient cells binds heme.

  4. Ibuprofen Impairs Allosterically Peroxynitrite Isomerization by Ferric Human Serum Heme-Albumin*

    Science.gov (United States)

    Ascenzi, Paolo; di Masi, Alessandra; Coletta, Massimo; Ciaccio, Chiara; Fanali, Gabriella; Nicoletti, Francesco P.; Smulevich, Giulietta; Fasano, Mauro

    2009-01-01

    Human serum albumin (HSA) participates in heme scavenging; in turn, heme endows HSA with myoglobin-like reactivity and spectroscopic properties. Here, the allosteric effect of ibuprofen on peroxynitrite isomerization to NO3− catalyzed by ferric human serum heme-albumin (HSA-heme-Fe(III)) is reported. Data were obtained at 22.0 °C. HSA-heme-Fe(III) catalyzes peroxynitrite isomerization in the absence and presence of CO2; the values of the second order catalytic rate constant (kon) are 4.1 × 105 and 4.5 × 105 m−1 s−1, respectively. Moreover, HSA-heme-Fe(III) prevents peroxynitrite-mediated nitration of free added l-tyrosine. The pH dependence of kon (pKa = 6.9) suggests that peroxynitrous acid reacts preferentially with the heme-Fe(III) atom, in the absence and presence of CO2. The HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite has been ascribed to the reactive pentacoordinated heme-Fe(III) atom. In the absence and presence of CO2, ibuprofen impairs dose-dependently peroxynitrite isomerization by HSA-heme-Fe(III) and facilitates the nitration of free added l-tyrosine; the value of the dissociation equilibrium constant for ibuprofen binding to HSA-heme-Fe(III) (L) ranges between 7.7 × 10−4 and 9.7 × 10−4 m. Under conditions where [ibuprofen] is ≫L, the kinetics of HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite is superimposable to that obtained in the absence of HSA-heme-Fe(III) or in the presence of non-catalytic HSA-heme-Fe(III)-cyanide complex and HSA. Ibuprofen binding impairs allosterically peroxynitrite isomerization by HSA-heme-Fe(III), inducing the hexacoordination of the heme-Fe(III) atom. These results represent the first evidence for peroxynitrite isomerization by HSA-heme-Fe(III), highlighting the allosteric modulation of HSA-heme-Fe(III) reactivity by heterotropic interaction(s), and outlining the role of drugs in modulating HSA functions. The present results could be relevant for the drug-dependent protective role

  5. Transfection of the Human Heme Oxygenase Gene Into Rabbit Coronary Microvessel Endothelial Cells: Protective Effect Against Heme and Hemoglobin Toxicity

    Science.gov (United States)

    Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.

    1995-07-01

    Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

  6. Gamma-radiation-induced oxidation—a very convenient tool to unravel the mechanisms of polyolefin aging and stabilization

    Science.gov (United States)

    Marchal, Jean

    The production of ketones during the oxidative degradation, aging and weathering of polyethylenes is explained by two primary reactions: the well-known termination reaction and a competitive chain reaction which must be introduced in the usual reaction scheme. Experimental conditions are found in which antioxidant (AO) properties of N-oxyl or nitroxyl (>NO .) radicals are observed and can be studied without having to assume that they depend on the unreasonable condition that > NO ., even produced at very low concentration during the natural aging and weathering of polymer materials, would be able to compete with O 2 to scavenge alkyl and other organic free radicals. Therefore, the classical scheme of the AO efficiency of >NO . generated by the oxidation of so-called hindered amine light stabilizers (HALS) is challenged. Also, the usual scheme of the oxidative degradation of 2,4-dimethylpentane is shown to be incorrect. The intramolecular propagation reaction favoured does not involve ter-alkylperoxyl but rather ter-alkoxyl free radicals, while the reverse is found for intermolecular propagation by these species. It will be necessary to take into account these new conclusions in understanding the oxidative degradation of the whole series of polypropylenes.

  7. Gamma radiation-induced mutant of NSIC RC144 with broad-spectrum resistance to bacterial blight

    International Nuclear Information System (INIS)

    Alfonso, A.A.; Avellanoza, E.S.; Miranda, R.T.; Espejo, E.O.; Garcia, N.S.

    2014-01-01

    Mutant lines derived from gamma radiation-treated commercial variety NSIC RC144 were produced and screened for novel resistance to bacterial blight, one of the most serious diseases of rice. Preliminary screening of a bulk M2 population through induced method using race 3 of the pathogen Xanthomonas oryzae pv. oryzae (Xoo) resulted in the selection of 89 resistant plants. Subsequent repeated bacterial blight screenings and generation advance for five seasons resulted in the selection of two highly resistant M7 sister lines whose origin can be traced to a single M2 plant. DNA fingerprinting using 63 genome-wide simple sequence repeat (SSR) markers revealed an identical pattern in these lines. Using the same set of markers, they also exhibited 98% similarity to wild type NSIC RC144 indicating that the resistance is due to mutation and not due to genetic admixture or seed impurity. Two seasons of bacterial blight screening using 14 local isolates representing ten races of Xoo revealed an identical reaction pattern in these lines. The reaction pattern was observed to be unique compared to known patterns in four IRBB isolines (IRBB 4, 5, 7 and 21) with strong resistant reaction to bacterial blight suggesting possible novel resistance. The susceptible reaction in F1 testcrosses using Xoo race 6 and the segregation patterns in two F2 populations that fit with the expected 3 susceptible: 1 resistant ratio (P = 0.4, ns) suggest a single-gene recessive mutation in these lines. These mutants are now being used as resistance donor in the breeding program while further molecular characterization to map and characterize the mutated gene is being pursued

  8. Evaluation of domperidone as a modifier of gamma-radiation-induced emesis. Report for January 1984-January 1986

    Energy Technology Data Exchange (ETDEWEB)

    Cordts, R.E.; Yochmowitz, M.G.; Hardy, K.A.

    1987-09-01

    The D2 antidopaminergic drug Domperidone was evaluated singly and in combination with synthetic adrenocorticoid and an H2 antihistamine for its ability to reduce the acute emetic effects of /sup 60/Co whole-body radiation. Random-source adult male dogs were fasted 12 hours, fed a standard meal, injected 44 minutes later and irradiated 47 minutes after that. Four groups of dogs were radiated after drug injections as follows: saline (Con), domperidone (Dom), cimetidine + thiethylperazine (Cim+Thi), and dexamethasone + domperidone + cimetidine (Dex+Dom+Cim). Drug quantities for dogs represented 10 mg Dom, 10 mg Thi, 20 mg Dex, and 300 mg Cim for an average human (70 ka, 1.8 m2). Subjects were exposed on an up-down schedule to determine the radiation necessary to produce vomiting in 50% (ED50) of each group. Emesis onset times, offset times, and number of episodes were recorded. The ED50 of Dex+Dom+Cim was higher than Con. Dom produced more emetic episodes than Con or Dex+Dom+Cim. This drug in combination with an adrenocorticoid and antihistamine significantly raised the emetic threshold while maintaining episodes at a low incidence.

  9. Natural and gamma radiation-induced conduction of silica and metaphosphate glass layers deposed by radiofrequency cathode sputtering

    International Nuclear Information System (INIS)

    Serra, Andre

    1977-01-01

    We present a study of natural and 60 Co induced conductions in radiofrequency sputtering deposed layers. Capacimetry and electronic microscopy observations permit a knowledge of the physical characteristics, mainly: homogeneity and thickness of these layers. A study of the natural current permit to characterise electrically the deposited films, the electrode and bulk insulator effects. In induced conduction, the behaviour of currents as a function of dose rate is interpreted in terms of ROSE'S and FOWLER'S photoconductivity theories. Induced currents versus applied fields are observed and compared with these obtained in the case of dielectric liquids and glasses. (author) [fr

  10. Effect of aqueous extract of saffron (crocus sativus L.) against gamma radiation-induced skeletal muscles damage in rats

    International Nuclear Information System (INIS)

    El-Tahawy, N.A; Said, U.Z

    2010-01-01

    Muscular strength is important in sport as well as in daily activities. Reactive oxygen species (ROS) and oxidative damage are the most important factors in radiation-induced acute damage to muscle tissue. Saffron, obtained from dried stigmas of Crocus sativus L. (Iridaceae), is a highly valued spice, commonly used in flavouring and food colouring in different parts of the world and is known to possess the richest source of carotenoids. The present study was designed to investigate the efficacy of an aqueous extract of saffron to protect against radiation-induced oxidative damage in rat's skeletal muscle. Saffron was supplemented orally, via gavages to rats at a dose of 80 mg/ kg body wt/ day for 2 week pre- and 1 week post-exposure to 5 Gy (one shot dose) of whole body gamma-irradiation. Animals were sacrificed 1, 2 and 3 weeks post radiation exposure. The results revealed that whole body gamma-irradiation of rats induce oxidative stress in skeletal muscles obvious by significant elevation in the level of thiobarbituric acid reactive substances associated with significant decreases in superoxide dismutase and catalase activities. Also, radiation-induces skeletal muscles damage evidenced by significant decreases in the level of pyruvic acid, creatine phosphokinase, glutamate dehydrogenase and glucose-6-phosphate dehydrogenase activities as well as significant increases in lactic acid, total iron, and copper and calcium levels. Saffron treated-irradiated rats showed significantly less severe damage and remarkable improvement in all the measured parameters, compared to irradiated rats. It could be concluded that saffron by attenuating radiation-induced oxidative stress might play a role in maintaining skeletal muscle integrity.

  11. Repair and gamma radiation-induced single- and double-strand breaks in DNA of Escherichia coli

    International Nuclear Information System (INIS)

    Petrov, S.I.

    1981-01-01

    Studies in the kinetics of repair of γ-radiation-induced single- and double-strand breaks in DNA of E. coli cells showed that double-strand DNA breaks are rejoined by the following two ways. The first way is conditioned by repair of single-strand breaks and represents the repair of ''oblique'' double-strand breaks in DNA, whereas the second way is conditioned by functioning of the recombination mechanisms and, to all appearance, represents the repair of ''direct'' double-strand breaks in DNA

  12. Protective effect of vitamins C and E on Gamma radiation induced Genetic injuries in male mice germ cells

    International Nuclear Information System (INIS)

    Anwar, W.A.; El-Daway, H.A.E.; Tawfik, S.S.M.

    1999-01-01

    The effects of vitamins C and E on meiotic chromosomal metaphase-8 at diakinesis of the mouse to 3 Gy of whole body gamma- irradiation were studied. These vitamins were injected intraperitoneally as acute doses 2 hr before irradiation. Both vitamins significantly reduced the frequencies of chromosomal aberration in spermatic germ cells. The protective effect of vitamin E was greater than that afforded by vitamin C. A combined treatment of both vitamins resulted in additional protection over that offered by each vitamine alone. In all animal groups the most frequent aberration found was translocation in the from of either ring four (R IV) or chain four (C IV). The percentage of each or them was significantly increased in male mice sacrificed after 15 days post-irradiation. Other types of aberrations as autosomal univalent, X-Gamma univalent and polyploidy were rarely present

  13. Dose-Related Effects of Acetylsalicylic acid (ASA) on Gamma Radiation-Induced Teratogenicity in Pregnant Albino Rats

    International Nuclear Information System (INIS)

    Ibrahim, M.F.

    2013-01-01

    Reviews of acetylsalicylic acid (ASA), a widely used nonsteroidal anti- inflammatory drug, has consistently suggested a possible association between prenatal ASA ingestion and adverse effects in the pregnant mothers and their developing fetuses. The objective of the current study was to comprehensively define the effect of relatively low and high doses of ASA (25 mg/kg body wt. and 200 mg/kg body wt. respectively) on gestating rats and their possible impact on the irradiated ones. Therefore 36 pregnant rats were randomly divided into 6 equal groups. Three rat groups were daily orally gavaged from the 7th to the 18th gestational days with: distilled water (Group 1), 25 mg/kg body wt. ASA (Group 2) and 200 mg/kg body wt. ASA (Group 3). The other three groups similarly received the same previous treatments besides 2 Gy whole body gamma irradiation of each, to serve as: Group 4 (distilled water + irradiation), Group 5 (25 mg/kg body wt. ASA + irradiation) and Group 6 (200 mg/kg body wt. ASA + irradiation). All rat groups were sacrificed on the 20th day of pregnancy and the uterine contents were examined. The lower ASA dose (25 mg/kg body wt.) treated group (Group 2) displayed healthy mothers and fetuses whereas that of the higher dose (200 mg/kg body wt.) (Group 3) despite not showing significant maternal or fetal mortalities, yet the intrauterine contents presented fetal developmental disorders including stunted growth and resorption together with some head and limb anomalies including plagiocephaly, marked acampsia and acrocontracture. Meanwhile, results have unexpectedly shown a radioprotective role of the lower ASA dose (25 mg/kg. body wt.) (Group 5) to pregnant rats and their fetuses as inspected by its efficacy in retrieving the radiation induced maternal weight loss together with its noticeable ameliorating effects on the intrauterine lethality of the affected fetuses and their externally detected abnormalities in addition toits effectiveness in retaining some radiation induced variations in the craniofacial measurements and segments of fore and hind limbs. Consistent with expectations, the 200 mg/kg body wt. ASA has strongly potentiated the radiation induced teratogenesis as monitored by high intrauterine lethality, incomplete fetal development showing apparent signs of maceration (Group 6). Thus it can be deliberated that considerable low doses of ASA appear to possess a beneficial effect during pregnancy as perits evident radioprotective ability even when manipulated during the serious gestational period of organ formation. However, at this period, caution must be assessed when taking high repeated daily doses of ASA due to its known undesirable effects and its recorded enhancing radiation teratogenic potential

  14. Gamma-radiation-induced absorption in doubly doped PbWO sub 4 :Mo,Y crystals

    CERN Document Server

    Sulc, M; Bohácek, P; Nejezchleb, K; Jarolímek, O; Vognar, M

    2002-01-01

    The set of Mo and (Mo,Y) doped PbWO sub 4 scintillating crystals was irradiated 30 min by a homogeneous gamma-radiation field, produced in the irradiation of tungsten target by 21 MeV electron beam from the microtrone accelerator. The induced absorption spectra were measured on-line, i.e. during the irradiation and after switching-off the machine with a sampling rate of 10 s for the dose rates of about 0.17 Gy/min. The results show a clear effect of the doped ions in PWO crystals on the spectra and kinetics of both colour centres formation and recovery processes. The induced absorption build-up and recovery time dependences at fixed wavelength are approximated by a simple model and quantitative parameters are extracted and discussed.

  15. Therapeutic Effect of Taurine on Gamma Radiation Induced Genetic Injuries in Germ Cells of Male Mice and Their Male Offspring

    International Nuclear Information System (INIS)

    El-Dawy, H.A.; Tawfik, S.S.; El-Khafif, M.A.; Ragab, M.H.

    2005-01-01

    The efficiency of taurine therapy for treatment of male mice exposed to a dose of (3 Gy) whole body gamma irradiation and their male offspring was studied after administration taurine 1% in drinking water post irradiation. Administration of taurine therapy resulted in a significant decrease in the effect of irradiation on chromosomal aberrations in irradiated animals and their male offspring. The efficiency of taurine as radio therapeutic agent is greatly dependent on its chemical properties as strong oxidants scavenger and biological activities as osmoregulator and membrane stabilizer. The probable mechanism of taurine therapy was discussed

  16. Development of analyzing system for gene functions of nerve growth factor using {gamma}-radiation induced mutants of Oryzias latipes

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kazuo; Nagoya, Hiroyuki; Okamoto, Hiroyuki [National Research Inst. of Aquaculture, Mie (Japan)

    1999-02-01

    Oryzias latipes mutants that have abnormalities in the nervous system were screened with an aim to develop a model system to investigate the functions of nerve growing factor gene. When male O. latipes was exposed to {gamma}-ray at a dose of 4.5 to 5.0 Gy, its mutants were most effectively produced. Then, F{sub 2} pairs that might produce offspring with abnormalities in the brain, chorda and tail were selected and cultured successively. The embryos of thus obtained mutants, nt and ut were histologically observed at various stages of their developments and these mutants were found to have abnormalities in the chorda. Then, the expressions of Brachury and HNF3{beta} genes, which possibly control the expression of nerve growth factor gene and closely mediate the embryogenesis were investigated in the chorda and the mesoderm of these mutants by in situ hybridization method. Brachury gene in nt mutant as well as the wild strain was expressed in the region of the tail end, whereas HNF3{beta} gene of nt was not expressed in the chordal end and its adjacent mesoderm. This suggests that the gene of growth factor of which expression is induced by HNF3{beta}, might be inactive in the caudal region of the embryo. When these mutants with abnormalities in caudal formation were crossed each other, any abnormality was not observed in the chordal formation of the offspring. Therefore, it was concluded that the abnormalities in the chordal formation of these mutants might be caused by a mutation at different genes. (M.N.)

  17. Measurement of 60CO gamma radiation induced attenuation in multimode step-index POF at 530 nm

    Directory of Open Access Journals (Sweden)

    Kovačević Milan S.

    2013-01-01

    Full Text Available As optical fibres are used ever more extensively in space applications, nuclear industry, medicine and high-energy physics experiments, it has become essential to investigate the influence of ionizing radiation on their characteristics. In this work, the radiation-induced attenuation at 530 nm is investigated experimentally in step-index multimode polymethyl-methacrylate plastic optical fibres exposed to low dose-rate gamma radiation. Cumulative doses ranged from 50 Gy to 500 Gy. The radiation induced attenuation has been empirically found to obey the power law RIA= aDb, where D is the total radiation dose and a and b are the constants determined by fitting.

  18. Anti-oxidant modulation in response to gamma radiation induced oxidative stress in developing seedlings of Psoralea corylifolia L

    International Nuclear Information System (INIS)

    Jan, Sumira; Parween, Talat; Siddiqi, T.O.; Mahmooduzzafar

    2012-01-01

    The seeds of Psoralea corylifolia L., an important medicinal herb in Indian and Chinese Pharmacopeia were exposed to gamma rays (2.5, 5, 10, 15 and 20 kGy) from Co 60 source at dose rate of 1.65 kGy h −1 . Enzymatic and non-enzymatic anti-oxidant responses were verified according to the developmental stages and gamma dose applied. Plants grown from seeds exposed to higher gamma doses exhibit higher activity of the antioxidants such as [Ascorbate peroxidase (APX, 1.11.1.1), superoxide dismutase (SOD, 1.15.1.1), glutathione reductase (GR, 1.6.4.2) and MDA content till flowering and declined thereafter. In contrast, CAT (1.11.1.6) activity declined in dose and age dependent manner. The correlation of gamma dose applied and oxidative stress was inferred from the increased enzymes activities and depression in total glutathione pool in seedlings developed from irradiated seeds. Nevertheless, the maintenance of high anti-oxidant capacity, psoralen accumulation seems to be an important strategy during acclimation of P. corylifolia to gamma radiation stress. Pronounced accumulation of psoralen following 15 and 20 kGy at post-flowering stage where oxidative stress is triggered modulates lipid peroxidation and proline accumulation. Further, in psoralen producing plants an increase in psoralen content can be used as a biomarker which specifies plant is under stress. - Highlights: ► This manuscript points for the first time over expression of antioxidant enzymes to variable doses of gamma rays with corresponding increase in psoralen content in Psoralea corylifolia L. ► Decline in lipid peroxidation and proline accumulation was concomitant with psoralen increment describing the potential of Psoralen as antioxidant. ► Survival of plants following higher dosage of gamma-radiation (15 and 20 kGy) describes the radio resistivity of Psorelea seeds.

  19. Modulation of gamma radiation induced changes in the weight of spleen and thymus by centella asiatica pretreatment

    International Nuclear Information System (INIS)

    Sharma, Radha; Jaimala

    2003-01-01

    Centella asiatica (Linn) is a medicinal plant widely used in several Ayurvedic preparations. Pretreatment of swiss albino mice with Centella asiatica one hour before irradiation with a dose of 100 mg/kg body weight protected the animal from death by way of reducing the histopathological changes and loss of weight of the spleen and thymus against radiation. In irradiated animals (6 and 8 Gy) the reduction in the weight of spleen and thymus was significantly higher and recovery was slower in comparison to animals pretreated with Centella asiatica. It might be due to the increased cell population in the spleen and thymus of the animal pretreated with the plant extract or plant extract might have inhibited the cell death caused by radiation. (author)

  20. Effect of dietary protein on heme iron uptake by Caco-2 cells.

    Science.gov (United States)

    Villarroel, Pía; Flores, Sebastián; Pizarro, Fernando; de Romaña, Daniel López; Arredondo, Miguel

    2011-12-01

    To study heme iron bioavailability and the role of dietary protein (animal and vegetable) on iron uptake using an in vitro model (Caco-2 cell line). Caco-2 cells were seeded in bicameral chambers with different animal (beef, chicken or fish) or vegetable (peas, lentils, and soybeans) proteins or with pure animal (collagen and casein) or vegetable (gliadin, zein, and glutein) protein extracts. The effect of each protein over heme iron absorption was assessed. Intact heme uptake was higher than either heme plus albumin or digested heme plus albumin, but lower than digested heme. White meal exerted the highest inhibitory effect on hemin uptake. Heme iron uptake decreased in the presence of all legume extracts, but was not significantly different among them (one-way ANOVA, NS). Pure animal (collagen and casein) and vegetable (zein and glutelin) proteins increased heme iron uptake, except for gliadin. Animal and vegetable protein in general decreased heme iron uptake. However, purified animal and vegetable protein induce an increase in heme iron uptake.

  1. Developing a heme iron database for meats according to meat type, cooking method and doneness level.

    Science.gov (United States)

    Cross, Amanda J; Harnly, James M; Ferrucci, Leah M; Risch, Adam; Mayne, Susan T; Sinha, Rashmi

    2012-07-01

    Animal studies have demonstrated that iron may be related to carcinogenesis, and human studies found that heme iron can increase the formation of N -nitroso compounds, which are known carcinogens. One of the postulated mechanisms linking red meat intake to cancer risk involves iron. Epidemiologic studies attempt to investigate the association between heme iron intake and cancer by applying a standard factor to total iron from meat. However, laboratory studies suggest that heme iron levels in meat vary according to cooking method and doneness level. We measured heme iron in meats cooked by different cooking methods to a range of doneness levels to use in conjunction with a food frequency questionnaire to estimate heme iron intake. Composite meat samples were made to represent each meat type, cooking method and doneness level. Heme iron was measured using atomic absorption spectrometry and inductively coupled plasma-atomic emission spectrometry. Steak and hamburgers contained the highest levels of heme iron, pork and chicken thigh meat had slightly lower levels, and chicken breast meat had the lowest. Although heme iron levels varied, there was no clear effect of cooking method or doneness level. We outline the methods used to create a heme iron database to be used in conjunction with food frequency questionnaires to estimate heme iron intake in relation to disease outcome.

  2. The Trypanosoma cruzi Protein TcHTE Is Critical for