WorldWideScience

Sample records for gamma-aminobutyric acid transporter

  1. Conformational basis for the Li(+)-induced leak current in the rat gamma-aminobutyric acid (GABA) transporter-1

    DEFF Research Database (Denmark)

    MacAulay, Nanna; Zeuthen, Thomas; Gether, Ulrik

    2002-01-01

    The rat gamma-aminobutyric acid transporter-1 (GAT-1) was expressed in Xenopus laevis oocytes and the substrate-independent Li(+)-induced leak current was examined using two-electrode voltage clamp. The leak current was not affected by the addition of GABA and was not due to H(+) permeation. The Li......(+)-bound conformation of the protein displayed a lower passive water permeability than that of the Na(+)- and choline (Ch(+))-bound conformations and the leak current did not saturate with increasing amounts of Li(+) in the test solution. The mechanism that gives rise to the leak current did not support active water...... transport in contrast to the mechanism responsible for GABA translocation (approximately 330 water molecules per charge). Altogether, these data support the distinct nature of the leak conductance in relation to the substrate translocation process. It was observed that the leak current was inhibited by low...

  2. Serotonin Transporter (5-HTT) and gamma-Aminobutyric Acid Receptor Subunit beta3 (GABRB3) Gene Polymorphisms are not Associated with Autism in the IMGSA Families

    DEFF Research Database (Denmark)

    Maestrini, E.; Lai, C.; Marlow, A.

    1999-01-01

    Previous studies have suggested that the serotonin transporter (5-HTT) gene and the gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene, or other genes in the 15q11-q13 region, are possibly involved in susceptibility to autism. To test this hypothesis we performed an association study on...

  3. Gamma aminobutyric acid transporter subtype 1 gene knockout mice: a new model for attention deficit/hyperactivity disorder

    Institute of Scientific and Technical Information of China (English)

    Ping Yang; Guoqiang Cai; Youqing Cai; Jian Fei; Guoxiang Liu

    2013-01-01

    Attention deficit/hyperactivity disorder (ADHD) is characterized by hyperactivity,impaired sustained attention,impulsivity,and is usually accompanied by varying degrees of learning difficulties and lack of motor coordination.However,the pathophysiology and etiology of ADHD remain inconclusive so far.Our previous studies have demonstrated that the gamma aminobutyric acid transporter subtype 1 (GAT1) gene knockout (ko) mouse (gat1-/-)is hyperactive and exhibited impaired memory performance in the Morris water maze.In the current study,we found that the gat1-/-mice showed low levels of attentional focusing and increased impulsivity.In addition,the gat1-/-mice displayed ataxia characterized by defects in motor coordination and balance skills.The hyperactivity in the ko mice was reduced by both methylphenidate and amphetamine.Collectively,these results suggest that GAT1 ko mouse is a new animal model for ADHD studying and GAT1 may be a new target to treat ADHD.

  4. Effects of inhibitors of protein synthesis and intracellular transport on the gamma-aminobutyric acid agonist-induced functional differentiation of cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Meier, E

    1990-01-01

    The effect of inhibitors of protein synthesis (actinomycin D, cycloheximide), proteases (leupeptin), and intracellular transport (colchicine, monensin) on the gamma-aminobutyric acid (GABA) agonist [4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP)]-induced changes in morphological...... an intracellular and a plasma membrane localization of the receptors. In all experiments cultures treated with THIP alone served as controls. The inhibitors of protein synthesis totally abolished the ability of THIP to induce low-affinity GABA receptors. In contrast, the inhibitors of intracellular transport...

  5. Brain gamma-aminobutyric acid deficiency in dialysis encephalopathy.

    Science.gov (United States)

    Sweeney, V P; Perry, T L; Price, J D; Reeve, C E; Godolphin, W J; Kish, S J

    1985-02-01

    We measured levels of gamma-aminobutyric acid (GABA) in the CSF and in the autopsied brain of patients with dialysis encephalopathy. GABA concentrations were low in the CSF of three of five living patients. Mean GABA content was reduced by 30 to 50% in five brain regions (frontal, occipital, and cerebellar cortex, caudate nucleus, and medial dorsal thalamus) in five fatal cases. GABA content was normal in brain regions where GABA is characteristically reduced in Huntington's disease. Choline acetyltransferase activity was diminished (by 25 to 35%) in cerebral cortex of the dialysis encephalopathy patients.

  6. Increased brain uptake of gamma-aminobutyric acid in a rabbit model of hepatic encephalopathy

    International Nuclear Information System (INIS)

    Bassett, M.L.; Mullen, K.D.; Scholz, B.; Fenstermacher, J.D.; Jones, E.A.

    1990-01-01

    Transfer of the inhibitory neurotransmitter gamma-aminobutyric acid across the normal blood-brain barrier is minimal. One prerequisite for gamma-aminobutyric acid in plasma contributing to the neural inhibition of hepatic encephalopathy would be that increased transfer of gamma-aminobutyric acid across the blood-brain barrier occurs in liver failure. The aim of the present study was to determine if brain gamma-aminobutyric acid uptake is increased in rabbits with stage II-III (precoma) hepatic encephalopathy due to galactosamine-induced fulminant hepatic failure. A modification of the Oldendorf intracarotid artery-injection technique was applied. [3H] gamma-aminobutyric acid, [14C] butanol, and 113mIn-labeled serum protein (transferrin) were injected simultaneously 4 s before decapitation. The ipsilateral brain uptake index of gamma-aminobutyric acid was determined from measurements of the 3 isotopes in 5 brain regions. Uncorrected or simple brain uptake indices of [3H] gamma-aminobutyric acid and [113mIn] transferrin were calculated using [14C] butanol as the highly extracted reference compound. The [113mIn] transferrin data were also used to correct the brain uptake index of [3H] gamma-aminobutyric acid for intravascular retention of [3H] gamma-aminobutyric acid. The methodology adopted minimized problems attributable to rapid [3H] gamma-aminobutyric acid metabolism, and slow brain washout and recirculation of the radiolabeled tracers. Both the uncorrected and corrected brain uptake indices of gamma-aminobutyric acid as well as the simple brain uptake index of transferrin were significantly increased in both stage II and III hepatic encephalopathy in all brain regions studied. Moreover, these brain uptake indices were significantly greater in stage III hepatic encephalopathy than in stage II hepatic encephalopathy

  7. gamma-Aminobutyric acid stimulates ethylene biosynthesis in sunflower

    International Nuclear Information System (INIS)

    Kathiresan, A.; Tung, P.; Chinnappa, C.C.; Reid, D.M.

    1997-01-01

    gamma-Aminobutyric acid (GABA), a nonprotein amino acid, is often accumulated in plants following environmental stimuli that can also cause ethylene production. We have investigated the relationship between GABA and ethylene production in excised sunflower (Helianthus annuus L.) tissues. Exogenous GABA causes up to a 14-fold increase in the ethylene production rate after about 12 h. Cotyledons fed with [14C]GABA did not release substantial amounts of radioactive ethylene despite its chemical similarity to 1-aminocyclopropane-1-carboxylic acid (ACC), indicating that GABA is not likely to be an alternative precursor for ethylene. GABA causes increases in ACC synthase mRNA accumulation, ACC levels, ACC oxidase mRNA levels, and in vitro ACC oxidase activity. In the presence of aminoethoxyvinylglycine or alpha-aminoisobutyric acid, GABA did not stimulate ethylene production. We therefore conclude that GABA stimulates ethylene biosynthesis mainly by promoting ACC synthase transcript abundance. Possible roles of GABA as a signal transducer are suggested

  8. Biotechnological advances and perspectives of gamma-aminobutyric acid production.

    Science.gov (United States)

    Xu, Ning; Wei, Liang; Liu, Jun

    2017-03-01

    Gamma-aminobutyric acid (GABA) is a four-carbon non-protein amino acid that is widely distributed among various organisms. Since GABA has several well-known physiological functions, such as mediating neurotransmission and hypotensive activity, as well as having tranquilizer effects, it is commonly used as a bioactive compound in the food, pharmaceutical and feed industries. The major pathway of GABA biosynthesis is the irreversible decarboxylation of L-glutamate catalyzed by glutamate decarboxylase (GAD), which develops a safe, sustainable and environmentally friendly alternative in comparison with traditional chemical synthesis methods. To date, several microorganisms have been successfully engineered for high-level GABA biosynthesis by overexpressing exogenous GADs. However, the activity of almost all reported microbial GADs sharply decreases at physiological near-neutral pH, which in turn provokes negative effects on the application of these GADs in the recombinant strains for GABA production. Therefore, ongoing efforts in the molecular evolution of GADs, in combination with high-throughput screening and metabolic engineering of particular producer strains, offer fascinating new prospects for effective, environmentally friendly and economically viable GABA biosynthesis. In this review, we briefly introduce the applications in which GABA is used, and summarize the most important methods associated with GABA production. The major achievements and present challenges in the biotechnological synthesis of GABA, focusing on screening and enzyme engineering of GADs, as well as metabolic engineering strategy for one-step GABA biosynthesis, will be extensively discussed.

  9. Elevated gamma-aminobutyric acid levels in chronic schizophrenia.

    Science.gov (United States)

    Ongür, Dost; Prescot, Andrew P; McCarthy, Julie; Cohen, Bruce M; Renshaw, Perry F

    2010-10-01

    Despite widely replicated abnormalities of gamma-aminobutyric acid (GABA) neurons in schizophrenia postmortem, few studies have measured tissue GABA levels in vivo. We used proton magnetic resonance spectroscopy to measure tissue GABA levels in participants with schizophrenia and healthy control subjects in the anterior cingulate cortex and parieto-occipital cortex. Twenty-one schizophrenia participants effectively treated on a stable medication regimen (mean age 39.0, 14 male) and 19 healthy control subjects (mean age 36.3, 12 male) underwent a proton magnetic resonance spectroscopy scan using GABA-selective editing at 4 Tesla after providing informed consent. Data were collected from two 16.7-mL voxels and analyzed using LCModel. We found elevations in GABA/creatine in the schizophrenia group compared with control subjects [F(1,65) = 4.149, p = .046] in both brain areas (15.5% elevation in anterior cingulate cortex, 11.9% in parieto-occipital cortex). We also found a positive correlation between GABA/creatine and glutamate/creatine, which was not accounted for by % GM or brain region. We found elevated GABA/creatinine in participants with chronically treated schizophrenia. Postmortem studies report evidence for dysfunctional GABAergic neurotransmission in schizophrenia. Elevated GABA levels, whether primary to illness or compensatory to another process, may be associated with dysfunctional GABAergic neurotransmission in chronic schizophrenia. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Detection of the in vivo conversion of 2-pyrrolidinone to gamma-aminobutyric acid in mouse brain.

    Science.gov (United States)

    Callery, P S; Stogniew, M; Geelhaar, L A

    1979-01-01

    Labeled gamma-aminobutyric acid was detected in mouse brain following intravenous injections of deuterium labeled 2-pyrrolidinone. [2H6]Pyrrolidinone was prepared by the reduction of [2H4]succinimide with lithium aluminum deuteride. Quantification was accomplished by a gas chromatography mass spectrometry assay method. gamma-Aminobutyric acid and internal standard, 5-aminovaleric acid, were converted to volatile derivatives by treatment with N,N-dimethylformamide dimethyl acetal. Quantitative estimates were derived from peak area measurements obtained from monitoring the parent ions of the gamma-aminobutyric acid and internal standard derivatives by repetitive scanning during the GC run. The conversion of pyrrolidinone to gamma-aminobutyric acid may provide a method for labeling central gamma-aminobutyric acid pools.

  11. Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis

    Science.gov (United States)

    Solanky, Bhavana S.; Muhlert, Nils; Tur, Carmen; Edden, Richard A. E.; Wheeler-Kingshott, Claudia A. M.; Miller, David H.; Thompson, Alan J.; Ciccarelli, Olga

    2015-01-01

    Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = −0.403 mM, 95% confidence intervals −0.792, −0.014, P = 0.043) and sensorimotor cortex (adjusted difference = −0.385 mM, 95% confidence intervals −0.667, −0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid

  12. Complete Genome Sequence of the Gamma-Aminobutyric Acid-Producing Strain Streptococcus thermophilus APC151.

    Science.gov (United States)

    Linares, Daniel M; Arboleya, Silvia; Ross, R Paul; Stanton, Catherine

    2017-04-27

    Here is presented the whole-genome sequence of Streptococcus thermophilus APC151, isolated from a marine fish. This bacterium produces gamma-aminobutyric acid (GABA) in high yields and is biotechnologically suitable to produce naturally GABA-enriched biofunctional yogurt. Its complete genome comprises 2,097 genes and 1,839,134 nucleotides, with an average G+C content of 39.1%. Copyright © 2017 Linares et al.

  13. GABAA [gamma-aminobutyric acid] type binding sites on membranes of spermatozoa

    International Nuclear Information System (INIS)

    Erdoe, S.L.; Wekerle, L.

    1990-01-01

    The binding of [ 3 H] gamma-aminobutyric acid (GABA) to seminal membranes of swines and rams was examined. Specific, GABA binding was demonstrated in both species, which showed the features of GABA A type receptors. The affinity of binding was similar in both species, whereas the density of seminal GABA binding sites was 5 times higher in swine. Our findings suggest that GABA may have a direct effect on spermatozoa

  14. The anticonvulsant gabapentin (neurontin) does not act through gamma-aminobutyric acid-B receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Mosbacher, Johannes; Elg, Susanne

    2002-01-01

    The actions of the anticonvulsant gabapentin [1-(aminomethyl)cyclohexaneacetic acid, Neurontin] have been somewhat enigmatic until recently, when it was claimed to be a gamma-aminobutyric acid-B (GABA(B)) receptor agonist acting exclusively at a heterodimeric complex containing the GABA(B(1a...... in vitro assays. In light of these results, we find it highly questionable that gabapentin is a GABA(B) receptor agonist. Hence, the anticonvulsive effects of the compound have to arise from GABA(B) receptor-independent mechanisms. This also implies that the first GABA(B) receptor splice variant...

  15. Vertical organization of gamma-aminobutyric acid-accumulating intrinsic neuronal systems in monkey cerebral cortex

    International Nuclear Information System (INIS)

    DeFelipe, J.; Jones, E.G.

    1985-01-01

    Light and electron microscopic methods were used to examine the neurons in the monkey cerebral cortex labeled autoradiographically following the uptake and transport of [ 3 H]-gamma-aminobutyric acid (GABA). Nonpyramidal cell somata in the sensory-motor areas and primary visual area (area 17) were labeled close to the injection site and at distances of 1 to 1.5 mm beyond the injection site, indicating labeling by retrograde axoplasmic transport. This labeling occurred preferentially in the vertical dimension of the cortex. Prior injections of colchicine, an inhibitor of axoplasmic transport, abolished all labeling of somata except those within the injection site. In each area, injections of superficial layers (I to III) produced labeling of clusters of cell somata in layer V, and injections of the deep layers (V and VI) produced labeling of clusters of cell somata in layers II and III. In area 17, injections of the superficial layers produced dense retrograde cell labeling in three bands: in layers IVC, VA, and VI. Vertically oriented chains of silver grains linked the injection sites with the resulting labeled cell clusters. In all areas, the labeling of cells in the horizontal dimension was insignificant. Electron microscopic examination of labeled neurons confirms that the neurons labeled at a distance from an injection site are nonpyramidal neurons, many with somata so small that they would be mistaken for neuroglial cells light microscopically. They receive few axosomatic synapses, most of which have symmetric membrane thickenings. The vertical chains of silver grains overlie neuronal processes identifiable as both dendrites and myelinated axons, but unmyelinated axons may also be included. The clusters of [ 3 H]GABA-labeled cells are joined to one another and to adjacent unlabeled cells by junctional complexes, including puncta adherentia and multi-lamellar cisternal complexes

  16. Residues in the extracellular loop 4 are critical for maintaining the conformational equilibrium of the gamma-aminobutyric acid transporter-1

    DEFF Research Database (Denmark)

    MacAulay, Nanna; Meinild, Anne-Kristine; Zeuthen, Thomas

    2003-01-01

    . Oocytes expressing M345H showed a decrease in apparent GABA affinity, an increase in apparent affinity for Na+, a shift in the charge/voltage (Q/Vm) relationship to more positive membrane potentials, and an increased Li+-induced leak current. Oocytes expressing T349H showed an increase in apparent GABA...... affinity, a decrease in apparent Na+ affinity, a profound shift in the Q/Vm relationship to more negative potentials, and a decreased Li+-induced leak current. The data are consistent with a shift in the conformational equilibrium of the mutant transporters, with M345H stabilized in an outward...

  17. Application of gamma-aminobutyric acid type A-benzodiazepine receptor imaging for study of neuropsychiatric disorders

    International Nuclear Information System (INIS)

    Bao Weiqi; Qiu Chun; Guan Yihui

    2012-01-01

    Gamma-aminobutyric acid type A-benzodiazepine receptors are heterogeneous polypeptide pentamers widely spread in the central nervous system on the neuron membrane. Different subunit combinations educe various neuro-inhibitory pharmacological effects such as sedative, hypnosis, anticonvulsion and anxiolysis. PET can be utilized to study the binding of the receptors in vivo. PET radioligands of gamma-aminobutyric acid type A-benzodiazepine receptors can be classified into 3 types: antagonists,agonists and reverse agonists, of which antagonist radiotracer 11 C-flumazenil is the most commonly applied in epilepsy, anxiety disorders, depression, vegetative state,addiction and other neuro-psychiatric disorders. (authors)

  18. Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice

    NARCIS (Netherlands)

    Zhang, Q.; Xiang, J.; Zhang, L.; Zhu, X.; Evers, J.B.; Werf, van der W.; Duan, L.

    2014-01-01

    Germinated brown rice is a well-known functional food due to its high content of gamma-aminobutyric acid (GABA). This study was designed to test the difference of producing GABA in two domesticated rice genotypes (indica and japonica rice), and the effects of adding exogenous glutamic acid or

  19. [The interaction between gamma-aminobutyric acid and other related neurotransmitters in depression].

    Science.gov (United States)

    Li, Zhen; An, Shu-Cheng; Li, Jiang-Na

    2014-06-01

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the central nervous system (CNS) in mammalian, which involved in several mood disorders such as anxiety, depression and schizophrenia. Nowadays, there are growing evidences showed that the depression is concerned with a deficiency in brain GABA. However, there are numerous studies based on the monoamine hypothesis and glutamatergic dysfunction, while the study on GABA is relatively less and scattered. Our aim is to discuss the relationship between depression and GABA by introducing the role of GABA receptors and the interaction between GABA and 5-hydroxytryptamine, dopamine and glutamic acid. It provides new ideas for further study on the pathogenesis and therapy of depression.

  20. Enrichment of Gamma-Aminobutyric Acid in Bean Sprouts: Exploring Biosynthesis of Plant Metabolite Using Common Household Reagents

    Science.gov (United States)

    Rojanarata, Theerasak; Plianwong, Samarwadee; Opanasopit, Praneet; Ngawhirunpat, Tanasait

    2018-01-01

    The enrichment of plant foods with gamma-aminobutyric acid (GABA) is currently an interesting issue in the field of nutraceuticals and can be used as an experiment for upper-division undergraduate students. Here, an interdisciplinary hands-on experiment to produce GABA-enriched mung bean sprouts using common household reagents is described. Based…

  1. Characterization of the gamma-aminobutyric acid receptor system in human brain gliomas

    International Nuclear Information System (INIS)

    Frattola, L.; Ferrarese, C.; Canal, N.; Gaini, S.M.; Galluso, R.; Piolti, R.; Trabucchi, M.

    1985-01-01

    The properties of [ 3 H]-gamma-aminobutyric acid [( 3 H]GABA) binding were studied in biopsied specimens from normal human brain and from 18 cases of human brain gliomas, made up of 6 astrocytomas, 6 glioblastomas, 3 oligodendrogliomas, and 3 medulloblastomas. In fresh membranes obtained from normal gray and white matter one population of Na+-dependent GABA receptors was observed, while in the frozen Triton X-100-treated membranes two distinct populations of Na+-independent binding sites were detected. Specific GABA binding sites in brain gliomas were shown only in frozen Triton X-100-treated membranes. As in normal tissue, these receptors are Na+-independent and bind [ 3 H]GABA with two distinct affinity components. The biochemical profiles of [ 3 H]GABA binding to membranes obtained from different tumors of glial origin are quite similar and cannot be related to the degree of malignancy of the neoplasia

  2. Effects of gamma-aminobutyric acid (GABA) on synaptogenesis and synaptic function

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Elster, L

    1998-01-01

    The correct establishment and function of synapses depend on a variety of factors, such as guidance of pre- and postsynaptic neurons as well as receptor development and localization. gamma-Aminobutyric acid (GABA) has a pronounced effect on these events and elicits differentiation of neurons......; that is, GABA acts as a trophic signal. Accordingly, activating preexisting GABA receptors, a trophic GABA signal enhances the growth rate of neuronal processes, facilitates synapse formation, and promotes synthesis of specific proteins. Transcription and de novo synthesis are initiated by the GABA signal......, but the intracellular link between GABA receptor activation and DNA transcription is largely unknown. GABA also controls the induction and development of functionally and pharmacologically different GABAA receptor subtypes. The induced receptors are likely to be inserted only into the synaptic membrane domain. However...

  3. Effects of gamma-aminobutyric acid on the Hering-Breuer inspiration-inhibiting reflex.

    Science.gov (United States)

    Aleksandrova, N P; Aleksandrov, V G; Ivanova, T G

    2010-02-01

    Acute experiments on rats were performed to study the effects of intraventricular microinjections of gamma-aminobutyric acid (GABA) on the volume-time parameters of external respiration and the inspiration-inhibiting Hering-Breuer reflex. The state of this reflex before and after GABA administration was assessed in terms of the extent of changes in the duration and amplitude of inspiratory oscillations in intrathoracic pressure in response to end-expiratory occlusion of the trachea. Administration of 20 microM GABA into the lateral ventricles of the brain decreased the minute ventilation (due to reductions in the respiratory frequency and respiratory volume), weakened respiratory muscle contractions, and decreased the peak airflow rate on inspiration and expiration. The response to end-expiratory occlusion decreased significantly after administration of GABA, demonstrating the involvement of GABAergic mechanisms in mediating the inspiration-inhibiting Hering-Breuer reflex.

  4. Embryonic cerebellar neurons accumulate [3H-gamma-aminobutyric acid: visualization of developing gamma-aminobutyric acid-utilizing neurons in vitro and in vivo

    International Nuclear Information System (INIS)

    Hatten, M.E.; Francois, A.M.; Napolitano, E.; Roffler-Tarlov, S.

    1984-01-01

    gamma-Aminobutyric acid (GABA) is the proposed neurotransmitter for four types of cerebellar neurons-Purkinje, Golgi, basket, and stellate neurons. With this investigation we have begun studies to establish when these neurons acquire their neurotransmitter ''identification''. Autoradiographic studies of both cultured embryonic (embryonic day 13) cerebellar cells and of intact embryonic cerebellum (embryonic day 13) were conducted with tritiated GABA. Two to 5% of the embryonic cerebellar cells accumulated [ 3 H]GABA in vitro. By morphological and immunocytochemical criteria, labeled cells were large neurons with either a thick, apical process, a multipolar shape, or were bipolar with longer processes. The identification of cells which accumulated [ 3 H]GABA as neuronal precursors was supported by the differential sensitivity to drugs that preferentially inhibit accumulation of [ 3 H]GABA by neurons and glia. The results of the in vitro experiments were confirmed and extended with in vivo experiments. When intact cerebellar tissue was removed at embryonic day 13, stripped of meninges and choroid plexus, exposed to low concentrations of [ 3 H]GABA, and processed for light microscopic autoradiography, heavily labeled cells were seen in the middle of the cerebellar anlage. Labeled cells were not seen in the ventricular zone of proliferating neuroblasts lining the fourth ventricle or in the external granular layer emerging at the lateral aspect of the pial surface. The accumulation of [ 3 H]GABA by these cells also showed the pharmacological characteristics of uptake by neurons. This study shows that among migrating, immature forms of the larger neurons of the embryonic cerebellum, there is a select group which accumulates [ 3 H]GABA and other classes of cells which do not. These results indicate very early acquisition of transmitter expression by cerebellar neurons, far in advance of their final positioning and establishment of synapses

  5. Gamma-Aminobutyric Acid Concentration is Reduced in Visual Cortex in Schizophrenia and Correlates with Orientation-Specific Surround Suppression

    OpenAIRE

    Yoon, Jong H.; Maddock, Richard J.; Rokem, Ariel; Silver, Michael A.; Minzenberg, Michael J.; Ragland, J. Daniel; Carter, Cameron S.

    2010-01-01

    The neural mechanisms underlying cognitive deficits in schizophrenia remain largely unknown. The gamma-aminobutyric acid (GABA) hypothesis proposes that reduced neuronal GABA concentration and neurotransmission results in cognitive impairments in schizophrenia. However, few in vivo studies have directly examined this hypothesis. We employed magnetic resonance spectroscopy (MRS) at high field to measure visual cortical GABA levels in 13 subjects with schizophrenia and 13 demographically matche...

  6. Gamma aminobutyric acid radioreceptor assay: a confirmatory quantitative assay for toxaphene in environmental and biological samples

    International Nuclear Information System (INIS)

    Saleh, M.A.; Blancato, J.N.

    1993-01-01

    Toxaphene is a complex mixture of polychlorinated monoterpenes, and was found to be acutely and chronically toxic to aquatic and wild life and posed a carcinogenic risk to humans before its ban in 1982. However, it is still found in the environment due to its relative persistence with an estimated half life time of about 10 years in soils. Toxaphenes neurotoxicity is attributed to a few isomers with a mode of action through binding to the chloride channel of the gamma-aminobutyric acid (GABA) receptor ionophore complex. [ 35 S] tertiary butylbicyclophosphorothionate (TBPS) with specific activity higher than 60 Ci/mmole has a high binding affinity to the same sites and is now commercially available and can be used to label the GABA receptor for the development of radioreceptor assay technique. The GABA receptor was prepared by a sequence of ultra centrifugation and dialysis of mammalian (rats, cows, catfish and goats) brain homogenates. The receptor is then labeled with [ 35 S] TBPS and the assay was conducted by measuring the displacement of radioactivity following incubation with the sample containing the analytes. The assay is fast, sensitive and requires very little or no sample preparation prior to the analysis. (Author)

  7. Food deprivation modulates gamma-aminobutyric acid receptors and peripheral benzodiazepine binding sites in rats.

    Science.gov (United States)

    Weizman, A; Bidder, M; Fares, F; Gavish, M

    1990-12-03

    The effect of 5 days of food deprivation followed by 5 days of refeeding on gamma-aminobutyric acid (GABA) receptors, central benzodiazepine receptors (CBR), and peripheral benzodiazepine binding sites (PBzS) was studied in female Sprague-Dawley rats. Starvation induced a decrease in the density of PBzS in peripheral organs: adrenal (35%; P less than 0.001), kidney (33%; P less than 0.01), and heart (34%; P less than 0.001). Restoration of [3H]PK 11195 binding to normal values was observed in all three organs after 5 days of refeeding. The density of PBzS in the ovary, pituitary, and hypothalamus was not affected by starvation. Food deprivation resulted in a 35% decrease in cerebellar GABA receptors (P less than 0.01), while CBR in the hypothalamus and cerebral cortex remained unaltered. The changes in PBzS observed in the heart and kidney may be related to the long-term metabolic stress associated with starvation and to the functional changes occurring in these organs. The down-regulation of the adrenal PBzS is attributable to the suppressive effect of hypercortisolemia on pituitary ACTH release. The reduction in cerebellar GABA receptors may be an adaptive response to food deprivation stress and may be relevant to the proaggressive effect of hunger.

  8. Gamma-aminobutyric acid (GABA)-B receptor 1 in cerebellar cortex of essential tremor.

    Science.gov (United States)

    Luo, C; Rajput, A H; Robinson, C A; Rajput, A

    2012-06-01

    Some reports suggest cerebellar dysfunction as the basis of essential tremor (ET). Several drugs with the action of gamma-aminobutyric acid (GABA) are known to improve ET. Autopsy studies were performed on brains from nine former patients followed at the Movement Disorders Clinic Saskatchewan, Canada, and compared with five normal control brains. We aimed to measure the concentration of GABA B receptor 1 (GBR1) in the brains of patients who had had ET and to compare them to the GABA concentration in brains of controls. Western blot was used to determine the expression of GBR1 in cerebellar cortex tissue. We found that compared to the controls, the ET brains had three different patterns of GBR1 protein concentration--two with high, four comparable, and three with marginally low levels. There was no association between the age of onset, severity or duration of tremor, the response to alcohol or other drugs and GBR1 level. Thus, we conclude that our study does not support that GBR1 is involved in ET. Further studies are needed to verify these results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. ANXIETY IN MAJOR DEPRESSION AND CEREBROSPINAL FLUID FREE GAMMA-AMINOBUTYRIC ACID

    Science.gov (United States)

    Mann, J. John; Oquendo, Maria A.; Watson, Kalycia Trishana; Boldrini, Maura; Malone, Kevin M.; Ellis, Steven P.; Sullivan, Gregory; Cooper, Thomas B.; Xie, Shan; Currier, Dianne

    2016-01-01

    Background Low gamma-aminobutyric acid (GABA) is implicated in both anxiety and depression pathophysiology. They are often comorbid, but most clinical studies have not examined these relationships separately. We investigated the relationship of cerebrospinal fluid (CSF) free GABA to the anxiety and depression components of a major depressive episode (MDE) and to monoamine systems. Methods and Materials Patients with a DSM-IV major depressive episode (N = 167: 130 major depressive disorder; 37 bipolar disorder) and healthy volunteers (N = 38) had CSF free GABA measured by gas chromatography mass spectroscopy. Monoamine metabolites were assayed by high performance liquid chromatography. Symptomatology was assessed by Hamilton depression rating scale. Results Psychic anxiety severity increased with age and correlated with lower CSF free GABA, controlling for age. CSF free GABA declined with age but was not related to depression severity. Other monoamine metabolites correlated positively with CSF GABA but not with psychic anxiety or depression severity. CSF free GABA was lower in MDD compared with bipolar disorder and healthy volunteers. GABA levels did not differ based on a suicide attempt history in mood disorders. Recent exposure to benzodiazepines, but not alcohol or past alcoholism, was associated with a statistical trend for more severe anxiety and lower CSF GABA. Conclusions Lower CSF GABA may explain increasing severity of psychic anxiety in major depression with increasing age. This relationship is not seen with monoamine metabolites, suggesting treatments targeting the GABAergic system should be evaluated in treatment-resistant anxious major depression and in older patients. PMID:24865448

  10. The association of plasma gamma-aminobutyric acid concentration with postoperative delirium in critically ill patients.

    Science.gov (United States)

    Yoshitaka, Shiho; Egi, Moritoki; Kanazawa, Tomoyuki; Toda, Yuichiro; Morita, Kiyoshi

    2014-12-01

    Delirium is a common complication in postoperative, critically ill patients. The mechanism of postoperative delirium is not well understood but many studies have shown significant associations between benzodiazepine use, alcohol withdrawal and cirrhosis, and an increased risk of delirium. We aimed to investigate a possible link with alterations of gamma-aminobutyric acid (GABA) activity. A prospective observational investigation of 40 patients > 20 years old who had undergone elective surgery with general anaesthesia and were expected to need postoperative intensive care for more than 48 hours. We assessed postoperative delirium using the confusion assessment method in the intensive care unit at 1 hour after the operation and on postoperative Day (POD) 1 and POD 2. We collected blood samples for measurement of plasma GABA concentrations before the operation and on POD 1 and 2. Postoperative delirium and perioperative plasma GABA concentrations in patients with and without delirium. Postoperative delirium occurred in 13 of the patients. Patients with delirium had significantly higher Acute Physiology and Chronic Health Evaluation II scores than patients without delirium. The mean plasma GABA concentration on POD 2 was significantly lower in patients with delirium than in those without delirium. After adjustment of relevant variables, plasma GABA concentration on POD 2 was independently associated with postoperative delirium. Plasma GABA level on POD 2 has a significant independent association with postoperative delirium.

  11. Gamma-aminobutyric acid aggravates nephrotoxicity induced by cisplatin in female rats.

    Science.gov (United States)

    Peysepar, Elham; Soltani, Nepton; Nematbakhsh, Mehdi; Eshraghi-Jazi, Fatemeh; Talebi, Ardeshir

    2016-01-01

    Cisplatin (CP) is a major antineoplastic drug for treatment of solid tumors. CP-induced nephrotoxicity may be gender-related. This is while gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in the central nervous system that has renoprotective impacts on acute renal injury. This study was designed to investigate the protective role of GABA against CP-induced nephrotoxicity in male and female rats. Sixty Wistar male and female rats were used in eight experimental groups. Both genders received GABA (50 μg/kg/day; i. p.) for 14 days and CP (2.5 mg/kg/day; i. p.) was added from day 8 to the end of the study, and they were compared with the control groups. At the end of the study, all animals were sacrificed and the serum levels of blood urea nitrogen (BUN), creatinine (Cr), nitrite, malondialdehyde (MDA), and magnesium (Mg) were measured. The kidney tissue damage was also determined via staining. CP significantly increased the serum levels of Cr and BUN, kidney weight, and kidney tissue damage score in both genders (PGABA did not attenuate these markers in males; even these biomarkers were intensified in females. Serum level of Mg, and testis and uterus weights did not alter in the groups. However, the groups were significantly different in terms of nitrite and MDA levels. It seems that GABA did not improve nephrotoxicity induced by CP-treated rats, and it exacerbated renal damage in female rats.

  12. Anxiety in major depression and cerebrospinal fluid free gamma-aminobutyric acid.

    Science.gov (United States)

    Mann, J John; Oquendo, Maria A; Watson, Kalycia Trishana; Boldrini, Maura; Malone, Kevin M; Ellis, Steven P; Sullivan, Gregory; Cooper, Thomas B; Xie, Shan; Currier, Dianne

    2014-10-01

    Low gamma-aminobutyric acid (GABA) is implicated in both anxiety and depression pathophysiology. They are often comorbid, but most clinical studies have not examined these relationships separately. We investigated the relationship of cerebrospinal fluid (CSF) free GABA to the anxiety and depression components of a major depressive episode (MDE) and to monoamine systems. Patients with a DSM-IV major depressive episode (N = 167: 130 major depressive disorder; 37 bipolar disorder) and healthy volunteers (N = 38) had CSF free GABA measured by gas chromatography mass spectroscopy. Monoamine metabolites were assayed by high performance liquid chromatography. Symptomatology was assessed by Hamilton depression rating scale. Psychic anxiety severity increased with age and correlated with lower CSF free GABA, controlling for age. CSF free GABA declined with age but was not related to depression severity. Other monoamine metabolites correlated positively with CSF GABA but not with psychic anxiety or depression severity. CSF free GABA was lower in MDD compared with bipolar disorder and healthy volunteers. GABA levels did not differ based on a suicide attempt history in mood disorders. Recent exposure to benzodiazepines, but not alcohol or past alcoholism, was associated with a statistical trend for more severe anxiety and lower CSF GABA. Lower CSF GABA may explain increasing severity of psychic anxiety in major depression with increasing age. This relationship is not seen with monoamine metabolites, suggesting treatments targeting the GABAergic system should be evaluated in treatment-resistant anxious major depression and in older patients. © 2014 Wiley Periodicals, Inc.

  13. Gamma-aminobutyric acid (GABA) and neuropeptides in neural areas mediating motion-induced emesis

    Science.gov (United States)

    Damelio, F.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid and the neuropeptides substance P and Met-enkephalin in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), dorsal motor nucleus of the vagus nerve (DMNV), and lateral vestibular nucleus (LVN). Glutamic acid decarboxylase immunoreactive (GAD-IR) terminals and fibers were observed in the AP and particularly in the ASP. A gradual decrease in the density of terminals was seen towards the solitary complex. The DMNV revealed irregularly scattered GAD-IR terminals within the neuropil or closely surrounding neuronal cell bodies. The LVN, particularly the dorsal division, showed numerous axon terminals which were mostly localize around large neurons and their proximal dendrites. Substance P immunoreactive (SP-IR) terminals and fibers showed high density in the solitary complex, in particular within the lateral division. The ASP showed medium to low density of SP-IR fibers and terminals. The AP exhibited a small number of fibers and terminals irregularly distributed. The DMNV revealed a high density of SP-IR terminals and fibers that were mainly concentrated in the periphery. Very few terminals were detected in the LVN. Met-enkephalin immunoreactive (Met-Enk-IR) fibers and terminals showed high density and uniform distribution in the DMNV. Scattered terminals and fibers were observed in the AP, ASP, and NTS (particularly the lateral division). The very few fibers were observed in the LVN surrounded the neuronal cell bodies. The present report is part of a study designed to investigate the interaction between neuropeptides and conventional neurotransmitters under conditions producing motion sickness and in the process of sensory-motor adaptation.

  14. Antisera to gamma-aminobutyric acid. I. Production and characterization using a new model system.

    Science.gov (United States)

    Hodgson, A J; Penke, B; Erdei, A; Chubb, I W; Somogyi, P

    1985-03-01

    Antisera to the amino acid gamma-aminobutyric acid (GABA) have been developed with the aim of immunohistochemical visualization of neurons that use it as a neurotransmitter. GABA bound to bovine serum albumin was the immunogen. The reactivities of the sera to GABA and a variety of structurally related compounds were tested by coupling these compounds to nitrocellulose paper activated with polylysine and glutaraldehyde and incubating the paper with the unlabeled antibody enzyme method, thus simulating immunohistochemistry of tissue sections. The antisera did not react with L-glutamate, L-aspartate, D-aspartate, glycine, taurine, L-glutamine, L-lysine, L-threonine, L-alanine, alpha-aminobutyrate, beta-aminobutyrate, putrescine, or delta-aminolevulinate. There was cross-reaction with gamma-amino-beta-hydroxybutyrate, 1-10%, and the homologues of GABA: beta-alanine, 1-10%, delta-aminovalerate, approximately 10%, and epsilon-amino-caproate, approximately 10%. The antisera reacted slightly with the dipeptide gamma-aminobutyrylleucine, but not carnosine or homocarnosine. Immunostaining of GABA was completely abolished by adsorption of the sera to GABA coupled to polyacrylamide beads by glutaraldehyde. The immunohistochemical model is simple, amino acids and peptides are bound in the same way as in aldehyde-fixed tissue and, in contrast to radioimmunoassay, it uses an immunohistochemical detection system. This method has enabled us to define the high specificity of anti-GABA sera and to use them in some novel ways. The model should prove useful in assessing the specificity of other antisera.

  15. Postnatal changes in somatic gamma-aminobutyric acid signalling in the rat hippocampus.

    Science.gov (United States)

    Tyzio, Roman; Minlebaev, Marat; Rheims, Sylvain; Ivanov, Anton; Jorquera, Isabelle; Holmes, Gregory L; Zilberter, Yuri; Ben-Ari, Yehezkiel; Khazipov, Rustem

    2008-05-01

    During postnatal development of the rat hippocampus, gamma-aminobutyric acid (GABA) switches its action on CA3 pyramidal cells from excitatory to inhibitory. To characterize the underlying changes in the GABA reversal potential, we used somatic cell-attached recordings of GABA(A) and N-methyl-D-aspartate channels to monitor the GABA driving force and resting membrane potential, respectively. We found that the GABA driving force is strongly depolarizing during the first postnatal week. The strength of this depolarization rapidly declines with age, although GABA remains slightly depolarizing, by a few millivolts, even in adult neurons. Reduction in the depolarizing GABA driving force was due to a progressive negative shift of the reversal potential of GABA currents. Similar postnatal changes in GABA signalling were also observed using the superfused hippocampus preparation in vivo, and in the hippocampal interneurons in vitro. We also found that in adult pyramidal cells, somatic GABA reversal potential is maintained at a slightly depolarizing level by bicarbonate conductance, chloride-extrusion and chloride-loading systems. Thus, the postnatal excitatory-to-inhibitory switch in somatic GABA signalling is associated with a negative shift of the GABA reversal potential but without a hyperpolarizing switch in the polarity of GABA responses. These results also suggest that in adult CA3 pyramidal cells, somatic GABAergic inhibition takes place essentially through shunting rather than hyperpolarization. Apparent hyperpolarizing GABA responses previously reported in the soma of CA3 pyramidal cells are probably due to cell depolarization during intracellular or whole-cell recordings.

  16. Inhibitory actions of the gamma-aminobutyric acid in pediatric Sturge-Weber syndrome.

    Science.gov (United States)

    Tyzio, Roman; Khalilov, Ilgam; Represa, Alfonso; Crepel, Valerie; Zilberter, Yuri; Rheims, Sylvain; Aniksztejn, Laurent; Cossart, Rosa; Nardou, Romain; Mukhtarov, Marat; Minlebaev, Marat; Epsztein, Jérôme; Milh, Mathieu; Becq, Helene; Jorquera, Isabel; Bulteau, Christine; Fohlen, Martine; Oliver, Viviana; Dulac, Olivier; Dorfmüller, Georg; Delalande, Olivier; Ben-Ari, Yehezkel; Khazipov, Roustem

    2009-08-01

    The mechanisms of epileptogenesis in Sturge-Weber syndrome (SWS) are unknown. We explored the properties of neurons from human pediatric SWS cortex in vitro and tested in particular whether gamma-aminobutyric acid (GABA) excites neurons in SWS cortex, as has been suggested for various types of epilepsies. Patch-clamp and field potential recordings and dynamic biphoton imaging were used to analyze cortical tissue samples obtained from four 6- to 14-month-old pediatric SWS patients during surgery. Neurons in SWS cortex were characterized by a relatively depolarized resting membrane potential, as was estimated from cell-attached recordings of N-methyl-D-aspartate channels. Many cells spontaneously fired action potentials at a rate proportional to the level of neuronal depolarization. The reversal potential for GABA-activated currents, assessed by cell-attached single channel recordings, was close to the resting membrane potential. All spontaneously firing neurons recorded in cell-attached mode or imaged with biphoton microscopy were inhibited by GABA. Spontaneous epileptiform activity in the form of recurrent population bursts was suppressed by glutamate receptor antagonists, the GABA(A) receptor agonist isoguvacine, and the positive allosteric GABA(A) modulator diazepam. Blockade of GABA(A) receptors aggravated spontaneous epileptiform activity. The NKCC1 antagonist bumetanide had little effect on epileptiform activity. SWS cortical neurons have a relatively depolarized resting membrane potential and spontaneously fire action potentials that may contribute to increased network excitability. In contrast to previous data depicting excitatory and proconvulsive actions of GABA in certain pediatric and adult epilepsies, GABA plays mainly an inhibitory and anticonvulsive role in SWS pediatric cortex.

  17. Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit.

    Science.gov (United States)

    Takehara, Akio; Hosokawa, Masayo; Eguchi, Hidetoshi; Ohigashi, Hiroaki; Ishikawa, Osamu; Nakamura, Yusuke; Nakagawa, Hidewaki

    2007-10-15

    Gamma-aminobutyric acid (GABA) functions primarily as an inhibitory neurotransmitter in the mature central nervous system, and GABA/GABA receptors are also present in nonneural tissues, including cancer, but their precise function in nonneuronal or cancerous cells has thus far been poorly defined. Through the genome-wide cDNA microarray analysis of pancreatic ductal adenocarcinoma (PDAC) cells as well as subsequent reverse transcription-PCR and Northern blot analyses, we identified the overexpression of GABA receptor pi subunit (GABRP) in PDAC cells. We also found the expression of this peripheral type GABAA receptor subunit in few adult human organs. Knockdown of endogenous GABRP expression in PDAC cells by small interfering RNA attenuated PDAC cell growth, suggesting its essential role in PDAC cell viability. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRP-expressing PDAC cells, but not GABRP-negative cells, and GABAA receptor antagonists inhibited this growth-promoting effect by GABA. The HEK293 cells constitutively expressing exogenous GABRP revealed the growth-promoting effect of GABA treatment. Furthermore, GABA treatment in GABRP-positive cells increased intracellular Ca2+ levels and activated the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) cascade. Clinical PDAC tissues contained a higher level of GABA than normal pancreas tissues due to the up-regulation of glutamate decarboxylase 1 expression, suggesting their autocrine/paracrine growth-promoting effect in PDACs. These findings imply that GABA and GABRP could play important roles in PDAC development and progression, and that this pathway can be a promising molecular target for the development of new therapeutic strategies for PDAC.

  18. Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia.

    Science.gov (United States)

    Enomoto, Takeshi; Tse, Maric T; Floresco, Stan B

    2011-03-01

    Perturbations in gamma-aminobutyric acid (GABA)-related markers have been reported in the prefrontal cortex of schizophrenic patients. However, a preclinical assessment of how suppression of prefrontal cortex GABA activity may reflect behavioral and cognitive pathologies observed in schizophrenia is forthcoming. We assessed the effects of pharmacologic blockade of prefrontal cortex GABA(A) receptors in rats on executive functions and other behaviors related to schizophrenia, as well as neural activity of midbrain dopamine neurons. Blockade of prefrontal cortex GABA(A) receptors with bicuculline (12.5-50 ng) did not affect working memory accuracy but did increase response latencies, resembling speed of processing deficits observed in schizophrenia. Prefrontal cortex GABA(A) blockade did not impede simple discrimination or reversal learning but did impair set-shifting in a manner dependent on when these treatments were given. Reducing GABA activity before the set-shift impaired the ability to acquire a novel strategy, whereas treatment before the initial discrimination increased perseveration during the shift. Latent inhibition was unaffected by bicuculline infusions before the preexposure/conditioning phases, suggesting that reduced prefrontal cortex GABA activity does not impair "learned irrelevance." GABA(A) blockade increased locomotor activity and showed synergic effects with a subthreshold dose of amphetamine. Furthermore, reducing medial prefrontal cortex GABA activity selectively increased phasic burst firing of ventral tegmental area dopamine neurons, without altering the their overall population activity. These results suggest that prefrontal cortex GABA hypofunction may be a key contributing factor to deficits in speed of processing, cognitive flexibility, and enhanced phasic dopamine activity observed in schizophrenia. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Cortical Gamma-Aminobutyric Acid and Glutamate in Posttraumatic Stress Disorder and Their Relationships to Self-Reported Sleep Quality

    Science.gov (United States)

    Meyerhoff, Dieter J.; Mon, Anderson; Metzler, Thomas; Neylan, Thomas C.

    2014-01-01

    Study Objectives: To test if posttraumatic stress disorder (PTSD) is associated with low brain gamma-aminobutyric acid (GABA) levels and if reduced GABA is mediated by poor sleep quality. Design: Laboratory study using in vivo proton magnetic resonance spectroscopy (1H MRS) and behavioral testing. Setting: VA Medical Center Research Service, Psychiatry and Radiology. Patients or Participants: Twenty-seven patients with PTSD (PTSD+) and 18 trauma-exposed controls without PTSD (PTSD−), recruited from United States Army reservists, Army National Guard, and mental health clinics. Interventions: None. Measurements and Results: 1H MRS at 4 Tesla yielded spectra from three cortical brain regions. In parieto-occipital and temporal cortices, PTSD+ had lower GABA concentrations than PTSD−. As expected, PTSD+ had higher depressive and anxiety symptom scores and a higher Insomnia Severity Index (ISI) score. Higher ISI correlated with lower GABA and higher glutamate levels in parieto-occipital cortex and tended to correlate with lower GABA in the anterior cingulate. The relationship between parieto-occipital GABA and PTSD diagnosis was fully mediated through insomnia severity. Lower N-acetylaspartate and glutamate concentrations in the anterior cingulate cortex correlated with higher arousal scores, whereas depressive and anxiety symptoms did generally not influence metabolite concentrations. Conclusions: Low brain gamma-aminobutyric acid (GABA) concentration in posttraumatic stress disorder (PTSD) is consistent with most findings in panic and social anxiety disorders. Low GABA associated with poor sleep quality is consistent with the hyperarousal theory of both primary insomnia and PTSD. Our data demonstrate that poor sleep quality mediates low parieto-occipital GABA in PTSD. The findings have implications for PTSD treatment approaches. Citation: Meyerhoff DJ, Mon A, Metzler T, Neylan TC. Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and

  20. In Vivo Dentate Nucleus Gamma-aminobutyric Acid Concentration in Essential Tremor vs. Controls.

    Science.gov (United States)

    Louis, Elan D; Hernandez, Nora; Dyke, Jonathan P; Ma, Ruoyun E; Dydak, Ulrike

    2018-04-01

    Despite its high prevalence, essential tremor (ET) is among the most poorly understood neurological diseases. The presence and extent of Purkinje cell (PC) loss in ET is the subject of controversy. PCs are a major storehouse of central nervous system gamma-aminobutyric acid (GABA), releasing GABA at the level of the dentate nucleus. It is therefore conceivable that cerebellar dentate nucleus GABA concentration could be an in vivo marker of PC number. We used in vivo 1 H magnetic resonance spectroscopy (MRS) to quantify GABA concentrations in two cerebellar volumes of interest, left and right, which included the dentate nucleus, comparing 45 ET cases to 35 age-matched controls. 1 H MRS was performed using a 3.0-T Siemens Tim Trio scanner. The MEGA-PRESS J-editing sequence was used for GABA detection in two cerebellar volumes of interest (left and right) that included the dentate nucleus. The two groups did not differ with respect to our primary outcome of GABA concentration (given in institutional units). For the right dentate nucleus, [GABA] in ET cases = 2.01 ± 0.45 and [GABA] in controls = 1.86 ± 0.53, p = 0.17. For the left dentate nucleus, [GABA] in ET cases = 1.68 ± 0.49 and [GABA] controls = 1.80 ± 0.53, p = 0.33. The controls had similar dentate nucleus [GABA] in the right vs. left dentate nucleus (p = 0.52); however, in ET cases, the value on the right was considerably higher than that on the left (p = 0.001). We did not detect a reduction in dentate nucleus GABA concentration in ET cases vs. One interpretation of the finding is that it does not support the existence of PC loss in ET; however, an alternative interpretation is the observed pattern could be due to the effects of terminal sprouting in ET (i.e., collateral sprouting from surviving PCs making up for the loss of GABA-ergic terminals from PC degeneration). Further research is needed.

  1. The Role of Ventral Tegmental Area Gamma-Aminobutyric Acid in Chronic Neuropathic Pain after Spinal Cord Injury in Rats.

    Science.gov (United States)

    Ko, Moon Yi; Jang, Eun Young; Lee, June Yeon; Kim, Soo Phil; Whang, Sung Hun; Lee, Bong Hyo; Kim, Hee Young; Yang, Chae Ha; Cho, Hee Jung; Gwak, Young S

    2018-04-20

    Spinal cord injury (SCI) frequently results in chronic neuropathic pain (CNP). However, the understanding of brain neural circuits in CNP modulation is unclear. The present study examined the changes of ventral tegmental area (VTA) putative GABAergic and dopaminergic neuronal activity with CNP attenuation in rats. SCI was established by T10 clip compression injury (35 g, 1 min) in rats, and neuropathic pain behaviors, in vivo extracellular single-cell recording of putative VTA gamma-aminobutyric acid (GABA)/dopamine neurons, extracellular GABA level, glutamic acid decarboxylase (GAD), and vesicular GABA transporters (VGATs) were measured in the VTA, respectively. The results revealed that extracellular GABA level was significantly increased in the CNP group (50.5 ± 18.9 nM) compared to the sham control group (10.2 ± 1.7 nM). In addition, expression of GAD 65/67 , c-Fos, and VGAT exhibited significant increases in the SCI groups compared to the sham control group. With regard to neuropathic pain behaviors, spontaneous pain measured by ultrasound vocalizations (USVs) and evoked pain measured by paw withdrawal thresholds showed significant alteration, which was reversed by intravenous (i.v.) administration of morphine (0.5-5.0 mg/kg). With regard to in vivo electrophysiology, VTA putative GABAergic neuronal activity (13.6 ± 1.7 spikes/sec) and putative dopaminergic neuronal activity (2.4 ± 0.8 spikes/sec) were increased and decreased, respectively, in the SCI group compared to the sham control group. These neuronal activities were reversed by i.v. administration of morphine. The present study suggests that chronic increase of GABAergic neuronal activity suppresses dopaminergic neuronal activity in the VTA and is responsible for negative emotion and motivation for attenuation of SCI-induced CNP.

  2. Prefrontal gamma-aminobutyric acid type A receptor insertion controls cue-induced relapse to nicotine seeking.

    Science.gov (United States)

    Lubbers, Bart R; van Mourik, Yvar; Schetters, Dustin; Smit, August B; De Vries, Taco J; Spijker, Sabine

    2014-11-01

    Current smoking cessation therapies offer limited success, as relapse rates remain high. Nicotine, which is the major component of tobacco smoke, is thought to be primarily responsible for the addictive properties of tobacco. However, little is known about the molecular mechanisms underlying nicotine relapse, hampering development of more effective therapies. The objective of this study was to elucidate the role of medial prefrontal cortex (mPFC) glutamatergic and gamma-aminobutyric acid (GABA)ergic receptors in controlling relapse to nicotine seeking. Using an intravenous self-administration model, we studied glutamate and gamma-aminobutyric acid receptor regulation in the synaptic membrane fraction of the rat mPFC following extinction and cue-induced relapse to nicotine seeking. Subsequently, we locally intervened at the level of GABAergic signaling by using a mimetic peptide of the GABA receptor associated protein-interacting domain of GABA type A (GABAA) receptor subunit γ2 (TAT-GABAγ2) and muscimol, a GABAA receptor agonist. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors were not regulated after the 30-min relapse test. However, GABAA receptor subunits α1 and γ2 were upregulated, and interference with GABAA receptor insertion in the cell membrane using the TAT-GABAγ2 peptide in the dorsal mPFC, but not the ventral mPFC, significantly increased responding during relapse. Increasing GABAA transmission with muscimol in the dorsal and ventral mPFC attenuated relapse. These data indicate that cue-induced relapse entails a GABAergic plasticity mechanism that limits nicotine seeking by restoring inhibitory control in the dorsal mPFC. GABAA receptor-mediated neurotransmission in the dorsal mPFC constitutes a possible future therapeutic target for maintaining smoking abstinence. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Measurement of gamma-aminobutyric acid in human cerebrospinal fluid: radioreceptor assay using [3H]muscimol

    International Nuclear Information System (INIS)

    Baraczka, K.; Sperk, G.

    1981-01-01

    A method is described for the determination of gamma-aminobutyric acid (GABA) levels in human cerebrospinal fluid by modification of the radioreceptor assay utilizing [ 3 H]muscimol as labelled ligand. This method is compared with the radioreceptor assay using [ 3 H]GABA as labelled ligand. Although the [ 3 H]muscimol assay is less sensitive than the [ 3 H]GABA method, it offers the advantage of being more rapid due to the use of a filtration step instead of the usual, more time-consuming centrifugation of the samples. Samples of CSF of patients with various neurological or psychiatric disturbances were analysed. There was a satisfactory correlation between the GABA values obtained by the two assays. (Auth.)

  4. Determination of gamma-aminobutyric acid in food matrices by isotope dilution hydrophilic interaction chromatography coupled to mass spectrometry.

    Science.gov (United States)

    Zazzeroni, Raniero; Homan, Andrew; Thain, Emma

    2009-08-01

    The estimation of the dietary intake of gamma-aminobutyric acid (GABA) is dependent upon the knowledge of its concentration values in food matrices. To this end, an isotope dilution liquid chromatography-mass spectrometry method has been developed employing the hydrophilic interaction chromatography technique for analyte separation. This approach enabled accurate quantification of GABA in apple, potato, soybeans, and orange juice without the need of a pre- or post-column derivatization reaction. A selective and precise analytical measurement has been obtained with a triple quadrupole mass spectrometer operating in multiple reaction monitoring using the method of standard additions and GABA-d(6) as an internal standard. The concentrations of GABA found in the matrices tested are 7 microg/g of apple, 342 microg/g of potatoes, 211 microg/g of soybeans, and 344 microg/mL of orange juice.

  5. A ketogenic diet modifies glutamate, gamma-aminobutyric acid and agmatine levels in the hippocampus of rats: A microdialysis study.

    Science.gov (United States)

    Calderón, Naima; Betancourt, Luis; Hernández, Luis; Rada, Pedro

    2017-03-06

    The ketogenic diet (KD) is acknowledged as an unconventional option in the treatment of epilepsy. Several lines of investigation point to a possible role of glutamate and gamma-aminobutyric acid (GABA) as main contributors in this protective effect. Other biomolecules could also be involved in the beneficial consequence of the KD, for example, the diamine agmatine has been suggested to block imidazole and glutamate NMDA receptor and serves as an endogenous anticonvulsant in different animal models of epilepsy. In the present report, we have used microdialysis coupled to capillary electrophoresis to monitor microdialysate levels of GABA, glutamate and agmatine in the hippocampus of rats submitted to a KD for 15days compared to rats on a normal rat chow diet. A significant increase in GABA and agmatine levels while no change in glutamate levels was observed. These results support the notion that the KD modifies different transmitters favoring inhibitory over excitatory neurotransmitters. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and their relationships to self-reported sleep quality.

    Science.gov (United States)

    Meyerhoff, Dieter J; Mon, Anderson; Metzler, Thomas; Neylan, Thomas C

    2014-05-01

    To test if posttraumatic stress disorder (PTSD) is associated with low brain gamma-aminobutyric acid (GABA) levels and if reduced GABA is mediated by poor sleep quality. Laboratory study using in vivo proton magnetic resonance spectroscopy (1H MRS) and behavioral testing. VA Medical Center Research Service, Psychiatry and Radiology. Twenty-seven patients with PTSD (PTSD+) and 18 trauma-exposed controls without PTSD (PTSD-), recruited from United States Army reservists, Army National Guard, and mental health clinics. None. 1H MRS at 4 Tesla yielded spectra from three cortical brain regions. In parieto-occipital and temporal cortices, PTSD+ had lower GABA concentrations than PTSD-. As expected, PTSD+ had higher depressive and anxiety symptom scores and a higher Insomnia Severity Index (ISI) score. Higher ISI correlated with lower GABA and higher glutamate levels in parieto-occipital cortex and tended to correlate with lower GABA in the anterior cingulate. The relationship between parieto-occipital GABA and PTSD diagnosis was fully mediated through insomnia severity. Lower N-acetylaspartate and glutamate concentrations in the anterior cingulate cortex correlated with higher arousal scores, whereas depressive and anxiety symptoms did generally not influence metabolite concentrations. Low brain gamma-aminobutyric acid (GABA) concentration in posttraumatic stress disorder (PTSD) is consistent with most findings in panic and social anxiety disorders. Low GABA associated with poor sleep quality is consistent with the hyperarousal theory of both primary insomnia and PTSD. Our data demonstrate that poor sleep quality mediates low parieto-occipital GABA in PTSD. The findings have implications for PTSD treatment approaches.

  7. Gamma-aminobutyric acid agonists for antipsychotic-induced tardive dyskinesia.

    Science.gov (United States)

    Alabed, Samer; Latifeh, Youssef; Mohammad, Husam Aldeen; Bergman, Hanna

    2018-04-17

    Chronic antipsychotic drug treatment may cause tardive dyskinesia (TD), a long-term movement disorder. Gamma-aminobutyric acid (GABA) agonist drugs, which have intense sedative properties and may exacerbate psychotic symptoms, have been used to treat TD. 1. Primary objectiveThe primary objective was to determine whether using non-benzodiazepine GABA agonist drugs for at least six weeks was clinically effective for the treatment of antipsychotic-induced TD in people with schizophrenia, schizoaffective disorder or other chronic mental illnesses.2. Secondary objectivesThe secondary objectives were as follows.To examine whether any improvement occurred with short periods of intervention (less than six weeks) and, if this did occur, whether this effect was maintained at longer periods of follow-up.To examine whether there was a differential effect between the various compounds.To test the hypothesis that GABA agonist drugs are most effective for a younger age group (less than 40 years old). We searched the Cochrane Schizophrenia Group Trials Register (last searched April 2017), inspected references of all identified studies for further trials, and, when necessary, contacted authors of trials for additional information. We included randomised controlled trials of non-benzodiazepine GABA agonist drugs in people with antipsychotic-induced TD and schizophrenia or other chronic mental illness. Two review authors independently selected and critically appraised studies, extracted and analysed data on an intention-to-treat basis. Where possible and appropriate we calculated risk ratios (RRs) and their 95% confidence intervals (CIs). For continuous data we calculated mean differences (MD). We assumed that people who left early had no improvement. We contacted investigators to obtain missing information. We assessed risk of bias for included studies and created a 'Summary of findings' table using GRADE. We included 11 studies that randomised 343 people. Overall, the risk of bias

  8. Somatostatin-Positive Gamma-Aminobutyric Acid Interneuron Deficits in Depression: Cortical Microcircuit and Therapeutic Perspectives.

    Science.gov (United States)

    Fee, Corey; Banasr, Mounira; Sibille, Etienne

    2017-10-15

    The functional integration of external and internal signals forms the basis of information processing and is essential for higher cognitive functions. This occurs in finely tuned cortical microcircuits whose functions are balanced at the cellular level by excitatory glutamatergic pyramidal neurons and inhibitory gamma-aminobutyric acidergic (GABAergic) interneurons. The balance of excitation and inhibition, from cellular processes to neural network activity, is characteristically disrupted in multiple neuropsychiatric disorders, including major depressive disorder (MDD), bipolar disorder, anxiety disorders, and schizophrenia. Specifically, nearly 3 decades of research demonstrate a role for reduced inhibitory GABA level and function across disorders. In MDD, recent evidence from human postmortem and animal studies suggests a selective vulnerability of GABAergic interneurons that coexpress the neuropeptide somatostatin (SST). Advances in cell type-specific molecular genetics have now helped to elucidate several important roles for SST interneurons in cortical processing (regulation of pyramidal cell excitatory input) and behavioral control (mood and cognition). Here, we review evidence for altered inhibitory function arising from GABAergic deficits across disorders and specifically in MDD. We then focus on properties of the cortical microcircuit, where SST-positive GABAergic interneuron deficits may disrupt functioning in several ways. Finally, we discuss the putative origins of SST cell deficits, as informed by recent research, and implications for therapeutic approaches. We conclude that deficits in SST interneurons represent a contributing cellular pathology and therefore a promising target for normalizing altered inhibitory function in MDD and other disorders with reduced SST cell and GABA functions. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves.

    Science.gov (United States)

    Tamura, Takayoshi; Noda, Masafumi; Ozaki, Moeko; Maruyama, Masafumi; Matoba, Yasuyuki; Kumagai, Takanori; Sugiyama, Masanori

    2010-01-01

    In the present study, we successfully isolated a carrot leaf-derived lactic acid bacterium that produces gamma-aminobutyric acid (GABA) from monosodium L-glutamate (L-MSG) at a hyper conversion rate. The GABA-producing bacterium, identified as Enterococcus (E.) avium G-15, produced 115.7±6.4 g/l GABA at a conversion rate of 86.0±5.0% from the added L-MSG under the optimum culture condition by a continuous L-MSG feeding method using a jar-fermentor, suggesting that the bacterium displays a great potential ability for the commercial-level fermentation production of GABA. Using the reverse transcription polymerase chain reaction (RT-PCR) method, we analyzed the expression of genes for the GABA transporter and glutamate decarboxylase, designated gadT and gadG, respectively, which were cloned from the E. avium G-15 chromosome. Both genes were expressed even without the added L-MSG, but their expression was enhanced by the addition of L-MSG.

  10. Gamma-aminobutyric acid esters. 1. Synthesis, brain uptake, and pharmacological studies of aliphatic and steroid esters of gamma-aminobutyric acid

    International Nuclear Information System (INIS)

    Shashoua, V.E.; Jacob, J.N.; Ridge, R.; Campbell, A.; Baldessarini, R.J.

    1984-01-01

    Labeled and unlabeled aliphatic and steroid esters of gamma-amino[U- 14 C]butyric acid (GABA) were synthesized and tested for their capacity to penetrate the blood-brain barrier and for evidence of central neuropharmacological activity in rodents. The uptake of the labeled 9,12,15-octadecatrienyl (linolenyl), 3-cholesteryl, 1-butyl, and the 9-fluoro-11 beta,17-dihydroxy-16 alpha-methyl-3,20-dioxopregna -1,4-dien-21-yl (dexamethasone) esters of GABA into mouse brain increased 2-, 25-, 74-, and 81-fold over GABA, respectively. The cholesteryl ester of GABA depressed the general motor activity of mice and rats in a dose-dependent manner, whereas the 1-butyl, linolenyl, and dexamethasone esters were inactive by this test. Studies of the rates of hydrolysis, GABA receptor binding capacity, and octanol/water partition coefficients indicated that pharmacological activity of the esters after entry into the central nervous system (CNS) was dependent on their capacity to release GABA by enzymatic hydrolysis and their lipid solubility

  11. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase.

    Science.gov (United States)

    Okai, Naoko; Takahashi, Chihiro; Hatada, Kazuki; Ogino, Chiaki; Kondo, Akihiko

    2014-01-01

    Gamma-aminobutyric acid (GABA), a building block of the biodegradable plastic polyamide 4, is synthesized from glucose by Corynebacterium glutamicum that expresses Escherichia coli glutamate decarboxylase (GAD) B encoded by gadB. This strain was engineered to produce GABA more efficiently from biomass-derived sugars. To enhance GABA production further by increasing the intracellular concentration of its precursor glutamate, we focused on engineering pknG (encoding serine/threonine protein kinase G), which controls the activity of 2-oxoglutarate dehydrogenase (Odh) in the tricarboxylic acid cycle branch point leading to glutamate synthesis. We succeeded in expressing GadB in a C. glutamicum strain harboring a deletion of pknG. C. glutamicum strains GAD and GAD ∆pknG were cultured in GP2 medium containing 100 g L(-1) glucose and 0.1 mM pyridoxal 5'-phosphate. Strain GAD∆pknG produced 31.1 ± 0.41 g L(-1) (0.259 g L(-1) h(-1)) of GABA in 120 hours, representing a 2.29-fold higher level compared with GAD. The production yield of GABA from glucose by GAD∆pknG reached 0.893 mol mol(-1).

  12. Effects of exogenous gamma-aminobutyric acid on α-amylase activity in the aleurone of barley seeds.

    Science.gov (United States)

    Sheng, Yidi; Xiao, Huiyuan; Guo, Chunli; Wu, Hong; Wang, Xiaojing

    2018-03-03

    Gamma-aminobutyric acid (GABA), a nonprotein amino acid, often accumulates in plants exposed to certain environmental stimuli. Previous studies indicated that a closed relationship existed between endogenous GABA and seed germination. However, there are few studies on the effect of exogenous GABA on seed germination. The objective of this study was to explore whether exogenous GABA affected α-amylase activity which the activation is an important stage in seed germination. The level of endogenous GABA in barley seeds rose gradually during germination, suggesting that endogenous GABA was involved in germination. We measured starch degradation under application of various concentration GABA and found that GABA promoted seed starch degradation with a dose-responsive effect. The relationship between GABA and α-amylase activity was investigated by treating barley aleurone with exogenous GABA. The result showed that α-amylase activity began to rise after about 24 h and reached a peak at 48 h. Molecular evidence suggested that GABA increased α-amylase gene expression. We explore the possible roles played by GABA in signal transduction. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis.

    Science.gov (United States)

    Hasegawa, Momoko; Yamane, Daisuke; Funato, Kouichi; Yoshida, Atsushi; Sambongi, Yoshihiro

    2018-03-01

    Dates are commercially consumed as semi-dried fruit or processed into juice and puree for further food production. However, the date residue after juice and puree production is not used, although it appears to be nutrient enriched. Here, date residue was fermented by a lactic acid bacterium, Lactobacillus brevis, which has been generally recognized as safe. Through degradation of sodium glutamate added to the residue during the fermentation, γ-aminobutyric acid (GABA), which reduces neuronal excitability, was produced at the conversion rate of 80-90% from glutamate. In order to achieve this GABA production level, pretreatment of the date residue with carbohydrate-degrading enzymes, i.e., cellulase and pectinase, was necessary. All ingredients used for this GABA fermentation were known as being edible. These results provide us with a solution for the increasing commercial demand for GABA in food industry with the use of date residue that has been often discarded. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Analysis of subcomponents of the gamma-aminobutyric acid/benzodiazepine receptor macromolecular complex in mammalian central nervous system

    International Nuclear Information System (INIS)

    McCabe, R.T.

    1987-01-01

    Since the presence of endogenous gamma-aminobutyric acid (GABA) may affect benzodiazepine binding to tissue sections in autoradiographic studies, a protocol designed to check for this influence has been investigated. [ 3 H]Flunitrazepam (1 nM) was used to label benzodiazepine receptors for autoradiographic localization. Bicuculline was added to the incubation medium of an additional set of tissue sections to antagonize any potential effect of endogenous GABA. Binding in these sections was compared to that occurring in another set in which excess GABA was added to create further GABA enhancement. Binding was also compared to adjacent sections which were treated similarly but also preincubated in distilled-deionized water to burst the cells by osmotic shock and eliminate endogenous GABA, thereby preventing any effect on benzodiazepine binding. The results indicated that endogenous GABA is indeed present in the slide-mounted tissue sections and is affecting benzodiazepine receptor binding differentially in various regions of the brain depending on the density of GABAergic innervation. Scatchard analysis of saturation data demonstrated that the alteration in BZ binding due to GABA was a result of a change in the affinity rather than number of receptors present

  15. Probable gamma-aminobutyric acid involvement in bisphenol A effect at the hypothalamic level in adult male rats.

    Science.gov (United States)

    Cardoso, Nancy; Pandolfi, Matías; Lavalle, Justina; Carbone, Silvia; Ponzo, Osvaldo; Scacchi, Pablo; Reynoso, Roxana

    2011-12-01

    The aim of the present study was to investigate the effects of bisphenol A (BPA) on the neuroendocrine mechanism of control of the reproductive axis in adult male rats exposed to it during pre- and early postnatal periods. Wistar mated rats were treated with either 0.1% ethanol or BPA in their drinking water until their offspring were weaned at the age of 21 days. The estimated average dose of exposure to dams was approximately 2.5 mg/kg body weight per day of BPA. After 21 days, the pups were separated from the mother and sacrificed on 70 day of life. Gn-RH and gamma-aminobutyric acid (GABA) release from hypothalamic fragments was measured. LH, FSH, and testosterone concentrations were determined, and histological and morphometrical studies of testis were performed. Gn-RH release decreased significantly, while GABA serum levels were markedly increased by treatment. LH serum levels showed no changes, and FSH and testosterone levels decreased significantly. Histological studies showed abnormalities in the tubular organization of the germinal epithelium. The cytoarchitecture of germinal cells was apparently normal, and a reduction of the nuclear area of Leydig cells but not their number was observed. Taken all together, these results provide evidence of the effect caused by BPA on the adult male reproductive axis when exposed during pre- and postnatal period. Moreover, our findings suggest a probable GABA involvement in its effect at the hypothalamic level.

  16. Gamma-Aminobutyric Acid Concentration is Reduced in Visual Cortex in Schizophrenia and Correlates with Orientation-Specific Surround Suppression

    Science.gov (United States)

    Yoon, Jong H.; Maddock, Richard J.; Rokem, Ariel; Silver, Michael A.; Minzenberg, Michael J.; Ragland, J. Daniel; Carter, Cameron S.

    2010-01-01

    The neural mechanisms underlying cognitive deficits in schizophrenia remain largely unknown. The gamma-aminobutyric acid (GABA) hypothesis proposes that reduced neuronal GABA concentration and neurotransmission results in cognitive impairments in schizophrenia. However, few in vivo studies have directly examined this hypothesis. We employed magnetic resonance spectroscopy (MRS) at high field to measure visual cortical GABA levels in 13 subjects with schizophrenia and 13 demographically matched healthy control subjects. We found that the schizophrenia group had an approximately 10% reduction in GABA concentration. We further tested the GABA hypothesis by examining the relationship between visual cortical GABA levels and orientation-specific surround suppression (OSSS), a behavioral measure of visual inhibition thought to be dependent on GABAergic synaptic transmission. Previous work has shown that subjects with schizophrenia exhibit reduced OSSS of contrast discrimination (Yoon et al., 2009). For subjects with both MRS and OSSS data (n=16), we found a highly significant positive correlation (r=0.76) between these variables. GABA concentration was not correlated with overall contrast discrimination performance for stimuli without a surround (r=-0.10). These results suggest that a neocortical GABA deficit in subjects with schizophrenia leads to impaired cortical inhibition and that GABAergic synaptic transmission in visual cortex plays a critical role in OSSS. PMID:20220012

  17. Prefrontal cortical gamma-aminobutyric acid transmission and cognitive function: drawing links to schizophrenia from preclinical research.

    Science.gov (United States)

    Tse, Maric T; Piantadosi, Patrick T; Floresco, Stan B

    2015-06-01

    Cognitive dysfunction in schizophrenia is one of the most pervasive and debilitating aspects of the disorder. Among the numerous neural abnormalities that may contribute to schizophrenia symptoms, perturbations in markers for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), particularly within the frontal lobes, are some of the most reliable alterations observed at postmortem examination. However, how prefrontal GABA dysfunction contributes to cognitive impairment in schizophrenia remains unclear. We provide an overview of postmortem GABAergic perturbations in the brain affected by schizophrenia and describe circumstantial evidence linking these alterations to cognitive dysfunction. In addition, we conduct a survey of studies using neurodevelopmental, genetic, and pharmacologic rodent models that induce schizophrenia-like cognitive impairments, highlighting the convergence of these mechanistically distinct approaches to prefrontal GABAergic disruption. We review preclinical studies that have directly targeted prefrontal cortical GABAergic transmission using local application of GABAA receptor antagonists. These studies have provided an important link between GABA transmission and cognitive dysfunction in schizophrenia because they show that reducing prefrontal inhibitory transmission induces various cognitive, emotional, and dopaminergic abnormalities that resemble aspects of the disorder. These converging clinical and preclinical findings provide strong support for the idea that perturbations in GABA signaling drive certain forms of cognitive dysfunction in schizophrenia. Future studies using this approach will yield information to refine further a putative "GABA hypothesis" of schizophrenia. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Decreased Hepatocyte Growth Factor (HGF) and Gamma Aminobutyric Acid (GABA) in Individuals with Obsessive-Compulsive Disorder (OCD).

    Science.gov (United States)

    Russo, Anthony J; Pietsch, Stefanie C

    2013-01-01

    There is support for the role of gamma aminobutyric acid (GABA) in the etiology of mood disorders. Recent research has shown that hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility. This study was designed to determine and correlate plasma levels of HGF and GABA as well as symptom severity in individuals with obsessive-compulsive disorder (OCD). Plasma from 15 individuals with OCD (9 males, 6 females;, mean age 38.7 years) and 17 neurotypical controls (10 males, 7 females; mean age 35.2 years) was assessed for HGF, GABA, urokinase plasminogen activator (uPA), and urokinase plasminogen activator receptor (uPAR) concentration using enzyme-linked immunosorbest assays ELISAs. Symptom severity was assessed in these OCD individuals and compared with HGF and GABA concentrations. In this preliminary study, individuals with OCD had significantly decreased HGF levels, decreased plasma levels of GABA and decreased uPA. We found that both uPA and uPAR levels correlate with HGF. Both low uPA and low uPAR levels correlate with high symptom severity in individuals with OCD. Low GABA levels in OCD individuals also correlate with high symptom severity. These results demonstrate a preliminary association between HGF, GABA, uPA levels, and OCD and suggest that plasma GABA and uPA levels are related to symptom severity in individuals with OCD.

  19. The gamma-aminobutyric acid uptake inhibitor, tiagabine, is anticonvulsant in two animal models of reflex epilepsy.

    Science.gov (United States)

    Smith, S E; Parvez, N S; Chapman, A G; Meldrum, B S

    1995-02-06

    The effects of i.p. administration of the gamma-aminobutyric acid (GABA) uptake inhibitors R(-)N-(4,4-di(3-methylthien-2-yl)-but-3-enyl) nipecotic acid hydrochloride (tiagabine; molecular weight 412.0), (1-(2-(((diphenylmethylene)-amino)oxy)ethyl)-1,2,5,6-tetrahydro-3- pyridinecarboxylic acid hydrochloride (NNC-711; molecular weight 386.9), and (+/-)-nipecotic acid (molecular weight 128.2) are compared with those of carbamazepine (molecular weight 236.3) on sound-induced seizures and locomotor performance in genetically epilepsy-prone (GEP) rats. The ED50 value against clonic seizures (in mumol kg-1 at the time of maximal anticonvulsant effect) for tiagabine was 23 (0.5 h), and for NNC-711 was 72 (1 h), and for carbamazepine was 98 (2 h). (+/-)-Nipecotic acid (0.4-15.6 mmol kg-1) was not anticonvulsant. High doses of NNC-711 (207-310 mumol kg-1) and of (+/-)-nipecotic acid (39-78 mmol kg-1) induced ataxia and myoclonic seizures 0.25-1 h. Tiagabine and carbamazepine did not induce myoclonic seizures and had similar therapeutic indices (locomotor deficit ED50/anticonvulsant ED50) ranging from 0.4 to 1.9. In Papio papio, we observed a reduction in photically induced myoclonic seizures with tiagabine (2.4 mumol kg-1 i.v.) accompanied with neurological impairment. Tiagabine has comparable anticonvulsant action to carbamazepine in rats and has anticonvulsant effects in non-human primates supporting the potential use of inhibitors of GABA uptake as therapy for epilepsy.

  20. Higher gamma-aminobutyric acid neuron density in the white matter of orbital frontal cortex in schizophrenia.

    Science.gov (United States)

    Joshi, Dipesh; Fung, Samantha J; Rothwell, Alice; Weickert, Cynthia Shannon

    2012-11-01

    In the orbitofrontal cortex (OFC), reduced gray matter volume and reduced glutamic acid decarboxylase 67kDa isoform (GAD67) messenger (m)RNA are found in schizophrenia; however, how these alterations relate to developmental pathology of interneurons is unclear. The present study therefore aimed to determine if increased interstitial white matter neuron (IWMN) density exists in the OFC; whether gamma-aminobutyric acid (GABA)ergic neuron density in OFC white matter was altered; and how IWMN density may be related to an early-expressed inhibitory neuron marker, Dlx1, in OFC gray matter in schizophrenia. IWMN densities were determined (38 schizophrenia and 38 control subjects) for neuronal nuclear antigen (NeuN+) and 65/67 kDa isoform of glutamic acid decarboxylase immunopositive (GAD65/67+) neurons. In situ hybridization was performed to determine Dlx1 and GAD67 mRNA expression in the OFC gray matter. NeuN and GAD65/67 immunopositive cell density was significantly increased in the superficial white matter in schizophrenia. Gray matter Dlx1 and GAD67 mRNA expression were reduced in schizophrenia. Dlx1 mRNA levels were negatively correlated with GAD65/67 IWMN density. Our study provides evidence that pathology of IWMNs in schizophrenia includes GABAergic interneurons and that increased IWMN density may be related to GABAergic deficits in the overlying gray matter. These findings provide evidence at the cellular level that the OFC is a site of pathology in schizophrenia and support the hypothesis that inappropriate migration of cortical inhibitory interneurons occurs in schizophrenia. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. gamma-Aminobutyric acid- and benzodiazepine-induced modulation of [35S]-t-butylbicyclophosphorothionate binding to cerebellar granule cells

    International Nuclear Information System (INIS)

    Gallo, V.; Wise, B.C.; Vaccarino, F.; Guidotti, A.

    1985-01-01

    t-Butylbicyclophosphorothionate (TBPS) is a bicyclophosphate derivative with potent picrotoxin-like convulsant activity that binds with high affinity and specificity to a Cl- channel-modulatory site of the gamma-aminobutyric acid (GABA)/benzodiazepine receptor complex. Using intact cerebellar granule cells maintained in primary culture, the authors have studied the modifications induced by GABA and diazepam on the ion channel-modulatory binding site labeled by [ 35 S]TBPS. At 25 degrees C, and in a modified Locke solution, the [ 35 S]TBPS specific binding, determined by displacing the radioligand with an excess (10(-4) M) of picrotoxin, was approximately 70% of the total radioactivity bound to the cells. [ 35 S]TBPS specific binding was saturable with a Kd of approximately 100 nM, a Bmax of approximately 440 fmol/mg of protein, and a Hill coefficient of 1.18. Neither cerebellar astrocytes maintained in culture for 2 weeks nor a neuroblastoma cell line (NB-2A) exhibited any specific [ 35 S]TBPS binding. Muscimol (0.3 to 5 microM) enhanced and bicuculline (0.1 to 5 microM) inhibited [ 35 S]TBPS specific binding to intact cerebellar granule cells. The effect of muscimol and bicuculline on [ 35 S]TBPS binding was noncompetitive. Muscimol (0.1 to 5 microM) reversed bicuculline inhibition in a dose-dependent fashion but failed to reverse picrotoxin-induced inhibition. [ 35 S]TBPS binding was also modulated by benzodiazepine receptor ligands. The binding was increased by diazepam and decreased by 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylic acid methylester. Muscimol (0.05 microM) failed to reverse bicuculline inhibition in the absence of diazepam, but it became effective in the presence of 0.1 to 1 microM diazepam

  2. Affective and cognitive effects of global deletion of alpha3-containing gamma-aminobutyric acid-A receptors.

    Science.gov (United States)

    Fiorelli, Roberto; Rudolph, Uwe; Straub, Carolin J; Feldon, Joram; Yee, Benjamin K

    2008-09-01

    Gamma-aminobutyric acid (GABA)A receptors characterized by the presence of the alpha3 subunit are the major GABAA receptor subtype expressed in brain stem monoaminergic nuclei. These alpha3-GABAA receptors are therefore in a unique position to regulate monoaminergic functions. To characterize the functional properties of alpha3-GABAA receptors, we present a preliminary assessment of the expression of affective and cognitive behaviour in male mice with a targeted deletion of the Gabra3 gene encoding the alpha3 subunit [alpha3 knockout (KO) mice] on a C57BL/6Jx129X1/SvJ F1 hybrid genetic background. The alpha3 KO mice did not exhibit any gross change of anxiety-like behaviour or spontaneous locomotor behaviour. In the Porsolt forced swim test for potential antidepressant activity, alpha3 KO mice exhibited reduced floating and enhanced swimming behaviour relative to wild-type controls. Performance on a two-choice sucrose preference test, however, revealed no evidence for an increase in sucrose preference in the alpha3 KO mice that would have substantiated a potential phenotype for depression-related behaviour. In contrast, a suggestion of an enhanced negative contrast effect was revealed in a one-bottle sucrose consumption test across different sucrose concentrations. These affective phenotypes were accompanied by alterations in the balance between conditioned responding to the discrete conditioned stimulus and to the context, and a suggestion of faster extinction, in the Pavlovian conditioned freezing paradigm. Spatial learning in the water maze reference memory test, however, was largely unchanged in the alpha3 KO mice, except for a trend of preservation during reversal learning. The novel phenotypes following global deletion of the GABAA receptor alpha3 subunit identified here provided relevant insights, in addition to our earlier study, into the potential behavioural relevance of this specific receptor subtypes in the modulation of both affective and cognitive

  3. Channel opening of gamma-aminobutyric acid receptor from rat brain: molecular mechanisms of the receptor responses.

    Science.gov (United States)

    Cash, D J; Subbarao, K

    1987-12-01

    The function of gamma-aminobutyric acid (GABA) receptors, which mediate transmembrane chloride flux, can be studied by use of 36Cl- isotope tracer with membrane from mammalian brain by quench-flow technique, with reaction times that allow resolution of the receptor desensitization rates from the ion flux rates. The rates of chloride exchange into the vesicles in the absence and presence of GABA were characterized with membrane from rat cerebral cortex. Unspecific 36Cl- influx was completed in three phases of ca. 3% (t 1/2 = 0.6 s), 56% (t 1/2 = 82 s), and 41% (t 1/2 = 23 min). GABA-mediated, specific chloride exchange occurred with 6.5% of the total vesicular internal volume. The GABA-dependent 36Cl- influx proceeded in two phases, each progressively slowed by desensitization. The measurements supported the presence of two distinguishable active GABA receptors on the same membrane mediating chloride exchange into the vesicles with initial first-order rate constants of 9.5 s-1 and 2.3 s-1 and desensitizing with first-order rate constants of 21 s-1 and 1.4 s-1, respectively, at saturation. The half-response concentrations were similar for both receptors, 150 microM and 114 microM GABA for desensitization and 105 microM and 82 microM for chloride exchange, for the faster and slower desensitizing receptors, respectively. The two receptors were present in the activity ratio of ca. 4/1, similar to the ratio of "low-affinity" to "high-affinity" GABA sites found in ligand binding experiments. The desensitization rates have a different dependence on GABA concentration than the channel-opening equilibria.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Alterations of neurotransmitter norepinephrine and gamma-aminobutyric acid correlate with murine behavioral perturbations related to bisphenol A exposure.

    Science.gov (United States)

    Ogi, Hiroshi; Itoh, Kyoko; Ikegaya, Hiroshi; Fushiki, Shinji

    2015-09-01

    Humans are commonly exposed to endocrine-disrupting chemical bisphenol A (BPA), giving rise to concern over the psychobehavioral effects of BPA. The aim of this study was to investigate the effects of prenatal and lactational BPA exposure on neurotransmitters, including norepinephrine (NE), gamma-aminobutyric acid (GABA) and glutamate (Glu), and to assess the association with behavioral phenotypes. C57BL/6J mice were orally administered with BPA (500 μg/bwkg/day) or vehicle daily from embryonic day 0 to postnatal week 3 (P3W), through their dams. The IntelliCage behavioral experiments were conducted from P11W to P15W. At around P14-16W, NE, GABA and Glu levels in nine brain regions were measured by high performance liquid chromatography. Furthermore, the associations between the neurotransmitter levels and the behavioral indices were statistically analyzed. In females exposed to BPA, the GABA and Glu levels in almost all regions, and the NE levels in the cortex, hypothalamus and thalamus were higher than those in the controls. In males exposed to BPA, the GABA levels in the amygdala and hippocampus showed lower values, while Glu levels were higher in some regions, compared with the controls. In regard to the associations, the number of "diurnal corner visits without drinking" was correlated with the NE levels in the cortex and thalamus in females. The "nocturnal corner visit duration without drinking" was correlated with the GABA level in the hippocampus in males. These results suggest that prenatal and lactational exposure to low doses of BPA might modulate the NE, GABA and Glu systems, resulting in behavioral alterations. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  5. Wheat bran with enriched gamma-aminobutyric acid attenuates glucose intolerance and hyperinsulinemia induced by a high-fat diet.

    Science.gov (United States)

    Shang, Wenting; Si, Xu; Zhou, Zhongkai; Strappe, Padraig; Blanchard, Chris

    2018-05-23

    In this study, the level of gamma-aminobutyric acid (GABA) in wheat bran was increased to be six times higher through the action of endogenous glutamate decarboxylase compared with untreated bran. The process of GABA formation in wheat bran also led to an increased level of phenolic compounds with enhanced antioxidant capacity 2 times higher than the untreated status. The interventional effect of a diet containing GABA-enriched bran on hyperinsulinemia induced by a high-fat diet (HFD) was investigated in a rat model. The results showed that, when compared with animals fed with HFD-containing untreated bran (NB group), the consumption of HFD-containing GABA-enriched bran (GB group) demonstrated a greater improvement of insulin resistance/sensitivity as revealed by the changes in the homeostatic model assessment for insulin resistance index (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI). The expression of hepatic genes, cytochrome P450 family 7 subfamily A member 1 (Cyp7a1) and ubiquitin C (Ubc), which are involved in the adipogenesis-associated PPAR signalling pathway, was found to be significantly down-regulated in the GB group compared with the HFD group (P = 0.0055). Meanwhile, changes in the expression of a number of genes associated with lipid metabolism and gluconeogenesis were also noted in the GB group versus the HFD group, but not in the NB group, indicating different regulatory patterns between the two brans in a high-fat diet. More importantly, the analysis of key genes related to glucose metabolism further revealed that the expression of insulin-induced gene 1/2 (Insig-1/2) was increased following GB intervention with a corresponding reduction in phosphoenolpyruvate carboxykinase 1 (Pepck) and glucose-6-phosphatase, catalytic subunit (G6pc) expression, suggesting that glucose homeostasis is greatly improved through the intervention of GABA-enriched bran in the context of a high-fat diet.

  6. The modern view of the idea of gamma-aminobutyric acid and its metabolite use to restore the motor function

    Directory of Open Access Journals (Sweden)

    А. G. Rodinskij

    2015-08-01

    Full Text Available Aim. The literature review is devoted to the idea of using gamma-aminobutyric acid and its metabolites as medicines in conditions of peripheral nervous system injury. We examined the modern problems of denervated muscles restoration and a wide range of GABA effects which could be useful in conditions of injury. GABA and its metabolites have elements of nootropic, antihypoxic, organoprotective and anabolic activity. It is obvious that traumas of peripheral nerves lead to degeneration of injured fibers and significant disorders of metabolism at a number of regulatory levels. Regeneration of the nerve and the rate of recovery of muscle activity depend significantly on the level of resistivity of the injured nerve tissue and on possibilities for supply of this tissue by additional energetic reserves. Under the above-mentioned conditions, disorders are determined, to a significant extent, by the development of hypoxia. This is why elucidation of the phenomenology and mechanisms of action of GABA and its metabolites (agent are having, as was mentioned above, protective and antihypoxic properties on the nerve/muscle apparatus and its links under conditions of traumatization of a large nerve is urgent. GABA and its metabolites have an antinociceptive activity which helps not only in inhibition of central and spinal neurons, but also helps to decrease pain sensitivity of patient after traumatic neuropathy to forming of motivation to recovery rehabilitation. Besides above mentioned, the ability of GABA to increase concentration of Ca2 + after injury was discussed. This ability may affect the expression of genes, the direction of the growth cone, and, perhaps, reduce cell death. Conclusion. This indicates that the GABA has a selectivity of action to the damaged structure and can be prospective agent for regenerative therapy.

  7. Effects of gamma-aminobutyric acid-modulating drugs on working memory and brain function in patients with schizophrenia.

    Science.gov (United States)

    Menzies, Lara; Ooi, Cinly; Kamath, Shri; Suckling, John; McKenna, Peter; Fletcher, Paul; Bullmore, Ed; Stephenson, Caroline

    2007-02-01

    Cognitive impairment causes morbidity in schizophrenia and could be due to abnormalities of cortical interneurons using the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). To test the predictions that cognitive and brain functional responses to GABA-modulating drugs are correlated and abnormal in schizophrenia. Pharmacological functional magnetic resonance imaging study of 2 groups, each undergoing scanning 3 times, using an N-back working memory task, after placebo, lorazepam, or flumazenil administration. Eleven patients with chronic schizophrenia were recruited from a rehabilitation service, and 11 healthy volunteers matched for age, sex, and premorbid IQ were recruited from the local community. Intervention Participants received 2 mg of oral lorazepam, a 0.9-mg intravenous flumazenil bolus followed by a flumazenil infusion of 0.0102 mg/min, or oral and intravenous placebo. Working memory performance was summarized by the target discrimination index at several levels of difficulty. Increasing (or decreasing) brain functional activation in response to increasing task difficulty was summarized by the positive (or negative) load response. Lorazepam impaired performance and flumazenil enhanced it; these cognitive effects were more salient in schizophrenic patients. Functional magnetic resonance imaging demonstrated positive load response in a frontoparietal system and negative load response in the temporal and posterior cingulate regions; activation of the frontoparietal cortex was positively correlated with deactivation of the temporocingulate cortex. After placebo administration, schizophrenic patients had abnormally attenuated activation of the frontoparietal cortex and deactivation of the temporocingulate cortex; this pattern was mimicked in healthy volunteers and exacerbated in schizophrenic patients by lorazepam. However, in schizophrenic patients, flumazenil enhanced deactivation of the temporocingulate and activation of the anterior cingulate

  8. An open-label tolerability study of BL-1020 antipsychotic: a novel gamma aminobutyric acid ester of perphenazine.

    Science.gov (United States)

    Anand, Ravi; Geffen, Yona; Vasile, Daniel; Dan, Irina

    2010-01-01

    BL-1020, a novel gamma aminobutyric acid (GABA) ester of perphenazine, is a new oral antipsychotic with a strong affinity for dopamine and serotonin receptors. Unlike first- and second-generation antipsychotics, it has agonist activity at GABA(A). This is the first study to examine tolerability and safety of BL-1020 in schizophrenia. This was a phase-II, open-label, multicenter, 6-week study treating patients (n = 36) with chronic schizophrenia. Dosing started at 20 mg/d and increased over 7 days to 40 mg/d. Weekly assessments were conducted. All but 1 patient was titrated to 30 mg/d at day 4; on day 7, 30 were titrated to 40 mg/d. Four patients discontinued the study prematurely. There was no clinically relevant increase in vital signs, sedation, dizziness, or other central nervous system effects or electrocardiogram or laboratory abnormalities and a small increase in weight. Ten patients experienced extrapyramidal symptoms (EPS) requiring treatment with an anticholinergic; 4 patients were unable to reach maximum dose because of EPS. Extrapyramidal Symptom Rating Scale did not indicate clinically significant changes in EPS. The most common adverse event was insomnia (6 patients); other frequent adverse effects (all n = 3) were extrapyramidal disorder, headache, parkinsonism, tremor, and hyperprolactinemia. There was improvement on Positive and Negative Syndrome Scale and Clinical Global Impression of Change with 22 patients showing at least 20% decrease by end point on Positive and Negative Syndrome Scale and 31 patients showing at least minimal improvement on Clinical Global Impression of Change. These data suggest that 20 to 40 mg/d of BL-1020 is associated with clinically relevant improvement of psychosis with no worsening of EPS and support further testing in randomized controlled trials.

  9. A GC-ECD method for estimation of free and bound amino acids, gamma-aminobutyric acid, salicylic acid, and acetyl salicylic acid from Solanum lycopersicum (L.).

    Science.gov (United States)

    Meher, Hari Charan; Gajbhiye, Vijay T; Singh, Ghanendra

    2011-01-01

    A gas chromatograph with electron capture detection method for estimation of selected metabolites--amino acids (free and bound), gamma-aminobutyric acid (GABA), salicylic acid (SA), and acetyl salicylic acid (ASA) from tomato--is reported. The method is based on nitrophenylation of the metabolites by 1-fluoro-2, 4-dinitrobenzene under aqueous alkaline conditions to form dinitophenyl derivatives. The derivatives were stable under the operating conditions of GC. Analysis of bound amino acids comprised perchloric acid precipitation of protein, alkylation (carboxymethylation) with iodoacetic acid, vapor-phase hydrolysis, and derivatization with 1-fluoro-2,4-dinitrobenzene in that order. The metabolites were resolved in 35 min, using a temperature-programmed run. The method is rapid, sensitive, and precise. It easily measured the typical amino acids (aspartate, asparagine, glutamate, glutamine, alanine, leucine, lysine, and phenylalanine) used for identification and quantification of a protein, resolved amino acids of the same mass (leucine and isoleucine), satisfactorily measured sulfur amino acid (methionine, cystine, and cysteine), and quantified GABA, SA, and ASA, as well. The developed method was validated for specificity, linearity, and precision. It has been applied and recommended for estimation of 25 metabolites from Solanum lycopersicum (L.).

  10. EFFECT OF FOOD-MICROORGANISMS ON GAMMA-AMINOBUTYRIC ACID PRODUCTION BY FERMENTATION

    Directory of Open Access Journals (Sweden)

    Jozef Hudec

    2012-02-01

    Full Text Available Lactic acid bacteria (LAB are nice targets in order to study γ-aminobutyric acid (GABA production that has been reported to be effective in order to reduce blood pressure in experimental animals and human beings. In this study, we aimed to γ-aminobutyric acid (GABA production in aerobical and anaerobical conditions, using different sources of microorganisms. The highest selectivity of GABA from precursor L-monosodium glutamate (82.22% has been reported using of microorganisms from banana, and with addition of pyridoxal-5-phosphate (P-5-P. For augmentation of selectivity the application of the further stimulating factors of GABA biosynthesis is needed.

  11. Substrate-Na{sup +} complex formation: Coupling mechanism for {gamma}-aminobutyrate symporters

    Energy Technology Data Exchange (ETDEWEB)

    Pallo, Anna; Simon, Agnes [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Bencsura, Akos [Department of Theoretical Chemistry, Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest (Hungary); Heja, Laszlo [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Kardos, Julianna, E-mail: jkardos@chemres.hu [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary)

    2009-07-24

    Crystal structures of transmembrane transport proteins belonging to the important families of neurotransmitter-sodium symporters reveal how they transport neurotransmitters across membranes. Substrate-induced structural conformations of gated neurotransmitter-sodium symporters have been in the focus of research, however, a key question concerning the mechanism of Na{sup +} ion coupling remained unanswered. Homology models of human glial transporter subtypes of the major inhibitory neurotransmitter {gamma}-aminobutyric acid were built. In accordance with selectivity data for subtype 2 vs. 3, docking and molecular dynamics calculations suggest similar orthosteric substrate (inhibitor) conformations and binding crevices but distinguishable allosteric Zn{sup 2+} ion binding motifs. Considering the occluded conformational states of glial human {gamma}-aminobutyric acid transporter subtypes, we found major semi-extended and minor ring-like conformations of zwitterionic {gamma}-aminobutyric acid in complex with Na{sup +} ion. The existence of the minor ring-like conformation of {gamma}-aminobutyric acid in complex with Na{sup +} ion may be attributed to the strengthening of the intramolecular H-bond by the electrostatic effect of Na{sup +} ion. Coupling substrate uptake into cells with the thermodynamically favorable Na{sup +} ion movement through substrate-Na{sup +} ion complex formation may be a mechanistic principle featuring transmembrane neurotransmitter-sodium symporter proteins.

  12. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    Science.gov (United States)

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  13. [Construction of a recombinant Escherichia coli BL21/ pET-28a-lpgad and the optimization of transformation conditions for the efficient production of gamma-aminobutyric acid].

    Science.gov (United States)

    Tian, Lingzhi; Xu, Meijuan; Rao, Zhiming

    2012-01-01

    In order to enhance gamma-aminobutyric acid production from L-glutamate efficiently, we amplified the key enzyme glutamate decarboxylase (GAD) encoding gene lpgad from the strain Lactobacillus plantarum GB 01-21 which was obtained by way of multi-mutagenesis and overexpressed it in E. coli BL21. Then we purified GAD by Ni-NTA affinity chromatography and characterized the enzyme to optimize the conditions of the whole-cell transformation. The results showed that the recombinant E. coli BL21 (pET-28a-lpgad) produced 8.53 U/mg GAD, which was increased by 3.24 fold compared with the GAD activity in L. plantarum. The optimum pH and temperature of the enzyme were pH 4.8 and 37 degrees C, respectively. At the same time, we found that Ca2+ and Mg2+ could increase the activity significantly. Based on this, we investigated gamma-aminobutyric acid transformation in 5 L fermentor under the optimum transformation conditions. Accordingly, the yield of gamma-aminobutyric acid was 204.5 g/L at 24 h when the 600 g L-glutamate was added and the mole conversion rate had reached 97.92%. The production of gamma-aminobutyric acid was improved by 42.5% compared with that under the unoptimized transformation conditions. This paved a way for the gamma-aminobutyric acid construction of the industrial applications.

  14. Optimization of culture conditions for gamma-aminobutyric acid production in fermented adzuki bean milk

    Directory of Open Access Journals (Sweden)

    Hung Yi Song

    2018-01-01

    Full Text Available γ-Aminobutyric acid (GABA, a nonprotein amino acid, is widely distributed in nature and fulfills several physiological functions. In this study, various lactic acid strains commonly used to produce fermented milk products were inoculated into adzuki bean milk for producing GABA. The high GABA producing strain was selected in further experiment to improve the GABA production utilizing culture medium optimization. The results demonstrated that adzuki bean milk inoculated with Lactobacillus rhamnosus GG increased GABA content from 0.05 mg/mL to 0.44 mg/mL after 36 hours of fermentation, which showed the greatest elevation in this study. Furthermore, the optimal cultural condition to adzuki bean milk inoculated with L. rhamnosus GG to improve the GABA content was performed using response surface methodology. The results showed that GABA content was dependent on the addition of galactose, monosodium glutamate, and pyridoxine with which the increasing ratios of GABA were 23–38%, 24–68%, and 8–36%, respectively. The optimal culture condition for GABA production of adzuki bean milk was found at the content of 1.44% galactose, 2.27% monosodium glutamate, and 0.20% pyridoxine. Under the optimal cultural condition, the amount of GABA produced in the fermented adzuki bean milk was 1.12 mg/mL, which was 22.4-fold higher than that of the unfermented adzuki bean milk (0.05 mg/100 mL. The results suggested that the optimized cultural condition of adzuki bean milk inoculated with L. rhamnosus GG can increase GABA content for consumers as a daily supplement as suggested.

  15. In SilicoModel-driven Assessment of the Effects of Brain-derived Neurotrophic Factor Deficiency on Glutamate and Gamma-Aminobutyric Acid: Implications for Understanding Schizophrenia Pathophysiology.

    Science.gov (United States)

    Agrawal, Rimjhim; Kalmady, Sunil Vasu; Venkatasubramanian, Ganesan

    2017-05-31

    Deficient brain-derived neurotrophic factor (BDNF) is one of the important mechanisms underlying the neuroplasticity abnormalities in schizophrenia. Aberration in BDNF signaling pathways directly or circuitously influences neurotransmitters like glutamate and gamma-aminobutyric acid (GABA). For the first time, this study attempts to construct and simulate the BDNF-neurotransmitter network in order to assess the effects of BDNF deficiency on glutamate and GABA. Using CellDesigner, we modeled BDNF interactions with calcium influx via N-methyl-D-aspartate receptor (NMDAR)- Calmodulin activation; synthesis of GABA via cell cycle regulators protein kinase B, glycogen synthase kinase and β-catenin; transportation of glutamate and GABA. Steady state stability, perturbation time-course simulation and sensitivity analysis were performed in COPASI after assigning the kinetic functions, optimizing the unknown parameters using random search and genetic algorithm. Study observations suggest that increased glutamate in hippocampus, similar to that seen in schizophrenia, could potentially be contributed by indirect pathway originated from BDNF. Deficient BDNF could suppress Glutamate decarboxylase 67-mediated GABA synthesis. Further, deficient BDNF corresponded to impaired transport via vesicular glutamate transporter, thereby further increasing the intracellular glutamate in GABAergic and glutamatergic cells. BDNF also altered calcium dependent neuroplasticity via NMDAR modulation. Sensitivity analysis showed that Calmodulin, cAMP response element-binding protein (CREB) and CREB regulated transcription coactivator-1 played significant role in this network. The study presents in silico quantitative model of biochemical network constituting the key signaling molecules implicated in schizophrenia pathogenesis. It provides mechanistic insights into putative contribution of deficient BNDF towards alterations in neurotransmitters and neuroplasticity that are consistent with current

  16. CHANGES IN SELECTIVITY OF GAMMA-AMINOBUTYRIC ACID FORMATION EFFECTED BY FERMENTATION CONDITIONS AND MICROORGANISMS RESOURCES

    Directory of Open Access Journals (Sweden)

    Kamila Kovalovská

    2011-10-01

    Full Text Available In this study we observe the effect of fermentation conditions and resources of microorganisms for production of γ-aminobutyric acid (GABA. The content of produced GABA depends on various conditions such as the amount of precursor, an addition of salt, enzyme and the effect of pH. The highest selectivity of GABA (74.0 % from the precursor (L-monosodium glutamate has been determinate in the follow conditions: in the presence of pre-cultured microorganisms from Encián cheese in amount 1.66 % (w/v the source of microorganisms/volume of the fermentation mixture, after the addition of 0.028 % (w/v of CaCl2/volume of the fermentation mixture, 100 μM of pyridoxal-5-phosphate (P-5-P and the GABA precursor concentration in the fermentation mixture 2.6 mg ml-1 in an atmosphere of gas nitrogen. Pure cultures of lactic acid bacteria increased the selectivity of GABA by an average of 20 % compared with bacteria from the path of Encián.

  17. Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma.

    Science.gov (United States)

    Schuller, Hildegard M; Al-Wadei, Hussein A N; Majidi, Mourad

    2008-10-01

    Pulmonary adenocarcinoma (PAC) is the leading type of lung cancer in smokers and non-smokers that arises in most cases from small airway epithelial cells. PAC has a high mortality due to its aggressive behavior and resistance to cancer therapeutics. We have shown previously that the proliferation of human PAC cells NCI-H322 and immortalized human small airway epithelial cells HPL1D is stimulated by cyclic adenosine monophosphate (cAMP)/protein kinase A-dependent phosphorylation of cyclic adenosine monophosphate response element-binding (CREB) protein and transactivation of the epidermal growth factor receptor and that this pathway is activated by beta-1-adrenoreceptors (beta(1)-ARs) and the non-genomic estrogen receptor beta. Our current in vitro studies with HPL1D and NCI-H322 cells showed that signaling via the gamma-amino butyric acid receptor (GABA(B)R) strongly inhibited base level and isoproterenol-induced cAMP, p-CREB, cyclic adenosine monophosphate response element-luciferase activity and p-extracellular regulated kinase-1 (ERK1)/2 and effectively blocked DNA synthesis and cell migration. The inhibitory effects of gamma-amino butyric acid (GABA) were disinhibited by the GABA(B)R antagonist CGP-35348 or GABA(B)R knockdown. Immunohistochemical investigation of hamster lungs showed significant underexpression of GABA in animals with small airway-derived PACs induced by the nicotine-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These findings suggest that GABA may have tumor suppressor function in small airway epithelia and the PACs derived from them and that downregulation of GABA by NNK may contribute to the development of this cancer in smokers. Our findings suggest that marker-guided treatment with GABA or a GABA(B)R agonist of individuals with downregulated pulmonary GABA may provide a novel targeted approach for the prevention of PAC in smokers.

  18. Potentiation of gamma aminobutyric acid receptors (GABAAR by Ethanol: How are inhibitory receptors affected?

    Directory of Open Access Journals (Sweden)

    Benjamin eFörstera

    2016-05-01

    Full Text Available In recent years there has been an increase in the understanding of ethanol actions on the type A -aminobutyric acid chloride channel (GABAAR, a member of the pentameric ligand gated ion channels (pLGICs. However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR, another member of the pLGIC family, as a suitable target for the development of new pharmacological tools.

  19. Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana.

    Science.gov (United States)

    Mekonnen, Dereje Worku; Flügge, Ulf-Ingo; Ludewig, Frank

    2016-04-01

    A rapid accumulation of γ-aminobutyric acid (GABA) during biotic and abiotic stresses is well documented. However, the specificity of the response and the primary role of GABA under such stress conditions are hardly understood. To address these questions, we investigated the response of the GABA-depleted gad1/2 mutant to drought stress. GABA is primarily synthesized from the decarboxylation of glutamate by glutamate decarboxylase (GAD) which exists in five copies in the genome of Arabidopsis thaliana. However, only GAD1 and GAD2 are abundantly expressed, and knockout of these two copies dramatically reduced the GABA content. Phenotypic analysis revealed a reduced shoot growth of the gad1/2 mutant. Furthermore, the gad1/2 mutant was wilted earlier than the wild type following a prolonged drought stress treatment. The early-wilting phenotype was due to an increase in stomata aperture and a defect in stomata closure. The increase in stomata aperture contributed to higher stomatal conductance. The drought oversensitive phenotype of the gad1/2 mutant was reversed by functional complementation that increases GABA level in leaves. The functionally complemented gad1/2 x pop2 triple mutant contained more GABA than the wild type. Our findings suggest that GABA accumulation during drought is a stress-specific response and its accumulation induces the regulation of stomatal opening thereby prevents loss of water. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Localization of (/sup 3/H). gamma. -aminobutyric acid in the cochlea. Light and electron microscopic autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Richrath, W; Kraus, H; Fromme, H G [Muenster Univ. (F.R. Germany). Hals-, Nasen- und Ohrenklinik; Muenster Univ. (F.R. Germany). Inst. fuer Medizinische Physik)

    1974-01-01

    In guinea pigs, 1 h after intraarterial and local administration of /sup 3/H-GABA, autoradiographs of the cochlea and the brain were performed. As a parameter of distribution of this substance, silver grain density was examined by means of light and electron microscopy. Intraarterial injection was not followed by any activity neither in brain nor in the cochlea, an observation suggesting the existence of a blood-perilymph barrier additional to the blood-brain barrier. Perfusion of the cochlea produced a marked activity in the spiral ganglion. Different from other tritium labelled amino acids, /sup 3/H-GABA activity could be found only in glia cells but not in nerve cell bodies or axons. The significance of this finding is open to question. In the organ of Corti a selective labelling of efferent nerve fibres could be found by means of light microscopy, additionally, using electron microscopy, only efferent synapses proved to be labelled. Most of silver grains were attached to vesicles and mitochondria, some grains to the synaptie deft. Afferent synapses remained unlabelled. Comparing with publications concerning GABA localization and concentration in the brain, we conclude that the efferent system of the Organ of Corti contains a high concentration of GABA. As present electrophysiological results are contradictory the GABA distribution alone gives no convincing evidence that this substance may serve as a transmitter.

  1. gamma-Aminobutyric acid production in small and large intestine of normal and germ-free Wistar rats. Influence of food intake and intestinal flora.

    Science.gov (United States)

    van Berlo, C L; de Jonge, H R; van den Bogaard, A E; van Eijk, H M; Janssen, M A; Soeters, P B

    1987-09-01

    In recent hypotheses concerning the pathogenesis of hepatic encephalopathy, gamma-aminobutyric acid (GABA) is claimed to be produced by the colonic flora, although enzymes necessary to generate GABA have been reported to be present in intestinal mucosa. In this study, using normal and germ-free Wistar rats, we determined GABA levels and amino-grams of arterial blood and of venous effluent from small and large bowel. The data indicate that large and small intestinal mucosa significantly contribute to GABA production. In the fasted state GABA concentrations are greater in the venous effluent of the small bowel than in the venous effluent of the large bowel. Feeding increases the arterioportal differences, and uptake in the small bowel is still significantly higher than in the large bowel. This process is not, or can only be to a minor degree, bacterially mediated, because GABA production in the gut both in the fed and fasted state is of similar magnitude in germ-free and normal animals. gamma-Aminobutyric acid release correlates significantly with glutamine uptake in the small bowel of fasted rats. Only a small fraction of the glutamine taken up is needed to account for GABA release, so that conclusions concerning which amino acids may serve as precursors of GABA cannot be drawn. Further studies are needed to delineate the metabolic pathways leading to GABA synthesis.

  2. Successful combination immunotherapy of anti-gamma aminobutyric acid (GABA)A receptor antibody-positive encephalitis with extensive multifocal brain lesions.

    Science.gov (United States)

    Fukami, Yuki; Okada, Hiroaki; Yoshida, Mari; Yamaguchi, Keiji

    2017-08-31

    A 78-year old woman who presented with akinetic mutism was admitted to our hospital. Brain MRI showed multifocal increased T 2 /FLAIR signal with extensive cortical-subcortical involvement. We suspected autoimmune encephalitis and the patient received methylprednisolone pulse. Her conscious level gradually recovered, but later relapsed again and presented with refractory status epilepticus. We treated her with intravenous immunoglobulin, plasma exchange and pulsed cyclophosphamide, with satisfactory response. A brain biopsy showed perivascular lymphocytic infiltrates and reactive gliosis. Anti-gamma aminobutyric acid (GABA) A receptor antibodies test came back to be positive after her recovery, and the diagnosis of anti-GABA A receptor antibody-positive encephalitis was made. This is a very rare case where brain biopsies were performed in a patient with anti-GABA A receptor antibody-positive encephalitis.

  3. Feeding rumen-protected gamma-aminobutyric acid enhances the immune response and antioxidant status of heat-stressed lactating dairy cows.

    Science.gov (United States)

    Cheng, Jianbo; Zheng, Nan; Sun, Xianzhi; Li, Songli; Wang, Jiaqi; Zhang, Yangdong

    2016-08-01

    This experiment was conducted to investigate the effects of rumen-protected gamma-aminobutyric acid (GABA) on immune function and antioxidant status in heat-stressed dairy cows. Sixty Holstein dairy cows were randomly assigned to 1 of 4 treatments according to a completely randomized block design. The treatments consisted of 0 (control), 40, 80, or 120mg of GABA/kg DM from rumen-protected GABA. The trial lasted 10 weeks. The average temperature-humidity indices at 0700, 1400 and 2200h were 78.4, 80.2 and 78.7, respectively. Rectal temperatures decreased linearly at 0700, 1400, and 2200h with increasing GABA. As the GABA increased, the immunoglobulin (Ig) A and IgG contents and the proportions of CD4(+) and CD8(+) T lymphocytes increased linearly (Pheat-stressed dairy cows can improve their immune function and antioxidant activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    Science.gov (United States)

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings

    NARCIS (Netherlands)

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P; Boer, Vincent O.; Klomp, Dennis W J; Cahn, Wiepke; Kahn, René S; Neggers, Sebastiaan F W

    BACKGROUND: The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate

  6. Delta Subunit-Containing Gamma-Aminobutyric Acid A Receptor Disinhibits Lateral Amygdala and Facilitates Fear Expression in Mice.

    Science.gov (United States)

    Liu, Zhi-Peng; He, Qing-Hai; Pan, Han-Qing; Xu, Xiao-Bin; Chen, Wen-Bing; He, Ye; Zhou, Jin; Zhang, Wen-Hua; Zhang, Jun-Yu; Ying, Xiao-Ping; Han, Ren-Wen; Li, Bao-Ming; Gao, Tian-Ming; Pan, Bing-Xing

    2017-06-15

    Maintaining gamma-aminobutyric acidergic (GABAergic) inhibition in the amygdala within a physiological range is critical for the appropriate expression of emotions such as fear and anxiety. The synaptic GABA type A receptor (GABA A R) is generally known to mediate the primary component of amygdala inhibition and prevent inappropriate expression of fear. However, little is known about the contribution of the extrasynaptic GABA A R to amygdala inhibition and fear. By using mice expressing green fluorescent protein in interneurons (INs) and lacking the δ subunit-containing GABA A R (GABA A (δ)R), which is exclusively situated in the extrasynaptic membrane, we systematically investigated the role of GABA A (δ)R in regulating inhibition in the lateral amygdala (LA) and fear learning using the combined approaches of immunohistochemistry, electrophysiology, and behavior. In sharp contrast to the established role of synaptic GABA A R in mediating LA inhibition, we found that either pharmacological or physiological recruitment of GABA A (δ)R resulted in the weakening of GABAergic transmission onto projection neurons in LA while leaving the glutamatergic transmission unaltered, suggesting disinhibition by GABA A (δ)R. The disinhibition arose from IN-specific expression of GABA A (δ)R with its activation decreasing the input resistance of local INs and suppressing their activation. Genetic deletion of GABA A (δ)R attenuated its role in suppressing LA INs and disinhibiting LA. Importantly, the GABA A (δ)R facilitated long-term potentiation in sensory afferents to LA and permitted the expression of learned fear. Our findings suggest that GABA A (δ)R serves as a brake rather than a mediator of GABAergic inhibition in LA. The disinhibition by GABA A (δ)R may help to prevent excessive suppression of amygdala activity and thus ensure the expression of emotion. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Altered Gradients of Glutamate and Gamma-Aminobutyric Acid Transcripts in the Cortical Visuospatial Working Memory Network in Schizophrenia.

    Science.gov (United States)

    Hoftman, Gil D; Dienel, Samuel J; Bazmi, Holly H; Zhang, Yun; Chen, Kehui; Lewis, David A

    2018-04-15

    Visuospatial working memory (vsWM), which is impaired in schizophrenia, requires information transfer across multiple nodes in the cerebral cortex, including visual, posterior parietal, and dorsolateral prefrontal regions. Information is conveyed across these regions via the excitatory projections of glutamatergic pyramidal neurons located in layer 3, whose activity is modulated by local inhibitory gamma-aminobutyric acidergic (GABAergic) neurons. Key properties of these neurons differ across these cortical regions. Consequently, in schizophrenia, alterations in the expression of gene products regulating these properties could disrupt vsWM function in different ways, depending on the region(s) affected. Here, we quantified the expression of markers of glutamate and GABA neurotransmission selectively in layer 3 of four cortical regions in the vsWM network from 20 matched pairs of schizophrenia and unaffected comparison subjects. In comparison subjects, levels of glutamate transcripts tended to increase, whereas GABA transcript levels tended to decrease, from caudal to rostral, across cortical regions of the vsWM network. Composite measures across all transcripts revealed a significant effect of region, with the glutamate measure lowest in the primary visual cortex and highest in the dorsolateral prefrontal cortex, whereas the GABA measure showed the opposite pattern. In schizophrenia subjects, the expression levels of many of these transcripts were altered. However, this disease effect differed across regions, such that the caudal-to-rostral increase in the glutamate measure was blunted and the caudal-to-rostral decline in the GABA measure was enhanced in the illness. Differential alterations in layer 3 glutamate and GABA neurotransmission across cortical regions may contribute to vsWM deficits in schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. In Silico Prediction of Gamma-Aminobutyric Acid Type-A Receptors Using Novel Machine-Learning-Based SVM and GBDT Approaches

    Directory of Open Access Journals (Sweden)

    Zhijun Liao

    2016-01-01

    Full Text Available Gamma-aminobutyric acid type-A receptors (GABAARs belong to multisubunit membrane spanning ligand-gated ion channels (LGICs which act as the principal mediators of rapid inhibitory synaptic transmission in the human brain. Therefore, the category prediction of GABAARs just from the protein amino acid sequence would be very helpful for the recognition and research of novel receptors. Based on the proteins’ physicochemical properties, amino acids composition and position, a GABAAR classifier was first constructed using a 188-dimensional (188D algorithm at 90% cd-hit identity and compared with pseudo-amino acid composition (PseAAC and ProtrWeb web-based algorithms for human GABAAR proteins. Then, four classifiers including gradient boosting decision tree (GBDT, random forest (RF, a library for support vector machine (libSVM, and k-nearest neighbor (k-NN were compared on the dataset at cd-hit 40% low identity. This work obtained the highest correctly classified rate at 96.8% and the highest specificity at 99.29%. But the values of sensitivity, accuracy, and Matthew’s correlation coefficient were a little lower than those of PseAAC and ProtrWeb; GBDT and libSVM can make a little better performance than RF and k-NN at the second dataset. In conclusion, a GABAAR classifier was successfully constructed using only the protein sequence information.

  9. A fluorescence-coupled assay for gamma aminobutyric acid (GABA reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer.

    Directory of Open Access Journals (Sweden)

    Joseph E Ippolito

    Full Text Available Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA have been implicated in the pathogenesis of high grade neuroendocrine (NE neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1, was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies.

  10. A functional assay to measure postsynaptic gamma-aminobutyric acidB responses in cultured spinal cord neurons: Heterologous regulation of the same K+ channel

    Energy Technology Data Exchange (ETDEWEB)

    Kamatchi, G.L.; Ticku, M.K. (Univ. of Texas Health Science Center, San Antonio (USA))

    1991-02-01

    The stimulation of postsynaptic gamma-aminobutyric acid (GABA)B receptors leads to slow inhibitory postsynaptic potentials due to the influx of K(+)-ions. This was studied biochemically, in vitro in mammalian cultured spinal cord neurons by using 86Rb as a substitute for K+. (-)-Baclofen, a GABAB receptor agonist, produced a concentration-dependent increase in the 86Rb-influx. This effect was stereospecific and blocked by GABAB receptor antagonists like CGP 35 348 (3-aminopropyl-diethoxymethyl-phosphonic acid) and phaclofen. Apart from the GABAB receptors, both adenosine via adenosine1 receptors and 5-hydroxytryptamine (5-HT) via 5-HT1 alpha agonists also increased the 86Rb-influx. These agonists failed to show any additivity between them when they were combined in their maximal concentration. In addition, their effect was antagonized specifically by their respective antagonists without influencing the others. These findings suggest the presence of GABAB, adenosine1 and 5-HT1 alpha receptors in the cultured spinal cord neurons, which exhibit a heterologous regulation of the same K(+)-channel. The effect of these agonists were antagonized by phorbol 12,13-didecanoate, an activator of protein kinase C, and pretreatment with pertussis toxin. This suggests that these agonists by acting on their own receptors converge on the same K(+)-channel through the Gi/Go proteins. In summary, we have developed a biochemical functional assay for studying and characterizing GABAB synaptic pharmacology in vitro, using spinal cord neurons.

  11. Effects of Traumatic Stress Induced in the Juvenile Period on the Expression of Gamma-Aminobutyric Acid Receptor Type A Subunits in Adult Rat Brain

    Directory of Open Access Journals (Sweden)

    Cui Yan Lu

    2017-01-01

    Full Text Available Studies have found that early traumatic experience significantly increases the risk of posttraumatic stress disorder (PTSD. Gamma-aminobutyric acid (GABA deficits were proposed to be implicated in development of PTSD, but the alterations of GABA receptor A (GABAAR subunits induced by early traumatic stress have not been fully elucidated. Furthermore, previous studies suggested that exercise could be more effective than medications in reducing severity of anxiety and depression but the mechanism is unclear. This study used inescapable foot-shock to induce PTSD in juvenile rats and examined their emotional changes using open-field test and elevated plus maze, memory changes using Morris water maze, and the expression of GABAAR subunits (γ2, α2, and α5 in subregions of the brain in the adulthood using western blotting and immunohistochemistry. We aimed to observe the role of GABAAR subunits changes induced by juvenile trauma in the pathogenesis of subsequent PTSD in adulthood. In addition, we investigated the protective effects of exercise for 6 weeks and benzodiazepine (clonazepam for 2 weeks. This study found that juvenile traumatic stress induced chronic anxiety and spatial memory loss and reduced expression of GABAAR subunits in the adult rat brains. Furthermore, exercise led to significant improvement as compared to short-term BZ treatment.

  12. Structure-activity relationships in a new series of insecticidally active dioxatricycloalkenes derived by structural comparison of the GABA (. gamma. -aminobutyric acid) antagonists bicycloorthocarboxylates and endosulfan

    Energy Technology Data Exchange (ETDEWEB)

    Ozoe, Yoshihisa; Sawada, Yoshihiro; Mochida, Kazuo; Nakamura, Toshiie (Shimane Univ. (Japan)); Matsumura, Fumio (Univ. of California, Davis (USA))

    1990-05-01

    To study structural requirements for picrotoxinin-type GABA ({gamma}-aminobutyric acid) antagonists to interact with the receptor site, 5-substituted 4,6-dioxatricyclo(7.2.1.0{sup 2,8})dodec-10-enes and related compounds were prepared and examined for their insecticidal activity and potency in displacing ({sup 35}S)tert-butylbicyclophosphorothionate (TBPS) binding. Compounds with high insecticidal activity possessed a phenyl group with an electron-withdrawing para substituent, a cycloalkyl group, or a C{sub 3}-C{sub 5} straight-chain alkyl group at the 5-position. The effect of the 5-substituents on insecticidal activity was very similar to that of the 1-substituents of the bicyloorthocarboxylate GABA antagonists. Representative dioxatricycloalkenes displaced the binding of the GABA antagonist ({sup 35}S)TBPS to housefly head membranes by 29-53% at 10 {mu}M. X-ray crystal structure analysis demonstrated that this class of compounds had structures superimposable on those of 4-tert-butylbicycloorthocarboxylates. These findings indicate that the dioxatricycloalkenes and some other analogues occupy the picrotoxinin binding site in such a way that the fourth interacting subsite of the receptor site accommodates the 5-substituent.

  13. Time-course study and effects of drying method on concentrations of gamma-aminobutyric acid, flavonoids, anthocyanin, and 2''-hydroxynicotianamine in leaves of buckwheats.

    Science.gov (United States)

    Suzuki, Tatsuro; Watanabe, Masami; Iki, Makiko; Aoyagi, Yasuo; Kim, Sun-Ju; Mukasa, Yuji; Yokota, Satoshi; Takigawa, Shigenobu; Hashimoto, Naoto; Noda, Takahiro; Yamauchi, Hiroaki; Matsuura-Endo, Chie

    2009-01-14

    Concentrations of gamma-aminobutyric acid (GABA), rutin, minor flavonoids (such as orientin), anthocyanin, and 2''-hydroxynicotianamine (2HN) were quantified in the leaves of common and tartary buckwheat (Fagopyrum esculentum Moench and Fagopyrum tataricum Gaertn., respectively), at 14, 28, and 42 days after sowing (DAS). GABA and rutin concentrations peaked at 42 DAS, whereas anthocyain, 2HN, and minor flavonoid concentrations declined with the age of the plants. However, at 42 DAS, anthocyanin concentrations in the leaves of tartary buckwheat Hokkai T10 leaves were at least 10-fold greater than in the other buckwheats tested. In addition, the effects on target compound concentrations and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of three different drying methods (20 h at 40 degrees C, 7 h at 70 degrees C, or lyophilization) were investigated. In general, the drying method had no significant effect on the parameters tested. These results indicate that, in terms of GABA, rutin, and anthocyanin concentrations, leaf powder from 42 day old Hokkai T10 has the potential to be a useful food ingredient, such as Ao-jiru juice.

  14. Relationship of executive functioning deficits to N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) in youth with bipolar disorder.

    Science.gov (United States)

    Huber, Rebekah S; Kondo, Douglas G; Shi, Xian-Feng; Prescot, Andrew P; Clark, Elaine; Renshaw, Perry F; Yurgelun-Todd, Deborah A

    2018-01-01

    Although cognitive deficits in bipolar disorder (BD) have been repeatedly observed, our understanding of these impairments at a mechanistic level remains limited. Few studies that investigated cognitive impairments in bipolar illness have examined the association with brain biochemistry. This pilot study utilized proton magnetic resonance spectroscopy ( 1 H-MRS) to evaluate the relationship between neurocognitive performance and brain metabolites in youth with BD. Thirty participants, twenty depressed BD participants and ten healthy comparison participants, ages 13-21, completed mood and executive function measures. 1 H-MRS data were also acquired from the anterior cingulate cortex (ACC) using two-dimensional (2D) J-resolved 1 H-MRS sequence. Proton metabolites including N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) were quantified for both groups. Participants with BD performed significantly lower on executive functioning measures than comparison participants. There were significant positive correlations between Wisconsin Card Sorting Test (WCST) performance and NAA (p NAA and GABA levels increased. Small sample size and lack of control for medications. These findings build on previous observations of biochemical alterations associated with BD and indicate that executive functioning deficits in bipolar youth are correlated with NAA and GABA. These results suggest that cognitive deficits occur early in the course of illness and may reflect risk factors associated with altered neurochemistry. Further investigation of the relationship between brain metabolites and cognition in BD may lead to important information for developing novel, targeted interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    Energy Technology Data Exchange (ETDEWEB)

    Esquifino, A.I. [Dept. de Bioquimica y Biologia Molecular III, Universidad Complutense, Madrid (Spain); Seara, R.; Fernandez-Rey, E.; Lafuente, A. [Lab. de Toxicologia, Universidad de Vigo, Orense (Spain)

    2001-05-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  16. Glutamate decarboxylase and. gamma. -aminobutyric acid transaminase activity in brain structures during action of high concentrated sulfide gas on a background of hypo- and hypercalcemia

    Energy Technology Data Exchange (ETDEWEB)

    Kadyrov, G.K.; Aliyev, A.M.

    Activity of the following enzymes was studied on the background of hypo- and hypercalcemia and exposure to high concentration of sulfide gas: glutamate decarboxylase (GDC) and {gamma}-aminobutyric acid transaminase (GABA-T). These enzymes regulate metabolism of GABA. The results showed that a 3.5 hr exposure to sulfide gas at a concentration of 0.3 mg/1 led to significantly increased activity of GDC in cerebral hemispheres, cerebellum and in brain stem. Activity of GABA-T dropped correspondingly. On the background of hypercalcemia induced by im. injection of 10% calcium gluconate (0.6 m1/200 g body weight of experimental rats) the negative effect caused by the exposure to sulfide gas was diminished. Under conditions of hypocalcemia (im. injection of 10 mg/200 g body weight of sodium oxalate), exposure to sulfide gas led to a significantly decreased activity of GDC and GABA-T in the hemispheres and in the brain stem, but in the cerebellum the activity of GDC increased sharply while that of GABA-T decreased correspondingly. 8 refs.

  17. Effect of “Jian-Pi-Zhi-Dong Decoction” on Gamma-Aminobutyric Acid in a Mouse Model of Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2014-01-01

    Full Text Available The purpose of this study was to explore the positive effects of Jian-Pi-Zhi-Dong Decoction (JPZDD on Tourette syndrome (TS by investigating the expression of gamma-aminobutyric acid (GABA and its type A receptor (GABAAR in the striatum of a TS mice model. The model was induced by 3,3′-iminodipropionitrile (IDPN treatment; then mice were divided into 4 groups (n=22, each; control and IDPN groups were gavaged with saline and the remaining 2 groups were gavaged with tiapride and JPZDD. We recorded the stereotypic behaviors of TS mice and measured the content of GABA in striatum by HPLC and GABAAR expression by immunohistochemistry and real-time PCR. Our results showed that JPZDD inhibited the abnormal behaviors of TS model mice and decreased GABA levels and GABAAR protein and mRNA expression in the striatum of TS model mice. In brief, the mechanism by which JPZDD alleviates TS symptoms may be associated with GABAAR expression downregulation in striatum which may regulate GABA metabolism.

  18. Failure of gamma-aminobutyrate acid-beta agonist baclofen to improve balance, gait, and postural control after vestibular schwannoma resection.

    Science.gov (United States)

    De Valck, Claudia F J; Vereeck, Luc; Wuyts, Floris L; Van de Heyning, Paul H

    2009-04-01

    Incomplete postural control often occurs after vestibular schwannoma (VS) surgery. Customized vestibular rehabilitation in man improves and speeds up this process. Animal experiments have shown an improved and faster vestibular compensation after administration of the gamma-aminobutyrate acid (GABA)-beta agonist baclofen. To examine whether medical treatment with baclofen provides an improvement of the compensation process after VS surgery. A time-series study with historical control. Tertiary referral center. Thirteen patients who underwent VS resection were included and compared with a matched group of patients. In addition to an individualized vestibular rehabilitation protocol, the study group received medical treatment with 30 mg baclofen (a GABA-beta agonist) daily during the first 6 weeks after surgery. Clinical gait and balance tests (Romberg maneuver, standing on foam, tandem Romberg, single-leg stance, Timed Up & Go test, tandem gait, Dynamic Gait Index) and Dizziness Handicap Inventory. Follow-up until 24 weeks after surgery. When examining the postoperative test results, the group treated with baclofen did not perform better when compared with the matched (historical control) group. Repeated-measures analysis of variance revealed no significant group effect, but a significant time effect for almost all balance tests during the acute recovery period was found. An interaction effect between time and intervention was seen concerning single-leg stance and Dizziness Handicap Inventory scores for the acute recovery period. Medical therapy with baclofen did not seem to be beneficial in the process of central vestibular compensation.

  19. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    International Nuclear Information System (INIS)

    Esquifino, A.I.; Seara, R.; Fernandez-Rey, E.; Lafuente, A.

    2001-01-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  20. Effects of electroacupuncture on the levels of retinal gamma-aminobutyric acid and its receptors in a guinea pig model of lens-induced myopia.

    Science.gov (United States)

    Sha, F; Ye, X; Zhao, W; Xu, C-L; Wang, L; Ding, M-H; Bi, A-L; Wu, J-F; Jiang, W-J; Guo, D-D; Guo, J-G; Bi, H-S

    2015-02-26

    Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter of the retina and affects myopic development. Electroacupuncture (EA) is widely utilized to treat myopia in clinical settings. However, there are few reports on whether EA affects the level of retinal GABA during myopic development. To study this issue, in the present study, we explored the changes of retinal GABA content and the expression of its receptor subtypes, and the effects of EA stimulation on them in a guinea pig model with lens-induced myopia (LIM). Our results showed that the content of GABA and the expression of GABAA and GABAC receptors of retina were up-regulated during the development of myopia, and this up-regulation was inhibited by applying EA to Hegu (LI4) and Taiyang (EX-HN5) acupoints. Moreover, these effects of EA show a positional specificity. While applying EA at a sham acupoint, no apparent change of myopic retinal GABA and its receptor subtypes was observed. Taken together, our findings suggest that LIM is effective to up-regulate the level of retinal GABA, GABAA and GABAC receptors in guinea pigs and the effect may be inhibited by EA stimulation at LI4 and EX-HN5 acupoints. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in the rat somatosensory cortex: a quantitative immunocytochemical image analysis

    Science.gov (United States)

    D'Amelio, F.; Wu, L. C.; Fox, R. A.; Daunton, N. G.; Corcoran, M. L.; Polyakov, I.

    1998-01-01

    Quantitative evaluation of gamma-aminobutyric acid immunoreactivity (GABA-IR) in the hindlimb representation of the rat somatosensory cortex after 14 days of exposure to hypergravity (hyper-G) was conducted by using computer-assisted image processing. The area of GABA-IR axosomatic terminals apposed to pyramidal cells of cortical layer V was reduced in rats exposed to hyper-G compared with control rats, which were exposed either to rotation alone or to vivarium conditions. Based on previous immunocytochemical and behavioral studies, we suggest that this reduction is due to changes in sensory feedback information from muscle receptors. Consequently, priorities for muscle recruitment are altered at the cortical level, and a new pattern of muscle activity is thus generated. It is proposed that the reduction observed in GABA-IR of the terminal area around pyramidal neurons is the immunocytochemical expression of changes in the activity of GABAergic cells that participate in reprogramming motor outputs to achieve effective movement control in response to alterations in the afferent information.

  2. Brain Targeted Intranasal Zaleplon Nano-emulsion: In-Vitro Characterization and Assessment of Gamma Aminobutyric Acid Levels in rabbits' Brain and Plasma at low and high Doses.

    Science.gov (United States)

    Abd-Elrasheed, Eman; El-Helaly, Sara Nageeb; El-Ashmoony, Manal M; Salah, Salwa

    2017-11-30

    Zaleplon is a pyrazolopyrimidin derivative hypnotic drug indicated for the short-term management of insomnia. Zaleplon belongs to Class II drugs, according to the biopharmaceutical classification system (BCS), showing poor solubility and high permeability. It undergoes extensive first-pass hepatic metabolism after oral absorption, with only 30% of Zaleplon being systemically available. It is available in tablet form which is unable to overcome the previous problems. The aim of this study is to enhance solubility and bioavailability via utilizing nanotechnology in the formulation of intranasal Zaleplon nano-emulsion (ZP-NE) to bypass the barriers and deliver an effective therapy to the brain. Screening studies were carried out wherein the solubility of zaleplon in various oils, surfactants(S) and co-surfactants(CoS) were estimated. Pseudo-ternary phase diagrams were constructed and various nano-emulsion formulations were prepared. These formulations were subjected to thermodynamic stability, in-vitro characterization, histopathological studies and assessment of the gamma aminobutyric acid (GABA) level in plasma and brain in rabbits compared to the market product (Sleep aid®). Stable NEs were successfully developed with a particle size range of 44.57±3.351 to 136.90±1.62 nm. A NE composed of 10% Miglyol® 812, 40%Cremophor® RH40 40%Transcutol® HP and 10% water successfully enhanced the bioavailability and brain targeting in the rabbits, showing a three to four folds increase than the marketed product. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Enhanced Production of Gamma-Aminobutyric Acid by Optimizing Culture Conditions of Lactobacillus brevis HYE1 Isolated from Kimchi, a Korean Fermented Food.

    Science.gov (United States)

    Lim, Hee Seon; Cha, In-Tae; Roh, Seong Woon; Shin, Hae-Hun; Seo, Myung-Ji

    2017-03-28

    This study evaluated the effects of culture conditions, including carbon and nitrogen sources, L-monosodium glutamate (MSG), and initial pH, on gamma-aminobutyric acid (GABA) production by Lactobacillus brevis HYE1 isolated from kimchi, a Korean traditional fermented food. L. brevis HYE1 was screened by the production analysis of GABA and genetic analysis of the glutamate decarboxylase gene, resulting in 14.64 mM GABA after 48 h of cultivation in MRS medium containing 1% (w/v) MSG. In order to increase GABA production by L. brevis HYE1, the effects of carbon and nitrogen sources on GABA production were preliminarily investigated via one-factor-at-a-time optimization strategy. As the results, 2% maltose and 3% tryptone were determined to produce 17.93 mM GABA in modified MRS medium with 1% (w/v) MSG. In addition, the optimal MSG concentration and initial pH were determined to be 1% and 5.0, respectively, resulting in production of 18.97 mM GABA. Thereafter, response surface methodology (RSM) was applied to determine the optimal conditions of the above four factors. The results indicate that pH was the most significant factor for GABA production. The optimal culture conditions for maximum GABA production were also determined to be 2.14% (w/v) maltose, 4.01% (w/v) tryptone, 2.38% (w/v) MSG, and an initial pH of 4.74. In these conditions, GABA production by L. brevis HYE1 was predicted to be 21.44 mM using the RSM model. The experiment was performed under these optimized conditions, resulting in GABA production of 18.76 mM. These results show that the predicted and experimental values of GABA production are in good agreement.

  4. Nicotine stimulates pancreatic cancer xenografts by systemic increase in stress neurotransmitters and suppression of the inhibitory neurotransmitter gamma-aminobutyric acid.

    Science.gov (United States)

    Al-Wadei, Hussein A N; Plummer, Howard K; Schuller, Hildegard M

    2009-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality in Western countries. We have shown previously that four representative human PDAC cell lines were regulated by beta-adrenoreceptors via cyclic adenosine 3',5'-monophosphate (cAMP)-dependent signaling. In the current study, we have tested the hypothesis that nicotine stimulates the growth of PDAC xenografts in nude mice by increasing the systemic levels of the stress neurotransmitters adrenaline and noradrenaline, which are the physiological agonists for beta-adrenoreceptors and that inhibition by gamma-aminobutyric acid (GABA) of the adenylyl cyclase-dependent pathway downstream of adrenoreceptors blocks this effect. The size of xenografts from PDAC cell line Panc-1 was determined 30 days after inoculation of the cancer cells. Stress neurotransmitters in serum as well as cAMP in the cellular fraction of blood and in tumor tissue were assessed by immunoassays. Levels of GABA, its synthesizing enzymes GAD65 and GAD67 and beta-adrenergic signaling proteins in the tumor tissue were determined by western blotting. Nicotine significantly increased the systemic levels of adrenaline, noradrenaline and cAMP while increasing xenograft size and protein levels of cAMP, cyclic AMP response element-binding protein and p-extracellular signal-regulated kinase 1/2 in the tumor tissue. Nicotine additionally reduced the protein levels of both GAD isozymes and GABA in tumor tissue. Treatment with GABA abolished these responses to nicotine and blocked the development of xenografts in mice not exposed to nicotine. These findings suggest that the development and progression of PDAC is subject to significant modulation by stimulatory stress neurotransmitters and inhibitory GABA and that treatment with GABA may be useful for marker-guided cancer intervention of PDAC.

  5. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    International Nuclear Information System (INIS)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of [ 3 H] norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 x 10 -5 -10 -3 M, enhanced potassium stimulated [ 3 H] norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of [ 3 H] norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA A receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA A agonist muscimol, 10 -4 M, mimicked the effect of GABA, but the GABA B agonist (±)baclofen, 10 -4 M, did not affect the release of [ 3 H] norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA A , but not GABA B , receptors. In contrast to the results that would be predicted for an event involving GABA A receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10 -8 and 10 -4 M. Thus these receptors may constitute a subclass of GABA A receptors. These results support a role of GABA uptake and GABA A receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat

  6. Prefrontal and Striatal Gamma-Aminobutyric Acid Levels and the Effect of Antipsychotic Treatment in First-Episode Psychosis Patients.

    Science.gov (United States)

    de la Fuente-Sandoval, Camilo; Reyes-Madrigal, Francisco; Mao, Xiangling; León-Ortiz, Pablo; Rodríguez-Mayoral, Oscar; Jung-Cook, Helgi; Solís-Vivanco, Rodolfo; Graff-Guerrero, Ariel; Shungu, Dikoma C

    2018-03-15

    Abnormally elevated levels of gamma-aminobutyric acid (GABA) in the medial prefrontal cortex (mPFC) have been reported in antipsychotic-free patients with schizophrenia. Whether such GABA elevations are also present in other brain regions and persist after antipsychotic treatment has not been previously investigated. Twenty-eight antipsychotic-naïve patients with first-episode psychosis (FEP) and 18 healthy control subjects completed the study. Following baseline proton magnetic resonance spectroscopy scans targeting the mPFC and a second region, the dorsal caudate, patients with FEP were treated with oral risperidone for 4 weeks at an initial dose of 1 mg/day that was titrated as necessary based on clinical judgment. After the 4-week treatment period, both groups were brought back to undergo outcome magnetic resonance spectroscopy scans, which were identical to the scans conducted at baseline. At baseline, higher GABA levels were found both in the mPFC and in the dorsal caudate of patients with FEP compared with healthy control subjects. Following 4 weeks of antipsychotic treatment, GABA levels in patients with FEP decreased relative to baseline in the mPFC, but decreased only at the trend level relative to baseline in the dorsal caudate. For either brain region, GABA levels at 4 weeks or posttreatment did not differ between patients with FEP and healthy control subjects. The results of the present study documented elevations of GABA levels both in the mPFC and, for the first time, in the dorsal caudate of antipsychotic-naïve patients with FEP, which normalized in both regions following 4 weeks of antipsychotic treatment. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. The role of gamma-aminobutyric acid/glycinergic synaptic transmission in mediating bilirubin-induced hyperexcitation in developing auditory neurons.

    Science.gov (United States)

    Yin, Xin-Lu; Liang, Min; Shi, Hai-Bo; Wang, Lu-Yang; Li, Chun-Yan; Yin, Shan-Kai

    2016-01-05

    Hyperbilirubinemia is a common clinical phenomenon observed in human newborns. A high level of bilirubin can result in severe jaundice and bilirubin encephalopathy. However, the cellular mechanisms underlying bilirubin excitotoxicity are unclear. Our previous studies showed the action of gamma-aminobutyric acid (GABA)/glycine switches from excitatory to inhibitory during development in the ventral cochlear nucleus (VCN), one of the most sensitive auditory nuclei to bilirubin toxicity. In the present study, we investigated the roles of GABAA/glycine receptors in the induction of bilirubin hyperexcitation in early developing neurons. Using the patch clamp technique, GABAA/glycine receptor-mediated spontaneous inhibitory synaptic currents (sIPSCs) were recorded from bushy and stellate cells in acute brainstem slices from young mice (postnatal day 2-6). Bilirubin significantly increased the frequency of sIPSCs, and this effect was prevented by pretreatments of slices with either fast or slow Ca(2+) chelators BAPTA-AM and EGTA-AM suggesting that bilirubin can increase the release of GABA/glycine via Ca(2+)-dependent mechanisms. Using cell-attached recording configuration, we found that antagonists of GABAA and glycine receptors strongly attenuated spontaneous spiking firings in P2-6 neurons but produced opposite effect in P15-19 neurons. Furthermore, these antagonists reversed bilirubin-evoked hyperexcitability in P2-6 neurons, indicating that excitatory action of GABA/glycinergic transmission specifically contribute to bilirubin-induced hyperexcitability in the early stage of development. Our results suggest that bilirubin-induced enhancement of presynaptic release GABA/Glycine via Ca(2+)-dependent mechanisms may play a critical role in mediating neuronal hyperexcitation associated with jaundice, implicating potential new strategies for predicting, preventing, and treating bilirubin neurotoxicity. Copyright © 2015. Published by Elsevier Ireland Ltd.

  8. Increased Cortical Gamma-Aminobutyric Acid Precedes Incomplete Extinction of Conditioned Fear and Increased Hippocampal Excitatory Tone in a Mouse Model of Mild Traumatic Brain Injury.

    Science.gov (United States)

    Schneider, Brandy L; Ghoddoussi, Farhad; Charlton, Jennifer L; Kohler, Robert J; Galloway, Matthew P; Perrine, Shane A; Conti, Alana C

    2016-09-01

    Mild traumatic brain injury (mTBI) contributes to development of affective disorders, including post-traumatic stress disorder (PTSD). Psychiatric symptoms typically emerge in a tardive fashion post-TBI, with negative effects on recovery. Patients with PTSD, as well as rodent models of PTSD, demonstrate structural and functional changes in brain regions mediating fear learning, including prefrontal cortex (PFC), amygdala (AMYG), and hippocampus (HC). These changes may reflect loss of top-down control by which PFC normally exhibits inhibitory influence over AMYG reactivity to fearful stimuli, with HC contribution. Considering the susceptibility of these regions to injury, we examined fear conditioning (FC) in the delayed post-injury period, using a mouse model of mTBI. Mice with mTBI displayed enhanced acquisition and delayed extinction of FC. Using proton magnetic resonance spectroscopy ex vivo, we examined PFC, AMYG, and HC levels of gamma-aminobutyric acid (GABA) and glutamate as surrogate measures of inhibitory and excitatory neurotransmission, respectively. Eight days post-injury, GABA was increased in PFC, with no significant changes in AMYG. In animals receiving FC and mTBI, glutamate trended toward an increase and the GABA/glutamate ratio decreased in ventral HC at 25 days post-injury, whereas GABA decreased and GABA/glutamate decreased in dorsal HC. These neurochemical changes are consistent with early TBI-induced PFC hypoactivation facilitating the fear learning circuit and exacerbating behavioral fear responses. The latent emergence of overall increased excitatory tone in the HC, despite distinct plasticity in dorsal and ventral HC fields, may be associated with disordered memory function, manifested as incomplete extinction and enhanced FC recall.

  9. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of ({sup 3}H) norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 {times} 10{sup {minus}5}-10{sup {minus}3} M, enhanced potassium stimulated ({sup 3}H) norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of ({sup 3}H) norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA{sub A} receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA{sub A} agonist muscimol, 10{sup {minus}4} M, mimicked the effect of GABA, but the GABA{sub B} agonist ({plus minus})baclofen, 10{sup {minus}4} M, did not affect the release of ({sup 3}H) norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA{sub A}, but not GABA{sub B}, receptors. In contrast to the results that would be predicted for an event involving GABA{sub A} receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10{sup {minus}8} and 10{sup {minus}4} M. Thus these receptors may constitute a subclass of GABA{sub A} receptors. These results support a role of GABA uptake and GABA{sub A} receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat.

  10. In vivo gamma-aminobutyric acid and glutamate levels in people with first-episode schizophrenia: A proton magnetic resonance spectroscopy study.

    Science.gov (United States)

    Chiu, P W; Lui, Simon S Y; Hung, Karen S Y; Chan, Raymond C K; Chan, Queenie; Sham, P C; Cheung, Eric F C; Mak, Henry K F

    2018-03-01

    Gamma-aminobutyric acid (GABA) dysfunction and its consequent imbalance are implicated in the pathophysiology of schizophrenia. Reduced GABA production would lead to a disinhibition of glutamatergic neurons and subsequently cause a disruption of the modulation between GABAergic interneurons and glutamatergic neurons. In this study, levels of GABA, Glx (summation of glutamate and glutamine), and other metabolites in the anterior cingulate cortex were measured and compared between first-episode schizophrenia subjects and healthy controls (HC). Diagnostic potential of GABA and Glx as upstream biomarkers for schizophrenia was explored. Nineteen first-episode schizophrenia subjects and fourteen HC participated in this study. Severity of clinical symptoms of patients was measured with Positive and Negative Syndrome Scale (PANSS). Metabolites were measured using proton magnetic resonance spectroscopy, and quantified using internal water as reference. First-episode schizophrenia subjects revealed reduced GABA and myo-inositol (mI), and increased Glx and choline (Cho), compared to HC. No significant correlation was found between metabolite levels and PANSS scores. Receiver operator characteristics analyses showed Glx had higher sensitivity and specificity (84.2%, 92.9%) compared to GABA (73.7%, 64.3%) for differentiating schizophrenia patients from HC. Combined model of both GABA and Glx revealed the best sensitivity and specificity (89.5%, 100%). This study simultaneously showed reduction in GABA and elevation in Glx in first-episode schizophrenia subjects, and this might provide insights on explaining the disruption of modulation between GABAergic interneurons and glutamatergic neurons. Elevated Cho might indicate increased membrane turnover; whereas reduced mI might reflect dysfunction of the signal transduction pathway. In vivo Glx and GABA revealed their diagnostic potential for schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators

    Directory of Open Access Journals (Sweden)

    Andres D. Ramirez

    2013-12-01

    Full Text Available Dual orexin receptor antagonists (DORAs are a potential treatment for insomnia that function by blocking both the orexin 1 and orexin 2 receptors. The objective of the current study was to further confirm the impact of therapeutic mechanisms targeting insomnia on locomotor coordination and ethanol interaction using DORAs and gamma-aminobutyric acid (GABA-A receptor modulators of distinct chemical structure and pharmacologic properties in the context of sleep-promoting potential. The current study compared rat motor co-ordination after administration of DORAs, DORA-12 and almorexant, and GABA-A receptor modulators, zolpidem, eszopiclone and diazepam, alone or each in combination with ethanol. Motor performance was assessed by measuring time spent walking on a rotarod apparatus. Zolpidem, eszopiclone and diazepam (0.3–30 mg/kg administered orally [PO] impaired rotarod performance in a dose-dependent manner. Furthermore, all three GABA-A receptor modulators potentiated ethanol- (0.25–1.25 g/kg induced impairment on the rotarod. By contrast, neither DORA-12 (10–100 mg/kg, PO nor almorexant (30–300 mg/kg, PO impaired motor performance alone or in combination with ethanol. In addition, distinct differences in sleep architecture were observed between ethanol, GABA-A receptor modulators (zolpidem, eszopiclone and diazepam and DORA-12 in electroencephalogram studies in rats. These findings provide further evidence that orexin receptor antagonists have an improved motor side-effect profile compared with currently available sleep-promoting agents based on preclinical data and strengthen the rationale for further evaluation of these agents in clinical development.

  12. Comparison of the density of gamma-aminobutyric acid in the ventromedial prefrontal cortex of patients with first-episode psychosis and healthy controls.

    Science.gov (United States)

    Yang, Zhilei; Zhu, Yajing; Song, Zhenhua; Mei, Li; Zhang, Jianye; Chen, Tianyi; Wang, Yingchan; Xu, Yifeng; Jiang, Kaida; Li, Yao; Liu, Dengtang

    2015-12-25

    Abnormality in the concentration and functioning of gamma-aminobutyric acid (γ-aminobutyric acid, GABA) in the brain is not only an important hypothetical link to the cause of schizophrenia but it may also be correlated with the cognitive decline and negative symptoms of schizophrenia. Studies utilizing high field magnetic resonance spectroscopy (MRS) report abnormal density of GABA in the ventromedial prefrontal cortex (vmPFC) of patients with chronic schizophrenia, but these results may be confounded by study participants' prior use of antipsychotic medications. Compare the density of GABA in the vmPFC of patients with first-episode psychosis to that in healthy controls and assess the relationship of GABA density in the vmPFC to the severity of psychotic symptoms. Single-voxel (1)H-MRS was used to assess the concentration of GABA and other metabolites in the vmPFC of 22 patients with first-episode psychosis (10 with schizophrenia and 12 with schizophreniform disorder) and 23 healthy controls. Thirteen of the 22 patients were drug-naïve and 9 had used antipsychotic medication for less than 3 days. The Positive and Negative Syndrome Scale (PANSS) was used to evaluate the severity of psychotic symptoms in the patient group. The mean (sd) GABA density in the vmPFC was significantly higher in patients than in controls (2.28 [0.54] v. 1.93 [0.32] mM, t=2.62, p=0.012). The densities of other metabolites - including N-acetylaspartic acid (NAA), glutamic acid (GLU), and glutamine (GLN) - were not significantly different between patients and controls. Among the patients, GABA density in the vmPFC was not significantly correlated with PANSS total score or with any of the three PANSS subscale scores for positive symptoms, negative symptoms, and general psychopathology. GABA concentration was not associated with the duration of illness, but it was significantly correlated with patient age (r=0.47, p=0.026). Elevation of GABA density in the vmPFC of patients with first

  13. Brain Gamma-Aminobutyric Acid (GABA) Concentration of the Prefrontal Lobe in Unmedicated Patients with Obsessive-Compulsive Disorder: A Research of Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Zhang, Zongfeng; Fan, Qing; Bai, Yanle; Wang, Zhen; Zhang, Haiyin; Xiao, Zeping

    2016-10-25

    In recent years, a large number of neuroimaging studies found that the Cortico-Striato- Thalamo-Cortical circuit (CSTC), including the prefrontal lobe, a significant part of CSTC, has disturbance metabolically in patients with Obsessive-Compulsive Disorder (OCD). Explore the correlation between the neuro-metabolic features and clinical characteristics of OCD patients using magnetic resonance spectroscopy technology. 88 patients with OCD who were not received medication and outpatient treatment for 8 weeks and 76 health controls were enrolled, there was no significant difference in gender, age or education level between the two groups. SIEMENS 3.0T MRI scanner was used to measure the spectral wave of Orbito Frontal Cortex (OFC) and Anterior Cingulate Cortex (ACC) of participants, setting mega-press sequences. Meanwhile, the concentrations of gamma-aminobutyric acid (GABA), glutamine/glutamate complex (Glx) and N-Acetyl Aspartate (NAA) were measured relative to concentration of water, on the ACC and OFC of participants, for statistical analysis via LC model version 6.3 software. The concentration of metabolic substances of the OCD group compared to the healthy control group was analyzed using two sample t-test. The correlation between substance concentration and scores on the scales, including Yale-Brown Obsessive Compulsive Scale (Y-BOCS), Hamilton Anxiety scale (HAMA) and Hamilton Depression scale (HAMD) was carried out using the Pearson correlation method. Compared with healthy controls, the GABA/W and NAA/W concentration in individuals with OCD are significantly decreased ( p =0.031, t =2.193, p =0.002, t =3.223). Also, the concentration of GABA/W had a trend of decrease in the ACC. The GABA/W of the OFC had a negative correlation with Y-BOCS-O, Y-BOCS-C and Y-BOCS-T scores ( p =0.037, r =0.221; p =0.007, r =0.283; p =0.014, r =0.259). These results support that GABA concentration in the OFC area of patients with OCD is significantly decreased and the

  14. Human α1β3γ2L gamma-aminobutyric acid type A receptors: High-level production and purification in a functional state.

    Science.gov (United States)

    Dostalova, Zuzana; Zhou, Xiaojuan; Liu, Aiping; Zhang, Xi; Zhang, Yinghui; Desai, Rooma; Forman, Stuart A; Miller, Keith W

    2014-02-01

    Gamma-aminobutyric acid type A receptors (GABA(A)Rs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABA(A)Rs determine their function and pharmacological profile. GABAA Rs are heteropentamers of subunits, and (α1)2 (β3)2 (γ2L)1 is a common subtype. Biochemical and biophysical studies of GABA(A)Rs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high-level production of active human α1β3 GABA(A)R using tetracycline-inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline-inducible HEK293-TetR cell line expressing human (N)-FLAG-α1β3γ2L-(C)-(GGS)3 GK-1D4 GABA(A)R. These cells achieved expression levels of 70-90 pmol [(3)H]muscimol binding sites/15-cm plate at a specific activity of 15-30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [(3)H]flunitrazepam to [(3)H]muscimol binding sites and sensitivity of GABA-induced currents to benzodiazepines and zinc. The α1β3γ2L GABA(A)Rs were solubilized in dodecyl-D-maltoside, purified by anti-FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ∼ 30%. Typical purifications yielded 1.0-1.5 nmoles of [(3)H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [(3)H]muscimol binding were maintained in the purified state. © 2013 The Protein Society.

  15. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings

    DEFF Research Database (Denmark)

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P

    2017-01-01

    BACKGROUND: The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate...... concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus...... glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives. METHODS: Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia...

  16. In vivo magnetic resonance spectroscopy measurement of gray-matter and white-matter gamma-aminobutyric acid concentration in sensorimotor cortex using a motion-controlled MEGA point-resolved spectroscopy sequence.

    Science.gov (United States)

    Bhattacharyya, Pallab K; Phillips, Micheal D; Stone, Lael A; Lowe, Mark J

    2011-04-01

    Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the brain. Understanding the GABA concentration, in vivo, is important to understand normal brain function. Using MEGA point-resolved spectroscopy sequence with interleaved water scans to detect subject motion, GABA level of sensorimotor cortex was measured using a voxel identified from a functional magnetic resonance imaging scan. The GABA level in a 20×20×20-mm(3) voxel consisting of 37%±7% gray matter, 52%±12% white matter and 11%±8% cerebrospinal fluid in the sensorimotor region was measured to be 1.43±0.48 mM. In addition, using linear regression analysis, GABA concentrations within gray and white matter were calculated to be 2.87±0.61 and 0.33±0.11 mM, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Interactive effects of glutamine and gamma-aminobutyric acid on growth performance and skeletal muscle amino acid metabolism of 22-42-day-old broilers exposed to hot environment

    Science.gov (United States)

    Hu, Hong; Bai, Xi; Shah, Assar Ali; Dai, Sifa; Wang, Like; Hua, Jinling; Che, Chuanyan; He, Shaojun; Wen, Aiyou; Jiang, Jinpeng

    2016-06-01

    The present experiment was conducted to investigate the interactive effects between dietary glutamine (Gln, 0 and 5 g/kg) and gamma-aminobutyric acid (GABA, 0 and 100 mg/kg) on growth performance and amino acid (AA) metabolism of broilers under hot environment. A total of 360 22-day-old Arbor Acres male chickens were randomly assigned to five treatment groups under thermoneutral chamber (PC, 23 °C) and cyclic heat stress (HS, 30-34 °C cycling) conditions. Compared with the PC group, cyclic HS decreased ( P muscle at 28, 35, and 42 days, while it increased ( P muscle, the Gln supplementation increased ( P muscle Gln concentrations, glutaminase activities, GS activities at 28 and 35 days, and DWG, GABA concentrations, and GABA-T activities at 28, 35, and 42 days in broilers under cyclic HS. In conclusion, the present results indicated that the interactions of exogenous Gln and GABA could offer a potential nutritional strategy to prevent HS-related depression in skeletal muscle Gln and GABA metabolism of broilers.

  18. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings.

    Science.gov (United States)

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P; Boer, Vincent O; Klomp, Dennis W J; Cahn, Wiepke; Kahn, René S; Neggers, Sebastiaan F W

    2017-03-15

    The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives. Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia, and 24 healthy nonrelatives. Glutamate, glutamine, and GABA were measured cortically and subcortically in bilateral basal ganglia and occipital cortex. Patients with schizophrenia had reduced cortical GABA compared with healthy relatives and the combined sample of healthy relatives and healthy nonrelatives, suggesting that altered GABAergic systems in schizophrenia are associated with either disease state or medication effects. Reduced cortical glutamine relative to healthy control subjects was observed in patients with schizophrenia and the combined sample of healthy relatives and patients with schizophrenia, suggesting that altered glutamatergic metabolite levels are associated with illness liability. No group differences were found in the basal ganglia. Taken together, these findings are consistent with alterations in GABAergic and glutamatergic systems in patients with schizophrenia and provide novel insights into these systems in healthy relatives. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Increased gamma-aminobutyric acid levels in mouse brain induce loss of righting reflex, but not immobility, in response to noxious stimulation.

    Science.gov (United States)

    Katayama, Sohtaro; Irifune, Masahiro; Kikuchi, Nobuhito; Takarada, Tohru; Shimizu, Yoshitaka; Endo, Chie; Takata, Takashi; Dohi, Toshihiro; Sato, Tomoaki; Kawahara, Michio

    2007-06-01

    The general anesthetic state comprises behavioral and perceptual components, including amnesia, unconsciousness, and immobility. gamma-Aminobutyric acidergic (GABAergic) inhibitory neurotransmission is an important target for anesthetic action at the in vitro cellular level. In vivo, however, the functional relevance of enhancing GABAergic neurotransmission in mediating essential components of the general anesthetic state is unknown. Gabaculine is a GABA-transaminase inhibitor that inhibits degradation of released GABA, and consequently increases endogenous GABA in the central nervous system. Here, we examined, behaviorally, the ability of increased GABA levels to produce components of the general anesthetic state. All drugs were administered systemically in adult male ddY mice. To assess the general anesthetic components, two end-points were used. One was loss of righting reflex (LORR; as a measure of unconsciousness); the other was loss of movement in response to tail-clamp stimulation (as a measure of immobility). Gabaculine induced LORR in a dose-dependent fashion with a 50% effective dose of 100 (75-134; 95% confidence limits) mg/kg. The behavioral and microdialysis studies revealed that the endogenous GABA-induced LORR occurred in a brain concentration-dependent manner. However, even larger doses of gabaculine (285-400 mg/kg) produced no loss of tail-clamp response. In contrast, all the tested volatile anesthetics concentration-dependently abolished both righting and tail-clamp response, supporting the evidence that volatile anesthetics act on a variety of molecular targets. These findings indicate that LORR is associated with enhanced GABAergic neurotransmission, but that immobility in response to noxious stimulation is not, suggesting that LORR and immobility are mediated through different neuronal pathways and/or regions in the central nervous system.

  20. Antagonistic properties of a natural product-Bicuculline with the gamma-aminobutyric acid receptor: studied through electrostatic potential mapping, electronic and vibrational spectra using ab initio and density functional theory.

    Science.gov (United States)

    Srivastava, Anubha; Tandon, Poonam; Jain, Sudha; Asthana, B P

    2011-12-15

    (+)-Bicuculline (hereinafter referred to as bicuculline), a phthalide isoquinoline alkaloid is of current interest as an antagonist of gamma-aminobutyric acid (GABA). Its inhibitor properties have been studied through molecular electrostatic potential (MEP) mapping of this molecule and GABA receptor. The hot site on the potential surface of bicuculline, which is also isosteric with GABA receptor, has been used to interpret the inhibitor property. A systematic quantum chemical study of the possible conformations, their relative stabilities, FT-Raman, FT-IR and UV-vis spectroscopic analysis of bicuculline has been reported. The optimized geometries, wavenumber and intensity of the vibrational bands of all the conformers of bicuculline have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP functional and 6-311G(d,p) basis set. Mulliken atomic charges, HOMO-LUMO gap ΔE, ionization potential, dipole moments and total energy have also been obtained for the optimized geometries of both the molecules. TD-DFT method is used to calculate the electronic absorption parameters in gas phase as well as in solvent environment using integral equation formalism-polarizable continuum model (IEF-PCM) employing 6-31G basis set and the results thus obtained are compared with the UV absorption spectra. The combination of experimental and calculated results provides an insight into the structural and vibrational spectroscopic properties of bicuculline. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Relationship of nocturnal concentrations of melatonin, gamma-aminobutyric acid and total antioxidants in peripheral blood with insomnia after stroke: study protocol for a prospective non-randomized controlled trial

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Fang Li; Tong Zhang

    2017-01-01

    Melatonin and gamma-aminobutyric acid (GABA) have been shown to regulate sleep. The nocturnal concentrations of melatonin, GABA and total antioxidants may relate to insomnia in stroke patients. In this prospective single-center non-randomized controlled clinical trial performed in the China Rehabilitation Research Center, we analyzed the relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke. Patients during rehabilitation of stroke were recruited and assigned to the insomnia group or non-insomnia group. Simultaneously, persons without stroke or insomnia served as normal controls. Each group contained 25 cases. The primary outcome was nocturnal concentrations of melatonin, GABA and total antioxidants in peripheral blood. The secondary outcomes were Pittsburgh Sleep Quality Index, Insomnia Severity Index, Epworth Sleepiness Scale, Fatigue Severity Scale, Morningness-Eveningness Questionnaire (Chinese version), and National Institute of Health Stroke Scale. The relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke was analyzed and showed that they were lower in the insomnia group than in the non-insomnia group. The severity of stroke was higher in the insomnia group than in the non-insomnia group. Correlation analysis demonstrated that the nocturnal concentrations of melatonin and GABA were associated with insomnia after stroke. This trial was regis-tered at ClinicalTrials.gov, identifier: NCT03202121.

  2. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, J.; Kuriyama, K. (Kyoto Prefectural Univ. of Medicine (Japan))

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  3. High gamma-aminobutyric acid level in cortical tubers in epileptic infants with tuberous sclerosis complex measured with the MEGA-editing J-difference method and a three-Tesla clinical MRI Instrument.

    Science.gov (United States)

    Taki, Masako Minato; Harada, Masafumi; Mori, Kenji; Kubo, Hitoshi; Nose, Ayumi; Matsuda, Tsuyoshi; Nishitani, Hiromu

    2009-10-01

    The purpose of this study was to estimate the gamma-aminobutyric acid (GABA) and glutamate plus glutamine (Glx) concentrations in the cortical tubers of patients with tuberous sclerosis complex (TSC) using the MEGA-editing J-difference method and a stimulated echo-acquisition mode with a short echo time, and to determine which abnormality was more dominant between GABA and Glx in patients with TSC with epilepsy. This study included six patients with TSC (mean age, 4.3 years) and seven control subjects (mean age, 4.8 years). Measurements were obtained with a three-Tesla apparatus and postprocessing was conducted with an LCModel. The GABA level in the cortical gray matter (cgGABA) was calculated as a result of segmentation in voxels and from the literature values for gray and white matter ratios for GABA. Increased GABA and myo-inositol (mI) concentrations and a decreased N-acetyl aspartate (NAA) concentration were observed in the cortical tubers. The cgGABA level, and cgGABA/NAA and cgGABA/Glx ratios were also higher in patients with TSC than in control subjects. No significant difference was found in Glx concentration between patients with TSC and control subjects. Although the number of patients with TSC in this study was small, the increase in GABA and no significant change in Glx were consistent with previous neurochemical studies and support the hypothesis that brain GABA plays a key role in the pathophysiology of epilepsy during the process of neuronal development.

  4. Invasive ability of human renal cell carcinoma cell line Caki-2 is accelerated by gamma-aminobutyric acid, via sustained activation of ERK1/2 inducible matrix metalloproteinases.

    Science.gov (United States)

    Inamoto, Teruo; Azuma, Haruhito; Sakamoto, Takeshi; Kiyama, Satoshi; Ubai, Takanobu; Kotake, Yatsugu; Watanabe, Masahito; Katsuoka, Yoji

    2007-10-01

    Gamma-aminobutyric acid (GABA) was first discovered as an inhibitory neurotransmitter in the central nervous system (CNS) and has been reported to have a variety of functions, including regulation of cell division, cell differentiation and maturation, and to be involved in the development of certain cancers outside the CNS. In the present study, using the human renal cell carcinoma cell line Caki-2, we demonstrated that GABA stimulation significantly increased the expression of MMP-2 and -9 and subsequently increased the invasive activity of the cancer cells. Because MAPK signaling is one of the key regulators of MMP expression, we further evaluated MAPK signaling after stimulation with GABA. It was found that GABA stimulation promoted the phosphorylation of MAPKs, including ERK1/2, JNK, and p38. ERK1/2 phosphorylation was sustained for up to 12 h, while phosphorylation of JNK and p38 returned to the endogenous level by 30 min. It was noteworthy that the ras/raf/MEK/ERK pathway inhibitor PD98059 attenuated GABA-induced MMP-9 expression and that both PD98059 and MMP inhibitors attenuated the GABA-induced invasive activity of Caki-2 cells. Moreover, data obtained by depletion of the MEK/ERK pathway using interfering RNA transfection of Caki-2 cells clearly corroborated the above results, as both MMP-9 expression and GABA-induced invasive ability were decreased significantly. We also demonstrated that the GABA-induced increase in invasive ability via ERK1/2 up-regulation was mediated mainly through the GABA-B receptor. These results indicate that GABA stimulation promotes cancer cell invasion and that the effect is partly due to ERK1/2-dependent up-regulation of MMPs.

  5. Exposure of mother rats to chronic unpredictable stress before pregnancy alters the metabolism of gamma-aminobutyric acid and glutamate in the right hippocampus of offspring in early adolescence in a sexually dimorphic manner.

    Science.gov (United States)

    Huang, Yuejun; Shen, Zhiwei; Hu, Liu; Xia, Fang; Li, Yuewa; Zhuang, Jingwen; Chen, Peishan; Huang, Qingjun

    2016-12-30

    There is increasing evidence that mothers' exposure to stress before or during pregnancy is linked to an incidence of psychiatric disorders in offspring. However, a few studies have estimated the role of sex in the detrimental effects of pre-gestational stress on the offspring rats at early adolescence. Sex differences regarding the metabolism of gamma-aminobutyric acid and glutamate in the right hippocampus were investigated by MRS when the offspring rats reached 30 days. Additionally, the impact of pre-gestational stress exposed on an additional short-term acute stressor, such as forced swim, was examined in the male and female offspring rats. Our findings showed female offspring rats were more vulnerable to stressful conditions for either pre-gestational stress or acute stress in early adolescence, and had decreased GABA/Cr+PCr and Glu/Cr+PCr in the right hippocampus. Interestingly, in response to forced swim, male offspring rats whose mothers were exposed to pre-gestational stress were more affected by the short-term acute stressor and this was manifested by change of Glu/GABA and Glu/Gln in the right hippocampus. These data indicated that although female offspring rats were more vulnerable to pre-gestational stress from their mothers than males, in response to an additional acute stressor they showed better response. Therefore, both sexually dimorphic manner and combination of stressful procedures should be carefully considered in the study of stress-related psychiatric disorders in early adolescence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Effects of NaCl Replacement with Gamma-Aminobutyric acid (GABA) on the Quality Characteristics and Sensorial Properties of Model Meat Products

    Science.gov (United States)

    Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi

    2014-01-01

    This study investigated the effects of γ-aminobutylic acid (GABA) on the quality and sensorial properties of both the GABA/NaCl complex and model meat products. GABA/NaCl complex was prepared by spray-drying, and the surface dimensions, morphology, rheology, and saltiness were characterized. For model meat products, pork patties were prepared by replacing NaCl with GABA. For characteristics of the complex, increasing GABA concentration increased the surface dimensions of the complex. However, GABA did not affect the rheological properties of solutions containing the complex. The addition of 2% GABA exhibited significantly higher saltiness than the control (no GABA treatment). In the case of pork patties, sensory testing indicated that the addition of GABA decreased the saltiness intensity. Both the intensity of juiciness and tenderness of patties containing GABA also scored lower than the control, based on the NaCl reduction. These results were consistent with the quality characteristics (cooking loss and texture profile analysis). Nevertheless, overall acceptability of the pork patties showed that up to 1.5%, patties containing GABA did not significantly differ from the control. Consequently, the results indicated that GABA has a potential application in meat products, but also manifested a deterioration of quality by the NaCl reduction, which warrants further exploration. PMID:26761294

  7. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses.

    Science.gov (United States)

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-03-29

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage.

  8. Effects of yoga on the autonomic nervous system, gamma-aminobutyric-acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder.

    Science.gov (United States)

    Streeter, C C; Gerbarg, P L; Saper, R B; Ciraulo, D A; Brown, R P

    2012-05-01

    A theory is proposed to explain the benefits of yoga practices in diverse, frequently comorbid medical conditions based on the concept that yoga practices reduce allostatic load in stress response systems such that optimal homeostasis is restored. It is hypothesized that stress induces (1) imbalance of the autonomic nervous system (ANS) with decreased parasympathetic nervous system (PNS) and increased sympathetic nervous system (SNS) activity, (2) underactivity of the gamma amino-butyric acid (GABA) system, the primary inhibitory neurotransmitter system, and (3) increased allostatic load. It is further hypothesized that yoga-based practices (4) correct underactivity of the PNS and GABA systems in part through stimulation of the vagus nerves, the main peripheral pathway of the PNS, and (5) reduce allostatic load. Depression, epilepsy, post traumatic stress disorder (PTSD), and chronic pain exemplify medical conditions that are exacerbated by stress, have low heart rate variability (HRV) and low GABAergic activity, respond to pharmacologic agents that increase activity of the GABA system, and show symptom improvement in response to yoga-based interventions. The observation that treatment resistant cases of epilepsy and depression respond to vagal nerve stimulation corroborates the need to correct PNS underactivity as part of a successful treatment plan in some cases. According to the proposed theory, the decreased PNS and GABAergic activity that underlies stress-related disorders can be corrected by yoga practices resulting in amelioration of disease symptoms. This has far-reaching implications for the integration of yoga-based practices in the treatment of a broad array of disorders exacerbated by stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Effect of feeding Rumen-protected capsule containing niacin, K2SO4, vitamin C, and gamma-aminobutyric acid on heat stress and performance of dairy cows.

    Science.gov (United States)

    Guo, W J; Zhen, L; Zhang, J X; Lian, S; Si, H F; Guo, J R; Yang, H M

    2017-10-01

    This study was conducted to evaluate the effects of supplemental rumen-protected capsule (RPC) on animal performance, serological indicators, and serum heat shock protein 70 (HSP70) of lactating Holstein cows under heat stress (HS). During summer months, 30 healthy multiparous lactating Holstein cows with a parity number of 3.1 ± 0.44, 70 ± 15 d in milk, an average body weight of 622 ± 62kg, and an average milk yield of 32.28 ± 0.96kg/d, were used. The cows were randomly allocated to two groups: a control group and an RPC-supplemented group (0.13373kg K 2 SO 4 , 0.02488kg vitamin C, 0.021148kg niacin, and 0.044784kggamma-aminobutyric acid per cow). During the 42-d experiment, ambient air temperature and relative humidity inside and outside the barn were recorded hourly every day for the determination of temperature-humidity index (THI). Milk and blood samples were collected every week, and body weight and body condition scoring were measured on day 0. Based on the THI values, the animals had moderate HS. On day 42, the RPC group had lower HSP70, adrenocorticotropic hormone (P = 0.0001), lactate dehydrogenase (P = 0.0338), and IL-6 (P = 0.0724) levels than the control group, with no significant differences in creatine kinase, glucocorticoid, or IL-2 levels. Milk yield, energy-corrected milk, and dry matter intake were higher in RPC than in the control group (P = 0.0196). There were no significant differences in milk fat or daily protein levels between the two groups; however, daily protein and milk fat levels were higher in the RPC group than in the control group (P = 0.0114 and P = 0.0665, respectively). Somatic cell counts were no different between the two groups. In conclusion, RPC may alleviate HS and improve dairy cow performance. Copyright © 2017. Published by Elsevier Ltd.

  10. Effect of Feeding High Gamma-Aminobutyric Acid-Containing Giant Embryo Black Sticky Rice (Oryza sativa L.) on Anxiety-Related Behavior of C57BL/6 Mice.

    Science.gov (United States)

    Jung, Woo-Young; Kim, Sung-Gon; Lee, Jin-Seong; Kim, Hyeon-Kyeong; Son, Beung-Gu; Kim, Jong-Woo; Suh, Jae-Won

    2017-08-01

    The aim of this study was to determine the effect of feeding high gamma-aminobutyric acid (GABA)-containing black sticky rice giant embryo (BSRGE, Oryza sativa L.) on anxiety-related behavior of C57BL/6 mice. Experimental feedstuff (BSRGE with high GABA+AIN-76A) and control (AIN-76A) were provided to C57BL/6 mouse for 10 days. Antianxiety effects of BSRGE with high GABA were measured using an elevated plus maze. On day 8, the number of open arm entries by GABA and control groups were 1.10 ± 1.60 (mean ± SD) and 0.00 ± 0.00 (P = .030). On day 10, the number of open arm entries by the GABA group was 2.00 ± 1.89, which was significantly (P = .025) higher than that in the control group (0.40 ± 0.84). On day 8, the time the mice spent in open arm in the GABA group and control group was 3.60 ± 7.06 and 0.00 ± 0.00 sec (P = .068), respectively. On day 10, the time the mice in the GABA and control groups spent in open arm was 6.20 ± 5.35 sec and 1.80 ± 3.82 sec (P = .042), respectively. In repeated analysis of variance for the number of entries into open arm and time spent in open arm, significant differences were found between the two groups. Therefore, BSRGE with high GABA content might have an antianxiety effect. This study can serve as a preliminary study so that further antianxiety effects of BSRGE can be determined in more extended animal or clinical research studies in the future.

  11. DNA Methylation at the Neonatal State and at the Time of Diagnosis: Preliminary Support for an Association with the Estrogen Receptor 1, Gamma-Aminobutyric Acid B Receptor 1, and Myelin Oligodendrocyte Glycoprotein in Female Adolescent Patients with OCD.

    Science.gov (United States)

    Nissen, Judith Becker; Hansen, Christine Søholm; Starnawska, Anna; Mattheisen, Manuel; Børglum, Anders Dupont; Buttenschøn, Henriette Nørmølle; Hollegaard, Mads

    2016-01-01

    Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder. Non-genetic factors and their interaction with genes have attracted increasing attention. Epigenetics is regarded an important interface between environmental signals and activation/repression of genomic responses. Epigenetic mechanisms have not previously been examined in OCD in children and adolescents. The aim of the present study was to examine the DNA methylation profile of selected genes in blood spots from neonates later diagnosed with OCD and in the same children/adolescents at the time of diagnosis compared with age- and sex-matched controls. Furthermore, we wanted to characterize the association of the differential methylation profiles with the severity of OCD and treatment outcome. Dried and new blood spot samples were obtained from 21 female children/adolescents with verified OCD and 12 female controls. The differential methylation was analyzed using a linear model and the correlation with the severity of OCD and treatment outcome was analyzed using the Pearson correlation. We evaluated selected Illumina Infinium HumanMethylation450 BeadChip probes within and up to 100,000 bp up- and downstream of 14 genes previously associated with OCD (SLC1A1, SLC25A12, GABBR1, GAD1, DLGAP1, MOG, BDNF, OLIG2, NTRK2 and 3, ESR1, SL6A4, TPH2, and COMT). The study found no significantly differential methylation. However, preliminary support for a difference was found for the gamma-aminobutyric acid (GABA) B receptor 1 (cg10234998, cg17099072) in blood samples at birth and for the estrogen receptor 1 (ESR1) (cg10939667), the myelin oligodendrocyte glycoprotein (MOG) (cg16650906), and the brain-derived neurotrophic factor (BDNF) (cg14080521) in blood samples at the time of diagnosis. Preliminary support for an association was observed between the methylation profiles of GABBR1 and MOG and baseline severity, treatment effect, and responder status; and between the methylation profile of ESR1 and baseline

  12. Association between Single Nucleotide Polymorphisms in Gamma-Aminobutyric Acid B Receptor, Insulin Receptor Substrate-1, and Hypocretin Neuropeptide Precursor Genes and Susceptibility to Obstructive Sleep Apnea Hypopnea Syndrome in a Chinese Han Population.

    Science.gov (United States)

    Li, Zhijun; Tang, Tingyu; Du, Jianzong; Wu, Wenjuan; Zhou, Xiaoxi; Qin, Guangyue

    2016-01-01

    To investigate genotype-phenotype changes between rs29230 in γ-aminobutyric acid B receptor (GABBR1), rs1801278 in insulin receptor substrate-1 (IRS-1), and rs9902709 in hypocretin neuropeptide precursor (HCRT) and obstructive sleep apnea hypopnea syndrome (OSAHS) in Chinese Han individuals. A total of 130 patients with OSAHS and 136 age- and gender-matched healthy controls were enrolled in this study. A brief description of DNA extraction and genotyping is given. Multivariate unconditional logistic regression analysis adjusted for gender and age was used to estimate the associations of single nucleotide polymorphisms (SNPs) rs29230 (GABBR1), rs1801278 (IRS-1), and rs9902709 (HCRT) with OSAHS risk. Subgroup analysis was performed to evaluate differences in these SNPs among subgroups according to gender, body mass index (BMI), and severity of disease. Genotype and allele frequencies of rs29230 were significantly different between cases and controls (p = 0.0205 and p = 0.0191, respectively; odds ratio = 0.493, 95% confidence interval = 0.271-0.896), especially for male patients (p = 0.0259 and p = 0.0202, respectively). Subgroup analysis according to BMI also revealed a significant allele difference for rs29230 between cases and controls in the overweight subgroup (p = 0.0333). Furthermore, allele and genotype frequencies of rs1801278 showed significant differences between cases and controls (p = 0.0488 and p = 0.0471, respectively). However, no association was observed between rs9902709 and OSAHS risk (p = 0.2762), and no differences were identified in other subgroups. In this study, there was an association between variants of rs29230 and rs1801278 and OSAHS risk in the Chinese Han population but not for rs9902709. © 2016 S. Karger AG, Basel.

  13. Quantitative Autoradiography on [(35)S]TBPS Binding Sites of Gamma- Aminobutyric Acid(A) Receptors in Discrete Brain Regions of High- Alcohol-Drinking and Low-Alcohol- Drinking Rats Selectively Bred forHigh- and Low-Alcohol Preference.

    Science.gov (United States)

    Hwang, B.H.; Kunkler, P.E.; Lumeng, L.

    1997-01-01

    It has been documented that ethanol can potentiate brain gamma-aminobutyric acid (GABA)ergic function, and there is a close link between the GABA(A) receptor complex and effects of ethanol, including reinforcement of alcohol which is a fundamental element of alcohol preference. However, it is unknown in what discrete brain regions GABA(A) receptors might be associated with alcohol preference. In the present study, [(35)S]t-butylbicyclophosphorothionate ([(35)S]TBPS) was used to localize GABA(A) receptors in high-alcohol-drinking (HAD) rats and low-alcohol-drinking (LAD) rats which were selectively bred for high and low alcohol preference, respectively. Initial qualitative observations indicated that [(35)S]TBPS binding sites were abundant in many brain areas including the cerebral cortex, hypothalamus and amygdala of HAD and LAD rats. Furthermore, the quantitative autoradiographic analysis revealed fewer [(35)S]TBPS binding sites of GABA(A) receptors in the amygdaloid complex, central medial thalamic nucleus, lateral hypothalamic nucleus and anterior hypothalamic nucleus of HAD rats than LAD rats. Collectively, this study has indicated that HAD rats selectively bred for high alcohol preference possess lower [(35)S]TBPS binding in the brain. Since lower TBPS binding has been proposed to reflect enhanced GABAergic function, as evidenced in rats with seizure or under alcohol withdrawal, the results from the present study suggest that HAD rats might have an enhanced GABAergic function. It is thus likely that enhanced GABAergic function in the brain might be related to high alcohol preference which is characteristic in HAD rats. In addition, the present result showing no difference of [(35)S]TBPS binding in the nucleus accumbens is also in agreement with a notion that [(35)S]TBPS binding may represent only a small spectrum of the GABA(A) receptor complex which is constituted of a sophisticated subunit combination whose functional compositions are still unknown. In

  14. GABA(A) receptor- and GABA transporter polymorphisms and risk for essential tremor

    DEFF Research Database (Denmark)

    Thier, S; Kuhlenbäumer, G; Lorenz, D

    2011-01-01

    Background:  Clinical features and animal models of essential tremor (ET) suggest gamma-aminobutyric acid A receptor (GABA(A) R) subunits and GABA transporters as putative candidate genes. Methods:  A total of 503 ET cases and 818 controls were investigated for an association between polymorphisms...

  15. Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures

    DEFF Research Database (Denmark)

    Carvill, Gemma L; McMahon, Jacinta M; Schneider, Amy

    2015-01-01

    GAT-1, encoded by SLC6A1, is one of the major gamma-aminobutyric acid (GABA) transporters in the brain and is responsible for re-uptake of GABA from the synapse. In this study, targeted resequencing of 644 individuals with epileptic encephalopathies led to the identification of six SLC6A1 mutatio...

  16. Cloning and characterization of a functional human ¿-aminobutyric acid (GABA) transporter, human GAT-2

    DEFF Research Database (Denmark)

    Christiansen, Bolette; Meinild, Anne-Kristine; Jensen, Anders A.

    2007-01-01

    Plasma membrane gamma-aminobutyric acid (GABA) transporters act to terminate GABA neurotransmission in the mammalian brain. Intriguingly four distinct GABA transporters have been cloned from rat and mouse, whereas only three functional homologs of these transporters have been cloned from human....... The aim of this study therefore was to search for this fourth missing human transporter. Using a bioinformatics approach, we successfully identified and cloned the full-length cDNA of a so far uncharacterized human GABA transporter (GAT). The predicted protein displays high sequence similarity to rat GAT......-2 and mouse GAT3, and in accordance with the nomenclature for rat GABA transporters, we therefore refer to the transporter as human GAT-2. We used electrophysiological and cell-based methods to demonstrate that this protein is a functional transporter of GABA. The transport was saturable...

  17. A gene duplication led to specialized gamma-aminobutyrate and beta-alanine aminotransferase in yeast

    DEFF Research Database (Denmark)

    Andersen, Gorm; Andersen, Birgit; Dobritzsch, D.

    2007-01-01

    and related yeasts have two different genes/enzymes to apparently 'distinguish' between the two reactions in a single cell. It is likely that upon duplication similar to 200 million years ago, a specialized Uga1p evolved into a 'novel' transaminase enzyme with broader substrate specificity.......In humans, beta-alanine (BAL) and the neurotransmitter gamma-aminobutyrate (GABA) are transaminated by a single aminotransferase enzyme. Apparently, yeast originally also had a single enzyme, but the corresponding gene was duplicated in the Saccharomyces kluyveri lineage. SkUGA1 encodes a homologue...... to characterize the substrate specificity and kinetic parameters of the four enzymes. It was found that the cofactor pyridoxal 5'-phosphate is needed for enzymatic activity and alpha-ketoglutarate, and not pyruvate, as the amino group acceptor. SkPyd4p preferentially uses BAL as the amino group donor (V...

  18. Investigation of Gamma-aminobutyric acid (GABA A receptors genes and migraine susceptibility

    Directory of Open Access Journals (Sweden)

    Ciccodicola Alfredo

    2008-12-01

    Full Text Available Abstract Background Migraine is a neurological disorder characterized by recurrent attacks of severe headache, affecting around 12% of Caucasian populations. It is well known that migraine has a strong genetic component, although the number and type of genes involved is still unclear. Prior linkage studies have reported mapping of a migraine gene to chromosome Xq 24–28, a region containing a cluster of genes for GABA A receptors (GABRE, GABRA3, GABRQ, which are potential candidate genes for migraine. The GABA neurotransmitter has been implicated in migraine pathophysiology previously; however its exact role has not yet been established, although GABA receptors agonists have been the target of therapeutic developments. The aim of the present research is to investigate the role of the potential candidate genes reported on chromosome Xq 24–28 region in migraine susceptibility. In this study, we have focused on the subunit GABA A receptors type ε (GABRE and type θ (GABRQ genes and their involvement in migraine. Methods We have performed an association analysis in a large population of case-controls (275 unrelated Caucasian migraineurs versus 275 controls examining a set of 3 single nucleotide polymorphisms (SNPs in the coding region (exons 3, 5 and 9 of the GABRE gene and also the I478F coding variant of the GABRQ gene. Results Our study did not show any association between the examined SNPs in our test population (P > 0.05. Conclusion Although these particular GABA receptor genes did not show positive association, further studies are necessary to consider the role of other GABA receptor genes in migraine susceptibility.

  19. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    International Nuclear Information System (INIS)

    Lummis, S.C.R.; Johnston, G.A.R.; Nicoletti, G.; Holan, G.

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial [ 3 H]diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli [ 3 H]diazepam binding are those that are active in displacing [ 3 H]benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligand spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed

  20. Comparison of Nootropic and Neuroprotective Features of Aryl-Substituted Analogs of Gamma-Aminobutyric Acid.

    Science.gov (United States)

    Tyurenkov, I N; Borodkina, L E; Bagmetova, V V; Berestovitskaya, V M; Vasil'eva, O S

    2016-02-01

    GABA analogs containing phenyl (phenibut) or para-chlorophenyl (baclofen) substituents demonstrated nootropic activity in a dose of 20 mg/kg: they improved passive avoidance conditioning, decelerated its natural extinction, and exerted antiamnestic effect on the models of amnesia provoked by scopolamine or electroshock. Tolyl-containing GABA analog (tolibut, 20 mg/kg) exhibited antiamnestic activity only on the model of electroshock-induced amnesia. Baclofen and, to a lesser extent, tolibut alleviated seizures provoked by electroshock, i.e. both agents exerted anticonvulsant effect. All examined GABA aryl derivatives demonstrated neuroprotective properties on the maximum electroshock model: they shortened the duration of coma and shortened the period of spontaneous motor activity recovery. In addition, these agents decreased the severity of passive avoidance amnesia and behavioral deficit in the open field test in rats exposed to electroshock. The greatest neuroprotective properties were exhibited by phenyl-containing GABA analog phenibut.

  1. Does gamma-aminobutyric acid (GABA influence the development of chronic inflammation in rheumatoid arthritis?

    Directory of Open Access Journals (Sweden)

    Bridges S Louis

    2008-01-01

    Full Text Available Abstract Background Recent studies have demonstrated a role for spinal p38 MAP kinase (MAPK in the development of chronic inflammation and peripheral arthritis and a role for GABA in the inhibition of p38 MAPK mediated effects. Integrating these data suggests that GABA may play a role in downregulating mechanisms that lead to the production of proinflammatory agents such as interleukin-1, interleukin-6, and matrix metalloproteinase 3 – agents implicated in the pathogenesis of rheumatoid arthritis (RA. Genetic studies have also associated RA with members of the p38 MAPK pathway. Hypothesis We propose a hypothesis for an inefficient GABA signaling system that results in unchecked proinflammatory cytokine production via the p38 MAPK pathway. This model also supports the need for increasing research in the integration of immunology and neuroscience.

  2. Nitrate uptake and utilization is modulated by exogenous gamma-aminobutyric acid in Arabidopsis thaliana seedlings.

    Science.gov (United States)

    Barbosa, Jose M; Singh, Narendra K; Cherry, Joe H; Locy, Robert D

    2010-06-01

    Exogenously applied GABA modulates root growth by inhibition of root elongation when seedlings were grown in vitro on full-strength Murashige and Skoog (MS) salts, but root elongation was stimulated when seedlings were grown on 1/8 strength MS salts. When the concentration of single ions in MS salts was individually varied, the control of growth between inhibition and stimulation was found to be related to the level of nitrate (NO(3)(-)) in the growth medium. At NO(3)(-) concentrations below 40 mM (full-strength MS salts level), root growth was stimulated by the addition of GABA to the growth medium; whereas at concentrations above 40 mM NO(3)(-), the addition of GABA to the growth medium inhibited root elongation. GABA promoted NO(3)(-) uptake at low NO(3)(-), while GABA inhibited NO(3)(-) uptake at high NO(3)(-). Activities of several enzymes involved in nitrogen and carbon metabolism including nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (NADH-GOGAT), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and phosphoenol pyruvate carboxylase (PEPCase) were regulated by GABA in the growth medium. Supplementing 1/8 strength MS medium with 50 mM GABA enhanced the activities of all of the above enzymes except ICDH activities in root tissues. However, at full-strength MS, GABA showed no inhibitory effect on the activities of these enzymes, except on GS in both root and shoot tissues, and PEPCase activity in shoot tissues. Exogenous GABA increased the amount of NR protein rather than its activation status in the tissues. This study shows that GABA affects the growth of Arabidopsis, possibly by acting as a signaling molecule, modulating the activity of enzymes involved in primary nitrogen metabolism and nitrate uptake.

  3. Effects of gamma-aminobutyric acid (GABA) on synaptogenesis and synaptic function

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Elster, L

    1998-01-01

    , but the intracellular link between GABA receptor activation and DNA transcription is largely unknown. GABA also controls the induction and development of functionally and pharmacologically different GABAA receptor subtypes. The induced receptors are likely to be inserted only into the synaptic membrane domain. However...

  4. Influence of Gamma Aminobutyric Acid on Some Biochemical Alterations in Irradiated and Streptozotocin Treated Rats

    International Nuclear Information System (INIS)

    Mohamed, A.S.M.

    2015-01-01

    The objective of this study was to evaluate the role of GABA on some metabolic complications in STZ-treated, γ- irradiated and STZ-treated-γ-irradiated rats. Animals sacrificed 3 weeks after the different treatments showed that the intraperitoneal administration of STZ (60 mg/Kg) to male albino Sprague Dawley rats induced hyperglycemia and insulin deficiency (DM type 1). While whole body γ-irradiation with 6 Gy using Cs-137 source provoked hyperglycemia, hyperinsulinaemia and insulin resistance (DM type 2) and whole body γ-irradiation of STZ-treated rats induced hyperglycemia, insulin deficiency and insulin resistance. Dyslipidemia (elevated triglycerides, total cholesterol and LDL-C and decreased HDL-C) was recorded in STZ-treated, γ-irradiated and STZ-treated-γ-irradiated rats. Oxidative stress evidenced by significant decreases of SOD, catalase and GSH-Px activities and significant increases of MDA and AOPP was recorded in pancreas, liver and kidney tissues. Oxidative stress in pancreatic tissues was associated with damage of islets of Langerhans and significant decreases of GABA level and GAD activity. Oxidative stress in liver was accompanied by significant elevation of serum ALT and AST activities. Oxidative stress in kidney tissues was associated with significant increases of urea and creatinine levels. The administration of GABA daily via gavages (200 mg/Kg/day) during 3 weeks to STZ-treated, γ-irradiated and STZ-treated-γ-irradiated rats rectified insulin, glucose and lipid levels, reduced oxidative stress in pancreatic tissues accompanied by regenerating pancreatic islets of Langerhans and elevation of GABA level and GAD activity. GABA reduced also oxidative stress in liver and kidney tissues accompanied by lower serum ALT and AST activities and urea and creatinine levels

  5. Porters and neurotransmitter transporters.

    Science.gov (United States)

    Nelson, N; Lill, H

    1994-11-01

    Uptake of neurotransmitters involves multiple transporters acting in different brain locations under different physiological conditions. The vesicular transporters are driven by a proton-motive force generated by a V-ATPase and their substrates are taken up via proton/substrate exchange. The plasma membrane transporters are driven by an electrochemical gradient of sodium generated by a Na+/K(+)-ATPase. Two distinct families of transporters were identified in this group. One cotransports sodium with glutamate and other amino acids and requires additionally an outwardly directed potassium gradient. The second cotransports sodium, chloride and a variety of neurotransmitters, including gamma-aminobutyric acid (GABA), glycine and monoamines. Genes and cDNA encoding several members of the latter family have been cloned and studied in detail. The structure and function as well as the evolutionary relationships among these neurotransmitter transporters are discussed.

  6. Syntheses of {gamma}-aminobutyric-1-{sup 14}C and of {alpha}-aminoadipic-6-{sup 14}C acid from methoxy-3 chloropropyl-magnesium and marked carbon dioxide; Syntheses de l'acide {gamma}-aminobutyrique{sup 14}C-1 et de l'acide {alpha}-aminoadipique {sup 14}C-6 a partir de methoxy-3 chloropropylmagnesium et d'anhydride carbonique marque

    Energy Technology Data Exchange (ETDEWEB)

    Liem, Phung Nhu [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires, Departement des radioelements, Service des molecules marquees

    1967-04-01

    Carbonation of {gamma}-methoxypropyl-magnesium chloride by CO{sub 2} gives {gamma}-methoxy-butyric carboxylic-{sup 14}C acid with a yield of about 95 per cent. When the latter is treated successively with anhydrous HBr and with diazomethane, methyl carboxylic {gamma}-bromobutyrate-{sup 14}C is formed. This in turn gives {gamma}-amino-butyric carboxylic-{sup 14}C acid with an overall yield of 66 per cent with respect to Ba{sup 14}CO{sub 3}, when it is condensed with potassium phthalimide and hydrolyzed by acid. By reacting methyl-{gamma}-bromobutyrate-{sup 14}C with the sodium derivative of ethyl cyanacetamido-acetate in ethanol, followed by an acid hydrolysis, {alpha}-aminoadipic-6-{sup 14}C acid is obtained with an overall yield of 46 per cent with respect to Ba{sup 14}CO{sub 3}. (author) [French] La carbonatation du chlorure de {gamma}-methoxypropylmagnesium par {sup 14}CO{sub 2} donne l'acide {gamma}-methoxybutyrique carboxyle {sup 14}C avec un rendement d'environ 95 pour cent. Ce dernier traite successivement par HBr anhydre et par le diazomethane conduit au {gamma}-bromobutyrate de methyle carboxyle {sup 14}C. Celui-ci condense avec le phtalimide de potassium suivi d'une hydrolyse acide fournit l'acide {gamma}-aminobutyrique carboxyle {sup 14}C avec un rendement global de 66 pour cent par rapport a Ba{sup 14}CO{sub 3}. L'action du {gamma}-bromobutyrate de methyle {sup 14}C sur le derive sode du cyanacetamidoacetate d'ethyle dans l'ethanol suivie d'hydrolyse acide donne l'acide {alpha}-aminoadipique {sup 14}C-6 avec un rendement global de 46 pour cent par rapport a Ba{sup 14}CO{sub 3}. (auteur)

  7. Biochemical evidence for. gamma. -aminobutyrate containing fibres from the nucleus accumbens to the substantia nigra and ventral tegmental area in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I; Fonnum, F

    1980-01-01

    Glutamate decarboxylase activity, a specific marker for ..gamma..-aminobutyrate-containing neurons, has been analysed in microdissected samples from rat mesencephalon following unilateral electrocoagulations of the nucleus accumbens. This lesion resulted in a consistent decrease of 50% in the enzyme activity in the rostromedial substantia nigra, and a slight, but insignificant decrease (- 15%) in the medial parts of the caudal pars compacta of the substantia nigra. No change was found in the lateral pars compacta or the central pars reticulata. In the ventral tegmental area, the highest activity was found in the rostromedial part, adjacent to the mammillary body. At this level, a significant decrease of 20% was found in the ventral tegmental area on the lesioned side. In contrast, the activities in the medial accessory optic nucleus and the caudal ventral tegmental area adjacent to the interpenduncular nucleus were unchanged. The results indicate that the nucleus accumbens sends ..gamma..-aminobutyrate-containing fibres to the rostromedial substantia nigra and to the rostral ventral tegmental area. The caudal ventral tegmental area, the lateral pars compacta and the central pars reticulata do not receive measurable amounts of such fibres.

  8. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  9. RP-HPLC method for simultaneous estimation of vigabatrin, gamma-aminobutyric acid and taurine in biological samples.

    Science.gov (United States)

    Police, Anitha; Shankar, Vijay Kumar; Narasimha Murthy, S

    2018-02-15

    Vigabatrin is used as first line drug in treatment of infantile spasms for its potential benefit overweighing risk of causing permanent peripheral visual field defects and retinal damage. Chronic administration of vigabatrin in rats has demonstrated these ocular events are result of GABA accumulation and depletion of taurine levels in retinal tissues. In vigabatrin clinical studies taurine plasma level is considered as biomarker for studying structure and function of retina. The analytical method is essential to monitor taurine levels along with vigabatrin and GABA. A RP-HPLC method has been developed and validated for simultaneous estimation of vigabatrin, GABA and taurine using surrogate matrix. Analytes were extracted from human plasma, rat plasma, retina and brain by simple protein precipitation method and derivatized by naphthalene 2, 3‑dicarboxaldehyde to produce stable fluorescent active isoindole derivatives. The chromatographic analysis was performed on Zorbax Eclipse AAA column using gradient elution profile and eluent was monitored using fluorescence detector. A linear plot of calibration curve was observed in concentration range of 64.6 to 6458, 51.5 to 5150 and 62.5 to 6258 ng/mL for vigabatrin, GABA and taurine, respectively with r 2  ≥ 0.997 for all analytes. The method was successfully applied for estimating levels of vigabatrin and its modulator effect on GABA and taurine levels in rat plasma, brain and retinal tissue. This RP-HPLC method can be applied in clinical and preclinical studies to explore the effect of taurine deficiency and to investigate novel approaches for alleviating vigabatrin induced ocular toxicity. Copyright © 2018. Published by Elsevier B.V.

  10. Effect of deltamethrin on transmission of gamma aminobutyric acid (GABA) and thyroid hormones in adult male albino rats

    International Nuclear Information System (INIS)

    Abdel-kader, S.M.; Abdel-Rahman, M.

    2005-01-01

    The oral administration of 1/5 LD 5 0 of deltamethrin for 15 days produced an increase in GABA content and a decrease in Cl - ions concentration in all tested brain areas (cerebellum, pons + medulla oblongata, striatum, cerebral cortex, hypothalamus, midbrain and hippocampus) of adult male albino rats, almost at most time intervals. Deltamethrin also resulted in a significant decrease in serum TSH and increase in T 3 and T 4 levels in the treated rats. From the present results, it was found that deltamethrin decreased the passage of Cl - ions in the cells which might be, in part, due to a decrease of the transmission of GABA and an increase of the circulating thyroid hormones (triiodothyronine and thyroxine). Accordingly, deltamethrin may act as GABA antagonist and may act on the hypothalamus pituitary thyroid axis. In conclusion the elevation of thyroid hormones as well as the decrease in both CL - ions and GABA transmission which could be all together responsible for the impairment of motor activity, hyper excitability and seizure that occurred in rats treated with the pyrethroid insecticide deltamethrin

  11. Chronic effects of dichloromethane on amino acids, glutathione and phosphoethanolamine in gerbil brain

    Energy Technology Data Exchange (ETDEWEB)

    Briving, C.; Hamberger, A.; Kjellstrand, P.; Rosengren, L.; Karlsson, J.E.; Haglid, K.G.

    1986-06-01

    Mongolian gerbils were exposed to dichloromethane for three months by continuous inhalation at 210 ppm. Total free tissue amino acids, glutathione, and phosphoethanolamine were determined in the vermis posterior of the cerebellum and the frontal cerebral cortex. These two brain areas were chosen because humans occupationally exposed to dichloromethane have shown abnormalities in the electroencephalogram of the frontal part of the cerebral cortex. This study showed that long-term exposure of gerbils to dichloromethane (210 ppm) for three months leads to decreased levels of glutamate, gamma-aminobutyric acid, and phosphoethanolamine in the frontal cerebral cortex, while glutamine and gamma-aminobutyric acid are elevated in the posterior cerebellar vermis.

  12. Autoradiographic localization of binding sites for (/sup 3/H). gamma. -aminobutyrate, (/sup 3/H) muscimol, (+) (/sup 3/H) bicuculline methiodide and (/sup 3/H) flunitrazepam in cultures of rat cerebellum and spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Hoesli, E; Hoesli, L [Basel Univ. (Switzerland); Moehler, H; Richards, J G [Hoffmann-La Roche (F.) and Co., Basel (Switzerland)

    1980-01-01

    Cultures of rat cerebellum and spinal cord were used to visualize sites for (/sup 3/H)..gamma..-aminobutyrate, (/sup 3/H)muscimol, (/sup 3/H)bicuculline methiodide and (/sup 3/H) flunitrazepam by autoradiography. In cerebellar cultures, many large neurons (presumably Purkinje cells) and interneurons were labelled. In spinal cord cultures, these compounds were mainly bound to small and medium-sized neurons, whereas the majority of large neurons were unlabelled. No binding sites for these radioligands were found on glial cells. Binding of (/sup 3/H)..gamma..-aminobutyrate, (/sup 3/H)muscimol and (/sup 3/H)bicuculline methiodide was markedly reduced or inhibited by adding unlabelled ..gamma..-aminobutyrate, muscimol and bicuculline (10/sup -3/M) respectively to the incubation medium. Addition of a thienobenzazepine markedly reduced binding with (/sup 3/H)flunitrazepam. It is concluded that tissues cultures are an excellent tool to visualize the cellular localization of binding sites for neurotransmitters and drugs using autoradiography.

  13. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments

    NARCIS (Netherlands)

    Dauwe, B.; Middelburg, J.J.

    1998-01-01

    Sediment cores from six stations in the eastern North Sea were analyzed for protein amino acids, the nonprotein amino acids beta-alanine and gamma-aminobutyric acid and the hexosamines galactosamine and glucosamine, and bulk parameters (organic carbon, nitrogen, total hydrolyzable amino acids and

  14. Regulation of Brain-Derived Neurotrophic Factor Exocytosis and Gamma-Aminobutyric Acidergic Interneuron Synapse by the Schizophrenia Susceptibility Gene Dysbindin-1.

    Science.gov (United States)

    Yuan, Qiang; Yang, Feng; Xiao, Yixin; Tan, Shawn; Husain, Nilofer; Ren, Ming; Hu, Zhonghua; Martinowich, Keri; Ng, Julia S; Kim, Paul J; Han, Weiping; Nagata, Koh-Ichi; Weinberger, Daniel R; Je, H Shawn

    2016-08-15

    Genetic variations in dystrobrevin binding protein 1 (DTNBP1 or dysbindin-1) have been implicated as risk factors in the pathogenesis of schizophrenia. The encoded protein dysbindin-1 functions in the regulation of synaptic activity and synapse development. Intriguingly, a loss of function mutation in Dtnbp1 in mice disrupted both glutamatergic and gamma-aminobutyric acidergic transmission in the cerebral cortex; pyramidal neurons displayed enhanced excitability due to reductions in inhibitory synaptic inputs. However, the mechanism by which reduced dysbindin-1 activity causes inhibitory synaptic deficits remains unknown. We investigated the role of dysbindin-1 in the exocytosis of brain-derived neurotrophic factor (BDNF) from cortical excitatory neurons, organotypic brain slices, and acute slices from dysbindin-1 mutant mice and determined how this change in BDNF exocytosis transsynaptically affected the number of inhibitory synapses formed on excitatory neurons via whole-cell recordings, immunohistochemistry, and live-cell imaging using total internal reflection fluorescence microscopy. A decrease in dysbindin-1 reduces the exocytosis of BDNF from cortical excitatory neurons, and this reduction in BDNF exocytosis transsynaptically resulted in reduced inhibitory synapse numbers formed on excitatory neurons. Furthermore, application of exogenous BDNF rescued the inhibitory synaptic deficits caused by the reduced dysbindin-1 level in both cultured cortical neurons and slice cultures. Taken together, our results demonstrate that these two genes linked to risk for schizophrenia (BDNF and dysbindin-1) function together to regulate interneuron development and cortical network activity. This evidence supports the investigation of the association between dysbindin-1 and BDNF in humans with schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures

    Science.gov (United States)

    Carvill, Gemma L.; McMahon, Jacinta M.; Schneider, Amy; Zemel, Matthew; Myers, Candace T.; Saykally, Julia; Nguyen, John; Robbiano, Angela; Zara, Federico; Specchio, Nicola; Mecarelli, Oriano; Smith, Robert L.; Leventer, Richard J.; Møller, Rikke S.; Nikanorova, Marina; Dimova, Petia; Jordanova, Albena; Petrou, Steven; Helbig, Ingo; Striano, Pasquale; Weckhuysen, Sarah; Berkovic, Samuel F.; Scheffer, Ingrid E.; Mefford, Heather C.

    2015-01-01

    GAT-1, encoded by SLC6A1, is one of the major gamma-aminobutyric acid (GABA) transporters in the brain and is responsible for re-uptake of GABA from the synapse. In this study, targeted resequencing of 644 individuals with epileptic encephalopathies led to the identification of six SLC6A1 mutations in seven individuals, all of whom have epilepsy with myoclonic-atonic seizures (MAE). We describe two truncations and four missense alterations, all of which most likely lead to loss of function of GAT-1 and thus reduced GABA re-uptake from the synapse. These individuals share many of the electrophysiological properties of Gat1-deficient mice, including spontaneous spike-wave discharges. Overall, pathogenic mutations occurred in 6/160 individuals with MAE, accounting for ∼4% of unsolved MAE cases. PMID:25865495

  16. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.

    Science.gov (United States)

    Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D

    2018-05-01

    Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.

  17. (1S, 3S)-3-amino-4-difluoromethylenyl-1-cyclopentanoic acid (CPP-115), a potent gamma-aminobutyric acid aminotransferase inactivator for the treatment of cocaine addiction

    DEFF Research Database (Denmark)

    Pan, Yue; Gerasimov, Madina R; Kvist, Trine

    2012-01-01

    Vigabatrin, a GABA aminotransferase (GABA-AT) inactivator, is used to treat infantile spasms and refractory complex partial seizures and is in clinical trials to treat addiction. We evaluated a novel GABA-AT inactivator (CPP-115) and observed that it does not exhibit other GABAergic or off-target...

  18. Novel high-affinity and selective biaromatic 4-substituted ¿-hydroxybutyric acid (GHB) analogues as GHB ligands

    DEFF Research Database (Denmark)

    Høg, Signe; Wellendorph, Petrine; Nielsen, Birgitte

    2008-01-01

    Gamma-hydroxybutyrate (GHB) is a metabolite of gamma-aminobutyric acid (GABA) and has been proposed to function as a neurotransmitter or neuromodulator. GHB is used in the treatment of narcolepsy and is a drug of abuse. GHB binds to both GABA(B) receptors and specific high-affinity GHB sites...

  19. Electron transport chains of lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic

  20. Recent advances on uric acid transporters

    Science.gov (United States)

    Xu, Liuqing; Shi, Yingfeng; Zhuang, Shougang; Liu, Na

    2017-01-01

    Uric acid is the product of purine metabolism and its increased levels result in hyperuricemia. A number of epidemiological reports link hyperuricemia with multiple disorders, such as kidney diseases, cardiovascular diseases and diabetes. Recent studies also showed that expression and functional changes of urate transporters are associated with hyperuricemia. Uric acid transporters are divided into two categories: urate reabsorption transporters, including urate anion transporter 1 (URAT1), organic anion transporter 4 (OAT4) and glucose transporter 9 (GLUT9), and urate excretion transporetrs, including OAT1, OAT3, urate transporter (UAT), multidrug resistance protein 4 (MRP4/ABCC4), ABCG-2 and sodium-dependent phosphate transport protein. In the kidney, uric acid transporters decrease the reabsorption of urate and increase its secretion. These transporters’ dysfunction would lead to hyperuricemia. As the function of urate transporters is important to control the level of serum uric acid, studies on the functional role of uric acid transporter may provide a new strategy to treat hyperuricemia associated diseases, such as gout, chronic kidney disease, hyperlipidemia, hypertension, coronary heart disease, diabetes and other disorders. This review article summarizes the physiology of urate reabsorption and excretion transporters and highlights the recent advances on their roles in hyperuricemia and various diseases. PMID:29246027

  1. Nature of the elements transporting long-chain fatty acids through the red cell membrane

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1998-01-01

    Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport......Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport...

  2. Excitatory amino acid transmitters in epilepsy.

    Science.gov (United States)

    Meldrum, B S

    1991-01-01

    For the majority of human epilepsy syndromes, the molecular and cellular basis for the epileptic activity remains largely conjectural. The principal hypotheses currently concern: defects in membrane ionic conductances or transport mechanisms; defects in gamma-aminobutyric acid (GABA)-mediated inhibitory processes; and enhanced or abnormal excitatory synaptic action. Substantial evidence exists in humans and animals for acquired abnormalities in excitatory amino acid neurotransmission that may participate in the abnormal patterns of neuronal discharge, and this could provide the morphological basis for a recurrent excitatory pathway sustaining seizure discharges in temporal lobe epilepsy. In practice, two approaches appear significant in the suppression of seizures. One is to act postsynaptically on receptors to decrease the excitation induced by glutamate, and the other is to decrease synaptic release of glutamate and aspartate. Agents acting upon adenosine or GABAB receptors decrease glutamate release in vitro but do not have significant anticonvulsant activity, probably because of their predominant actions at other sites. Lamotrigine blocks stimulated release of glutamate and shows anticonvulsant activity in a wide range of animal models.

  3. Renal transport and metabolism of nicotinic acid

    International Nuclear Information System (INIS)

    Schuette, S.; Rose, R.C.

    1986-01-01

    Renal metabolism and brush-border transport of nicotinic acid were studied in renal cortical slices and brush-border membrane vesicles exposed to a physiological concentration of vitamin (2.2-3.5 microM). Vesicle transport of [ 3 H]nicotinic acid was found to be Na+ dependent and concentrative. The presence of a Na+ gradient resulted in a fivefold increase in the rate of nicotinic acid uptake over that observed with mannitol and caused a transient nicotinic acid accumulation two- to fourfold above the equilibrium value. The effects of membrane potential, pH, and elimination of Na+-H+ exchange were also studied. Cortical slices and isolated tubules exposed to 2.2 microM [ 14 C]nicotinic acid took up vitamin and rapidly metabolized most of it to intermediates in the Preiss-Handler pathway for NAD biosynthesis; little free nicotinic acid was detectable intracellularly. The replacement of Na+ with Li+ in the bathing medium reduced total accumulation of 14 C label primarily as a result of reduced nicotinic acid uptake. Cortical tissue concentrated free nicotinic acid only when the involved metabolic pathways were saturated by levels of nicotinic acid far in excess of what occurs in vivo

  4. Intestinal transport and metabolism of bile acids

    Science.gov (United States)

    Dawson, Paul A.; Karpen, Saul J.

    2015-01-01

    In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling. PMID:25210150

  5. Reactive solute transport in acidic streams

    Science.gov (United States)

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  6. Increased Bile Acid Synthesis and Impaired Bile Acid Transport in Human Obesity

    OpenAIRE

    Haeusler, Rebecca A.; Camastra, Stefania; Nannipieri, Monica; Astiarraga, Brenno; Castro-Perez, Jose; Xie, Dan; Wang, Liangsu; Chakravarthy, Manu; Ferrannini, Ele

    2015-01-01

    We measured plasma bile acids, markers of bile acid synthesis, and expression of bile acid transporters in obese and nonobese subjects. We found that obesity was associated with increased bile acid synthesis and 12-hydroxylation, blunted response of plasma bile acids to insulin infusion or a mixed meal, and decreased expression of liver bile acid transporters.

  7. Evidence for an excitatory amino acid pathway in the brainstem and for its involvement in cardiovascular control.

    Science.gov (United States)

    Somogyi, P; Minson, J B; Morilak, D; Llewellyn-Smith, I; McIlhinney, J R; Chalmers, J

    1989-09-04

    The source and possible role of excitatory amino acid projections to areas of the ventrolateral medulla (VLM) involved in cardiovascular control were studied. Following the injection of [3H]D-aspartate ([3H]D-Asp), a selective tracer for excitatory amino acid pathways, into vasopressor or vasodepressor areas of the VLM in rats, more than 90% of retrogradely labelled neurones were found in the nucleus of the solitary tract (NTS). Very few of the [3H]D-Asp-labelled cells were immunoreactive for tyrosine hydroxylase, none for phenylethanolamine-N-methyltransferase or gamma-aminobutyric acid. The density of labelled cells in the NTS was similar to that obtained with the non-selective tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and WGA-colloidal gold, but these tracers also labelled other cell groups in the medulla. Furthermore, the decrease in blood pressure, caused by pharmacological activation of neurones in the NTS of rats, or by electrical stimulation of the aortic depressor nerve in rabbits could be blocked by the selective N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate injected into the caudal vasodepressor area of the VLM. This area corresponds to the termination of [3H]D-Asp transporting NTS neurones. These results provide evidence that a population of NTS neurones projecting to the VLM use excitatory amino acids as transmitters. Among other possible functions, this pathway may mediate tonic and reflex control of blood pressure via NMDA receptors in the VLM.

  8. Carnitine transport and fatty acid oxidation.

    Science.gov (United States)

    Longo, Nicola; Frigeni, Marta; Pasquali, Marzia

    2016-10-01

    Carnitine is essential for the transfer of long-chain fatty acids across the inner mitochondrial membrane for subsequent β-oxidation. It can be synthesized by the body or assumed with the diet from meat and dairy products. Defects in carnitine biosynthesis do not routinely result in low plasma carnitine levels. Carnitine is accumulated by the cells and retained by kidneys using OCTN2, a high affinity organic cation transporter specific for carnitine. Defects in the OCTN2 carnitine transporter results in autosomal recessive primary carnitine deficiency characterized by decreased intracellular carnitine accumulation, increased losses of carnitine in the urine, and low serum carnitine levels. Patients can present early in life with hypoketotic hypoglycemia and hepatic encephalopathy, or later in life with skeletal and cardiac myopathy or sudden death from cardiac arrhythmia, usually triggered by fasting or catabolic state. This disease responds to oral carnitine that, in pharmacological doses, enters cells using the amino acid transporter B(0,+). Primary carnitine deficiency can be suspected from the clinical presentation or identified by low levels of free carnitine (C0) in the newborn screening. Some adult patients have been diagnosed following the birth of an unaffected child with very low carnitine levels in the newborn screening. The diagnosis is confirmed by measuring low carnitine uptake in the patients' fibroblasts or by DNA sequencing of the SLC22A5 gene encoding the OCTN2 carnitine transporter. Some mutations are specific for certain ethnic backgrounds, but the majority are private and identified only in individual families. Although the genotype usually does not correlate with metabolic or cardiac involvement in primary carnitine deficiency, patients presenting as adults tend to have at least one missense mutation retaining residual activity. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler

  9. GABA (γ-aminobutyric acid) production, antioxidant activity in some germinated dietary seeds and the effect of cooking on their GABA content

    OpenAIRE

    TIANSAWANG,Kasarin; LUANGPITUKSA,Pairoj; VARANYANOND,Warunee; HANSAWASDI,Chanida

    2016-01-01

    Abstract Germinated grains have been known as sources of Gamma-aminobutyric acid (GABA) that provide beneficial effects for human health. This study was aimed to investigate GABA production, dietary fiber, antioxidant activity, and the effect of cooking on GABA loss in germinated legumes and sesame. The highest GABA content was found in germinated mung bean, (0.8068 g kg-1, 24 h incubation) followed by germinated soybean, germinated black bean and soaked sesame. Beside GABA, dietary fiber con...

  10. Placental fatty acid transport in maternal obesity.

    Science.gov (United States)

    Cetin, I; Parisi, F; Berti, C; Mandò, C; Desoye, G

    2012-12-01

    Pregestational obesity is a significant risk factor for adverse pregnancy outcomes. Maternal obesity is associated with a specific proinflammatory, endocrine and metabolic phenotype that may lead to higher supply of nutrients to the feto-placental unit and to excessive fetal fat accumulation. In particular, obesity may influence placental fatty acid (FA) transport in several ways, leading to increased diffusion driving force across the placenta, and to altered placental development, size and exchange surface area. Animal models show that maternal obesity is associated with increased expression of specific FA carriers and inflammatory signaling molecules in placental cotyledonary tissue, resulting in enhanced lipid transfer across the placenta, dislipidemia, fat accumulation and possibly altered development in fetuses. Cell culture experiments confirmed that inflammatory molecules, adipokines and FA, all significantly altered in obesity, are important regulators of placental lipid exchange. Expression studies in placentas of obese-diabetic women found a significant increase in FA binding protein-4 expression and in cellular triglyceride content, resulting in increased triglyceride cord blood concentrations. The expression and activity of carriers involved in placental lipid transport are influenced by the endocrine, inflammatory and metabolic milieu of obesity, and further studies are needed to elucidate the strong association between maternal obesity and fetal overgrowth.

  11. Transport of amino acids and GABA analogues via the human proton-coupled amino acid transporter, hPAT1

    DEFF Research Database (Denmark)

    Larsen, Mie; Larsen, Birger Brodin; Frølund, Bente

    2008-01-01

    The objective of this study was to investigate transepithelial amino acid transport as a function of Caco-2 cell culture time. Furthermore, the objective was to investigate apical uptake characteristics of hPAT1-mediated transport under various experimental conditions. Apical amino acid uptake......, which has been shown to function as a carboxylic acid bioisostere for substrates of the GABA receptor and transport systems....

  12. Impaired expression of GABA transporters in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus.

    Science.gov (United States)

    Fuhrer, Tessa E; Palpagama, Thulani H; Waldvogel, Henry J; Synek, Beth J L; Turner, Clinton; Faull, Richard L; Kwakowsky, Andrea

    2017-05-20

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and plays an important role in regulating neuronal excitability. GABA reuptake from the synapse is dependent on specific transporters - mainly GAT-1, GAT-3 and BGT-1 (GATs). This study is the first to show alterations in the expression of the GATs in the Alzheimer's disease (AD) hippocampus, entorhinal cortex and superior temporal gyrus. We found a significant increase in BGT-1 expression associated with AD in all layers of the dentate gyrus, in the stratum oriens of the CA2 and CA3 and the superior temporal gyrus. In AD there was a significant decrease in GAT-1 expression in the entorhinal cortex and superior temporal gyrus. We also found a significant decrease in GAT-3 immunoreactivity in the stratum pyramidale of the CA1 and CA3, the subiculum and entorhinal cortex. These observations indicate that the expression of the GATs shows brain-region- and layer-specific alterations in AD, suggesting a complex activation pattern of different GATs during the course of the disease. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Early continuous white noise exposure alters l-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit glutamate receptor 2 and gamma-aminobutyric acid type a receptor subunit beta3 protein expression in rat auditory cortex.

    Science.gov (United States)

    Xu, Jinghong; Yu, Liping; Zhang, Jiping; Cai, Rui; Sun, Xinde

    2010-02-15

    Auditory experience during the postnatal critical period is essential for the normal maturation of auditory function. Previous studies have shown that rearing infant rat pups under conditions of continuous moderate-level noise delayed the emergence of adult-like topographic representational order and the refinement of response selectivity in the primary auditory cortex (A1) beyond normal developmental benchmarks and indefinitely blocked the closure of a brief, critical-period window. To gain insight into the molecular mechanisms of these physiological changes after noise rearing, we studied expression of the AMPA receptor subunit GluR2 and GABA(A) receptor subunit beta3 in the auditory cortex after noise rearing. Our results show that continuous moderate-level noise rearing during the early stages of development decreases the expression levels of GluR2 and GABA(A)beta3. Furthermore, noise rearing also induced a significant decrease in the level of GABA(A) receptors relative to AMPA receptors. However, in adult rats, noise rearing did not have significant effects on GluR2 and GABA(A)beta3 expression or the ratio between the two units. These changes could have a role in the cellular mechanisms involved in the delayed maturation of auditory receptive field structure and topographic organization of A1 after noise rearing. Copyright 2009 Wiley-Liss, Inc.

  14. Ascorbic acid transport and accumulation in human neutrophils

    International Nuclear Information System (INIS)

    Washko, P.; Rotrosen, D.; Levine, M.

    1989-01-01

    The transport, accumulation, and distribution of ascorbic acid were investigated in isolated human neutrophils utilizing a new ascorbic acid assay, which combined the techniques of high performance liquid chromatography and coulometric electrochemical detection. Freshly isolated human neutrophils contained 1.0-1.4 mM ascorbic acid, which was localized greater than or equal to 94% to the cytosol, was not protein bound, and was present only as ascorbic acid and not as dehydroascorbic acid. Upon addition of ascorbic acid to the extracellular medium in physiologic amounts, ascorbic acid was accumulated in neutrophils in millimolar concentrations. Accumulation was mediated by a high affinity and a low affinity transporter; both transporters were responsible for maintenance of concentration gradients as large as 50-fold. The high affinity transporter had an apparent Km of 2-5 microns by Lineweaver-Burk and Eadie-Hofstee analyses, and the low affinity transporter had an apparent Km of 6-7 mM by similar analyses. Each transporter was saturable and temperature dependent. In normal human blood the high affinity transporter should be saturated, whereas the low affinity transporter should be in its linear phase of uptake

  15. Transport of phosphoric acid through supported liquid membrane

    International Nuclear Information System (INIS)

    Zayzafoon, G.; Yassine, T.; Baidoun, R.

    2003-01-01

    The transport of phosphhoric acid through liquid membranes of amylalkohol, 1-octanol and 2-octanol was studied. It was found that phosphoric acid is transfered from feed side to strip side and the transport increased with the concentration of phosphoric acid up to 5M. The permeability in each membrane was determined for 5M phosphoic acid. It was found that the permeability values are 1.45 x 10 1 0 m 2 s 1 for amylakohol and ∼ 1x10 1 0 m 2 s 1 for each of 1-octanol and 2-octanol

  16. Excitatory amino acid transporters as potential drug targets

    DEFF Research Database (Denmark)

    Bunch, Lennart; Erichsen, Mette Navy; Jensen, Anders Asbjørn

    2009-01-01

    BACKGROUND: Excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate (Glu) from the synaptic cleft, thereby terminating the glutamatergic neurotransmitter signal. Today five subtypes have been identified. Except for EAAT2, their individual...

  17. Amino acids transport in lactic streptococci

    NARCIS (Netherlands)

    Driessen, Arnold Jacob Mathieu

    1987-01-01

    Lactic streptococci are extremely fastidious bacteria. For growth an exogenous source of amino acids and other nutrients is essential. The amino acid requirement in milk is fulfilled by the milk-protein casein, which is degraded by sequential hydrolysis, involving proteases and peptidases. ... Zie:

  18. Role of sialic acid in synaptosomal transport of amino acid transmitters

    International Nuclear Information System (INIS)

    Zaleska, M.M.; Erecinska, M.

    1987-01-01

    Active, high-affinity, sodium-dependent uptake of [ 14 C]-aminobutyric acid and of the acidic amino acid D-[ 3 H]-aspartate was inhibited by pretreatment of synaptosomes with neuraminidase from Vibrio cholerae. Inhibition was of a noncompetitive type and was related to the amount of sialic acid released. The maximum accumulation ratios of both amino acids (intracellular [amino acid]/extracellular [amino acid]) remained largely unaltered. Treatment with neuraminidase affected neither the synaptosomal energy levels nor the concentration of internal potassium. It is suggested that the γ-aminobutyric acid and acidic amino acid transporters are glycosylated and that sialic acid is involved in the operation of the carrier proteins directly and not through modification of driving forces responsible for amino acid uptake

  19. Role of the Intestinal Bile Acid Transporters in Bile Acid and Drug Disposition

    Science.gov (United States)

    Dawson, Paul A.

    2011-01-01

    Membrane transporters expressed by the hepatocyte and enterocyte play critical roles in maintaining the enterohepatic circulation of bile acids, an effective recycling and conservation mechanism that largely restricts these potentially cytotoxic detergents to the intestinal and hepatobiliary compartments. In doing so, the hepatic and enterocyte transport systems ensure a continuous supply of bile acids to be used repeatedly during the digestion of multiple meals throughout the day. Absorption of bile acids from the intestinal lumen and export into the portal circulation is mediated by a series of transporters expressed on the enterocyte apical and basolateral membranes. The ileal apical sodium-dependent bile acid cotransporter (abbreviated ASBT; gene symbol, SLC10A2) is responsible for the initial uptake of bile acids across the enterocyte brush border membrane. The bile acids are then efficiently shuttled across the cell and exported across the basolateral membrane by the heteromeric Organic Solute Transporter, OSTα-OSTβ. This chapter briefly reviews the tissue expression, physiology, genetics, pathophysiology, and transport properties of the ASBT and OSTα-OSTα. In addition, the chapter discusses the relationship between the intestinal bile acid transporters and drug metabolism, including development of ASBT inhibitors as novel hypocholesterolemic or hepatoprotective agents, prodrug targeting of the ASBT to increase oral bioavailability, and involvement of the intestinal bile acid transporters in drug absorption and drug-drug interactions. PMID:21103970

  20. Acid-base transport in pancreas-new challenges

    DEFF Research Database (Denmark)

    Novak, Ivana; Haanes, Kristian Agmund; Wang, Jing

    2013-01-01

    Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H+) and base (HCO-3) transporters, respectively. Nevertheless, they share the same challenges...... to consider in pancreas are the proton pumps (H-K-ATPases), as well as the calcium-activated K and Cl channels, such as K3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signaling, fine-tune, and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport...

  1. Transport of acidic amino acids by human jejunal brush-border membrane vesicles

    International Nuclear Information System (INIS)

    Rajendran, V.M.; Harig, J.M.; Adams, M.B.; Ramaswamy, K.

    1987-01-01

    This study characterizes the transport of radiolabeled acidic amino acids into brush-border membrane vesicles prepared from human jejunum. The uptakes of L-glutamic, L-aspartic, and D-aspartic acids were stimulated by a Na + gradient. Concentrative uptake (resulting in an overshoot phenomenon) of these dicarboxylic amino acids occurred when there was an outward K + gradient. In addition, increasing K + gradients resulted in enhanced uptake of L-glutamic acid. This K + requirement is somewhat specific as Rb + and Cs + could enhance uptake to a limited extent, whereas Li + and choline + showed no enhancement. The presence of a K + gradient did not affect the affinity of the carrier system for L-glutamic acid but it did increase the V/sub max/. The presence of extravesicular anions having differing membrane permeabilities did not altar L-glutamic acid uptake indicating an absence of an effect of membrane potential on the transport process. Finally, the human transport system for L-glutamic acid appears to be specific for acidic amino acids as demonstrated by inhibition studies. The studies demonstrate a transport system in human jejunum specific for acidic amino acids that is energized by an inward Na + gradient and an outward K + gradient

  2. Multidrug transporters in lactic acid bacteria

    NARCIS (Netherlands)

    Mazurkiewicz, P; Sakamoto, K; Poelarends, GJ; Konings, WN

    Gram-positive lactic acid bacteria possess several Multi-Drug Resistance systems (MDRs) that excrete out of the cell a wide variety of mainly cationic lipophilic cytotoxic compounds as well as many clinically relevant antibiotics. These MDRs are either proton/drug antiporters belonging to the major

  3. Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity

    DEFF Research Database (Denmark)

    Bolvig, T; Larsson, O M; Pickering, D S

    1999-01-01

    The inhibitory action of bicyclic isoxazole gamma-aminobutyric acid (GABA) analogues and their 4,4-diphenyl-3-butenyl (DPB) substituted derivatives has been investigated in cortical neurones and astrocytes as well as in human embryonic kidney (HEK 293) cells transiently expressing either mouse GA...... anticonvulsant activity, lack of proconvulsant activity and the ability of THPO to increase extracellular GABA concentration, indicate that these bicyclic isoxazole GABA analogues and their DPB derivatives may be useful lead structures in future search for new antiepileptic drugs....

  4. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    Science.gov (United States)

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  5. Detecting Electron Transport of Amino Acids by Using Conductance Measurement

    Directory of Open Access Journals (Sweden)

    Wei-Qiong Li

    2017-04-01

    Full Text Available The single molecular conductance of amino acids was measured by a scanning tunneling microscope (STM break junction. Conductance measurement of alanine gives out two conductance values at 10−1.85 G0 (1095 nS and 10−3.7 G0 (15.5 nS, while similar conductance values are also observed for aspartic acid and glutamic acid, which have one more carboxylic acid group compared with alanine. This may show that the backbone of NH2–C–COOH is the primary means of electron transport in the molecular junction of aspartic acid and glutamic acid. However, NH2–C–COOH is not the primary means of electron transport in the methionine junction, which may be caused by the strong interaction of the Au–SMe (methyl sulfide bond for the methionine junction. The current work reveals the important role of the anchoring group in the electron transport in different amino acids junctions.

  6. Specific lysosomal transport of small neutral amino acids

    International Nuclear Information System (INIS)

    Pisoni, R.L.; Flickinger, K.S.; Thoene, J.G.; Christensen, H.N.

    1986-01-01

    Studies of amino acid exodus from lysosomes have allowed us previously to describe transport systems specific for cystine and another for cationic amino acids in fibroblast lysosomes. They are now able to study amino acid uptake into highly purified fibroblast lysosomes obtained by separating crude granular fraction on gradients formed by centrifugation in 35% isoosmotic Percoll solutions. Analog inhibition and saturation studies indicate that L-[ 14 C]proline (50 μM) uptake by fibroblast lysosomes at 37 0 C in 50 mM citrate/tris pH 7.0 buffer containing 0.25 M sucrose is mediated by two transport systems, one largely specific for L-proline and the other for which transport is shared with small neutral amino acids such as alanine, serine and threonine. At 7 mM, L-proline inhibits L-[ 14 C]proline uptake almost completely, whereas ala, ser, val, thr, gly, N-methylalanine and sarcosine inhibit proline uptake by 50-65%. The system shared by alanine, serine and threonine is further characterized by these amino acids strongly inhibiting the uptakes of each other. Lysosomal proline transport is selective for the L-isomer of the amino acid, and is scarcely inhibited by 7 mM arg, glu, asp, leu, phe, his, met, (methylamino) isobutyrate, betaine or N,N-dimethylglycine. Cis or trans-4-hydroxy-L-proline inhibit proline uptake only slightly. In sharp contrast to the fibroblast plasma membrane in which Na + is required for most proline and alanine transport, lysosomal uptake of these amino acids occurs independently of Na +

  7. Phenibut (β-Phenyl-γ-aminobutyric Acid) Dependence and Management of Withdrawal: Emerging Nootropics of Abuse.

    Science.gov (United States)

    Ahuja, Tania; Mgbako, Ofole; Katzman, Caroline; Grossman, Allison

    2018-01-01

    This case report describes the development of withdrawal from phenibut, a gamma-aminobutyric acid-receptor type B agonist. Although phenibut is not an FDA-approved medication, it is available through online retailers as a nootropic supplement. There are reports of dependence in patients that misuse phenibut. We report a case in which a patient experienced withdrawal symptoms from phenibut and was successfully treated with a baclofen taper. This case report highlights the development of phenibut use disorder with coingestion of alcohol and potential management for phenibut withdrawal. We believe clinicians must be aware of how phenibut dependence may present and how to manage the withdrawal syndrome.

  8. Phenibut (β-Phenyl-γ-aminobutyric Acid Dependence and Management of Withdrawal: Emerging Nootropics of Abuse

    Directory of Open Access Journals (Sweden)

    Tania Ahuja

    2018-01-01

    Full Text Available This case report describes the development of withdrawal from phenibut, a gamma-aminobutyric acid-receptor type B agonist. Although phenibut is not an FDA-approved medication, it is available through online retailers as a nootropic supplement. There are reports of dependence in patients that misuse phenibut. We report a case in which a patient experienced withdrawal symptoms from phenibut and was successfully treated with a baclofen taper. This case report highlights the development of phenibut use disorder with coingestion of alcohol and potential management for phenibut withdrawal. We believe clinicians must be aware of how phenibut dependence may present and how to manage the withdrawal syndrome.

  9. MFS Transporters and GABA Metabolism Are Involved in the Self-Defense Against DON in Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Qinhu Wang

    2018-04-01

    Full Text Available Trichothecene mycotoxins, such as deoxynivalenol (DON produced by the fungal pathogen, Fusarium graminearum, are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium. In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum, suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA, a known inducer of DON production in F. graminearum, are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 (PUT2-2 is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum.

  10. Acid-base transport in pancreas – new challenges

    Directory of Open Access Journals (Sweden)

    Ivana eNovak

    2013-12-01

    Full Text Available Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H+ and base (HCO3- transporters, respectively. Nevertheless, they share the same challenges of transporting acid and bases across epithelia and effectively regulating their intracellular pH. In this review, we will make use of comparative physiology to enlighten the cellular mechanisms of pancreatic HCO3- and fluid secretion, which is still challenging physiologists. Some of the novel transporters to consider in pancreas are the proton pumps (H+-K+-ATPases, as well as the calcium-activated K+ and Cl- channels, such as KCa3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signalling, fine-tune and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport contributes to pancreatic diseases including cystic fibrosis, pancreatitis and cancer.

  11. Transport of indoleacetic acid in intact corn coleoptiles

    International Nuclear Information System (INIS)

    Parker, K.E.; Briggs, W.R.

    1990-01-01

    We have characterized the transport of [ 3 H]indoleacetic acid (IAA) in intact corn (Zea mays L.) coleoptiles. We have used a wide range of concentrations of added IAA (28 femtomoles to 100 picomoles taken up over 60 minutes). The shape of the transport curve varies with the concentration of added IAA, although the rate of movement of the observed front of tracer is invariant with concentration. At the lowest concentration of tracer used, the labeled IAA in the transport stream is not detectably metabolized or immobilized, curvature does not develop as a result of tracer application, and normal phototropic and gravitropic responsiveness are not affected. Therefore we believe we are observing the transport of true tracer quantities of labeled auxin at this lowest concentration

  12. Markedly Lower Glutamic Acid Decarboxylase 67 Protein Levels in a Subset of Boutons in Schizophrenia.

    Science.gov (United States)

    Rocco, Brad R; Lewis, David A; Fish, Kenneth N

    2016-06-15

    Convergent findings indicate that cortical gamma-aminobutyric acid (GABA)ergic circuitry is altered in schizophrenia. Postmortem studies have consistently found lower levels of glutamic acid decarboxylase 67 (GAD67) messenger RNA (mRNA) in the prefrontal cortex (PFC) of subjects with schizophrenia. At the cellular level, the density of GABA neurons with detectable levels of GAD67 mRNA is ~30% lower across cortical layers. Knowing how this transcript deficit translates to GAD67 protein levels in axonal boutons is important for understanding the impact it might have on GABA synthesis. In addition, because reductions in GAD67 expression before, but not after, the maturation of GABAergic boutons results in a lower density of GABAergic boutons in mouse cortical cultures, knowing if GABAergic bouton density is altered in schizophrenia would provide insight into the timing of the GAD67 deficit. PFC tissue sections from 20 matched pairs of schizophrenia and comparison subjects were immunolabeled for the vesicular GABA transporter (vGAT) and GAD67. vGAT+ bouton density did not differ between subject groups, consistent with findings that vGAT mRNA levels are unaltered in the illness and confirming that the number of cortical GABAergic boutons is not lower in schizophrenia. In contrast, in schizophrenia subjects, the proportion of vGAT+ boutons with detectable GAD67 levels (vGAT+/GAD67+ boutons) was 16% lower and mean GAD67 levels were 14% lower in the remaining vGAT+/GAD67+ boutons. Our findings suggest that GABA production is markedly reduced in a subset of boutons in the PFC of schizophrenia subjects and that this reduction likely occurs after the maturation of GABAergic boutons. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Valproic acid prevents retinal degeneration in a murine model of normal tension glaucoma.

    Science.gov (United States)

    Kimura, Atsuko; Guo, Xiaoli; Noro, Takahiko; Harada, Chikako; Tanaka, Kohichi; Namekata, Kazuhiko; Harada, Takayuki

    2015-02-19

    Valproic acid (VPA) is widely used for treatment of epilepsy, mood disorders, migraines and neuropathic pain. It exerts its therapeutic benefits through modulation of multiple mechanisms including regulation of gamma-aminobutyric acid and glutamate neurotransmissions, activation of pro-survival protein kinases and inhibition of histone deacetylase. The evidence for neuroprotective properties associated with VPA is emerging. Herein, we investigated the therapeutic potential of VPA in a mouse model of normal tension glaucoma (NTG). Mice with glutamate/aspartate transporter gene deletion (GLAST KO mice) demonstrate progressive retinal ganglion cell (RGC) loss and optic nerve degeneration without elevated intraocular pressure, and exhibit glaucomatous pathology including glutamate neurotoxicity and oxidative stress in the retina. VPA (300mg/kg) or vehicle (PBS) was administered via intraperitoneal injection in GLAST KO mice daily for 2 weeks from the age of 3 weeks, which coincides with the onset of glaucomatous retinal degeneration. Following completion of the treatment period, the vehicle-treated GLAST KO mouse retina showed significant RGC death. Meanwhile, VPA treatment prevented RGC death and thinning of the inner retinal layer in GLAST KO mice. In addition, in vivo electrophysiological analyses demonstrated that visual impairment observed in vehicle-treated GLAST KO mice was ameliorated with VPA treatment, clearly establishing that VPA beneficially affects both histological and functional aspects of the glaucomatous retina. We found that VPA reduces oxidative stress induced in the GLAST KO retina and stimulates the cell survival signalling pathway associated with extracellular-signal-regulated kinases (ERK). This is the first study to report the neuroprotective effects of VPA in an animal model of NTG. Our findings raise intriguing possibilities that the widely prescribed drug VPA may be a novel candidate for treatment of glaucoma. Copyright © 2015 Elsevier

  14. Regional amino acid transport into brain during diabetes: Effect of plasma amino acids

    International Nuclear Information System (INIS)

    Mans, A.M.; DeJoseph, M.R.; Davis, D.W.; Hawkins, R.A.

    1987-01-01

    Transport of phenylalanine and lysine into the brain was measured in 4-wk streptozotocin-diabetic rats to assess the effect on the neutral and basic amino acid transport systems at the blood-brain barrier. Amino acid concentrations in plasma and brain were also measured. Regional permeability-times-surface area (PS) products and influx were determined using a continuous infusion method and quantitative autoradiography. The PS of phenylalanine was decreased by an average of 40% throughout the entire brain. Influx was depressed by 35%. The PS of lysine was increased by an average of 44%, but the influx was decreased by 27%. Several plasma neutral amino acids (branched chain) were increased, whereas all basic amino acids were decreased. Brain tryptophan, phenylalanine, tyrosine, methionine, and lysine contents were markedly decreased. The transport changes were almost entirely accounted for by the alterations in the concentrations of the plasma amino acids that compete for the neutral and basic amino acid carriers. The reduced influx could be responsible for the low brain content of some essential amino acids, with possibly deleterious consequences for brain functions

  15. Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters

    International Nuclear Information System (INIS)

    Straka, Elisabeth; Ellinger, Isabella; Balthasar, Christina; Scheinast, Matthias; Schatz, Jasmin; Szattler, Tamara; Bleichert, Sonja; Saleh, Leila; Knöfler, Martin; Zeisler, Harald; Hengstschläger, Markus; Rosner, Margit; Salzer, Hans; Gundacker, Claudia

    2016-01-01

    Highlights: • It is known that MeHg is able to pass the placenta and to affect fetal brain development. • Uptake and efflux transporters were examined in human primary trophoblast cells and BeWo cells. • Involvement in mercury transfer was assessed by measurement of cellular mercury content upon siRNA mediated gene knockdown. • Localization of transporters was determined by immunofluorescence microscopy. • LAT1 and rBAT at the apical membrane of the syncytiotrophoblast (STB) are involved in MeHg uptake. • MRP1 located at basal membrane of STB mediates mercury efflux. - Abstract: Background: The capacity of the human placenta to handle exogenous stressors is poorly understood. The heavy metal mercury is well-known to pass the placenta and to affect brain development. An active transport across the placenta has been assumed. The underlying mechanisms however are virtually unknown. Objectives: Uptake and efflux transporters (17 candidate proteins) assumed to play a key role in placental mercury transfer were examined for expression, localization and function in human primary trophoblast cells and the trophoblast-derived choriocarcinoma cell line BeWo. Methods: To prove involvement of the transporters, we used small interfering RNA (siRNA) and exposed cells to methylmercury (MeHg). Total mercury contents of cells were analyzed by Cold vapor-atomic fluorescence spectrometry (CV-AFS). Localization of the proteins in human term placenta sections was determined via immunofluorescence microscopy. Results: We found the amino acid transporter subunits L-type amino acid transporter (LAT)1 and rBAT (related to b 0,+ type amino acid transporter) as well as the efflux transporter multidrug resistance associated protein (MRP)1 to be involved in mercury kinetics of trophoblast cells (t-test P < 0.05). Conclusion: The amino acid transporters located at the apical side of the syncytiotrophoblast (STB) manage uptake of MeHg. Mercury conjugated to glutathione (GSH) is

  16. Design and Mechanism of Tetrahydrothiophene-Based γ-Aminobutyric Acid Aminotransferase Inactivators

    Energy Technology Data Exchange (ETDEWEB)

    Le, Hoang V. [Departments; Hawker, Dustin D. [Departments; Wu, Rui [Department; Doud, Emma [Departments; Widom, Julia [Departments; Sanishvili, Ruslan [X-ray; Liu, Dali [Department; Kelleher, Neil L. [Departments; Silverman, Richard B. [Departments

    2015-03-25

    Low levels of gamma-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinsons disease, Alzheimers disease, Huntingtons disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the bloodbrain barrier and inhibit the activity of gamma-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally restricted tetrahydrothiophene-based GABA analogues with a properly positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is 8 times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bonding interactions with Arg-192, a pi-pi interaction with Phe-189, and a weak nonbonded (SO)-O-...=C interaction with Glu-270, thereby inactivating the enzyme.

  17. "Facilitated" amino acid transport is upregulated in brain tumors.

    Science.gov (United States)

    Miyagawa, T; Oku, T; Uehara, H; Desai, R; Beattie, B; Tjuvajev, J; Blasberg, R

    1998-05-01

    The goal of this study was to determine the magnitude of "facilitated" amino acid transport across tumor and brain capillaries and to evaluate whether amino acid transporter expression is "upregulated" in tumor vessels compared to capillaries in contralateral brain tissue. Aminocyclopentane carboxylic acid (ACPC), a non-metabolized [14C]-labeled amino acid, and a reference molecule for passive vascular permeability, [67Ga]-gallium-diethylenetriaminepentaacetic acid (Ga-DTPA), were used in these studies. Two experimental rat gliomas were studied (C6 and RG2). Brain tissue was rapidly processed for double label quantitative autoradiography 10 minutes after intravenous injection of ACPC and Ga-DTPA. Parametric images of blood-to-brain transport (K1ACPC and K1Ga-DTPA, microL/min/g) produced from the autoradiograms and the histology were obtained from the same tissue section. These three images were registered in an image array processor; regions of interest in tumor and contralateral brain were defined on morphologic criteria (histology) and were transferred to the autoradiographic images to obtain mean values. The facilitated component of ACPC transport (deltaK1ACPC) was calculated from the K1ACPC and K1Ga-DTPA data, and paired comparisons between tumor and contralateral brain were performed. ACPC flux, K1ACPC, across normal brain capillaries (22.6 +/- 8.1 microL/g/min) was >200-fold greater than that of Ga-DTPA (0.09 +/- 0.04 microL/g/min), and this difference was largely (approximately 90%) due to facilitated ACPC transport. Substantially higher K1ACPC values compared to corresponding K1DTPA values were also measured in C6 and RG2 gliomas. The deltaK1ACPC values for C6 glioma were more than twice that of contralateral brain cortex. K1ACPC and deltaK1ACPC values for RG2 gliomas was not significantly higher than that of contralateral cortex, although a approximately 2-fold difference in facilitated transport is obtained after normalization for differences in capillary

  18. MS transport assays for γ-aminobutyric acid transporters--an efficient alternative for radiometric assays.

    Science.gov (United States)

    Schmitt, Sebastian; Höfner, Georg; Wanner, Klaus T

    2014-08-05

    Transport assays for neurotransmitters based on radiolabeled substrates are widely spread and often indispensable in basic research and the drug development process, although the use of radioisotopes is inherently coupled to issues concerning radioactive waste and safety precautions. To overcome these disadvantages, we developed mass spectrometry (MS)-based transport assays for γ-aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the central nervous system (CNS). These "MS Transport Assays" provide all capabilities of [(3)H]GABA transport assays and therefore represent the first substitute for the latter. The performance of our approach is demonstrated for GAT1, the most important GABA transporter (GAT) subtype. As GABA is endogenously present in COS-7 cells employed as hGAT1 expression system, ((2)H6)GABA was used as a substrate to differentiate transported from endogenous GABA. To record transported ((2)H6)GABA, a highly sensitive, short, robust, and reliable HILIC-ESI-MS/MS quantification method using ((2)H2)GABA as an internal standard was developed and validated according to the Center for Drug Evaluation and Research (CDER) guidelines. Based on this LC-MS quantification, a setup to characterize hGAT1 mediated ((2)H6)GABA transport in a 96-well format was established, that enables automated processing and avoids any sample preparation. The K(m) value for ((2)H6)GABA determined for hGAT1 is in excellent agreement with results obtained from [(3)H]GABA uptake assays. In addition, the established assay format enables efficient determination of the inhibitory potency of GAT1 inhibitors, is capable of identifying those inhibitors transported as substrates, and furthermore allows characterization of efflux. The approach described here combines the strengths of LC-MS/MS with the high efficiency of transport assays based on radiolabeled substrates and is applicable to all GABA transporter subtypes.

  19. Transport in Halobacterium Halobium: Light-Induced Cation-Gradients, Amino Acid Transport Kinetics, and Properties of Transport Carriers

    Science.gov (United States)

    Lanyi, Janos K.

    1977-01-01

    Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na(+). Measurements of Na-22 flux, exterior pH change, and membrane potential, Delta(psi) (with the dye 3,3'-dipentyloxadicarbocyanine) indicate that the means of Na(+) transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H(+)/Na(++ greater than 1). The resulting large chemical gradient for Na(+) (outside much greater than inside), as well as the membrane potential, will drive the transport of 18 amino acids. The I9th, glutamate, is unique in that its accumulation is indifferent to Delta(psi): this amino acid is transported only when a chemical gradient for Na(+) is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+() collapses within 1 min, while the large Na(+) gradient and glutamate transporting activity persists for 10- 15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na(+), arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with V(sub max) and K(sub m) comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na(+), in an electrically neutral fashion, so that only the chemical component of the Na(+) gradient is a driving force.

  20. Effect of 5-aminolevulinic acid on erythropoiesis: A preclinical in vitro characterization for the treatment of congenital sideroblastic anemia

    International Nuclear Information System (INIS)

    Fujiwara, Tohru; Okamoto, Koji; Niikuni, Ryoyu; Takahashi, Kiwamu; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Ichinohasama, Ryo; Nakamura, Yukio; Nakajima, Motowo; Tanaka, Tohru; Harigae, Hideo

    2014-01-01

    expressed in erythroid cells. Thus, gamma-aminobutyric acid (GABA) was added to K562 cells to competitively inhibit SLC36A1-mediated transport. GABA treatment significantly impeded the ALA-mediated increase in the number of hemoglobinized cells as well as the induction of HBG, HBA, and HMOX1. Finally, small-interfering RNA-mediated knockdown of ALAS2 in HiDEP cells considerably decreased the expression of HBA, HBG, and HMOX1, and these expression levels were rescued with ALA treatment. In summary, ALA appears to be transported into erythroid cells mainly by SLC36A1 and is utilized to generate heme. ALA may represent a novel therapeutic option for CSA treatment, particularly for cases harboring ALAS2 mutations

  1. Effect of 5-aminolevulinic acid on erythropoiesis: A preclinical in vitro characterization for the treatment of congenital sideroblastic anemia

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Tohru [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Department of Molecular Hematology/Oncology, Tohoku University Graduate School, Sendai (Japan); Okamoto, Koji; Niikuni, Ryoyu [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Takahashi, Kiwamu [SBI Pharmaceuticals Co., Ltd., Tokyo (Japan); Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Ishizawa, Kenichi [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai (Japan); Ichinohasama, Ryo [Department of Hematopathology, Tohoku University Graduate School, Sendai (Japan); Nakamura, Yukio [Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki (Japan); Nakajima, Motowo; Tanaka, Tohru [SBI Pharmaceuticals Co., Ltd., Tokyo (Japan); Harigae, Hideo, E-mail: harigae@med.tohoku.ac.jp [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Department of Molecular Hematology/Oncology, Tohoku University Graduate School, Sendai (Japan)

    2014-11-07

    expressed in erythroid cells. Thus, gamma-aminobutyric acid (GABA) was added to K562 cells to competitively inhibit SLC36A1-mediated transport. GABA treatment significantly impeded the ALA-mediated increase in the number of hemoglobinized cells as well as the induction of HBG, HBA, and HMOX1. Finally, small-interfering RNA-mediated knockdown of ALAS2 in HiDEP cells considerably decreased the expression of HBA, HBG, and HMOX1, and these expression levels were rescued with ALA treatment. In summary, ALA appears to be transported into erythroid cells mainly by SLC36A1 and is utilized to generate heme. ALA may represent a novel therapeutic option for CSA treatment, particularly for cases harboring ALAS2 mutations.

  2. Hypoxia and the anticoagulants dalteparin and acetylsalicylic acid affect human placental amino acid transport.

    Directory of Open Access Journals (Sweden)

    Marc-Jens Kleppa

    Full Text Available BACKGROUND: Anticoagulants, e.g. low-molecular weight heparins (LMWHs and acetylsalicylic acid (ASA are prescribed to women at risk for pregnancy complications that are associated with impaired placentation and placental hypoxia. Beyond their role as anticoagulants these compounds exhibit direct effects on trophoblast but their impact on placental function is unknown. The amino acid transport systems A and L, which preferably transfer essential amino acids, are well-described models to study placental nutrient transport. We aimed to examine the effect of hypoxia, LMWHs and ASA on the activity of the placental amino acid transport systems A and L and associated signalling mechanisms. METHODS: The uptake of C14-MeAIB (system A or H3-leucin (system L was investigated after incubation of primary villous fragments isolated from term placentas. Villous tissue was incubated at 2% O2 (hypoxia, 8% O2 and standard culture conditions (21% O2 or at 2% O2 and 21% O2 with dalteparin or ASA. Activation of the JAK/STAT or mTOR signalling pathways was determined by Western analysis of total and phosphorylated STAT3 or Raptor. RESULTS: Hypoxia decreased system A mediated MeAIB uptake and increased system L mediated leucine uptake compared to standard culture conditions (21% O2. This was accompanied by an impairment of STAT3 and a stimulation of Raptor signalling. System L activity increased at 8% O2. Dalteparin treatment reduced system A and system L activity under normoxic conditions and ASA (1 mM decreased system A and L transporter activity under normoxic and hypoxic conditions. CONCLUSIONS: Our data underline the dependency of placental function on oxygen supply. LMWHs and ASA are not able to reverse the effects of hypoxia on placental amino acid transport. These findings and the uncovering of the signalling mechanisms in more detail will help to understand the impact of LMWHs and ASA on placental function and fetal growth.

  3. Acid-base transport by the renal proximal tubule.

    Science.gov (United States)

    Skelton, Lara A; Boron, Walter F; Zhou, Yuehan

    2010-01-01

    Each day, the kidneys filter 180 L of blood plasma, equating to some 4,300 mmol of the major blood buffer, bicarbonate (HCO3-). The glomerular filtrate enters the lumen of the proximal tubule (PT), and the majority of filtered HCO3- is reclaimed along the early (S1) and convoluted (S2) portions of the PT in a manner coupled to the secretion of H+ into the lumen. The PT also uses the secreted H+ to titrate non-HCO3- buffers in the lumen, in the process creating "new HCO3-" for transport into the blood. Thus, the PT - along with more distal renal segments - is largely responsible for regulating plasma [HCO3-]. In this review we first focus on the milestone discoveries over the past 50+ years that define the mechanism and regulation of acid-base transport by the proximal tubule. Further on in the review, we will summarize research still in progress from our laboratory, work that addresses the problem of how the PT is able to finely adapt to acid-base disturbances by rapidly sensing changes in basolateral levels of HCO3- and CO2 (but not pH), and thereby to exert tight control over the acid-base composition of the blood plasma.

  4. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  5. Genetic analysis of amino acid transport in the facultatively heterotrophic cyanobacterium Synechocystis sp. Strain 6803

    International Nuclear Information System (INIS)

    Labarre, J.; Thuriaux, P.; Chauvat, F.

    1987-01-01

    The existence of active transport systems (permeases) operating on amino acids in the photoautotrophic cyanobacterium Synechocystis sp. strain 6803 was demonstrated by following the initial rates of uptake with 14 C-labeled amino acids, measuring the intracellular pools of amino acids, and isolating mutants resistant to toxic amino acids. One class of mutants (Pfa1) corresponds to a regulatory defect in the biosynthesis of the aromatic amino acids, but two other classes (Can1 and Aza1) are defective in amino acid transport. The Can1 mutants are defective in the active transport of three basic amino acids (arginine, histidine, and lysine) and in one of two transport systems operating on glutamine. The Aza1 mutants are not affected in the transport of the basic amino acids but have lost the capacity to transport all other amino acids except glutamate. The latter amino acid is probably transported by a third permease which could be identical to the Can1-independent transport operating on glutamine. Thus, genetic evidence suggests that strain 6803 has only a small number of amino acid transport systems with fairly broad specificity and that, with the exception of glutamine, each amino acid is accumulated by only one major transport system. Compared with heterotrophic bacteria such as Escherichia coli, these permeases are rather inefficient in terms of affinity (apparent K/sub m/ ranging from 6 to 60 μM) and of V/sub max/

  6. Amino Acid Metabolism and Transport Mechanisms as Potential Antifungal Targets

    Directory of Open Access Journals (Sweden)

    Matthew W. McCarthy

    2018-03-01

    Full Text Available Discovering new drugs for treatment of invasive fungal infections is an enduring challenge. There are only three major classes of antifungal agents, and no new class has been introduced into clinical practice in more than a decade. However, recent advances in our understanding of the fungal life cycle, functional genomics, proteomics, and gene mapping have enabled the identification of new drug targets to treat these potentially deadly infections. In this paper, we examine amino acid transport mechanisms and metabolism as potential drug targets to treat invasive fungal infections, including pathogenic yeasts, such as species of Candida and Cryptococcus, as well as molds, such as Aspergillus fumigatus. We also explore the mechanisms by which amino acids may be exploited to identify novel drug targets and review potential hurdles to bringing this approach into clinical practice.

  7. Role of NH3 and NH4+ transporters in renal acid-base transport.

    Science.gov (United States)

    Weiner, I David; Verlander, Jill W

    2011-01-01

    Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.

  8. Identification of a disulfide bridge important for transport function of SNAT4 neutral amino acid transporter.

    Directory of Open Access Journals (Sweden)

    Rugmani Padmanabhan Iyer

    Full Text Available SNAT4 is a member of system N/A amino acid transport family that primarily expresses in liver and muscles and mediates the transport of L-alanine. However, little is known about the structure and function of the SNAT family of transporters. In this study, we showed a dose-dependent inhibition in transporter activity of SNAT4 with the treatment of reducing agents, dithiothreitol (DTT and Tris(2-carboxyethylphosphine (TCEP, indicating the possible involvement of disulfide bridge(s. Mutation of residue Cys-232, and the two highly conserved residues Cys-249 and Cys-321, compromised the transport function of SNAT4. However, this reduction was not caused by the decrease of SNAT4 on the cell surface since the cysteine-null mutant generated by replacing all five cysteines with alanine was equally capable of being expressed on the cell surface as wild-type SNAT4. Interestingly, by retaining two cysteine residues, 249 and 321, a significant level of L-alanine uptake was restored, indicating the possible formation of disulfide bond between these two conserved residues. Biotinylation crosslinking of free thiol groups with MTSEA-biotin provided direct evidence for the existence of a disulfide bridge between Cys-249 and Cys-321. Moreover, in the presence of DTT or TCEP, transport activity of the mutant retaining Cys-249 and Cys-321 was reduced in a dose-dependent manner and this reduction is gradually recovered with increased concentration of H2O2. Disruption of the disulfide bridge also decreased the transport of L-arginine, but to a lesser degree than that of L-alanine. Together, these results suggest that cysteine residues 249 and 321 form a disulfide bridge, which plays an important role in substrate transport but has no effect on trafficking of SNAT4 to the cell surface.

  9. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    Science.gov (United States)

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast. Copyright © 2015. Published by Elsevier B.V.

  10. Effects of a series of acidic drugs on L-lactic acid transport by the monocarboxylate transporters MCT1 and MCT4.

    Science.gov (United States)

    Leung, Yat Hei; Belanger, Francois; Lu, Jennifer; Turgeon, Jacques; Michaud, Veronique

    2018-03-07

    Drug-induced myopathy is a serious side effect that often requires removal of a medication from a drug regimen. For most drugs, the underlying mechanism of drug-induced myopathy remains unclear. Monocarboxylate transporters (MCTs) mediate L-lactic acid transport, and inhibition of MCTs may potentially lead to perturbation of L-lactic acid accumulation and muscular disorders. Therefore, we hypothesized that L-lactic acid transport may be involved in the development of drug-induced myopathy. The aim of this study was to assess the inhibitory potential of 24 acidic drugs on L-lactic acid transport using breast cancer cell lines Hs578T and MDA-MB-231, which selectively express MCT1 and MCT4, respectively. The influx transport of L-lactic acid was minimally inhibited by all drugs tested. The efflux transport was next examined: loratadine (IC50: 10 and 61 µM) and atorvastatin (IC50: 78 and 41 µM) demonstrated the greatest potency for inhibition of L-lactic acid efflux by MCT1 and MCT4, respectively. Acidic drugs including fluvastatin, cerivastatin, simvastatin acid, lovastatin acid, irbesartan and losartan exhibited weak inhibitory potency on L-lactic acid efflux. Our results suggest that some acidic drugs, such as loratadine and atorvastatin, can inhibit the efflux transport of L-lactic acid. This inhibition may cause an accumulation of intracellular L-lactic acid leading to acidification and muscular disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Rafael Pernil

    2015-04-01

    Full Text Available Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  12. Seasonal changes in amino acids, protein and total nitrogen in needles of fertilized Scots pine trees.

    Science.gov (United States)

    Näsholm, T; Ericsson, A

    1990-09-01

    Seasonal changes in amino acids, protein and total nitrogen in needles of 30-year-old, fertilized Scots pine (Pinus sylvestris L.) trees growing in Northern Sweden were investigated over two years in field experiments. The studied plots had been fertilized annually for 17 years with (i) a high level of N, (ii) a medium level of N, or (iii) a medium level of N, P and K. Trees growing on unfertilized plots served as controls. In control trees, glutamine, glutamic acid, gamma-aminobutyric acid, aspartic acid and proline represented 50-70% of the total free amino acids determined. Arginine was present only in low concentrations in control trees throughout the year, but it was usually the most abundant amino acid in fertilized trees. Glutamine concentrations were high during the spring and summer in both years of study, whereas proline concentrations were high in the spring but otherwise low throughout the year. In the first year of study, glutamic acid concentrations were high during the spring and summer, whereas gamma-aminobutyric acid was present in high concentrations during the winter months. This pattern was less pronounced in the second year of investigation. The concentrations of most amino acids, except glutamic acid, increased in response to fertilization. Nitrogen fertilization increased the foliar concentration of arginine from trees to a maximum of 110 micromol g(dw) (-1). Trees fertilized with nitrogen, phosphorus and potassium had significantly lower arginine concentrations than trees fertilized with the same amount of nitrogen only. Protein concentrations were similar in all fertilized trees but higher than those in control trees. For all treatments, protein concentrations were high in winter and at a minimum in early spring. In summer, the protein concentration remained almost constant except for a temporary decrease which coincided with the expansion of new shoots. Apart from arginine, the amino acid composition of proteins was similar in all

  13. Induction of amino acid transporters expression by endurance exercise in rat skeletal muscle

    International Nuclear Information System (INIS)

    Murakami, Taro; Yoshinaga, Mariko

    2013-01-01

    Highlights: •Regulation of amino acid transporter expression in working muscle remains unclear. •Expression of amino acid transporters for leucine were induced by a bout of exercise. •Requirement of leucine in muscle cells might regulate expression of its transporters. •This information is beneficial for understanding the muscle remodeling by exercise. -- Abstract: We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after the exercise, we observed that expression of mRNAs encoding L-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles

  14. L-aspartic acid transport by cat erythrocytes

    International Nuclear Information System (INIS)

    Chen, C.W.; Preston, R.L.

    1986-01-01

    Cat and dog red cells are unusual in that they have no Na/K ATPase and contain low K and high Na intracellularly. They also show significant Na dependent L-aspartate (L-asp) transport. The authors have characterized this system in cat RBCs. The influx of 3 H-L-asp (typically 2μM) was measured in washed RBCs incubated for 60 s at 37 0 C in medium containing 140 mM NaCl, 5 mM Kcl, 2 mM CaCl 2 , 15 mM MOPS pH 7.4, 5 mM glucose, and 14 C-PEG as a space marker. The cells were washed 3 times in the medium immediately before incubation which was terminated by centrifuging the RBCs through a layer of dibutylphthalate. Over an L-asp concentration range of 0.5-1000μM, influx obeyed Michaelis-Menten kinetics with a small added linear diffusion component. The Kt and Jmax of the saturable component were 5.40 +/- 0.34 μM and 148.8 +/- 7.2 μmol 1. cell -1 h -1 respectively. Replacement of Na with Li, K, Rb, Cs or choline reduce influx to diffusion. With the addition of asp analogues (4 + M L-asp, 40 + M inhibitor), the following sequence of inhibition was observed (range 80% to 40% inhib.): L-glutamate > L-cysteine sulfonate > D-asp > L-cysteic acid > D-glutamate. Other amino acids such as L-alanine, L-proline, L-lysine, L-cysteine, and taurine showed no inhibition (<5%). These data suggest that cat red cells contain a high-affinity Na dependent transport system for L-asp, glutamate, and closely related analogues which resembles that found in the RBCs of other carnivores and in neural tissues

  15. Impact of Microbial Growth on Subsurface Perfluoroalkyl Acid Transport

    Science.gov (United States)

    Weathers, T. S.; Higgins, C. P.; Sharp, J.

    2014-12-01

    The fate and transport of poly and perfluoroalkyl substances (PFASs) in the presence of active microbial communities has not been widely investigated. These emerging contaminants are commonly utilized in aqueous film-forming foams (AFFF) and have often been detected in groundwater. This study explores the transport of a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), in microbially active settings. Single point organic carbon normalized sorption coefficients derived by exposing inactive cellular material to PFASs result in more than an order of magnitude increase in sorption compared to soil organic carbon sorption coefficients found in literature. For example, the sorption coefficients for PFOS are 4.05±0.07 L/kg and 2.80±0.08 L/kg for cellular organic carbon and soil organic carbon respectively. This increase in sorption, coupled with enhanced extracellular polymeric substance production observed during growth of a common hydrocarbon degrading soil microbe exposed to source-level concentrations of PFASs (10 mg/L of 11 analytes, 110 mg/L total) may result in PFAS retardation in situ. To address the upscaling of this phenomenon, flow-through columns packed with low-organic carbon sediment and biostimulated with 10 mg/L glucose were exposed to PFAS concentrations from 15 μg/L to 10 mg/L of each 11 analytes. Breakthrough and tailing of each analyte was measured and modeled with Hydrus-1D to explore sorption coefficients over time for microbially active columns.

  16. Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters.

    Science.gov (United States)

    Severi, Emmanuele; Hosie, Arthur H F; Hawkhead, Judith A; Thomas, Gavin H

    2010-03-01

    The function of sialic acids in the biology of bacterial pathogens is reflected by the diverse range of solute transporters that can recognize these sugar acids. Here, we use an Escherichia coliDeltananT strain to characterize the function of known and proposed bacterial sialic acid transporters. We discover that the STM1128 gene from Salmonella enterica serovar Typhimurium, which encodes a member of the sodium solute symporter family, is able to restore growth on sialic acid to the DeltananT strain and is able to transport [(14)C]-sialic acid. Using the DeltananT genetic background, we performed a direct in vivo comparison of the transport properties of the STM1128 protein with those of sialic acid transporters of the major facilitator superfamily and tripartite ATP-independent periplasmic families, E. coli NanT and Haemophilus influenzae SiaPQM, respectively. This revealed that both STM1128 and SiaPQM are sodium-dependent and, unlike SiaPQM, both STM1128 and NanT are reversible secondary carriers, demonstrating qualitative functional differences in the properties of sialic acid transporters used by bacteria that colonize humans.

  17. Amino Acid Transport in the Thermophilic Anaerobe Clostridium fervidus Is Driven by an Electrochemical Sodium Gradient

    NARCIS (Netherlands)

    SPEELMANS, G; POOLMAN, B; KONINGS, WN

    Amino acid transport was studied in membranes of the peptidolytic, thermophitic, anaerobic bacterium Clostridium fervidus. Uptake of the negatively charged amino acid L-glutamate, the neutral amino acid L-serine, and the positively charged amino acid L-arginine was examined in membrane vesicles

  18. GABA, 5-HT and amino acids in the rotifers Brachionus plicatilis and Brachionus rotundiformis.

    Science.gov (United States)

    Gallardo, W G; Hagiwara, A; Hara, K; Soyano, K; Snell, T W

    2000-11-01

    gamma-Aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT) have been shown to increase the reproduction of the Brachionus plicatilis (NH3L strain). In the present study, the endogenous presence of GABA and 5-HT in the rotifers B. plicatilis (NH3L and Kamiura strains) and Brachionus rotundiformis (Langkawi strain) were confirmed by dot blot immunoassay and high-performance liquid chromatography (HPLC). HPLC showed that GABA and 5-HT concentrations in the three rotifer strains range from 71 to 188 pmol/mg and from 12 to 64 pmol/mg, respectively. A total of 33 amino acids were also detected in B. plicatilis and B. rotundiformis, with glutamic acid, serine, glycine, taurine, threonine, alanine, arginine, proline, valine and isoleucine in high concentrations relative to other amino acids.

  19. The γ-aminobutyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens.

    Science.gov (United States)

    Fu, Zhenyu; Yang, Hongfa; Xiao, Yuqiang; Zhao, Gang; Huang, Haiyan

    2012-07-10

    Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA) system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. The present study demonstrated that morphine challenge (3 mg/kg, s.c.) obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg) significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  20. DNA methylation of amino acid transporter genes in the human placenta.

    Science.gov (United States)

    Simner, C; Novakovic, B; Lillycrop, K A; Bell, C G; Harvey, N C; Cooper, C; Saffery, R; Lewis, R M; Cleal, J K

    2017-12-01

    Placental transfer of amino acids via amino acid transporters is essential for fetal growth. Little is known about the epigenetic regulation of amino acid transporters in placenta. This study investigates the DNA methylation status of amino acid transporters and their expression across gestation in human placenta. BeWo cells were treated with 5-aza-2'-deoxycytidine to inhibit methylation and assess the effects on amino acid transporter gene expression. The DNA methylation levels of amino acid transporter genes in human placenta were determined across gestation using DNA methylation array data. Placental amino acid transporter gene expression across gestation was also analysed using data from publically available Gene Expression Omnibus data sets. The expression levels of these transporters at term were established using RNA sequencing data. Inhibition of DNA methylation in BeWo cells demonstrated that expression of specific amino acid transporters can be inversely associated with DNA methylation. Amino acid transporters expressed in term placenta generally showed low levels of promoter DNA methylation. Transporters with little or no expression in term placenta tended to be more highly methylated at gene promoter regions. The transporter genes SLC1A2, SLC1A3, SLC1A4, SLC7A5, SLC7A11 and SLC7A10 had significant changes in enhancer DNA methylation across gestation, as well as gene expression changes across gestation. This study implicates DNA methylation in the regulation of amino acid transporter gene expression. However, in human placenta, DNA methylation of these genes remains low across gestation and does not always play an obvious role in regulating gene expression, despite clear evidence for differential expression as gestation proceeds. Copyright © 2017. Published by Elsevier Ltd.

  1. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations

    DEFF Research Database (Denmark)

    Camargo, Simone M R; Singer, Dustin; Makrides, Victoria

    2008-01-01

    BACKGROUND & AIMS: Hartnup amino acid transporter B(0)AT1 (SLC6A19) is the major luminal sodium-dependent neutral amino acid transporter of small intestine and kidney proximal tubule. The expression of B(0)AT1 in kidney was recently shown to depend on its association with collectrin (Tmem27...

  2. Regulatory signals for intestinal amino acid transporters and peptidases

    International Nuclear Information System (INIS)

    Ferraris, R.P.; Kwan, W.W.; Diamond, J.

    1988-01-01

    Dietary protein ultimately regulates many processes involved in protein digestion, but it is often unclear whether proteins themselves, peptides, or amino acids (AAs) are the proximate regulatory signal. Hence the authors compared several processes involved in protein digestion in mice adapted to one of three rations, identical except for containing 54% of either casein, a partial hydrolysate of casein, or a free AA mixture simulating a complete hydrolysate of casein. The authors measured brush-border uptakes of seven AAs that variously serve as substrates for four AA transporters, and brush-border and cytosolic activities of four peptidases. The three rations yielded essentially the same AA uptake rates. Peptidase activities tended to be lower on the AA ration than on the protein ration. In other studies, all three rations yielded the same rates of brush-border peptide uptake; protein is only modestly more effective than AAs at inducing synthesis of pancreatic proteases; and, depending on the animal species, protein is either much less or much more effective than AAs at stimulating release of cholecystokinin and hence of pancreatic enzymes. Thus the regulators of each process involved in protein digestion are not necessarily that process's substrate

  3. Action of Abscisic Acid on Auxin Transport and its Relation to Phototropism

    DEFF Research Database (Denmark)

    Naqvi, S. M.; Engvild, Kjeld Christensen

    1974-01-01

    The action of abscisic acid on the kinetics of auxin transport through Zea mays L. (cv. Goudster) coleoptiles has been investigated. Abscisic acid applied simultaneously with indoleacetic acid-2-14C in the donor block reduced the transport intensity without materially affecting the basipetal...... velocity or the uptake. No effect on acropetal transport was observed. The data have been used to discuss the similarities in effects of abscisic acid and visible radiation and a hypothesis is proposed to explain the phenomena of phototropism....

  4. gamma-Glutamyl amino acids. Transport and conversion to 5-oxoproline in the kidney

    International Nuclear Information System (INIS)

    Bridges, R.J.; Meister, A.

    1985-01-01

    Transport of gamma-glutamyl amino acids, a step in the proposed glutathione-gamma-glutamyl transpeptidase-mediated amino acid transport pathway, was examined in mouse kidney. The transport of gamma-glutamyl amino acids was demonstrated in vitro in studies on kidney slices. Transport was followed by measuring uptake of 35 S after incubation of the slices in media containing gamma-glutamyl methionine [ 35 S]sulfone. The experimental complication associated with extracellular conversion of the gamma-glutamyl amino acid to amino acid and uptake of the latter by slices was overcome by using 5-oxoproline formation (catalyzed by intracellular gamma-glutamyl-cyclotransferase) as an indicator of gamma-glutamyl amino acid transport. This method was also successfully applied to studies on transport of gamma-glutamyl amino acids in vivo. Transport of gamma-glutamyl amino acids in vitro and in vivo is inhibited by several inhibitors of gamma-glutamyl transpeptidase and also by high extracellular levels of glutathione. This seems to explain urinary excretion of gamma-glutamylcystine by humans with gamma-glutamyl transpeptidase deficiency and by mice treated with inhibitors of this enzyme. Mice depleted of glutathione by treatment with buthionine sulfoximine (which inhibits glutathione synthesis) or by treatment with 2,6-dimethyl-2,5-heptadiene-4-one (which effectively interacts with tissue glutathione) exhibited significantly less transport of gamma-glutamyl amino acids than did untreated controls. The findings suggest that intracellular glutathione functions in transport of gamma-glutamyl amino acids. Evidence was also obtained for transport of gamma-glutamyl gamma-glutamylphenylalanine into kidney slices

  5. Designing Novel Nanoformulations Targeting Glutamate Transporter Excitatory Amino Acid Transporter 2: Implications in Treating Drug Addiction.

    Science.gov (United States)

    Rao, Pss; Yallapu, Murali M; Sari, Youssef; Fisher, Paul B; Kumar, Santosh

    Chronic drug abuse is associated with elevated extracellular glutamate concentration in the brain reward regions. Deficit of glutamate clearance has been identified as a contributing factor that leads to enhanced glutamate concentration following extended drug abuse. Importantly, normalization of glutamate level through induction of glutamate transporter 1 (GLT1)/ excitatory amino acid transporter 2 (EAAT2) expression has been described in several in vivo studies. GLT1 upregulators including ceftriaxone, a beta-lactam antibiotic, have been effective in attenuating drug-seeking and drug-consumption behavior in rodent models. However, potential obstacles toward clinical translation of GLT1 (EAAT2) upregulators as treatment for drug addiction might include poor gastrointestinal absorption, serious peripheral adverse effects, and/or suboptimal CNS concentrations. Given the growing success of nanotechnology in targeting CNS ailments, nanoformulating known GLT1 (EAAT2) upregulators for selective uptake across the blood brain barrier presents an ideal therapeutic approach for treating drug addiction. In this review, we summarize the results obtained with promising GLT1 (EAAT2) inducing compounds in animal models recapitulating drug addiction. Additionally, the various nanoformulations that can be employed for selectively increasing the CNS bioavailability of GLT1 (EAAT2) upregulators are discussed. Finally, the applicability of GLT1 (EAAT2) induction via central delivery of drug-loaded nanoformulations is described.

  6. Nano and Mesoscale Ion and Water Transport in Perfluorosulfonic AcidMembranes

    Science.gov (United States)

    2017-10-01

    Nano- and Mesoscale Ion and Water Transport in Perfluorosulfonic-Acid Membranes A. R. Crothers a,b , C. J. Radke a,b , A. Z. Weber a a...Berkeley, CA 94720, USA Water and aqueous cations transport along multiple length scales in perfluorosulfonic-acid membranes. Molecular interactions...as a function of hydration. A resistor network upscales the nanoscale properties to predict effective membrane ion and water transport and their

  7. Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5).

    Science.gov (United States)

    Scalise, Mariafrancesca; Pochini, Lorena; Panni, Simona; Pingitore, Piero; Hedfalk, Kristina; Indiveri, Cesare

    2014-11-01

    The kinetic mechanism of the transport catalyzed by the human glutamine/neutral amino acid transporter hASCT2 over-expressed in P. pastoris was determined in proteoliposomes by pseudo-bi-substrate kinetic analysis of the Na(+)-glutamineex/glutaminein transport reaction. A random simultaneous mechanism resulted from the experimental analysis. Purified functional hASCT2 was chemically cross-linked to a stable dimeric form. The oligomeric structure correlated well with the kinetic mechanism of transport. Half-saturation constants (Km) of the transporter for the other substrates Ala, Ser, Asn and Thr were measured both on the external and internal side. External Km were much lower than the internal ones confirming the asymmetry of the transporter. The electric nature of the transport reaction was determined imposing a negative inside membrane potential generated by K(+) gradients in the presence of valinomycin. The transport reaction resulted to be electrogenic and the electrogenicity originated from external Na(+). Internal Na(+) exerted a stimulatory effect on the transport activity which could be explained by a regulatory, not a counter-transport, effect. Native and deglycosylated hASCT2 extracted from HeLa showed the same transport features demonstrating that the glycosyl moiety has no role in transport function. Both in vitro and in vivo interactions of hASCT2 with the scaffold protein PDZK1 were revealed.

  8. Differential gene expression in tomato fruit and Colletotrichum gloeosporioides during colonization of the RNAi-SlPH tomato line with reduced fruit acidity and higher pH.

    Science.gov (United States)

    Barad, Shiri; Sela, Noa; Dubey, Amit K; Kumar, Dilip; Luria, Neta; Ment, Dana; Cohen, Shahar; Schaffer, Arthur A; Prusky, Dov

    2017-08-04

    The destructive phytopathogen Colletotrichum gloeosporioides causes anthracnose disease in fruit. During host colonization, it secretes ammonia, which modulates environmental pH and regulates gene expression, contributing to pathogenicity. However, the effect of host pH environment on pathogen colonization has never been evaluated. Development of an isogenic tomato line with reduced expression of the gene for acidity, SlPH (Solyc10g074790.1.1), enabled this analysis. Total RNA from C. gloeosporioides colonizing wild-type (WT) and RNAi-SlPH tomato lines was sequenced and gene-expression patterns were compared. C. gloeosporioides inoculation of the RNAi-SlPH line with pH 5.96 compared to the WT line with pH 4.2 showed 30% higher colonization and reduced ammonia accumulation. Large-scale comparative transcriptome analysis of the colonized RNAi-SlPH and WT lines revealed their different mechanisms of colonization-pattern activation: whereas the WT tomato upregulated 13-LOX (lipoxygenase), jasmonic acid and glutamate biosynthesis pathways, it downregulated processes related to chlorogenic acid biosynthesis II, phenylpropanoid biosynthesis and hydroxycinnamic acid tyramine amide biosynthesis; the RNAi-SlPH line upregulated UDP-D-galacturonate biosynthesis I and free phenylpropanoid acid biosynthesis, but mainly downregulated pathways related to sugar metabolism, such as the glyoxylate cycle and L-arabinose degradation II. Comparison of C. gloeosporioides gene expression during colonization of the WT and RNAi-SlPH lines showed that the fungus upregulates ammonia and nitrogen transport and the gamma-aminobutyric acid metabolic process during colonization of the WT, while on the RNAi-SlPH tomato, it mainly upregulates the nitrate metabolic process. Modulation of tomato acidity and pH had significant phenotypic effects on C. gloeosporioides development. The fungus showed increased colonization on the neutral RNAi-SlPH fruit, and limited colonization on the WT acidic fruit

  9. Post-transcriptional regulation of the arginine transporter Cat-1 by amino acid availability

    NARCIS (Netherlands)

    Aulak, K. S.; Mishra, R.; Zhou, L.; Hyatt, S. L.; de Jonge, W.; Lamers, W.; Snider, M.; Hatzoglou, M.

    1999-01-01

    The regulation of the high affinity cationic amino acid transporter (Cat-1) by amino acid availability has been studied. In C6 glioma and NRK kidney cells, cat-1 mRNA levels increased 3.8-18-fold following 2 h of amino acid starvation. The transcription rate of the cat-1 gene remained unchanged

  10. Origins of amino acid transporter loci in trypanosomatid parasites

    Directory of Open Access Journals (Sweden)

    Jackson Andrew P

    2007-02-01

    Full Text Available Abstract Background Large amino acid transporter gene families were identified from the genome sequences of three parasitic protists, Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. These genes encode molecular sensors of the external host environment for trypanosomatid cells and are crucial to modulation of gene expression as the parasite passes through different life stages. This study provides a comprehensive phylogenetic account of the origins of these genes, redefining each locus according to a positional criterion, through the integration of phyletic identity with comparative gene order information. Results Each locus was individually specified by its surrounding gene order and associated with homologs showing the same position ('homoeologs' in other species, where available. Bayesian and maximum likelihood phylogenies were in general agreement on systematic relationships and confirmed several 'orthology sets' of genes retained since divergence from the common ancestor. Reconciliation analysis quantified the scale of duplication and gene loss, as well as identifying further apparent orthology sets, which lacked conservation of genomic position. These instances suggested substantial genomic restructuring or transposition. Other analyses identified clear instances of evolutionary rate changes post-duplication, the effects of concerted evolution within tandem gene arrays and gene conversion events between syntenic loci. Conclusion Despite their importance to cell function and parasite development, the repertoires of AAT loci in trypanosomatid parasites are relatively fluid in both complement and gene dosage. Some loci are ubiquitous and, after an ancient origin through transposition, originated through descent from the ancestral trypanosomatid. However, reconciliation analysis demonstrated that unilateral expansions of gene number through tandem gene duplication, transposition of gene duplicates to otherwise well conserved genomic

  11. Stimulation of apical sodium-dependent bile acid transporter expands the bile acid pool and generates bile acids with positive feedback properties.

    Science.gov (United States)

    Rudling, Mats; Bonde, Ylva

    2015-01-01

    Bile acid synthesis has been considered a prototype for how a physiological process is controlled by end product feedback inhibition. By this feedback inhibition, bile acid concentrations are kept within safe ranges. However, careful examination of published rodent data strongly suggests that bile acid synthesis is also under potent positive feedback control by hydrophilic bile acids. Current concepts on the regulation of bile acid synthesis are derived from mouse models. Recent data have shown that mice have farnesoid X receptor (FXR) antagonistic bile acids capable of quenching responses elicited by FXR agonistic bile acids. This is important to recognize to understand the regulation of bile acid synthesis in the mouse, and in particular to clarify if mouse model findings are valid also in the human situation. In addition to classic end product feedback inhibition, regulation of bile acid synthesis in the mouse largely appears also to be driven by changes in hepatic levels of murine bile acids such as α- and β-muricholic acids. This has not been previously recognized. Stimulated bile acid synthesis or induction of the apical sodium-dependent bile acid transporter in the intestine, increase the availability of chenodeoxycholic acid in the liver, thereby promoting hepatic conversion of this bile acid into muricholic acids. Recognition of these mechanisms is essential for understanding the regulation of bile acid synthesis in the mouse, and for our awareness of important species differences in the regulation of bile acid synthesis in mice and humans. 2015 S. Karger AG, Basel.

  12. A traffic signal for heterodimeric amino acid transporters to transfer from the ER to the Golgi.

    Science.gov (United States)

    Ganapathy, Vadivel

    2009-01-15

    Heterodimeric amino acid transporters represent a unique class of transport systems that consist of a light chain that serves as the 'transporter proper' and a heavy chain that is necessary for targeting the complex to the plasma membrane. The currently prevailing paradigm assigns no role for the light chains in the cellular processing of these transporters. In this issue of the Biochemical Journal, Sakamoto et al. provide evidence contrary to this paradigm. Their studies with the rBAT -b(0,+)AT (related to b(0,+) amino acid transporter-b(0,+)-type amino acid transporter) heterodimeric amino acid transporter show that the C-terminus of the light chain b(0,+)AT contains a sequence motif that serves as the traffic signal for the transfer of the heterodimeric complex from the endoplasmic reticulum to the Golgi. This is a novel function for the light chain in addition to its already established role as the subunit responsible for the transport activity. These new findings also seem to be applicable to other heterodimeric amino acid transporters as well.

  13. Transport of ascorbic acid and dehydroascorbic acid by pancreatic islet cells from neonatal rats

    DEFF Research Database (Denmark)

    Zhou, A; Farver, O; Thorn, N A

    1991-01-01

    . Dehydroascorbic acid was converted to ascorbic acid by an unknown mechanism after uptake. The uptake of both ascorbic acid and dehydroascorbic acid was inhibited by tri-iodothyronine, and uptake of ascorbic acid, but not of dehydroascorbic acid, was inhibited by glucocorticoids. Isolated secretory granules...

  14. Preparation of Citric Acid Crosslinked Chitosan/Poly(Vinyl Alcohol Blend Membranes for Creatinine Transport

    Directory of Open Access Journals (Sweden)

    Retno Ariadi Lusiana

    2016-08-01

    Full Text Available Preparation of membrane using crosslinking reaction between chitosan and citric acid showed that functional group modification increased the number of active carrier groups which lead to better transport capacity of the membrane. In addition, the substitution of the carboxyl group increased creatinine permeation of chitosan membrane. The transport capacity of citric acid crosslinked chitosan membrane for creatinine was found to be 6.3 mg/L. The presence of cyanocobalamin slightly hindered the transport of creatinine although compounds did not able to pass through citric acid crosslinked chitosan/poly(vinyl alcohol blend membrane, as compounds no found in the acceptor phase.

  15. Ca2+ and aminoguanidine on γ-aminobutyric acid accumulation in germinating soybean under hypoxia–NaCl stress

    Directory of Open Access Journals (Sweden)

    Runqiang Yang

    2015-06-01

    Full Text Available Gamma-aminobutyric acid (GABA, a nonproteinous amino acid with some benefits on human health, is synthesized by GABA-shunt and the polyamine degradation pathway in plants. The regulation of Ca2+ and aminoguanidine on GABA accumulation in germinating soybean (Glycine max L. under hypoxia-NaCl stress was investigated in this study. Exogenous Ca2+ increased GABA content significantly by enhancing glutamate decarboxylase gene expression and its activity. Addition of ethylene glycol tetra-acetic acid into the culture solution reduced GABA content greatly due to the inhibition of glutamate decarboxylase activity. Aminoguanidine reduced over 85% of diamine oxidase activity, and 33.28% and 36.35% of GABA content in cotyledon and embryo, respectively. Under hypoxia–NaCl stress, the polyamine degradation pathway contributed 31.61–39.43% of the GABA formation in germinating soybean.

  16. Mechanism of Transport Modulation by an Extracellular Loop in an Archaeal Excitatory Amino Acid Transporter (EAAT) Homolog*

    Science.gov (United States)

    Mulligan, Christopher; Mindell, Joseph A.

    2013-01-01

    Secondary transporters in the excitatory amino acid transporter family terminate glutamatergic synaptic transmission by catalyzing Na+-dependent removal of glutamate from the synaptic cleft. Recent structural studies of the aspartate-specific archaeal homolog, GltPh, suggest that transport is achieved by a rigid body, piston-like movement of the transport domain, which houses the substrate-binding site, between the extracellular and cytoplasmic sides of the membrane. This transport domain is connected to an immobile scaffold by three loops, one of which, the 3–4 loop (3L4), undergoes substrate-sensitive conformational change. Proteolytic cleavage of the 3L4 was found to abolish transport activity indicating an essential function for this loop in the transport mechanism. Here, we demonstrate that despite the presence of fully cleaved 3L4, GltPh is still able to sample conformations relevant for transport. Optimized reconstitution conditions reveal that fully cleaved GltPh retains some transport activity. Analysis of the kinetics and temperature dependence of transport accompanied by direct measurements of substrate binding reveal that this decreased transport activity is not due to alteration of the substrate binding characteristics but is caused by the significantly reduced turnover rate. By measuring solute counterflow activity and cross-link formation rates, we demonstrate that cleaving 3L4 severely and specifically compromises one or more steps contributing to the movement of the substrate-loaded transport domain between the outward- and inward-facing conformational states, sparing the equivalent step(s) during the movement of the empty transport domain. These results reveal a hitherto unknown role for the 3L4 in modulating an essential step in the transport process. PMID:24155238

  17. Heme and menaquinone induced electron transport in lactic acid bacteria

    OpenAIRE

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-01-01

    Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacill...

  18. Depolarization-induced release of [(3)H]D-aspartate from GABAergic neurons caused by reversal of glutamate transporters

    DEFF Research Database (Denmark)

    Jensen, J B; Pickering, D S; Schousboe, A

    2000-01-01

    if glutamate in addition to gamma-aminobutyric acid (GABA) could be released from these cultures. The neurons were preloaded with [(3)H]D-aspartate and subsequently its release was followed during depolarization induced by a high potassium concentration or the alpha-amino-3-hydroxy-5-methyl-4......-isoxazolepropionic acid (AMPA) receptor agonists, AMPA and kainate. Depolarization of the neurons with 55 mM potassium increased the release of [(3)H]D-aspartate by more than 10-fold. When the non-specific calcium-channel blockers cobalt or lanthanum were included in the stimulation buffer with potassium......, the release of [(3)H]D-aspartate was decreased by about 40%. These results indicated that some of the released [(3)H]D-aspartate might originate from a vesicular pool. When AMPA was applied to the neurons, the release of [(3)H]D-aspartate was increased 2-fold and could not be prevented or decreased...

  19. Possible site-specific reagent for the general amino acid transport system of Saccharomyces cerevisiae.

    Science.gov (United States)

    Larimore, F S; Roon, R J

    1978-02-07

    The general amino acid transport system of Saccharomyces cerevisiae functions in the uptake of neutral, basic, and acidic amino acids. The amino acid analogue N-delta-chloroacetyl-L-ornithine (NCAO) has been tested as potential site specific reagent for this system. L-Tryptophan, which is transported exclusively by the general transport system, was used as a substrate. In the presence of glucose as an energy source, NCAO inhibited tryptophan transport competitively (Ki = 80 micrometer) during short time intervals (1-2 min), but adding 100 micrometer NCAO to a yeast cell suspension resulted in a time-dependent activation of tryptophan transport during the first 15 min of treatment. Following the activation a time-dependent decay of tryptophan transport activity occurred. Approximately 80% inactivation of the system was observed after 90 min. When a yeast cell suspension was treated with NCAO in the absence of an energy source, an 80% inactivation of tryptophan transport occurred in 90 min. The inactivation was noncompetitive (Ki congruent to 60 micrometer) and could not be reversed by the removal of the NCAO. Addition of a five-fold excess of L-lysine during NCAO treatment or prevented inactivation of tryptophan transport. Under parallel conditions of incubation, other closely related transport systems were not inhibited by NCAO.

  20. Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo

    Directory of Open Access Journals (Sweden)

    Hongbin Tu

    2017-09-01

    Full Text Available Despite its transport by glucose transporters (GLUTs in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo−/− unable to synthesize ascorbate (vitamin C were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo.

  1. Role of stimulated amino acid transport in promoting glycogenesis in the irradiated rat

    International Nuclear Information System (INIS)

    Kilberg, M.S.; Neuhaus, O.W.

    1976-01-01

    Whole-body irradiation of rats stimulates an amino acid transport system in the liver. Another phenomenon observed after exposure to ionizing radiations is the accumulation of hepatic glycogen. The data presented here relate the increased hepatic uptake of amino acids to glycogenesis. Male rats were exposed to two doses of γ rays, 2500 and 1500 R. Following exposure to 2500 R, the hepatic free amino acids were elevated during the first 48 hr accompanied by a decline in serum levels. At 72 hr the hepatic amino acids diminished to the control levels while the serum increased abruptly. By contrast, 72 hr after exposure to 1500 R the serum amino acid levels increased only 27 percent and the hepatic amino acid values increased 52 percent. These results are explained on the basis of the changes in AIB transport previously reported. The incorporation of 14 C from labeled L-alanine into hepatic glycogen was maximal 48 hr postexposure to 2500 R but declined to below control values at 72 hr. On the other hand, exposure to 1500 R resulted in maximal incorporation of 14 C at both 48 and 72 hr. We propose that transport of amino acids into liver cells is stimulated by the elevated blood levels of amino acids released from the degradation of protein. The transport increases the levels of hepatic free amino acids, and therefore, is a key factor in regulating postirradiation glycogenesis

  2. Effect of common polymorphisms of the farnesoid X receptor and bile acid transporters on the pharmacokinetics of ursodeoxycholic acid.

    Science.gov (United States)

    Hu, Miao; Fok, Benny S P; Wo, Siu-Kwan; Lee, Vincent H L; Zuo, Zhong; Tomlinson, Brian

    2016-01-01

    Ursodeoxycholic acid (UDCA), a natural, dihydroxy bile acid, promotes gallstone dissolution and has been attributed with several other beneficial effects. The farnesoid X receptor (FXR) may influence the pharmacokinetics of UDCA by modulating the expression of bile acid transporters. This exploratory study examined whether common functional polymorphisms in FXR and in bile acid transporter genes affect the pharmacokinetics of exogenous UDCA. Polymorphisms in genes for transporters involved in bile acid transport, solute carrier organic anion 1B1 (SLCO1B1) 388A>G and 521T>C, solute carrier 10A1 (SLC10A1) 800 C>T and ATP-binding cassette B11 (ABCB11) 1331T>C, and the FXR -1G>T polymorphism were genotyped in 26 male Chinese subjects who ingested single oral 500-mg doses of UDCA. Plasma concentrations of UDCA and its major conjugate metabolite glycoursodeoxycholic acid (GUDCA) were determined. The mean systemic exposure of UDCA was higher in the five subjects with one copy of the FXR -1G>T variant allele than in those homozygous for the wild-type allele (n = 21) (AUC0-24 h : 38.5 ± 28.2 vs. 20.9 ± 8.0 μg h/mL, P = 0.021), but this difference appeared mainly due to one outlier with the -1GT genotype and elevated baseline and post-treatment UDCA concentrations. After excluding the outlier, body weight was the only factor associated with plasma concentrations of UDCA and there were no significant associations with the other polymorphisms examined. None of the polymorphisms affected the pharmacokinetics of GUDCA. This study showed that the common polymorphisms in bile acid transporters had no significant effect on the pharmacokinetics of exogenous UDCA but an effect of the FXR polymorphism cannot be excluded. © 2015 Wiley Publishing Asia Pty Ltd.

  3. Heme and menaquinone induced electron transport in lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.; Smit, B.; Santos, dos F.; Riel, van J.; Vos, de W.M.; Hugenholtz, J.

    2009-01-01

    ABSTRACT: BACKGROUND: For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait.

  4. Early increase of amino acid transport in stimulated lymphocytes

    NARCIS (Netherlands)

    Berg, K.J. van den; Betel, I.

    1971-01-01

    Chemicals/CAS: 2 amino 2 methylpropionic acid, 62-57-7; carbon, 7440-44-0; thymidine, 50-89-5; tritium, 10028-17-8; Aminoisobutyric Acids; Carbon Isotopes; Lectins; Thymidine, 50-89-5; Tritium, 10028-17-8

  5. Characterization of vacuolar amino acid transporter from Fusarium oxysporum in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lunprom, Siriporn; Pongcharoen, Pongsanat; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi; Akiyama, Koichi

    2015-01-01

    Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.

  6. Control of amino acid transport coordinates metabolic reprogramming in T-cell malignancy.

    Science.gov (United States)

    Grzes, K M; Swamy, M; Hukelmann, J L; Emslie, E; Sinclair, L V; Cantrell, D A

    2017-12-01

    This study explores the regulation and importance of System L amino acid transport in a murine model of T-cell acute lymphoblastic leukemia (T-ALL) caused by deletion of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). There has been a strong focus on glucose transport in leukemias but the present data show that primary T-ALL cells have increased transport of multiple nutrients. Specifically, increased leucine transport in T-ALL fuels mammalian target of rapamycin complex 1 (mTORC1) activity which then sustains expression of hypoxia inducible factor-1α (HIF1α) and c-Myc; drivers of glucose metabolism in T cells. A key finding is that PTEN deletion and phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P 3 ) accumulation is insufficient to initiate leucine uptake, mTORC1 activity, HIF1α or c-Myc expression in T cells and hence cannot drive T-ALL metabolic reprogramming. Instead, a key regulator for leucine transport in T-ALL is identified as NOTCH. Mass spectrometry based proteomics identifies SLC7A5 as the predominant amino acid transporter in primary PTEN -/- T-ALL cells. Importantly, expression of SLC7A5 is critical for the malignant transformation induced by PTEN deletion. These data reveal the importance of regulated amino acid transport for T-cell malignancies, highlighting how a single amino acid transporter can have a key role.

  7. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.R.

    1995-05-16

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ.

  8. Cloning, Expression, and Functional Characterization of Secondary Amino Acid Transporters of Lactococcus lactis

    NARCIS (Netherlands)

    Trip, Hein; Mulder, Niels L.; Lolkema, Juke S.

    Fourteen genes encoding putative secondary amino acid transporters were identified in the genomes of Lactococcus lactis subsp. cremoris strains MG1363 and SK11 and L. lactis subsp. lactis strains IL1403 and KF147, 12 of which were common to all four strains. Amino acid uptake in L. lactis cells

  9. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    International Nuclear Information System (INIS)

    Green, J.R.

    1995-01-01

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ

  10. Transportation impact analysis for the shipment of Low Specific Activity Nitric Acid

    International Nuclear Information System (INIS)

    Green, J.R.

    1994-01-01

    This document was written in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes the potential toxicological and radiological risks associated with the transportation of PUREX Facility LSA Nitric Acid from the Hanford Site in Washington State to three Eastern ports

  11. Effect of light-load resistance exercise on postprandial amino acid transporter expression in elderly men

    DEFF Research Database (Denmark)

    Agergaard, Jakob; Bülow, Jacob; Jensen, Jacob K

    2017-01-01

    An impaired amino acid sensing is associated with age-related loss of skeletal muscle mass. We tested whether light-load resistance exercise (LL-RE) affects postprandial amino acid transporter (AAT) expression in aging skeletal muscle. Untrained, healthy men (age: +65 years) were subjected to 13 h...

  12. Proton transport properties of tin phosphate, chromotropic acid ...

    Indian Academy of Sciences (India)

    The functionalized materials of tin (IV) phosphate (SnP) like chromotropic acid anchored tin ... elemental analysis (ICP–AES), thermal analysis, X-ray analysis and FTIR spectroscopy. .... nal level below 1 V, interfaced to a minicomputer for data.

  13. Amino acid derivatives are substrates or non-transported inhibitors of the amino acid transporter PAT2 (slc36a2).

    Science.gov (United States)

    Edwards, Noel; Anderson, Catriona M H; Gatfield, Kelly M; Jevons, Mark P; Ganapathy, Vadivel; Thwaites, David T

    2011-01-01

    The H(+)-coupled amino acid transporter PAT2 (SLC36A2) transports the amino acids proline, glycine, alanine and hydroxyproline. A physiological role played by PAT2 in amino acid reabsorption in the renal proximal tubule is demonstrated by mutations in SLC36A2 that lead to an iminoglycinuric phenotype (imino acid and glycine uria) in humans. A number of proline, GABA and tryptophan derivatives were examined to determine if they function either as transported substrates or non-transported inhibitors of PAT2. The compounds were investigated following heterologous expression of rat PAT2 in Xenopus laevis oocytes. PAT2 function was characterised by: radiotracer uptake and competition (cis-inhibition) studies; radiotracer efflux and trans-stimulation; and measurement of substrate-induced positive inward current by two-electrode voltage-clamp. In general, the proline derivatives appeared to be transported substrates and the relative ability to induce current flow was closely related to the inhibitory effects on PAT2-mediated l-[(3)H]proline uptake. In contrast, certain heterocyclic GABA derivatives (e.g. l-pipecolic acid) were translocated only slowly. Finally, the tryptophan derivatives inhibited PAT2 function but did not undergo transport. l-Proline uptake was inhibited by 5-hydroxy-l-tryptophan (IC(50) 1.6±0.4mM), α-methyl-d,l-tryptophan (3.5±1.5mM), l-tryptophan, 1-methyl-l-tryptophan and indole-3-propionic acid. Although neither 5-hydroxy-l-tryptophan nor α-methyl-d,l-tryptophan were able to elicit inward current in PAT2-expressing oocytes both reduced the current evoked by l-proline. 5-Hydroxy-l-tryptophan and α-methyl-d,l-tryptophan were unable to trans-stimulate l-proline efflux from PAT2-expressing oocytes, confirming that the two compounds act as non-transported blockers of PAT2. These two tryptophan derivatives should prove valuable experimental tools in future investigations of the physiological roles of PAT2. Copyright © 2010 Elsevier B.V. All rights

  14. Brucella abortus ure2 region contains an acid-activated urea transporter and a nickel transport system

    Directory of Open Access Journals (Sweden)

    García-Lobo Juan M

    2010-04-01

    Full Text Available Abstract Background Urease is a virulence factor that plays a role in the resistance of Brucella to low pH conditions, both in vivo and in vitro. Brucella contains two separate urease gene clusters, ure1 and ure2. Although only ure1 codes for an active urease, ure2 is also transcribed, but its contribution to Brucella biology is unknown. Results Re-examination of the ure2 locus showed that the operon includes five genes downstream of ureABCEFGDT that are orthologs to a nikKMLQO cluster encoding an ECF-type transport system for nickel. ureT and nikO mutants were constructed and analyzed for urease activity and acid resistance. A non-polar ureT mutant was unaffected in urease activity at neutral pH but showed a significantly decreased activity at acidic pH. It also showed a decreased survival rate to pH 2 at low concentration of urea when compared to the wild type. The nikO mutant had decreased urease activity and acid resistance at all urea concentrations tested, and this phenotype could be reverted by the addition of nickel to the growth medium. Conclusions Based on these results, we concluded that the operon ure2 codes for an acid-activated urea transporter and a nickel transporter necessary for the maximal activity of the urease whose structural subunits are encoded exclusively by the genes in the ure1 operon.

  15. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    Science.gov (United States)

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  16. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Science.gov (United States)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  17. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@jaist.ac.jp; Kubo, Takahiro

    2014-12-30

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  18. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    International Nuclear Information System (INIS)

    Nagao, Yuki; Kubo, Takahiro

    2014-01-01

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system

  19. Heme and menaquinone induced electron transport in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Santos Filipe

    2009-05-01

    Full Text Available Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  20. Heme and menaquinone induced electron transport in lactic acid bacteria.

    Science.gov (United States)

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-05-29

    For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  1. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle

    Science.gov (United States)

    Reidy, P. T.; Walker, D. K.; Dickinson, J. M.; Gundermann, D. M.; Drummond, M. J.; Timmerman, K. L.; Cope, M. B.; Mukherjea, R.; Jennings, K.; Volpi, E.

    2014-01-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein. PMID:24699854

  2. Insulin acutely upregulates protein expression of the fatty acid transporter CD36 in human skeletal muscle in vivo

    NARCIS (Netherlands)

    Corpeleijn, E.; Pelsers, M.M.A.L.; Soenen, S.; Mensink, M.; Bouwman, F.G.; Kooi, M.E.; Saris, W.H.M.; Glatz, J.F.C.; Blaak, E.E.

    2008-01-01

    Enhanced fatty acid uptake may lead to the accumulation of lipid intermediates. This is related to insulin resistance and type 2 diabetes mellitus. Rodent studies suggest that fatty acid transporters are acutely regulated by insulin. We investigated differences in fatty acid transporter content

  3. Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions.

    Science.gov (United States)

    Pontigo, Sofía; Ribera, Alejandra; Gianfreda, Liliana; de la Luz Mora, María; Nikolic, Miroslav; Cartes, Paula

    2015-07-01

    So far, considerable advances have been achieved in understanding the mechanisms of Si uptake and transport in vascular plants. This review presents a comprehensive update about this issue, but also provides the new insights into the role of Si against mineral stresses that occur in acid soils. Such information could be helpful to understand both the differential Si uptake ability as well as the benefits of this mineral element on plants grown under acidic conditions. Silicon (Si) has been widely recognized as a beneficial element for many plant species, especially under stress conditions. In the last few years, great efforts have been made to elucidate the mechanisms involved in uptake and transport of Si by vascular plants and recently, different Si transporters have been identified. Several researches indicate that Si can alleviate various mineral stresses in plants growing under acidic conditions, including aluminium (Al) and manganese (Mn) toxicities as well as phosphorus (P) deficiency all of which are highly detrimental to crop production. This review presents recent findings concerning the influence of uptake and transport of Si on mineral stress under acidic conditions because a knowledge of this interaction provides the basis for understanding the role of Si in mitigating mineral stress in acid soils. Currently, only four Si transporters have been identified and there is little information concerning the response of Si transporters under stress conditions. More investigations are therefore needed to establish whether there is a relationship between Si transporters and the benefits of Si to plants subjected to mineral stress. Evidence presented suggests that Si supply and its subsequent accumulation in plant tissues could be exploited as a strategy to improve crop productivity on acid soils.

  4. Prohibitin/annexin 2 interaction regulates fatty acid transport in adipose tissue

    Science.gov (United States)

    Salameh, Ahmad; Daquinag, Alexes C.; Staquicini, Daniela I.; An, Zhiqiang; Pasqualini, Renata; Kolonin, Mikhail G.

    2016-01-01

    We have previously identified prohibitin (PHB) and annexin A2 (ANX2) as proteins interacting on the surface of vascular endothelial cells in white adipose tissue (WAT) of humans and mice. Here, we demonstrate that ANX2 and PHB also interact in adipocytes. Mice lacking ANX2 have normal WAT vascularization, adipogenesis, and glucose metabolism but display WAT hypotrophy due to reduced fatty acid uptake by WAT endothelium and adipocytes. By using cell culture systems in which ANX2/PHB binding is disrupted either genetically or through treatment with a blocking peptide, we show that fatty acid transport efficiency relies on this protein complex. We also provide evidence that the interaction between ANX2 and PHB mediates fatty acid transport from the endothelium into adipocytes. Moreover, we demonstrate that ANX2 and PHB form a complex with the fatty acid transporter CD36. Finally, we show that the colocalization of PHB and CD36 on adipocyte surface is induced by extracellular fatty acids. Together, our results suggest that an unrecognized biochemical interaction between ANX2 and PHB regulates CD36-mediated fatty acid transport in WAT, thus revealing a new potential pathway for intervention in metabolic diseases. PMID:27468426

  5. Perfluoroalkyl Acid Concentrations in Blood Samples Subjected to Transportation and Processing Delay.

    Science.gov (United States)

    Bach, Cathrine Carlsen; Henriksen, Tine Brink; Bossi, Rossana; Bech, Bodil Hammer; Fuglsang, Jens; Olsen, Jørn; Nohr, Ellen Aagaard

    2015-01-01

    In studies of perfluoroalkyl acids, the validity and comparability of measured concentrations may be affected by differences in the handling of biospecimens. We aimed to investigate whether measured plasma levels of perfluoroalkyl acids differed between blood samples subjected to delay and transportation prior to processing and samples with immediate processing and freezing. Pregnant women recruited at Aarhus University Hospital, Denmark, (n = 88) provided paired blood samples. For each pair of samples, one was immediately processed and plasma was frozen, and the other was delayed and transported as whole blood before processing and freezing of plasma (similar to the Danish National Birth Cohort). We measured 12 perfluoroalkyl acids and present results for compounds with more than 50% of samples above the lower limit of quantification. For samples taken in the winter, relative differences between the paired samples ranged between -77 and +38% for individual perfluoroalkyl acids. In most cases concentrations were lower in the delayed and transported samples, e.g. the relative difference was -29% (95% confidence interval -30; -27) for perfluorooctane sulfonate. For perfluorooctanoate there was no difference between the two setups [corresponding estimate 1% (0, 3)]. Differences were negligible in the summer for all compounds. Transport of blood samples and processing delay, similar to conditions applied in some large, population-based studies, may affect measured perfluoroalkyl acid concentrations, mainly when outdoor temperatures are low. Attention to processing conditions is needed in studies of perfluoroalkyl acid exposure in humans.

  6. Defective canalicular transport and toxicity of dietary ursodeoxycholic acid in the abcb11-/- mouse: transport and gene expression studies.

    Science.gov (United States)

    Wang, Renxue; Liu, Lin; Sheps, Jonathan A; Forrest, Dana; Hofmann, Alan F; Hagey, Lee R; Ling, Victor

    2013-08-15

    The bile salt export pump (BSEP), encoded by the abcb11 gene, is the major canalicular transporter of bile acids from the hepatocyte. BSEP malfunction in humans causes bile acid retention and progressive liver injury, ultimately leading to end-stage liver failure. The natural, hydrophilic, bile acid ursodeoxycholic acid (UDCA) is efficacious in the treatment of cholestatic conditions, such as primary biliary cirrhosis and cholestasis of pregnancy. The beneficial effects of UDCA include promoting bile flow, reducing hepatic inflammation, preventing apoptosis, and maintaining mitochondrial integrity in hepatocytes. However, the role of BSEP in mediating UDCA efficacy is not known. Here, we used abcb11 knockout mice (abcb11-/-) to test the effects of acute and chronic UDCA administration on biliary secretion, bile acid composition, liver histology, and liver gene expression. Acutely infused UDCA, or its taurine conjugate (TUDC), was taken up by the liver but retained, with negligible biliary output, in abcb11-/- mice. Feeding UDCA to abcb11-/- mice led to weight loss, retention of bile acids, elevated liver enzymes, and histological damage to the liver. Semiquantitative RT-PCR showed that genes encoding Mdr1a and Mdr1b (canalicular) as well as Mrp4 (basolateral) transporters were upregulated in abcb11-/- mice. We concluded that infusion of UDCA and TUDC failed to induce bile flow in abcb11-/- mice. UDCA fed to abcb11-/- mice caused liver damage and the appearance of biliary tetra- and penta-hydroxy bile acids. Supplementation with UDCA in the absence of Bsep caused adverse effects in abcb11-/- mice.

  7. Influence of rye flour enzymatic biotransformation on the antioxidant capacity and transepithelial transport of phenolic acids.

    Science.gov (United States)

    de Lima, Fabíola Aliaga; Martins, Isabela Mateus; Faria, Ana; Calhau, Conceição; Azevedo, Joana; Fernandes, Iva; Mateus, Nuno; Macedo, Gabriela Alves

    2018-03-01

    Phenolic acids have been reported to play a role on the antioxidant activity and other important biological activities. However, as most polyphenolics in food products are either bound to cellular matrices or present as free polymeric forms, the way they are absorbed has not been totally clear until now. Hydrolytic enzymes may act to increase functionalities in polyphenolic-rich foods, enhancing the bioaccessibility of phenolic compounds and minerals from whole grains. The aim of this study was to evaluate the action of tannin acyl hydrolase (tannase) on the total phenols, phenolic acid profile, antioxidant capacity and in vitro bioaccessibility of phenolic acids found in whole rye flour (RF). Besides increasing total phenols and the antioxidant capacity, tannase treatment increased the amounts of ferulic, sinapic and vanillic acids identified in RF, evidencing a new type of feruloyl esterase catalytic action of tannase. Vanillic and sinapic acids in tannase-treated whole rye flour (RFT) were higher than RF after in vitro gastrointestinal digestion, and higher amounts of transported vanillic acid through the Caco-2 monolayer were detected in RFT. However, the bioaccessibility and the transport efficiency of RF phenolic acids were higher than RFT. Underutilized crops like rye and rye-derived products may be an important source of phenolic acids. The tannase biotransformation, even influencing the total phenolics and antioxidant capacity of RF, did not increase the bioaccessibility of phenolic acids under the experimental conditions of this study.

  8. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    Science.gov (United States)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  9. Breed and species comparison of amino acid transport variation in equine erythrocytes.

    Science.gov (United States)

    Fincham, D A; Young, J D; Mason, D K; Collins, E A; Snow, D H

    1985-05-01

    The amino acid permeability of red blood cells from Equus caballus (thoroughbred, Arab, shire and pony), E przewalskii (Przewalski's horse), E asinus (donkey and mule) and E burchelli (common or plains zebra) was measured. Individual animals exhibited stable but widely differing rates of L-[U-14C]alanine uptake in the range 5 to 1554 mumol (litre cells)-1 h-1 (0.2 mM extracellular L-alanine, 37 degrees C). Of the thoroughbreds tested, 30 per cent had red blood cells which were essentially impermeable to L-alanine (5 to 10 mumol (litre cells)-1 h-1, giving transport rates similar to those found previously in amino acid transport-deficient sheep erythrocytes. In contrast, only 3 per cent of the ponies tested had red blood cells impermeable to L-alanine. No cases of erythrocyte amino acid transport deficiency were found in the other horse breeds and species tested.

  10. LAT1 acts as a crucial transporter of amino acids in human thymic carcinoma cells

    Directory of Open Access Journals (Sweden)

    Keitaro Hayashi

    2016-11-01

    Full Text Available L-type amino acid transporter 1 (LAT1, SLC7A5 incorporates essential amino acids into cells. Recent studies have shown that LAT1 is a predominant transporter in various human cancers. However, the function of LAT1 in thymic carcinoma remains unknown. Here we demonstrate that LAT1 is a critical transporter for human thymic carcinoma cells. LAT1 was strongly expressed in human thymic carcinoma tissues. LAT1-specific inhibitor significantly suppressed leucine uptake and growth of Ty82 human thymic carcinoma cell lines, suggesting that thymic carcinoma takes advantage of LAT1 as a quality transporter and that LAT1-specific inhibitor might be clinically beneficial in therapy for thymic carcinoma.

  11. The importance of the excitatory amino acid transporter 3 (EAAT3)

    DEFF Research Database (Denmark)

    E. Bjørn-Yoshimoto, Walden; Underhill, Suzanne M.

    2016-01-01

    Abstract The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localiza......Abstract The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post...

  12. The blood-brain barrier fatty acid transport protein 1 (FATP1/SLC27A1) supplies docosahexaenoic acid to the brain, and insulin facilitates transport.

    Science.gov (United States)

    Ochiai, Yusuke; Uchida, Yasuo; Ohtsuki, Sumio; Tachikawa, Masanori; Aizawa, Sanshiro; Terasaki, Tetsuya

    2017-05-01

    We purposed to clarify the contribution of fatty acid transport protein 1 (FATP1/SLC 27A1) to the supply of docosahexaenoic acid (DHA) to the brain across the blood-brain barrier in this study. Transport experiments showed that the uptake rate of [ 14 C]-DHA in human FATP1-expressing HEK293 cells was significantly greater than that in empty vector-transfected (mock) HEK293 cells. The steady-state intracellular DHA concentration was nearly 2-fold smaller in FATP1-expressing than in mock cells, suggesting that FATP1 works as not only an influx, but also an efflux transporter for DHA. [ 14 C]-DHA uptake by a human cerebral microvascular endothelial cell line (hCMEC/D3) increased in a time-dependent manner, and was inhibited by unlabeled DHA and a known FATP1 substrate, oleic acid. Knock-down of FATP1 in hCMEC/D3 cells with specific siRNA showed that FATP1-mediated uptake accounts for 59.2-73.0% of total [ 14 C]-DHA uptake by the cells. Insulin treatment for 30 min induced translocation of FATP1 protein to the plasma membrane in hCMEC/D3 cells and enhanced [ 14 C]-DHA uptake. Immunohistochemical analysis of mouse brain sections showed that FATP1 protein is preferentially localized at the basal membrane of brain microvessel endothelial cells. We found that two neuroprotective substances, taurine and biotin, in addition to DHA, undergo FATP1-mediated efflux. Overall, our results suggest that FATP1 localized at the basal membrane of brain microvessels contributes to the transport of DHA, taurine and biotin into the brain, and insulin rapidly increases DHA supply to the brain by promoting translocation of FATP1 to the membrane. Read the Editorial Comment for this article on page 324. © 2016 International Society for Neurochemistry.

  13. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease.

    Science.gov (United States)

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E

    2015-02-01

    Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Characteristics of Mammalian Rh Glycoproteins (SLC42 transporters) and Their Role in Acid-Base Transport

    Science.gov (United States)

    Nakhoul, Nazih L.; Hamm, L. Lee

    2012-01-01

    The mammalian Rh glycoproteins belong to the solute transporter family SLC42 and include RhAG, present in red blood cells, and two non-erythroid members RhBG and RhCG that are expressed in various tissues, including kidney, liver, skin and the GI tract. The Rh proteins in the red blood cell form an “Rh complex” made up of one D-subunit, one CE-subunit and two RhAG subunits. The Rh complex has a well-known antigenic effect but also contributes to the stability of the red cell membrane. RhBG and RhCG are related to the NH4+ transporters of the yeast and bacteria but their exact function is yet to be determined. This review describes the expression and molecular properties of these membrane proteins and their potential role as NH3/NH4+ and CO2 transporters. The likelihood that these proteins transport gases such as CO2 or NH3 is novel and significant. The review also describes the physiological importance of these proteins and their relevance to human disease. PMID:23506896

  15. Modeling uranium transport in acidic contaminated groundwater with base addition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan [Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Luo, Wensui [ORNL; Parker, Jack C. [University of Tennessee, Knoxville (UTK); Brooks, Scott C [ORNL; Watson, David B [ORNL; Jardine, Philip [University of Tennessee, Knoxville (UTK); Gu, Baohua [ORNL

    2011-01-01

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  16. Modeling uranium transport in acidic contaminated groundwater with base addition

    International Nuclear Information System (INIS)

    Zhang Fan; Luo Wensui; Parker, Jack C.; Brooks, Scott C.; Watson, David B.; Jardine, Philip M.; Gu Baohua

    2011-01-01

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO 3 - , SO 4 2- , U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  17. Modeling uranium transport in acidic contaminated groundwater with base addition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan, E-mail: zhangfan@itpcas.ac.cn [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085 (China); Luo Wensui [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 (China); Parker, Jack C. [Institute for a Secure and Sustainable Environment, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Brooks, Scott C.; Watson, David B. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Jardine, Philip M. [Biosystems Engineering and Soil Science Department, University of Tennessee, Knoxville, TN 37996 (United States); Gu Baohua [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2011-06-15

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  18. Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2

    Science.gov (United States)

    Hosomi, Atsushi; Nakanishi, Takeo; Fujita, Takuya; Tamai, Ikumi

    2012-01-01

    Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats. PMID:22348008

  19. Central transport and distribution of labelled glutamic and aspartic acids to the cochlear nucleus in cats

    International Nuclear Information System (INIS)

    Kane, E.S.

    1979-01-01

    Tritiated L-glutamic acid or L-aspartic acid was injected unilaterally into the cochleas of adult cats, and 4 h-7 days later the localization of label was studied by light-microscopic autoradiography in sections of the brain stem. Consistent differences in labelling after glutamate and after aspartate suggest differences in their uptake, metabolic conversion and/or transport to the cochlear nucleus by cochlear fibers. The morphological differences shown here agree with the distribution of those two amino acids in the cat cochlear nucleus as shown by microchemical analyses. (author)

  20. Biodistribution of [11C] methylaminoisobutyric acid, a tracer for PET studies on system A amino acid transport in vivo

    International Nuclear Information System (INIS)

    Sutinen, E.; Jyrkkioe, S.; Groenroos, T.; Haaparanta, M.; Lehikoinen, P.; Naagren, K.

    2001-01-01

    [N-methyl- 11 C]α-Methylaminoisobutyric acid ( 11 C-MeAIB) is a potentially useful tracer for positron emission tomography (PET) studies on hormonally regulated system A amino acid transport. 11 C-MeAIB is a metabolically stable amino acid analogue specific for system A amino acid transport. We evaluated the biodistribution of 11 C-MeAIB in rats and humans to estimate the usefulness of the tracer for in vivo human PET studies, for example, on regulation of system A amino acid transport and on tumour imaging. Healthy Sprague-Dawley rats (n=14) were killed 5, 20, 40 or 60 min after the injection of 11 C-MeAIB, and the tissue samples were weighed and counted for 11 C radioactivity. Ten lymphoma patients with relatively limited tumour burden underwent whole-body (WB) PET imaging with 11 C-MeAIB. In addition, three other patients had dynamic PET scanning of the head and neck area, and the tracer uptake was quantitated by calculating the kinetic influx constants (K i values) for the tracer. In animal studies, the highest activity was detected in the kidney, pancreas, adrenal gland and intestines. In humans, the highest activity was found in the salivary glands, and after that in the kidney and pancreas, similar to the results in animal studies. Rapid uptake was also detected in the skeletal muscle. In the graphical analysis, linear plots were obtained, and the mean fractional tracer uptake values (K i ) of the parotid glands (n=3) and cervical muscles (n=3) were 0.039±0.008 min -1 and 0.013±0.006 min -1 , respectively. The K i value of the tumour (n=1) was 0.064 min -1 . Higher uptake of 11 C-MeAIB into the tumour tissue was encountered. These results encourage further 11 C-MeAIB PET studies in humans on the physiology and pathology of system A amino acid transport and on tumour detection. (orig.)

  1. Radiometric microassay for glutamic acid decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Maderdrut, J L [North Carolina Dept. of Mental Health, Raleigh (USA); North Carolina Univ., Chapel Hill (USA). School of Medicine)

    1979-01-01

    A simple method for purifying L-(/sup 3/H) glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating ..gamma..-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 ..mu..g. The cation-exchange method is compared with the anion-exchange and CO/sub 2/-trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis.

  2. Influence of Humic Acid on the Transport and Deposition of Colloidal Silica under Different Hydrogeochemical Conditions

    Directory of Open Access Journals (Sweden)

    Jingjing Zhou

    2016-12-01

    Full Text Available The transport and deposition of colloids in aquifers plays an important role in managed aquifer recharge (MAR schemes. Here, the processes of colloidal silica transport and deposition were studied by displacing groundwater with recharge water. The results showed that significant amounts of colloidal silica transport occurred when native groundwater was displaced by HA solution. Solution contains varying conditions of ionic strength and ion valence. The presence of humic acid could affect the zeta potential and size of the colloidal silica, which led to obvious colloidal silica aggregation in the divalent ion solution. Humic acid increased colloidal silica transport by formation of non-adsorbing aqueous phase silica–HA complexes. The experimental and modeling results showed good agreement, indicating that the essential physics were accurately captured by the model. The deposition rates were less than 10−8 s−1 in deionized water and monovalent ion solution. Moreover, the addition of Ca2+ and increase of IS resulted in the deposition rates increasing by five orders of magnitude to 10−4 s−1. In all experiments, the deposition rates decreased in the presence of humic acid. Overall, the promotion of humic acid in colloidal silica was strongly associated with changes in water quality, indicating that they should receive greater attention during MAR.

  3. Cellular fatty acid transport in heart and skeletal muscle as facilitated by proteins

    NARCIS (Netherlands)

    Luiken, J. J.; Schaap, F. G.; van Nieuwenhoven, F. A.; van der Vusse, G. J.; Bonen, A.; Glatz, J. F.

    1999-01-01

    Despite the importance of long-chain fatty acids (FA) as fuels for heart and skeletal muscles, the mechanism of their cellular uptake has not yet been clarified. There is dispute as to whether FA are taken up by the muscle cells via passive diffusion and/or carrier-mediated transport. Kinetic

  4. Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling.

    Science.gov (United States)

    Papagianni, Maria

    2007-01-01

    Citric acid is regarded as a metabolite of energy metabolism, of which the concentration will rise to appreciable amounts only under conditions of substantive metabolic imbalances. Citric acid fermentation conditions were established during the 1930s and 1940s, when the effects of various medium components were evaluated. The biochemical mechanism by which Aspergillus niger accumulates citric acid has continued to attract interest even though its commercial production by fermentation has been established for decades. Although extensive basic biochemical research has been carried out with A. niger, the understanding of the events relevant for citric acid accumulation is not completely understood. This review is focused on citric acid fermentation by A. niger. Emphasis is given to aspects of fermentation biochemistry, membrane transport in A. niger and modeling of the production process.

  5. Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment

    International Nuclear Information System (INIS)

    1995-05-01

    DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required

  6. Transepithelial transport of aliphatic carboxylic acids studied in Madin Darby canine kidney (MDCK) cell monolayers

    International Nuclear Information System (INIS)

    Cho, M.J.; Adson, A.; Kezdy, F.J.

    1990-01-01

    Transport of 14C-labeled acetic, propionic (PA), butyric, valeric, heptanoic (HA), and octanoic (OA) acids across the Madin Darby canine kidney (MDCK) epithelial cell monolayer grown on a porous polycarbonate membrane was studied in Hanks' balanced salt solution (HBSS) at 37 degrees C in both apical-to-basolateral and basolateral-to-apical directions. At micromolar concentrations of solutes, metabolic decomposition was significant as evidenced by [14C]CO2 production during the OA transport. The apparent permeability (Pe) indicates that as lipophilicity increases, diffusion across the unstirred boundary layer becomes rate limiting. In support of this notion, transport of OA and HA was enhanced by agitation, showed an activation energy of 3.7 kcal/mol for OA, and resulted in identical Pe values for both transport directions. Analysis of Pe changes with varying alkyl chain length resulted in a delta G of -0.68 +/- 0.09 kcal/mol for -CH2-group transfer from an aqueous phase to the MDCK cells. When the intercellular tight junctions were opened by the divalent chelator EGTA in Ca2+/Mg2(+)-free HBSS, transport of the fluid-phase marker Lucifer yellow greatly increased because of paracellular leakage. PA transport also showed a significant increase, but OA transport was independent of EGTA. Although albumin also undergoes paracellular transport in the presence of EGTA and OA binds strongly to albumin, OA transport in EGTA solution was unchanged by albumin. These observations indicate that transmembrane transport is the major mechanism for lipophilic substances. The present study, together with earlier work on the transport of polar substances, shows that the MDCK cell monolayer is an excellent model of the transepithelial transport barrier

  7. Intracellular pH regulation by acid-base transporters in mammalian neurons

    Science.gov (United States)

    Ruffin, Vernon A.; Salameh, Ahlam I.; Boron, Walter F.; Parker, Mark D.

    2014-01-01

    Intracellular pH (pHi) regulation in the brain is important in both physiological and physiopathological conditions because changes in pHi generally result in altered neuronal excitability. In this review, we will cover 4 major areas: (1) The effect of pHi on cellular processes in the brain, including channel activity and neuronal excitability. (2) pHi homeostasis and how it is determined by the balance between rates of acid loading (JL) and extrusion (JE). The balance between JE and JL determine steady-state pHi, as well as the ability of the cell to defend pHi in the face of extracellular acid-base disturbances (e.g., metabolic acidosis). (3) The properties and importance of members of the SLC4 and SLC9 families of acid-base transporters expressed in the brain that contribute to JL (namely the Cl-HCO3 exchanger AE3) and JE (the Na-H exchangers NHE1, NHE3, and NHE5 as well as the Na+- coupled HCO3− transporters NBCe1, NBCn1, NDCBE, and NBCn2). (4) The effect of acid-base disturbances on neuronal function and the roles of acid-base transporters in defending neuronal pHi under physiopathologic conditions. PMID:24592239

  8. Induction of Heavy-Metal-Transporting CPX-Type ATPases during Acid Adaptation in Lactobacillus bulgaricus▿

    Science.gov (United States)

    Penaud, S.; Fernandez, A.; Boudebbouze, S.; Ehrlich, S. D.; Maguin, E.; van de Guchte, M.

    2006-01-01

    Lactobacillus bulgaricus is a lactic acid bacteria (LAB) that, through the production of lactic acid, gradually acidifies its environment during growth. In the course of this process, L. bulgaricus acquires an improved tolerance to acidity. A survey of the recently established genome sequence shows that this bacterium possesses few of the pH control functions that have been described in other LAB and raises the question of what other mechanisms could be involved in its adaptation to the decreasing environmental pH. In some bacteria other than LAB, ion transport systems have been implicated in acid adaptation. We therefore studied the expression of this type of transport system during acid adaptation in L. bulgaricus by reverse transcription and real-time quantitative PCR and mapped transcription start sites. Intriguingly, the most significantly induced were three ATPases carrying the CPX signature of heavy-metal transporters. Protein homology and the presence of a conserved sequence motif in the promoter regions of the genes encoding these proteins strongly suggest that they are involved in copper homeostasis. Induction of this system is thought to assist in avoiding indirect damage that could result from medium acidification. PMID:16997986

  9. Functional analysis of apf1 mutation causing defective amino acid transport in Saccharomyces cerevisiae.

    Science.gov (United States)

    Horák, J; Kotyk, A

    1993-04-01

    Mutation in the Apf1 locus causes a pleiotropic effect of H(+)-driven active amino acid transport in baker's yeast Saccharomyces cerevisiae. The uptake of other, presumably H(+)-driven, substances, e.g. of purine and pyrimidine bases, maltose and phosphate ions, is not significantly influenced by this mutation. The apf1 mutation decreases not only the initial rates of amino acid uptake but also the accumulation ratios of amino acids taken up but has virtually no effect on the membrane potential or on the delta pH which constitute the thermodynamically relevant source of energy for their transport. Similarly, no changes in intracellular ATP content, in ATP-hydrolyzing and H(+)-extruding H(+)-ATPase activities, in the efflux of intracellularly accumulated amino acids, or in rates of endogenous respiration, were observed in the apf1 mutant phenotype. Hence, all these data are in accordance with the experiments showing that the Apf1 protein, an integral protein of the endoplasmic reticulum, is required exclusively for efficient processing and translocation of transport proteins specific for amino acids from the endoplasmic reticulum to their final destination, the plasma membrane.

  10. Perfluoroalkyl Acid Concentrations in Blood Samples Subjected to Transportation and Processing Delay

    DEFF Research Database (Denmark)

    Bach, Cathrine Carlsen; Henriksen, Tine Brink; Bossi, Rossana

    2015-01-01

    and transportation prior to processing and samples with immediate processing and freezing. METHODS: Pregnant women recruited at Aarhus University Hospital, Denmark, (n = 88) provided paired blood samples. For each pair of samples, one was immediately processed and plasma was frozen, and the other was delayed...... and transported as whole blood before processing and freezing of plasma (similar to the Danish National Birth Cohort). We measured 12 perfluoroalkyl acids and present results for compounds with more than 50% of samples above the lower limit of quantification. RESULTS: For samples taken in the winter, relative...... differences between the paired samples ranged between -77 and +38% for individual perfluoroalkyl acids. In most cases concentrations were lower in the delayed and transported samples, e.g. the relative difference was -29% (95% confidence interval -30; -27) for perfluorooctane sulfonate. For perfluorooctanoate...

  11. Pancreatic beta cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble

    DEFF Research Database (Denmark)

    Christgau, S; Schierbeck, H; Aanstoot, H J

    1991-01-01

    The 64-kDa pancreatic beta-cell autoantigen, which is a target of autoantibodies associated with early as well as progressive stages of beta-cell destruction, resulting in insulin-dependent diabetes (IDDM) in humans, has been identified as the gamma-aminobutyric acid-synthesizing enzyme glutamic...... acid decarboxylase. We have identified two autoantigenic forms of this protein in rat pancreatic beta-cells, a Mr 65,000 (GAD65) hydrophilic and soluble form of pI 6.9-7.1 and a Mr 64,000 (GAD64) component of pI 6.7. GAD64 is more abundant than GAD65 and has three distinct forms with regard to cellular...

  12. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria

    Science.gov (United States)

    Chino, Yukihiro; Samukawa, Yoshishige; Sakai, Soichi; Nakai, Yasuhiro; Yamaguchi, Jun-ichi; Nakanishi, Takeo; Tamai, Ikumi

    2014-01-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors have been reported to lower the serum uric acid (SUA) level. To elucidate the mechanism responsible for this reduction, SUA and the urinary excretion rate of uric acid (UEUA) were analysed after the oral administration of luseogliflozin, a SGLT2 inhibitor, to healthy subjects. After dosing, SUA decreased, and a negative correlation was observed between the SUA level and the UEUA, suggesting that SUA decreased as a result of the increase in the UEUA. The increase in UEUA was correlated with an increase in urinary d-glucose excretion, but not with the plasma luseogliflozin concentration. Additionally, in vitro transport experiments showed that luseogliflozin had no direct effect on the transporters involved in renal UA reabsorption. To explain that the increase in UEUA is likely due to glycosuria, the study focused on the facilitative glucose transporter 9 isoform 2 (GLUT9ΔN, SLC2A9b), which is expressed at the apical membrane of the kidney tubular cells and transports both UA and d-glucose. It was observed that the efflux of [14C]UA in Xenopus oocytes expressing the GLUT9 isoform 2 was trans-stimulated by 10 mm d-glucose, a high concentration of glucose that existed under SGLT2 inhibition. On the other hand, the uptake of [14C]UA by oocytes was cis-inhibited by 100 mm d-glucose, a concentration assumed to exist in collecting ducts. In conclusion, it was demonstrated that the UEUA could potentially be increased by luseogliflozin-induced glycosuria, with alterations of UA transport activity because of urinary glucose. PMID:25044127

  13. Acid-extrusion from tissue: the interplay between membrane transporters and pH buffers.

    Science.gov (United States)

    Hulikova, Alzbeta; Harris, Adrian L; Vaughan-Jones, Richard D; Swietach, Pawel

    2012-01-01

    The acid-base balance of cells is related to the concentration of free H⁺ ions. These are highly reactive, and their intracellular concentration must be regulated to avoid detrimental effects to the cell. H⁺ ion dynamics are influenced by binding to chelator substances ('buffering'), and by the production, diffusion and membrane-transport of free H⁺ ions or of the H⁺-bound chelators. Intracellular pH (pHi) regulation aims to balance this system of diffusion-reaction-transport processes at a favourable steady-state pHi. The ability of cells to regulate pHi may set a limit to tissue growth and can be subject to selection pressures. Cancer cells have been postulated to respond favourably to such selection pressures by evolving a better means of pHi regulation. A particularly important feature of tumour pHi regulation is acid-extrusion, which involves H⁺-extrusion and HCO₃⁻-uptake by membrane-bound transporter-proteins. Extracellular CO₂/HCO₃⁻ buffer facilitates these membrane-transport processes. As a mobile pH-buffer, CO₂/HCO₃⁻ protects the extracellular space from excessive acidification that could otherwise inhibit further acid-extrusion. CO₂/HCO₃⁻ also provides substrate for HCO₃⁻-transporters. However, the inherently slow reaction kinetics of CO₂/HCO₃⁻ can be rate-limiting for acid-extrusion. To circumvent this, cells can express extracellular-facing carbonic anhydrase enzymes to accelerate the attainment of equilibrium between CO₂, HCO₃⁻ and H⁺. The acid-extrusion apparatus has been proposed as a target for anti-cancer therapy. The major targets include H⁺ pumps, Na⁺/H⁺ exchangers and carbonic anhydrases. The effectiveness of such therapy will depend on the correct identification of rate-limiting steps in pHi regulation in a specific type of cancer.

  14. Kinetics of renal organic acid transport; studies on the counter-transport of p-aminohippuric acid

    International Nuclear Information System (INIS)

    Yang Saeng Park

    1979-04-01

    The experiments have been performed in various conditions using 14 C-PAH as a tracer. The relative ratio of the inhibitor constant (Ki) between Diodrast and probenecid was of the same magnitude as the concentrations of these inhibitors for maximal stimulation of PAH efflux. The author observed that in metabolically inhibited slices there was no PAH uptake against concentration gradient, but the efflux of PAH was greater than that in the normal slice. In these metabolically inhibited slice PAH efflux was also biphasically altered by Diodrast and probenecid added to the medium. When the concentration of sodium was reduced in medium, PAH influx was decreased but PAH efflux facilitated. 0.1mM disulfonic stilbene derivative, SITS (4-acetamido-4'-isothiocyano-2.2' disulfonic stilbene) increased PAH efflux in the normal slice, but decreased the efflux in the metabolically inhibited slice. Analyzing the data presented, the contractor came to the conclusion that the influx and efflux of PAH in the renal slice are mediated by mobile carrier cycling across the peritubular membrane of renal tubular cell. He observed also that the affinity of carrier for organic acids is altered by the energy-linking reaction at the cytoplasmic border of the membrane

  15. Novel male-biased expression in paralogs of the aphid slimfast nutrient amino acid transporter expansion

    Directory of Open Access Journals (Sweden)

    Nathanson Lubov

    2011-09-01

    Full Text Available Abstract Background A major goal of molecular evolutionary biology is to understand the fate and consequences of duplicated genes. In this context, aphids are intriguing because the newly sequenced pea aphid genome harbors an extraordinary number of lineage-specific gene duplications relative to other insect genomes. Though many of their duplicated genes may be involved in their complex life cycle, duplications in nutrient amino acid transporters appear to be associated rather with their essential amino acid poor diet and the intracellular symbiosis aphids rely on to compensate for dietary deficits. Past work has shown that some duplicated amino acid transporters are highly expressed in the specialized cells housing the symbionts, including a paralog of an aphid-specific expansion homologous to the Drosophila gene slimfast. Previous data provide evidence that these bacteriocyte-expressed transporters mediate amino acid exchange between aphids and their symbionts. Results We report that some nutrient amino acid transporters show male-biased expression. Male-biased expression characterizes three paralogs in the aphid-specific slimfast expansion, and the male-biased expression is conserved across two aphid species for at least two paralogs. One of the male-biased paralogs has additionally experienced an accelerated rate of non-synonymous substitutions. Conclusions This is the first study to document male-biased slimfast expression. Our data suggest that the male-biased aphid slimfast paralogs diverged from their ancestral function to fill a functional role in males. Furthermore, our results provide evidence that members of the slimfast expansion are maintained in the aphid genome not only for the previously hypothesized role in mediating amino acid exchange between the symbiotic partners, but also for sex-specific roles.

  16. Amino acid neurotransmitters and new approaches to anticonvulsant drug action.

    Science.gov (United States)

    Meldrum, B

    1984-01-01

    Amino acids provide the most universal and important inhibitory (gamma-aminobutyric acid (GABA), glycine) and excitatory (glutamate, aspartate, cysteic acid, cysteine sulphinic acid) neurotransmitters in the brain. An anticonvulsant action may be produced (1) by enhancing inhibitory (GABAergic) processes, and (2) by diminishing excitatory transmission. Possible pharmacological mechanisms for enhancing GABA-mediated inhibition include (1) GABA agonist action, (2) GABA prodrugs, (3) drugs facilitating GABA release from terminals, (4) inhibition of GABA-transaminase, (5) allosteric enhancement of the efficacy of GABA at the receptor complex, (6) direction action on the chloride ionophore, and (7) inhibition of GABA reuptake. Examples of these approaches include the use of irreversible GABA-transaminase inhibitors, such as gamma-vinyl GABA, and the development of anticonvulsant beta-carbolines that interact with the "benzodiazepine receptor." Pharmacological mechanisms for diminishing excitatory transmission include (1) enzyme inhibitors that decrease the maximal rate of synthesis of glutamate or aspartate, (2) drugs that decrease the synaptic release of glutamate or aspartate, and (3) drugs that block the post-synaptic action of excitatory amino acids. Compounds that selectively antagonise excitation due to dicarboxylic amino acids have recently been developed. Those that selectively block excitation produced by N-methyl-D-aspartate (and aspartate) have proved to be potent anticonvulsants in many animal models of epilepsy. This provides a novel approach to the design of anticonvulsant drugs.

  17. Experimental Study and Reactive Transport Modeling of Boric Acid Leaching of Concrete

    Directory of Open Access Journals (Sweden)

    Chiang K.-T. K.

    2013-07-01

    Full Text Available Borated water leakage through spent fuel pools (SFPs at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure, compromise the integrity of the structure, or cause unmonitored releases of contaminated water to the environment. Experimental data indicate that pH is a critical parameter that determines the corrosion susceptibility of rebar in borated water and the degree of concrete degradation by boric acid leaching. In this study, reactive transport modeling of concrete leaching by borated water was performed to provide information on the solution pH in the concrete crack or matrix and the degree of concrete degradation at different locations of an SFP concrete structure exposed to borated water. Simulations up to 100 years were performed using different boric acid concentrations, crack apertures, and solution flow rates. Concrete cylinders were immersed in boric acid solutions for several months and the mineralogical changes and boric acid penetration in the concrete cylinder were evaluated as a function of time. The depths of concrete leaching by boric acid solution derived from the reactive transport simulations were compared with the measured boric acid penetration depth.

  18. Graphene for amino acid biosensing: Theoretical study of the electronic transport

    Science.gov (United States)

    Rodríguez, S. J.; Makinistian, L.; Albanesi, E. A.

    2017-10-01

    The study of biosensors based on graphene has increased in the last years, the combination of excellent electrical properties and low noise makes graphene a material for next generation electronic devices. This work discusses the application of a graphene-based biosensor for the detection of amino acids histidine (His), alanine (Ala), aspartic acid (Asp), and tyrosine (Tyr). First, we present the results of modeling from first principles the adsorption of the four amino acids on a graphene sheet, we calculate adsorption energy, substrate-adsorbate distance, equilibrium geometrical configurations (upon relaxation) and densities of states (DOS) for each biomolecule adsorbed. Furthermore, in order to evaluate the effects of amino acid adsorption on the electronic transport of graphene, we modeled a device using first-principles calculations with a combination of Density Functional Theory (DFT) and Nonequilibrium Greens Functions (NEGF). We provide with a detailed discussion in terms of transmission, current-voltage curves, and charge transfer. We found evidence of differences in the electronic transport through the graphene sheet due to amino acid adsorption, reinforcing the possibility of graphene-based sensors for amino acid sequencing of proteins.

  19. Air-to-vegetation transport of /sup 131/I as hypoiodous acid (HOI)

    Energy Technology Data Exchange (ETDEWEB)

    Voilleque, P G [Science Applications, Inc., Idaho Falls, ID (USA); Keller, J H [Exxon Nuclear Idaho Co., Inc., Idaho Falls, ID (USA)

    1981-01-01

    A significant fraction of the /sup 131/I in ventilation air in both BWRs and PWRs is present as hypoiodous acid (HOI). While HOI has been observed in the atmosphere its transport through the critical pathway has not been studied in detail. Of particular importance and interest is the deposition velocity used to characterize air-to-vegetation transport. This note describes the measurement of air-to-vegetation transport of HOI in a laboratory environmental chamber. The deposition velocity for HOI is compared with those for elemental I/sub 2/, methyl iodide and iodine associated with airborne particulates to show the relative importance of HOI in transport of /sup 131/I through the air-grass-cow-milk food chain. The data can be used to estimate relative contributions of the four /sup 131/I species to doses via the critical pathway.

  20. A coupled hydrodynamic-hydrochemical modeling for predicting mineral transport in a natural acid drainage system.

    Science.gov (United States)

    Zegers Risopatron, G., Sr.; Navarro, L.; Montserrat, S., Sr.; McPhee, J. P.; Niño, Y.

    2017-12-01

    The geochemistry of water and sediments, coupled with hydrodynamic transport in mountainous channels, is of particular interest in central Chilean Andes due to natural occurrence of acid waters. In this paper, we present a coupled transport and geochemical model to estimate and understand transport processes and fate of minerals at the Yerba Loca Basin, located near Santiago, Chile. In the upper zone, water presentes low pH ( 3) and high concentrations of iron, aluminum, copper, manganese and zinc. Acidity and minerals are the consequence of water-rock interactions in hydrothermal alteration zones, rich in sulphides and sulphates, covered by seasonal snow and glaciers. Downstream, as a consequence of neutral to alkaline lateral water contributions (pH >7) along the river, pH increases and concentration of solutes decreases. The mineral transport model has three components: (i) a hydrodynamic model, where we use HEC-RAS to solve 1D Saint-Venant equations, (ii) a sediment transport model to estimate erosion and sedimentation rates, which quantify minerals transference between water and riverbed and (iii) a solute transport model, based on the 1D OTIS model which takes into account the temporal delay in solutes transport that typically is observed in natural channels (transient storage). Hydrochemistry is solved using PHREEQC, a software for speciation and batch reaction. Our results show that correlation between mineral precipitation and dissolution according to pH values changes along the river. Based on pH measurements (and according to literature) we inferred that main minerals in the water system are brochantite, ferrihydrite, hydrobasaluminite and schwertmannite. Results show that our model can predict the transport and fate of minerals and metals in the Yerba Loca Basin. Mineral dissolution and precipitation process occur for limited ranges of pH values. When pH values are increased, iron minerals (schwertmannite) are the first to precipitate ( 2.5

  1. Identification of functional amino acid residues involved in polyamine and agmatine transport by human organic cation transporter 2.

    Science.gov (United States)

    Higashi, Kyohei; Imamura, Masataka; Fudo, Satoshi; Uemura, Takeshi; Saiki, Ryotaro; Hoshino, Tyuji; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei

    2014-01-01

    Polyamine (putrescine, spermidine and spermine) and agmatine uptake by the human organic cation transporter 2 (hOCT2) was studied using HEK293 cells transfected with pCMV6-XL4/hOCT2. The Km values for putrescine and spermidine were 7.50 and 6.76 mM, and the Vmax values were 4.71 and 2.34 nmol/min/mg protein, respectively. Spermine uptake by hOCT2 was not observed at pH 7.4, although it inhibited both putrescine and spermidine uptake. Agmatine was also taken up by hOCT2, with Km value: 3.27 mM and a Vmax value of 3.14 nmol/min/mg protein. Amino acid residues involved in putrescine, agmatine and spermidine uptake by hOCT2 were Asp427, Glu448, Glu456, Asp475, and Glu516. In addition, Glu524 and Glu530 were involved in putrescine and spermidine uptake activity, and Glu528 and Glu540 were weakly involved in putrescine uptake activity. Furthermore, Asp551 was also involved in the recognition of spermidine. These results indicate that the recognition sites for putrescine, agmatine and spermidine on hOCT2 strongly overlap, consistent with the observation that the three amines are transported with similar affinity and velocity. A model of spermidine binding to hOCT2 was constructed based on the functional amino acid residues.

  2. Identification of functional amino acid residues involved in polyamine and agmatine transport by human organic cation transporter 2.

    Directory of Open Access Journals (Sweden)

    Kyohei Higashi

    Full Text Available Polyamine (putrescine, spermidine and spermine and agmatine uptake by the human organic cation transporter 2 (hOCT2 was studied using HEK293 cells transfected with pCMV6-XL4/hOCT2. The Km values for putrescine and spermidine were 7.50 and 6.76 mM, and the Vmax values were 4.71 and 2.34 nmol/min/mg protein, respectively. Spermine uptake by hOCT2 was not observed at pH 7.4, although it inhibited both putrescine and spermidine uptake. Agmatine was also taken up by hOCT2, with Km value: 3.27 mM and a Vmax value of 3.14 nmol/min/mg protein. Amino acid residues involved in putrescine, agmatine and spermidine uptake by hOCT2 were Asp427, Glu448, Glu456, Asp475, and Glu516. In addition, Glu524 and Glu530 were involved in putrescine and spermidine uptake activity, and Glu528 and Glu540 were weakly involved in putrescine uptake activity. Furthermore, Asp551 was also involved in the recognition of spermidine. These results indicate that the recognition sites for putrescine, agmatine and spermidine on hOCT2 strongly overlap, consistent with the observation that the three amines are transported with similar affinity and velocity. A model of spermidine binding to hOCT2 was constructed based on the functional amino acid residues.

  3. Membrane topology of rat sodium-coupled neutral amino acid transporter 2 (SNAT2).

    Science.gov (United States)

    Ge, Yudan; Gu, Yanting; Wang, Jiahong; Zhang, Zhou

    2018-07-01

    Sodium-coupled neutral amino acid transporter 2 (SNAT2) is a subtype of the amino acid transport system A that is widely expressed in mammalian tissues. It plays critical roles in glutamic acid-glutamine circulation, liver gluconeogenesis and other biological pathway. However, the topology of the SNAT2 amino acid transporter is unknown. Here we identified the topological structure of SNAT2 using bioinformatics analysis, Methoxy-polyethylene glycol maleimide (mPEG-Mal) chemical modification, protease cleavage assays, immunofluorescence and examination of glycosylation. Our results show that SNAT2 contains 11 transmembrane domains (TMDs) with an intracellular N terminus and an extracellular C terminus. Three N-glycosylation sites were verified at the largest extracellular loop. This model is consistent with the previous model of SNAT2 with the exception of a difference in number of glycosylation sites. This is the first time to confirm the SNAT2 membrane topology using experimental methods. Our study on SNAT2 topology provides valuable structural information of one of the solute carrier family 38 (SLC38) members. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Role of cholangiocyte bile Acid transporters in large bile duct injury after rat liver transplantation.

    Science.gov (United States)

    Cheng, Long; Zhao, Lijin; Li, Dajiang; Liu, Zipei; Chen, Geng; Tian, Feng; Li, Xiaowu; Wang, Shuguang

    2010-07-27

    The pathogenesis of nonanastomotic strictures with a patent hepatic artery remains to be investigated. This study focuses on the role of cholangiocyte bile acid transporters in bile duct injury after liver transplantation. Sprague-Dawley rats were divided into three groups (n=20 for each): the sham-operated group (Sham), the transplant group with 1-hr donor liver cold preservation (CP-1h), and the transplant group with 12-hr donor liver cold preservation (CP-12h). Bile was collected for biochemical analysis. The histopathologic evaluation of bile duct injury was performed and the cholangiocyte bile acid transporters apical sodium-dependent bile acid transporter (ASBT), ileal lipid binding protein (ILBP), and Ostalpha/Ostbeta were investigated. RESULTS.: The immunohistochemical assay suggested that ASBT and ILBP were expressed exclusively on large bile duct epithelial cells, whereas Ostalpha and Ostbeta were expressed on both small and large bile ducts. Western blot and quantitative polymerase chain reaction analysis showed that the expression levels of these transporters dramatically decreased after transplantation. It took seven to 14 days for ILBP, Ostalpha, and Ostbeta to recover, whereas ASBT recovered within 3 days and even reached a peak above the normal level seven days after operation. In the CP-12h group, the ratios of the ASBT/ILBP, ASBT/Ostalpha and ASBT/Ostbeta expression levels were correlated with the injury severity scores of large but not small bile ducts. The results suggest that the unparallel alteration of cholangiocyte bile acid transporters may play a potential role in large bile duct injury after liver transplantation with prolonged donor liver preservation.

  5. Natural and azido fatty acids inhibit phosphate transport and activate fatty acid anion uniport mediated by the mitochondrial phosphate carrier

    Czech Academy of Sciences Publication Activity Database

    Engstová, Hana; Žáčková, Markéta; Růžička, Michal; Meinhardt, A.; Hanuš, Jan; Krämer, R.; Ježek, Petr

    2001-01-01

    Roč. 276, č. 7 (2001), s. 4683-4691 ISSN 0021-9258 R&D Projects: GA ČR GA301/95/0620; GA ČR GA301/98/0568; GA MŠk ME 085; GA MŠk ME 389 Grant - others:US(US) Czechoslovak Science and Technology Program 94043 Institutional research plan: CEZ:AV0Z5011922 Keywords : phosphate transport * fatty acids Subject RIV: CE - Biochemistry Impact factor: 7.258, year: 2001

  6. Na--dependent transport of basic, zwitterionic, and bicyclic amino acids by a broad-scope system in mouse blastocysts

    International Nuclear Information System (INIS)

    Van Winkle, L.J.; Christensen, H.N.; Campione, A.L.

    1985-01-01

    Mouse blastocysts which had been activated from diapause in utero appeared to take up amino acids via a Na - -dependent transport system with novel characteristics. In contrast to other cell types, uptake of 3-aminoendobicyclo [3,2,1]octane-3-carboxylic acid (BCO) by blastocysts was largely Na - dependent. Moreover, L-alanine and BCO met standard criteria for mutual competitive inhibition of the Na - -dependent transport of each other. The Ki for each of these amino acids as an inhibitor of transport of the other had a value similar to the value of its Km for transport. In addition, both 2-aminoendobicyclo [2,2,1]heptane-2-carboxylic acid and L-valine appeared to inhibit Na - -dependent transport of alanine and BCO competitively. Finally, alanine and L-lysine appeared to compete for the same Na+-dependent transport sites in blastocysts. For these reasons, the authors conclude that lysine, alanine, and BCO are transported by a common Na+-dependent system in blastocysts. In addition, the apparent interaction of the system with other basic amino acids, such as 1-dimethylpiperidine-4-amino-4-carboxylic acid, which has a nondissociable positive charge on its side chain, and L-arginine and L-homoarginine, whose cationic forms are highly predominant at neutral pH, suggests that the cationic forms of basic amino acids are transported by the wide-scope system

  7. Preventative and therapeutic effects of a GABA transporter 1 inhibitor administered systemically in a mouse model of paclitaxel-induced neuropathic pain

    Directory of Open Access Journals (Sweden)

    Willias Masocha

    2016-12-01

    Full Text Available Background There is a dearth of drugs to manage a dose-limiting painful peripheral neuropathy induced by paclitaxel in some patients during the treatment of cancer. Gamma-aminobutyric acid transporter-1 (GAT-1 whose expression is increased in the brain and spinal cord during paclitaxel-induced neuropathic pain (PINP might be a potential therapeutic target for managing PINP. Thus, our aim was to evaluate if systemic administration of a GAT-1 inhibitor ameliorates PINP. Methods The reaction latency to thermal stimuli (hot plate test; at 55 °C and cold stimuli (cold plate test; at 4 °C of female BALB/c mice was recorded before and after intraperitoneal treatment with paclitaxel, its vehicle, and/or a selective GAT-1 inhibitor NO-711. The effects of NO-711 on motor coordination were evaluated using the rotarod test at a constant speed of 4 rpm or accelerating mode from 4 rpm to 40 rpm over 5 min. Results The coadministration of paclitaxel with NO-711 3 mg/kg prevented the development of paclitaxel-induced thermal hyperalgesia and cold allodynia at day 7 after drug treatment. NO-711 at 3 mg/kg produced antihyperalgesic activity up to 1 h and antiallodynic activity up to 2 h in mice with established paclitaxel-induced thermal hyperalgesia and cold allodynia. No motor deficits were observed with NO-711 at a dose of 3 mg/kg, whereas a higher dose 5 mg/kg caused motor impairment and reduced mean time spent on the rotarod at a constant speed of 4 rpm. However, at a rotarod accelerating mode from 4 rpm to 40 rpm over 5 min, NO-711 3 mg/kg caused motor impairment up to 1 h, but had recovered by 2 h. Conclusions These results show that systemic administration of the GAT-1 inhibitor NO-711 has preventative and therapeutic activity against paclitaxel-induced thermal hyperalgesia and cold allodynia. NO-711’s antiallodynic effects, but not antihyperalgesic effects, were independent of its motor impairment/sedation properties. Thus, low doses of GAT-1

  8. Transport and degradation of 2-14C abscicine acid in the coleus rehneltianus berger sprout

    International Nuclear Information System (INIS)

    Klaska, A.

    1979-01-01

    1 μg ABA-2- 14 C aqueous solution was injected into the youngest or into a fully grown leaf of young and older coleus plants. The activity quantity in the various sprout parts is investigated after 2, 24 and 72 h; as well as which labelled substances other than abscisic acid (ABA) occur. The activity in the ethanol extracts was detected with the help of liquid scintillation measurements. Thin layer chromatography and gas chromatography were used to characterize the radioactive substances. The results show that ABA is degraded into three metabolites which are characterized by their relative Rsub(F) values using chromatography with LM 2 as substance 0.2, 0.5a, 0.5b and 0.8. Comparing with the literature shows that it could be 6'-hydroxy methyl ABA, ABA glucoside, phaseic acid and dihydrophaseic acid. Young and old leaves in older plants have the same ability to degrade ABA taking the occurence of the 0.8 metabolite as standard. The degradation in younger plants is firstly very slight. However, within 72 h the ability of ABA degradation is induced in older leaves of younger plants, so that finally the degradation rate is as big as in older plants. Activity is essentially exported by adult leaves of older plants. The basipetal transport is considerably greater than the acropetal one. Results show that mainly ABA is transported in the acropetal test, whereas ABA and fraction 0.5 are transported in the basipetal direction. A reversed transport direction is observed after applying ABA to a young leaf. The transport basipetal is polarized in the first two hours, after 72 hours of transport there is a definite acropetal polarity. (orig./MG) [de

  9. Effects of Long-Term Protein Restriction on Meat Quality, Muscle Amino Acids, and Amino Acid Transporters in Pigs.

    Science.gov (United States)

    Yin, Jie; Li, Yuying; Zhu, Xiaotong; Han, Hui; Ren, Wenkai; Chen, Shuai; Bin, Peng; Liu, Gang; Huang, Xingguo; Fang, Rejun; Wang, Bin; Wang, Kai; Sun, Liping; Li, Tiejun; Yin, Yulong

    2017-10-25

    This study aimed to investigate the long-term effects of protein restriction from piglets to finishing pigs for 16 weeks on meat quality, muscle amino acids, and amino acid transporters. Thirty-nine piglets were randomly divided into three groups: a control (20-18-16% crude protein, CP) and two protein restricted groups (17-15-13% CP and 14-12-10% CP). The results showed that severe protein restriction (14-12-10% CP) inhibited feed intake and body weight, while moderate protein restriction (17-15-13% CP) had little effect on growth performance in pigs. Meat quality (i.e., pH, color traits, marbling, water-holding capacity, and shearing force) were tested, and the results exhibited that 14-12-10% CP treatment markedly improved muscle marbling score and increased yellowness (b*). pH value (45 min) was significantly higher in 17-15-13% CP group than that in other groups. In addition, protein restriction reduced muscle histone, arginine, valine, and isoleucine abundances and enhanced glycine and lysine concentrations compared with the control group, while the RT-PCR results showed that protein restriction downregulated amino acids transporters. Mechanistic target of rapamycin (mTOR) signaling pathway was inactivated in the moderate protein restricted group (17-15-13% CP), while severe protein restriction with dietary 14-12-10% CP markedly enhanced mTOR phosphorylation. In conclusion, long-term protein restriction affected meat quality and muscle amino acid metabolism in pigs, which might be associated with mTOR signaling pathway.

  10. Mechanisms Regulating Acid-Base Transporter Expression in Breast- and Pancreatic Cancer

    DEFF Research Database (Denmark)

    Gorbatenko, Andrej

    , characteristics of which are a shift towards glycolytic metabolism and increased acid production. HER2 receptor overexpression in breast cancer leads to further increased glycolysis, invasion and metastasis, drug resistance and poor prognosis. Increased tumor glycolysis requires acquisition of mechanisms...... for dealing with excess acid production. In this light, evidence accumulates on the importance of pH regulatory proteins to cancer cell survival and motility. Our group previously demonstrated upregulation of the Na+/HCO3 - co-transporter NBCn1 (SLC4A7) by a constitutively active form of HER2 receptor (p95HER...

  11. Proton transport properties in zwitterion blends with Brønsted acids.

    Science.gov (United States)

    Yoshizawa-Fujita, Masahiro; Byrne, Nolene; Forsyth, Maria; MacFarlane, Douglas R; Ohno, Hiroyuki

    2010-12-16

    We describe zwitterion, 3-(1-butyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate (Bimps), mixtures with 1,1,1-trifluoro-N-(trifluoromethylsulfonyl)methanesulfoneamide (HN(Tf)(2)) as new proton transport electrolytes. We report proton transport mechanisms in the mixtures based on results from several methods including thermal analyses, the complex-impedance method, and the pulsed field gradient spin echo NMR (pfg-NMR) method. The glass transition temperature (Tg) of the mixtures decreased with increasing HN(Tf)(2) concentration up to 50 mol %. The Tg remained constant at -55 °C with further acid doping. The ionic conductivity of HN(Tf)(2) mixtures increased with the HN(Tf)(2) content up to 50 mol %. Beyond that ratio, the mixtures showed no increase in ionic conductivity (10(-4) S cm(-1) at room temperature). This tendency agrees well with that of Tg. However, the self-diffusion coefficients obtained from the pfg-NMR method increased with HN(Tf)(2) content even above 50 mol % for all component ions. At HN(Tf)(2) 50 mol %, the proton diffusion of HN(Tf)(2) was the fastest in the mixture. These results suggest that Bimps cannot dissociate excess HN(Tf)(2), that is, the excess HN(Tf)(2) exists as molecular HN(Tf)(2) in the mixtures. The zwitterion, Bimps, forms a 1:1 complex with HN(Tf)(2) and the proton transport property in this mixture is superior to those of other mixing ratios. Furthermore, CH(3)SO(3)H and CF(3)SO(3)H were mixed with Bimps for comparison. Both systems showed a similar tendency, which differed from that of the HN(Tf)(2) system. The Tg decreased linearly with increasing acid content for every mixing ratio, while the ionic conductivity increased linearly. Proton transport properties in zwitterion/acid mixtures were strongly affected by the acid species added.

  12. Humic acid transport in saturated porous media: influence of flow velocity and influent concentration.

    Science.gov (United States)

    Wei, Xiaorong; Shao, Mingan; Du, Lina; Horton, Robert

    2014-12-01

    Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces. A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations. Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients, which resulted in an increased fraction of HA being retained in columns. Consequently, retardation factors were increased and the transport of HA through the columns was delayed. These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix. Accordingly, this attachment should be considered in studies of HA behavior in porous media. Copyright © 2014. Published by Elsevier B.V.

  13. ρ0 Cells Feature De-Ubiquitination of SLC Transporters and Increased Levels and Fluxes of Amino Acids

    Directory of Open Access Journals (Sweden)

    André Bordinassi Medina

    2017-04-01

    Full Text Available Solute carrier (SLC transporters are a diverse group of membrane transporter proteins that regulate the cellular flux and distribution of endogenous and xenobiotic compounds. Post-translational modifications (PTMs, such as ubiquitination, have recently emerged as one of the major regulatory mechanisms in protein function and localization. Previously, we showed that SLC amino acid transporters were on average 6-fold de-ubiquitinated and increased amino acid levels were detected in ρ0 cells (lacking mitochondrial DNA, mtDNA compared to parental cells. Here, we elucidated the altered functionality of SLC transporters and their dynamic ubiquitination status by measuring the uptake of several isotopically labeled amino acids in both human osteosarcoma 143B.TK- and ρ0 cells. Our pulse chase analysis indicated that de-ubiquitinated amino acid transporters in ρ0 cells were accompanied by an increased transport rate, which leads to higher levels of amino acids in the cell. Finding SLC transport enhancers is an aim of the pharmaceutical industry in order to compensate for loss of function mutations in these genes. Thus, the ubiquitination status of SLC transporters could be an indicator for their functionality, but evidence for a direct connection between de-ubiquitination and transporter activity has to be further elucidated.

  14. Okadaic acid inhibits cell growth and photosynthetic electron transport in the alga Dunaliella tertiolecta

    Energy Technology Data Exchange (ETDEWEB)

    Perreault, Francois; Matias, Marcelo Seleme; Oukarroum, Abdallah [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada); Matias, William Gerson [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada); Laboratorio de Toxicologia Ambiental, LABTOX, Depto. de Engenharia Sanitaria e Ambiental, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-970, Florianopolis, SC (Brazil); Popovic, Radovan, E-mail: popovic.radovan@uqam.ca [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada)

    2012-01-01

    Okadaic acid (OA), which is produced by several dinoflagellate species, is a phycotoxin known to induce a decrease of biomass production in phytoplankton. However, the mechanisms of OA cytotoxicity are still unknown in microalgae. In this study, we exposed the green microalga Dunaliella tertiolecta to OA concentrations of 0.05 to 0.5 {mu}M in order to evaluate its effects on cell division, reactive oxygen species production and photosynthetic electron transport. After 72 h of treatment under continuous illumination, OA concentrations higher than 0.10 {mu}M decreased culture cell density, induced oxidative stress and inhibited photosystem II electron transport capacity. OA effect in D. tertiolecta was strongly light dependent since no oxidative stress was observed when D. tertiolecta was exposed to OA in the dark. In the absence of light, the effect of OA on culture cell density and photosystem II activity was also significantly reduced. Therefore, light appears to have a significant role in the toxicity of OA in microalgae. Our results indicate that the site of OA interaction on photosynthetic electron transport is likely to be at the level of the plastoquinone pool, which can lead to photo-oxidative stress when light absorbed by the light-harvesting complex of photosystem II cannot be dissipated via photochemical pathways. These findings allowed for a better understanding of the mechanisms of OA toxicity in microalgae. - Highlights: Black-Right-Pointing-Pointer Exposition of Dunaliella tertiolecta to okadaic acid in light conditions results in reactive oxygen species formation. Black-Right-Pointing-Pointer Inhibition of photosystem II is dependent on oxidative stress and effects of okadaic acid on the plastoquinone pool. Black-Right-Pointing-Pointer Oxidative stress and inhibition of photosynthesis increase okadaic acid effect on cell density in light conditions. Black-Right-Pointing-Pointer Okadaic acid induces toxicity in algae via both light-dependent and light

  15. Enteroendocrine-derived glucagon-like peptide-2 controls intestinal amino acid transport.

    Science.gov (United States)

    Lee, Jennifer; Koehler, Jacqueline; Yusta, Bernardo; Bahrami, Jasmine; Matthews, Dianne; Rafii, Mahroukh; Pencharz, Paul B; Drucker, Daniel J

    2017-03-01

    Glucagon-like peptide-2 (GLP-2) is co-secreted with GLP-1 from gut endocrine cells, and both peptides act as growth factors to expand the surface area of the mucosal epithelium. Notably, GLP-2 also enhances glucose and lipid transport in enterocytes; however, its actions on control of amino acid (AA) transport remain unclear. Here we examined the mechanisms linking gain and loss of GLP-2 receptor (GLP-2R) signaling to control of intestinal amino acid absorption in mice. Absorption, transport, and clearance of essential AAs, specifically lysine, were measured in vivo by Liquid Chromatography triple quadrupole Mass Spectrometry (LC-MS/MS) and ex vivo with Ussing chambers using intestinal preparations from Glp2 r +/+ and Glp2r - / - mice. Immunoblotting determined jejunal levels of protein components of signaling pathways (PI3K-AKT, and mTORC1-pS6-p4E-BP1) following administration of GLP-2, protein gavage, and rapamycin to fasted Glp2 r +/+ and Glp2r - / - mice. Expression of AA transporters from full thickness jejunum and 4F2hc from brush border membrane vesicles (BBMVs) was measured by real-time PCR and immunoblotting, respectively. Acute administration of GLP-2 increased basal AA absorption in vivo and augmented basal lysine transport ex vivo . GLP-2-stimulated lysine transport was attenuated by co-incubation with wortmannin, rapamycin, or tetrodotoxin ex vivo . Phosphorylation of mTORC1 effector proteins S6 and 4E-BP1 was significantly increased in wild-type mice in response to GLP-2 alone, or when co-administered with protein gavage, and abolished following oral gavage of rapamycin. In contrast, activation of GLP-1R signaling did not enhance S6 phosphorylation. Disruption of GLP-2 action in Glp2r -/- mice reduced lysine transport ex vivo and attenuated the phosphorylation of S6 and 4E-BP1 in response to oral protein. Moreover, the expression of cationic AA transporter slc7a9 in response to refeeding, and the abundance of 4F2hc in BBMVs following protein

  16. Amino acid transport across the tonoplast of vacuoles isolated from barley mesophyll protoplasts: Uptake of alanine, leucine, and glutamine

    International Nuclear Information System (INIS)

    Dietz, K.J.; Jaeger, R.; Kaiser, G.; Martinoia, E.

    1990-01-01

    Mesophyll protoplasts from leaves of well-fertilized barley (Hordeum vulgare L.) plants contained amino acids at concentrations as high as 120 millimoles per liter. With the exception of glutamic acid, which is predominantly localized in the cytoplasm, a major part of all other amino acids was contained inside the large central vacuole. Alanine, leucine, and glutamine are the dominant vacuolar amino acids in barley. Their transport into isolated vacuoles was studied using 14 C-labeled amino acids. Uptake was slow in the absence of ATP. A three- to sixfold stimulation of uptake was observed after addition of ATP or adenylyl imidodiphosphate an ATP analogue not being hydrolyzed by ATPases. Other nucleotides were ineffective in increasing the rate of uptake. ATP-Stimulated amino acid transport was not dependent on the transtonoplast pH or membrane potential. p-Chloromercuriphenylsulfonic acid and n-ethyl maleimide increased transport independently of ATP. Neutral amino acids such as valine or leucine effectively decreased the rate of alanine transport. Glutamine and glycine were less effective or not effective as competitive inhibitors of alanine transport. The results indicate the existence of a uniport translocator specific for neutral or basic amino acids that is under control of metabolic effectors

  17. The expression and function of fatty acid transport protein-2 and -4 in the murine placenta.

    Directory of Open Access Journals (Sweden)

    Takuya Mishima

    Full Text Available The uptake and trans-placental trafficking of fatty acids from the maternal blood into the fetal circulation are essential for embryonic development, and involve several families of proteins. Fatty acid transport proteins (FATPs uniquely transport fatty acids into cells. We surmised that placental FATPs are germane for fetal growth, and are regulated during hypoxic stress, which is associated with reduced fat supply to the fetus.Using cultured primary term human trophoblasts we found that FATP2, FATP4 and FATP6 were highly expressed in trophoblasts. Hypoxia enhanced the expression of trophoblastic FATP2 and reduced the expression of FATP4, with no change in FATP6. We also found that Fatp2 and Fatp4 are expressed in the mouse amnion and placenta, respectively. Mice deficient in Fatp2 or Fatp4 did not deviate from normal Mendelian distribution, with both embryos and placentas exhibiting normal weight and morphology, triglyceride content, and expression of genes related to fatty acid mobilization.We conclude that even though hypoxia regulates the expression of FATP2 and FATP4 in human trophoblasts, mouse Fatp2 and Fatp4 are not essential for intrauterine fetal growth.

  18. Proliferation-dependent changes in amino acid transport and glucose metabolism in glioma cell lines

    International Nuclear Information System (INIS)

    Sasajima, Toshio; Miyagawa, Tadashi; Oku, Takamitsu; Gelovani, Juri G.; Finn, Ronald; Blasberg, Ronald

    2004-01-01

    Amino acid imaging is increasingly being used for assessment of brain tumor malignancy, extent of disease, and prognosis. This study explores the relationship between proliferative activity, amino acid transport, and glucose metabolism in three glioma cell lines (U87, Hs683, C6) at different phases of growth in culture. Growth phase was characterized by direct cell counting, proliferation index determined by flow cytometry, and [ 3 H]thymidine (TdR) accumulation, and was compared with the uptake of two non-metabolized amino acids ([ 14 C]aminocyclopentane carboxylic acid (ACPC) and [ 14 C]aminoisobutyric acid (AIB)), and [ 18 F]fluorodeoxyglucose (FDG). Highly significant relationships between cell number (density), proliferation index, and TdR accumulation rate were observed in all cell lines (r>0.99). Influx (K 1 ) of both ACPC and AIB was directly related to cell density, and inversely related to the proliferation index and TdR accumulation in all cell lines. The volume of distribution (V d ) for ACPC and AIB was lowest during rapid growth and highest during the near-plateau growth phase in all cell lines. FDG accumulation in Hs683 and C6 cells was unaffected by proliferation rate, growth phase, and cell density, whereas FDG accumulation was correlated with TdR accumulation, growth phase, and cell density in U87 cells. This study demonstrates that proliferation rate and glucose metabolism are not necessarily co-related in all glioma cell lines. The values of K 1 and V d for ACPC and AIB under different growth conditions suggest that these tumor cell lines can up-regulate amino acid transporters in their cell membranes when their growth conditions become adverse and less than optimal. (orig.)

  19. The Monocarboxylate Transporter Inhibitor α-Cyano-4-Hydroxycinnamic Acid Disrupts Rat Lung Branching

    Directory of Open Access Journals (Sweden)

    Sara Granja

    2013-12-01

    Full Text Available Background/Aims: The human embryo develops in a hypoxic environment. In this way, cells have to rely on the glycolytic pathway for energy supply, leading to an intracellular accumulation of monocarboxylates such as lactate and pyruvate. These acids have an important role in cell metabolism and their rapid transport across the plasma membrane is crucial for the maintenance of intracellular pH homeostasis. This transport is mediated by a family of transporters, designated by monocarboxylate transporters (MCTs, namely isoforms 1 and 4. MCT1/4 expression is regulated by the ancillary protein CD147.The general aim of this study was to characterize the expression pattern of MCT1/4, CD147 and the glucose transporter GLUT1 during human fetal lung development and elucidate the role of MCTs in lung development. Methods: The expression pattern of MCT1/4 and GLUT1 was characterized by immunohistochemistry and fetal lung viability and branching were evaluated by exposing rat fetal lung explants to CHC, an inhibitor of MCT activity. Results: Our findings show that all the biomarkers are differently expressed during fetal lung development and that CHC appears to have an inhibitory effect on lung branching and viability, in a dose dependent way. Conclusion: We provide evidence for the role of MCTs in embryo lung development, however to prove the dependence of MCT activity further studies are waranted.

  20. Transport of Indole-3-Butyric Acid and Indole-3-Acetic Acid in Arabidopsis Hypocotyls Using Stable Isotope Labeling1[C][W][OA

    Science.gov (United States)

    Liu, Xing; Barkawi, Lana; Gardner, Gary; Cohen, Jerry D.

    2012-01-01

    The polar transport of the natural auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) has been described in Arabidopsis (Arabidopsis thaliana) hypocotyls using radioactive tracers. Because radioactive assays alone cannot distinguish IBA from its metabolites, the detected transport from applied [3H]IBA may have resulted from the transport of IBA metabolites, including IAA. To test this hypothesis, we used a mass spectrometry-based method to quantify the transport of IBA in Arabidopsis hypocotyls by following the movement of [13C1]IBA and the [13C1]IAA derived from [13C1]IBA. We also assayed [13C6]IAA transport in a parallel control experiment. We found that the amount of transported [13C1]IBA was dramatically lower than [13C6]IAA, and the IBA transport was not reduced by the auxin transport inhibitor N-1-naphthylphthalamic acid. Significant amounts of the applied [13C1]IBA were converted to [13C1]IAA during transport, but [13C1]IBA transport was independent of IBA-to-IAA conversion. We also found that most of the [13C1]IBA was converted to ester-linked [13C1]IBA at the apical end of hypocotyls, and ester-linked [13C1]IBA was also found in the basal end at a level higher than free [13C1]IBA. In contrast, most of the [13C6]IAA was converted to amide-linked [13C6]IAA at the apical end of hypocotyls, but very little conjugated [13C6]IAA was found in the basal end. Our results demonstrate that the polar transport of IBA is much lower than IAA in Arabidopsis hypocotyls, and the transport mechanism is distinct from IAA transport. These experiments also establish a method for quantifying the movement of small molecules in plants using stable isotope labeling. PMID:22323783

  1. Stable isotope tracer reveals that viviparous snakes transport amino acids to offspring during gestation.

    Science.gov (United States)

    Van Dyke, James U; Beaupre, Steven J

    2012-03-01

    Viviparity and placentation have evolved from oviparity over 100 times in squamate reptiles (lizards and snakes). The independent origins of placentation have resulted in a variety of placental morphologies in different taxa, ranging from simple apposition of fetal and maternal tissues to endotheliochorial implantation that is homoplasious with mammalian placentation. Because the eggs of oviparous squamates transport gases and water from the environment and calcium from the eggshell, the placentae of viviparous squamates are thought to have initially evolved to accomplish these functions from within the maternal oviduct. Species with complex placentae have also been shown to rely substantially, or even primarily, on placental transport of organic nutrients for embryonic nutrition. However, it is unclear whether species with only simple placentae are also capable of transporting organic nutrients to offspring. Among viviparous squamates, all of the snakes that have been studied thus far have been shown to have simple placentae. However, most studies of snake placentation are limited to a single lineage, the North American Natricinae. We tested the abilities of four species of viviparous snakes - Agkistrodon contortrix (Viperidae), Boa constrictor (Boidae), Nerodia sipedon (Colubridae: Natricinae) and Thamnophis sirtalis (Colubridae: Natricinae) - to transport diet-derived amino acids to offspring during gestation. We fed [(15)N]leucine to pregnant snakes, and compared offspring (15)N content with that of unlabeled controls. Labeled females allocated significantly more (15)N to offspring than did controls, but (15)N allocation did not differ among species. Our results indicate that viviparous snakes are capable of transporting diet-derived amino acids to their offspring during gestation, possibly via placentation.

  2. Genes Encoding Aluminum-Activated Malate Transporter II and their Association with Fruit Acidity in Apple

    Directory of Open Access Journals (Sweden)

    Baiquan Ma

    2015-11-01

    Full Text Available A gene encoding aluminum-activated malate transporter (ALMT was previously reported as a candidate for the locus controlling acidity in apple ( × Borkh.. In this study, we found that apple genes can be divided into three families and the gene belongs to the family. Duplication of genes in apple is related to the polyploid origin of the apple genome. Divergence in expression has occurred between the gene and its homologs in the family and only the gene is significantly associated with malic acid content. The locus consists of two alleles, and . resides in the tonoplast and its ectopic expression in yeast was found to increase the influx of malic acid into yeast cells significantly, suggesting it may function as a vacuolar malate channel. In contrast, encodes a truncated protein because of a single nucleotide substitution of G with A in the last exon. As this truncated protein resides within the cell membrane, it is deemed to be nonfunctional as a vacuolar malate channel. The frequency of the genotype is very low in apple cultivars but is high in wild relatives, which suggests that apple domestication may be accompanied by selection for the gene. In addition, variations in the malic acid content of mature fruits were also observed between accessions with the same genotype in the locus. This suggests that the gene is not the only genetic determinant of fruit acidity in apple.

  3. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    International Nuclear Information System (INIS)

    Wong, K.L.; Tyce, G.M.

    1983-01-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. [U- 14 C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia

  4. Supervanadophile: Complexation, preconcentration and transport studies of vanadium by octa functionalized calix [4] resorcinarene - hydroxamic acid

    International Nuclear Information System (INIS)

    Jain, V. K.; Pillai, S. G.; Gupte, H. S.

    2008-01-01

    A new octa functionalized calix[4] resorcinarene bearing eight hydroxamic acid groups has been synthesized and its analytical properties have been investigated. To elucidate the structure of the compound, elemental analysis, fourier transform infrared and 1 H NMR spectral data have been used. The compound showed high affinity and selectivity for vanadium(V) in presence of large quantities of associated metal ions. The complexation of vanadium(V) with octa functionalized calix[4] resorcinarene bearing eight hydroxamic acid has a 4:1 metal: ligand stoichiometry as evaluated by Job's plot. A spectrophotometric method is proposed for the extractive determination of vanadium(V) in an acidic medium in the presence of diversified matrix, and verified by inductively coupled plasma-atomic emission spectrometry. Under the optimum condition of acidity, solvent, interfering ions and octa functionalized calix[4] resorcinarene bearing eight hydroxamic acid concentration, the molar absorptivity of the complex is 5630 1 mol -1 cm -1 at 495 nm. The system obeys Beer's law over the range 0.125-8.75 μg ml -1 of vanadium(V) with Sandell sensitivity 0.009 μg cm -2 . The preconcentration factor and overall stability constant evaluated at 25 d eg C were 142 and 14.18, respectively. The complexation is characterized by favorable enthalpy and entropy changes. Liquid membrane transport studies of vanadium(V) were carried out from source to the receiving phase under controlled conditions and a mechanism for transport is suggested. To check the validity of the proposed method, vanadium is determined in environmental, biological samples and some standard reference materials from NIST and BCS

  5. Structure of a Bacterial ABC Transporter Involved in the Import of an Acidic Polysaccharide Alginate.

    Science.gov (United States)

    Maruyama, Yukie; Itoh, Takafumi; Kaneko, Ai; Nishitani, Yu; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2015-09-01

    The acidic polysaccharide alginate represents a promising marine biomass for the microbial production of biofuels, although the molecular and structural characteristics of alginate transporters remain to be clarified. In Sphingomonas sp. A1, the ATP-binding cassette transporter AlgM1M2SS is responsible for the import of alginate across the cytoplasmic membrane. Here, we present the substrate-transport characteristics and quaternary structure of AlgM1M2SS. The addition of poly- or oligoalginate enhanced the ATPase activity of reconstituted AlgM1M2SS coupled with one of the periplasmic solute-binding proteins, AlgQ1 or AlgQ2. External fluorescence-labeled oligoalginates were specifically imported into AlgM1M2SS-containing proteoliposomes in the presence of AlgQ2, ATP, and Mg(2+). The crystal structure of AlgQ2-bound AlgM1M2SS adopts an inward-facing conformation. The interaction between AlgQ2 and AlgM1M2SS induces the formation of an alginate-binding tunnel-like structure accessible to the solvent. The translocation route inside the transmembrane domains contains charged residues suitable for the import of acidic saccharides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Cationic amino acid transporter 2 enhances innate immunity during Helicobacter pylori infection.

    Directory of Open Access Journals (Sweden)

    Daniel P Barry

    Full Text Available Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2 is essential for transport of L-arginine (L-Arg into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO produced from inducible NO synthase (iNOS, or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/- mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/- mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/- mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.

  7. Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Fahlke, Christoph; Bjørn-Yoshimoto, Walden Emil

    2015-01-01

    The five excitatory amino acid transporters (EAAT1–5) mediating the synaptic uptake of the major excitatory neurotransmitter glutamate are differently expressed throughout the CNS and at the synaptic level. Although EAATs are crucial for normal excitatory neurotransmission, explorations into the ......The five excitatory amino acid transporters (EAAT1–5) mediating the synaptic uptake of the major excitatory neurotransmitter glutamate are differently expressed throughout the CNS and at the synaptic level. Although EAATs are crucial for normal excitatory neurotransmission, explorations...

  8. Effects of kainic acid lesions in lateral geniculate nucleus: activity dependence of retrograde axonal transport of fluorescent dyes.

    Science.gov (United States)

    Woodward, W R; Coull, B M

    1988-06-28

    Kainic acid lesions in the dorsal lateral geniculate nucleus of rats block the retrograde axonal transport of fluorescent dyes in corticogeniculate neurons without affecting the retrograde transport of D-aspartate or the orthograde transport of radiolabelled proteins in these neurons. This blocking of dye transport does not appear to be a consequence of kainic acid-induced damage to axon terminals in the geniculate since retinal ganglion cells are still able to transport dyes retrograde. A more likely explanation for these results is that fluorescent dye transport requires electrical activity in neurons, and elimination of the geniculate afferents to visual cortex reduces impulse traffic in cortical output fibers to a level below that required to support detectable dye transport. This interpretation is supported by the observation that kainic acid lesions also reduce retrograde transport of dyes in cortical neurons which project to the superior colliculus. Electrical stimulation in the subcortical white matter restores the transport of dye compounds in corticogeniculate neurons: evidence consistent with an activity-dependent mechanism of retrograde transport for these substances. These results provide evidence that axon terminals of retinal ganglion cells and corticogeniculate neurons survive in kainate-lesioned geniculates and are capable of normal neuronal function.

  9. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    Science.gov (United States)

    Scott, Durelle T.; Runkel, Robert L.; McKnight, Diane M.; Voelker, Bettina M.; Kimball, Briant A.; Carraway, Elizabeth R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  10. Carrier-mediated γ-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers.

    Science.gov (United States)

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-06-01

    The aim of the present study was to investigate the transport of γ-aminobutyric acid (GABA) across the basolateral membrane of intestinal cells. The proton-coupled amino acid transporter, hPAT1, mediates the influx of GABA and GABA mimetic drug substances such as vigabatrin and gaboxadol and the anticancer prodrug δ-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290 μM and V(max) of 75 pmol cm(-2) min(-1) and a low affinity system with a K(m) of approximately 64 mM and V(max) of 1.6 nmol cm(-2) min(-1). The high-affinity transporter is Na(+) and Cl(-) dependent. The substrate specificity of the high-affinity transporter was further studied and Gly-Sar, Leucine, gaboxadol, sarcosine, lysine, betaine, 5-hydroxythryptophan, proline and glycine reduced the GABA uptake to approximately 44-70% of the GABA uptake in the absence of inhibitor. Other substances such as β-alanine, GABA, 5-aminovaleric acid, taurine and δ-aminolevulinic acid reduced the basolateral GABA uptake to 6-25% of the uptake in the absence of inhibitor. Our results indicate that the distance between the charged amino- and acid-groups is particular important for inhibition of basolateral GABA uptake. Thus, there seems to be a partial substrate overlap between the basolateral GABA transporter and hPAT1, which may prove important for understanding drug interactions at the level of intestinal transport. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Patterns of free amino acids in German convenience food products: marked mismatch between label information and composition.

    Science.gov (United States)

    Hermanussen, M; Gonder, U; Jakobs, C; Stegemann, D; Hoffmann, G

    2010-01-01

    Free amino acids affect food palatability. As information on amino acids in frequently purchased pre-packaged food is virtually absent, we analyzed free amino acid patterns of 17 frequently purchased ready-to-serve convenience food products, and compared them with the information obtained from the respective food labels. Quantitative amino acid analysis was performed using ion-exchange chromatography. gamma-Aminobutyric acid (GABA) concentrations were verified using a stable isotope dilution gas chromatography/mass spectrometry (GC-MS) method. The patterns of free amino acids were compared with information obtained from food labels. An obvious mismatch between free amino acid patterns and food label information was detected. Even on considering that tomatoes and cereal proteins are naturally rich in glutamate, the concentrations of free glutamate outranged the natural concentration of this amino acid in several products, and strongly suggested artificial enrichment. Free glutamate was found to be elevated even in dishes that explicitly state 'no glutamate added'. Arginine was markedly elevated in lentils. Free cysteine was generally low, possibly reflecting thermal destruction of this amino acid during food processing. The meat and brain-specific dipeptide carnosine (CARN) was present in most meat-containing products. Some products did not contain detectable amounts of CARN in spite of meat content being claimed on the food labels. We detected GABA at concentrations that contribute significantly to the taste sensation. This investigation highlights a marked mismatch between food label information and food composition.

  12. Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Chantal Reigada

    2017-03-01

    Full Text Available Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP, with calculated IC50 values in the range of 4.6-10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920 being significantly less effective on the epimastigote stage (IC50 = 30.6 μM. The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the

  13. Modulatory effect of ascorbic acid on physiological responses of transported ostrich chicks

    Directory of Open Access Journals (Sweden)

    Minka N. Salka

    2012-02-01

    Full Text Available The aims of this study were to determine the modulating role of ascorbic acid (AA on rectal temperature (RT, heterophil to lymphocyte (H to L ratio and aberrant behaviours of ostrich chicks transported by road for 4 h during hot-dry conditions. Twenty ostrich chicks aged 2.5 months, of both sexes and belonging to the Red Neck breed, served as subjects of the study. The chicks were assigned randomly to AA-treated and control groups, consisting of 10 chicks each. The AA-treated group was administered orally with 100 mg/kg body weight of AA dissolved in 5 mL of sterile water 30 min before transportation, whilst the control group was given the equivalent of sterile water only. The thermal load (TL experienced in the vehicle during transportation fluctuated between 31 °C and 89 °C, as calculated from the ambient temperature and relative humidity. Transportation induced hyperthermia, lymphopenia, heterophilia and aberrant behaviours of pecking, wing fluffing and panting, which were ameliorated by AA administration. The relationships between the TL, journey duration and physiological variables of RT, H to L ratio and aberrant behaviours recorded during transportation were significantly and positively correlated in the control group. In AA-treated group the relationships were not significantly correlated. In conclusion, the results showed for the first time that AA ameliorated the adverse effects of stress caused by road transportation on the aberrant behaviours, RT and H to L ratio of ostrich chicks during the hot-dry season.

  14. INHIBITION OF MYCOLIC ACID TRANSPORT ACROSS THE MYCOBACTERIUM TUBERCULOSIS PLASMA MEMBRANE

    Science.gov (United States)

    Grzegorzewicz, Anna E.; Pham, Ha; Gundi, Vijay A. K. B.; Scherman, Michael S.; North, Elton J.; Hess, Tamara; Jones, Victoria; Gruppo, Veronica; Born, Sarah E. M.; Korduláková, Jana; Chavadi, Sivagami Sundaram; Morisseau, Christophe; Lenaerts, Anne J.; Lee, Richard E.; McNeil, Michael R.; Jackson, Mary

    2011-01-01

    New chemotherapeutics active against multidrug-resistant Mycobacterium tuberculosis (M. tb) are urgently needed. We report on the identification of an adamantyl urea compound displaying potent bactericidal activity against M. tb and a unique mode of action, namely the abolition of the translocation of mycolic acids from the cytoplasm where they are synthesized to the periplasmic side of the plasma membrane where they are transferred onto cell wall arabinogalactan or used in the formation of virulence-associated outer membrane trehalose-containing glycolipids. Whole genome sequencing of spontaneous resistant mutants of M. tb selected in vitro followed by genetic validation experiments revealed that our prototype inhibitor targets the inner membrane transporter, MmpL3. Conditional gene expression of mmpL3 in mycobacteria and analysis of inhibitor-treated cells validate MmpL3 as essential for mycobacterial growth and support the involvement of this transporter in the translocation of trehalose monomycolate across the plasma membrane. PMID:22344175

  15. Intracellular ascorbic acid inhibits transport of glucose by neurons, but not by astrocytes.

    Science.gov (United States)

    Castro, Maite A; Pozo, Miguel; Cortés, Christian; García, María de Los Angeles; Concha, Ilona I; Nualart, Francisco

    2007-08-01

    It has been demonstrated that glutamatergic activity induces ascorbic acid (AA) depletion in astrocytes. Additionally, different data indicate that AA may inhibit glucose accumulation in primary cultures of rat hippocampal neurons. Thus, our hypothesis postulates that AA released from the astrocytes during glutamatergic synaptic activity may inhibit glucose uptake by neurons. We observed that cultured neurons express the sodium-vitamin C cotransporter 2 and the facilitative glucose transporters (GLUT) 1 and 3, however, in hippocampal brain slices GLUT3 was the main transporter detected. Functional activity of GLUTs was confirmed by means of kinetic analysis using 2-deoxy-d-glucose. Therefore, we showed that AA, once accumulated inside the cell, inhibits glucose transport in both cortical and hippocampal neurons in culture. Additionally, we showed that astrocytes are not affected by AA. Using hippocampal slices, we observed that upon blockade of monocarboxylate utilization by alpha-cyano-4-hydroxycinnamate and after glucose deprivation, glucose could rescue neuronal response to electrical stimulation only if AA uptake is prevented. Finally, using a transwell system of separated neuronal and astrocytic cultures, we observed that glutamate can reduce glucose transport in neurons only in presence of AA-loaded astrocytes, suggesting the essential role of astrocyte-released AA in this effect.

  16. Evaluating remedial alternatives for an acid mine drainage stream: Application of a reactive transport model

    Science.gov (United States)

    Runkel, R.L.; Kimball, B.A.

    2002-01-01

    A reactive transport model based on one-dimensional transport and equilibrium chemistry is applied to synoptic data from an acid mine drainage stream. Model inputs include streamflow estimates based on tracer dilution, inflow chemistry based on synoptic sampling, and equilibrium constants describing acid/base, complexation, precipitation/dissolution, and sorption reactions. The dominant features of observed spatial profiles in pH and metal concentration are reproduced along the 3.5-km study reach by simulating the precipitation of Fe(III) and Al solid phases and the sorption of Cu, As, and Pb onto freshly precipitated iron-(III) oxides. Given this quantitative description of existing conditions, additional simulations are conducted to estimate the streamwater quality that could result from two hypothetical remediation plans. Both remediation plans involve the addition of CaCO3 to raise the pH of a small, acidic inflow from ???2.4 to ???7.0. This pH increase results in a reduced metal load that is routed downstream by the reactive transport model, thereby providing an estimate of post-remediation water quality. The first remediation plan assumes a closed system wherein inflow Fe(II) is not oxidized by the treatment system; under the second remediation plan, an open system is assumed, and Fe(II) is oxidized within the treatment system. Both plans increase instream pH and substantially reduce total and dissolved concentrations of Al, As, Cu, and Fe(II+III) at the terminus of the study reach. Dissolved Pb concentrations are reduced by ???18% under the first remediation plan due to sorption onto iron-(III) oxides within the treatment system and stream channel. In contrast, iron(III) oxides are limiting under the second remediation plan, and removal of dissolved Pb occurs primarily within the treatment system. This limitation results in an increase in dissolved Pb concentrations over existing conditions as additional downstream sources of Pb are not attenuated by

  17. Discovery of the first selective inhibitor of excitatory amino acid transporter subtype 1

    DEFF Research Database (Denmark)

    Jensen, Anders Asbjørn; Erichsen, Mette Navy; Nielsen, Christina Wøhlk

    2009-01-01

    The discovery of the first class of subtype-selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rat orthologue GLAST is reported. An opening structure-activity relationship of 25 analogues is presented that addresses the influence of substitutions at the 4......- and 7-positions of the parental skeleton 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile. The most potent analogue 1o displays high nanomolar inhibitory activity at EAAT1 and a >400-fold selectivity over EAAT2 and EAAT3, making it a highly valuable pharmacological tool....

  18. Potential Biomarker of L type Amino Acid Transporter 1 in Breast Cancer Progression

    International Nuclear Information System (INIS)

    Liang, Zhongxing; Cho, Heidi T.; Williams, Larry; Zhu, Aizhi; Liang, Ke; Huang, Ke; Wu, Hui; Jiang, Chunsu; Hong, Samuel; Crowe, Ronald; Goodman, Mark M.; Shim, Hyunsuk

    2011-01-01

    L type amino acid transporter 1 (LAT1) is essential for the transport of large neutral amino acids. However, its role in breast cancer growth remains largely unknown. The purpose of the study is to investigate whether LAT1 is a potential biomarker for the diagnosis and treatment of breast cancer. LAT1 mRNA and protein levels in breast cancer cell lines and tissues were analyzed. In addition, the effects of targeting LAT1 for the inhibition of breast cancer cell tumorigenesis were assessed with soft agar assay. The imaging of xenograft with 1 amino 3 [ 18F ]fluorocyclo butane 1 carboxylic acid ([ 18F ]FACBC) PET was assessed for its diagnostic biomarker potential. Normal breast tissue or low malignant cell lines expressed low levels of LAT1 mRNA and protein, while highly malignant cancer cell lines and high grade breast cancer tissue expressed high levels of LAT1. In addition, higher expression levels of LAT1 in breast cancer tissues were consistent with advanced stage breast cancer. Furtermore, the blockade of LAT1 with its inhibitor, 2 amino bicyclo[2.2.1]heptane 2 carboxylic acid (BCH), or the knockdown of LAT1 with siRNA, inhibited proliferation and tumorigenesis of breast cancer cells. A leucine analog, [ 18F ]FACBC, has been demonstrated to be an excellent PET tracer for the non invasive imaging og malignant breast cancer using an orthotopic animal model. The overexpression of LAT1 is required for the progression of breast cancer. LAT1 represents a potential biomarker for therapy and diagnosis of breast cancer. [ 18F ]FACBC that correlates with LAT1 function is a potential PET tracer for malignant breast tumor imaging

  19. Functional characterization of folic acid transport in the intestine of the laying hen using the everted intestinal sac model.

    Science.gov (United States)

    Tactacan, G B; Rodriguez-Lecompte, J C; Karmin, O; House, J D

    2011-01-01

    Absorption at the level of the intestine is likely a primary regulatory mechanism for the deposition of dietary supplemented folic acid into the chicken egg. Therefore, factors affecting the intestinal transport of folic acid in the laying hen may influence the level of egg folate concentrations. To this end, a series of experiments using intestinal everted sacs were conducted to characterize intestinal folic acid absorption processes in laying hens. Effects of naturally occurring folate derivatives (5-methyl and 10-formyltetrahydrofolate) as well as heme on folic acid absorption were also investigated. Folic acid absorption was measured based on the rate of uptake of (3)H-labeled folic acid in the everted sac from various segments of the small and large intestines. Folic acid concentration, incubation length, and pH condition were optimized before the performance of uptake experiments. The distribution profile of folic acid transport along the intestine was highest in the upper half of the small intestine. Maximum uptake rate (nmol·100 g tissue(-1)·min(-1)) was observed in the duodenum (20.6 ± 1.9) and jejunum (22.3 ± 2.0) and decreased significantly in the ileum (15.3 ± 1.1) and cecum (9.3 ± 0.9). Transport increased proportionately (P methyl and 10-formyltetrahydrofolate as well as heme impeded folic acid uptake, reducing intestinal folic acid absorption when added at concentrations ranging from 0 to 100 µM. Overall, these data indicated the presence of a folic acid transport system in the entire intestine of the laying hen. Uptake of folic acid in the cecum raises the likelihood of absorption of bacterial-derived folate.

  20. The actions of exogenous leucine on mTOR signalling and amino acid transporters in human myotubes

    Directory of Open Access Journals (Sweden)

    Cameron-Smith David

    2011-06-01

    Full Text Available Abstract Background The branched-chain amino acid (BCAA leucine has been identified to be a key regulator of skeletal muscle anabolism. Activation of anabolic signalling occurs via the mammalian target of rapamycin (mTOR through an undefined mechanism. System A and L solute carriers transport essential amino acids across plasma membranes; however it remains unknown whether an exogenous supply of leucine regulates their gene expression. The aim of the present study was to investigate the effects of acute and chronic leucine stimulation of anabolic signalling and specific amino acid transporters, using cultured primary human skeletal muscle cells. Results Human myotubes were treated with leucine, insulin or co-treated with leucine and insulin for 30 min, 3 h or 24 h. Activation of mTOR signalling kinases were examined, together with putative nutrient sensor human vacuolar protein sorting 34 (hVps34 and gene expression of selected amino acid transporters. Phosphorylation of mTOR and p70S6K was transiently increased following leucine exposure, independently to insulin. hVps34 protein expression was also significantly increased. However, genes encoding amino acid transporters were differentially regulated by insulin and not leucine. Conclusions mTOR signalling is transiently activated by leucine within human myotubes independently of insulin stimulation. While this occurred in the absence of changes in gene expression of amino acid transporters, protein expression of hVps34 increased.

  1. Importance of Terminal Amino Acid Residues to the Transport of Oligopeptides across the Caco-2 Cell Monolayer.

    Science.gov (United States)

    Ding, Long; Wang, Liying; Yu, Zhipeng; Ma, Sitong; Du, Zhiyang; Zhang, Ting; Liu, Jingbo

    2017-09-06

    The objective of this paper was to investigate the effects of terminal amino acids on the transport of oligopeptides across the Caco-2 cell monolayer. Ala-based tetra- and pentapeptides were designed, and the N- or C-terminal amino acid residues were replaced by different amino acids. The results showed that the oligopeptides had a wide range of transport permeability across the Caco-2 cell monolayer and could be divided into four categories: non-/poor permeability, low permeability, intermediate permeability, and good permeability. Tetrapeptides with N-terminal Leu, Pro, Ile, Cys, Met, and Val or C-terminal Val showed the highest permeability, with apparent permeability coefficient (P app ) values over 10 × 10 -6 cm/s (p transport of tetrapeptides. Pentapeptides with N- or C-terminal Tyr also showed high permeability levels, with P app values of about 10 × 10 -6 cm/s. The amino acids Glu, Asn, and Thr at the N terminus or Lys, Asp, and Arg at the C terminus were also beneficial for the transport of tetra- and pentapeptides, with P app values ranging from 1 × 10 -6 to 10 × 10 -6 cm/s. In addition, peptides with amino acids replaced at the N terminus generally showed higher permeability than those with amino acids replaced at the C terminus (p transport of oligopeptides across the Caco-2 cell monolayer.

  2. Potential role of sea spray generation in the atmospheric transport of perfluorocarboxylic acids.

    Science.gov (United States)

    Webster, Eva; Ellis, David A

    2010-08-01

    The observed environmental concentrations of perfluorooctanoic acid (PFOA) and its conjugate base (PFO) in remote regions such as the Arctic have been primarily ascribed to the atmospheric transport and degradation of fluorotelomer alcohols (FTOHs) and to direct PFO transport in ocean currents. These mechanisms are each capable of only partially explaining observations. Transport within marine aerosols has been proposed and may explain transport over short distances but will contribute little over longer distances. However, PFO(A) has been shown to have a very short half-life in aqueous aerosols and thus sea spray was proposed as a mechanism for the generation of PFOA in the gas phase from PFO in a water body. Using the observed PFO concentrations in oceans of the Northern Hemisphere and estimated spray generation rates, this mechanism is shown to have the potential for contributing large amounts of PFOA to the atmosphere and may therefore contribute significantly to the concentrations observed in remote locations. Specifically, the rate of PFOA release into the gas phase from oceans in the Northern Hemisphere is calculated to be potentially comparable to global stack emissions to the atmosphere. The subsequent potential for atmospheric degradation of PFOA and its global warming potential are considered. Observed isomeric ratios and predicted atmospheric concentrations due to FTOH degradation are used to elucidate the likely relative importance of transport pathways. It is concluded that gas phase PFOA released from oceans may help to explain observed concentrations in remote regions. The model calculations performed in the present study strongly suggest that oceanic aerosol and gas phase field monitoring is of vital importance to obtain a complete understanding of the global dissemination of PFCAs. Copyright 2010 SETAC

  3. Differences in acidity of apples are probably mainly caused by a malic acid transporter gene on LG16

    NARCIS (Netherlands)

    Khan, S.A.; Beekwilder, J.; Schaart, J.G.; Mumm, R.; Soriano, J.M.; Jacobsen, E.; Schouten, H.J.

    2013-01-01

    Acidity has profound effects on the taste of apples (Malus × domestica). Malic acid is the predominant organic acid in apples. Differences in malic acid content are caused by differences in accumulation of malic acid in the vacuole. This accumulation may be caused by a gene that is responsible for

  4. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family.

    Science.gov (United States)

    Mackenzie, Bryan; Erickson, Jeffrey D

    2004-02-01

    The sodium-coupled neutral amino acid transporters (SNAT) of the SLC38 gene family resemble the classically-described System A and System N transport activities in terms of their functional properties and patterns of regulation. Transport of small, aliphatic amino acids by System A subtypes (SNAT1, SNAT2, and SNAT4) is rheogenic and pH sensitive. The System N subtypes SNAT3 and SNAT5 also countertransport H(+), which may be key to their operation in reverse, and have narrower substrate profiles than do the System A subtypes. Glutamine emerges as a favored substrate throughout the family, except for SNAT4. The SLC38 transporters undoubtedly play many physiological roles including the transfer of glutamine from astrocyte to neuron in the CNS, ammonia detoxification and gluconeogenesis in the liver, and the renal response to acidosis. Probing their regulation has revealed additional roles, and recent work has considered SLC38 transporters as therapeutic targets in neoplasia.

  5. Changes of amino acid concentrations in the rat vestibular nuclei after inferior cerebellar peduncle transection.

    Science.gov (United States)

    Sun, Yizhe; Godfrey, Donald A; Godfrey, Timothy G; Rubin, Allan M

    2007-02-15

    Although there is a close relationship between the vestibular nuclear complex (VNC) and the cerebellum, little is known about the contribution of cerebellar inputs to amino acid neurotransmission in the VNC. Microdissection of freeze-dried brain sections and high-performance liquid chromatography (HPLC) were combined to measure changes of amino acid concentrations within the VNC of rats following transection of the cerebellovestibular connections in the inferior cerebellar peduncle. Distributions of 12 amino acids within the VNC at 2, 4, 7, and 30 days after surgery were compared with those for control and sham-lesioned rats. Concentrations of gamma-aminobutyric acid (GABA) decreased by 2 days after unilateral peduncle transection in nearly all VNC regions on the lesioned side and to lesser extents on the unlesioned side and showed partial recovery up to 30 days postsurgery. Asymmetries between the two sides of the VNC were maintained through 30 days. Glutamate concentrations were reduced bilaterally in virtually all regions of the VNC by 2 days and showed complete recovery in most VNC regions by 30 days. Glutamine concentrations increased, starting 2 days after surgery, especially on the lesioned side, so that there was asymmetry generally opposite that of glutamate. Concentrations of taurine, aspartate, and glycine also underwent partially reversible changes after peduncle transection. The results suggest that GABA and glutamate are prominent neurotransmitters in bilateral projections from the cerebellum to the VNC and that amino acid metabolism in the VNC is strongly influenced by its cerebellar connections.

  6. The long and winding road: transport pathways for amino acids in Arabidopsis seeds.

    Science.gov (United States)

    Karmann, Julia; Müller, Benedikt; Hammes, Ulrich Z

    2018-03-16

    certain plants, e.g., legumes as a resource to support the growth of the seedling after germination. The support of the embryo depends on transport processes that occur between the mother plant and the seed tissues including the embryo. In this review, we will focus on the processes of unloading amino acids from the phloem and their post-phloem transport. We will further highlight similarities between amino acid transport and the transport of the main assimilate and osmolyte, sucrose. Finally, we will discuss similarities and differences between different plant species in terms of structural aspects but for the molecular aspects we are almost exclusively focusing on Arabidopsis. Fig. 1 Vascularization of the Arabidopsis ovule and seed. Plants expressing ER-localized mCherry under control of the companion cell-specific SUC2 promoter and ER-localized GFP under control of the sieve element marker PD1 as described (Müller et al. 2015) are shown to visualize the phloem in the funiculus and the chalazal regions. a Overview over an ovule. FG: female gametophyte. b A magnification of the region marked by a square in panel a. c Overview over a seed. ES: endosperm; E: embryo. d A magnification of the region marked by a square in panel c. The arrows in b and d point to the terminal companion cell and arrowheads to terminal sieve elements.

  7. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    Science.gov (United States)

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.

    2012-01-01

    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  8. Effect of Maternal Obesity on Fetal Growth and Expression of Placental Fatty Acid Transporters.

    Science.gov (United States)

    Ye, Kui; Li, Li; Zhang, Dan; Li, Yi; Wang, Hai Qing; Lai, Han Lin; Hu, Chuan Lai

    2017-12-15

    To explore the effects of maternal high-fat (HF) diet-induced obesity on fetal growth and the expression of placental nutrient transporters. Maternal obesity was established in rats by 8 weeks of pre-pregnancy fed HF diet, while rats in the control group were fed normal (CON) diet. Diet-induced obesity (DIO) rats and diet-induced obesity-resistant (DIR) rats were selected according to body weight gain over this period. After copulation, the CON rats were divided into two groups: switched to HF diet (CON-HF group) or maintained on the CON diet (CON-CON group). The DIO rats and DIR rats were maintained on the HF diet throughout pregnancy. Pregnant rats were euthanized at day 21 gestation, fetal and placental weights were recorded, and placental tissue was collected. Reverse transcription-polymerase chain reaction was used to determine mRNA expression of placental nutrient transporters. Protein expression was determined by Western blot. Average fetal weight of DIO dams was reduced by 6.9%, and the placentas of CON-HF and DIO dams were significantly heavier than the placentas of CON-CON and DIR dams at day 21 of gestation (pobesity induced by a HF diet led to intrauterine growth retardation and down-regulated the expression of placental fatty acid transporters.

  9. Humic Acid Confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Khaleda, Laila; Park, Hee Jin; Yun, Dae-Jin; Jeon, Jong-Rok; Kim, Min Gab; Cha, Joon-Yung; Kim, Woe-Yeon

    2017-12-31

    Excessive salt disrupts intracellular ion homeostasis and inhibits plant growth, which poses a serious threat to global food security. Plants have adapted various strategies to survive in unfavorable saline soil conditions. Here, we show that humic acid (HA) is a good soil amendment that can be used to help overcome salinity stress because it markedly reduces the adverse effects of salinity on Arabidopsis thaliana seedlings. To identify the molecular mechanisms of HA-induced salt stress tolerance in Arabidopsis, we examined possible roles of a sodium influx transporter HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1). Salt-induced root growth inhibition in HKT1 overexpressor transgenic plants (HKT1-OX) was rescued by application of HA, but not in wild-type and other plants. Moreover, salt-induced degradation of HKT1 protein was blocked by HA treatment. In addition, the application of HA to HKT1-OX seedlings led to increased distribution of Na+ in roots up to the elongation zone and caused the reabsorption of Na+ by xylem and parenchyma cells. Both the influx of the secondary messenger calcium and its cytosolic release appear to function in the destabilization of HKT1 protein under salt stress. Taken together, these results suggest that HA could be applied to the field to enhance plant growth and salt stress tolerance via post-transcriptional control of the HKT1 transporter gene under saline conditions.

  10. Uranium (VI) transport in saturated heterogeneous media: Influence of kaolinite and humic acid.

    Science.gov (United States)

    Chen, Chong; Zhao, Kang; Shang, Jianying; Liu, Chongxuan; Wang, Jin; Yan, Zhifeng; Liu, Kesi; Wu, Wenliang

    2018-05-07

    Natural aquifers typically exhibit a variety of structural heterogeneities. However, the effect of mineral colloids and natural organic matter on the transport behavior of uranium (U) in saturated heterogeneous media are not totally understood. In this study, heterogeneous column experiments were conducted, and the constructed columns contained a fast-flow domain (FFD) and a slow-flow domain (SFD). The effect of kaolinite, humic acid (HA), and kaolinite/HA mixture on U(VI) retention and release in saturated heterogeneous media was examined. Media heterogeneity significantly influenced U fate and transport behavior in saturated subsurface environment. The presence of kaolinite, HA, and kaolinite/HA enhanced the mobility of U in heterogeneous media, and the mobility of U was the highest in the presence of kaolinite/HA and the lowest in the presence of kaolinite. In the presence of kaolinite, there was no difference in the amount of U released from the FFD and SFD. However, in the presence of HA and kaolinite/HA, a higher amount of U was released from the FFD. The findings in this study showed that medium structure and mineral colloids, as well as natural organic matter in the aqueous phase had significant effects on U transport and fate in subsurface environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Cluster shading modifies amino acids in grape (Vitis vinifera L.) berries in a genotype- and tissue-dependent manner.

    Science.gov (United States)

    Guan, Le; Wu, Benhong; Hilbert, Ghislaine; Li, Shaohua; Gomès, Eric; Delrot, Serge; Dai, Zhanwu

    2017-08-01

    Amino acid composition of the grape berry at harvest is important for wine making. The present study investigates the complex interplay between tissue, cultivar and light conditions that determine berry amino acid content. Twenty amino acids were assessed in the berry skin and pulp of two grape cultivars (Gamay Noir and Gamay Fréaux), grown under either light exposure or cluster shading conditions. In all samples, cluster shading significantly reduced most amino acids, except gamma-aminobutyric acid (GABA) and phenylalanine. However, the magnitude of the decrease was stronger in the skin (67.0% decrease) than in the pulp (30.4%) and stronger in cv. Gamay Noir (69.7%) than in Gamay Fréaux (30.7%). Cluster shading also significantly modified amino acid composition by decreasing the proline content while increasing the GABA content. These results are of oenological interest for shaping the amino acid composition of the must and improving wine quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluating Hepatobiliary Transport with 18F-Labeled Bile Acids: The Effect of Radiolabel Position and Bile Acid Structure on Radiosynthesis and In Vitro and In Vivo Performance

    Directory of Open Access Journals (Sweden)

    Stef De Lombaerde

    2018-01-01

    Full Text Available Introduction. An in vivo determination of bile acid hepatobiliary transport efficiency can be of use in liver disease and preclinical drug development. Given the increased interest in bile acid Positron Emission Tomography- (PET- imaging, a further understanding of the impact of 18-fluorine substitution on bile acid handling in vitro and in vivo can be of significance. Methods. A number of bile acid analogues were conceived for nucleophilic substitution with [18F]fluoride: cholic acid analogues of which the 3-, 7-, or 12-OH function is substituted with a fluorine atom (3α-[18F]FCA; 7β-[18F]FCA; 12β-[18F]FCA; a glycocholic and chenodeoxycholic acid analogue, substituted on the 3-position (3β-[18F]FGCA and 3β-[18F]FCDCA, resp.. Uptake by the bile acid transporters NTCP and OATP1B1 was evaluated with competition assays in transfected CHO and HEK cell lines and efflux by BSEP in membrane vesicles. PET-scans with the tracers were performed in wild-type mice (n=3 per group: hepatobiliary transport was monitored and compared to a reference tracer, namely, 3β-[18F]FCA. Results. Compounds 3α-[18F]FCA, 3β-[18F]FGCA, and 3β-[18F]FCDCA were synthesized in moderate radiochemical yields (4–10% n.d.c. and high radiochemical purity (>99%; 7β-[18F]FCA and 12β-[18F]FCA could not be synthesized and included further in this study. In vitro evaluation showed that 3α-FCA, 3β-FGCA, and 3β-FCDCA all had a low micromolar Ki-value for NTCP, OATP1B1, and BSEP. In vivo, 3α-[18F]FCA, 3β-[18F]FGCA, and 3β-[18F]FCDCA displayed hepatobiliary transport with varying efficiency. A slight yet significant difference in uptake and efflux rate was noticed between the 3α-[18F]FCA and 3β-[18F]FCA epimers. Conjugation of 3β-[18F]FCA with glycine had no significant effect in vivo. Compound 3β-[18F]FCDCA showed a significantly slower hepatic uptake and efflux towards gallbladder and intestines. Conclusion. A set of 18F labeled bile acids was synthesized that are

  13. Ascorbic acid transported by sodium-dependent vitamin C transporter 2 stimulates steroidogenesis in human choriocarcinoma cells.

    Science.gov (United States)

    Wu, Ximei; Iguchi, Takuma; Itoh, Norio; Okamoto, Kousuke; Takagi, Tatsuya; Tanaka, Keiichi; Nakanishi, Tsuyoshi

    2008-01-01

    Reduced vitamin C [ascorbic acid (AA)], which is taken up into cells by sodium-dependent vitamin C transporter (SVCT) 1 and 2, is believed to be important for hormone synthesis, but its role in generating placental steroids needed to maintain pregnancy and fetal development is not clear. To determine the steroidogenic effect of AA and the role of SVCT2 in AA-induced steroidogenesis, we tested the effects of AA treatment and SVCT2 knockdown on steroidogenesis in human choriocarcinoma cell lines. AA treatment of JEG-3, BeWo, and JAR cells for 48-h dose dependently increased progesterone and estradiol levels. In JEG-3 cells, AA increased the mRNA expression of P450 cholesterol side-chain cleavage enzyme, 3beta-hydroxysteroid dehydrogenase type 1, and aromatase, key enzymes for steroidogenesis. Stable knockdown of SVCT2 in JEG-3 cells by retrovirally mediated RNA interference decreased the maximal velocity of AA uptake by approximately 50%, but apparent affinity values were not affected. SVCT2 knockdown in JEG-3 cells significantly suppressed the AA-induced mRNA expression of placental P450 cholesterol side-chain cleavage enzyme, 3beta-hydroxysteroid dehydrogenase type 1, and aromatase. This suppression of the AA-induced mRNA expression of steroidogenic enzymes subsequently decreased progesterone and estradiol production. In addition, inhibition of MAPK kinase-ERK signaling, which is a major pathway for AA-regulated gene expression, failed to affect AA-induced steroidogenesis. Our observations indicate that SVCT2-mediated AA uptake into cells is necessary for AA-induced steroidogenesis in human choriocarcinoma cell, but MAPK kinase-ERK signaling is not involved in AA-induced steroidogenesis.

  14. In Vivo Performance of a Novel Fluorinated Magnetic Resonance Imaging Agent for Functional Analysis of Bile Acid Transport

    Science.gov (United States)

    2015-01-01

    A novel trifluorinated cholic acid derivative, CA-lys-TFA, was designed and synthesized for use as a tool to measure bile acid transport noninvasively using magnetic resonance imaging (MRI). In the present study, the in vivo performance of CA-lys-TFA for measuring bile acid transport by MRI was investigated in mice. Gallbladder CA-lys-TFA content was quantified using MRI and liquid chromatography/tandem mass spectrometry. Results in wild-type (WT) C57BL/6J mice were compared to those in mice lacking expression of Asbt, the ileal bile acid transporter. 19F signals emanating from the gallbladders of WT mice 7 h after oral gavage with 150 mg/kg CA-lys-TFA were reproducibly detected by MRI. Asbt-deficient mice administered the same dose had undetectable 19F signals by MRI, and gallbladder bile CA-lys-TFA levels were 30-fold lower compared to WT animals. To our knowledge, this represents the first report of in vivo imaging of an orally absorbed drug using 19F MRI. Fluorinated bile acid analogues have potential as tools to measure and detect abnormal bile acid transport by MRI. PMID:24708306

  15. Amino acid transport system - A substrate predicts the therapeutic effects of particle radiotherapy.

    Directory of Open Access Journals (Sweden)

    Tomoya Uehara

    Full Text Available L-[methyl-11C]Methionine (11C-Met is useful for estimating the therapeutic efficacy of particle radiotherapy at early stages of the treatment. Given the short half-life of 11C, the development of longer-lived 18F- and 123I-labeled probes that afford diagnostic information similar to 11C-Met, are being sought. Tumor uptake of 11C-Met is involved in many cellular functions such as amino acid transport System-L, protein synthesis, and transmethylation. Among these processes, since the energy-dependent intracellular functions involved with 11C-Met are more reflective of the radiotherapeutic effects, we evaluated the activity of the amino acid transport System-A as an another energy-dependent cellular function in order to estimate radiotherapeutic effects. In this study, using a carbon-ion beam as the radiation source, the activity of System-A was evaluated by a specific System-A substrate, alpha-[1-14C]-methyl-aminoisobutyric acid (14C-MeAIB. Cellular growth and the accumulation of 14C-MeAIB or 14C-Met were evaluated over time in vitro in cultured human salivary gland (HSG tumor cells (3-Gy or in vivo in murine xenografts of HSG tumors (6- or 25-Gy before and after irradiation with the carbon-ion beam. Post 3-Gy irradiation, in vitro accumulation of 14C-Met and 14C-MeAIB decreased over a 5-day period. In xenografts of HSG tumors in mice, tumor re-growth was observed in vivo on day-10 after a 6-Gy irradiation dose, but no re-growth was detected after the 25-Gy irradiation dose. Consistent with the growth results, the in vivo tumor accumulation of 14C-MeAIB did not decrease after the 6-Gy irradiation dose, whereas a significant decrease was observed after the 25-Gy irradiation dose. These results indicate that the activity of energy dependent System-A transporter may reflect the therapeutic efficacy of carbon-ion radiotherapy and suggests that longer half-life radionuclide-labeled probes for System-A may also provide widely available probes to

  16. Fatty acid transport protein 1 regulates retinoid metabolism and photoreceptor development in mouse retina.

    Directory of Open Access Journals (Sweden)

    Aurélie Cubizolle

    Full Text Available In retinal pigment epithelium (RPE, RPE65 catalyzes the isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol in the visual cycle and controls the rhodopsin regeneration rate. However, the mechanisms by which these processes are regulated are still unclear. Fatty Acid Transport Protein 1 (FATP1 is involved in fatty acid uptake and lipid metabolism in a variety of cell types. FATP1 co-localizes with RPE65 in RPE and inhibits its isomerase activity in vitro. Here, we further investigated the role of FATP1 in the visual cycle using transgenic mice that overexpress human FATP1 specifically in the RPE (hFATP1TG mice. The mice displayed no delay in the kinetics of regeneration of the visual chromophore 11-cis-retinal after photobleaching and had no defects in light sensitivity. However, the total retinoid content was higher in the hFATP1TG mice than in wild type mice, and the transgenic mice also displayed an age-related accumulation (up to 40% of all-trans-retinal and retinyl esters that was not observed in control mice. Consistent with these results, hFATP1TG mice were more susceptible to light-induced photoreceptor degeneration. hFATP1 overexpression also induced an ~3.5-fold increase in retinosome autofluorescence, as measured by two-photon microscopy. Interestingly, hFATP1TG retina contained ~25% more photoreceptor cells and ~35% longer outer segments than wild type mice, revealing a non-cell-autonomous effect of hFATP1 expressed in the RPE. These data are the first to show that FATP1-mediated fatty acid uptake in the RPE controls both retinoid metabolism in the outer retina and photoreceptor development.

  17. Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruichang [Chinese Academy of Sciences, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science (China); Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen [Chinese Academy of Sciences, Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn; Christie, Peter [Chinese Academy of Sciences, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science (China)

    2015-04-15

    The transport behavior of titanium dioxide nanoparticles (TiO{sub 2} NPs, 30 nm in diameter) was studied in well-defined porous media composed of clean quartz sand over a range of solution chemistry under acidic conditions. Transport of TiO{sub 2} NPs was dramatically enhanced by humic substances (HS) at acidic pH (4.0, 5.0 and 6.0), even at a low HS concentration of 0.5 mg L{sup −1}. Facilitated transport of TiO{sub 2} NPs was likely attributable to the increased stability of TiO{sub 2} NPs and repulsive interaction between TiO{sub 2} NPs and quartz sands due to the adsorbed HS. The mobility of TiO{sub 2} NPs was also increased with increasing pH from 4.0 to 6.0. Although transport of TiO{sub 2} NPs was insensitive to low ionic strength, it was significantly inhibited by high concentrations of NaCl and CaCl{sub 2}. In addition, calculated Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction energy indicated that high energy barriers were responsible for the high mobility of TiO{sub 2} NPs, while the secondary energy minimum could play an important role in the retention of TiO{sub 2} NPs at 100 mmol L{sup −1} NaCl. Straining and gravitational settlement of larger TiO{sub 2} NPs aggregates at 1 mg L{sup −1} HS, pH 5.0, and 2 mmol L{sup −1} CaCl{sub 2} could be responsible for the significant retention even in the presence of high energy barriers. Moreover, more favorable interaction between approaching TiO{sub 2} NPs and TiO{sub 2} NPs that had been already deposited on the collector resulted in a ripening-shape breakthrough curve at 2 mmol L{sup −1} CaCl{sub 2}. Overall, a combination of mechanisms including DLVO-type force, straining, and physical filtration was involved in the retention of TiO{sub 2} NPs over the range of solution chemistry examined in this study.

  18. The ABC transporter Rv1272c of Mycobacterium tuberculosis enhances the import of long-chain fatty acids in Escherichia coli.

    Science.gov (United States)

    Martin, Audrey; Daniel, Jaiyanth

    2018-02-05

    Mycobacterium tuberculosis (Mtb), which causes tuberculosis, is capable of accumulating triacylglycerol (TAG) by utilizing fatty acids from host cells. ATP-binding cassette (ABC) transporters are involved in transport processes in all organisms. Among the classical ABC transporters in Mtb none have been implicated in fatty acid import. Since the transport of fatty acids from the host cell is important for dormancy-associated TAG synthesis in the pathogen, mycobacterial ABC transporter(s) could potentially be involved in this process. Based on sequence identities with a bacterial ABC transporter that mediates fatty acid import for TAG synthesis, we identified Rv1272c, a hitherto uncharacterized ABC-transporter in Mtb that also shows sequence identities with a plant ABC transporter involved in fatty acid transport. We expressed Rv1272c in E. coli and show that it enhances the import of radiolabeled fatty acids. We also show that Rv1272c causes a significant increase in the metabolic incorporation of radiolabeled long-chain fatty acids into cardiolipin, a tetra-acylated phospholipid, and phosphatidylglycerol in E. coli. This is the first report on the function of Rv1272c showing that it displays a long-chain fatty acid transport function. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Polymer-immobilized liquid membrane transport of palladium (II) from nitric acid media using some thia extractants as novel receptors

    International Nuclear Information System (INIS)

    Shukla, J.P.

    1996-01-01

    Carrier-facilitated co-transport of Pd (II) from dilute acidic nitrate solutions was examined across a polymer-immobilized liquid membrane (PILM) deploying S 6 -pentano-36 (S 6 -P-36), bis-(2-ethylhexyl) sulfoxide (BESO) and bis (2, 4, 4 trimethyl pentyl) monothio phosphinic acid (Cyanex 302) as the novel receptors. The study carried out to distinguish the driving force between H + and NO 3 - ion for the cation transport across PILM, indicated that NO 3 - ion not the H + ion seems to be the driving force for Pd (II) transport under the present conditions for both BESO-PILM and S 6 -P-36-PILM systems. Recovery of palladium from acidic process effluents generated in Purex reprocessing of spent fuels was successfully achieved. 39 refs., 8 figs., 7 tabs

  20. Evaluation of [1-11C]-α-aminoisobutyric acid for tumor detection and amino acid transport measurement: Spontaneous canine tumor studies

    International Nuclear Information System (INIS)

    Bigler, R.E.; Zanzonico, P.B.; Schmall, B.; Conti, P.S.; Dahl, J.R.; Rothman, L.; Sgouros, G.

    1985-01-01

    Alpha-aminoisobutyric acid (AIB) or α-methyl alanine, is a nonmetabolized amino acid treansported into cells particularly malignant cells, predominantly by the ''A'' amino acid transport system. Since it is not metabolized, [1- 11 C]-AIB can be used to quantify A-type amino acid transport into cells using a relatively simple compartmental model and quantitative imaging procedures (e.g. positron tomography). The tissue distribution of [1- 11 C]-AIB was determined in six dogs bearing spontaneous tumors, including lymphosarcoma, osteogenic sarcoma, mammary carcinoma, and adenocarcinoma. Quantitative imaging with tissue radioassay confirmation at necropsy showed poor to excellent tumor localization. However, in all cases the concentrations achieved appear adequate for amino acid transport measurement at known tumor locations. The observed low normal brain (due to blood-brain barrier exclusion) and high (relative to brain) tumor concentrations of [1- 11 C]-AIB suggest that this agent may prove effective for the early detection of human brain tumors. (orig.)

  1. SLC6A1 Mutation and Ketogenic Diet in Epilepsy With Myoclonic-Atonic Seizures.

    Science.gov (United States)

    Palmer, Samantha; Towne, Meghan C; Pearl, Phillip L; Pelletier, Renee C; Genetti, Casie A; Shi, Jiahai; Beggs, Alan H; Agrawal, Pankaj B; Brownstein, Catherine A

    2016-11-01

    Epilepsy with myoclonic-atonic seizures, also known as myoclonic-astatic epilepsy or Doose syndrome, has been recently linked to variants in the SLC6A1 gene. Epilepsy with myoclonic-atonic seizures is often refractory to antiepileptic drugs, and the ketogenic diet is known for treating medically intractable seizures, although the mechanism of action is largely unknown. We report a novel SLC6A1 variant in a patient with epilepsy with myoclonic-atonic seizures, analyze its effects, and suggest a mechanism of action for the ketogenic diet. We describe a ten-year-old girl with epilepsy with myoclonic-atonic seizures and a de novo SLC6A1 mutation who responded well to the ketogenic diet. She carried a c.491G>A mutation predicted to cause p.Cys164Tyr amino acid change, which was identified using whole exome sequencing and confirmed by Sanger sequencing. High-resolution structural modeling was used to analyze the likely effects of the mutation. The SLC6A1 gene encodes a transporter that removes gamma-aminobutyric acid from the synaptic cleft. Mutations in SLC6A1 are known to disrupt the gamma-aminobutyric acid transporter protein 1, affecting gamma-aminobutyric acid levels and causing seizures. The p.Cys164Tyr variant found in our study has not been previously reported, expanding on the variants linked to epilepsy with myoclonic-atonic seizures. A 10-year-old girl with a novel SLC6A1 mutation and epilepsy with myoclonic-atonic seizures had an excellent clinical response to the ketogenic diet. An effect of the diet on gamma-aminobutyric acid reuptake mediated by gamma-aminobutyric acid transporter protein 1 is suggested. A personalized approach to epilepsy with myoclonic-atonic seizures patients carrying SLC6A1 mutation and a relationship between epilepsy with myoclonic-atonic seizures due to SLC6A1 mutations, GABAergic drugs, and the ketogenic diet warrants further exploration. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. TNF-α stimulates System A amino acid transport in primary human trophoblast cells mediated by p38 MAPK signaling.

    Science.gov (United States)

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2015-10-01

    Maternal obesity and gestational diabetes mellitus (GDM) increase the risk of delivering infants that are large for gestational age with greater adiposity, who are prone to the development of metabolic disease in childhood and beyond. These maternal conditions are also associated with increased levels of the proinflammatory cytokine TNF-α in maternal tissues and the placenta. Recent evidence suggests that changes in placental amino acid transport contribute to altered fetal growth. TNF-α was previously shown to stimulate System A amino acid transport in primary human trophoblasts (PHTs), however the molecular mechanisms remain unknown. In this study, we tested the hypothesis that TNF-α regulates amino acid uptake in cultured PHTs by a mitogen-activated protein kinase (MAPK)-dependent mechanism. Treatment of PHTs with TNF-α significantly increased System A amino acid transport, as well as Erk and p38 MAPK signaling. Pharmacological antagonism of p38, but not Erk MAPK activity, inhibited TNF-α stimulated System A activity. Silencing of p38 MAPK using siRNA transfections prevented TNF-α stimulated System A transport in PHTs. TNF-α significantly increased the protein expression of System A transporters SNAT1 and SNAT2, but did not affect their mRNA expression. The effects of TNF-α on SNAT1 and SNAT2 protein expression were reversed by p38 MAPK siRNA silencing. In conclusion, TNF-α regulates System A activity through increased SNAT1 and SNAT2 transporter protein expression in PHTs. These findings suggest that p38 MAPK may represent a critical mechanistic link between elevated proinflammatory cytokines and increased placental amino acid transport in obese and GDM pregnancies associated with fetal overgrowth. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  3. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression

    DEFF Research Database (Denmark)

    Wang, Qian; Bailey, Charles G; Ng, Cynthia

    2011-01-01

    was sufficient to decrease cell growth and mTORC1 signaling in prostate cancer cells. These cells maintained levels of amino acid influx through androgen receptor-mediated regulation of LAT3 expression and ATF4 regulation of LAT1 expression after amino acid deprivation. These responses remained intact in primary......L-Type amino acid transporters such as LAT1 and LAT3 mediate the uptake of essential amino acids. Here, we report that prostate cancer cells coordinate the expression of LAT1 and LAT3 to maintain sufficient levels of leucine needed for mTORC1 signaling and cell growth. Inhibiting LAT function...... prostate cancer, as indicated by high levels of LAT3 in primary disease, and by increased levels of LAT1 after hormone ablation and in metastatic lesions. Taken together, our results show how prostate cancer cells respond to demands for increased essential amino acids by coordinately activating amino acid...

  4. On the Evolution of Specificity in Members of the Yeast Amino Acid Transporter Family as Parts of Specific Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Christos Gournas

    2018-05-01

    Full Text Available In the recent years, molecular modeling and substrate docking, coupled with biochemical and genetic analyses have identified the substrate-binding residues of several amino acid transporters of the yeast amino acid transporter (YAT family. These consist of (a residues conserved across YATs that interact with the invariable part of amino acid substrates and (b variable residues that interact with the side chain of the amino acid substrate and thus define specificity. Secondary structure sequence alignments showed that the positions of these residues are conserved across YATs and could thus be used to predict the specificity of YATs. Here, we discuss the potential of combining molecular modeling and structural alignments with intra-species phylogenetic comparisons of transporters, in order to predict the function of uncharacterized members of the family. We additionally define some orphan branches which include transporters with potentially novel, and to be characterized specificities. In addition, we discuss the particular case of the highly specific l-proline transporter, PrnB, of Aspergillus nidulans, whose gene is part of a cluster of genes required for the utilization of proline as a carbon and/or nitrogen source. This clustering correlates with transcriptional regulation of these genes, potentially leading to the efficient coordination of the uptake of externally provided l-Pro via PrnB and its enzymatic degradation in the cell.

  5. Expression Profile of Cationic Amino Acid Transporters in Rats with Endotoxin-Induced Uveitis

    Directory of Open Access Journals (Sweden)

    Yung-Ray Hsu

    2016-01-01

    Full Text Available Purpose. The transcellular arginine transportation via cationic amino acid transporter (CAT is the rate-limiting step in nitric oxide (NO synthesis, which is crucial in intraocular inflammation. In this study, CAT isoforms and inducible nitric oxide synthase (iNOS expression was investigated in endotoxin-induced uveitis (EIU. Methods. EIU was induced in Lewis rats by lipopolysaccharide (LPS injection. In the treatment group, the rats were injected intraperitoneally with the proteasome inhibitor bortezomib before EIU induction. After 24 hours, leukocyte quantification, NO measurement of the aqueous humor, and histopathological examination were evaluated. The expression of CAT isoforms and iNOS was determined by reverse transcription-polymerase chain reaction, western blotting, and immunofluorescence staining. Nuclear factor-kappa B (NF-κB binding activity was evaluated by electrophoretic mobility shift assay. The mouse macrophage cell line RAW 264.7 was used to validate the in vivo findings. Results. LPS significantly stimulated iNOS, CAT-2A, and CAT-2B mRNA and protein expression but did not affect CAT-1 in EIU rats and RAW 264.7 cells. Bortezomib attenuated inflammation and inhibited iNOS, CAT-2A, and CAT-2B expression through NF-κB inhibition. Conclusions. CAT-2 and iNOS, but not CAT-1, are specifically involved in EIU. NF-κB is essential in the induction of CAT-2 and iNOS in EIU.

  6. The Human Gene SLC25A29, of Solute Carrier Family 25, Encodes a Mitochondrial Transporter of Basic Amino Acids*

    Science.gov (United States)

    Porcelli, Vito; Fiermonte, Giuseppe; Longo, Antonella; Palmieri, Ferdinando

    2014-01-01

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation. PMID:24652292

  7. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids.

    Science.gov (United States)

    Porcelli, Vito; Fiermonte, Giuseppe; Longo, Antonella; Palmieri, Ferdinando

    2014-05-09

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.

  8. The Xenobiotic Transporter Mdr1 Enforces T Cell Homeostasis in the Presence of Intestinal Bile Acids.

    Science.gov (United States)

    Cao, Wei; Kayama, Hisako; Chen, Mei Lan; Delmas, Amber; Sun, Amy; Kim, Sang Yong; Rangarajan, Erumbi S; McKevitt, Kelly; Beck, Amanda P; Jackson, Cody B; Crynen, Gogce; Oikonomopoulos, Angelos; Lacey, Precious N; Martinez, Gustavo J; Izard, Tina; Lorenz, Robin G; Rodriguez-Palacios, Alex; Cominelli, Fabio; Abreu, Maria T; Hommes, Daniel W; Koralov, Sergei B; Takeda, Kiyoshi; Sundrud, Mark S

    2017-12-19

    CD4 + T cells are tightly regulated by microbiota in the intestine, but whether intestinal T cells interface with host-derived metabolites is less clear. Here, we show that CD4 + T effector (Teff) cells upregulated the xenobiotic transporter, Mdr1, in the ileum to maintain homeostasis in the presence of bile acids. Whereas wild-type Teff cells upregulated Mdr1 in the ileum, those lacking Mdr1 displayed mucosal dysfunction and induced Crohn's disease-like ileitis following transfer into Rag1 -/- hosts. Mdr1 mitigated oxidative stress and enforced homeostasis in Teff cells exposed to conjugated bile acids (CBAs), a class of liver-derived emulsifying agents that actively circulate through the ileal mucosa. Blocking ileal CBA reabsorption in transferred Rag1 -/- mice restored Mdr1-deficient Teff cell homeostasis and attenuated ileitis. Further, a subset of ileal Crohn's disease patients displayed MDR1 loss of function. Together, these results suggest that coordinated interaction between mucosal Teff cells and CBAs in the ileum regulate intestinal immune homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Characterization of a novel variant of amino acid transport system asc in erythrocytes from Przewalski's horse (Equus przewalskii).

    Science.gov (United States)

    Fincham, D A; Ellory, J C; Young, J D

    1992-08-01

    In thoroughbred horses, red blood cell amino acid transport activity is Na(+)-independent and controlled by three codominant genetic alleles (h, l, s), coding for high-affinity system asc1 (L-alanine apparent Km for influx at 37 degrees C congruent to 0.35 mM), low-affinity system asc2 (L-alanine Km congruent to 14 mM), and transport deficiency, respectively. The present study investigated amino acid transport mechanisms in red cells from four wild species: Przewalski's horse (Equus przewalskii), Hartmann's zebra (Zebra hartmannae), Grevy's zebra (Zebra grevyi), and onager (Equus hemonius). Red blood cell samples from different Przewalski's horses exhibited uniformly high rates of L-alanine uptake, mediated by a high-affinity asc1-type transport system. Mean apparent Km and Vmax values (+/- SE) for L-alanine influx at 37 degrees C in red cells from 10 individual animals were 0.373 +/- 0.068 mM and 2.27 +/- 0.11 mmol (L cells.h), respectively. As in thoroughbreds, the Przewalski's horse transporter interacted with dibasic as well as neutral amino acids. However, the Przewalski asc1 isoform transported L-lysine with a substantially (6.4-fold) higher apparent affinity than its thoroughbred counterpart (Km for influx 1.4 mM at 37 degrees C) and was also less prone to trans-stimulation effects. The novel high apparent affinity of the Przewalski's horse transporter for L-lysine provides additional key evidence of functional and possible structural similarities between asc and the classical Na(+)-dependent system ASC and between these systems and the Na(+)-independent dibasic amino acid transport system y+. Unlike Przewalski's horse, zebra red cells were polymorphic with respect to L-alanine transport activity, showing high-affinity or low-affinity saturable mechanisms of L-alanine uptake. Onager red cells transported this amino acid with intermediate affinity (apparent Km for influx 3.0 mM at 37 degrees C). Radiation inactivation analysis was used to estimate the target

  10. Simultaneous determination of gallic acid and gentisic acid in organic anion transporter expressing cells by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Wang, Li; Halquist, Matthew S; Sweet, Douglas H

    2013-10-15

    In order to elucidate the role of organic anion transporters (OATs) in the renal elimination of gallic acid and gentisic acid, a new, rapid, and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of gallic acid and gentisic acid in cell lysate, using Danshensu as the internal standard (IS). After a simple liquid-liquid extraction, the analytes were detected in negative ESI mode using selected reaction monitoring. The precursor-to-product ion transitions (m/z) were 169.0→125.0, 153.1→108.0, and 196.8→135.2 for gallic acid, gentisic acid, and the IS, respectively. Chromatographic separation was achieved on a C18 column using mobile phases consisting of water with 0.1% acetic acid (A) and acetonitrile with 0.05% formic acid. (B) The total run time was 3min and calibration curves were linear over the concentrations of 0.33-2400ng/mL for both compounds (r(2)>0.995). Good precision (between 3.11% and 14.1% RSD) and accuracy (between -12.7% and 11% bias) was observed for quality controls at concentrations of 0.33 (lower limit of quantification), 1, 50, and 2000ng/mL. The mean extraction recovery of gallic acid and gentisic acid was 80.7% and 83.5%, respectively. Results from post-column infusion and post-extraction methods indicated that the analytical method exhibited negligible matrix effects. Finally, this validated assay was successfully applied in a cellular uptake study to determine the intracellular concentrations of gallic acid and gentisic acid in OAT expressing cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Petrophysical and transport parameters evolution during acid percolation through structurally different limestones

    Science.gov (United States)

    Martinez Perez, Laura; Luquot, Linda

    2017-04-01

    Processes affecting geological media often show complex and unpredictable behavior due to the presence of heterogeneities. This remains problematic when facing contaminant transport problems, in the CO2 storage industry or dealing with the mechanisms underneath natural processes where chemical reactions can be observed during the percolation of rock non-equilibrated fluid (e.g. karst formation, seawater intrusion). To understand the mechanisms taking place in a porous medium as a result of this water-rock interaction, we need to know the flow parameters that control them, and how they evolve with time as a result of that concurrence. This is fundamental to ensure realistic predictions of the behavior of natural systems in response of reactive transport processes. We investigate the coupled influence of structural and hydrodynamic heterogeneities in limestone rock samples tracking its variations during chemical reactions. To do so we use laboratory petrophysical techniques such as helium porosimetry, gas permeability, centrifugue, electrical resistivity and sonic waves measurements to obtain the parameters that characterize flow within rock matrix (porosity, permeability, retention curve and pore size distribution, electrical conductivity, formation factor, cementation index and tortuosity) before and after percolation experiments. We built an experimental setup that allows injection of acid brine into core samples under well controlled conditions, monitor changes in hydrodynamic properties and obtain the chemical composition of the injected solution at different stages. 3D rock images were also acquired before and after the experiments using a micro-CT to locate the alteration processes and perform an acurate analysis of the structural changes. Two limestones with distinct textural classification and thus contrasting transport properties have been used in the laboratory experiments: a crinoid limestone and an oolithic limestone. Core samples dimensions were 1 inch

  12. Potent human uric acid transporter 1 inhibitors: in vitro and in vivo metabolism and pharmacokinetic studies

    Directory of Open Access Journals (Sweden)

    Wempe MF

    2012-11-01

    Full Text Available Michael F Wempe,1 Janet W Lightner,2 Bettina Miller,1 Timothy J Iwen,1 Peter J Rice,1 Shin Wakui,3 Naohiko Anzai,4 Promsuk Jutabha,4 Hitoshi Endou51Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; 2Department of Pharmacology, East Tennessee State University, Johnson City, TN, USA; 3Department of Toxicology, Azabu University School of Veterinary Medicine, Chuo Sagamihara, Kanagawa, Japan; 4Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu, Shimotsuga, Tochigi, Japan; 5Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, JapanAbstract: Human uric acid transporter 1 (hURAT1; SLC22A12 is a very important urate anion exchanger. Elevated urate levels are known to play a pivotal role in cardiovascular diseases, chronic renal disease, diabetes, and hypertension. Therefore, the development of potent uric acid transport inhibitors may lead to novel therapeutic agents to combat these human diseases. The current study investigates small molecular weight compounds and their ability to inhibit 14C-urate uptake in oocytes expressing hURAT1. Using the most promising drug candidates generated from our structure–activity relationship findings, we subsequently conducted in vitro hepatic metabolism and pharmacokinetic (PK studies in male Sprague-Dawley rats. Compounds were incubated with rat liver microsomes containing cofactors nicotinamide adenine dinucleotide phosphate and uridine 5'-diphosphoglucuronic acid. In vitro metabolism and PK samples were analyzed using liquid chromatography/mass spectrometry-mass spectrometry methods. Independently, six different inhibitors were orally (capsule dosing or intravenously (orbital sinus administered to fasting male Sprague-Dawley rats. Blood samples were collected and analyzed; these data were used to compare in vitro and in vivo metabolism and to

  13. Hepatic and renal Bcrp transporter expression in mice treated with perfluorooctanoic acid

    International Nuclear Information System (INIS)

    Eldasher, Lobna M.; Wen, Xia; Little, Michael S.; Bircsak, Kristin M.; Yacovino, Lindsay L.; Aleksunes, Lauren M.

    2013-01-01

    Highlights: ► PFOA increased liver weight and Cyp4a14 mRNA and protein expression in mice. ► PFOA increased kidney Cyp4a14 mRNA in mice. ► PFOA increased Bcrp mRNA and protein in livers, but not kidneys, of mice. ► PFOA inhibited activation of human BCRP ATPase activity in vitro. ► PFOA inhibited human BCRP transport in inverted membrane vesicles. - Abstract: The breast cancer resistance protein (Bcrp) is an efflux transporter that participates in the biliary and renal excretion of drugs and environmental chemicals. Recent evidence suggests that pharmacological activation of the peroxisome proliferator activated receptor alpha (PPARα) can up-regulate the hepatic expression of Bcrp. The current study investigated the regulation of hepatic and renal Bcrp mRNA and protein in mice treated with the PPARα agonist perfluorooctanoic acid (PFOA) and the ability of PFOA to alter human BCRP function in vitro. Bcrp mRNA and protein expression were quantified in the livers and kidneys of male C57BL/6 mice treated with vehicle or PFOA (1 or 3 mg/kg/day oral gavage) for 7 days. PFOA treatment increased liver weights as well as the hepatic mRNA and protein expression of the PPARα target gene, cytochrome P450 4a14. Compared to vehicle-treated control mice, PFOA increased hepatic Bcrp mRNA and protein between 1.5- and 3-fold. Immunofluorescent staining confirmed enhanced canalicular Bcrp staining in liver sections from PFOA-treated mice. The kidney expression of cytochrome P450 4a14 mRNA, but not Bcrp, was increased in mice treated with PFOA. Micromolar concentrations of PFOA decreased human BCRP ATPase activity and inhibited BCRP-mediated transport in inverted membrane vesicles. Together, these studies demonstrate that PFOA induces hepatic Bcrp expression in mice and may inhibit human BCRP transporter function at concentrations that exceed levels observed in humans

  14. Central transport and distribution of labelled glutamic and aspartic acids to the cochlear nucleus in cats. An autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Kane, E S [University of Massachusetts Medical School, Worcester, MA (USA). Dept. of Anatomy

    1979-01-01

    Tritiated L-glutamic acid or L-aspartic acid was injected unilaterally into the cochleas of adult cats, and 4 h-7 days later the localization of label was studied by light-microscopic autoradiography in sections of the brain stem. Consistent differences in labelling after glutamate and after aspartate suggest differences in their uptake, metabolic conversion and/or transport to the cochlear nucleus by cochlear fibers. The morphological differences shown here agree with the distribution of those two amino acids in the cat cochlear nucleus as shown by microchemical analyses.

  15. Transport of acid forming emissions and potential effects of deposition in northeastern Alberta and northern Saskatchewan: a problem analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shewchuk, S.R.; Abouguendia, Z.M.; Atton, F.M.; Dublin, J.; Godwin, R.C.; Holowaychuk, N.; Hopkinson, R.; Liaw, W.K.; Maybank, J.; Padbury, G.A.

    1981-01-01

    The purpose of this report is to study the potential effects of acid rain in northeastern Alberta and northern Saskatchewan. A problem analysis was conducted of the transport, transformations and deposition of emissions in this region. Studied are the atmospheric processes, geology and soils, natural vegetation, and the aquatic systems. At present, no environmental damage attributable to acidic deposition has been detected in this region. Field surveys in the region have detected no effects of industrial emissions on vegetation except within a few kilometers of industrial operations. The earliest effects of acid deposition tend to appear within aquatic systems. Ten recommendations based on these findings are discussed. 109 references, 22 figures, 10 tables.

  16. Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development.

    Science.gov (United States)

    Wong, Bernice H; Chan, Jia Pei; Cazenave-Gassiot, Amaury; Poh, Rebecca W; Foo, Juat Chin; Galam, Dwight L A; Ghosh, Sujoy; Nguyen, Long N; Barathi, Veluchamy A; Yeo, Sia W; Luu, Chi D; Wenk, Markus R; Silver, David L

    2016-05-13

    Eye photoreceptor membrane discs in outer rod segments are highly enriched in the visual pigment rhodopsin and the ω-3 fatty acid docosahexaenoic acid (DHA). The eye acquires DHA from blood, but transporters for DHA uptake across the blood-retinal barrier or retinal pigment epithelium have not been identified. Mfsd2a is a newly described sodium-dependent lysophosphatidylcholine (LPC) symporter expressed at the blood-brain barrier that transports LPCs containing DHA and other long-chain fatty acids. LPC transport via Mfsd2a has been shown to be necessary for human brain growth. Here we demonstrate that Mfsd2a is highly expressed in retinal pigment epithelium in embryonic eye, before the development of photoreceptors, and is the primary site of Mfsd2a expression in the eye. Eyes from whole body Mfsd2a-deficient (KO) mice, but not endothelium-specific Mfsd2a-deficient mice, were DHA-deficient and had significantly reduced LPC/DHA transport in vivo Fluorescein angiography indicated normal blood-retinal barrier function. Histological and electron microscopic analysis indicated that Mfsd2a KO mice exhibited a specific reduction in outer rod segment length, disorganized outer rod segment discs, and mislocalization of and reduction in rhodopsin early in postnatal development without loss of photoreceptors. Minor photoreceptor cell loss occurred in adult Mfsd2a KO mice, but electroretinography indicated visual function was normal. The developing eyes of Mfsd2a KO mice had activated microglia and up-regulation of lipogenic and cholesterogenic genes, likely adaptations to loss of LPC transport. These findings identify LPC transport via Mfsd2a as an important pathway for DHA uptake in eye and for development of photoreceptor membrane discs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    Science.gov (United States)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    Acid mine drainage, AMD, results from the oxidation of metal sulfide minerals (e.g. pyrite), producing ferrous iron and sulfuric acid. Acidophilic autotrophic bacteria such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans obtain energy by oxidizing ferrous iron back to ferric iron, using oxygen as the electron acceptor. Most existing models of AMD do not account for microbial kinetics or iron geochemistry rigorously. Instead they assume that oxygen limitation controls pyrite oxidation and thus focus on oxygen transport. These models have been successfully used for simulating conditions where oxygen availability is a limiting factor (e.g. source prevention by capping), but have not been shown to effectively model acid generation and effluent chemistry under a wider range of conditions. The key reactions, oxidation of pyrite and oxidation of ferrous iron, are both slow kinetic processes. Despite being extensively studied for the last thirty years, there is still not a consensus in the literature about the basic mechanisms, limiting factors or rate expressions for microbially enhanced oxidation of metal sulfides. An indirect leaching mechanism (chemical oxidation of pyrite by ferric iron to produce ferrous iron, with regeneration of ferric iron by microbial oxidation of ferrous iron) is used as the foundation of a conceptual model for microbially enhanced oxidation of pyrite. Using literature data, a rate expression for microbial consumption of ferrous iron is developed that accounts for oxygen, ferrous iron and pH limitation. Reaction rate expressions for oxidation of pyrite and chemical oxidation of ferrous iron are selected from the literature. A completely mixed stirred tank reactor (CSTR) model is implemented coupling the kinetic rate expressions, speciation calculations and flow. The model simulates generation of AMD and effluent chemistry that qualitatively agrees with column reactor and single rock experiments. A one dimensional reaction

  18. A reassessment of the blood-brain barrier transport of large neutral amino acids during acute systemic inflammation in humans

    DEFF Research Database (Denmark)

    Dahl, Rasmus H; Berg, Ronan M G; Taudorf, Sarah

    2018-01-01

    We reassessed data from a previous study on the transcerebral net exchange of large neutral amino acids (LNAAs) using a novel mathematical model of blood-brain barrier (BBB) transport. The study included twelve healthy volunteers who received a 4-h intravenous lipopolysaccharide (LPS) infusion...

  19. Potassium co-transport and antiport during the uptake of sucrose and glutamic acid from the xylem vessels

    NARCIS (Netherlands)

    Bel, A.J.E. van; Erven, A.J. van

    Perfusion experiments with excised internodes of tomato (Lycopersicon esculentum cv Moneymaker) showed that the uptake of glutamic acid and sucrose from the xylem vessels is accompanied with coupled proton co-transport and potassium antiport at low pH (<5.5). At high pH (5.5) both proton and

  20. Long-range atmospheric transport of volatile monocarboxylic acids with Asian dust over a high mountain snow site, central Japan

    Directory of Open Access Journals (Sweden)

    T. Mochizuki

    2016-11-01

    Full Text Available To understand the long-range transport of monocarboxylic acids from the Asian continent to the Japanese islands, we collected snowpack samples from a pit sequence (depth ca. 6 m at the Murodo-Daira snowfield near the summit of Mt. Tateyama, central Japan, in 2009 and 2011. Snow samples (n = 16 were analyzed for normal (C1–C10, branched chain (iC4–iC6, aromatic (benzoic and toluic acid isomers, and hydroxyl (glycolic and lactic monocarboxylic acids, together with inorganic ions and dissolved organic carbon (DOC. Acetic acid (C2 was found to be a dominant species (average 125 ng g−1, followed by formic acid (C1 (85.7 ng g−1 and isopentanoic acid (iC5 (20.0 ng g−1. We found a strong correlation (r =  0.88 between formic plus acetic acids and non-sea-salt Ca2+ that is a proxy of Asian dust. Contributions of total monocarboxylic acids to DOC in 2009 (21.2 ± 11.6 % were higher than that in 2011 (3.75 ± 2.62 %, being consistent with higher intensity of Asian dust in 2009 than in 2011. Formic plus acetic acids also showed a positive correlation (r =  0.90 with benzoic acid that is a tracer of automobile exhaust, indicating that monocarboxylic acids and their precursors are largely emitted from anthropogenic sources in China and/or secondarily produced in the atmosphere by photochemical processing. In addition, the ratio of formic plus acetic acids to nss–Ca2+ (0.27 was significantly higher than those (0.00036–0.0018 obtained for reference dust materials of Chinese loess deposits from the Tengger and Gobi deserts. This result suggests that volatile and semi-volatile organic acids are adsorbed on the alkaline dust particles during long-range atmospheric transport. Entrainment of organic acids by dusts is supported by a good correlation (r = 0.87 between formic plus acetic acids and pH of melt snow samples. Our study suggests that Asian alkaline dusts may be a carrier of volatile monocarboxylic

  1. A new structural class of subtype-selective inhibitor of cloned excitatory amino acid transporter, EAAT2

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Hermit, M B; Nielsen, B

    2000-01-01

    We have studied the pharmacological effects of (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) and the enantiomers of (RS)-2-amino-3-(3-hydroxy-1,2, 5-thiadiazol-4-yl)propionic acid (TDPA) on cloned human excitatory amino acid transporter subtypes 1, 2 and 3 (EAAT1......-3) expressed in Cos-7 cells. Whereas AMPA and (R)-TDPA were both inactive as inhibitors of [3H]-(R)-aspartic acid uptake on all three EAAT subtypes, (S)-TDPA was shown to selectively inhibit uptake by EAAT2 with a potency equal to that of the endogenous ligand (S)-glutamic acid. (S)-TDPA thus represents a new...

  2. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C., E-mail: cdirusso2@unl.edu

    2015-09-25

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC{sub 50} 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC{sub 50} 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of {sup 13}C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata.

  3. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    International Nuclear Information System (INIS)

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C.

    2015-01-01

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC 50 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC 50 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of 13 C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata

  4. Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Damitha De Mel

    2014-08-01

    Full Text Available Omega-3 (ω-3 fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA. The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA, docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA. Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer’s disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

  5. Fishy business: effect of omega-3 fatty acids on zinc transporters and free zinc availability in human neuronal cells.

    Science.gov (United States)

    De Mel, Damitha; Suphioglu, Cenk

    2014-08-15

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer's disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

  6. Amino acid transporter expansions associated with the evolution of obligate endosymbiosis in sap-feeding insects (Hemiptera: sternorrhyncha).

    Science.gov (United States)

    Dahan, Romain A; Duncan, Rebecca P; Wilson, Alex C C; Dávalos, Liliana M

    2015-03-25

    Mutualistic obligate endosymbioses shape the evolution of endosymbiont genomes, but their impact on host genomes remains unclear. Insects of the sub-order Sternorrhyncha (Hemiptera) depend on bacterial endosymbionts for essential amino acids present at low abundances in their phloem-based diet. This obligate dependency has been proposed to explain why multiple amino acid transporter genes are maintained in the genomes of the insect hosts. We implemented phylogenetic comparative methods to test whether amino acid transporters have proliferated in sternorrhynchan genomes at rates grater than expected by chance. By applying a series of methods to reconcile gene and species trees, inferring the size of gene families in ancestral lineages, and simulating the null process of birth and death in multi-gene families, we uncovered a 10-fold increase in duplication rate in the AAAP family of amino acid transporters within Sternorrhyncha. This gene family expansion was unmatched in other closely related clades lacking endosymbionts that provide essential amino acids. Our findings support the influence of obligate endosymbioses on host genome evolution by both inferring significant expansions of gene families involved in symbiotic interactions, and discovering increases in the rate of duplication associated with multiple emergences of obligate symbiosis in Sternorrhyncha.

  7. The β-lactam clavulanic acid mediates glutamate transport-sensitive pain relief in a rat model of neuropathic pain

    DEFF Research Database (Denmark)

    Kristensen, P J; Gegelashvili, G; Munro, G

    2017-01-01

    -regulates glutamate transporters both in vitro and in vivo. Crucially, a similar up-regulation of glutamate transporters in human spinal astrocytes by clavulanic acid supports the development of novel β-lactam-based analgesics, devoid of antibacterial activity, for the clinical treatment of chronic pain.......BACKGROUND: Following nerve injury, down-regulation of astroglial glutamate transporters (GluTs) with subsequent extracellular glutamate accumulation is a key factor contributing to hyperexcitability within the spinal dorsal horn. Some β-lactam antibiotics can up-regulate GluTs, one of which......, ceftriaxone, displays analgesic effects in rodent chronic pain models. METHODS: Here, the antinociceptive actions of another β-lactam clavulanic acid, which possesses negligible antibiotic activity, were compared with ceftriaxone in rats with chronic constriction injury (CCI)-induced neuropathic pain...

  8. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  9. p-Coumaric acid activates the GABA-A receptor in vitro and is orally anxiolytic in vivo.

    Science.gov (United States)

    Scheepens, Arjan; Bisson, Jean-Francois; Skinner, Margot

    2014-02-01

    The increasing prevalence and social burden of subclinical anxiety in the western world represents a significant psychosocial and financial cost. Consumers are favouring a more natural and nonpharmacological approach for alleviating the effects of everyday stress and anxiety. The gamma-aminobutyric acid (GABA) receptor is the primary mediator of central inhibitory neurotransmission, and GABA-receptor agonists are well known to convey anxiolytic effects. Using an in vitro screening approach to identify naturally occurring phytochemical GABA agonists, we discovered the plant secondary metabolite p-coumaric acid to have significant GABAergic activity, an effect that could be blocked by co-administration of the specific GABA-receptor antagonist, picrotoxin. Oral administration of p-coumaric acid to rodents induced a significant anxiolytic effect in vivo as measured using the elevated plus paradigm, in line with the effects of oral diazepam. Given that p-coumaric acid is reasonably well absorbed following oral consumption in man and is relatively nontoxic, it may be suitable for the formulation of a safe and effective anxiolytic functional food. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Anticonvulsant action of gamma-irradiated diazepam with correlation to certain brain amino acids and electrocorticogram activity in experimental animals

    International Nuclear Information System (INIS)

    Saad, S.F.; Roushdy, H.M.; Hassan, S.H.M.; Elkashef, H.S.; Mahdy, A.M.; Elsayeh, B.M.

    1994-01-01

    The effect of sterilization by gamma irradiation (215 KGy) of diazepam on is anticonvulsant action, on norma and depleted cerebral gamma aminobutyric acid (GABA), on glutamic acid, as well as electrocorticogram activity (ECOG) was determined in the experimental animals. For the evaluation of the anticonvulsant action of either diazepam (D) or irradiated diazepam (ID), pentyl ene tetrazole seizure test, was used and the protective dose 50 (PD50) was determined in adult male mice. GABA, the main central inhibitory transmitter which is implicated in the mechanism of the anticonvulsant action of D and its precursor glutamic acid, were electrophoretically separated and spectrophotometrical evaluated. Moreover, brain electrical activity was recorded using an electroencephalograph apparatus. Although the PD50 of ID as well the effect on normal brain cerebral GABA and glutamic acids did not differ significantly from that of D, yet there was certain variabilities. Thus, the effect of D was about 4 times more potent than the ID on elevating depleted cerebral GABA. Also, electrocorticogram records demonstrated that D produced a slight inhibition while ID induced a decrease in B rhythm with remarkable in the amplitude of ECOG waves. The same pattern of effects were obtained when D or ID were used in combination with INH (250 mg kg-1). 1 tab. 1 fig

  11. Molecular evidence for an involvement of organic anion transporters (OATs) in aristolochic acid nephropathy

    International Nuclear Information System (INIS)

    Bakhiya, Nadiya; Arlt, Volker M.; Bahn, Andrew; Burckhardt, Gerhard; Phillips, David H.; Glatt, Hansruedi

    2009-01-01

    Aristolochic acid (AA), present in Aristolochia species, is the major causative agent in the development of severe renal failure and urothelial cancers in patients with AA nephropathy. It may also be a cause of Balkan endemic nephropathy. Epithelial cells of the proximal tubule are the primary cellular target of AA. To study whether organic anion transporters (OATs) expressed in proximal tubule cells are involved in uptake of AA, we used human epithelial kidney (HEK293) cells stably expressing human (h) OAT1, OAT3 or OAT4. AA potently inhibited the uptake of characteristic substrates, p-aminohippurate for hOAT1 and estrone sulfate for hOAT3 and hOAT4. Aristolochic acid I (AAI), the more cytotoxic and genotoxic AA congener, exhibited high affinity for hOAT1 (K i = 0.6 μM) as well as hOAT3 (K i = 0.5 μM), and lower affinity for hOAT4 (K i = 20.6 μM). Subsequently, AAI-DNA adduct formation (investigated by 32 P-postlabelling) was used as a measure of AAI uptake. Significantly higher levels of adducts occurred in hOAT-expressing cells than in control cells: this effect was abolished in the presence of the OAT inhibitor probenecid. In Xenopus laevis oocytes hOAT-mediated efflux of p-aminohippurate was trans-stimulated by extracellular AA, providing further molecular evidence for AA translocation by hOATs. Our study indicates that OATs can mediate the uptake of AA into proximal tubule cells and thereby participate in kidney cell damage by this toxin.

  12. GHB acid: A rage or reprive

    Directory of Open Access Journals (Sweden)

    Prakhar Kapoor

    2013-01-01

    Full Text Available Gamma-hydroxybutyric acid (GHB is a naturally occurring analog of gamma-aminobutyric acid (GABA that has been used in research and clinical medicine for many years. GHB was used clinically as an anesthetic in the 1960s but was withdrawn due to side effects that included seizures and coma. GHB has been implicated in a number of crime types; most notably in drug-facilitated sexual assault. GHB is abused by three main groups of users: Body builders who use the substance believing that it stimulated the release of growth hormone; sexual predators who covertly administer the drug for its sedative and amnesic effects and club-goers (rave parties who take the drug for its euphoric effects. The short-lived hypnotic effects, relative safety and widespread availability of the drug have made it particularly well suited to this role. The drug has an addictive potential if used for long term. The primary effects of GHB use are those of a CNS depressant and therefore range from relaxation, to euphoria, confusion, amnesia, hallucinations, and coma. Despite the increased regulation, GHB remains widely available through the Internet where one can easily purchase the necessary reagents as well as recipes for home production. There are reports of patients being unresponsive to painful stimuli and cases of oral self-mutilations linked to the abuse of GHB, though quiet rare. Such cases should remind odontologists that intra-oral lesions may be the result of self-mutilation either due to mental illness or altered states caused by the use of prescription or non-prescription drugs.

  13. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  14. Discovery and Validation of Pyridoxic Acid and Homovanillic Acid as Novel Endogenous Plasma Biomarkers of Organic Anion Transporter (OAT) 1 and OAT3 in Cynomolgus Monkeys.

    Science.gov (United States)

    Shen, Hong; Nelson, David M; Oliveira, Regina V; Zhang, Yueping; Mcnaney, Colleen A; Gu, Xiaomei; Chen, Weiqi; Su, Ching; Reily, Michael D; Shipkova, Petia A; Gan, Jinping; Lai, Yurong; Marathe, Punit; Humphreys, W Griffith

    2018-02-01

    Perturbation of organic anion transporter (OAT) 1- and OAT3-mediated transport can alter the exposure, efficacy, and safety of drugs. Although there have been reports of the endogenous biomarkers for OAT1/3, none of these have all of the characteristics required for a clinical useful biomarker. Cynomolgus monkeys were treated with intravenous probenecid (PROB) at a dose of 40 mg/kg in this study. As expected, PROB increased the area under the plasma concentration-time curve (AUC) of coadministered furosemide, a known substrate of OAT1 and OAT3, by 4.1-fold, consistent with the values reported in humans (3.1- to 3.7-fold). Of the 233 plasma metabolites analyzed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics method, 29 metabolites, including pyridoxic acid (PDA) and homovanillic acid (HVA), were significantly increased after either 1 or 3 hours in plasma from the monkeys pretreated with PROB compared with the treated animals. The plasma of animals was then subjected to targeted LC-MS/MS analysis, which confirmed that the PDA and HVA AUCs increased by approximately 2- to 3-fold by PROB pretreatments. PROB also increased the plasma concentrations of hexadecanedioic acid (HDA) and tetradecanedioic acid (TDA), although the increases were not statistically significant. Moreover, transporter profiling assessed using stable cell lines constitutively expressing transporters demonstrated that PDA and HVA are substrates for human OAT1, OAT3, OAT2 (HVA), and OAT4 (PDA), but not OCT2, MATE1, MATE2K, OATP1B1, OATP1B3, and sodium taurocholate cotransporting polypeptide. Collectively, these findings suggest that PDA and HVA might serve as blood-based endogenous probes of cynomolgus monkey OAT1 and OAT3, and investigation of PDA and HVA as circulating endogenous biomarkers of human OAT1 and OAT3 function is warranted. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Acid groundwater in an anoxic aquifer: Reactive transport modelling of buffering processes

    International Nuclear Information System (INIS)

    Franken, Gudrun; Postma, Dieke; Duijnisveld, Wilhelmus H.M.; Boettcher, Juergen; Molson, John

    2009-01-01

    The acidification of groundwater, due to acid rain, was investigated in a Quaternary sandy aquifer in the Fuhrberger Feld, near Hannover, Germany. The groundwater, recharged through an area covered by a coniferous forest, had a pH in the range 4-5 down to a depth of 5 m. The evolution in groundwater chemistry along the flow path was investigated in a transect of multisamplers. A 2D groundwater flow model was established delineating the groundwater flow field and a groundwater flow velocity of around 80 m/a along the flow path was derived. Speciation calculations showed the groundwater to be close to equilibrium with the mineral jurbanite (AlOHSO 4 ) over the pH range 4.0-6.5. This suggests an accumulation of acid rain derived SO 4 2- in the aquifer sediment during the decades with high atmospheric S deposition. The groundwater has a pH of around 4.5 in the upstream part of the flow path increasing to near 6 further downstream. 1D reactive transport modelling, using PHREEQC, was used to analyze different combinations of buffering processes. The first model contains ion exchange in combination with jurbanite dissolution. At the ion exchange front Al 3+ is adsorbed leading to the dissolution of jurbanite and an increase in pH. Comparison with field data showed that the simulated increases in pH and alkalinity are much lower than observed in the field. The second model includes organic matter degradation. In addition to ion exchange and jurbanite dissolution, the model included the reduction of SO 4 2- and Fe-oxides as well as the precipitation of Fe sulfide. This model matches the field data well and illustrates the importance of redox processes for pH buffering in the Fuhrberg aquifer. The current progress of the acidification front is about 4 m/a. This corresponds to an average value of 150 a of acid input, which covers large historical variations. Remediation is expected to take the same time span because it requires desorption and neutralization of adsorbed Al 3

  16. Carrier-mediated ¿-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-01-01

    and the anticancer prodrug d-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least...... two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290µM and V(max) of 75pmolcm(-2)min(-1) and a low affinity system with a K(m) of approximately 64mM and V(max) of 1.6nmolcm(-2)min(-1). The high...

  17. Central pipecolic acid increases food intake under ad libitum feeding conditions in the neonatal chick.

    Science.gov (United States)

    Takagi, Tomo; Tachibana, Tetsuya; Saito, Ei-Suke; Tomonaga, Shouzou; Saito, Shin; Bungo, Takashi; Denbow, D Michael; Furuse, Mitsuhiro

    2003-08-21

    It has been demonstrated that L-pipecolic acid (L-PA) is a major metabolic intermediate of L-lysine in the mammalian and chicken brain. A previous study showed that intracerebroventricular (i.c.v.) injection of L-PA suppressed feeding in neonatal chicks, and the actions were associated with gamma-aminobutyric acid (GABA)-B receptor activation. It has been reported that endogenous L-PA in the brain fluctuated under different feeding conditions. In the present study, we investigated the effect of i.c.v. injection of L-PA on food intake in the neonatal chick under ad libitum feeding conditions. The food intake was increased by 0.5 or 1.0 mg L-PA under ad libitum feeding conditions contrary to previous studies using fasted birds. A hyperphagic effect of L-PA (0.5 mg) was attenuated by both GABA-A receptor antagonist (picrotoxin, 0.5 microg) and GABA-B receptor antagonist (CGP54626, 21.0 ng). These results indicate that a hyperphagic effect of L-PA is mediated by both GABA-A and GABA-B receptors and L-PA differentially affects food intake under different feeding conditions in the neonatal chick.

  18. Biogenic amines, amino acids and regional blood flow in rat brain after prenatal irradiation

    International Nuclear Information System (INIS)

    Deroo, J.; Gerber, G.B.; Maes, J.

    1986-01-01

    Damage to nerve cells after prenatal irradiation could affect their later ability to function normally. The concentration of several biogenic amines and amino acids was therefore determined at different times after prenatal irradiation with 0.95 Gy on day 10, 12 or 15 of pregnancy. The offspring was sacrified 0.5, 1, 3 and 6 months after birth and the following structures were dissected: Cortex, hippocampus, striatum, thalamus, hypothalamus, cerebellum and medulla. Biogenic amines isolated by HPLC and detected electrochemically were: Dopamine, DOPA, DOPAC, epinephrine, norepinephrine, serotonin and hydroxyindolacetate. Amino acids converted to their dansyl derivatives and separated by HPLC were: Aspartate, glutamate, glutamine, gamma aminobutyrate and taurine. Many neurotransmitters were found increased in brain after prenatal irradiation, particularly on day 12 and 15 p.c. Marked changes were found for serotonin in several brain structures and for dopamin in striatum. An increase was also found in glutamate, glutamine and GABA. Studies on regional blood flow using injection of labelled 15 μ microspheres did not reveal significant alterations after prenatal irradiation. (orig.)

  19. GABA and homovanillic acid in the plasma of Schizophrenic and bipolar I patients.

    Science.gov (United States)

    Arrúe, Aurora; Dávila, Ricardo; Zumárraga, Mercedes; Basterreche, Nieves; González-Torres, Miguel A; Goienetxea, Biotza; Zamalloa, Maria I; Anguiano, Juan B; Guimón, José

    2010-02-01

    We have determined the plasma (p) concentration of gamma-aminobutyric acid (GABA) and the dopamine metabolite homovanillic acid (HVA), and the pHVA/pGABA ratio in schizophrenic and bipolar patients. The research was undertaken in a geographic area with an ethnically homogeneous population. The HVA plasma concentrations were significantly elevated in the schizophrenic patients compared to the bipolar patients. The levels of pGABA was significantly lower in the two groups of patients compared to the control group, while the pHVA/pGABA ratio was significantly greater in the both groups of patients compared to the controls. As the levels of pHVA and pGABA are partially under genetic control it is better to compare their concentrations within an homogeneous population. The values of the ratio pHVA/pGABA are compatible with the idea of an abnormal dopamine-GABA interaction in schizophrenic and bipolar patients. The pHVA/pGABA ratio may be a good peripheral marker in psychiatric research.

  20. Ascorbic acid and striatal transport of [3H]1-methyl-4-phenylpyridine (MPP+) and [3H]dopamine

    International Nuclear Information System (INIS)

    Debler, E.A.; Hashim, A.; Lajtha, A.; Sershen, H.

    1988-01-01

    The inhibition of uptake of [ 3 H]dopamine and [ 3 H]1-methyl-4-phenylpyridine (MPP + ) was examined in mouse striatal synaptosomal preparations. Kinetic analysis indicated that ascorbic acid is a noncompetitive inhibitor of [ 3 H]MPP + uptake. No inhibition of [ 3 H]dopamine uptake is observed. The dopamine uptake blockers, GBR-12909, cocaine, and mazindol strongly inhibit (IC 50 3 H]dopamine and [ 3 H]MPP + transport. Nicotine, its metabolites, and other tobacco alkaloids are weak inhibitors except 4-phenylpyridine and lobeline, which are moderate inhibitors of both [ 3 H]dopamine and [ 3 H]MPP + uptake. These similarities in potencies are in agreement with the suggestion that [ 3 H]MPP + and [ 3 H] are transported by the same carrier. The differences observed in the alteration of dopaminergic transport and mazindol binding by ascorbic acid suggest that ascorbic acid's effects on [ 3 H]MPP + transport are related to translocation and/or dissociation processes occurring subsequent to the initial binding event

  1. Fatty acid profile of maternal and fetal erythrocytes and placental expression of fatty acid transport proteins in normal and intrauterine growth restriction pregnancies.

    Science.gov (United States)

    Assumpção, Renata P; Mucci, Daniela B; Fonseca, Fernanda C P; Marcondes, Henrique; Sardinha, Fátima L C; Citelli, Marta; Tavares do Carmo, Maria G

    2017-10-01

    Long-chain polyunsaturated fatty acids (LC-PUFA), mainly docosahexaenoic (DHA) and arachidonic acids (AA), are critical for adequate fetal growth and development. We investigated mRNA expression of proteins involved in hydrolysis, uptake and/or transport of fatty acids in placenta of fifteen full term normal pregnancies and eleven pregnancies complicated by intrauterine growth restriction (IUGR) with normal umbilical blood flows. The mRNA expression of LPL, FATPs (-1, -2 and -4) and FABPs (-1 and -3) was increased in IUGR placentas, however, tissue profile of LC-PUFA was not different between groups. Erythrocytes from both mothers and fetuses of the IUGR group showed lower concentrations of AA and DHA and inferior DHA/ALA ratio compared to normal pregnancies (P < 0.05). We hypothesize that reduced circulating levels of AA and DHA could up-regulate mRNA expression of placental fatty acids transporters, as a compensatory mechanism, however this failed to sustain normal LC-PUFA supply to the fetus in IUGR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Implication of PGC-1α on Fatty Acid Transport across Plasma and Mitochondrial Membranes in the Insulin Sensitive Tissues

    Directory of Open Access Journals (Sweden)

    Elżbieta Supruniuk

    2017-11-01

    Full Text Available PGC-1α coactivator plays a decisive role in the maintenance of lipid balance via engagement in numerous metabolic processes (i.e., Krebs cycle, β-oxidation, oxidative phosphorylation and electron transport chain. It constitutes a link between fatty acids import and their complete oxidation or conversion into bioactive fractions through the coordination of both the expression and subcellular relocation of the proteins involved in fatty acid transmembrane movement. Studies on cell lines and/or animal models highlighted the existence of an upregulation of the total and mitochondrial FAT/CD36, FABPpm and FATPs content in skeletal muscle in response to PGC-1α stimulation. On the other hand, the association between PGC-1α level or activity and the fatty acids transport in the heart and adipocytes is still elusive. So far, the effects of PGC-1α on the total and sarcolemmal expression of FAT/CD36, FATP1, and FABPpm in cardiomyocytes have been shown to vary in relation to the type of PPAR that was coactivated. In brown adipose tissue (BAT PGC-1α knockdown was linked with a decreased level of lipid metabolizing enzymes and fatty acid transporters (FAT/CD36, FABP3, whereas the results obtained for white adipose tissue (WAT remain contradictory. Furthermore, dysregulation in lipid turnover is often associated with insulin intolerance, which suggests the coactivator's potential role as a therapeutic target.

  3. Agp2, a Member of the Yeast Amino Acid Permease Family, Positively Regulates Polyamine Transport at the Transcriptional Level

    KAUST Repository

    Aouida, Mustapha

    2013-06-03

    Agp2 is a plasma membrane protein of the Saccharomyces cerevisiae amino acid transporter family, involved in high-affinity uptake of various substrates including L-carnitine and polyamines. The discovery of two high affinity polyamine permeases, Dur3 and Sam3, prompted us to investigate whether Agp2 directly transports polyamines or acts instead as a regulator. Herein, we show that neither dur3? nor sam3? single mutant is defective in polyamine transport, while the dur3? sam3? double mutant exhibits a sharp decrease in polyamine uptake and an increased resistance to polyamine toxicity similar to the agp2? mutant. Studies of Agp2 localization indicate that in the double mutant dur3? sam3?, Agp2-GFP remains plasma membrane-localized, even though transport of polyamines is strongly reduced. We further demonstrate that Agp2 controls the expression of several transporter genes including DUR3 and SAM3, the carnitine transporter HNM1 and several hexose, nucleoside and vitamin permease genes, in addition to SKY1 encoding a SR kinase that positively regulates low-affinity polyamine uptake. Furthermore, gene expression analysis clearly suggests that Agp2 is a strong positive regulator of additional biological processes. Collectively, our data suggest that Agp2 might respond to environmental cues and thus regulate the expression of several genes including those involved in polyamine transport. © 2013 Aouida et al.

  4. Serum biochemical activities and muscular soreness in transported goats administered with ascorbic acid during the hot-dry season

    Directory of Open Access Journals (Sweden)

    Ndazo S Minka

    2010-12-01

    Full Text Available The effects of handling, loading and 12 h of road transportation during the hot-dry season on muscular metabolism of 20 experimental goats administered orally with 100 mg/kg body weight of ascorbic acid (AA dissolved in 10 ml of sterile water, and other 20 control goats given equivalent of sterile water 40 min prior to transportation were investigated. The result obtained post-transportation showed that handling, loading and transportation were stressful to the goats, especially the control goats and resulted into muscular damage and the development of delayed-onset-muscular-soreness (DOMS, which may lead to dark-firm-dry (DFD syndrome meat with undesirable effects on its quality. In the experimental goats administered AA such transportation effects were minimal or completely abolished. The result demonstrated that AA reduced the incidence of DOMS and muscular damage in transported goats, therefore it may be used to improve the welfare and quality of meat obtained from goats subjected to long period of road transportation under adverse climatic conditions.

  5. Agp2, a Member of the Yeast Amino Acid Permease Family, Positively Regulates Polyamine Transport at the Transcriptional Level

    KAUST Repository

    Aouida, Mustapha; Texeira, Marta Rubio; Thevelein, Johan M.; Poulin, Richard; Ramotar, Dindial

    2013-01-01

    Agp2 is a plasma membrane protein of the Saccharomyces cerevisiae amino acid transporter family, involved in high-affinity uptake of various substrates including L-carnitine and polyamines. The discovery of two high affinity polyamine permeases, Dur3 and Sam3, prompted us to investigate whether Agp2 directly transports polyamines or acts instead as a regulator. Herein, we show that neither dur3? nor sam3? single mutant is defective in polyamine transport, while the dur3? sam3? double mutant exhibits a sharp decrease in polyamine uptake and an increased resistance to polyamine toxicity similar to the agp2? mutant. Studies of Agp2 localization indicate that in the double mutant dur3? sam3?, Agp2-GFP remains plasma membrane-localized, even though transport of polyamines is strongly reduced. We further demonstrate that Agp2 controls the expression of several transporter genes including DUR3 and SAM3, the carnitine transporter HNM1 and several hexose, nucleoside and vitamin permease genes, in addition to SKY1 encoding a SR kinase that positively regulates low-affinity polyamine uptake. Furthermore, gene expression analysis clearly suggests that Agp2 is a strong positive regulator of additional biological processes. Collectively, our data suggest that Agp2 might respond to environmental cues and thus regulate the expression of several genes including those involved in polyamine transport. © 2013 Aouida et al.

  6. Imaging the L-type amino acid transporter-1 (LAT1 with Zr-89 immunoPET.

    Directory of Open Access Journals (Sweden)

    Oluwatayo F Ikotun

    Full Text Available The L-type amino acid transporter-1 (LAT1, SLC7A5 is upregulated in a wide range of human cancers, positively correlated with the biological aggressiveness of tumors, and a promising target for both imaging and therapy. Radiolabeled amino acids such as O-(2-[(18F]fluoroethyl-L-tyrosine (FET that are transport substrates for system L amino acid transporters including LAT1 have met limited success for oncologic imaging outside of the brain, and thus new strategies are needed for imaging LAT1 in systemic cancers. Here, we describe the development and biological evaluation of a novel zirconium-89 labeled antibody, [(89Zr]DFO-Ab2, targeting the extracellular domain of LAT1 in a preclinical model of colorectal cancer. This tracer demonstrated specificity for LAT1 in vitro and in vivo with excellent tumor imaging properties in mice with xenograft tumors. PET imaging studies showed high tumor uptake, with optimal tumor-to-non target contrast achieved at 7 days post administration. Biodistribution studies demonstrated tumor uptake of 10.5 ± 1.8 percent injected dose per gram (%ID/g at 7 days with a tumor to muscle ratio of 13 to 1. In contrast, the peak tumor uptake of the radiolabeled amino acid [(18F]FET was 4.4 ± 0.5 %ID/g at 30 min after injection with a tumor to muscle ratio of 1.4 to 1. Blocking studies with unlabeled anti-LAT1 antibody demonstrated a 55% reduction of [(89Zr]DFO-Ab2 accumulation in the tumor at 7 days. These results are the first report of direct PET imaging of LAT1 and demonstrate the potential of immunoPET agents for imaging specific amino acid transporters.

  7. Tubular urate transporter gene polymorphisms differentiate patients with gout who have normal and decreased urinary uric acid excretion.

    Science.gov (United States)

    Torres, Rosa J; de Miguel, Eugenio; Bailén, Rebeca; Banegas, José R; Puig, Juan G

    2014-09-01

    Primary gout has been associated with single-nucleotide polymorphisms (SNP) in several tubular urate transporter genes. No study has assessed the association of reabsorption and secretion urate transporter gene SNP with gout in a single cohort of documented primary patients with gout carefully subclassified as normoexcretors or underexcretors. Three reabsorption SNP (SLC22A12/URAT1, SLC2A9/GLUT9, and SLC22A11/OAT4) and 2 secretion transporter SNP (SLC17A1/NPT1 and ABCG2/BRCP) were studied in 104 patients with primary gout and in 300 control subjects. The patients were subclassified into normoexcretors and underexcretors according to their serum and 24-h urinary uric acid levels under strict conditions of dietary control. Compared with control subjects, patients with gout showed different allele distributions of the 5 SNP analyzed. However, the diagnosis of underexcretor was only positively associated with the presence of the T allele of URAT1 rs11231825, the G allele of GLUT9 rs16890979, and the A allele of ABCG2 rs2231142. The association of the A allele of ABCG2 rs2231142 in normoexcretors was 10 times higher than in underexcretors. The C allele of NPT1 rs1165196 was only significantly associated with gout in patients with normal uric acid excretion. Gout with uric acid underexcretion is associated with transporter gene SNP related mainly to tubular reabsorption, whereas uric acid normoexcretion is associated only with tubular secretion SNP. This finding supports the concept of distinctive mechanisms to account for hyperuricemia in patients with gout with reduced or normal uric acid excretion.

  8. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation.

    OpenAIRE

    Ahkami, Amir H.; Melzer, Michael; Ghaffari, Mohammad R.; Pollmann, Stephan; Ghorbani, Majid; Shahinnia, Fahimeh; Hajirezaei, Mohammad R.; Druege, Uwe

    2013-01-01

    To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also inves...

  9. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  10. Acidic and uncharged polar residues in the consensus motifs of the yeast Ca2+ transporter Gdt1p are required for calcium transport.

    Science.gov (United States)

    Colinet, Anne-Sophie; Thines, Louise; Deschamps, Antoine; Flémal, Gaëlle; Demaegd, Didier; Morsomme, Pierre

    2017-07-01

    The UPF0016 family is a recently identified group of poorly characterized membrane proteins whose function is conserved through evolution and that are defined by the presence of 1 or 2 copies of the E-φ-G-D-[KR]-[TS] consensus motif in their transmembrane domain. We showed that 2 members of this family, the human TMEM165 and the budding yeast Gdt1p, are functionally related and are likely to form a new group of Ca 2+ transporters. Mutations in TMEM165 have been demonstrated to cause a new type of rare human genetic diseases denominated as Congenital Disorders of Glycosylation. Using site-directed mutagenesis, we generated 17 mutations in the yeast Golgi-localized Ca 2+ transporter Gdt1p. Single alanine substitutions were targeted to the highly conserved consensus motifs, 4 acidic residues localized in the central cytosolic loop, and the arginine at position 71. The mutants were screened in a yeast strain devoid of both the endogenous Gdt1p exchanger and Pmr1p, the Ca 2+ -ATPase of the Golgi apparatus. We show here that acidic and polar uncharged residues of the consensus motifs play a crucial role in calcium tolerance and calcium transport activity and are therefore likely to be architectural components of the cation binding site of Gdt1p. Importantly, we confirm the essential role of the E53 residue whose mutation in humans triggers congenital disorders of glycosylation. © 2017 John Wiley & Sons Ltd.

  11. The transport of carboxylic acids and important role of the Jen1p transporter during the development of yeast colonies

    Czech Academy of Sciences Publication Activity Database

    Paivo, S.; Strachotová, Dita; Kučerová, Helena; Hlaváček, Otakar; Mota, A.; Casal, M.; Palková, Z.; Váchová, Libuše

    2013-01-01

    Roč. 454, SEP 2013 (2013), s. 551-558 ISSN 0264-6021 R&D Projects: GA ČR GA204/08/0718 Institutional support: RVO:61388971 Keywords : ammonia production * Jen1p protein * monocarboxylic acid import Subject RIV: CE - Biochemistry Impact factor: 4.779, year: 2013

  12. Application of Baechu-Kimchi Powder and GABA-Producing Lactic Acid Bacteria for the Production of Functional Fermented Sausages

    Science.gov (United States)

    Choi, Ji Hun; Kang, Ki Moon

    2017-01-01

    This study was carried out to determine the physicochemical, microbiological, and quality characteristics of a new type of fermented sausage manufactured by incorporating Baechu-kimchi powder and gamma-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB). The LAB count was at the maximum level by day nine of ripening in inoculated sausages, accompanied by a rapid decrease in the pH. The addition of kimchi powder decreased the lightness (L*) and increased the redness (a*) and, yellowness (b*) values, while also significantly increasing the hardness and chewiness of the sausage (p<0.05). Moreover, although the thiobarbituric acid reactive substances values increased in all samples during the study period, this increase was lower in the kimchi-treated samples, indicating a reduction in lipid oxidation. Overall, our results show that the addition of Baechu-kimchi powder to sausages reduced the off-flavor properties and improved the taste profile of the fermented sausage in sensory evaluations. The GABA content of all fermented sausages increased from 17.42-25.14 mg/kg on the third day of fermentation to 60.95-61.47 mg/kg on the thirtieth day. These results demonstrate that Baechu-kimchi powder and GABA-producing LAB could be functional materials in fermented sausage to improve quality characteristics. PMID:29725201

  13. The importance of glutamate, glycine, and γ-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity

    International Nuclear Information System (INIS)

    Fitsanakis, Vanessa A.; Aschner, Michael

    2005-01-01

    Historically, amino acids were studied in the context of their importance in protein synthesis. In the 1950s, the focus of research shifted as amino acids were recognized as putative neurotransmitters. Today, many amino acids are considered important neurochemicals. Although many amino acids play a role in neurotransmission, glutamate (Glu), glycine (Gly), and γ-aminobutyric acid (GABA) are among the more prevalent and better understood. Glu, the major excitatory neurotransmitter, and Gly and GABA, the major inhibitory neurotransmitters, in the central nervous system, are known to be tightly regulated. Prolonged exposure to environmental toxicants, such as manganese (Mn), mercury (Hg), or lead (Pb), however, can lead to dysregulation of these neurochemicals and subsequent neurotoxicity. While the ability of these metals to disrupt the regulation of Glu, Gly and GABA have been studied, few articles have examined the collective role of these amino acids in the respective metal's mechanism of toxicity. For each of the neurotransmitters above, we will provide a brief synopsis of their regulatory function, including the importance of transport and re-uptake in maintaining their optimal function. Additionally, the review will address the hypothesis that aberrant homeostasis of any of these amino acids, or a combination of the three, plays a role in the neurotoxicity of Mn, Hg, or Pb

  14. Proton transport properties of poly(aspartic acid) with different average molecular weights

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@kuchem.kyoto-u.ac.j [Department of Mechanical Systems and Design, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Imai, Yuzuru [Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Matsui, Jun [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Ogawa, Tomoyuki [Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Miyashita, Tokuji [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2011-04-15

    Research highlights: Seven polymers with different average molecular weights were synthesized. The proton conductivity depended on the number-average degree of polymerization. The difference of the proton conductivities was more than one order of magnitude. The number-average molecular weight contributed to the stability of the polymer. - Abstract: We synthesized seven partially protonated poly(aspartic acids)/sodium polyaspartates (P-Asp) with different average molecular weights to study their proton transport properties. The number-average degree of polymerization (DP) for each P-Asp was 30 (P-Asp30), 115 (P-Asp115), 140 (P-Asp140), 160 (P-Asp160), 185 (P-Asp185), 205 (P-Asp205), and 250 (P-Asp250). The proton conductivity depended on the number-average DP. The maximum and minimum proton conductivities under a relative humidity of 70% and 298 K were 1.7 . 10{sup -3} S cm{sup -1} (P-Asp140) and 4.6 . 10{sup -4} S cm{sup -1} (P-Asp250), respectively. Differential thermogravimetric analysis (TG-DTA) was carried out for each P-Asp. The results were classified into two categories. One exhibited two endothermic peaks between t = (270 and 300) {sup o}C, the other exhibited only one peak. The P-Asp group with two endothermic peaks exhibited high proton conductivity. The high proton conductivity is related to the stability of the polymer. The number-average molecular weight also contributed to the stability of the polymer.

  15. Purification and measurement of acid leachable europium in sands as an aid in the study of sediment transport

    International Nuclear Information System (INIS)

    Ditchburn, R.G.; McCabe, W.J.

    1982-05-01

    The use of europium labelled sand as an aid in the study of sediment transport has been suggested. A method for the purification of acid leachable europium is described. The final measurement is made by flame emission spectrometry using a nitrous oxide-acetylene flame. The usefulness of the method is limited by the natural levels of europium which, in the sand studied, was around 0.3 ppm

  16. Transport and concentration of abscisic acid (ABA) and auxin (IAA) in deciduous and coniferous trees. Transport und Gehalt von Abscisinsaeure (ABA) und Auxin (IAA) in Laub- und Nadelblaettern

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, W.

    1988-09-01

    Abscisic acid and indoleacetic acid were chosen to examine whether intact deciduous and coniferous tissues from spruce, hemlock fir, spinage, barley and sorrel or isolated mesophyll protoplasts from barley and closing cell preparations from Valerianella locusta are affected by sulphur dioxide in terms of changes in the concentration, transportation and distribution of such plant hormones. The distribution of phytohormones like ABA and IAA over the individual cell compartments is determined by the different pH gradients of the latter. Owing to their acidity these hormones are accumulated in alkaline cell inclusion bodies like chloroplasts and cytosol. Potentially acid air pollutants like SO{sub 2} and NO{sub x} lead to acidification of previously alkaline cell compartments, due to which fact the cellular pH gradients are reduced. This, in turn, gives rise to a redistribution of phytohormones to the effect that certain target cells such as closing cells of leaves or meristem cells come under the influence of altered hormone concentrations and compositions. This is bound to affect the processes controlling the development, growth and stress behaviour of plants. (orig.) With 55 refs., 2 tabs., 16 figs.

  17. Insights into the Structure, Function, and Ligand Discovery of the Large Neutral Amino Acid Transporter 1, LAT1

    Directory of Open Access Journals (Sweden)

    Natesh Singh

    2018-04-01

    Full Text Available The large neutral amino acid transporter 1 (LAT1, or SLC7A5 is a sodium- and pH-independent transporter, which supplies essential amino acids (e.g., leucine, phenylalanine to cells. It plays an important role at the Blood–Brain Barrier (BBB where it facilitates the transport of thyroid hormones, pharmaceuticals (e.g., l-DOPA, gabapentin, and metabolites into the brain. Moreover, its expression is highly upregulated in various types of human cancer that are characterized by an intense demand for amino acids for growth and proliferation. Therefore, LAT1 is believed to be an important drug target for cancer treatment. With the crystallization of the arginine/agmatine antiporter (AdiC from Escherichia Coli, numerous homology models of LAT1 have been built to elucidate the substrate binding site, ligand–transporter interaction, and structure–function relationship. The use of these models in combination with molecular docking and experimental testing has identified novel chemotypes of ligands of LAT1. Here, we highlight the structure, function, transport mechanism, and homology modeling of LAT1. Additionally, results from structure–function studies performed on LAT1 are addressed, which have enhanced our knowledge of the mechanism of substrate binding and translocation. This is followed by a discussion on ligand- and structure-based approaches, with an emphasis on elucidating the molecular basis of LAT1 inhibition. Finally, we provide an exhaustive summary of different LAT1 inhibitors that have been identified so far, including the recently discovered irreversible covalent inhibitors.

  18. 5'-azido-N-1-naphthylphthalamic acid, a photolabile analog of the auxin transport inhibitor, N-1-naphthylphthalamic acid: synthesis and binding properties

    International Nuclear Information System (INIS)

    Voet, J.G.; Howley, K.; Shumsky, J.S.

    1987-01-01

    The polar transport of the plant growth regulator, auxin (indole-3-acetic acid, IAAH), is thought to involve the participation of several proteins in the plasma membrane, including a specific, saturable, voltage independent H + /IAA - efflux carrier located preferentially at the basal end of each cell. Auxin transport is specifically inhibited by the herbicide, N-1-naphthylphthalamic acid (NPA), which binds specifically to a protein in the plasma membrane, thought to be either the IAA - efflux carrier or an allosteric effector protein. They have synthesized and characterized a photolabile analog of NPA, 5'-azido-N-1-naphthylphthalamic acid (Az-NPA). This potential photoaffinity label for the NPA binding protein competes with 3 H-NPA for binding sites on Curcurbita pepo L. (zucchini) stem cell membranes with K/sub j/ = 1.5 x 10 -7 M. The K/sub i/ for NPA under these conditions is 2 x 10 -8 M, indicating that the affinity of Az-NPA for the membranes is only 7.5 fold lower than NPA. While the binding of 4.6 x 10 -6 M Az-NPA to NPA binding sites is reversible in the dark, exposure to light results in a 30% loss in 3 H-NPA binding ability. Pretreatment with 10 -4 M NPA protects the membranes against photodestruction of 3 H-NPA binding sites by Az-NPA, supporting the conclusion that Az-NPA destroys these sites by specific covalent attachment

  19. Inhibition of beta-amino acid transport by diamide does not involve the brush border membrane surface

    International Nuclear Information System (INIS)

    Chesney, R.W.; Gusowski, N.; Albright, P.

    1985-01-01

    Diamide (dicarboxylic acid bis-(N,N-dimethylamide) has been shown in previous studies to block the uptake of the beta-amino acid taurine at its high affinity transport site in rat renal cortex slices. Diamide may act by increasing the efflux of taurine from the slice. Studies performed in rat slices again indicate enhanced efflux over 8-12 minutes. The time course of reduced glutathione (GSH) depletion from renal cortex is similar, indicating a potential interaction between GSH depletion and inhibition of taurine accumulation. The effect of 9 mM diamide on the Na+ -dependent accumulation of taurine (10 and 250 microM) by brush border membrane vesicles was examined, and the taurine uptake value both initially and at equilibrium was the same in the presence and absence of diamide. Isolation of the brush border surface and subsequent transport studies of taurine are not influenced by diamide. Thus, diamide inhibition of taurine uptake does not involve physiochemical alteration of the membrane surface where active amino acid transport occurs, despite the thiol-oxidizing properties of this agent. Further, these studies suggest that diamide either acts at the basolateral surface, rather than the brush border surface of rat renal cortex or requires the presence of an intact tubule, capable of metabolism, prior to its inhibitory action

  20. Bile acid treatment alters hepatic disease and bile acid transport in peroxisome-deficient PEX2 Zellweger mice

    NARCIS (Netherlands)

    Keane, Megan H.; Overmars, Henk; Wikander, Thomas M.; Ferdinandusse, Sacha; Duran, Marinus; Wanders, Ronald J. A.; Faust, Phyllis L.

    2007-01-01

    The marked deficiency of peroxisomal organelle assembly in the PEX2(-/-) mouse model for Zellweger syndrome provides a unique opportunity to developmentally and biochemically characterize hepatic disease progression and bile acid products. The postnatal survival of homozygous mutants enabled us to

  1. Isolation of a spontaneous CHO amino acid transport mutant by a combination of tritium suicide and replica plating

    International Nuclear Information System (INIS)

    Dantzig, A.H.; Slayman, C.W.; Adelberg, E.A.

    1982-01-01

    A spontaneous transport mutant of Chinese hamster ovary cells, CHY-1, was isolated by a combination of [ 3 H]proline suicide and replica plating. The mutant took up less tritium than the parent, resulting in a lower killing rate during storage. Transport by four separate amino acid transport systems (A, ASC, L, Ly+) was examined. The CHY-1 mutant exhibited normal uptake via the ASC, L, and Ly+ systems. By contrast, uptake of the most specific substrate of the A system, 2-(methylamino)-isobutyric acid, was significantly reduced at low, but not high, concentrations, due to a 3.5-fold increase in Km and a 1.5-fold increase in Vmax. Taken together, these data suggest that the CHY-1 mutation may be in the structural gene coding for the A transport protein. The tritium suicide procedure is discussed, and general equations are derived to predict the maximum storage time for the survival of one mutant cell and the optimum size of the cell population for maximum mutant enrichment

  2. CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1.

    Science.gov (United States)

    Huynh, Kevin W; Jiang, Jiansen; Abuladze, Natalia; Tsirulnikov, Kirill; Kao, Liyo; Shao, Xuesi; Newman, Debra; Azimov, Rustam; Pushkin, Alexander; Zhou, Z Hong; Kurtz, Ira

    2018-03-02

    Na + -coupled acid-base transporters play essential roles in human biology. Their dysfunction has been linked to cancer, heart, and brain disease. High-resolution structures of mammalian Na + -coupled acid-base transporters are not available. The sodium-bicarbonate cotransporter NBCe1 functions in multiple organs and its mutations cause blindness, abnormal growth and blood chemistry, migraines, and impaired cognitive function. Here, we have determined the structure of the membrane domain dimer of human NBCe1 at 3.9 Å resolution by cryo electron microscopy. Our atomic model and functional mutagenesis revealed the ion accessibility pathway and the ion coordination site, the latter containing residues involved in human disease-causing mutations. We identified a small number of residues within the ion coordination site whose modification transformed NBCe1 into an anion exchanger. Our data suggest that symporters and exchangers utilize comparable transport machinery and that subtle differences in their substrate-binding regions have very significant effects on their transport mode.

  3. Up-Regulation of the Excitatory Amino Acid Transporters EAAT1 and EAAT2 by Mammalian Target of Rapamycin

    Directory of Open Access Journals (Sweden)

    Abeer Abousaab

    2016-11-01

    Full Text Available Background: The excitatory amino-acid transporters EAAT1 and EAAT2 clear glutamate from the synaptic cleft and thus terminate neuronal excitation. The carriers are subject to regulation by various kinases. The EAAT3 isoform is regulated by mammalian target of rapamycin (mTOR. The present study thus explored whether mTOR influences transport by EAAT1 and/or EAAT2. Methods: cRNA encoding wild type EAAT1 (SLC1A3 or EAAT2 (SLC1A2 was injected into Xenopus oocytes without or with additional injection of cRNA encoding mTOR. Dual electrode voltage clamp was performed in order to determine electrogenic glutamate transport (IEAAT. EAAT2 protein abundance was determined utilizing chemiluminescence. Results: Appreciable IEAAT was observed in EAAT1 or EAAT2 expressing but not in water injected oocytes. IEAAT was significantly increased by coexpression of mTOR. Coexpression of mTOR increased significantly the maximal IEAAT in EAAT1 or EAAT2 expressing oocytes, without significantly modifying affinity of the carriers. Moreover, coexpression of mTOR increased significantly EAAT2 protein abundance in the cell membrane. Conclusions: The kinase mTOR up-regulates the excitatory amino acid transporters EAAT1 and EAAT2.

  4. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter.

    Science.gov (United States)

    Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald

    2014-09-01

    Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar. © 2014 Scandinavian Plant Physiology Society.

  5. Transport of poly(acrylic acid) coated 2-line ferrihydrite nanoparticles in saturated aquifer sediments for environmental remediation

    Science.gov (United States)

    Xiang, Aishuang; Zhou, Sheng; Koel, Bruce E.; Jaffé, Peter R.

    2014-04-01

    Groundwater remediation using iron oxide and zero-valent iron nanoparticles (NPs) can be effective, but is limited in many applications due to the NP strong retention in groundwater-saturated porous media after injection, the passivation of the porous surface, and the high cost of nanomaterials versus macro scale iron. In this study, we investigated transport of bare and polymer-coated 2-line ferrihydrite NPs (30-300 nm) in saturated aquifer sediments. The influence of poly(acrylic acid) (PAA) polymer coatings was studied on the colloidal stability and transport in sediments packed column tests simulating groundwater flow in saturated sediments. In addition, the influence of calcium cations was investigated by transport measurements using sediments with calcium concentrations in the aqueous phase ranging from 0.5 (typical for most sediments) to 2 mM. Measurements were also made of zeta potential, hydrodynamic diameter, polymer adsorption and desorption properties, and bio-availability of PAA-coated NPs. We found that NP transport through the saturated aquifer sediments was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. We further discovered that PAA coatings enhanced NP transport, compared to bare NPs, in all calcium-containing experiments tested, however, the presence of calcium always exhibited a negative effect on NP transport. In tests of bioavailability, the iron reduction rate of the coated and bare NPs by Geobacter sulfurreducens was the same, which shows that the PAA coating does not significantly reduce NP Fe(III) bioavailability. Our results demonstrate that much improved transport of iron oxide NP can be achieved in saturated aquifer sediments by introducing negatively charged polyelectrolytes and optimizing polymer concentrations, and furthermore, these coated NPs retain their bioavailability that is needed for applications in bio-environmental remediation.

  6. Assessment of thermal load on transported goats administered with ascorbic acid during the hot-dry conditions

    Science.gov (United States)

    Minka, N. S.; Ayo, J. O.

    2012-03-01

    The major factor in the induction of physiological stress during road transportation of livestock is the complex fluctuations of the thermal transport microenvironment, encountered when animals are transported across different ecological zones. Recommended guidelines on optimum "on-board" conditions in which goats should be transported are lacking, and there are no acceptable ranges and limits for the thermal loads to which goats may be subjected during long-distance road transportation in hot-dry conditions. Panting score (PS), rectal temperature (RT), heart rate (HR) and respiratory rate (RR) were employed as reliable stress indices to assess the effects of different thermal loads, measured as temperature humidity index (THI), encountered in the vehicle during 12 h of road transportation of 40 goats, and to suggest the administration of 100 mg/kg body weight of ascorbic acid (AA) as an ameliorating agent. The results obtained showed that the PS, RT, HR and RR rose above normal reference values with increase in the THI and journey duration. The rise in PS value, which is a visual indicator of the severity of thermal load, was the most pronounced. The results suggest that values of THI in the vehicle up to 94.6 constitute no risk, while at of 100 it presents a moderate risk and above 100 may result in severe stress. The relationships between the thermal load and the physiological variables were positive and significant ( P goats. The results demonstrated that administration of 100 mg/kg body weight of AA before road transportation mitigated the risk of adverse effects of high THI values and other stress factors due to road transportation in goats.

  7. Transport of monocarboxylic acids at the blood-brain barrier: Studies with monolayers of primary cultured bovine brain capillary endothelial cells

    International Nuclear Information System (INIS)

    Terasaki, T.; Takakuwa, S.; Moritani, S.; Tsuji, A.

    1991-01-01

    The kinetics and mechanism of the transport of monocarboxylic acids (MCAs) were studied by using primary cultured bovine brain capillary endothelial cells. Concentration-dependent uptake of acetic acid was observed, and the kinetic parameters were estimated as follows: the Michaelis constant, Kt, was 3.41 ± 1.87 mM, the maximum uptake rate, Jmax, was 144.7 ± 55.7 nmol/mg of protein/min and the nonsaturable first-order rate constant, Kd, was 6.66 ± 1.98 microliters/mg of protein/min. At medium pH below 7.0, the uptake rate of [3H]acetic acid increased markedly with decreasing medium pH, whereas pH-independent uptake was observed in the presence of 10 mM acetic acid. An energy requirement for [3H]acetic acid uptake was also demonstrated, because metabolic inhibitors (2,4-dinitrophenol and rotenone) reduced significantly the uptake rate (P less than .05). Carbonylcyanide-p-trifluoro-methoxyphenylhydrazone, a protonophore, inhibited significantly the uptake of [3H]acetic acid at medium pH of 5.0 and 6.0, whereas 4,4'-diisothiocyanostilben-2,2'-disulfonic acid did not. Several MCAs inhibited significantly the uptake rate of [3H]acetic acid, whereas di- and tricarboxylic acids did not. The uptake of [3H]acetic acid was competitively inhibited by salicylic acid, with an inhibition constant, Ki, of 3.60 mM, suggesting a common transport system between acetic acid and salicylic acid. Moreover, at the medium pH of 7.4, salicylic acid and valproic acid inhibited significantly the uptake of [3H]acetic acid, demonstrating that the transport of MCA drugs could also be ascribed to the MCA transport system at the physiologic pH

  8. Optimization of culture condition for ACEI and GABA production by lactic acid bacteria.

    Science.gov (United States)

    Tung, Yi-Ting; Lee, Bao-Hong; Liu, Chin-Feng; Pan, Tzu-Ming

    2011-01-01

    Gamma-aminobutyric acid (GABA) and angiotensin-converting enzyme inhibitor (ACEI) are compounds which can influence hypertension. The goal of this study is to optimize the culture condition for GABA and ACEI production by Lactobacillus plantarum NTU 102 fermented skim milk. In this study, we used 3-factor-3-level Box-Behnken design combining with response surface methodology, where the 3 factors represent the concentration of skim milk, the concentration of monosodium glutamate, and culture temperature. Best conditions for GABA and ACEI production differed. The results indicated that L. plantarum NTU 102 produced the highest combined levels of GABA and ACEI at 37 °C, in milk having 8% to 12% nonfat solids supplemented with 0.6% to 1% MSG. Agitation of the medium during fermentation had no effect on GABA or ACEI production but extended incubation (up to 6 d) increases levels of the bioactive compounds. L. plantarum NTU 102 fermented products may be a potential functional food source for regulating hypertension. © 2011 Institute of Food Technologists®

  9. An overview of gamma-hydroxybutyric acid: pharmacodynamics, pharmacokinetics, toxic effects, addiction, analytical methods, and interpretation of results.

    Science.gov (United States)

    Andresen, H; Aydin, B E; Mueller, A; Iwersen-Bergmann, S

    2011-09-01

    Abuse of gamma-hydroxybutyric acid (GHB) has been known since the early 1990's, but is not as widespread as the consumption of other illegal drugs. However, the number of severe intoxications with fatal outcomes is comparatively high; not the least of which is brought about by the consumption of the currently legal precursor substances gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD). In regards to previous assumptions, addiction to GHB or its analogues can occur with severe symptoms of withdrawal. Moreover, GHB can be used for drug-facilitated sexual assaults. Its pharmacological effects are generated mainly by interaction with both GABA(B) and GHB receptors, as well as its influence on other transmitter systems in the human brain. Numerous analytical methods for determining GHB using chromatographic techniques were published in recent years, and an enzymatic screening method was established. However, the short window of GHB detection in blood or urine due to its rapid metabolism is a challenge. Furthermore, despite several studies addressing this problem, evaluation of analytical results can be difficult: GHB is a metabolite of GABA (gamma-aminobutyric acid); a differentiation between endogenous and exogenous concentrations has to be made. Apart from this, in samples with a longer storage interval and especially in postmortem specimens, higher levels can be measured due to GHB generation during this postmortem interval or storage time. Copyright © 2011 John Wiley & Sons, Ltd.

  10. In vitro bioacessibility and transport across Caco-2 monolayers of haloacetic acids in drinking water.

    Science.gov (United States)

    Melo, A; Faria, M A; Pinto, E; Mansilha, C; Ferreira, I M P L V O

    2016-10-01

    Water disinfection plays a crucial role in water safety but it is also a matter of concern as the use of disinfectants promotes the formation of disinfection by-products (DBPs). Haloacetic acids (HAAs) are one of the major classes of DBPs since they are frequently found in treated water, are ubiquitous, pervasive and have high water solubility, so a great concern emerged about their formation, occurrence and toxicity. Exposure to HAAs is influenced by consumption patterns and diet of individuals thus their bioavailability is an important parameter to the overall toxicity. In the current study the bioacessibility of the most representative HAAs (chloroacetic acid - MCAA, bromoacetic acid - MBAA, dichloroacetic acid - DCAA, dibromoacetic acid - DBAA, and trichloroacetic acid - TCAA) after simulated in vitro digestion (SIVD) in tap water and transport across Caco-2 monolayers was evaluated. Compounds were monitored in 8 points throughout the digestion phases by an optimized LC-MS/MS methodology. MCAA and MBAA were not bioaccessible after SIVD whereas DCAA, DBAA and TCAA are highly bioaccessible (85 ± 4%, 97 ± 4% and 106 ± 7% respectively). Concerning transport assays, DCAA and DBAA were highly permeable throughout the Caco-2 monolayer (apparent permeability and calculated fraction absorbed of 13.62 × 10(-6) cm/s and 90% for DCAA; and 8.82 × 10(-6) cm/s and 84% for DBAA), whereas TCAA showed no relevant permeability. The present results may contribute to efficient risk analysis studies concerning HAAs oral exposure from tap water taking into account the different biological behaviour of these chemically similar substances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils

    Directory of Open Access Journals (Sweden)

    Geraldo Carvalho Jr

    2016-02-01

    Full Text Available Aluminum (Al toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world’s arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L. Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha–1 grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha–1 independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries.

  12. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  13. A new method to radiolabel fulvic acids with tritium for the purpose of tracing organic matter transport at low concentrations

    International Nuclear Information System (INIS)

    Tinnacher, R.M.; Honeyman, B.D.; Leenheer, J.A.

    2005-01-01

    Full text of publication follows: It is increasingly evident that reactive transport models for radionuclides need to include the effects of natural organic ligands, such as bacterial exudates and humic and fulvic acids. Understanding the role of such ligands in radionuclide transport requires an ability to track ligand concentrations in time and space with an analytical resolution similar to that of the target radionuclide. Unfortunately, for many systems of interest for radioactive waste disposal and performance assessment, organic ligand concentrations are quite low (e.g., mg C/ L or less). Radiolabeling organic ligands can provide a means of tracing such species at low levels and for relatively low cost. Currently-used labeling methods, however, show some limitations with respect to the chemical stability of the radiolabel, the ability to produce high label specific activities and method reproducibility. In the procedure that we will describe, fulvic acid is radiolabeled with tritium by its reduction with tritiated sodium borohydride (NaBH 4 ) at alkaline pH and slightly elevated temperatures. The reactant selectively reduces the carbonyl groups of aromatic and aliphatic ketones as well as quinones. This results in the formation of tritium-labeled secondary alcohols. After completion of the labeling reaction, aerobically unstable reduction products of quinones and aromatic ketones are re-oxidized under controlled experimental conditions during an aeration step. Labeling efficiency in terms of reduced reactive fulvic acid groups is in the range of 100 percent with equal weights of fulvic acid and NaBH 4 in the reaction solution. This yields specific activities on the order of 50 to 100 μCi / mg fulvic acid. A quasi-chemical model of the labeling process allows the accurate prediction of the labeling efficiency based on a simplified mass action expression for the labeling reaction and the mass balance equations for fulvic acid and sodium borohydride. Such a

  14. Transport of perfluoroalkyl acids in a water-saturated sediment column investigated under near-natural conditions

    International Nuclear Information System (INIS)

    Vierke, Lena; Möller, Axel; Klitzke, Sondra

    2014-01-01

    The aim of this study was to gain an understanding of the transport of C 4–10 perfluoroalkyl carboxylic acids (PFCAs) and C 4,6,8 perfluoroalkyl sulfonic acids (PFSAs) in a water-saturated sediment column representing a riverbank filtration scenario under near-natural conditions. Short-chain PFCAs and PFSAs with up to six C-atoms showed complete tracer-like breakthrough. Longer chain ones were retarded due to sorption to the sediment or due to other processes in the aqueous phase. The study reports the first column derived sediment–water partition coefficients ranging from 0.01 cm 3 g −1 to 0.41 cm 3 g −1 for C 4,6 PFSAs and from 0.0 cm 3 g −1 to 6.5 cm 3 g −1 for C 4,5,6,8,9 PFCAs. The results clearly indicate that short-chain PFCAs and PFSAs may pose a problem if contaminated surface waters are used for drinking water production via riverbank filtration. Highlights: • Transport of per- and polyfluorinated compounds in a riverbank filtration scenario. • Investigations under near-natural conditions with a water-saturated sediment column. • Processes in water and sediment control the transport of analytes. • Short chain PFCAs and PFSAs are not retarded in the water-saturated sediment column. • First column derived sediment–water partition coefficients. -- Quantification of breakthrough of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) under conditions simulating a riverbank filtration scenario

  15. Synthesis selective transport properties of cleft-type ionophores having two convergent hydroxamic acid functions

    International Nuclear Information System (INIS)

    Kim, Duck Hee; Choi, Mi Jung; Chang, Suk Kyu

    2001-01-01

    A series of cleft-type ionophores having two convergent hydroxamic acid functions are prepared and their selective ionophoric properties toward heavy metal and transition metal ions have been investigated. Hydroxamic acids 3 exhibited a prominent selectivity toward heavy metal ions of Hg 2+ and Pb 2+ , and transition metal ions of Cu 2+ over other transition metal and alkaline earth metal ions from slightly acidic source phase (pH 6) to an acidic receiving phase (pH 1). Selective ionophoric properties toward Pb 2+ and Cu 2+ ions over other surveyed metal ions are also confirmed by the FAB-MS measurements

  16. Functional analysis of human aromatic amino acid transporter MCT10/TAT1 using the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Uemura, Satoshi; Mochizuki, Takahiro; Kurosaka, Goyu; Hashimoto, Takanori; Masukawa, Yuki; Abe, Fumiyoshi

    2017-10-01

    Tryptophan is an essential amino acid in humans and an important serotonin and melatonin precursor. Monocarboxylate transporter MCT10 is a member of the SLC16A family proteins that mediates low-affinity tryptophan transport across basolateral membranes of kidney, small intestine, and liver epithelial cells, although the precise transport mechanism remains unclear. Here we developed a simple functional assay to analyze tryptophan transport by human MCT10 using a deletion mutant for the high-affinity tryptophan permease Tat2 in Saccharomyces cerevisiae. tat2Δtrp1 cells are defective in growth in YPD medium because tyrosine present in the medium competes for the low-affinity tryptophan permease Tat1 with tryptophan. MCT10 appeared to allow growth of tat2Δtrp1 cells in YPD medium, and accumulate in cells deficient for Rsp5 ubiquitin ligase. These results suggest that MCT10 is functional in yeast, and is subject to ubiquitin-dependent quality control. Whereas growth of Tat2-expressing cells was significantly impaired by neutral pH, that of MCT10-expressing cells was nearly unaffected. This property is consistent with the transport mechanism of MCT10 via facilitated diffusion without a need for pH gradient across the plasma membrane. Single-nucleotide polymorphisms (SNPs) are known to occur in the human MCT10 coding region. Among eight SNP amino acid changes in MCT10, the N81K mutation completely abrogated tryptophan import without any abnormalities in the expression or localization. In the MCT10 modeled structure, N81 appeared to protrude into the putative trajectory of tryptophan. Plasma membrane localization of MCT10 and the variant proteins was also verified in human embryonic kidney 293T cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine.

    Directory of Open Access Journals (Sweden)

    Kai Qiu

    Full Text Available Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24, nitrogen balance (n = 6, and the expression of small intestinal AA and peptide transporters (n = 6 were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1 was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption.

  18. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    2002-01-01

    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores

  19. Long range transport of air pollutants in Europe and acid precipitation in Norway

    Science.gov (United States)

    Jack Nordo

    1976-01-01

    Observations show that pollutants from large emission sources may cause significant air concentrations 500 to 1000 miles away. Very acid precipitation occurs in such periods. The scavenging is often intensified by the topography. Case studies will be presented, with special emphasis on acid precipitation in Scandinavia. Large scale dispersion models have been developed...

  20. Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado

    Science.gov (United States)

    Schemel, L.E.; Kimball, B.A.; Bencala, K.E.

    2000-01-01

    Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (water column.

  1. Validation of transport measurements in skeletal muscle with N-13 amino acids using a rabbit isolated hindlimb model

    International Nuclear Information System (INIS)

    Conlon, K.C.; Bading, J.R.; DiResta, G.R.; Corbally, M.T.; Gelbard, A.S.; Brennan, M.F.

    1989-01-01

    The authors are studying the transport of C-11 and N-13 labeled amino acids in tumor-bearing rabbits to determine the role of amino acid transport in the pathogenesis of muscle wasting in cancer. To validate a new, in vivo, method for measuring transport in skeletal muscle with these compounds, an isolated hindlimb model was developed in rabbits. The limb was perfused with a non-recirculating, normothermic, constant pressure system and a cell-free perfusate. Hemodynamic and metabolic parameters were measured during the first 75 min. of perfusion and found to remain normal and stable. Flow varied directly with perfusion pressure over the normal range of resting flows in the intact rabbit hindlimb. Time-activity curves (TAC's) were recorded from the medial thigh following bolus co-injection of L-[amide N-13] glutamine or N-13 L-glutamate with Tc-99m human serum albumin (HSA) into the femoral artery. Regional plasma flow was determined from the Tc-99m data

  2. Down-Regulation of Placental Transport of Amino Acids Precedes the Development of Intrauterine Growth Restriction in Maternal Nutrient Restricted Baboons.

    Science.gov (United States)

    Pantham, Priyadarshini; Rosario, Fredrick J; Weintraub, Susan T; Nathanielsz, Peter W; Powell, Theresa L; Li, Cun; Jansson, Thomas

    2016-11-01

    Intrauterine growth restriction (IUGR) is an important risk factor for perinatal complications and adult disease. IUGR is associated with down-regulation of placental amino acid transporter expression and activity at birth. It is unknown whether these changes are a cause or a consequence of human IUGR. We hypothesized that placental amino acid transport capacity is reduced prior to onset of reduced fetal growth in baboons with maternal nutrient restriction (MNR). Pregnant baboons were fed either a control (n = 8) or MNR diet (70% of control diet, n = 9) from Gestational Day 30. At Gestational Day 120 (0.65 of gestation), fetuses and placentas were collected. Microvillous (MVM) and basal (BM) plasma membrane vesicles were isolated. System A and system L transport activity was determined in MVM, and leucine transporter activity was assessed in BM using radiolabeled substrates. MVM amino acid transporter isoform expression (SNAT1, SNAT2, and SNAT4 and LAT1 and LAT2) was measured using Western blots. LAT1 and LAT2 expression were also determined in BM. Maternal and fetal plasma amino acids concentrations were determined using mass spectrometry. Fetal and placental weights were unaffected by MNR. MVM system A activity was decreased by 37% in MNR baboon placentas (P = 0.03); however MVM system A amino acid transporter protein expression was unchanged. MVM system L activity and BM leucine transporter activity were not altered by MNR. Fetal plasma concentrations of essential amino acids isoleucine and leucine were reduced, while citrulline increased (P growth trajectory. The reduction in plasma leucine and isoleucine in MNR fetuses may be caused by reduced activity of MVM system A, which is strongly coupled with system L essential amino acid uptake. Our findings indicate that reduced placental amino acid transport may be a cause rather than a consequence of IUGR due to inadequate maternal nutrition. © 2016 by the Society for the Study of Reproduction, Inc.

  3. Structural requirements of the human sodium-dependent bile acid transporter (hASBT): Role of 3- and 7-OH moieties on binding and translocation of bile acids

    Science.gov (United States)

    González, Pablo M.; Lagos, Carlos F.; Ward, Weslyn C.; Polli, James E.

    2014-01-01

    Bile acids (BAs) are the end products of cholesterol metabolism. One of the critical steps in their biosynthesis involves the isomerization of the 3β-hydroxyl (-OH) group on the cholestane ring to the common 3α-configuration on BAs. BAs are actively recaptured from the small intestine by the human Apical Sodium-dependent Bile Acid Transporter (hASBT) with high affinity and capacity. Previous studies have suggested that no particular hydroxyl group on BAs is critical for binding or transport by hASBT, even though 3β-hydroxylated BAs were not examined. The aim of this study was to elucidate the role of the 3α-OH group on BAs binding and translocation by hASBT. Ten 3β-hydroxylated BAs (Iso-bile acids, iBAs) were synthesized, characterized, and subjected to hASBT inhibition and uptake studies. hASBT inhibition and uptake kinetics of iBAs were compared to that of native 3α-OH BAs. Glycine conjugates of native and isomeric BAs were subjected to molecular dynamics simulations in order to identify topological descriptors related to binding and translocation by hASBT. Iso-BAs bound to hASBT with lower affinity and exhibited reduced translocation than their respective 3α-epimers. Kinetic data suggests that, in contrast to native BAs where hASBT binding is the rate-limiting step, iBAs transport was rate-limited by translocation and not binding. Remarkably, 7-dehydroxylated iBAs were not hASBT substrates, highlighting the critical role of 7-OH group on BA translocation by hASBT, especially for iBAs. Conformational analysis of gly-iBAs and native BAs identified topological features for optimal binding as: concave steroidal nucleus, 3-OH “on-” or below-steroidal plane, 7-OH below-plane, and 12-OH moiety towards-plane. Our results emphasize the relevance of the 3α-OH group on BAs for proper hASBT binding and transport and revealed the critical role of 7-OH group on BA translocation, particularly in the absence of a 3α-OH group. Results have implications for BA

  4. Human proton coupled folic acid transporter is a monodisperse oligomer in the lauryl maltose neopentyl glycol solubilized state.

    Science.gov (United States)

    Aduri, Nanda G; Ernst, Heidi A; Prabhala, Bala K; Bhatt, Shweta; Boesen, Thomas; Gajhede, Michael; Mirza, Osman

    2018-01-08

    The human proton coupled folic acid transporter PCFT is the major import route for dietary folates. Mutations in the gene encoding PCFT cause hereditary folic acid malabsorption, which manifests itself by compromised folate absorption from the intestine and also in impaired folate transport into the central nervous system. Since its recent discovery, PCFT has been the subject of numerous biochemical studies aiming at understanding its structure and mechanism. One major focus has been its oligomeric state, with some reports supporting oligomers and others a monomer. Here, we report the overexpression and purification of recombinant PCFT. Following detergent screening, n-Dodecyl β-D-maltoside (DDM) and lauryl maltose neopentyl glycol (LMNG) were chosen for further work as they exhibited the most optimal solubilization. We found that purified detergent solubilized PCFT was able to bind folic acid, thus indicating a functionally active protein. Size exclusion chromatography showed that PCFT in DDM was polydisperse; the LMNG preparation was clearly monodisperse but with shorter retention time than the major DDM peak. To assess the oligomeric state negative stain electron microscopy was performed which showed a particle with the size of a PCFT dimer. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effects of the insecticide fipronil on reproductive endocrinology in the fathead minnow

    Science.gov (United States)

    Gamma aminobutyric acid (GABA) and GABA receptors play an important role in neuroendocrine regulation in fish. Disruption of the GABAergic system by environmental contaminants could interfere with normal regulation of the hypothalamic pituitary gonadal (HPG) axis, leading to imp...

  6. Forebrain glutamatergic, but not GABAergic, neurons mediate anxiogenic effects of the glucocorticoid receptor

    NARCIS (Netherlands)

    Hartmann, J.; Dedic, N.; Pöhlmann, M.L.; Häusl, A.; Karst, H.; Engelhardt, C.; Westerholz, S.; Wagner, K.V.; Labermaier, C.; Hoeijmakers, L.; Kertokarijo, M.; Chen, A.; Joëls, M.; Deussing, J.M.; Schmidt, M.V.

    2017-01-01

    Anxiety disorders constitute a major disease and social burden worldwide; however, many questions concerning the underlying molecular mechanisms still remain open. Besides the involvement of the major excitatory (glutamate) and inhibitory (gamma aminobutyric acid (GABA)) neurotransmitter circuits in

  7. Extraordinary arousal from semi-comatose state on zolpidem ...

    African Journals Online (AJOL)

    propylene amine oxime (99mTc HMPAO) brain single photon emission computed tomography (SPECf) before and after administration of the gamma-aminobutyric acid (GABA) agonist zolpidem. It was observed that 15 minutes after application ...

  8. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Melton, Elaina M. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Center for Cardiovascular Sciences, Albany Medical College, Albany, NY (United States); Cerny, Ronald L. [Department of Chemistry, University of Nebraska, Lincoln, NE (United States); DiRusso, Concetta C. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Black, Paul N., E-mail: pblack2@unl.edu [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States)

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  9. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    International Nuclear Information System (INIS)

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2013-01-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  10. The altered glucose metabolism in tumor and a tumor acidic microenvironment associated with extracellular matrix metalloproteinase inducer and monocarboxylate transporters

    Science.gov (United States)

    Li, Xiaofeng; Yu, Xiaozhou; Dai, Dong; Song, Xiuyu; Xu, Wengui

    2016-01-01

    Extracellular matrix metalloproteinase inducer, also knowns as cluster of differentiation 147 (CD147) or basigin, is a widely distributed cell surface glycoprotein that is involved in numerous physiological and pathological functions, especially in tumor invasion and metastasis. Monocarboxylate transporters (MCTs) catalyze the proton-linked transport of monocarboxylates such as L-lactate across the plasma membrane to preserve the intracellular pH and maintain cell homeostasis. As a chaperone to some MCT isoforms, CD147 overexpression significantly contributes to the metabolic transformation of tumor. This overexpression is characterized by accelerated aerobic glycolysis and lactate efflux, and it eventually provides the tumor cells with a metabolic advantage and an invasive phenotype in the acidic tumor microenvironment. This review highlights the roles of CD147 and MCTs in tumor cell metabolism and the associated molecular mechanisms. The regulation of CD147 and MCTs may prove to be with a therapeutic potential for tumors through the metabolic modification of the tumor microenvironment. PMID:27009812

  11. Use of 3h-γ-aminobutyric acid for transport studies with isolated nerve-terminals from rat brain

    International Nuclear Information System (INIS)

    Halvarsson, G.B.; Karlsson, I.; Sellstroem, A.

    1985-01-01

    Isolated synaptosomes were used to study the problem of net accumulation of neurotransmitters. The time-course and the kinetics of exogenous and endogenous GABA transport were studied by liquid-scintillation counting and HPLC-amino acid analysis respectively. Different pools of GABA were suggested by a 6-fold difference in tissue-to-medium-ratio of endogenous vs. exogenous GABA. Net accumulation, exchange and net efflux of GABA was found to be a function of the GABA concentration in the incubation medium. The K/sub m/s for net accumulation and for 3 H-GABA accumulation were 2.68 +/- 1.16 and 6.19 +/- 1.26 μM respectively, whereas the V/sub max/s were 5.9 +/- 4.9 and 134 +/- 13 pmol/mg w.w min respectively. This means that the transport studies which use exogenous substances (e.g. 3 H-GABA) considerably overestimate the transport by overlooking the magnitude of the counter transport. 22 references, 5 figures, 2 tables

  12. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.

    Science.gov (United States)

    Xu, Jiaqiang; Li, Gao; Wang, Zhuoyi; Si, Luqin; He, Sijie; Cai, Jialing; Huang, Jiangeng; Donovan, Maureen D

    2016-02-01

    Glyphosate is one of the most commonly used herbicides worldwide due to its broad spectrum of activity and reported low toxicity to humans. Glyphosate has an amino acid-like structure that is highly polar and shows low bioavailability following oral ingestion and low systemic toxicity following intravenous exposures. Spray applications of glyphosate in agricultural or residential settings can result in topical or inhalation exposures to the herbicide. Limited systemic exposure to glyphosate occurs following skin contact, and pulmonary exposure has also been reported to be low. The results of nasal inhalation exposures, however, have not been evaluated. To investigate the mechanisms of glyphosate absorption across epithelial tissues, the permeation of glyphosate across Caco-2 cells, a gastrointestinal epithelium model, was compared with permeation across nasal respiratory and olfactory tissues excised from cows. Saturable glyphosate uptake was seen in all three tissues, indicating the activity of epithelial transporters. The uptake was shown to be ATP and Na(+) independent, and glyphosate permeability could be significantly reduced by the inclusion of competitive amino acids or specific LAT1/LAT2 transporter inhibitors. The pattern of inhibition of glyphosate permeability across Caco-2 and nasal mucosal tissues suggests that LAT1/2 play major roles in the transport of this amino-acid-like herbicide. Enhanced uptake into the epithelial cells at barrier mucosae, including the respiratory and gastrointestinal tracts, may result in more significant local and systemic effects than predicted from glyphosate's passive permeability, and enhanced uptake by the olfactory mucosa may result in further CNS disposition, potentially increasing the risk for brain-related toxicities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Intestinal drug transport via the proton-coupled amino acid transporter PAT1 (SLC36A1) is inhibited by Gly-X(aa) dipeptides

    DEFF Research Database (Denmark)

    Frølund, Sidsel; Langthaler, Louise; Kall, Morten A

    2012-01-01

    -Sar as substrates of the amino acid transporter PAT1. The aim of the present study is to investigate if other Gly-containing dipeptides interact with PAT1, and whether they can inhibit PAT1 mediated drug absorption, in vitro and in vivo. The in vitro methods included two-electrode voltage clamp measurements on h...... of different dipeptides. The in vivo part consisted of a pharmacokinetic study in rats following oral administration of gaboxadol and preadministration of 200 mg/kg dipeptide. The results showed that in hPAT1 expressing oocytes Gly-Tyr, Gly-Pro, and Gly-Phe inhibited currents induced by drug substances......, the present study identifies selected dipeptides as inhibitors of PAT1 mediated drug absorption in various in vitro models....

  14. Up-Regulation of Excitatory Amino Acid Transporters EAAT1 and EAAT2 by ß-Klotho

    Directory of Open Access Journals (Sweden)

    Jamshed Warsi

    2015-12-01

    Full Text Available Background/Aims: Klotho, a transmembrane protein expressed in chorioid plexus of the brain, kidney, and several other tissues, is required for inhibition of 1,25(OH2D3 formation by FGF23. The extracellular domain of Klotho protein could be cleaved off, thus being released into blood or cerebrospinal fluid. At least in part by exerting β-glucuronidase activity, soluble klotho regulates several ion channels and carriers. Klotho protein deficiency accelerates the appearance of age related disorders including neurodegeneration and muscle wasting and eventually leads to premature death. The present study explored the effect of Klotho protein on the excitatory glutamate transporters EAAT1 (SLC1A3 and EAAT2 (SLC1A2, Na+ coupled carriers clearing excitatory amino acids from the synaptic cleft and thus participating in the regulation of neuronal excitability. Methods: cRNA encoding EAAT1 or EAAT2 was injected into Xenopus laevis oocytes and glutamate (2 mM-induced inward current (IGlu taken as measure of glutamate transport. Measurements were made without or with prior 24 h treatment with soluble ß-Klotho protein (30 ng/ml in the absence and presence of β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL,10 µM. Results: IGlu was observed in EAAT1 and in EAAT2 expressing oocytes but not in water injected oocytes. In both, EAAT1 and EAAT2 expressing oocytes IGlu was significantly increased by treatment with soluble ß-Klotho protein, an effect reversed by DSAL. Treatment with ß-klotho protein increased significantly the maximal transport rate without significantly modifying the affinity of the carriers. Conclusion: ß-Klotho up-regulates the excitatory glutamate transporters EAAT1 and EAAT2 and thus participates in the regulation of neuronal excitation.

  15. Excitatory amino acid transporters EAAT-1 and EAAT-2 in temporal lobe and hippocampus in intractable temporal lobe epilepsy

    DEFF Research Database (Denmark)

    Sarac, Sinan; Afzal, Shoaib; Broholm, Helle

    2009-01-01

    Intractable temporal lobe epilepsy (TLE) is an invalidating disease and many patients are resistant to medical treatment. Increased glutamate concentration has been found in epileptogenic foci and may induce local over-excitation and cytotoxicity; one of the proposed mechanisms involves reduced...... extra-cellular clearance of glutamate by excitatory amino acid transporters (EAAT-1 to EAAT-5). EAAT-1 and EAAT-2 are mainly expressed on astroglial cells for the reuptake of glutamate from the extra-cellular space. We have studied the expression of EAAT-1 and EAAT-2 in the hippocampus and temporal lobe...

  16. Transcriptional dysregulation of γ-aminobutyric acid transporter in parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia.

    Science.gov (United States)

    Bitanihirwe, Byron K Y; Woo, Tsung-Ung W

    2014-12-30

    Parvalbumin (PV)-containing neurons are functionally compromised in schizophrenia. Using double in situ hybridization in postmortem human prefrontal cortex, we found that the messenger RNA (mRNA) for the γ-aminobutyric acid (GABA) transporter GAT-1 was undetectable in 22-41% of PV neurons in layers 3-4 in schizophrenia. In the remaining PV neurons with detectable GAT-1 mRNA, transcript expression was decreased by 26% in layer 3. Hence, the dysfunction of PV neurons involves the molecular dysregulation of presynaptic GABA reuptake. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers.

    Science.gov (United States)

    Nath, Aritro; Chan, Christina

    2016-01-04

    Reprogramming of cellular metabolism is a hallmark feature of cancer cells. While a distinct set of processes drive metastasis when compared to tumorigenesis, it is yet unclear if genetic alterations in metabolic pathways are associated with metastatic progression of human cancers. Here, we analyzed the mutation, copy number variation and gene expression patterns of a literature-derived model of metabolic genes associated with glycolysis (Warburg effect), fatty acid metabolism (lipogenesis, oxidat